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Summary 
 

Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary 
production (NPP) and woody growth, but there has been no large scale empirical validation of this 
expectation. We collected a large high temporal resolution dataset (for 1-13 years depending upon 
location) of more than 172,000 stem growth measurements using dendrometer bands from across 14 
regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in 
stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and 
interannual meteorological anomalies. A key finding is that woody growth responds differently to 
meteorological variation between tropical forests with a dry season (where monthly rainfall is < 100 mm), 
and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests a high degree of 
variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure 
deficit, in addition to anomalies of soil water deficit, and shortwave radiation. The variation of aseasonal 
wet forest woody growth is best predicted by the anomalies of vapor pressure deficit, water deficit, and 
shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome 
to be 2.16 Pg C year-1, with an interannual range 1.96-2.26 Pg C year-1 between 1996-2016, and with the 
sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical 
variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative 
impacts in parts of SE Asia and extensive regions across central and eastern Amazonia. Overall, there is 
high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual 
mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, 
vapor pressure deficit, and shortwave radiation.  

 
1. Introduction  
Tropical forest productivity is amongst the highest of terrestrial ecosystems [1,2], but the amount of carbon 
allocated to woody stems (NPP

stem
) within tropical forests is highly variable [3–6]. We here define NPP

stem
 as 

the productivity of above-ground woody tissue including trunks and branches, but excluding fine woody 
material such as twigs, and woody coarse roots. NPP

stem
 is not the largest component of carbon allocation, 

typically accounting for only 20-30% of NPP and 5-10% of gross primary productivity (GPP) [7], but, 
because woody material is long-lived, it is a major determinant of forest biomass and carbon residence 
time.  
 
In this paper we examine the seasonal and interannual variation of woody growth (NPPstem) across the 
tropical forest biome. Meteorological variation is likely to be an important control on seasonal changes in 
NPP

stem
 and has only rarely been tested [8–11], but never so at a pantropical scale. Examination of NPP

stem
 

variation has largely been limited to coarse temporal variation at interannual or multi-year time scales. 
NPP

stem
 is usually estimated by repeat census of tree diameters coupled with the use of allometric equations 

to translate changes into above-ground biomass. However forest census intervals typically span multiple 
years, and this obscures the relation of NPP

stem
 to seasonal meteorological variation and meteorological 

extreme events. Dendrometers enable much higher resolution tracking of tree growth (typically monthly 
resolution for manual dendrometers, daily for automatic dendrometers), but have not previously been 
employed in a consistent multi-site and multi-regional analysis. Here we present and analyse a uniquely 
extensive pantropical dataset of tree growth comprising more the 8,725 trees. The standardized protocol 
for measuring NPP

stem
 from the Global Ecosystem Monitoring network (www.gem.tropicalforests.ox.ac.uk) 

is unique for its use of manual dendrometers to provide high temporal resolution (~ 1-3 months), enabling 
examination of seasonal and interannual variation in NPP

stem
.  

 
At an individual level, carbon allocation to NPP

stem
 is thought to be affected by several biological processes, 

including photosynthetic uptake [7], its balance with respiration [12–14], tradeoffs in carbon allocation 
between woody parts, canopies and roots[7,15–17], source vs. sink driven biological cues[18,19], and most 
especially the crown exposure to light[20,21]. However when aggregated to the stand level, many of these 
individual-level biological drivers of growth are marginalized. After all, the amount of light and rainfall a 
forest receives and utilises is not so much a function of its stand structure, but of seasonality in weather 
and its geographic location. Here we do not specifically address the non-climatic components of spatial 
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variation in NPP
stem

, because this is an inherently more complicated question where the allocation of carbon 
to NPP

stem
 is dependent upon a number of interacting factors and processes such as soil fertility, species 

composition, and carbon use efficiency [12,20]. In this study, we purposely do not aim to explain the 
biological, disturbance related (e.g. catastrophic tree mortality events), or other spatially varying abiotic 
controls (e.g. soil fertility) upon NPP

stem
, but rather how month-to-month meteorological variation can 

explain seasonal changes in NPP
stem

.  
 
