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In this study, a novel physical approach is proposed to detect damages due to earth-

quakes using dual polarimetric (DP) coherent Synthetic Aperture Radar (SAR) im-

agery. An optimisation method, aimed at enhancing scattering basis differences be-

tween measurements collected before and after the event, is designed exploiting La-

grange optimisation of the difference between two polarimetric covariance matrices. A

meaningful showcase is presented to demonstrate the soundness of the proposed ap-

proach that consists of processing Sentinel–1 C–band scenes related to 2016 Central

Italy Earthquake. The proposed approach, which is contrasted with the conventional

coherence based single– and dual–polarisation approaches, results in the best sensi-

tivity to damages.
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1. Introduction

Earthquakes are tremendous natural catastrophes that can not still predicted with

current technology and knowledge. In the past decade, several earthquakes around

the world killed hundreds of thousands of people. After earthquakes, a fast dam-

age assessment is of crucial importance to support effective emergency response

actions and hence, to avoid or reduce the impact of the disaster. Among the re-

mote sensing tools, the Synthetic Aperture Radar (SAR), due to its all–day and its
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almost all-weather fine spatial resolution imaging capabilities, can be very useful

for earthquake monitoring. Typically, pre– and post–event single–polarization SAR

imagery are exploited to design change detection methods (Cihlar, Pultz, and Gray

1992; Hu and Ban 2014; Marin, Bovolo, and Bruzzone 2015; Rignot and van Zyl

1993). The single–polarisation features adopted in most of the cases are the inter-

ferometric coherence and the amplitude of the backscattered signal(Yonezawa and

Takeuchi 2001; Stramondo et al. 2006; Matsuoka and Yamazaki 2004). Very often,

those approaches are augmented using external auxiliary information, e.g.; optical

imagery. A key drawback of the approaches based on the interferometric coherence

relies on the fact that they generally overestimate earthquakes damages due to the

temporal decomposition that intrinsically affects the pre– and post–event acqui-

sitions. In (Gong et al. 2016), very high resolution (VHR) TerraSAR-X imagery

and original building footprint maps are exploited to identify buildings destroyed

by earthquakes. Finally, each building is classified into damage classes using ma-

chine learning techniques, i.e.; a non–physical approach. Authors claim that, in

about 90% of the cases, the method is able to distinguish between collapsed and

standing buildings. In (Gamba, Dell’Acqua, and Lisini 2006) an approach that

combines pixel-based and feature-based techniques is proposed to detect changes

in urban areas using airborne SAR (AIRSAR) and satellite ENVISAT Advanced

SAR (ASAR) images. Experimental results show an improvement in the change

maps using both pixel– and feature–information. Moreover, the technique is able

to overcome major problems arising from multi–temporal image analysis, e.g.; mis-

registration or miscalibration.

Indeed, when two SAR acquisitions must be analyzed, since the related acquisition

geometries are never identical, even if the same sensor is exploited, the prelim-

inary step of coregistration must be accomplished. This step can benefit of the

band–limited nature of the SAR system; however, it introduces coherence losses

(Migliaccio et al. 2007). Further, the use of two multitemporal SAR acquisitions

call for an accurate and stable measurement process over time that can be of spe-

cial challenge when a SAR constellation is to be exploited.

Recently, a large number of SAR satellite missions equipped with polarimetric

SARs have been launched. The availability of polarimetric SAR measurements

triggered the development of added-value products in different thematic domains,

including land applications Lee and Pottier (2009). Within this context, several
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studies have been proposed to exploit full–polarimetric (FP) SAR measurements

to detect damages due to earthquake (Watanabe et al. 2012; Sato, Chen, and Satake

