
Review

Assessing the Methods, Tools, and Statistical Approaches in
Google Trends Research: Systematic Review

Amaryllis Mavragani1, BSc, MSc; Gabriela Ochoa1, BSc, MSc, PhD; Konstantinos P Tsagarakis2, DipEng, PhD
1Department of Computing Science and Mathematics, University of Stirling, Stirling, Scotland, United Kingdom
2Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece

Corresponding Author:
Amaryllis Mavragani, BSc, MSc
Department of Computing Science and Mathematics
University of Stirling
Stirling, Scotland, FK94LA,
United Kingdom
Phone: 44 7523782711
Email: amaryllis.mavragani1@stir.ac.uk

Abstract

Background: In the era of information overload, are big data analytics the answer to access and better manage available
knowledge? Over the last decade, the use of Web-based data in public health issues, that is, infodemiology, has been proven
useful in assessing various aspects of human behavior. Google Trends is the most popular tool to gather such information, and it
has been used in several topics up to this point, with health and medicine being the most focused subject. Web-based behavior
is monitored and analyzed in order to examine actual human behavior so as to predict, better assess, and even prevent health-related
issues that constantly arise in everyday life.
Objective: This systematic review aimed at reporting and further presenting and analyzing the methods, tools, and statistical
approaches for Google Trends (infodemiology) studies in health-related topics from 2006 to 2016 to provide an overview of the
usefulness of said tool and be a point of reference for future research on the subject.
Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for selecting studies,
we searched for the term “Google Trends” in the Scopus and PubMed databases from 2006 to 2016, applying specific criteria for
types of publications and topics. A total of 109 published papers were extracted, excluding duplicates and those that did not fall
inside the topics of health and medicine or the selected article types. We then further categorized the published papers according
to their methodological approach, namely, visualization, seasonality, correlations, forecasting, and modeling.
Results: All the examined papers comprised, by definition, time series analysis, and all but two included data visualization. A
total of 23.1% (24/104) studies used Google Trends data for examining seasonality, while 39.4% (41/104) and 32.7% (34/104)
of the studies used correlations and modeling, respectively. Only 8.7% (9/104) of the studies used Google Trends data for
predictions and forecasting in health-related topics; therefore, it is evident that a gap exists in forecasting using Google Trends
data.
Conclusions: The monitoring of online queries can provide insight into human behavior, as this field is significantly and
continuously growing and will be proven more than valuable in the future for assessing behavioral changes and providing ground
for research using data that could not have been accessed otherwise.

(J Med Internet Res 2018;20(11):e270)   doi:10.2196/jmir.9366
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Introduction

Big data are characterized by the 8 Vs [1]: volume
(exponentially increasing volumes) [2], variety (wide range of
datasets), velocity (high processing speed) [3], veracity, value

[4,5], variability, volatility, and validity [1]. Big data have shown
great potential in forecasting and better decision making [1];
though handling these data with conventional ways is inadequate
[6], they are being continuously integrated in research [7] with
novel approaches and methods.
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The analysis of online search queries has been of notable
popularity in the field of big data analytics in academic research
[8,9]. As internet penetration is continuously increasing, the use
of search traffic data, social media data, and data from other
Web-based sources and tools can assist in facilitating a better
understanding and analysis of Web-based behavior and
behavioral changes [10].

The most popular tool for analyzing behavior using Web-based
data is Google Trends [11]. Online search traffic data have been
suggested to be a good analyzer of internet behavior, while
Google Trends acts as a reliable tool in predicting changes in
human behavior; subject to careful selection of the searched-for
terms, Google data can accurately measure the public’s interest
[12]. Google Trends provides the field of big data with new
opportunities, as it has been shown to be valid [13] and has been
proven valuable [14,15], accurate [16], and beneficial [17] for
forecasting. Therefore, great potential arises from using
Web-based queries to examine topics and issues that would
have been difficult or even impossible to explore without the
use of big data. The monitoring of Web-based activity is a valid
indicator of public behavior, and it has been effectively used in
predictions [18,19], nowcastings [20], and forecasting
[17,21,22].

Google Trends shows the changes in online interest for time
series in any selected term in any country or region over a
selected time period, for example, a specific year, several years,
3 weeks, 4 months, 30 days, 7 days, 4 hours, 1 hour, or a
specified time-frame. In addition, different terms in different
regions can be compared simultaneously. Data are downloaded
from the Web in “.csv” format and are adjusted as follows:
“Search results are proportionate to the time and location of a
query: Each data point is divided by the total searches of the
geography and time range it represents, to compare relative
popularity. Otherwise places with the most search volume would
always be ranked highest. The resulting numbers are then scaled
on a range of 0 to 100 based on a topic’s proportion to all
searches on all topics. Different regions that show the same
number of searches for a term will not always have the same
total search volumes ” [23].

