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Abstract 16 

The trend towards using plant-based ingredients in aquafeeds is set to intensify; 17 

however, mycotoxin contamination might be a challenge. Two diets, with deoxynivalenol 18 

(DON) levels of 1,166 µg kg-1 (1.1 DON) and 2,745 µg kg-1 (2.7 DON), were prepared for 19 

short-term DON-exposure (50 days). A third diet with a low DON level of 367 µg kg-1 20 

(0.3 DON) was prepared for long-term DON-exposure (168 days). Ingestion of DON by 21 

trout during both short-term/high-dosage exposure (50 days; 1,166 µg kg-1 and 2,700 µg 22 

kg-1 DON) and long-term/low-dosage exposure (168 days; 367 µg kg-1 DON) impacted 23 

growth performance and, to a lesser extent, liver enzyme parameters (2.7 DON). 24 

Histopathology showed mild to moderate changes in the liver but not in the other 25 
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sampled tissues (intestine and kidney). Despite these effects, short-term exposure of 26 

rainbow trout to high doses of DON did not result in increased susceptibility to Yersinia 27 

ruckeri. In both the short- and long-term studies, the effects of DON showed a high 28 

inter-individual variability. The present study confirms that sub-clinical levels of 29 

mycotoxins affect rainbow trout. The effects of such low mycotoxin levels could be 30 

masked by other production challenges while still negatively affecting productivity. 31 

 32 

 33 

Keywords: Mycotoxins, Oncorhynchus mykiss, pathogen susceptibility, hepatocytes 34 

hyalinization 35 

 36 

 37 

Introduction 38 

In aquaculture, the trend to replace expensive animal-derived proteins, such as fishmeal, with 39 

more economical and sustainable plant protein sources has increased the probability of 40 

mycotoxin contamination in aquaculture feeds. According to Tacon et al. (2011), plant-based 41 

ingredients already represent the major dietary protein source used in feeds for lower trophic 42 

level fish species, such as tilapia, carp and catfish. These ingredients also account for the 43 

second major source of dietary protein and lipids after fishmeal and fish oil in the feed of 44 

shrimp and high trophic level fish species. Various plant sources have been used for 45 

salmonids but at lower inclusion levels than feed destined for lower trophic species. In most 46 

aquaculture species, plant protein choice and selection are based on a combination of local 47 

market availability, cost and the nutritional profile (including anti-nutrient content and level) 48 

of the plant meal in question (Gatlin et al., 2007; Davis and Sookying, 2009; Krogdahl et al., 49 

2010). 50 
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The mycotoxin contamination of finished feeds and raw materials used in aquaculture as well 51 

as the negative effects of mycotoxins on aquatic species, particularly rainbow trout 52 

(Oncorhynchus mykiss), has been highlighted in recent publications (Hooft et al., 2011; 53 

Ryerse et al., 2015; Tola et al., 2015; Gonçalves et al., 2018; Hooft and Bureau, 2017). 54 

However, mycotoxin contamination is not generally assessed in commercial aquafeeds or 55 

plant meals used to manufacture these feeds. Consequently, we do not have accurate estimates 56 

of the mycotoxin contamination levels in these commodities. 57 

Few studies are currently available concerning mycotoxin occurrence in aquaculture plant 58 

meals and finished feeds. Gonçalves et al. (2016) reported that deoxynivalenol (DON) was 59 

present in 68% of analyzed samples (shrimp and fish, sampled in Asia and Europe in 2014) at 60 

average contamination levels of 162 µg kg
-1

 and maximum levels of 413 µg kg
-1

. More 61 

recently, Gonçalves et al. (2018) observed that contamination patterns for shrimp and fish 62 

feeds were slightly different, which likely reflects the type of commodity used for the 63 

different species. The authors observed that shrimp feeds were generally contaminated with 64 

low levels of DON, with the exception of some diets (contamination ranging from 329 µg kg
-1 

65 

to 2,287 µg kg
-1 

of DON). In the case of fish feeds, samples were contaminated mainly by 66 

DON, up to a maximum level of 396 µg kg
-1

, and were co-contaminated with other 67 

mycotoxins. 68 

Trichothecenes are extremely potent inhibitors of eukaryotic protein synthesis, interfering 69 

with the initiation, elongation, and termination stages of this process (Kumar et al., 2013). 70 

Knowledge of the effects of DON on aquatic species has increased recently (Hooft et al., 71 

2011; Matejova et al., 2015; Ryerse et al., 2015; Tola et al., 2015; Hooft and Bureau, 2017; 72 

Gonçalves et al., 2018), and studies on rainbow trout suggest that DON has a detrimental 73 

effect on feed intake, weight gain and feed efficiency (Hooft et al., 2011; Ryerse et al., 2015). 74 

Curiously, no effect has been detected on the immune status of animals fed with DON 75 

(Matejova et al., 2015; Matejova et al., 2017; Ryerse et al., 2015). 76 
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In general, the effects of mycotoxicoses vary greatly depending on a variety of factors, 77 

including nutritional and health status prior to exposure, dose and duration of exposure, age, 78 

species and infection route. In addition, the lack of reliable clinical signs or parameters 79 

(including biomarkers) to correctly diagnose the ingestion of DON by aquatic species makes 80 

mycotoxin risk management in aquaculture very challenging. 81 

The aim of the present study was to evaluate the effect of DON on rainbow trout under two 82 

different scenarios: first, the effect of short-term feeding of high levels of DON (50 days; 83 

1,166 µg kg
-1

 DON and 2,745 µg kg
-1

 DON), and second, the effects of long-term feeding of 84 

low levels of DON (168 days; 367 µg kg
-1

 DON). Moreover, we aimed to investigate the 85 

manifestation of clinical signs due to the ingestion of DON by inspecting several organs and 86 

tissues normally affected by the consumption of mycotoxins. 87 

 88 

Materials and methods 89 

Experimental diets 90 

The experimental diets were formulated to be isoenergetic (22.20 kJ g
-1

 dry matter (DM), 91 

isoproteic (52.20% DM) and isolipidic (17.90% DM) (Table 1)). All diets were formulated 92 

with the same ingredients. Marine-derived ingredients (fishmeal and fish oil) represented 93 

22.45% DM of the diet, whereas plant raw materials represented 59.70% DM of the diet. All 94 

ingredients were finely ground (hammer mill, 0.8-mm sieve), mixed, and then extruded (twin 95 

screw extruder, 2.0-mm pellet size, SPAROS, Portugal). 96 

The ingredients used to formulate the diets were subjected to Liquid chromatography-tandem 97 

mass spectrometry, HPLC-MS/MS-based multi-mycotoxin analysis  (University of Natural 98 