Seasonal differences in NPP

stem
 (or xylogenesis) are likely to be concentrated towards the transition 

between the dry to the wet seasons because xylogenesis is inhibited when cell turgor is low [18], and trees 
recovering from extreme drought stress may improve their hydraulic conductivity by replacing xylem that 
have cavitated over the dry season [22]. This pattern may be stronger in highly seasonal forests that 
experience annual drought stress, whereas differences in the temporal allocation of carbon to woody 
growth may be non-existent in aseasonal forests where few droughts occur to impair stem hydraulic 
conductivity. The extent to which a seasonal increase in woody stem growth reflects an increase in overall 
productivity, or simply a shift in carbon allocation among roots, wood, the canopy, and non-structural 
carbohydrate storage pools remains uncertain. In lowland Amazonia, allocation shifts were found to be  
more important than overall changes in carbon assimilation in explaining interannual variability in 
canopy, wood, and fine root growth rates [16,17]. 
 
Here, we utilize the anomalous drought conditions produced by El Niño events to examine how much 
spatial and temporal variation in in NPP

stem
 can be explained by purely meteorological variation. El Niño 

events tend to increase temperatures and atmospheric water vapour deficit (VPD) across the tropics, and 
cause strong declines in precipitation in some regions, most notably Amazonia and insular SE Asia [23]. 
These meteorological factors are likely to affect NPP

stem
 through underlying ecophysiological mechanisms. 

We focus on relating temperature, VPD, cloudiness, and precipitation metrics to NPP
stem

. First, negative 
precipitation anomalies and soil water deficits are likely to impede growth by increasing soil-root 
hydraulic resistance [24] and reducing stem conductance through cavitation [25]. Precipitation deficits 
from drought can eventually lead to declines in NPP ([26]; but see [11]). Relating precipitation to forest 
growth can be challenging because monthly precipitation can be decomposed into numerous metrics with 
greater ecophysiological relevance, but here we focus on four aspects: a one dimensional Thornthwaite-
Mather water balance model from a high resolution climate product [27], climatic water deficit (CWD) 
which is a simpler proxy for sub annually varying soil water deficit, the maximum climatic water deficit 
(MCWD) which represents that maximum CWD for the preceding 12-months [28], and lagged differences 
in monthly precipitation which can serve as a proxy for the transition between dry and wet seasons. 
Second, temperature, even in the tropics, can control or act as a cue for much of the seasonality of growth 
and carbon allocation [29,30], yet reductions in photosynthesis occur when trees are exposed to 
temperatures beyond their optimum for photosynthesis [31–33]. A recent comparison of an evergreen and 
semi-deciduous forest in Panama found that the community temperature optimum closely mirrored the 
mean maximum daytime temperature [33]. Thus positive temperature anomalies during drought events 
may push leaves over their optimum temperature for photosynthesis, increase respiration costs [34], and 
by extension reduce the amount of plant expendable carbon that can be allocated to NPP

stem
. Alternatively, 

higher temperatures may push forest canopies into or beyond their optimal temperature range and either 
leading to an increase or saturation of gross primary productivity [35]. Third, high temperatures with 
invariant or reduced atmospheric humidity lead to high VPD, which can induce stomata to close [36–38] 
even when soil moisture is non-limiting [39]. Of course stomatal conductance does not work independent 
of leaf energy balance, so positive VPD anomalies may result in a reduction of leaf conductance which may 
induce higher leaf surface temperatures and VPDs, and perhaps further reduce photosynthesis. Finally, 
shortwave radiation is highly correlated with photosynthetic assimilation of CO

2
. El Niño events can 

reduce cloudiness in the same regions where it reduces precipitation, which results in increased shortwave 
irradiance. A positive shortwave anomaly could increase photosynthesis in tropical regions with weak dry 
seasons, such as northwest Amazonia, and Borneo [30], although prior evidence suggests an increase in 
carbon assimilation may not necessarily manifest in higher NPP

stem
 [5,7,40].  

 
Specifically we address the following questions:  
(1) How much variation in tropical NPPstem can be explained by meteorological variation?  
(2) What meteorological drivers most affect NPPstem during El Niño associated drought events?  
(3) What is the total annual woody production of the tropical forest biome, how much does it decline 
during El Niño events, and which regions contribute most strongly to these declines?  
 