Healthcare is one of the fields in which big data are widely
applied [24,25], with the number of publications in this field
showing a high increase [26]. Researchers have placed a
significant focus on examining Web-based search queries for
health and medicine related topics [27]. Data from Google
Trends have been shown to be valuable in predictions, detection
of outbreaks, and monitoring interest, as detailed below, while
such applications could be analyzed and evaluated by
government officials and policy makers to deal with various
health issues and disease occurrence.

The monitoring and analysis of internet data fall under the
research field of infodemiology, that is, employing data collected
from Web-based sources aiming at informing public health and
policy [28]. These data have the advantage of being real time,
thus tackling the issue of long periods of delay from gathering
data to analysis and forecasting. Over the past decade, the field
of infodemiology has been shown to be highly valuable in
assessing health topics, retrieving web-based data from, for

example, Google [29,30], Twitter [31-34], social media [35,36],
or combinations of ≥2 Web-based data sources [37,38].

As the use of Google Trends in examining human behavior is
relatively novel, new methods of assessing Google health data
are constantly arising. Up to this point, several topics have been
examined, such as epilepsy [39,40], cancer [41], thrombosis
[42], silicosis [43], and various medical procedures including
cancer screening examinations [44,45], bariatric surgery [46],
and laser eye surgery [47].

Another trend rising is the measurement of the change in interest
in controversial issues [48,49] and in drug-related subjects, such
as searches in prescription [50] or illicit drugs [51,52]. In
addition, Google Trends data have been used in examining
interest in various aspects of the health care system [53-55].

Apart from the above, Google Trends data have also been useful
in measuring the public’s reaction to various outbreaks or
incidents, such as attention to the epidemic of Middle East
Respiratory Syndrome [56], the Ebola outbreak [57], measles
[58], and Swine flu [59], as well as the influence of media
coverage on online interest [60]. Google queries for the
respective terms have been reported to increase or peak when
a public figure or celebrity is related [61-65].

Google Trends has also been valuable in examining seasonal
trends in various diseases and health issues, such as Lyme
disease [66], urinary tract infection [67], asthma [30], varicose
vein treatment [68], and snoring and sleep apnea [69].
Furthermore, Deiner et al [70] showed that indeed there exists
the same seasonality in Google Trends and clinical diagnoses.
What has also been reported is that seasonality in Google
searches on tobacco is correlated with seasonality in Google
searches on lung cancer [71], while online queries for allergic
rhinitis have the same seasonality as in real life cases [72]. Thus,
we observe that, apart from measuring public interest, Google
Trends studies show that the seasonality of online search traffic
data can be related to the seasonality of actual cases of the
respective diseases searched for.

As mentioned above, Google queries have been used so far to
examine general interest in drugs. Taking a step further, Schuster
et al [73] found a correlation between the percentage change in
the global revenues in Lipitor statin for dyslipidemia treatment
and Google searches, while several other studies have reported
findings toward this direction, that is, correlations of Web-based
searches with prescription issuing [74-76]. The detection and
monitoring of flu has also been of notable popularity in health
assessment. Data from Google Flu Trends have been shown to
correlate with official flu data [77,78], and Google data on the
relevant terms correlate with cases of influenza-like illness [79].

In addition, online search queries for suicide have been shown
to be associated with actual suicide rates [80,81], while other
examples indicative of the relationship between Web-based data
and human behavior include the correlations between official
data and internet searches in veterinary issues [82], sleep
deprivation [83], sexually transmitted infections [84],
Ebola-related searches [85], and allergies [86,87].

Furthermore, Zhou et al [88] showed how the early detection
of tuberculosis outbreaks can be improved using Google Trends
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data; while suicide rates and Google data seem to be related,
the former are suggested to be a good indicator for developing
suicide prevention policies [89]. In addition, methamphetamine
criminal behavior has been shown to be related to meth searches
[90]. Finally, recent research on using Google Trends in
predictions and forecasting include the development of
predictive models of pertussis occurrence [91], while online
search queries have been employed to forecast dementia
incidence [92] and prescription volumes in ototopical antibiotics
[93].

Given the diversity of subjects that Google Trends data have
been used up for until this point to examine changes in interest
and the usefulness of this tool in assessing human behavior, it
is evident that the analysis of online search traffic data is indeed
valuable in exploring and predicting behavioral changes.