Resources and Life Sciences, Center for Analytical Chemistry Department IFA, Austria), as 99 

described by Streit et al. (2013). The method covered major type A and B trichothecenes, 100 

zearalenone, fumonisins, aflatoxins and ochratoxins. For the purpose of data analysis, non-101 

detect levels were based on the limits of detection (LOD) of the method used for analysis. The 102 
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detected concentrations of major mycotoxins and of a selection of other fungal metabolites are 103 

listed in Table 2. 104 

Diets with three different levels of DON were prepared by adding DON (Romer Labs 105 

Diagnostic GmbH, Austria) to the feed during diet ingredient mixing. Two diets, with DON 106 

levels of 1,166 µg kg
-1 

(1.1 DON) and 2,745 µg kg
-1

 (2.7 DON), were prepared for short-term 107 

DON exposure (50 days). A third diet with a low DON level of 367 µg kg
-1

 (0.3 DON) was 108 

prepared for long-term DON exposure (168 days). All diets were dried at 45 C for 12 hours 109 

after the addition of DON and were stored at 4 C until use.  110 

Contamination levels were chosen taking into account previous literature on the effect of 111 

DON on rainbow trout (Hooft, Elmor et al., 2011; Matejova et al., 2014; Matejova, Vicenova 112 

et al., 2015; Ryerse, Hooft et al., 2015) as well as the reported DON levels in worldwide 113 

finished feed samples (Gonçalves et al., 2016, 2017, 2018; Greco et al., 2015; Barbosa et al., 114 

2013). The long-term exposure to DON attempts to mimic the most recently reported levels of 115 

DON in finished feeds (Gonçalves et al., 2018, average of 82.87 µg kg
-1

 and maximum of 396 116 

µg kg
-1

). However, the authors are aware that reports of mycotoxin occurrence in European 117 

aquaculture finished feeds are still very limited, and levels reported may vary annually (e.g., 118 

average DON contamination of 160.86 µg kg
-1

 in 2014, of 165.61 µg kg
-1

 in 2015, and of 119 

87.87 µg kg
-1

 in 2016; Gonçalves et al., 2016, 2017 and 2018). Generally, Asian aquafeed 120 

samples present higher DON levels compared with European aquafeed samples. 121 

 122 

Fish and experimental conditions 123 

This study was approved by the institutional ethics committee and the national authority 124 

according to §26 of Law for Animal Experiments, Tierversuchsgesetz 2016—TVG 2012 125 

under No. BMWFW- 68.205/0135-WF/V/3b/2014. Rainbow trout (Oncorhynchus mykiss) 126 

originating from a farm with no prior history of Yersiniosis was used in both experiments. On 127 

arrival, the kidneys of ten fish were sampled, and their infection-free status was confirmed by 128 
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culture-based analysis and polymerase chain reaction (PCR)-based analysis using Yersinia 129 

ruckeri specific primers (del Cerro et al., 2002). 130 

Short-term exposure to DON 131 

For the experiment with short-term exposure to DON, 180 fish (14.10 ± 0.05 g) were 132 

randomly allocated to three feeding groups in quadruplicate and given either standard feed 133 

(control, CTRL), feed contaminated with 1,166 µg kg
-1 

DON (1.1 DON) or feed contaminated 134 

with 2,745 µg kg
-1 

DON (2.7 DON). Each aquarium of 85 L was supplied by a flow-through 135 

system with a temperature of 15.47 ± 0.14 C, oxygen concentration of 8.73 ± 0.12 mg L
-1

, and 136 

pH of 7.53 ± 0.04, with 0.0 ± 0.0 mg L
-1  

total ammonia nitrogen, nitrites and nitrates. The fish 137 

were hand-fed the prepared diets (CTRL, 1.1 DON or 2.7 DON) three times per day near 138 

satiety for 50 days prior to performing the Y. ruckeri challenge. 139 

 140 

Long-term exposure to DON 141 

For the long-term exposure experiment, 120 fish weighing 89 ± 8 g were randomly allocated 142 

and distributed among eight tanks, each with a volume of 1 m
3
, supplied by a flow-through 143 

system with a water temperature of 18.6 ± 1.0 C, oxygen concentration of 8.56 ± 0.26 mg L
-1

 144 

and pH of 7.35 ± 0.35. Each tank contained 15 fish that were fed restrictively (2.5% of the 145 

average body mass) with either control feed (CTRL, 4 tanks) or the control feed supplemented 146 

with 367 µg kg
-1 

DON (0.3 DON, 4 tanks) for 168 days. The same quantity of feed (2.5% of 147 

the average body mass) was distributed in each tank by hand feeding and was adjusted after 148 

intermediate weighing periods (at 37, 62, 92 and 125 days). Five fish per replicate tank were 149 

subjected to moderate anesthesia (tricaine methanesulfonate (MS222) (Sigma-Aldrich Co., 150 

LLC, Bellfonte, USA) at a dose of 0.7 g L
-1

, and a blood sample was collected by puncture of 151 

the caudal vein with a heparinized syringe at the beginning of the trial and at 62 and 125 days. 152 

Part of the blood sample was used for the determination of hematocrit, which was determined 153 

for five fish per treatment. Blood was transferred into hematocrit capillary tubes 154 
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(Hirschmann), the tubes were then centrifuged at 13,000 RPM for 5 minutes (Hettich 155 

Haematokrit 200), and the percentage of red blood cells to sera was measured. The remaining 156 

part of the blood sample was centrifuged at 1,590 x g for ten minutes, after which the plasma 157 

(i.e., the supernatant fraction) was transferred to Eppendorf tubes, snap-frozen in liquid 158 

nitrogen and stored at -80 C until subsequent analysis of total protein. Total protein was 159 

determined by the Bradford method (Bradford 1976) using bovine serum albumin as the 160 

standard. All measurements were performed in a Synergy HT multi-mode microplate reader 161 

(BIOTEK, Vermont, USA). 162 

 163 

Growth performance 164 

All fish, in both the short- and long-term exposure experiments, were weighed to determine 165 

the initial individual body weight at the start of the experiments. In the short-term exposure 166 

study, the fish were weighed individually at the end of the 50-day period, and their total 167 

length was measured and recorded. Feed intake was recorded daily. In the long-term exposure 168 

study, the fish were weighed individually after 37, 62, 92,125 and 168 days. 169 

The following calculations were made in both experiments. 170 

The thermal-unit growth coefficient (TGC) was expressed as the growth rate and was 171 

calculated for each aquarium as [100 × (FBW 1/3 – IBW 1/3) / Σ (Temp (°C) × number of 172 

days)], where FBW = final body weight (g fish 
-1

) and IBW = initial body weight (g fish 
-1

). 173 

The feed conversion ratio (FCR) was calculated as crude feed intake/weight gain, where FI = 174 

total dry feed/number of fish. 175 

The protein efficiency ratio (PER) was calculated as weight gain (g)/protein intake (g). 176 