2. Methods  
2.1 Scaling from individuals to forest stand  
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We employed the standard protocols of the Global Ecosystems Monitoring (GEM) network, described at 
gem.tropicalforests.ox.ac.uk). Simply, constructed manual dendrometer bands were installed on trees and 
measured at intervals typically ranging from 1-3 months across 14 geographic regions encompassing a 
large rainfall gradient ranging from highly seasonal dry tropical forests to aseasonal wet tropical forests 
(Fig. 1 & SM Fig. 1), encompassing 50 individual plots. In total 8,725 trees were attached with 
dendrometers, and more than 187,000 readings were taken over 65 plot-years of data. The duration of 
measurement and number of observations varied across plots (See Table 1). Dendrometers were installed 
on a subset of adult trees (•10 cm DBH). The sample coverage and size distribution of trees with 
dendrometer bands varied across plots, and rarely matched the corresponding size distribution from the 
full plot census of all adult trees. A nonlinear height allometry was derived for each site, and used to 
update tree height with every dendrometer measurement (detailed in SM section 1). The biomass was 
estimated for each tree using allometric equation 4 from Chave et al. (2014)[41], with wood density derived 
from the Global Wood Density Database [42,43] for each species or regional-genus mean. The mean 
individual growth rate in Mg C was calculated using a dry-biomass carbon content of 47.8%. This growth 
rate was multiplied by the number of individuals (•10 cm DBH) in each plot when the number of trees 
with dendrometers was > 50% of the number of trees in the plot. We also applied the mean growth rate to 
all trees in the plot when 30-50% of the trees had dendrometer bands and the median DBH of trees with 
dendrometer bands matched the median DBH of all trees in the plot to within 5%. When measurements 
did not meet these criteria, but still had at least 60 individuals with dendrometer measurements - size, 
wood density, and estimated height were used to construct non-linear generalized additive models to 
predict growth for each date, which where were then used to predict total carbon accumulation for each 
tree in the plot that did not have a dendrometer. The resulting NPP

stem
 observation is the scaled forest-level 

woody growth (in carbon units Mg C month-1 ha-1) estimated by summing the observed growth rates from 
trees with dendrometer bands, and the sum of tree level growth predictions over trees in the plot lacking 
dendrometer bands. The effects of stochastic tree mortality events are large upon month-to-month changes 
in forest biomass. Our goal was to isolate the climatic signal upon only live woody tree growth so we 
removed the demographic responses of carbon entering the plot from tree recruitment, and carbon leaving 
the plot from tree mortality. To do so, the regression growth models of each date were applied to a single 
fixed date census corresponding to each forest plot. Finally it is worth noting that the error from scaling 
the individual growth to plot-level NPP

stem
 are not propagated throughout subsequent analyses on the plot-

level estimates of NPP
stem

.  
 
2.2 Deriving meteorological predictors 
Temperature and VPD data time series for each site were derived from a gridded climate product 
(TerraClimate) [27]. The TerraClimate product is a statistically downscaled (~4 km) merge between the 
CRU TSv4.01 empirical climate interpolation [44] and the JRA-55 climate reanalysis product [45]. 
Meteorological time series from TerraClimate were compared with downscaled site-level meteorological 
predictions from local automatic weather stations and the ERA-Interim climate reanalysis product 
(detailed in SM section 2) [46]. The monthly meteorological estimates from TerraClimate corresponded 
well with the downscaled site level meteorological records for most sites (SM Section 2; SM Figs. 2 & 3) 
with the exception of shortwave radiation at the Borneo sites. Surface level shortwave radiation over wet 
tropical forest regions is not well estimated by most climate reanalysis products, so we calculated the 3-
month moving mean cloud fraction using the satellite derived NOAA CDR PATMOS-X v5.3 cloud 
properties product [47] and the 3-month moving surface level shortwave radiation estimates from the 
Clouds and the Earth's Radiant Energy Budget product [48].  
 
2.3 Estimating the effects of meteorological drivers upon NPP

stem
  

We calculated the long-term monthly means (•) of monthly diurnal min/mean/max were calculated for 
air temperature, VPD, and shortwave radiation. We also calculated metrics of precipitation (monthly 
precipitation), water deficit (CWD and MCWD), a metric of the wet-dry season transition (detailed in SM 
Section 2). The monthly anomalies of each meteorological variable were calculated, and divided by their 
location specific interannual monthly standard deviation. The resulting anomaly terms are expressed in 
units of standard deviation (σ) from their long-term monthly mean. It is important to note that both the • 
and σ terms vary by month and the corresponding forest plot's location. For example, a 1 C˚ increase above 
the mean temperature in the month of August would be less than one unit σ at the Kenia site in the (highly 
seasonal) Bolivian Amazon, whereas it would be more than three units σ across all of the (relatively 
aseasonal) Borneo sites. Therefore both the • and σ terms have an inherent spatial context.   
 