In 2014, Nuti et al [27] published a systematic review of Google
Trends research including the years up to 2013. This review
was of importance as the first one in the field, and it reported
Google Trends research up to that point. The current review
differs from Nuti et al’s in two ways. First, it includes 3 more

full years of Google Trends research, that is, 2014, 2015, and
2016, which account for the vast majority of the research
conducted in this field for the examined period based on our
selection criteria. Second, while the first part of our paper is a
systematic review reporting standard information, that is,
authors, country, region, keywords, and language, the second
part offers a detailed analysis and categorization of the methods,
approaches, and statistical tools used in each of this paper. Thus,
it serves as a point of reference in Google Trends research not
only by subject or topic but by analysis or method as well.

Methods

The aim of this review was to include all articles on the topics
of health and medicine that have used Google Trends data since
its establishment in 2006 through 2016. We searched for the
term “Google Trends” in the Scopus [94] and PubMed [95]
databases from 2006 to 2016, and following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
guidelines (Figure 1), the total number of publications included
in this review was 109.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram of the selection procedure for including studies.

First, we conducted a search in Scopus for the keyword “Google
Trends” in the “Abstract-Title-Keywords” field for “Articles,”
“Articles in press,” “Reviews,” and “Conference papers” from
2006 to 2016. Out of the available categories, we selected
“Medicine,” “Biochemistry Genetics and Molecular Biology,”
“Neuroscience,” “Immunology and Microbiology,”
“Pharmacology, Toxicology, and Pharmaceuticals,” “Health
Profession,” “Nursing,” and “Veterinary.” The search returned
102 publications. Second, we searched for the keyword “Google
Trends” in PubMed from 2006 to 2016, which provided a total
of 141 publications. Excluding the duplicates, which numbered
84 in total, 159 publications met our criteria. Excluding the ones
that did not match the criteria for article type (10 publications)
and the ones that did not fall inside the scope of health and
medicine (40 publications), a total of 109 studies were included
in this review. Note that 5 studies were written in a language
other than English and were therefore not included in the

quantitative part or in the detailed analysis of the methods of
each study. Figure 2 depicts the number of publications by year
from 2009 to 2016: 2 in 2009, 3 in 2010, 2 in 2011, 1 in 2012,
12 in 2013, 21 in 2014, 28 in 2015, and 40 in 2016.

The selected studies are further analyzed according to their
methodologies, and the gaps, advantages, and limitations of the
tool have been discussed so as to assist in future research. Thus,
we provide a more detailed categorization of the examined
papers according to the main category that they belong to, that
is, visualization and general time series analysis, seasonality,
correlations, predictions or forecasting, modeling, and statistical
method or tool employed. Note that a study can fall into >1
category. The categorization by individual medical field is not
applicable due to the high number of individual topics. Table
1 consists of the description of each parameter used to classify
each study.
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Figure 2. Google Trends' publications per year in health-related fields from 2009 to 2016.

Table 1. Description of the parameters used for classification.

DescriptionParameter

Includes the surname of the authors, date of publication, and link to the reference list (eg, Smith et al, 2016 [57]).Authors

Refers to the time-frame for which Google Trends data were retrieved and used in the study (eg, 2004-2015).Period

Refers to the country or countries or region (eg, USA; Worldwide; Oceania) that Google Trends data were extracted for.Region

Refers to the language in which the Google Trends search was conducted (eg, search for the Italian word Si).Language

Basic keywords are included in this category, mostly referring to the health topic examined and important keywords used to
describe it.

Keywords

Includes any form of visualization, that is, figures, maps, and screenshots (eg, screenshots of the Google Trends website).Visualization (V)

Studies that have explored the seasonality of the respective topic are included.Seasonality (S)

Studies that have examined correlations are included in this category. Correlations may be between Google Trends data and
official data, among Google Trends time series, or between Google Trends and other Web-based sources’ time series.

Correlations (C)

This category includes studies that conducted forecasting of either Google Trends time series or diseases, outbreaks, etc, using
Google Trends data, independent of the method used.

Forecasting (F)

Studies in this category conducted some form of modeling using Google Trends data.Modeling (M)

This category includes the studies that used statistical tools or tests, eg, t test. Tools and methods for statistical modeling, (eg,
regression), are not included in this category but only in the category of Modeling.

Statistical Tools (St)
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Results

Multimedia Appendix 1 consists of the first classification of the
selected studies [27,39-57,59-93,96-144]; there are 104 in total,
as the studies of Kohler et al [145], Orellano et al [146], Cjuno
et al [147], Tejada-Llacsa [148], and Yang et al [149] are written
in German, Spanish, or Chinese, and thus are not included in
the more detailed categorization and analysis.