The specific growth rate (SGR) was calculated as [(ln final weight − ln initial weight)/time in 177 

days] × 100). 178 
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Fulton’s condition factor, K, was also used to measure individual fish health: K = 179 

100(BW/L
3
), where BW is the whole body wet weight (g) and L is the length (cm). A factor 180 

of 100 was used to transform K to approximate a value of one. 181 

 182 

Liver enzymes 183 

In the short-term/high DON exposure experiment, five fish from each aquarium were sampled 184 

at the end of the experiment (50 days) for analysis of liver enzymes in blood. In the long-185 

term/low DON exposure study, five fish from each aquarium were sampled on day 62 and on 186 

day 125. The fish were anesthetized by immersion in tricaine methanesulfonate (MS222) 187 

(Sigma-Aldrich Co., LLC, Bellfonte, USA) at a dose of 0.7 g L
-1

 prior to blood collection. 188 

Blood samples were analyzed to measure the activities of lactate dehydrogenase (LDH), 189 

alanine transaminase (ALT) and aspartate aminotransferase (AST) using a Spotchem EZ SP-190 

4430 reader and Spotchem II GPT/ALT, Spotchem II LDH and Spotchem II GOT/AST kits 191 

(all products from Arkay, Amstelveen, Netherlands). 192 

 193 

Histological examination 194 

For the short-term/high DON exposure study, organs were sampled from 10 fish prior to the 195 

Y. ruckeri challenge and at the time of termination. The intestine, spleen, liver and kidneys 196 

(head and trunk kidney) of the fish were removed and fixed in 10% buffered formalin for 48 197 

to 72 hours. The samples were embedded overnight in paraffin using a HistoMaster 198 

(Formafix, Düsseldorf, Germany). Sections (3 - 4 µm thick) were cut from each paraffin 199 

block and were left to dry overnight at 37 C before being stained with hematoxylin and eosin. 200 

The slides were evaluated under a light microscope (Nikon Eclipse E400, Feasterville, 201 

Pennsylvania). The following were examined: intestine (number of mucous cells in mucosa), 202 

liver (hepatocyte vacuolation, hepatocyte hyalinization, single cell necrosis, number of 203 

pigmented macrophage centers, perivascular and peribiliary inflammation), and kidney 204 
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(number of pigmented macrophage centers). To evaluate the number of cells, three high-205 

power fields (HPF) were counted per slide.  206 

 207 

Bacterial preparation 208 

As a pre-trial to the challenge test, five groups of ten fish each were challenged by 209 

immersion with Y. ruckeri isolate 7959/11 to determine the appropriate infectious dose. Y. 210 

ruckeri isolate A7959/11 is a clinical isolate that originated from an outbreak at an Austrian 211 

trout farm in 2011. This isolate was kept at -80 C on beads until three days prior to the start of 212 

the experiment. It was then inoculated on a blood agar plate and incubated at 22 C. After 48 213 

hours, a single colony was inoculated into 7.5 ml of BHI broth and was incubated in a shaking 214 

incubator at 20 C with rotation at 150 rpm. After 10 hours, the cultures were evaluated by eye, 215 

and 2.5 ml was sampled from one culture and used to inoculate a 1.5-L BHI broth. This broth 216 

was then incubated for approximately 12 hours at 20 C with shaking at 150 rpm. 217 

 218 

Infection trial in the short-term exposure study 219 

After 50 days, each feeding group of the short-term/high DON exposure study was further 220 

divided into two groups: two of the aquaria were infected with Y. ruckeri while fish in the two 221 

other aquaria were mock-infected with un-inoculated broth. In total, 90 fish were infected and 222 

90 were mock-infected. The infection procedure was adapted from that described for 223 

Aeromonas salmonicida (Menanteau-Ledouble et al., 2017). Briefly, bacteria were grown 224 

overnight in 1.5 L of BHI broth and their concentration was determined by measuring the 225 

optical density at a wavelength of 600 nm (OD600) per ml. Water circulation in the aquarium 226 

was interrupted, and the water volume was lowered to 50 L. The bacterial culture (2 ml) was 227 

added to each of the aquaria, yielding a final concentration of 2x10
4 

CFU mL
-1

. The fish 228 

remained in the solution for two hours, after which the water was progressively returned to its 229 

normal level and the circulation was reopened. The fish were monitored at least twice daily. 230 
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Mortalities were recorded, and dead and moribund fish were immediately removed from the 231 

tanks. Moribund fish were euthanatized by prolonged immersion in a solution of 1 g L
-1

 of 232 

MS-222, and the kidney of the fish was sampled for microbial re-isolation of the pathogen on 233 

an agar plate. The colonies growing on these plates were examined and confirmed to be Y. 234 

ruckeri based on their morphologies. Furthermore, one in five isolates was selected; its 235 

genomic DNA was isolated using a Qiagen DNeasy kit, and PCR was performed using Y. 236 

ruckeri specific primers (del Cerro et al., 2002). The surviving fish overcame the infection 17 237 

days post-infection, at which point the challenge was terminated. All remaining fish were 238 

euthanatized by prolonged immersion in a solution of tricaine methanesulfonate (MS222; 1 g 239 

L
-1

 of water), weighed, measured and examined for gross clinical signs of enteric red mouth 240 

syndrome (oral congestion, hemorrhages or petechia, exophthalmia and ocular hemorrhages, 241 

ascites in the abdominal cavity, enlarged spleens and hemorrhages or petechia in the internal 242 

organs, bloody intestines or adipose tissues). 243 

 244 

Clinical signs 245 

During both experiments, gross clinical signs were assessed by visual examination of the fish 246 

at the time of termination. Lesions (hemorrhages and ulcerations) on the skin were recorded, 247 

as were any obvious abnormalities such as a protruding anal papilla. The state of the gills was 248 

recorded as well as the presence of anemia, hemorrhages or necrosis. 249 

The fish were examined internally for any abnormalities. In particular, record was made of 250 

congestions, petechia or hemorrhages of the internal organs. The color of the liver and the size 251 

of the spleen were assessed, as was the general health of the intestine (in particular, the 252 

presence of congestion, hemorrhage or intussusception was determined). 253 

 254 

 255 

Statistical analysis 256 
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All parameters such as the final weight, SGR, PER, FI, FCR, condition factor (CF), TGC, 257 

LDH, ALT and AST were subjected to analysis of variance in SPSS 21 for Windows (IBM 258 

Corp., Armonk, NY, USA). One-way ANOVA was performed, and differences between the 259 

means were tested by Tukey’s multiple range test. The Shapiro-Wilk test was used to analyze 260 

the normality, and homogeneity of variances was tested using Levene's test. Data analyzed 261 

did not violate the assumption of equal variances and showed a normal distribution. All 262 

parameters expressed as percentages were subjected to arcsin square root transformation. 263 