2012; Chen and Sato 2013; Park, Yamaguchi, and jin Kim 2013; Chen, Wang, and

Sato 2016; ?). Although FP SAR offers the largest amount of information about

the observed scene, hardware and budget considerations suggest the operational

use of simpler polarimetric configurations, e.g.; the DP SAR (Nunziata, Migliaccio,

and Li 2015; Buono et al. 2016). In (Watanabe et al. 2016; Karimzadeh and Mas-

tuoka 2017) DP SAR data are exploited for earthquake observation. These studies

deal with the discrimination between the collapsed and preserved buildings that is

a key information to perform damaged areas detection. Both intensity and coher-

ence features, evaluated using DP L– and C–band SAR imagery, are exploited to

show that cross–polarized channel can help identifying collapsed building. In (Fer-

rentino et al. 2018), a new mehod that exploits DP SAR measurements to detect

damages due to earthquakes is proposed. The method is based on the reflection

symmetry property that, measured using the inter–channel complex coherence, is

shown to perform better than SP and DP amplitude ones. The above-mentioned

studies exploit only part of the information carried on the covariance matrix, i.e.;

interchannel–correlation, squared modulus of the channels, etc. To the best of our

knowledge, no study relies on the exploitation of the complete covariance matrix. In

this study, a new paradigm is proposed to detect damages due to earthquakes in DP

SAR imagery. The paradigm consists of optimising the difference between two co-

variance matrices (collected before and after the earthquake, respectively) through

a Lagrange optimisation method. This results in an eigenvalues problem whose

eigenvalues are shown to provide remarkable sensitivity to earthquake–induced

changes. Once the eigenvalues are obtained, an unsupervised approach is designed

to generate binary imagery where changes are easily discernible. A meaningful

showcase is presented to discuss the performance of the proposed methodology

that consists of processing DP SAR scenes collected by the Copernicus Sentinel–1

mission over the area affected by the Central Italy earthquake occurred in 2016.

The obtained results are visually contrasted with both optical imagery and results

obtained by independent studies. The comparison confirms the soundness of the

proposed methodology that succeeds in detecting damaged areas. In addition, the

new method is also contrasted with state–of–the–arts SP and DP methods and it

is shown to result in the best sensitivity to damaged areas.
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2. Methodology

A full–polarimetric (FP) SAR measures, for each resolution cell, the scattering

matrix S, i.e.; a 2×2 matrix of complex elements, termed as scattering amplitudes.

In the backscattering case and under the assumption of reciprocity, S is given by

(Cloude 2009; Lee and Pottier 2009)

S =

SHH SHV

SHV SVV

 (1)

where a linear horizontal (H )–vertical (V ) orthogonal basis is adopted. The scat-

tering matrix rules the transformation of the incident electromagnetic wave into

the scattered one according to the Jones formalism. In practical cases, hardware

and budget constraints may suggest a simpler polarimetric SAR that measures

only a subset of the scattering matrix. This is the case, for instance, of a DP SAR

that measures only the first or the second row of S (1) or a single–polarimetric

SAR that measures only one term of S.

The scattering matrix (1) of one single pixel is only able to describe a fully polarised

target and it is not able to take into account depolarization. In order to overcome

such drawback, second–order descriptors must be employed (Cloude 2009; Lee and

Pottier 2009). Hence, a coherent approach, based on the construction of the co-

variance matrix C, can be adopted. C is a semi–positive definite (PSD) Hermitian

matrix:

C =
〈
kL · k∗TL

〉
(2)

where 〈·〉 is the finite averaging opearator and kL = [Sxx, Sxy]
T, is the scattering

vector, i.e.; the projection of S according to the lexicographic basis (Cloude 2009;

Lee and Pottier 2009). Since C is a PSD Hermitian matrix, it can be uniquely

decomposed according to the eigenvalue/eigenvector decomposition (Cloude and

Pottier 1997):

C = UDUT (3)
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where U and UT are unitary orthogonal matrices, T stands for transpose and D is

a diagonal matrix whose elements are the real and non negative eigenvalues of C. In

the FP case, the decomposition (3) allows interpreting the general scattering targets

described by C in terms of three elementary well-known mechanisms (Cloude 2009;

Lee and Pottier 2009). In the DP case, the decomposition (3) can be still applied but

the physical interpretation may not be straightforward (Cloude 2007; Ainsworth

et al. 2008).