All the examined papers involve, by definition, time series
analysis, and almost all include some form of visualization.
Only 8.7% (9/104) studies used Google Trends data for
predictions and forecasting, and 23.1% (24/104) used them for
examining seasonality, while correlations and modeling were
performed in 39.4% (41/104) and 32.7% (34/104) studies,
respectively. As the category of forecasting and predictions
exhibits the least number of studies, it is evident that a gap exists
in the literature for forecasting using Google Trends in health
assessment.

As is evident in Multimedia Appendix 1, Google queries have
been employed up to this point in many countries and several
languages. Figure 3 shows a worldwide map by examined
country for assessing health and medicine related issues using
Google Trends data up to 2016. Worldwide, the studies that
explore topics related to the respective terms number 23 in total.
As far as individual countries are concerned, US data have been
employed in the most (60) studies, while other countries that
have been significantly examined include the United Kingdom
(15), Australia (13), Canada (9), Germany (8), and Italy (7).

The four most examined countries are English-speaking ones.
The reasons for this could include that Google Trends, though
not case-sensitive, does take into account accents and spelling
mistakes; therefore, for countries with more complicated
alphabets, the analysis of Web-based data should be more
careful. In addition, other factors that could play a significant
role and are taken into account when choosing the countries to

be examined using online search traffic data are the availability
of official data, the openness of said data, any internet
restrictions or monitoring in countries with lower scores in
freedom of press or freedom of speech, and internet penetration.

The rest of the analysis consists of the further breaking down
of the initial categorization to include the respective methods
that were used for examining seasonality, correlations,
forecasting, and performing statistical tests and estimating
models, along with a concise introduction to each of these
methods and how they were used to assess health issues.

Table 2 shows the methods used to explore seasonality; Tables
3 and 4 present the methods used to examine correlations and
perform predictions and forecasting, respectively. Finally, Tables
5 and 6 list the modeling methods and other statistical tools
employed in health assessment using Google Trends.

The most popular way to explore seasonality is to use visual
evidence and examine and discuss peaks, as shown in Table 2.
Furthermore, several studies have used cosinor analysis
[8,69,134,138,142], which is a time series analysis method for
seasonal data using least squares.

Apart from seasonality [122], analysis of variance (ANOVA)
has been also used for geographical comparisons between
regions or countries [49,51,68,93] and between differences in
monthly data [41]. It is a test used for examining if significant
differences between means exist. In the case of 2 means, t test
is the equivalent to ANOVA.

The Kruskal-Wallis test is also a popular method for examining
seasonality using Google Trends [57,68,113]. It is a
nonparametric, independent of distribution test, for continuous
as well as ordinal-level dependent variables, employed when
the one-way ANOVA assumptions do not hold, that is, for
examining statistically significant differences between ≥3
groups. It uses random sample with independent observations,
with the dependent variable being at least ordinal.

Figure 3. Countries by number of Scopus and PubMed publications using Google Trends.
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Other methods of exploring seasonality include the
nonparametric tests (independent of distribution) Wilcoxon
signed rank [18,113] and Mann-Whitney U test [67], which are
used for comparing data in different seasons or time periods
when the equivalent parametric t tests cannot be used. The latter
has been also used by some studies to compare weekly data
[105] and differences among regions [113].

For examining correlations (Table 3), the vast majority of the
studies used the Pearson correlation coefficient, which examines
the strength of association between 2 quantitative, continuous
variables, employed when the relationship is linear. The
Spearman rho (rank-order) correlation, the second most used
method, is the nonparametric version of the Pearson correlation,
has also been used to explore seasonality between time series
[70]. Spearman correlation coefficient (denoted by ρ or rs)
measures the levels to which 2 ranked variables (ordinal,
interval, or ratio) are related to each other.

Cross-correlations are used for examining the relationship of 2
time series, while simultaneously exploring if the data are
periodic. It is often employed in correlating Google Trends data
with observed data [50,82,90,135] and between different Google
search terms [80], while it can be also used for examining linear
and temporal associations of seasonal data [71].
Cross-correlations have been also used in forecasting, where
Wang et al [92] showed that cross-correlations of new dementia
cases with Google Trends data can assist with the forecasting
of dementia cases, and Solano et al [80] forecasted the suicide
rates 2 years ahead using Google queries. The autocorrelations
are basically cross-correlations for one time series, that is, a
time series cross-correlated with itself.