We fit generalized linear mixed models (GLMMs) and Generalized Additive Models (GAMs) to examine 
how NPPstem is affected by seasonal meteorological variables and their corresponding anomalies. Several of 
the meteorological covariates used in the model comparison process were highly correlated, so we 
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restricted the inclusion of terms with pairwise correlations to be <0.6 (SM Fig. 4) for the final models. 
GLMMs and GAMs for nonlinear effects were examined with the MGCV and rstanarm packages for R 
[49,50]. We found that most non-linear terms could be sufficiently represented by piecewise linear terms 
by separation of the monthly anomaly term into a positive or negative anomaly (e.g. see the dry and wet 
anomaly terms in Fig. 2). The exception to this is the shortwave anomaly term in the seasonal forest model, 
which most improved model performance with the usage of a penalized spline function (Fig. 2e). The 
intercept of each observation was allowed to vary by corresponding plot (i.e. a random intercept model). 
Some amount of stem shrinkage was apparent in the dendrometer band data in the dry season, but it is not 
straightforward to determine the amount of dendrometer band movement from negative change due to 
stem desiccation and positive change due to growth. Thus we opted to allow the stand-level estimates of 
woody NPP to be < 0. In these negative instances, carbon is not actually lost from the plot but the stems 
shrink due to desiccation in the dry season. The posterior predictions of NPP

stem
 were best modeled by a 

shifted Gamma distribution (to account for negative NPP
stem

) with a log link function. The final GLMMs 
were fit within a Bayesian framework using the rstanarm package for R [50]. Regularizing priors centered 
over 0 with a standard deviation of 1 were used in the model in an effort to reduce overfitting. The final 
models presented here were selected by comparing and joining the monthly mean and anomaly terms of 
each meteorological variable. The median R

2
 from the posterior predictive distribution was calculated for 

each site with and without the random intercept term (Table 1; SM Tables 1 & 2). We found that no single 
model could predict NPPstem well across all sites: a model that performed well over seasonal sites had no 
predictive ability over aseasonal wet forest sites that lack a discernible dry season (by convention, when 
rainfall < 100 mm month-1). Therefore we split the data by a precipitation seasonality metric (S) where 
higher values indicate greater seasonality of precipitation [51] (Table 1). We developed and tested separate 
candidate models for seasonal sites (S > 0.05) with a distinct dry season (SM Table 1), and aseasonal wet 
forest sites (S < 0.05) with no consistent dry season (SM Table 2).  
  
2.4 Scaling to the Pantropics 
Our final aim was to use the wealth of GEM NPP

stem
 observations to develop estimates of total wood 

production across the tropics and its interannual variability. The final two seasonal and aseasonal 
statistical models were used with the TerraClimate product and the CERES shortwave radiation product to 
generate spatially, time varying predictions at 0.5 degrees spatial resolution across grid cells with at least 
50 km2 of tropical forest (detailed in SM Section 3). The time series of meteorological variables in the 
gridded TerraClimate product were truncated at the ranges from the meteorological conditions estimated 
across the GEM sites NPP

stem
 data used in the model fitting process. Because the GLMMs were constructed 

in a Bayesian framework, they are inherently generative in the sense that they can be used to generate a 
predictive distribution of outcomes, conditional upon the observed data used to fit the models. We 
extracted 1000 draws from the predictive posterior distribution to propagate the uncertainty of 
meteorologically driven impacts upon NPPstem, and projected them onto a 0.5 degree grid, corresponding 
with the CRU TSv.4.01 product [44]. The 1996-2016 predictions were deseasonalized and linearly 
detrended to calculate the temporally moving mean anomaly of interannual NPPstem. The magnitude of the 
predictions were scaled downward to correspond with the near current (2016) existing amount of forest 
cover as determined by the Global Forest Cover product v1.4 [52]. Because we used a fixed canopy cover 
through time, earlier in time estimates of NPP

stem
 are slightly negatively biased due to the decline in 

tropical forest cover over the prediction period (1996-2016). The median of the detrended predictions was 
projected spatially over two strong El Niño events to show the spatial distribution of meteorologically 
produced anomalies in NPP

stem
. We compared the detrended and deseasonalized predictions of the annual 

mean of tropical forest NPP
stem

 with the El Niño 3.4 Index [53].  
 