In this study, a different approach is proposed that consists of analysing the

“change matrix” CCD that is defined as follows:

CCD = C2 −C1 (4)

where C1 and C2 are the covariance matrices that characterize DP SAR acqui-

sitions collected with the same geometry over the same scene but at two different

times. We refer to CCD as the change matrix. CCD is not Hermitian, however its

diagonal elements are real and the upper triangular part is the complex conjugate

of the lower triangular part (Marino and Hajnsek 2014). This implies that, unlike

C, CCD is not bounded to be PSD; hence, its quadratic form:

P = ω∗TCCDω ∈ < (5)

where ω = k
|k| is the projection scattering vector, can be negative. The possibility

to have negative values implies that it can take into account decreases or increases

of a given scattering mechanism. The trace:

Trace(CCD) = λ1CD + λ2CD (6)

where λ1CD and λ2CD are the two eigenvalues associated to the matrix CCD, takes

into account the overall power associated to the changes in the partial target, and it

also can be either positive or negative. These features are interesting from a physical

viewpoint since they make CCD sensitive to changes in scattering mechanisms (5)

as well as their overall power (6).

By optimizing CCD over all the possible projection vectors ω, it is possible to

derive the projection vectors that exhibit the largest or smallest changes, i.e.; the
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projection vectors that maximize/minimize changes (Marino and Alonso-Gonzlez

2017). From a mathematical viewpoint, this can be undertaken optimising the

quadratic form P :

ωmax = Argmax
ω∈C3

[
ω∗TCCDω

]
(7)

with ω being a unitary matrix. The well–known Lagrange optimization method

(Lee and Pottier 2009; Cloude 2009; Marino and Hajnsek 2014; Marino and Alonso-

Gonzlez 2017) can be applied that leads to the Lagrangian function:

L = ω∗TCCDω − λ
(
ω∗Tω + C

)
(8)

Differentiating over ∂ω∗T and setting the derivative equal to zero

∂L

∂ω∗T
= CCDω − λω = 0 (9)

we obtain the equation:

CCDω = λω (10)

This is an eigenvalue problem that provides the eigenvalues λi and the eigen-

vectors ui (with i going from 1 to 2) of CCD that maximize/minimize the power

difference between C11 and C22. We decided to focus on the power difference since

it best suits to additive changes in terms of scattering mechanism. In fact, we

expect that changes resulting after the earthquake may either introduce a new

scattering mechanism or remove an existing one.

In this study, the sum of the absolute value of the two eigenvalues is considered

as an indicator of the changes occurred between the two SAR acquisitions in the

same scene:

λtot = |λ1|+ |λ2| (11)

In fact, the largest eigenvalue λ1 of the matrix CCD is mainly positive, which
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means that it represents the power of scattering contributions that increase or

appear in the second acquisition. The smallest eigenvalue λ2 is mostly negative,

which means that it represents the power of scattering mechanisms that are re-

duced or disappear when the scene is observed in the second acquisition (Marino

and Hajnsek 2014; Marino and Alonso-Gonzlez 2017). To analyse the sensitivity of

the detector to damages due to the earthquake, two cases are addressed: a) the two

imagery are both acquired before the seismic event. In this case λ is termed with

the subscript “pre”; b) the two imagery are acquired before and after the seismic

event. In this case, λ is termed with the subscript “int”.

To fully appreciate the extra–information resulting from the exploitation of the

complete DP covariance matrix, a single–polarization feature is considered for ref-

erence purposes. This feature, is based on the element Cxx of the covariance matrix

(2), where x can be either 1 or 2, and consists of undertaking the following differ-

ence ∆:

∆ = Cp
xx −Cj

xx (12)

where p and j refer to two SAR scenes collected: a) both before the earthquake.

In this case ∆ is termed as ∆pre; b) before (p) and after (j) the earthquake. In this

case ∆ is termed as ∆int. The index ∆int is expected to provide information on the

changes occurred after the earthquake. In fact, the scenario is expected to change

after the earthquake due, for instance, to collapsed building. Those phenomena

result in changes in the backscattered signal resulting from the pre– and post–

event imagery that can be used to detect the changes due to the earthquake. In

addition, to analyse the sensitivity of co– and cross–polarized channels to damaged

areas, ∆ (12) is evaluated using C11 (∆co) or C22 (∆xc). In fact, co– and cross–

polarized channels are inherently linked to different scattering mechanisms, hence

it is worth expecting that ∆co and ∆xc carry different scattering–based information

that can be jointly used to provide a deeper understanding of the damaged area.