The Kendall’s tau-b test correlation coefficient is a
nonparametric alternative to Pearson and Spearman correlations
and is used to measure the strength and direction of the
relationship between 2 (at least ordinal) variables. It has been
employed by 1 study [138] to examine the correlations between
Google Trends data and the results of a paper interview survey.

The Spearman-Brown prediction (or prophecy) formula is used
to predict how reliable the test is after changing its length. It
has also been employed by only 1 study [65] to explore the
relationship between railway suicide and Google hits.

The generalized linear model estimates the linear relationship
between a dependent and ≥1 independent variables. It was used
by Domnich et al [79] to predict influenza-like illness morbidity,
with the exploratory variables being “Influenza,” “Fever,” and
“Tachipirin search volumes,” along with the Holt-Winters
method and the autoregressive moving average process for the
residuals. Holt-Winters is a method employed in exploring the
seasonality in time series, and for predictions, the autoregressive
moving average (also called the Box-Jenkins model) is a special
case of the autoregressive integrated moving average, used for
the analysis of time series and predictions.

Autoregressive integrated moving average is a commonly used
method for time series analysis and predictions
[55,63,86,92,141], the latter having also been assessed by linear
regressions and modeling [88,91]. Multivariable regressions
are used to estimate the relationship of ≥2 independent variables
with a dependent one. In Google Trends, they have been used
to relate Ebola searches, reported cases, and the Human
Development Index [85] and to study the relationship between
climate and environmental variables and Google hits [125].

Hierarchical linear modeling is a regression of ordinary least
squares that is employed to analyze hierarchically structured
data, that is, units that are grouped together, and it has been
employed by 1 study so far [83].

The Mann-Kendall test, which is the nonparametric alternative
test to the independent sample, has been used to show the
statistical differences of peaks [43] and to detect trends [140].
Finally, the t test is used to compare 2 sample means of the same
population, and it has been employed for comparing Google
searches with the baseline period [105] and to examine the
statistical differences of peaks [41].
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Table 2. Methods for exploring seasonality with Google Trends in health assessment.

DescriptionMethodAuthorsNumber

To test the seasonality of Google Trends data in the examined
countries

Morlet Wavelet AnalysisBakker et al, 2016 [96]1

N/AaVisual evidenceBraun and Harreus, 2013 [104]2

N/ASeasonal peaksCrowson et al, 2016 [93]3

Correlating the seasonality of clinical diagnoses with Google
Trends data

Spearman correlationDeiner et al, 2016 [70]4

To show seasonality for different monthsKruskal-Wallis testEl-Sheikha, 2015 [113]5

Variability in outcomes (supported also from a comparison
with searches in Australia)

Least-squares sinusoidal modelGarrison et al, 2015 [116]6

Seasonal (monthly) comparisonsKruskal-Wallis testHarsha et al, 2014 [68]7

Seasonal (monthly) comparisonsKruskal-Wallis testHarsha et al, 2015 [119]8

To examine seasonal variations across symptomsPearson correlationHassid et al, 2016 [120]9

To test the seasonal variation of the normalized Google Trends
data; to compare the seasonal increase among the examined
countries

Cosinor analysis; analysis of varianceIngram and Plante, 2013 [122]10

To test the seasonal variation of the normalized Google Trends
data

Cosinor analysisIngram et al, 2015 [69]11

N/AVisual observationKang et al, 2015 [72]12

Showing correlations among the 4 seasons for the 39 examined
terms

CorrelationsLeffler et al, 2010 [125]13

Seasonality explained the searches significantly better with
an F-test

Seasonal model and a null modelLiu et al, 2016 [127]14

Visual interpretation for exploring seasonal peaksCorrelograms (autocorrelations plots)Phelan et al, 2016 [133]15

To test the seasonal variation of the normalized Google Trends
data

Cosinor analysisPlante and Ingram, 2014 [134]16

Comparison of summer vs winter hits; evaluation of seasonal-
ity

Mann-Whitney U test; Harmonic
Product Spectrum

Rossignol et al, 2013 [67]17

N/AVisual evidenceSeifter et al, 2010 [66]18

To test the seasonal variations of the Google Trends dataCosinor analysisSentana-Lledo et al, 2016 [138]19

N/AVisual evidenceTakada, 2012 [139]20

To explore differences between winter and summerTwo-way Wilcoxon signed rank testTelfer and Woodburn, 2015 [140]21

To identify differences in seasonality between countriesVisual evidence; cosinor analysisToosi and Kalia, 2015 [142]22

N/AVisual evidenceWillson et al, 2015 [86]23

To study the periodograms; to extract seasonal componentsPeriodograms; ideal pass filterZhang et al, 2015 [71]24

aN/A: not applicable.

