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Summary 

1. Invasion of riparian zones by non-native plants is a global issue and commonly perceived as a challenge for 

river and fishery managers, but the type and extent of ecological changes induced by such invasions remain 

poorly understood. Established effects on sediment delivery, allochthonous inputs and channel shading could 

potentially alter aquatic macroinvertebrate assemblages, with implications for in-stream ecological quality.  

2. We assessed responses in the diversity, quality and heterogeneity of stream macroinvertebrate communities to 

riparian invasion by non-native plants. Macroinvertebrates were collected from 24 sites on low order streams in 

central and southern Scotland during spring and autumn. The effect of invasive non-native plants (INNP) on 

macroinvertebrates was assessed relative to that of local physical and chemical factors.  

3. INNP cover was associated with stronger effects than other factors on local diversity of macroinvertebrates

(33% reduction at the highest INNP cover) but also increased macroinvertebrate abundance across sites. Invaded 

sites were also associated with lower macroinvertebrate biomonitoring scores. Community composition differed 

between invaded and uninvaded sites in autumn, but not in spring. However, INNP influence on 

macroinvertebrate composition was generally secondary to that of physicochemical variables (e.g. channel 

shade, substrate diversity). 
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4. We demonstrate that the influence of INNP extends beyond well-known impacts on plant communities to 

reductions mainly in stream macroinvertebrate diversity. Combined with the negative impact on pollution-

sensitive macroinvertebrate taxa this raises concerns over the ecological health of streams with heavily invaded 

riparian zones. Our findings suggest that efforts to improve low order streams by actively managing severe 

riparian invasions are merited, but the size and uncertainty of the likely ecological gains must also be evaluated 

against the effort involved. 

Introduction 

Riparian zones are diverse, complex habitats that provide an ecologically important buffer between land and 

water, regulating the health and quality of the watercourses they border. The dynamic nature of riparian zones 

increases their susceptibility to invasion, particularly by non-native plants, which can spread quickly throughout 

catchments (Richardson et al., 2000) and are associated with negative ecosystem-wide impacts (Simberloff, 

2015) that are repeated on a global scale. The impact of invasive non-native plants (INNP) has been 

demonstrated on native plant communities (Pysek et al., 2012; Pattison et al., 2017). Other studies suggest that 

invasive alien trees may alter the structure of secondary consumer assemblages (McInerney & Rees, 2017) and 

promote long-term changes in macroinvertebrate community structure (Becker & Robson, 2009; Roon et al., 

2014). Currently, river and fisheries managers, local authorities and environmental protection agencies devote 

significant resources to managing riparian plant invasions, but without strong evidence of impact it is 

challenging to justify these resources or envisage the potential ecological gains arising from management. 

Freshwater macroinvertebrates are excellent indicators of environmental conditions, as their presence 

and abundance reflect a variety of instream physical and chemical characteristics (Li et al., 2010). In recent 

years biomonitoring has expanded to include other anthropogenic stressors alongside organic pollution (Murphy 

et al., 2015) and likely impacts on ecosystem processes such as organic matter decomposition and secondary 

production (Usseglio-Polatera et al., 2000b; Bonada et al., 2006). Given these advances, there remains a 

pressing need to assess the importance of riparian INNP cover as a driver of aquatic macroinvertebrate 

community structure, relative to the suite of environmental variables already known to influence 

macroinvertebrates. The effects of riparian INNP cover are particularly relevant when considering the ecological 

status of water bodies as prescribed under the EC Water Framework Directive (WFD) (Council of the European 

Communities, 2000). The WFD prescribes that assessments of ecological status should reflect the ability of a 

water body to support various biota (e.g. benthic macroinvertebrates and flora) characteristic of undisturbed 

conditions. As such, assessments must take account of the presence of INNP and their outcomes may be 



 

 

influenced by the impacts of invasive non-native species more generally (Macneil et al., 2013; Mathers et al., 

2016). Since European countries are required under the WFD to restore failing water bodies to good ecological 

status, the presence of INNP may carry significant management implications, depending on the risks posed 

(Cardoso, 2008). 

Invasive plants such as Fallopia japonica (Japanese knotweed) and Impatiens glandulifera (Himalayan 

balsam) are now widely established on river banks across the northern hemisphere. They influence the aquatic 

environment via shading, lowering of water temperature, and by altering the quality, quantity and timing of 

terrestrial carbon input (Claeson et al., 2013). Rapid growth enables INNP to outcompete native plants, leading 

to the formation of dense monocultures. These may reduce the ability of riparian vegetation to filter 

contaminants (Duquette et al., 2016), whilst early winter dieback potentially exposes river banks to erosion by 

floods (Greenwood & Kuhn, 2015). Disturbances to native riparian vegetation can also permeate aquatic food 

webs: riparian shading modulates water temperatures (Broadmeadow et al., 2011), which, together with changes 

to the nutritional quality of allochthonous leaf litter (Kuglerová et al., 2017), may affect the diversity and 

abundance of aquatic macroinvertebrates, thereby altering decomposition rates (Lagrue et al., 2011; Claeson et 

al., 2013). Additionally, clearing of INNP along rivers has recently been shown to promote some recovery of 

vulnerable stream macroinvertebrate taxa (Mcneish et al., 2015). 

The aim of this study was to assess whether riparian INNP affect the structure and turnover of aquatic 

macroinvertebrate communities, using field surveys to isolate the magnitude and direction of any effect from 

those of other environmental variables driving aquatic macroinvertebrate community structure. We hypothesised 

that changes to riparian vegetation caused by INNP would affect the composition of aquatic macroinvertebrate 

communities through changes to allochthonous inputs and by modifying local environmental conditions. We 

predicted that aquatic macroinvertebrate communities at sites with higher INNP cover would exhibit reduced 

diversity as a result of these physical and chemical changes. 