Additionally, one-way ANOVA was performed to analyze the histological differences in the 264 

intestine (number of mucous cells in mucosa) and liver (single cell necrosis, number of 265 

pigmented macrophage centers, perivascular and peribiliary inflammation) between the DON 266 

dietary treatments and controls.  267 

Following the challenge, survival curves were constructed for each treatment, and Kaplan-268 

Meier and odds ratio analyses were performed using SPSS v.20 (IBM) and MedCalc 269 

(Microsoft).  270 

The level of significance was set at p < 0.05, and the results are presented as the mean ± SD 271 

(standard deviation of the mean). 272 

 273 

Results 274 

Experimental diets 275 

The four experimental diets were formulated to be isoenergetic (22.20 kJ g
-1 

DM), isoproteic 276 

(52.20% DM) and isolipidic (17.90% DM) and to meet all the nutrient requirements for the 277 

species examined in the study. There was no significant difference (p > 0.05) between 278 

treatments regarding the nutritional composition of the experimental diets. Analysis of the 279 

feed to confirm mycotoxin levels showed DON contamination was successfully achieved, 280 

although observed levels were slightly lower than intended (Table 2). Other 281 

metabolites/toxins were found in the basal diet (common to all experimental groups) due to 282 
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natural contamination of the plant raw materials used to formulate the diet (Table 2). 283 

Generally, these metabolites/toxins, produced mainly by Fusarium and Aspergillus, were at 284 

levels below 100 µg kg
-1

. Regarding the Penicillium toxins, brevianamide F and rugulusovin 285 

were found at levels of 194 and 244 µg kg
-1

, respectively. Fungal and bacterial metabolites 286 

were also detected in the experimental diets, namely, cyclo (L-Pro-L-Val) and cyclo (L-Pro-287 

L-Tyr) at relatively high concentrations (1,631 and 2,004 µg kg
-1

, respectively). 288 

 289 

Growth performance 290 

Short-term DON exposure 291 

The results showed that rainbow trout was sensitive to the DON levels tested (Table 3).  292 

The presence of 2,700 µg kg
-1 

DON in the diet led to a significant decrease (p < 0.001) in FI. 293 

The same treatment (2.7 DON) also resulted in a significant decrease in the final weight 294 

(79.91 ± 16.54 g; p < 0.001), SGR (2.20 ± 0.09% day
-1

; p < 0.001), TGC (0.094 ± 0.005; p < 295 

0.001) and CF (1.39 ± 0.12; p < 0.033) compared to the controls (final weight = 101.36 ± 19.8 296 

g; SGR = 2.52 ± 0.07% day
-1

; TGC = 0.113 ± 0.005 and CF = 1.42 ± 0.12). Observations of 297 

the feeding behavior of the DON-fed groups confirmed that the fish initially accepted the 298 

feed, and a reduction in FI was progressively established. We therefore assumed that the 299 

lower FI in the DON-fed groups compared to the control group was probably not due to the 300 

unfavorable organoleptic properties of DON-contaminated feed. 301 

 302 

Long-term DON exposure 303 

In the long-term exposure study, the fish that received the contaminated diet also showed 304 

lower farming performances (FBW, FCR and SGR) compared to the control. These 305 

differences increased over time (Fig. 1, 2 and 3) and after 168 days of exposure to 367 µg kg
-1

 306 

DON, fish that ingested DON presented a final weight of 487.40 g compared to 593.63 g in 307 
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the control group (p = 0.053, Fig. 1). However, these differences were never statistically 308 

significant. 309 

A similar pattern of lower performance in the DON-fed animals was observed for FCR (Fig. 310 

2) and SGR (Fig. 3): animals fed the control diet presented an FCR of 1.86 compared to 2.50 311 

for DON-fed animals. PER was generally lower for animals that were fed DON and was 312 

significantly lower on day 92 (p = 0.044) and day 168 (p = 0.050; Table 4). Feed intake was 313 

generally higher for animals that were fed DON and was significantly higher on day 62 (p = 314 

0.041; Table 5). 315 

 316 

Histology 317 

In the short-term exposure study, among the 2.7 DON groups, two out of ten animals showed 318 

mild to moderately hyalinized hepatocytes. In one trout, multiple areas of necrosis with 319 

scattered hemorrhages were present (Fig. 4). Vacuolation of hepatocytes was also more 320 

pronounced in 2.7 DON animals (5 out of 10 fish) compared to the control animals (no 321 

registered cases of vacuolation of hepatocytes). In the 1.1 DON groups, hyalinized 322 

hepatocytes were visible (6 out of 10 fish), but to a lesser extent compared with the 2.7 DON 323 

groups (8 out of 10 fish). No significant differences were obvious between any of the 324 

experimental groups based on counts of the mucous cell numbers in the intestinal mucosa, 325 

pigmented macrophage centers in the liver and kidney, and number of necrotic single cells in 326 

the liver. No histological alterations were found in the intestine or kidneys (head and trunk 327 

kidney). 328 

 329 

Challenge test 330 

Cumulative mortality after inoculation with Y. ruckeri is shown in Figure 5. The challenge 331 

trial lasted 17 days, and the 2.7 DON treatment showed a significantly higher survival rate (p 332 

< 0.020) compared to the control treatment. Controls exhibited 73.3% survival while the 1.1 333 
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DON and 2.7 DON treatments had a survival rate of 86.7% and 93.3%, respectively. No 334 

statistically significant differences were found between the 1.1 DON and 2.7 DON treatments 335 

or between the 1.1 DON treatment and the controls. The cause of death was confirmed as Y. 336 

ruckeri on the basis of the clinical signs. Furthermore, bacteria were re-isolated from the 337 

kidneys of infected fish. In each case, pure cultures were obtained, and the colonies displayed 338 

morphology consistent with Y. ruckeri. This was further confirmed by isolating the genomic 339 

DNA from selected colonies and performing PCR using the primers described by del Cerro et 340 

al. (2002). Fish that had recovered from the infection at the time of the challenge termination 341 

did not display any gross clinical signs. Similarly, non-infected fish did not display any signs 342 

of infection. 343 

 344 

Liver Enzymes 345 

Short-term DON exposure 346 

The effects of the dietary treatments on LDH, ALT and AST activities in the serum are 347 

summarized in Table 6. Samples from the fish that received the dietary DON appeared to 348 

have a higher LDH activity, although these results were not statistically significant (p = 349 

0.078). The 2.7 DON treatment showed a significant increase in ALT and AST activities 350 