Many studies have employed Google Trends for visualizing the
changes in online interest or discussing peaks and spikes
[60,62,123,124]. Brigo and Trinka [40] and Brigo et al [39]
have studied the search volumes for related terms, Chaves et al
[109] and Luckett et al [128] have explored terms related to the
studied topic, and Davis et al [110] have examined related
internet searches. Other approaches include the reporting of the
polynomial trend lines [46] and investigation of statistically
significant differences in yearly increases [119]. In addition,
“Google Correlate” has been used to explore related terms
[91,138].

Finally, several studies have used other sources of big data,
namely, Google News [43,63,80], Twitter [43,54,61,63,108],
Yandex [52], Baidu [121], Wikipedia [43,63], Facebook and
Google+ [54], and YouTube [43,54,63]. Google is the most
popular search engine. However, other Web-based sources are
used or even preferred to Google in some regions; therefore,
many studies use data from these sources to examine general
interest in the respective subjects, compare them to Google
Trends data, or use them together as variables.
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Table 3. Methods of exploring correlations using Google Trends in health assessment.

DescriptionMethodAuthorsNumber

Ebola-related Google Trends data with Ebola casesPearson correlationAlicino et al, 2015 [85]1

Suicide search activity vs official suicide rates (and per age)Spearman correlationArora et al, 2016 [81]2

Between Google Trends data and reported casesCorrelationsBakker et al, 2016 [96]3

Between Google Trends data and epidemiological dataPearson correlationBragazzi et al, 2016 [99]4

For the time series for multiple sclerosis (MS); between MS
terms

Autocorrelation; Pearson correlationBragazzi, 2013 [98]5

To compute correlation of the time series with its own valuesAutocorrelation; Partial Autocorrela-
tion

Bragazzi et al, 2016 [101]6

Status epilepticus terms with etiology and management related
terms

Pearson correlationBragazzi et al, 2016 [102]7

Google searches for Silicosis with Normalized Google News,
Google Scholar, PubMed Publications, Twitter traffic,
Wikipedia

Pearson correlationBragazzi et al, 2016 [43]8

Among Google Trends data and other data generating sourcesPearson correlationBragazzi et al, 2016 [63]9

Nonsuicidal self-injury and related terms; nonsuicidal self-
injury plots showed regular cyclical pattern

Pearson correlation; autocorrelation
and partial autocorrelation

Bragazzi, 2014 [103]10

Among Google Trends data for noncigarette tobacco and
prevalence

Pearson correlationCavazos-Regh et al, 2015 [107]11

Google flu-related queries with surveillance data for different
influenza seasons

Pearson correlationCho et al, 2013 [78]12

Between the selected keywords. Between medical prescriptions
data and Google Trends data

Pearson correlationCrowson et al, 2016 [93]13

For correlating seasonality of clinical diagnoses with Google
Trends data

Spearman correlationDeiner et al, 2016 [70]14

Among the examined search terms and influenza-like illnessPearson correlationDomnich et al, 2015 [79]15

For search volumes; for the search volumes for cancer; for the
weekly search volumes between countries

Rank correlations; cross-country corre-
lations; Pearson correlations

Foroughi et al, 2016 [115]16

Among annual prescription volumes and Google Trends dataPearson correlationGahr et al, 2015 [75]17

Cross-correlations between search volumes and crime statisticsCross-correlationsGamma et al, 2016 [90]18

To relate health insurance ratesMultinomial Logit ModelsGollust et al, 2016 [117]19

Correlating the examined search terms with notifications of
tick paralysis cases record; with lag values from −7 to +7
months

Spearman correlation; cross-correlationGuernier et al, 2016 [82]20

Between Google Trends data and National Inpatient Sample
data

Pearson correlationHassid et al, 2016 [120]21

Pearson correlations to explore the relation of Google Trends
data and sexually transmitted infection reported rates

Pearson correlationJohnson et al, 2014 [84]22

To explore the association of (and among) search terms with
surveillance data

Pearson correlationKang et al, 2013 [77]23

Google Trends data for allergic rhinitis and related Google
Trends terms and real world epidemiologic data for the United
States

Spearman correlationKang et al, 2015 [72]24

To explore relations among Google Trends data and railway
suicides

Spearman-Brown correlationKoburger et al, 2015 [65]25

Between disease prevalence and Google Trends dataPearson correlationLing and Lee, 2016 [126]26