Methods 

Study sites 

Sites were located on six low (1st to 4th) order streams (Strahler, 1957) in catchments across central and southern 

Scotland (Figure 1), providing a range of geographically and environmentally varied sampling locations. On 

each stream, a pair of control (uninvaded) sites were located upstream from a pair of invaded sites containing 

established stands of either F. japonica or I. glandulifera, the sites in each pair being separated by an average of 



 

 

0.35km. There were 24 study sites in total (Table S1). Sites were limited by the size of INNP stands present, and 

as such were standardised to a 20m length of channel. Invaded sites were chosen according to the criteria that 

INNP coverage should exceed 50% of the vegetation cover on at least one bank, their characteristics otherwise 

being similar to those of upstream uninvaded sites (Sax et al., 2005). INNP cover at a site often fell below this 

threshold when considering the total INNP cover across both banks. Both I. glandulifera and F. japonica were 

assessed collectively, the focus of the study being on overall effects of invasion-related disturbances rather than 

differences between similar INNP species. Distances between sites and the downstream main stem river varied 

from 0.2-8.7km, to fulfil the need to match physicochemical characteristics and ensure suitable riparian invasive 

cover. 

 

 

Figure 1. Map of study sites with example for the New Abbey Pow sites inset. Larger inset indicates general 

location of all study sites across central Scotland. 

 



 

 

Macroinvertebrate sampling and processing 

Benthic invertebrates were collected by hand raking Surber samples (collecting area 0.3 x 0.3m) for 30 seconds. 

To remove potential bias in the field (Hulme et al., 2013), sampling locations were randomly allocated prior to 

collection.  Sites were sampled during spring and autumn 2015 to allow seasonal changes in macroinvertebrate 

composition to be assessed before and after the summer peak of INNP growth. Eight Surber samples were 

collected per site in each season to allow investigation of spatial heterogeneity in macroinvertebrate 

composition. Samples were preserved in the field with 70% industrial methylated spirits and subsequently sorted 

and identified to the lowest practicable taxonomic level, normally species (Table S3). 

Physico-chemical variables 

Environmental data were obtained through on-site measurements. Conductivity and pH were measured at each 

site in tandem with stream macroinvertebrate samples using a combimeter (HANNA instruments HI-98130 

Pocket EC/TDS and pH Tester). Land use at both the 5m and 50m scale was categorised based on visual 

assessment and supplemented by aerial photography accessed via Google Earth. The proportion of the channel 

that was shaded was estimated visually, and the total number of trees in the study reach exceeding 5m in height 

was recorded as a proxy for the amount of channel shading caused specifically by riparian trees. Sites were 

surveyed using an electronic distance measuring instrument (Theomat Wild TC1000 electronic total station, 

Leica Geosystems Ltd, Milton Keynes, UK) to map the thalweg profile at each site and to derive an accurate 

measure of channel slope (Jones, 2010).  

To investigate the diversity of the substrate, a Wolman count of 100 particles was made in summer 

using a gravelometer (Wolman, 1954) , which categorises particle sizes according to their intermediate axis. 

Shannon’s diversity index was then calculated for the substrate particle size composition at each site, treating 

each size class as a ‘species’, using the “diversity” function in the vegan (Oksanen et al., 2017) R package (R 

Core Team, 2017). Water velocity and depth were recorded for each specific Surber sample, using a flowmeter 

(SENSA RC2 Water Velocity Meter, Aqua-data Ltd, UK) and metre rule. To utilise these physical 

measurements in the analysis of macroinvertebrate species turnover, a Bray-Curtis (B-C) dissimilarity index was 

calculated using depth and velocity at the individual sample level. Used together, these variables enabled 

dissimilarity between sample locations to serve as a proxy for hydraulic habitat heterogeneity. 

To quantify riparian INNP cover, vegetation surveys were conducted during August to coincide with 

peak growing season. Using three transects running perpendicular to the channel, three 1m2 quadrats (where 



 

 

space permitted) were placed equidistantly on each transect between the foot and top of each bank, giving a total 

of 18 quadrats per site. The percentage cover of INNP in each quadrat was calculated and averaged over both 

banks to provide an estimate of invasive plant cover for the site.  

Macroinvertebrate metrics 

We focused on several metrics because of their relevance to national methods for assessing ecological status for 

WFD purposes (UKTAG, 2014). Macroinvertebrate community richness was expressed using the sample level 

alpha diversity based on the full complement of taxa recorded per Surber sample. The Whalley Hawkes Paisley 

Trigg (WHPT) index (Paisley et al., 2014), a reformulation of the widely used Biological Monitoring Working 

Party scoring system, was used to assess water quality. Values for this index range from 10 (most pollution-

sensitive macroinvertebrates) to 1 (least sensitive). Due to strong variation in individual sample abundances and 

the representation of different taxa, the abundance-weighted WHPT score was used, whereby the index value for 

a sample is the log-abundance weighted average of the scores of the taxa present.  

The proportion of sediment-sensitive invertebrates (PSI) (Extence et al., 2013) was calculated at each 

of the study sites in both spring at autumn, to assess whether taxa present at invaded sites indicated a greater 

degree of sediment loading. 