(76.10 ± 9.88 IU L
-1

; p < 0.001 and 876.50 ± 87.60 IU L
-1

; p < 0.001, respectively) compared 351 

with the control (ALT = 14.20 ± 7.66 IU L
-1

 and AST = 389.70 ± 2.36 IU L
-1

; Table 6). 352 

 353 

Long-term DON exposure 354 

Blood enzyme parameters measured at different sampling points are shown in Table 7. No 355 

significant differences were found during the experimental period for the different enzymes 356 

sampled. 357 

  358 
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Clinical signs 359 

Few clinical signs were observed in the fish exposed to the mycotoxin, and when 360 

abnormalities were observed, only a small number of fish were affected. Among the 361 

abnormalities were abnormal body conformations, observed in 15 out of 60 fish that were fed 362 

2,745 ± 330 µg kg
-1

 DON, characterized by a reduction in fish length in relation to width 363 

(Figure 6). In addition, in five out of 60 fish that were fed 2,745 ± 330 µg kg
-1

 DON, a 364 

protruding anal papilla was observed (Figure 7). Intussusceptions were observed internally in 365 

two fish. 366 

 367 

Discussion 368 

The decreasing supply and rising cost of fishmeal have led the aquaculture industry to 369 

investigate alternative sources of protein to substitute fishmeal in aquafeeds. Plant-based 370 

meals seem to be one of the most promising solutions for replacing fishmeal, and numerous 371 

plant raw materials have been successfully tested (Gatlin et al., 2007). However, recent 372 

studies have noted the occurrence of mycotoxins in plant-based aquafeeds (Barbosa et al., 373 

2013, Pietsch et al., 2013; Nácher-Mestre et al., 2015; Gonçalves et al., 2016; Gonçalves et 374 

al., 2017, Greco et al., 2015). In the present study, the experimental diets were contaminated 375 

with several mycotoxins and fungal metabolites in addition to the added DON. The presence 376 

of other mycotoxins and fungal metabolites highlights the risk of mycotoxin contamination in 377 

aquaculture finished feeds. The present experimental diet represents a typical commercial 378 

trout diet that contains plant-based compounds (59.70% DM). The co-occurrence of 379 

mycotoxins and fungal metabolites in this diet, even at low concentrations, may lead to 380 

synergistic/additive/antagonistic effects between these compounds, which cannot be ruled out 381 

as a contributing factor for the obtained results. However, further studies are needed to 382 

address possible interactions between mycotoxins, especially at low contamination levels. 383 
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The objective of the present trial was to evaluate the possible effects of DON contamination 384 

in aquaculture feeds under two different scenarios. In the first scenario, the effect of short-385 

term feeding of high levels of DON (50 days; 1,166 µg kg
-1

 DON and 2,745 µg kg
-1

 DON) 386 

was examined in an attempt to mimic the potential inclusion of highly contaminated raw 387 

material(s) in the finished feed. This situation would normally only affect a few batches of 388 

feed; therefore, the exposure would occur over a short period. In this scenario, the potential 389 

influence of mycotoxins on Y. ruckeri susceptibility was also evaluated. The second 390 

experiment studied the effects of long-term exposure to low levels of DON (168 days; 367 µg 391 

kg
-1

 DON). This experiment was designed to replicate a situation that is more commonly 392 

found because 367 µg kg
-1

 DON is comparable to the average DON contamination level 393 

previously found in aquafeeds during recent years (Gonçalves et al., 2016, 2017, and 2018). 394 

One of the main constraints when researching mycotoxins in aquaculture species is the lack of 395 

mycotoxin-induced clinical symptoms. While it is true that several published reports describe 396 

some clinical signs for the most common mycotoxins (see the review conducted by Anater et 397 

al., 2016), most of these clinical signs are very general and can be attributed to any other 398 

pathology or challenge faced by the animals, e.g., anti-nutrition factors or lectins in the diet 399 

(Hart et al., 2010). Furthermore, the clinical signs typically present high variability.  400 

In the present manuscript, the occurrence of clinical signs was evaluated in both the short- and 401 

long-term exposure experiments, and special attention was paid to visual clinical signs. In the 402 

short-term/high DON exposure experiment, 15 out of 60 fish that were fed 2,745 ± 330 µg kg
-

403 

1
 DON showed an abnormal body conformation, characterized by a fish length reduced in 404 

relation to its width, and five out of 60 fish from same treatment presented a protruding anal 405 

papilla. No clinical signs were observed after long-term exposure/low DON exposure. 406 

Although clinical manifestation was observed in a small number of individuals (only at the 407 

higher dosage of the short-term/high DON exposure experiment), it cannot be concluded that 408 

the signs observed are directly attributed to DON. The rectal prolapse observed in some fish is 409 
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also described as a DON clinical manifestation in swine when fed 3,000 µg kg
-1

 DON 410 

(Madson et al. 2014). However, a recent study (Gonçalves et al. 2018) stated that no 411 

macroscopic lesions were found (i.e., internal or external hemorrhages, dermal and oral 412 

lesions, abnormal pigmentation or damage to fins) on rainbow trout that were fed high levels 413 

of DON (11,412 ± 1141 µg kg
-1

). Taking into account the previous study (Gonçalves et al. 414 

2018) and three other studies with the same range of DON contamination (0.3 to 5.9 ppm), 415 

Hooft et al. (2011) and Ryerse et al. (2015) also reported no major pathological changes in 416 

the distal intestine of trout, while Matejova et al. (2014) found gastrointestinal hemorrhages. 417 

It is possible that the impact of DON might vary greatly depending on unknown factors, even 418 

for the same species.  419 

Recently, Gonçalves et al. (2018) reported a novel DON metabolite (DON-3-sulfate) found in 420 

rainbow trout feces. The authors suggested that this biotransformation achieved by sulfation is 421 

probably realized by the trout gut microbiota as was previously described for other fish 422 

species (Ameiurus nebulosus; Guan et al., 2009). This biotransformation, if achieved by the 423 

gut microbiota, can also help to explain the high individual variability obtained, as the 424 

capacity to metabolize DON will be directly influenced by the individual fish microbiome. 425 

This explains the absence of clinical signs in some of the fish that were fed DON because 426 

DON-3-sulfate is less toxic than DON. The high inter-individual variation within the groups 427 

that were fed mycotoxins highlights the importance of the individual health and nutritional 428 

status prior to DON ingestion, as supported by other authors (Hendricks, 1994). Due to the 429 

reasons previous stated, the clinical manifestation found in the present study, even if only 430 

present in a small number of individuals, should be further confirmed as a DON exclusive 431 

clinical sign, associating it with an individual fish microbiome. 432 

Reduction in feed intake is a well-documented response of rainbow trout to diets 433 

contaminated with naturally occurring or artificially added DON (Hooft et al., 2011; 434 

Gonçalves et al. 2018; Ryerse et al., 2015). In the present short-term study, fish that were fed 435 
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2,745 µg kg
−1

 of DON showed a significant reduction (p < 0.001) in feed intake. However, no 436 

effect was observed in fish that were fed 1,166 µg kg
−1

 of DON. A significant decrease in 437 

growth was also detected in the 2.7 DON treatment; TGC decreased by 17% (p = 0.001), and 438 