Between Google Trends data and published papers and Google
Trends data with prescriptions

Pearson correlationMavragani et al, 2016 [76]27

To examine if there is significant correlation between searches
and time

Linear RegressionPhelan et al, 2016 [133]28
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DescriptionMethodAuthorsNumber

Between Google Trends data and number of alerts published
by ProMED mail and the number of Disease Outbreak News
published by the World Health Organization

Pearson correlationPoletto et al, 2016 [56]29

To shortlist related search terms to pertussisPearson correlationPollett et al, 2015 [91]30

For the diseases examined; correlations between diseases and
the investigated search metrics; to identify best lags

Spearman rank correlations; Spearman
correlation; cross-correlations

Rohart et al, 2016 [135]31

Between Google Trends data and the number of confirmed
cases of Middle East Respiratory Syndrome and for quaran-
tined cases of Middle East Respiratory Syndrome

Spearman correlationShin et al, 2016 [137]32

Between Respiratory Syncytial Virus and Behavioral Risk
Factor Surveillance System prevalence data for 5 cancer
screening tests

Pearson correlationSchootman et al, 2015 [45]33

Lipitor Google Trends data and Lipitor revenuesCorrelationsSchuster et al, 2010 [73]34

To explore the correlation of Google Trends data with paper
interview survey results

Kendall’s Tau-b testSentana-Lledo et al, 2016 [138]35

Between Google Trends data for drugs and drug utilization,
to see changes in search volumes following knowledge events

Cross-correlationsSimmering et al, 2014 [50]36

Between Google Trends data for suicide and national suicide
rates; between different search terms

Correlations; cross-correlationsSolano et al, 2016 [80]37

Between Google Trends data and new dementia casesPearson correlationWang et al, 2015 [92]38

Between Google Trends data and observed data for aeroaller-
gens

Spearman correlationWillson et al, 2015 [86]39

To examine linear and temporal associations of the seasonal
data

Cross-correlationsZhang et al, 2015 [71]40

To study pairwise comparisons among searches for different
terms in Google Trends

Pearson correlationZhang et al, 2016 [51]41

Table 4. Forecasting and predictions using Google Trends in health assessment.

DescriptionMethodAuthorsNumber

For forecasting chicken poxforce of infection, that is, monthly per
capita rate of infection of children 0-14

Statistical modelBakker et al, 2016 [96]1

Query-based models to predict influenza-like illness morbidity, with
the exploratory variables: Influenza, Fever, Tachipirin; compared
for forecasting power with Holt-Winters based on the real data (hold
out set)

Generalized least squares (maximum
likelihood estimates); Holt-Winters

Domnich et al, 2015 [79]2

For forecasting deaths for 1 year in advance (2015)Statistical modelParker et al, 2016 [132]3

Tested the predicted model with a left-out dataset for prediction ac-
curacy

Prediction modelPollett et al, 2015 [91]4

To forecast with 1 or 2 weeks stepLinear modelsRohart et al, 2016 [135]5

Forecasting for suicides for 2 years without data (2013-14) based
on Google Trends data of those years

Cross-CorrelationsSolano et al, 2016 [80]6

To investigate forecasting with lags of 0-12 monthsCross-CorrelationsWang et al, 2015 [92]7

To predict Respiratory Syncytial Virus for “dabbing”Autoregressive Moving AverageZhang et al, 2016 [51]8

To provide real time estimations by correcting the forecasting with
the new morbidity data when published

Dynamic modelZhou et al, 2011 [88]9
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Table 5. Statistical modeling using Google Trends in health assessment.

DescriptionMethodAuthorsNumber

For relating Ebola Google Trends data, number of Ebola Cases,
and the Human Development Index

Multivariate regressionAlicino et al, 2015 [85]1

For forecasting chicken poxforce of infection, that is, monthly per
capita rate of infection

Statistical modelBakker et al, 2016 [96]2

Established social model for engaging a new behavior for Web-
based searching for flu terms

Maximum likelihood estimationBentley and Ormerod, 2009
[59]

3

Three levels: 3 Mondays, 6 years, 47 search termsHierarchical linear modelingBarnes et al, 2015 [83]

To confirm multiannual long-term trendsMultiple linear regressionBragazzi, 2013 [98]4

Query volume-based models to predict influenza-like illness mor-
bidity

Generalized linear model, autoregres-
sive moving average process

Domnich et al, 2015 [79]5

To show the global, regional, and country level interest for the
search term

Linear regressionEl-Sheikha, 2015 [113]6

Google Trends data as a variable in predicting loses in flightsMoving average, generalized linear
model