Additionally, the Bray-Curtis dissimilarity index was used to express spatial heterogeneity in stream 

macroinvertebrate communities. A series of pairwise Bray-Curtis dissimilarities was generated for each season x 

site (comparing the 1st sample to each of the rest, then the 2nd to the rest, etc.). The average of these pairwise 

comparisons served as a measure of dissimilarity between a specific sample and the remaining samples from 

that site. Higher average values indicated greater spatial dispersion in composition between samples at a 

location on a given date. We also considered the total number of individuals per sample as a measure of 

macroinvertebrate abundance. 

Statistical analysis 

Four linear mixed effects models (LMMs) were used to investigate drivers of variation in the selected 

macroinvertebrate metrics (response variables: Simpson’s diversity index, WHPT score, spatial dissimilarity and 

raw abundance). Predictors used in these models were channel shade, invasive cover, number of trees, channel 

slope, conductivity, habitat heterogeneity and substrate diversity. River identity was treated as a random effect. 

To test for an effect of season, each model was run with season as a fixed effect. If this model output 

showed evidence of a significant seasonal effect (p < 0.05) season was then included as an interaction term to 



 

 

determine whether predictors had seasonally-dependent effects. Prior to modelling, predictors were scaled to 

one standard deviation to allow their effects to be directly compared. All possible combinations of predictors 

were identified using the “dredge” function in MuMIn (Barton, 2017). Models were then ranked by their 

corrected Akaike information criterion (AICc) to account for small sample sizes. To identify the top set of 

models, a threshold of ΔAICc < 2 was set (Burnham & Anderson, 2002). From this top set (Table S2), a fully 

averaged model was chosen for interpretation of coefficients (Barton, 2017). To assess variation explained 

solely by the fixed effects, as well as variation explained by both the fixed and random effects together, both 

marginal and conditional R2 values are reported for each model (Nakagawa et al., 2013) (Table 1). 

PSI scores were generated following the methodology described by Extence et al. (2013). 

Macroinvertebrates were assigned a score based on their abundance at a site, and which related to their 

sensitivity to sediment. From these values, scores from each sensitivity group (ranging from highly sensitive to 

highly insensitive) were obtained for each site, which were used to assess the degree of pressure from fine 

sediment loading. 

Species characteristics of invaded and uninvaded sites were identified using indicator species analysis 

(IndVal; Dufrêne & Legendre, 1997) applied to species abundance data at the individual Surber sample level 

from the 12 invaded or uninvaded sites. The indicator value represents a product of the combined specificity and 

fidelity of aquatic macroinvertebrate species for invaded and uninvaded sites, after Dufrêne & Legendre (1997). 

The index ranges from 0% (no presence in a survey group), to 100% (present in only one group, and in all 

samples within that group). The significance of these values was tested using a Monte Carlo randomisation 

procedure (Dufrêne & Legendre, 1997). 

Variation in macroinvertebrate species composition between invaded and uninvaded sites in spring and 

autumn samples was compared using non-metric multidimensional scaling (NMDS) (Kruskal & Wish, 1978). 

To minimise the influence of highly abundant taxa, data were converted to presence/absence data (Borcard et 

al., 2011). To evaluate the contribution of individual environmental variables to overall macroinvertebrate 

community composition, we performed a redundancy analysis (RDA) by season, including INNP cover and all 

environmental attributes (channel shade, invasive cover, number of trees, channel slope, conductivity, habitat 

heterogeneity and substrate diversity) as explanatory variables. RDA was applied to Hellinger transformed 

macroinvertebrate species abundance data, and rare species were down-weighted (Borcard et al., 2011). The 

global model was reduced using forward selection based on AIC, to adhere to rules of model parsimony. We 



 

 

also performed a PERMANOVA to assess the relative contribution of individual environmental variables to 

variance in macroinvertebrate community composition in each season (Table S4 and Table S5). 

All statistical analyses were conducted using R 3.4.3 (R Core Team, 2017), with the additional 

packages vegan (Oksanen et al., 2017), reshape2 (Wickham, 2007), biotic (Briers, 2016), labdsv (Roberts, 

2016), lme4 (Bates et al., 2015), lmerTest (Kuznetsova et al., 2016), effects (Fox, 2003), MuMIn (Barton, 2017) 

and r2glmm (Jaeger, 2017). 

Results 

Response Model parameters R2m R2c 

Simpson’s diversity Channel slope (1) + depth*flow B-C (1) + invasive cover (1) + season 

(0.79) + channel shade (0.77) + substrate diversity (0.18) 

 

0.14 0.22 

WHPT 

 

 

 

 

 

Abundance 

Channel shade (1) + conductivity (1) + depth*flow B-C (1) + invasive 

cover (1) + season (1) + substrate diversity (1) + no trees (1)  + channel 

shade*season (1) + conductivity*season (1) + depth*flow B-C (1) + 

season*substrate diversity (1) + season*no trees (0.74) + invasive 

cover*season (0.31) 

 

Channel shade (1) + invasive cover (1) + season (0.56) + conductivity 

(0.37) 

 

0.28 

 

 

 

 

 

0.07 

0.49 

 

 

 

 

 

0.39 

Spatial dissimilarity Channel shade (1) + channel slope (1) + depth*flow B-C (1) + invasive 

cover (1) + substrate diversity (1) + no trees (1) + season (0.78) + 

conductivity (0.48) 

0.19 0.64 

 

Table 1 The best, fully-averaged models for models with ΔAICc < 2. Relative variable importance is given in 

brackets, followed by marginal (R2m) and conditional (R2c) values. 