SGR decreased by 13% (p < 0.001). However, no significant differences (p > 0.05) were 439 

found for PER or FCR. In the long-term study, ingestion of DON was asymptomatic, as the 440 

animals presented no clinical signs, and growth rate was slightly affected only after 92 days of 441 

ingesting DON. At the end of the trial (168 days), the animals that were fed DON weighed 442 

less than the control animals. While not significantly different, the tendency for reduced 443 

weight gain in animals that were fed DON is consistent with the short-term experiment. 444 

Recently, Gonçalves et al. (2018) suggested that suppression of appetite due to DON 445 

contamination in feeds might be a defense mechanism to decrease the exposure of the animal 446 

to DON, therefore reducing the potential negative impacts of DON. The authors showed that 447 

PACAP (pituitary adenylate cyclase-activating polypeptide) seems to be fundamental for 448 

explaining the reduction of feed intake in DON-fed treatments, inducing anorexia, reinforcing 449 

the influence of DON on the hypothalamic melanocortin system. It is also important to 450 

mention that a contamination dose of 367 µg kg
-1

 of DON is a frequent and plausible level of 451 

contamination that is often found in aquafeeds incorporating plant meals (Gonçalves et al., 452 

2016; Gonçalves et al., 2017). Moreover, this value is close to the limit of detection of most 453 

commercial ELISA (enzyme-linked immunosorbent assay) strip tests for DON, which means 454 

that samples need to be analyzed by more robust methods (e.g., HPLC), which increases costs 455 

and the time to receive sample results. The observed asymptomatic decrease in growth 456 

performance may lead to important economic consequences for the aquaculture industry. 457 

In both experiments, it was difficult to correctly diagnose DON intake using the other 458 

parameters evaluated (liver enzymes and histology). In the short-term/high DON exposure 459 

study, histological and enzymatic changes showed different results, and individual variability 460 

was very high. Enzymatic activity was used to evaluate the possibility of tissue destruction. 461 
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ALT and AST have previously been used as markers of liver dysfunction (Gül et al., 2004; 462 

Saravanan et al., 2012), and ALT is an intracellular enzyme that has been used as a marker of 463 

tissue destruction in the liver. However, no clear pattern could be observed in the studies. 464 

Only in the short-term/high-level DON exposure study were elevated ALT serum levels found 465 

in the 2.7 DON treatment compared with the control group. In addition, AST values were 466 

significantly higher in the 2.7 DON treatment compared with the control. Elevated ALT and 467 

AST serum levels might be an indication of liver or other parenchymal organ damage. Liver 468 

histopathology revealed mild to moderate damage in a limited number of DON-exposed fish. 469 

However, no histological alterations were detected in the intestine or kidneys (head and trunk 470 

kidney). DON is known to cause impairment of barrier integrity, affecting the lamina propria 471 

and tight junctions, which may increase GIT permeability and consequently allow the entry of 472 

luminal antigens and bacteria normally restricted to the GIT lumen (Grenier et al., 2013, 473 

Dänicke et al., 2010). The fact that histological alterations were not found in the intestines, 474 

despite the altered values of ALT and AST, might lead us to hypothesize that short exposure 475 

periods might not be sufficient to lead to histological alterations and/or that histology might 476 

not be a good method to evaluate negative DON effects in the intestines. Moreover, as 477 

mentioned by Gonçalves et al. (2018), the individual microbiome seems to play an important 478 

role in DON biotransformation, which may also influence the obtained histological results. It 479 

would also be interesting to more closely examine the tight junction proteins as a more 480 

sensitive indicator for possible DON impact at the intestinal barrier, specifically at the tight 481 

junction level.  482 

The results obtained for the Y. ruckeri challenge are consistent with the results from previous 483 

studies that investigated the effect of dietary DON on the mortality of rainbow trout 484 

challenged with other bacterial pathogens (Hooft et al. (2011) and Ryerse et al. (2015)). The 485 

apparent absence of an immunosuppressive effects on trout challenged with DON contrasts 486 

with published data for livestock species such as swine (Lessard et al., 2015; Pierron et al., 487 
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2016). An eventual direct suppression of Y. ruckeri by DON seems unlikely as it is very well 488 

described that trichothecenes interact with the eukaryotic 60S ribosomal subunit and prevent 489 

polypeptide chain initiation or elongation (Carter and Cannon, 1977; Ueno, 1984; Pestka, 490 

2007). The present study did not include a pair-fed group (i.e., a group consuming the same 491 

amount of feed as that consumed by the DON groups), and thus it was not possible to 492 

distinguish the effects of feed restriction (caused by DON) from other effects of DON that 493 

might have decreased susceptibility to Y. ruckeri.   494 

The intake of DON has been reported to lead to the upregulation of cytokine levels, especially 495 

pro-inflammatory cytokines (IL-6, IL-8 and IL-1β), in several studies (piglets, Bracarense et 496 

al. 2012); human intestinal Caco-2 cells (Maresca et al. 2008, Van De Walle et al. 2008); and 497 

mice (Azcona-Olivera et al. 1995)). Intestinal upregulation of pro-inflammatory cytokines 498 

may explain the higher resistance of DON-treated fish to infection with Y. ruckeri. However, 499 

as explained by Grenier and Applegate (2013), DON, as a protein synthesis inhibitor, might 500 

naturally originate superinduction phenomena, consequently increasing cytokine synthesis 501 

and secretion. Nonetheless, the possible role of DON in the upregulation of pro-inflammatory 502 

cytokines and the consequent effect on immune stimulation should be further investigated. 503 

 504 

Conclusions 505 

The present findings reinforce those from previous studies, concluding that the ingestion of 506 

DON by trout over short-term periods at high dosages (50 days; 1,166 µg kg
-1 

and
 
2,745 µg 507 

kg
-1

)
 
impacts growth performance, especially feed intake, with minor or variable biochemical 508 

changes in trout blood and histopathological changes. In this case, some fish did exhibit 509 

clinical symptoms (i.e., anal papilla), which could be attributed to the DON treatment; 510 

however, further confirmation is needed. This is the first report of the effects of the long-term 511 

exposure of rainbow trout to low concentrations of DON (168 days; 367 µg kg
-1

 DON). 512 

Ingestion of DON in the long-term study was asymptomatic; however, the fish started to 513 
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reduce their growth performance 92 days after ingesting DON. Such low contamination 514 

levels, which might be unnoticed by farmers, may have economic consequences for 515 

aquaculture. 516 

DON-treated fish showed higher resistance to infection with Y. ruckeri, which may be related 517 

to stimulation of the pro-inflammatory response. While higher resistance to pathogen 518 

infection may be considered as a positive effect, the reduced feed intake and lower growth 519 

performance may have economic consequences for aquaculture. Moreover, further 520 

investigation is needed to understand the influence of DON on pro-inflammatory responses. 521 