2.1. Unsupervised change detector

In this subsection the unsupervised change detector that allows obtaining a binary

imagery where changes are clearly highlighted is described. The method is based

on the cell–averaging constant false alarm rate (CA–CFAR) (Barboy, Lomes, and
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Perkalski 1986) that is applied to both λ and ∆ imagery. The CA–CFAR method

has two advantages: a) it allows not using guard windows and therefore avoid

problems with contamination or size of the target, b) it allows rejecting some of

the areas that are by their nature highly affected by changes (e.g. agricultural

fields), this is because the detectors will have large values and therefore set high

thresholds on those targets.

A key step to design a CFAR detector relies on the analysis of the statistic of

the clutter. In this study, to evaluate the statistics of λ and ∆ over the clutter, a

region of interest (ROI) excerpted outside the city of Amatrice (see the white box

in Figure 2) is considered. Note that, the considered ROI is related to an area where

no changes occurred. This means that the statistic is the same in the pre– and inter–

seismic case. The empirical probability density function (pdf) of ∆ and λ are shown

in Figure 3 where an exponential pdf and a Lognormal pdf are also depicted as

reference distributions for ∆ and λ, respectively. The Kolmogorov–Smirnov binary

hypothesis test, undertaken using a significance level equal to 0.05, confirms that

the Lognormal and the Exponential models well approximate the distribution of ∆

and λ background clutter, respectively. Note that, in this study, clutter is meant as

all the areas that are not urbanized. Once approximate pdfs are found for ∆ and λ

over the clutter, the relationship between Probability of false alarm (Pfa) and the

threshold (th) can be provided. When dealing with ∆, the relationship between th

and Pfa is given by (Buono et al. 2014):

Pfa =

∫ ∞
th

γe−γxdx (13)

where the threshold is given by:

th = −1

γ
ln(Pfa) (14)

with γ being the distribution rate parameter value of the exponential distribu-

tion.

When dealing with λ, the relationship between the detection threshold th and
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the probability of false alarm Pfa is given by (Sayama and Ishii 2014):

Pfa =

∫ ∞
th

1

xσ
√

2π
e−

(ln(x)−µ)2

2σ2 dx (15)

where the threshold is given by:

th = e
√

2σerf−1(1−2Pfa) (16)

where µ and σ are the mean and standard deviation values of the Lognormal

distribution, respectively and erf(·) stands for the erf function.

3. Experiments

In this section we present and discuss the new multi–polarization approaches to

detect earthquake damages.

The satellite dataset consists of eight single look complex (SLC) DP SAR imagery

collected before and after the 2016 Centre Italy earthquake by the Copernicus

Sentinel–1 mission over the area of Amatrice (Lazio, Italy) in ascending and de-

scending orbits, with an incident angle around 42◦ (see Table 1).

The study case refers to the area damaged by the earthquake that, on August

24, 2016, hit a large portion of the central Apennines fold and thrust belt, between

the towns of Norcia and Amatrice. Seismological data, collected by the Istituto

Nazionale di Geofisica e Vulcanologia (INGV) seismic network, show that the area

mostly affected by the earthquake extended for about 40 km along with the NW-

SE direction. The most affected area included the towns of Norcia and Amatrice

and the event resulted in nearly 300 fatalities, thousands of wounded and over 3000

displaced people (Albano et al. 2016). In Figure 1, Google Earth c© images showing

the city of Amatrice before (Figure 1(a)) and after (Figure 1(b)) the earthquake

are provided. The ground–projected excerpts of the SAR imagery collected over

the area of Amatrice before and after the earthquake are shown in Figure 2, see

the first and the second columns, respectively. The VV–polarized scenes collected

in ascending and descending mode are shown in the first and the second row, re-

spectively. To discuss the role played by the SAR pass, experiments are organized

into two part. The first one deals with SAR imagery collected in ascending pass;
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the second one refers to SAR scenes collected over the same area in descending

pass.

The first experiment consists of processing DP SAR scenes collected in ascend-

ing mode, see Figure 2 where squared modulus VV SAR scenes collected on 22

August 2016 (a) and 3 September 2016 (b), i.e.; before and after the earthquake,

respectively, are shown in the first row.