 

Simpson’s macroinvertebrate diversity 

Macroinvertebrate diversity was positively associated with channel slope and negatively associated with habitat 

heterogeneity (Figure 3a), indicating that fewer macroinvertebrate species were tolerant of increased spatial 

variation in water velocity and depth. Macroinvertebrate diversity was also negatively associated with invasive 

cover (Figures 2a and 3a), which had the greatest overall effect size (-0.13), with Simpson’s macroinvertebrate 

diversity being on average 33% (± 5.6%) lower at 60% invasive cover (the maximum cover recorded in this 

study), compared to uninvaded sites. There was no evidence of any seasonal interaction.  

Macroinvertebrate WHPT and PSI scores 



 

 

Macroinvertebrate WHPT score was positively associated with habitat heterogeneity and negatively associated 

with conductivity (Figure 3b) and invasive cover (Figures 2b and 3b). Conductivity (-0.47) and season (0.23) 

had the greatest overall effects on WHPT score. Macroinvertebrate WHPT score was on average approximately 

5% (± 2.4%) lower at 60% invasive cover, compared to uninvaded sites. There was a positive interaction 

between season and conductivity, and season and channel shade. Greater conductivity and channel shade were 

associated with a higher WHPT score in spring compared to autumn, indicating the presence of more sensitive 

taxa at sites with these conditions in spring. There was a negative interaction between season and habitat 

heterogeneity, and season and substrate diversity. Greater habitat heterogeneity and substrate diversity were 

associated with a lower WHPT score in spring compared to autumn, perhaps in response to greater hydrological 

disturbance over the preceding winter. 

The PSI scores ranged between 74.4 and 100, indicating that all study sites in both spring and autumn 

were classed as minimally sedimented or unsedimented, with a small number being classified as slightly 

sedimented (Extence et al., 2013). Additionally, there was no evidence of a trend in PSI scores associated with 

either invaded or uninvaded sites. 

Macroinvertebrate spatial dissimilarity 

Spatial dissimilarity in macroinvertebrate composition between samples at a site was positively associated with 

channel shade and habitat heterogeneity, indicating a more spatially diverse community at shaded and 

hydraulically diverse habitats. Spatial dissimilarity between samples at a site was negatively associated with 

number of trees, channel slope, substrate diversity (Figure 3c) and invasive cover (Figures 2c and 3c). Channel 

shade (0.04) and number of trees (-0.03) had the greatest overall effects on macroinvertebrate spatial 

dissimilarity. The effect of invasive cover was marginal, on average reducing spatial dissimilarity by 

approximately 12% (± 3.4%) at 60% invasive cover, compared to uninvaded sites. There was no evidence of 

any seasonal interaction. 

Macroinvertebrate abundance 

Macroinvertebrate abundance was positively associated with invasive cover (Figures 2d and 3d) and negatively 

associated with channel shade (Figure 3d), indicating a limiting effect of overhead shading on the availability of 

suitable habitat conditions for macroinvertebrates at our sites. At 60% invasive cover, sites on average 

contained33% (± 11.0%) more macroinvertebrate individuals than uninvaded sites. No other variables were 

significant and there was no evidence of any seasonal interaction. 



 

 

 

Figure 2. Full model predicted values (shaded polygon shows ± 95% confidence intervals) from the LMM 

analyses of (a) Simpson’s macroinvertebrate diversity, (b) macroinvertebrate WHPT score, (c) spatial 

dissimilarity for individual Surber samples and (d) total macroinvertebrate abundance for individual Surber 

samples, all plotted against invasive cover. 

 

  



 

 

 

Figure 3. Full, model-averaged parameter estimates + 95% confidence intervals. Modelled responses were (a) 

Simpson’s macroinvertebrate diversity, (b) macroinvertebrate WHPT score, (c) spatial dissimilarity for 

individual Surber samples and (d) total macroinvertebrate abundance. Marginal (R2m) and conditional (R2c) 

values are given. 

  



 

 

Indicator species 

 

 

Table 2 Significant indicator species for invaded and uninvaded sites. Observed IV shows the Indicator Value (a 

product of fidelity and specificity (Dufrêne & Legendre, 1997)) for each species (0 = no fidelity or specificity; 1 

= complete fidelity and specificity). Asterisks indicate the probability of that IV occurring by chance based on 

permutation tests (*** <0.001, ** <0.01, * <0.05). Biological and ecological group classifications are included 

after Usseglio-Polatera et al., 2000a , and broad functional feeding group classifications are included after 

Murphy & Giller, 2000.  

 