The high levels of individual variability observed in the blood biochemical parameters, 522 

histological changes and clinical signs in the fish that were fed DON might be explained by 523 

individual intestinal microbiota composition. The individual gut microbiome and its apparent 524 

capacity to metabolize DON should be further explored.  525 

 526 
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FIGURE 1: Growth curve representing the average weight of the fish during the long term experiment.  
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FIGURE 2: Feed conversion ratio at different sampling time points. Values are displayed as average ± 
standard deviation.  
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FIGURE 3: Specific growth rate at different sampling time points. Values are displayed as average ± 
standard deviation.  
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FIGURE 4. Onchorhynchus mykiss, histologic appearance of control (a) and 2.7 DON exposed fish (b); a. 
normal structure of hepatocytes; b. normal structure is disrupted, multiple hepatocytes are necrotic (star; 

observed in 1 out of 10 fishes sampled),  scattered fibrin exudation (closed arrowhead; observed in 6 out of 

10 fishes sampled), multiple hepatocytes show intracytoplasmatic eosinophilic, amorphous material 
(hyalinised hepatocytes) (open arrowheads; observed in 8 out of 10 fishes sampled), HE stain, bars = 50 

µm; inlet: higher magnification showing hyalinised hepatocytes (open arrowheads).  
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FIGURE 5. Survival curve following infection with Yersinia ruckeri during the high dose experiment.  
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FIGURE 6. Abnormal body conformations, characterized by a fish length reduced in relation to its width. 
Observed in 15 fishes out of 60 fishes fed 2,745 ± 330 µg kg-1 DON.  
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FIGURE 7. Fish presenting protruding anal papilla after being fed 2,745 ± 330 µg kg-1 DON. Observed in 5 
fishes out of 60 fishes fed 2,745 ± 330 µg kg-1 DON.  
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TABLE 1: Experimental control diet ingredients and proximate composition. 

Ingredients CTRL 

  % 

Fishmeal 60
a
 14.00 

Fishmeal Super Prime
b
 12.45 

Soy protein concentrate
c
 15.00 

Wheat gluten
d
 12.30 

Corn gluten meal
e
 8.00 

Soybean meal
f
 6.00 

Wheat meal
g
 6.40 

Corn meal
h
 10.00 

Fish oil
i
 10.00 

Soy lecithin
j
 2.00 

Antioxidant
k
 0.30 

Monocalcium phosphate
l
 1.50 

L-lysine
m

 0.50 

DL-methionine
n
 0.50 

Vitamin E
o
 0.05 

Vitamin and mineral premix
p
 1.00 

  
  
Proximate composition (%DM)  

Dry matter (DM), % 91.7 ± 0.0 

Crude protein, % DM 52.2 ± 0.1 

Crude fat, % DM 17.9 ± 0.0 

Ash, % DM 9.3 ± 0.0 

Gross energy, kJ/g DM 22.2 ± 0.0 
a 

COFACO 60: 62.3% crude protein (CP), 8.4% crude fat (CF), COFACO, Portugal; 
b 

Super 

Prime: 67.4% CP, 8.2% CF, EXALMAR, Peru; 
c 

Soycomil P: 63% CP, 0.8% CF, ADM, The 

Netherlands; 
d
 VITAL: 83.7% CP, 1.6% CF, ROQUETTE Frères, France; 

e
 Corn gluten meal: 

61% CP, 6% CF, COPAM, Portugal; 
f
 Dehulled solvent extracted soybean meal: 47% CP, 

2.6% CF, CARGILL, Spain; 
g 

Wheat meal: 10.2% CP; 1.2% CF, Casa Lanchinha, Portugal; 
h 

Corn meal: 8.1% CP; 3.7% CF, Casa Lanchinha, Portugal; 
i
 SAVINOR, Portugal; 

j 
Lecico 

P700IPM, LECICO GmbH, Germany; 
k 

Paramega PX, Kemin Europe NV, Belgium; 
l
 MCP: 

22% P, 18% Ca, Fosfitalia, Italy; 
m

 Lysine HCl 99%, Ajinomoto Eurolysine SAS, France; 
n
 

DL-Methionine 99%, EVONIK DEGUSSA GmbH, Germany; 
o
 ROVIMIX E50, DSM 

Nutritional Products, Switzerland; 
p
 PREMIX Lda, Portugal: Vitamins (IU or mg/kg diet): 

DL-alpha tocopherol acetate, 100 mg; sodium menadione bisulphate, 25 mg; retinyl acetate, 

20000 IU; DL-cholecalciferol, 2000 IU; thiamin, 30 mg; riboflavin, 30 mg; pyridoxine, 20 

mg; cyanocobalamin, 0.1 mg; nicotinic acid, 200 mg; folic acid, 15 mg; ascorbic acid, 500 

mg; inositol, 500 mg; biotin, 3 mg; calcium panthotenate, 100 mg; choline chloride, 1000 mg, 

betaine, 500 mg. Minerals (g or mg/kg diet): copper sulphate, 9 mg; ferric sulphate, 6 mg; 

potassium iodide, 0.5 mg; manganese oxide, 9.6 mg; sodium selenite, 0.01 mg; zinc 

sulphate,7.5 mg; sodium chloride, 400 mg; excipient wheat middlings.  
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TABLE 2: Multi-mycotoxin analysis of experimental diets 

Analyte Concentration (µg kg
-1

) 

 

 Analyte Concentration (µg kg
-1

)  

Major mycotoxins  Other Fusarium metabolites  

Aflatoxin B1  <LOD  15-

Hydroxyculmorin 

48.33  

Zearalenone  11.44   Culmorin 69.87  

Deoxynivalenol  <LOD  Equisetin 10.39  

Fumonisin B1  <LOD  Fusaric acid 65.56  

Fumonisin B2 25.05  Penicillium metabolites  

Fumonisin B4 16.11  Brevianamid F 194.30  

Ochratoxin A  <LOD  Mycophenolic 

acid 

88.91  

Sum of Ergot alkaloids 0.72   Rugulusovin 244.20  

   Other Aspergillus metabolites  

Zearalenone metabolites  Tryptophol 28.90  

Zearalenone-sulfate 32.62   Other metabolites  

  Cyclo(L-Pro-L-

Val) 

1,631.00  

   Cyclo(L-Pro-L-

Tyr) 

2,004.00  

    

Deoxynivalenol target concentration Analyzed concentration 
    

CTRL 0.0 0.0  

1.1 DON 1,500 1,166 ± 140  

2.7 DON 3,000 2,745 ± 330  

0.3 DON 400 367 ± 66.80  

Limits of detection (LOD) for AFB1 = 0.3 µg kg
−1

. For deoxynivalenol and ochratoxin A, 

detection limit are: 10, 50 and 0.2 µg kg−1 and for fumonisin B1 the detection limit are 

25 µg kg
−1

. Were analyzed 5 samples per diet. 
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TABLE 3: Growth performance parameters determined in the short term/high DON dosage study. 