3. Results  
3.1 Quantifying the individual meteorological components of drought that affect NPP

stem 

Overall, in the seasonal tropical forests the seasonal (monthly) means of vapour pressure deficit 
(VPDmean

•
), temperature (Tmean

•
), and shortwave radiation (SWmean

•
) structured the seasonal variation 

of NPP
stem

 (Fig. 2a,g). The interannual anomalies of the water deficit anomalies (Wet and Dry anom
•
) and 

the 3-month shortwave anomaly (SW
•
) best explained the interannual variation of NPP

stem
  (Fig. 2a,c,e & 

SM Table 1). In the aseasonal wet forests, by contrast, none of the mean seasonal (monthly) varying 
meteorological terms could predict any seasonal variation in NPP

stem
 (SM Table 2). Variation in NPP

stem
 was 

better explained, with the 3-month VPDmean anomaly, and to a lesser extent the water deficit anomaly 
and the shortwave anomaly being the most influential factors (Fig. 2a,b,f,h & SM Table 2). Other terms 
such as CWD

•
, CWD

•
, MCWD

•
, MCWD

•
, and the 3-month Tmean

•
 were useful as individual predictors, 

yet their effect size was reduced when combined with the other terms in the final models (SM Tables 1 & 
2). 
 
3.2 Overall explanatory power of the meteorologically driven model 
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Our meteorologically driven final statistical models explained approximately 52% (35% excluding random 
effects) and 41% (20% excluding random effects) of NPP

stem
 seasonal variation for tropical seasonal forests 

and aseasonal wet forests, respectively. The range in the amount of variation explained (R2) was large 
across sites (Table 1), but the predictive distribution of the models generally covered the observed range of 
NPP

stem
 (Fig. 2). The R2 of aseasonal wet forest sites improved the most when allowing random effects (i.e. 

variation in plot-specific mean values of NPP
stem

) which is due to the general lack of seasonal variation in 
NPP

stem
. Despite the improved performance, the plot specific intercept (random effect) acts as a categorical 

variable that cannot be applied for up-scaling the model across the tropics so we present conditional model 
predictions without random effects (Fig. 2c-h). A higher degree of predictive ability was found for sites 
with strongly pronounced dry seasons (e.g. the Kenia plots in Bolivia and the Santarém region plots in 
eastern Amazonia; Fig. 3a,c) while the R

2
 was poorest for the more aseasonal sites (e.g. in Borneo) where 

there was less seasonal variation in woody growth to explain (e.g. MLA, SAF; Table 1; Fig. 3f,g & SM Fig. 
5). Despite this apparent increase in explained variation with increasing precipitation seasonality, this may 
be because the aseasonal wet forest model was estimated using far fewer observations (N = 110) than the 
seasonal forest model (N = 674). 
 
3.3 Tropical NPPstem and its response to El Niño events  
Overall, our pantropical scaling estimates that the mean total annual above-ground woody production of 
the tropical forest biome is  2.16 Pg C yr

-1
, and this varied interannually in the range 1.96-2.26 Pg C (i.e. 

12 %) between years 1996-2016. Global minima occur during El Niño events, with Amazonia and insular 
Southeast Asia being the most impacted (Figs. 4 & 5). The spatial anomalies of NPP

stem
 are not consistent 

across El Niño events (Fig. 4). For example different parts of Amazonia were most strongly affected by the 
El Niño events in 1997/1998 and 2015/2016. Conversely the pronounced negative impact seems spatially 
consistent across eastern Borneo, whereas equatorial Africa may have been moderately negatively affected 
by the 1997/1998 El Niño but less so during the 2015/2016 event (with an important caveat that 
climatological products for this data-poor region are particularly unreliable). 
 
The detrended long-term prediction of the anomaly in NPP

stem
 is highly correlated with the moving annual 

average of the El Niño 3.4 Index (r = -0.7; Fig. 5). Hence interannual variation of the total woody growth of 
the tropical forest biome can be at least partially predicted from the El Niño 3.4 Index. The interannual 
anomaly of NPP

stem
 is most highly correlated with the annual anomalies of VPD (r = -0.59), but also 

correlates with water deficit (r = -0.51), temperature (r = -0.49) and shortwave radiation (r = -0.38). This 
finding is consistent with inversion modelling results that show that the carbon cycle of the terrestrial 
tropics is strongly correlated with tropical land surface temperatures; however, our analysis suggests that 
the local mechanistic drivers are more linked to water deficits, VPD and shortwave radiation than to 
temperature (Fig. 2a, b).   
 