Site type Species Observed IV Biological/ecological 

trait group 

Functional feeding group 

Invaded, spring Serratella ignita*** 

Gammaridae*** 

Dicranota spp.*** 

Elminthidae*** 

Drusus annulatus*** 

Ancylus fluviatilis* 

Ecclisopteryx guttulata* 

0.63 

0.56 

0.50 

0.37 

0.26 

0.21 

0.13 

f/C1 

b1/C1 

c1/D1 

e3/B1 

f/A 

e2/C1 

f/A 

Deposit feeder 

Shredder 

Predator 

Scraper 

Shredder 

Scraper 

Shredder 

Uninvaded, spring Baetis rhodani** 

Rhyacophila dorsalis* 

Lepidostoma hirtum*** 

Rhyacophila munda* 

0.47 

0.40 

0.16 

0.06 

e2/C1 

c1/B2 

f/C1 

c1/B2 

Scraper 

Predator 

Grazer 

Predator 

Invaded, autumn Dicranota spp.** 

Gammaridae* 

Silo pallipes*** 

Limnius volckmari*** 

Ecclisopteryx guttulata* 

Ancylus fluviatilis*** 

Lymnaea spp.* 

Baetis scambus* 

Paraleptophlebia spp.** 

0.55 

0.46 

0.44 

0.37 

0.36 

0.35 

0.17 

0.12 

0.12 

c1/D1 

b1/C1 

e2/B1 

e3/B1 

f/A 

e2/C1 

c2/F3 

e2/C1 

f/C1 

Predator 

Shredder 

Scraper 

Scraper 

Shredder 

Scraper 

Scraper 

Scraper 

Deposit feeder 

Uninvaded, autumn Hydropsyche siltalai* 

Protonemura meyeri*** 

Amphinemura sulcicollis* 

Capnia bifrons** 

Philopotamus montanus** 

0.36 

0.33 

0.21 

0.14 

0.08 

e1/C1 

f/A 

f/A 

e2/B2 

e2/A 

Filter feeder 

Shredder 

Shredder 

CPOM feeder 

Filter feeder 



 

 

A larger number of macroinvertebrate taxa were significantly associated with invaded sites compared to 

uninvaded sites in both spring and autumn (Table 2). In addition, marginally more macroinvertebrate taxa were 

significant indicators in autumn compared to spring. The strongest indicators of invaded sites in both spring and 

autumn were Gammaridae and Dicranota spp (Indicator values (IV) = 0.46-0.56), with the addition of Serratella 

ignita (IV = 0.63) in the spring. These taxa are indicative of a generalist preference for a range of substrates and 

slow to medium flow conditions (Usseglio-Polatera et al., 2000a), and suggest an in-stream habitat characterised 

by a moderate leaf litter input. Uninvaded sites were most strongly characterised by members of the Baetidae 

and Rhyacophilidae in spring (IV = 0.40-0.47), indicating a preference for more rheophilic and oligosaprobic 

conditions, and the presence of a suitable food source for predatory invertebrates. In autumn, uninvaded sites 

were most strongly characterised by Hydropsychidae and Nemouridae (IV = 0.33-0.36), again indicating greater 

flow and less organic matter entering the stream.  

Macroinvertebrate community composition 

Analysis of compositional data by NMDS showed a partition between invaded and uninvaded sites in autumn 

(Figure S2). No distinction could be found between invaded and uninvaded sites in spring (Figure S1). 

 Our RDA model for spring and autumn was a significant fit between the predictor variables and species 

abundance matrix, with conductivity and invasive cover being the only significant explanatory variables in both 

seasons. Consistent with the indicator species analysis, the autumn RDA triplot (Figure S3) showed clustering 

of taxa such as Gammaridae and Ancylus fluviatilis at higher invasive cover, while taxa such as Chloroperla 

tripunctata and Protonemura meyeri were associated with higher conductivity. Axes 1 and 2 explained 4% of 

the total variation. PERMANOVA indicated consistently high relative importance of conductivity and substrate 

diversity on variance in macroinvertebrate community composition, and these two variables were responsible 

for more than half of the variance explained by environmental variables in both spring and autumn (Table S4 

and S5). 

Discussion 

Effects on macroinvertebrate metrics 

Riparian INNP cover had the strongest association with Simpson’s macroinvertebrate diversity compared to 

other measured environmental variables across both seasons, suggesting that high INNP cover in summer has a 

legacy effect on macroinvertebrate diversity which extends to the following spring. Additionally, INNP cover 

was positively associated with macroinvertebrate abundance and negatively associated with WHPT score, 



 

 

though the latter effect size was relatively minor in comparison to other environmental predictors (conductivity, 

habitat heterogeneity and substrate diversity). This suggests overall that invaded sites foster a greater 

abundance, but lower diversity of pollution-tolerant, low-scoring WHPT taxa. This suite of responses will be 

reflected in lower average ecological status, as inferred from invertebrates, at invaded stream sites. The 

indication that habitat quality for macroinvertebrates is lower at invaded sites is also consistent with the 

decreased spatial dissimilarity in composition between samples. The indicator species analysis adds further 

support for this, demonstrating that more taxa with lower WHPT scores showed fidelity to invaded sites 

(including Gammaridae, Dicranota spp. and Elmidae taxa), whilst more taxa with higher WHPT scores showed 

fidelity to uninvaded sites (including Rhyacophila spp., Lepidostoma hirtum, Protonemura meyeri and 

Amphinemura sulcicollis).  

Reductions in riparian macroinvertebrate abundance, richness and biomass have previously been 

demonstrated in response to invasions by Fallopia species (Gerber et al., 2008), and these reductions may 

ultimately lead to changes in aquatic food web dynamics, as other species attempt to adjust to declines in more 

sensitive taxa (Covich et al., 1999). Additionally, the relationship between INNP cover and macroinvertebrate 

diversity may also reflect local changes in the chemical and physical properties of the leaf litter available to 

invertebrates, as well as variation in nutritional quality or palatability. Riparian INNP invasions may alter rates 

of litter decomposition by aquatic macroinvertebrates, but these changes appear to depend more on the type and 

quality of litter than invasive status per se (Kuglerová et al., 2017). Less palatable INNP litter or a reduction in 

the supply of preferred litter types might help to explain the observed reduction in macroinvertebrate diversity 

found at sites with higher INNP cover. 