First, the SP method described in Section 2 is applied to the pre– and post–

event SAR imagery collected using the VV and VH polarizations to generate ∆co

and ∆xc, see Figure 4 (a) and (b), respectively. Note that changes associated to

damages due to the earthquake are visible both in the co–polarized image (Figure

4 (a)) and in the cross–polarized one (Figure 4 (b)). Note that different scales are

adopted in Figure 4 (a) and 4 (b). However changes are better highlighted by ∆co

that shows significant differences between the pre– and post–event imagery within

the area of the Amatrice city. In particular, the largest changes apply in the upper

part of the city of Amatrice. This agrees with both Google Earth c© image (shown

in Figure 1) and the study carried out by INGV (Romaniello et al. 2016) that

indicates the upper part of Amatrice as the area most affected by damages. To

test the robustness of the approach against changes related to the earthquake, we

applied the method to a couple of SAR imagery collected before the earthquake.

Both ∆co and ∆xc imagery (not shown to save space) result in negligible differences

within the area of Amatrice.

The differences shown by co– and cross–polarized channels suggest to exploit

those channels in a joint way to maximise the sensitivity to damaged areas. Hence,

the full covariance matrix is exploited using the approach described in Section 2

that consists of evaluating the eigenvalues λi of the difference between covariance

matrices that refer to two DP SAR scenes collected before the earthquake and

during the inter–seismic stage of the earthquake (CCD). In Figure 5, the false color

imagery associated to the two eigenvalues λ1 and λ2 and to the metric (11) are

shown in Figure 5 (a), (b) and (c), respectively. The urban areas that correspond to

the city of Amatrice is circled. It can be noted that λ1, λ2 and λtot imagery clearly

witness that changes occurred. It can be noted that, as expected, λ1 is generally

positive; while λ2 is mostly negative. In addition, λ1 and λ2 provide almost comple-

mentary information that are jointly exploited to maximize the changes when λtot

is used, see Figure 5 (c). Note that, even in this case, to test the robustness of the
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proposed method, a couple of SAR imagery both collected before the seismic event

is processed. Results (not show to save space) point out that negligible changes

apply.

A visual comparison between the SP method (∆co, see Figure 4 (a)) and the DP

method (λtot, see Figure 5 (c)) shows that the latter improves the detection of

damages, in particular in the upper part of the city of Amatrice, i.e.; the area most

affected by damages. A deeper analysis on λ1 and λ2 imagery shows that they

carry on information related to both co– and cross–polarized channels. In fact, λ1

(Figure 5 (a)) provides results that are very close to ∆co (Figure 4 (a); while λ2

(Figure 5 (b)) exhibits values that are significantly different from ∆xc (Figure 4

(b)) witnessing that it results from the combination of both co– and cross–polarized

channels. Hence, the use of the full covariance matrix through λ1, λ2 and λtot (11)

results in the best detection of changes associated to the earthquake.

Note that changes are detected also out of the area of Amatrice. Most of them are

actually related to damages occurred after the earthquake. In particular, focusing

on changes that are visible on the rightmost part of Figure 5 (see green and yellow

rectangles overlaid on Figure 5 (c)), one can note that they are actually related

to damages occurred after the earthquake that hit the city of Castel Sant’Angelo,

Rieti (green box) and urban area of Sommati, Rieti (yellow box). Those cities

where significantly affected by the earthquake as one can noted by looking Google

Earth c© imagery collected before and after the Earthquake, see Figure 6 and 7.

To fully appreciate the advantages of exploiting coherently the two channels (i.e.;

both the amplitude an their phase), results of the DP metric λtot are inter-compared

with results obtained using an incoherent combination of co– and cross–polarized

channel. The incoherent metric used in this study is the difference between the

SPAN, i.e.; the sum of squared modulus of the channels, evaluated using a pair of

images acquired before and after the earthquake. The result is shown in Figure 8.

It can be noted that SPAN is able to detect the changes occurred after the seismic

event. However, the DP metric (Figure 5 (c)) results in a better detection of the

changes in particular in the upper part of the Amatrice city.