4. Discussion  
4.1 How much variation in tropical NPPstem can be explained by meteorological variation?  
Using our statistical models, as much as 55% of monthly woody growth can be predicted for seasonal 
tropical forests, and 45% for aseasonal wet forests. This amount of explained variation on high temporal 
resolution changes in NPP

stem
 is not so dissimilar from the variation in forest biomass changed explained 

over much longer periods of time by considerably more sophisticated forest simulation models (e.g. 
[54,55]). However the GLMMs presented here should not be viewed as authoritative, but rather as an 
initial attempt to understand and separate the effect of the long-term mean of month-to-month 
meteorological seasonality from interannual meteorological variation upon tropical forest woody growth. 
These statistical models are simplistic representations of complex biological responses. Tropical forests 
have to mitigate several forms of ecophysiological stress from meteorological variation and in many cases 
the underlying ecophysiological mechanisms of tropical forests response to drought are still not well 
understood [56]. So it is noteworthy that the models presented here do have predictive ability across all 
sites, and that this predictive ability is greater across the vast majority of tropical forest regions with 
rainfall seasonality (Figs. 1, 2 & 3; Table 1).  
 
There are many opportunities to improve the model. The data used to fit the model are imbalanced across 
sites (Table 1), with notable data limitations for the aseasonal wet tropics. By extension the uncertainty and 
poorer predictive performance in the aseasonal wet forest regions is likely due to data deficiency, which 
will in many cases improve over time. The meteorological variables used in this study are often highly 
correlated, which precludes the incorporation of all relevant variables into a linear predictor because 
standard statistical methods cannot identify effects that are highly collinear. The environmental drivers 
used to model here also fail to capture temporal directionality. For example, the water deficit anomaly 
makes no distinction whether a soil is on a trend towards drying or wetting. The representation of 
temperature in the model also makes no distinction between short temporal pulses, versus longer 
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sustained warming trends where acclimation may be more likely to occur. Next, non-linear relationships 
are ubiquitous in plant ecophysiology. Stomatal conductance [37,38,57], photosynthesis [58], plant tissue 
respiration [34], hydraulic impairment [25], and soil water conductance [59] are best described by strongly 
non-linear relationships with their corresponding environmental drivers. Yet here we attempt to model an 
emergent property of tropical forests (stand level NPP

stem
) with two GLMMs, which are more effective at 

capturing the mean field relationships than they are at predicting the extremes. We acknowledge that 
modeling NPP

stem
 from a linear set of meteorological predictors may be biologically unrealistic and 

limiting. Future attempts to model the impact of environmental extremes on NPP
stem

 may be much 
improved by joining mathematical models of plant ecophysiological components into a more process 
based statistical hybrid model. 
 
4.2 What meteorological drivers most affect NPP

stem
 during El Niño associated drought events?  

We can only make cautiously qualified statements about the most important meteorological drivers 
affecting growth because this question is hindered by both uncertainty in the true meteorological 
conditions, and by insufficient data at both ends of the extremes of a meteorological variable (e.g. where 
observations are needed during both anomalously wet and anomalously dry conditions). The effects of 
VPD are consistent and large across both the seasonal and aseasonal wet tropics, but in different ways. In 
the seasonal forest model, the effect of VPD only has explanatory power in the seasonal component, while 
the interannual anomaly does not appear to be important. Conversely in the aseasonal wet tropics, VPD 
has no effect upon the seasonal component (as variation is low in the aseasonal tropics; SM Fig. 6), but has 
a large effect in the interannual anomaly term (Fig. 2b & 2h). The impediment of VPD upon NPP

stem
 is 

consistent with stomatal conductance models where VPD incurs a non-linear stomatal limitation which 
restricts CO

2
 assimilation rates [36,38]. The inability of the seasonal forest model to isolate a consistent VPD 

anomaly effect could be due to the fact that the monthly range of VPD is far larger in seasonal forest sites 
(SM Fig. 6), and that the dry season anomalies would have to be very large in absolute units of kPa to 
significantly impact stomatal conductance, because the VPD reduction on stomata closure may have 
largely already been exerted (a visual diagram is shown in SM Fig. 7). 
 