Effects on macroinvertebrate community structure and heterogeneity 

Macroinvertebrate composition was most heterogeneous at sites with little or no invasive cover. Heavily 

invaded river banks can be left exposed to winter flooding due to rapid dieback of plants at the first frost, while 

fragile senesced material is easily dispersed by floods (Gowton et al., 2016). This exposure lowers bank stability 

(Gurnell, 2013) potentially increasing surface run-off and fine sediment entry and reducing water quality and 

primary production (Chapman et al., 2014). Fine sediment has well documented adverse effects on stream 

invertebrates (Jones et al., 2015), including reduced ability to utilise the hyporheic zone (Mathers et al., 2014), 

resulting in net loss of habitat. An increase in suspended sediment through the erosion of unprotected banks can 

adversely affect benthic invertebrates, increasing risk of predation (Bilotta & Brazier, 2008), and homogenising 

sediments through fine sediment ingress (Burdon et al., 2013). However, our PSI analysis suggested that the 



 

 

benthic habitat at most sites in this study were minimally or only slightly sedimented, offering no evidence to 

link macroinvertebrate community response to INNP cover via channel sedimentation. Nevertheless, whilst the 

actual process of change remains undetermined, our results highlight a homogenising effect of riparian INNP 

cover on stream macroinvertebrate community composition, in agreement with Becker & Robson (2009). 

Invasive cover showed one of the strongest associations with macroinvertebrate spatial dissimilarity, 

but channel shade, habitat heterogeneity and number of trees also exerted strong effects. Although invasive 

cover appears to have some spatially homogenising effect on macroinvertebrates, it is clearly not the only 

environmental factor to do so. NMDS analysis showed evidence of differences in community composition 

between invaded and uninvaded sites in autumn, but not in spring. This is supported by the RDA analysis, 

which shows that community composition in the autumn is driven by invasive cover and conductivity. 

Macroinvertebrate taxa such as Gammaridae and Ancylus fluviatilis are associated with invaded sites, and are 

generally regarded as shredders and scrapers respectively (Murphy & Giller, 2000). Taxa such as Lepidostoma 

hirtum are associated with uninvaded sites, and are regarded as grazers (Usseglio-Polatera et al., 2000a). These 

associations are in line with the indicator species analysis. This community variation in autumn is supported by 

the loss of several high-scoring WHPT taxa from Surber samples, including the heptagenid mayfly Ecdyonurus 

spp., the taeniopterygid stonefly Brachyptera risi and individuals from the philopotamid caddisfly Wormaldia 

spp. 

The indicator species analysis did not provide support for reductions in availability or palatability of 

leaf litter at invaded sites, as both invaded and uninvaded sites harboured multiple taxa associated with plant 

matter and detritus (including Gammaridae, Baetis spp., Drusus annulatus and Ecclisopteryx guttulata). The 

indicator species analysis does perhaps suggest that shredders present at invaded sites in the spring were being 

partially replaced by scrapers in the autumn. This pattern was not found at uninvaded sites. Stream 

macroinvertebrates may be characterised by their feeding guild (Rawer-Jost et al., 2000) and community 

responses to alterations in the availability and quality of useable food sources may be an important, yet cryptic 

driver of change. We suggest that this apparent shift in feeding guild composition at invaded sites may be in 

response to the earlier dieback of INNP cover, reducing shading and allowing the re-establishment of biofilm 

(Sturt et al., 2011). However, it seems that overall, despite some clearly negative effects on macroinvertebrates, 

riparian INNP cover explains a relatively small amount of variation in macroinvertebrate community structure 

and is distinctly secondary to other environmental factors in this regard. 

 



 

 

Management implications 

It is difficult to state with confidence that any management action will yield a defined result, taking into account 

site-specific properties, interactions between stressors (Vinebrooke et al., 2004; Jackson et al., 2016) species-

specific responses (Altermatt et al., 2013) and the external factors that drive stochastic variation in ecosystems. 

Caution must therefore be exercised when using these findings to inform management policy, as the 

improvement in conditions through reducing riparian INNP cover at the local scale may deliver some ecological 

improvements, but may also yield a relatively low benefit-cost ratio if overwhelmed by effects of other 

anthropogenic stressors at coarser scales (Simberloff et al., 2013; Sundermann et al., 2013). Legacy effects of 

non-native invasions may also delay expected ecological responses (Cuddington, 2012; Corbin & D'Antonio, 

2017), and certain treatment or removal approaches may themselves adversely affect native biota (Flory & Clay, 

2009; Kettenring & Adams, 2011). Nevertheless, this study provides evidence that the presence of extensive 

riparian INNP cover does indeed affect stream macroinvertebrate communities, and thereby offers conditional 

support for actively managing severe riparian invasions, and gauging expected responses. 

Conclusions 

We found that invasive non-native riparian plants have a unique and measurable effect on stream 

macroinvertebrates. Invasive riparian cover constrained and homogenised macroinvertebrate communities, 

demonstrated by significant negative associations with spatial dissimilarity, Simpson’s macroinvertebrate 

diversity and WHPT score, and a positive association with abundance. Although we cannot exclude the 

possibility that some other unmeasured but causal pressure covaried closely with INNP cover, the effects we 

report are consistent with impacts reported for terrestrial INNP such as Rhododendron ponticum (Hladyz et al., 

2011) and invasive species more generally (Roy et al., 2014; Gallardo et al., 2016). Furthermore, whilst our 

study demonstrates negative associations between INNP cover and macroinvertebrate communities, these effect 

sizes were often relatively small and as such may offer a low benefit-cost ratio as a result of any management 

efforts. Many other variables influenced macroinvertebrate communities, notably conductivity, channel slope, 

number of trees, channel shading and physical habitat heterogeneity, all of which themselves are prone to 

human modification. 
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Appendices 