To provide a binary output that highlights changes associated with the earth-

quake, the CA-CFAR (see Section 2.1) is adopted. According to Equations (14) and

(16), th is predicted for ∆ and λ using Pfa equal to 10−5 that resulted in the best

compromise between detection and false alarms. The Exponential and Lognormal
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distribution parameters are obtained using the “pre” imagery filtered with a N×N

moving window with N equal to 100. The CA-CFAR method is applied to both

the pre–event and inter–seismic event cases (see the second and the first columns,

respectively). The binary imagery show in Figure 9 are arranged according to the

matrix format: the first column refers to the interseismic case; while the second

column refers to the pre–event case. The three rows refer to ∆co, ∆xc and λtot,

respectively. By visually inspecting binary imagery of Figure 9 one can note that:

when dealing with the inter–seismic case, all the features result in non–negligible

changes. This witness that changes associated to the earthquake are detected. The

best detection performance is provided by λtot (Figure 9 (e)); while only some

hints of signals are visible in ∆xc image (Figure 9 (c)). When dealing with the

inter–seismic case, all the features result in non–negligible changes witnessing the

robustness of all the features with respect to variability of the environment. Even

in this case, one can note that the extra–benefit of the cross–polarized channel

can be only exploited coherently combining co– and cross–polarized channels, i.e.;

by exploiting the whole covariance matrix. To quantitatively assess the improve-

ment of the DP method, pixels inside the red ellipse in Figure 9 are summed up.

Results, listed in Table 2, show that λtot exhibits 44% pixels more than ∆co and

92% pixels more than ∆xc . Although a detailed ground truth is not available,

previous researches focused on the same area (Romaniello et al. 2016) and Google

Earth c© imagery confirm that the extra–changes detected by λtot are likely due to

the earthquake since they are located in the upper–part of the Amatrice city.

The second experiment consists of processing DP SAR scenes collected in descend-

ing mode, see Figure 2 where squared modulus VV SAR scenes collected on 21

August 2016 (c) and 2 September 2016 (d) are shown in the second row. Results

obtained using both SP and DP methods, see Figure 10 and 11, respectively, are

similar to the results obtained from the first experiment. Note that descending

datasets are acquired with a difference of one day with respect to the ascending

datasets. This means that the differences between the two datasets are mainly due

to the different acquisition geometry. Once again, the DP method results in the

largest number of change pixels over the urban area of Amatrice. Even in this case,

changes are detected also out of the area of Amatrice. In particular, the same two

areas of the first experiment are considered (see green and yellow boxes). Note that,

due to the different acquisition geometry of the datasets, these areas are located in

12



September 4, 2018 International Journal of Remote Sensing main

different places with respect to the ascending pass imagery. Even in this case, both

SP and DP methods are able to detect the changes occurred. The binary imagery,

obtained using the CA-CFAR approach with the same parameters of the previous

experiment, are shown in Figure 12. To quantitatively assess the improvement of

the DP method, once again pixels inside the red ellipse in Figure 12 are summed

up. Results, listed in Table 2, show that λtot exhibits 6% pixels more than ∆co

and 98 % pixels more than ∆xc. Hence, the difference between λtot and ∆co is

significantly reduced with respect to the ascending pass case witnessing that the

acquisition geometry plays a key role when observing polarimetric features.

A comparison between ascending and descending results shows that in both

cases DP method improves the detection of the damages, see Table 2. However, the

improvement is stronger when dealing with the ascending case. It can be also noted

that the amount of information carried on co–, i.e.; ∆co-int, and cross–polarized,

i.e.; ∆xc-int, is different. Although in both ascending and descending cases the co–

polarized channel contains most of the information, the relative difference between

∆co-int and ∆xc-int changes from the ascending to the descending passes. In fact,

∆co-int results in less detected pixels in the ascending case than the descending case.

However, ∆xc-int has more detected pixels in the ascending case than the descending

case. This means, that, according to the acquisition geometry, the distribution of

information between co– and cross–polarized channels changes.

4. Conclusions

In this study, a new paradigm is proposed to detected damages due to the earth-

quake in DP SAR imagery that is based on the optimisation of the complete co-

variance matrices collected before and after the seismic event. This paradigm leads

to the definition of new features, namely the eigenvalues resulting from the opti-

misation problem, whose performance is tested considering a meaningful test case,

i.e.; the Central Italy earthquake occurred 2016. Experiments, undertaken using C–

band Sentinel–1 SAR imagery collected over the city of Amatrice in Lazio (Italy) in

ascending and descending mode, confirm the soundness of the proposed approach.