Both the seasonal forest and aseasonal wet forest models indicate that the effect of VPD (either seasonal or 
anomaly) is especially compounded with anomalies in short wave radiation. Although the effect of a short 
wave anomaly effect seems important across tropical forests, it appears to reduce NPP

stem
 far more in 

seasonal forests than it does for aseasonal wet forests. Some caution is warranted with respect to ranking 
of the effects of the VPD, water deficit, and shortwave anomalies because these are correlated, and their 
relative importance could change with prediction error from the gridded climate products. Also despite 
not presenting an effect of temperature anomalies, the long-term increase in air temperature is increasing 
VPD and may also be pushing tree communities above their normal acclimated optimum temperatures for 
photosynthesis [31–33]. In combination, an El Niño event that reduces rainfall and increases VPD, 
temperature and shortwave radiation will likely work in conjunction to limit transpiration, increase leaf 
temperatures, and by extension reduce photosynthesis [33]. It is noteworthy that there is little evidence 
that positive shortwave anomalies increase NPP

stem,
 as would perhaps been expected in aseasonal forests 

[60,61]. 
 
The effect of soil water deficit is negative upon woody growth, but this effect is less identifiable in the 
aseasonal wet tropics where soil water deficit seldom deviates from zero. CWD and MCWD have been 
highly effective metrics of water deficit in previous studies [11,62], but here we found TerraClimate's water 
deficit estimates to offer greater predictive ability than (M)CWD. The Thornthwaite-Mather water balance 
model used to produce the water deficit estimates in the TerraClimate product may be more effective than 
our calculation of (M)CWD because its calculation of water deficit includes information on soil water 
holding capacity and infiltration, and calculates a runoff term. However all metrics of water deficit are 
likely hindered by both uncertainty in rainfall estimates, and the current state of high uncertainty around 
how tropical forest vary their rates of evapotranspiration both seasonally and interannually [63]. 
  
4.3 How much do El Niño events suppress tropical woody growth and what can this tell us about how tropical forests 
are likely to respond to climate change?  
The pantropical model predicts pronounced declines in global tropical forest NPP

stem
 over two strong El 

Niño events (8.3% in 1997/1998, and 9% in 2015/2016). The impacts were largest in the Americas (Fig. 5) 
highlighting the importance of Amazonia in dominating the global signal because it accounts for around 
half of total tropical forest area and is adjacent to the eastern Pacific warm anomaly during El Niño events. 
Insular SE Asia also has a substantial influence on the global anomaly, but Africa appears to have a 
negligible role as El Niño signals are weaker and less consistent there. The meteorological teleconnections 
caused by El Niño events are not spatially consistent across events [64]. Similar to other findings that have 
correlated tropical air temperatures and El Niño indices to atmospheric CO

2
 growth rates [65,66], we have 
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demonstrated that the variability of total woody production of the tropics can be well-predicted from the 
ENSO 3.4 index. We should note that our study period does not include a major stratospheric aerosol 
volcanic eruption, the last major one of which being that of Mt. Pinatubo in 1991, and some models suggest 
that such eruptions alter vegetation productivity through increasing diffuse light [67] (not tested as 
meteorological predictor in our analysis) which could weaken the correlation with ENSO. While NPP

stem
 is 

not necessarily a good proxy for overall gross primary productivity or net ecosystem exchange, as there 
are likely to be concurrent shifts in plant respiration and carbon allocation [7], a depression in NPP

stem
 still 

probably indicates ecophysiological stress imposed upon the ecosystem [11].  
 
Our analysis is driven by growth responses to seasonal variation and interannual anomalies, whereas 
growth responses to short term variation in VPD and temperature may not be the same as long-term 
growth responses to secular shifts in these meteorological variables. It is possible that ecosystems acclimate 
to longer term shifts (either through within-individual acclimation within limits, or on longer timescales 
through turnover in community dominance). Our analysis also does not consider changes in demography, 
so shifts in either recruitment or mortality could either act to counterbalance or exacerbate the magnitude 
of our predictions. Finally additional environmental variables come into play, in particular the secular 
increase in atmospheric CO2, which may boost productivity and increase water use efficiency. 
Nevertheless, our analysis does highlight the potentially important role of increasing temperatures and 
VPD. Changes in atmospheric water demand may be more important than changes in seasonal water 
supply in driving ecosystem water stress in the aseasonal wet tropics, and deserve more analytical 
attention. It is worth noting that the peak temperatures and VPDs experienced during the 2015/6 El Niño 
were higher than for the 1997/8 El Niño (SM Fig. 8), because of the long-term warming trend between 
these events. The baseline upon which each anomaly sits is consistently shifting towards a hotter, higher 
VPD atmosphere, pushing ecosystems into new climate space. 
 