Table S1. Study site characteristics 

Catchment Catchment 

area (km2) 

Study river Site Grid ref Stream 

order 

Invasive 

species 

Invasive 

cover 

(%) 

Distance 

from 

source 

(km) 

Dominant 50m land use 

Forth 1029 

Argaty 

1 – Native NN 73986 03332 1st None 0 2.5 Mixed woodland/Improved grass 

2 – Native NN 73965 03257 1st None 0 2.4 Improved grass 

3 – Invasive NN 73974 03201 1st F. japonica 60 2.3 Mixed woodland/Improved grass 

4 - Invasive NN 74125 02505 1st F. japonica 35 1.5 Mixed woodland 

Bannockburn 

1 – Native NS 80780 90449 3rd None 0 8.7 Improved grass 

2 – Native NS 80993 90508 3rd None 3 8.5 Improved grass 

3 – Invasive NS 81141 90715 3rd F. japonica 35 8.2 Suburban 

4 - Invasive NS 81245 91140 3rd I. glandulifera 34 7.8 Suburban 

Tay 4990 

Dunning 

1 – Native NO 02050 14918 2nd None 2 3.3 Tilled land 

2 – Native NO 02035 15075 2nd None 1 3.1 Tilled land 

3 – Invasive NO 02552 17372 3rd I. glandulifera 13 0.5 Tilled land 

4 - Invasive NO 02586 17625 3rd I. glandulifera 33 0.2 Tilled land 

Farg 

1 – Native NO 16284 15553 2nd None 0 3.4 Improved grass 

2 – Native NO 16168 15830 2nd None 0 3.0 Tilled land 

3 – Invasive NO 15972 16240 2nd I. glandulifera 13 2.6 Scrub/Tall herbs/Tilled land 

4 - Invasive NO 15772 16504 2nd I. glandulifera 12 2.2 Suburban/Rough pasture 

Nith 1230 
New Abbey 

Pow 

1 – Native NX 95086 66385 3rd None 0 6.6 Improved grass 

2 – Native NX 95461 66419 3rd None 0 6.2 Improved grass 

3 – Invasive NX 96699 66398 3rd F. japonica 50 4.7 Improved grass 

4 - Invasive NX 96901 66109 3rd F. japonica 51 4.1 Tilled land 

South Esk 3350 Pow 

1 – Native NO 62889 55530 3rd None 0 4.3 Tilled land 

2 – Native NO 63026 55535 3rd None 2 4.1 Tilled land 

3 – Invasive NO 64303 56472 4th I. glandulifera 40 2.4 Tilled land 

4 - Invasive NO 64404 56531 4th I. glandulifera 28 2.2 Tilled land 



 

 

Table S2. Model selection summary for models with ΔAICc < 2, for each response variable. Models are ranked 

in order of decreasing AICc weight (Wi); models with a higher weighting carry more support. Log-likelihood 

ratios are also given 

Response Model parameters logLik AICc Δi Wi 

Simpson’s 

diversity 

Channel shade + channel slope + depth*flow B-C + 

invasive cover + season 

 

Channel slope + depth*flow B-C + invasive cover + 

season 

 

Channel shade + channel slope + depth*flow B-C + 

invasive cover 

 

Channel shade + channel slope + depth*flow B-C + 

invasive cover + season + substrate diversity 

-203.94 

 

 

-203.01 

 

 

-203.24 

 

 

-206.20 

392.92 

 

 

393.97 

 

 

394.07 

 

 

394.42 

0.00 

 

 

1.05 

 

 

1.15 

 

 

1.50 

0.38 

 

 

0.23 

 

 

0.21 

 

 

0.18 

WHPT Channel shade + conductivity + depth*flow B-C + 

invasive cover + season + substrate diversity + no trees + 

channel shade*season + conductivity*season + depth*flow 

B-C*season + season*substrate diversity + season*no trees 

 

Channel shade + conductivity + depth*flow B-C + 

invasive cover + season + substrate diversity + no trees + 

channel shade*season + conductivity*season + depth*flow 

B-C*season + invasive cover*season + season*substrate 

diversity + season*no trees 

 

Channel shade + conductivity + depth*flow B-C + 

invasive cover + season + substrate diversity + no trees + 

channel shade*season + conductivity*season + depth*flow 

B-C*season + season*substrate diversity 

-346.63 

 

 

 

 

-347.67 

 

 

 

 

 

-346.45 

674.41 

 

 

 

 

675.06 

 

 

 

 

 

675.45 

0.00 

 

 

 

 

0.65 

 

 

 

 

 

1.04 

0.43 

 

 

 

 

0.31 

 

 

 

 

 

0.26 

Abundance Channel shade + invasive cover + season 

 

Channel shade + invasive cover 

 

Channel shade + conductivity + invasive cover + season 

 

Channel shade + conductivity + invasive cover 

-2286.02 

 

-2290.37 

 

-2281.44 

 

-2286.53 

4610.72 

 

4610.73 

 

4611.24 

 

4612.53 

0.00 

 

0.01 

 

0.53 

 

1.81 

0.32 

 

0.31 

 

0.24 

 

0.13 

Spatial 

dissimilarity 

Channel shade + channel slope + depth*flow B-C + 

invasive cover + season + substrate diversity + no trees 

 

Channel shade + channel slope + conductivity + 

depth*flow B-C + invasive cover + season + substrate 

diversity + no trees 

Channel shade + channel slope + conductivity + 

depth*flow B-C + invasive cover + substrate diversity + no 

trees 

532.47 

 

 

529.02 

 

 

 

531.93 

-1113.96 

 

 

-1112.41 

 

 

 

-1112.14 

0.00 

 

 

1.44 

 

 

 

1.72 

0.52 

 

 

0.25 

 

 

 

0.22 



 

 

Table S3. Taxon list

Agapetus delicatulus 

Agapetus fuscipes 

Allogamus auricollis 

Amphinemura sulcicollis 

Ancylus fluviatilis 

Annelida 

Antocha spp. 