The latter is shown to outperform state–of–the–art SP and DP methods in terms

of sensitivity to damaged areas.
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Table 1. Sentinel–1 SAR data set

Acquisition date Acquisition pass Polarization

Pre–seismic 29 July 2016 Ascending DP (VV+VH)

Pre–seismic 10 August 2016 Ascending DP (VV+VH)

Pre–seismic 22 August 2016 Ascending DP (VV+VH)

Post–seismic 3 September 2016 Ascending DP (VV+VH)

Pre–seismic 28 July 2016 Descending DP (VV+VH)

Pre–seismic 9 August 2016 Descending DP (VV+VH)

Pre–seismic 21 August 2016 Descending DP (VV+VH)

Post–seismic 2 September 2016 Descending DP (VV+VH)

Table 2. CA–CFAR detection performance for the whole data set

Multi–polarization features
Detected

pixels
Acquisition pass

λtot (22 August 2016 – 3 September 2016) 803 Ascending

∆co (22 August 2016 – 3 September 2016) 449 Ascending

∆xc (22 August 2016 – 3 September 2016) 61 Ascending

λtot (21 August 2016 – 2 September 2016) 539 Descending

∆co (21 August 2016 – 2 September 2016) 504 Descending

∆xc (21 August 2016 – 2 September 2016) 9 Descending
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Figure 1. Google Earth c© images related to the city of Amatrice and collected before (a) the seismic

event (on 21 May 2016) and after (b) the seismic event (on 25 August 2016). On the right hand side of the

images an enlarged version of the area enclosed by the red box is shown. This is the area that experienced

major damages, which are enclosed by red polygons.
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Figure 2. Excerpt of Sentinel–1 ground–projected VV–polarized SAR imagery collected over the area of

Amatrice, Italy. The figure is organized in matrix format: the first and the second rows stand for SAR

imagery collected in ascending and descending mode, respectively. The first and the second columns refer

to SAR imagery acquired before and after the earthquake. respectively.
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Figure 3. Empirical pdfs related to ∆co (a), ∆xc (b) and λtot (c) evaluated within a background clutter

ROI. Note that, for reference purposes, theoretical exponential (a and b) and Lognormal (c) pdfs are also

annotated in blue.
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Figure 4. ∆co (a) and ∆xc (b) false colour imagery that refer to an excerpt of the SAR scenes collected

in ascending mode (see Table 1) where the urban area of Amatrice is circled in red.
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Figure 5. λ1 (a), λ2 (b) and λtot (c) false colour imagery that refer to an excerpt of the SAR scenes

collected in ascending mode (see Table 1) where the urban area of Amatrice is circled in red.
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Figure 6. Google Earth c© images related to the city of Castel Sant’Angelo and collected before (a) the

seismic event (on 21 May 2016) and after (b) the seismic event (on 25 August 2016)

Figure 7. Google Earth c© images related to the city of Sommati and collected before (a) the seismic event

(on 21 May 2016) and after (b) the seismic event (on 7 July 2017)

Figure 8. SPAN false colour image that refer to an excerpt of the SAR scenes collected in ascending

mode (see Table 1) where the urban area of Amatrice is circled in red.
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Figure 9. Binary imagery obtained applying CA-CFAR method with a Pfa equal to 10−5 to the imagery

of Figure 4 and 5. The figure is organized in matrix format: the first column refers to the inter–seismic

case; while the second column refers to the pre–event case. The three rows refer to ∆co, ∆xc and λtot,

respectively.
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Figure 10. ∆co (a) and ∆xc (b) false colour imagery that refer to an excerpt of the SAR scenes collected

in descending mode (see Table 1) where the urban area of Amatrice is circled in red.
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Figure 11. λ1 (a), λ2 (b) and λtot (c) false colour imagery that refer to an excerpt of the SAR scenes

collected in descending mode (see Table 1) where the urban area of Amatrice is circled in red.
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Figure 12. Binary imagery obtained applying CA-CFAR method with a Pfa equal to 10−5 to the imagery

of Figure 10 and 11.The figure is organized in matrix format: the first column refers to the inter–seismic

case; while the second column refers to the pre–event case. The three rows refer to ∆co, ∆xc and λtot,

respectively.
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