Moving forward, the predictions here need to be challenged so we encourage collection and development 
of similar seasonally monitored dendrometer band datasets that can be applied to the same stem-to-stand 
scaling techniques used here. It should also be possible to draw on a wide set of dendrometer data 
collected by unconnected studies (some in the grey literature) to improve the span of the dataset. Because 
these predictions deal with a specific component of ecosystem carbon, few empirical measures are 
available to test our model predictions. Ecosystem models still struggle to simulate realistic 
ecophysiological impacts from drought [68], while they also have vastly different approaches to carbon 
allocation that may produce unrealistic predictions [3,69–71]. Earth System Models typically represent the 
entirety of the tropical forest biome with a very few plant functional types. Our analysis highlights a key 
difference between seasonal and aseasonal wet forests in the underlying meteorological drivers that 
suppress woody growth during drought events. This message is consistent with Guan et al., (2015) [72] 
who highlighted different phenological and photosynthetic responses between tropical forests receiving 
more or less than 2000 mm yr

-1
 in precipitation, suggesting an important functional ecotone in the tropical 

forest biomes. The "empirical upscaling" spatiotemporal products developed from applying ensembles of 
machine learning models to global FluxNet data [73] have served as a benchmark of sorts to ecosystem 
models in recent years. However comparison to our NPP

stem
 predictions may not be straightforward 

because NPP
stem

 is a poor proxy for both GPP and total NPP in the wet tropics [3,7,16], and there are very 
few eddy covariance time series in the tropics outside of Brazil. Thus we reiterate the need for more 
collection of seasonally monitored tropical forest NPP

stem
 data, because the causal attribution of what drives 

variability in carbon allocation is still an emerging science. A logical next step is also to expand this 
analysis to other components of NPP and respiration, and thereby to total NPP and carbon balance. This 
will be the focus of our forthcoming analyses. 
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Figure and table captions 
Figure 1. The location of the Global Ecosystem Monitoring sites used in this study, overlaid on a map of mean annual precipitation.   
 
Figure 2. ​ (panels a & b)​ ​Coefficient plots for the Seasonal Forest NPP​stem​ and Aseasonal Wet Forest NPP​stem​ models with 50% and 90% credible 
intervals for the meteorologically driven statistical model. Abbreviations are as follows: SWmean​μ​ is the long term monthly mean of shortwave 
radiation, Tmean​μ​ is the long term monthly mean of temperature, VPDmean​μ​ is the long term monthly mean of vapor pressure deficit, VPDmean 
anom.​3-mo​ is the moving 3-month mean moving anomaly of vapor pressure deficit, SWanom.​3-mo​ is the 3-month moving mean anomaly of shortwave 
radiation, Wet anom. and Dry anom. are the excessively wet and excessively dry parts of the water deficit anomaly. (panels c - h)​ ​The effect of the 
model terms are expressed on hypothetical conditional plots with median posterior prediction and 50 and 99% posterior predictive intervals in 
shaded colors. Apart from the model term that is varied along the x-axis, all other model terms in the conditional plots are set to the mean from the 
season or aseasonal forest data sets. All panels on the left correspond to the seasonal forest model, while panels on the right correspond to the 
aseasonal wet forest model.  
 
Figure 3. Site level observations (open circles) and predictions (solid circles) with corresponding 50 and 99% prediction intervals of monthly 
NPP​stem​ for individual plots located near (A) Kenia, Bolivia, (B) Tambopata, Perú, (C) Santarém, Brazil, (C) Tambopata, Perú, (D) Kogyae, Ghana, 
(E) Bobiri, Ghana, (F & G) regions in the east of Sabah, Malaysian Borneo, and (H) Jenaro Herrera, Perú. 
 
Figure 4. The detrended Pantropical spatial anomalies of NPP​stem​ during the El Niño events of 1997-1998 and 2015-2016, expressed Mg C ha​-1 
month​-1​.   
 
Figure 5. (Top) The 12-month detrended and running mean anomaly (expressed in Pg C yr​-1​) of annual NPP​stem​ (black) across the tropical regions 
and the Pantropics. The vertical colored bars represent corresponding El Niño 3.4 index through time.  
 
Table 1. Climatic characteristics of Global Ecosystem Monitoring regions used in this study. We divide the forest biomes as follows: WTF - wet 
tropical forest (>2200 mm), MTF - moist tropical forest (1800-2200), SDTF- semi-deciduous tropical forest (1400-1800 mm), and DTF - dry tropical 
forest (<1400 mm). Precipitation seasonality was calculated according to Feng et al., (2013), where a higher value indicates a more temporally 
concentrated distribution of annual rainfall. 
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Figure 2.  
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Figure 3.  
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Figure 5. 
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