Aphelocheiridae 

Asellus aquaticus 

Athripsodes spp. 

Baetis fuscatus 

Baetis muticus 

Baetis niger 

Baetis rhodani 

Baetis scambus 

Baetis vernus 

Bathyomphalus contortus 

Beraeodes minutus 

Berosus spp. 

Brachyptera risi 

Caenis rivulorum 

Capnia atra 

Capnia bifrons 

Capnia vidua 

Ceratopogoninae 

Chaetopteryx villosa 

Chironomidae 

Chloroperla torrentium 

Chloroperla tripunctata 

Clinocerinae 

Collembola 

Cordulegaster boltonii 

Corixidae 

Curculionidae 

Dasyhelea spp. 

Dicranota spp. 

Dinocras cephalotes 

Diura bicaudata 

Dixidae 

Drusus annulatus 

Dryopidae 

Dytiscidae 

Ecclisopteryx guttulata 

Ecdyonurus dispar 

Ecdyonurus insignis 

Ecdyonurus torrentis 

Ecdyonurus venosus 

Electrogena lateralis 

Elmidae 

Elminthidae 

Elmis aenea 

Elodes spp. 

Empididae 

Ephemera danica 

Ephemerella notata 

Ephydridae 

Erpobdellidae 

Esolus parallelepipedus 

Forcipomyinae 

Gammaridae 

Glossiphoniidae 

Glossosoma spp. 

Goera pilosa 

Gyraulus albus 

Gyrinidae 

Habrophlebia fusca 

Halesus digitatus 

Halesus radiatus 

Hebridae 

Helophorus spp. 

Hydrachnidae 

Hydraena spp. 

Hydraenidae 

Hydrophilidae 

Hydroporinae 

Hydropsyche angustipennis 

Hydropsyche instabilis 

Hydropsyche pellucidula 



 

 

Hydropsyche siltalai 

Hydroptilidae 

Isoperla grammatica 

Lepidostoma hirtum 

Leuctra fusca 

Leuctra inermis 

Leuctra hippopus/moselyi 

Limnebius spp. 

Limnius volckmari 

Limnophora spp. 

Limoniinae 

Lymnaea spp. 

Mesophylax impunctatus 

Mesovelia furcata 

Nemoura cambrica 

Nemoura cinerea 

Neureclipsis bimaculata 

Noteridae 

Odontocerum albicorne 

Oligochaeta 

Oulimnius spp. 

Paraleptophlebia spp. 

Pedicia spp. 

Perlodes mortoni 

Philopotamus montanus 

Piscicola geometra 

Planariidae 

Planorbis corneus 

Platambus spp. 

Plectrocnemia conspersa 

Polycelis spp. 

Polycentropus flavomaculatus 

Potamophylax latipennis 

Proasellus meridianus 

Protonemura meyeri 

Protonemura praecox 

Psychodidae 

Psychomyia pusilla 

Rhabdiopteryx acuminata 

Rhithrogena semicolorata 

Rhyacophila dorsalis 

Rhyacophila munda 

Rhyacophila obliterata 

Scirtidae 

Sericostoma personatum 

Serratella ignita 

Sialidae 

Silo pallipes 

Simuliidae 

Siphlonuridae 

Sphaeriidae 

Taeniopterygidae 

Theodoxus fluviatilis 

Tipulidae 

Velia spp. 

Wormaldia spp. 
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Table S4. Relative contribution of environmental predictors to variance in spring macroinvertebrate community 1 
composition. 2 

 3 

Environmental variable Variance explained (%) 

Conductivity 

Substrate diversity 

Depth*flow B-C 

Channel shade 

Invasive cover 

Number of trees 

Channel slope 

10.7*** 

9.7*** 

2.8*** 

2.7*** 

2.5*** 

2.1*** 

1.3** 

 4 

 5 

 6 

Table S5. Relative contribution of environmental predictors to variance in autumn macroinvertebrate 7 
community composition. 8 

 9 

  10 Environmental variable Variance explained (%) 

Conductivity 

Depth*flow B-C 

Substrate diversity 

Channel shade 

Invasive cover 

Number of trees 

Channel slope 

10.1*** 

8.7*** 

5.0*** 

3.1*** 

2.7*** 

1.8*** 

1.3*** 
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Figure S1. Non-metric multidimensional scaling ordination (NMDS) plot of macroinvertebrate species 11 

composition, comparing invaded (red polygon) and uninvaded (blue polygon) sites in spring across 24 riparian 12 

sites (stress=0.22) 13 

 14 

  15 
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Figure S2. Non-metric multidimensional scaling ordination (NMDS) plot of macroinvertebrate species 16 

composition, comparing invaded (red polygon) and uninvaded (blue polygon) sites in autumn across 24 riparian 17 

sites (stress=0.22) 18 

  19 
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Figure S3. Redundancy analysis (RDA) ordination of macroinvertebrate communities in autumn. 20 

Environmental variables include conductivity (S/m) and invasive non-native plant cover (%) 21 

 22 

 23 

 24 

 25 

Conductivity 

Invasive cover 