 Final Weight (g) SGR (% day 
-1

) PER FI (g fish
-1

) FCR CF TGC 

CTRL 101.36 ± 19.81
 a
 2.52 ± 0.07

 a
 2.17 ± 0.05 81.21 ± 4.71

 a
 0.98 ± 0.07 1.42 ± 0.12

 ab
 0.113 ± 0.005

 a
 

1.1 DON 95.37 ± 19.20
 a
 2.46 ± 0.06

 a
 2.01 ± 0.13 81.65 ± 3.78

 a
 1.03 ± 0.07 1.46 ± 0.13

 b
 0.109 ± 0.004

 a
 

2.7 DON 79.91 ± 16.54
 b
 2.20 ± 0.09

 b
 2.01 ± 0.07 64.03 ± 2.87

 b
 1.05 ± 0.04 1.39 ± 0.12

 a
 0.094 ± 0.005

 b
 

1-way ANOVA 

p-value <0.001 <0.001 0.096 <0.001 0.423 0.033 0.001 

Data are presented as mean ± standard deviation. Values in the same column with different letters are significantly different (P < 0.05).  NS = not 

significant. SGR = Specific growth rate; PER = Protein efficiency rate; FI = Feed intake; FCR = Feed conversion ratio; CF = Condition factor and 

TGC=thermal-unit growth coefficient. 

 

 

 

 

 

 

 

 

 

 Day 37 Day 62 Day 92 Day 125 Day 168 
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TABLE 4: Protein 

efficiency rate at different 

sampling time points for the 

long term /low DON dosage 

experiment. 

CTRL 1.15 ± 0.17 1.38 ± 0.18 1.34 ± 0.11 1.38 ± 0.13 0.99 ± 0.03 

0.3 DON 0.89 ± 0.22 1.03 ± 0.16 1.15 ± 0.14 1.18 ± 0.18 0.76 ± 0.14 

1-way ANOVA 

p-value 0.150 0.044 0.110 0.183 0.50 

Values are displayed as mean ± standard deviation 
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TABLE 5: Feed intake at different sampling time points for the long term /low DON dosage experiment.  

 Day 37 Day 62 Day 92 Day 125 Day 168 

CTRL 1.92 ± 0.06 1.67 ± 0.08 1.61 ± 0.07 1.43 ± 0.09 1.41 ± 0.03 

0.3 DON 2.02 ± 0.08 1.85 ± 0.09 1.74 ± 0.10 1.59 ± 0.15 1.66 ± 0.68 

1-way ANOVA 

p-value 0.133 0.041 0.109 0.189 0.070 

Values are displayed as mean ± standard deviation  
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TABLE 6: Effects of dietary treatments on LDH, ALT and AST activities in the serum for short term/high DON exposure experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 LDH (IU L
-1

) ALT (IU L
-1

) AST (IU L
-1

) 

CTRL 1000.60 ± 187.01
a
 14.20 ± 7.66

a
 389.70 ± 2.36

a
 

1.1 DON 2001.18 ± 825.06
a
 22.00 ± 0.97

a
 543.80 ± 45.68

a
 

2.7 DON 1700.60 ± 163.27
a
 76.10 ± 9.88

b
 876.50 ± 87.60

b
 

1-way ANOVA 

p-value 0.078 <0.001 <0.001 

Data are presented as mean ± SD. Values in the same column with different letters are 

significantly different (P < 0.05). LDH = Lactate Dehydrogenase; ALT = Alanine 

transaminase and AST = Aspartate Aminotransferase.  (IU L
-1

) = International Units 

per liter. 
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TABLE 7: Effects of dietary treatments on LDH, ALT, AST, ALP, Total protein and hematocrit in the serum at different sampling time points for 

long term/low DON exposure experiment. 

 

 
Sampling Hematocrit (%) ALT (IU L

-1
) AST (IU L

-1
) LDH (IU L

-1
) ALP (IU L

-1
) T-Prot. (g L

-1
) 

 
Initial 51.2±0.08 17.2±11.8 432.9±157.2 1846.5±1178.2 * * 

CTRL 
62days 

39.9±3.32 11.1±3.5 309.1±239.6 1862.7±1199.4 143.4±71.8 3.0±0.67 

Mycotoxins 37.6±4.29 24.4±25.4 385.2±91.55 2497.0±1573.1 171.6±69.5 3.0±0.5 

Control 
125days 

* * 324.7±144.4 1968.7±1222.8 154.4±47.72 3.4±0.79 

Mycotoxins * * 216.5±97.3 914.8±314.9 146.3±69.11 3.1±0.63 

*Values could not be determined due to technical problems with samples. Values are displayed as averages ± standard deviation. N= 5 per 

treatment. LDH = Lactate dehydrogenase; ALT = Alanine transaminase and AST = Aspartate aminotransferase; ALP = Alkaline phosphatase; T-

Prot.= Total protein. IU L
-1

 = International Units per liter. 
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Figure legend 

FIGURE 1: Growth curve representing the average weight of the fish during the long term experiment. 

 

FIGURE 2: Feed conversion ratio at different sampling time points. Values are displayed as average ± standard deviation. 

 

FIGURE 3: Specific growth rate at different sampling time points. Values are displayed as average ± standard deviation. 

 

FIGURE 4. Onchorhynchus mykiss, histologic appearance of control (a) and 2.7 DON exposed fish (b); a. normal structure of hepatocytes; b. 

normal structure is disrupted, multiple hepatocytes are necrotic (star; observed in 1 out of 10 fishes sampled),  scattered fibrin exudation (closed 

arrowhead; observed in 6 out of 10 fishes sampled), multiple hepatocytes show intracytoplasmatic eosinophilic, amorphous material (hyalinised 

hepatocytes) (open arrowheads; observed in 8 out of 10 fishes sampled), HE stain, bars = 50 µm; inlet: higher magnification showing hyalinised 

hepatocytes (open arrowheads). 

FIGURE 5. Survival curve following infection with Yersinia ruckeri during the high dose experiment. 

FIGURE 6. Abnormal body conformations, characterized by a fish length reduced in relation to its width. Observed in 15 fishes out of 60 fishes fed 

2,745 ± 330 µg kg
-1 

DON. 

FIGURE 7. Fish presenting protruding anal papilla after being fed 2,745 ± 330 µg kg
-1 

DON. Observed in 5 fishes out of 60 fishes fed 2,745 ± 330 

µg kg
-1 

DON. 
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