Fenichel et al, 2013 [114]7

Best fit combination of a straight line and a sinusoidSeasonal modelGarrison et al, 2015 [116]8

To relate health insurance ratesMultinomial logit modelsGollust et al, 2016 [117]9

Radiology residency interestARIMAaHaney et al, 2014 [55]10

Statistical justification of annual increase in search volumesLinear modelHarsha et al, 2014 [68]11

Statistical justification of annual increase in search volumes and
of the Web-based interest related to applications for interventional
radiology

Linear modelHarsha et al, 2015 [119]12

For studying the effect of climatic and environmental variables to
internet searches

Multivariable Linear RegressionsLeffler et al, 2010 [125]13

Fitted spline polynomial trend lines per time without statistical
reporting

Polynomial trend linesLinkov et al, 2014 [46]17

Best fit combination of a straight line and a sinusoidSeasonal modelLiu et al, 2016 [127]18

To adjust HealthMap to using Google Trends, model fitsLinear SmoothingMajumder et al, 2016 [129]19

To estimate the slope coefficient for changes in the magnitude of
the effect size of Google Trends data and media search increases

Linear RegressionNoar et al, 2013 [64]20

To build a model for forecasting deaths in each stateL1-regularization on Google TrendsParker et al, 2016[132]21

To estimate the relation between news reports and search activityLinear RegressionPhelan et al, 2014 [49]22

To examine if there is a significant correlation between searches
and time

Linear RegressionPhelan et al, 2016 [133]23

Prediction model for pertussis cases based on Google Trends data
of the most related terms

Linear RegressionPollett et al, 2015 [91]24

To forecast with 1 or 2 weeks stepLinear modelsRohart et al, 2016 [135]25

Google Trends data is a measure of awareness, along with other
sources

Epidemic modelScatà et al, 2016 [136]26

Google Trends data for the examined drugs, Google Trends data
and changes in annual revenues, and Google Trends data vs re-
source utilization

Generalized Linear modelsSchuster et al, 2010 [73]27

To examine differences in queriesRegression Fit LinesStein et al, 2013 [47]28

Figures 4, 6 and 8; regression-based decomposition of the time
series for the search terms

Visual decomposition; local regressionTelfer and Woodburn, 2015
[140]

29

To account for dependency between data points in time series for
“quit smoking” searches

ARIMATroelstra et al, 2016 [141]30

To quantify the effect of the observed (pollen) counts with the
levels of search activity

ARIMAWillson et al, 2015 [86]31
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DescriptionMethodAuthorsNumber

To quantify the effect of the observed (pollen) counts with the
levels of search activity

ARIMAWillson et al, 2015 [87]32

To predict influenza-like illnessPrediction model (ARGOb)Yang et al, 2015 [144]33

For forecasting tuberculosis incidents using Google Trends dataDynamic ModelingZhou et al, 2011 [88]34

aARIMA: autoregressive integrated moving average.
bARGO: autoregression with Google search data.

Table 6. Statistical tests and tools using Google Trends in health assessment.

DescriptionMethodAuthorsNumber

To show the statistical difference of peaks from the remaining
period

Mann-Kendall testBragazzi et al, 2016 [43]1

To show increased web searches due to an event, and correct
seasonality

ARIMAaBragazzi et al, 2016 [63]2

For comparing searches with baseline period; for multiple
weekly data comparisons

Independent samples t test; Mann-
Whitney U test with Bonferroni correc-
tion

Campen et al, 2014 [105]3

To compare grouped geographical federal regions of the
United States (Northeast, Midwest, South, West)

ANOVAb (Post-hoc Tukey test)Crowson et al, 2016 [93]4

To study the change of interest at different time periods; to
compare Web-based interest between the Northern and
Southern hemispheres

Wilcoxon rank test; Mann-WhitneyEl-Sheikha, 2015 [113]5

To determine the amount of variability between annual pre-
scription volumes and Google search terms

Coefficients of determinationGahr et al, 2015 [75]6

For the comparisons of US regionsANOVA (Tukey-Kramer post hot test)Harsha et al, 2014 [68]7

To explore differences in months’ means per year; for the
statistical differences of peaks compared with the remaining
hits

ANOVA; t testMurray et al, 2016 [41]8

To test for nonstationarity of the time seriesAugmented Dickey-Fuller testsNoar et al, 2013 [64]9

To explore differences among countriesANOVAPhelan et al, 2014 [49]10

To assess prediction accuracyMean Square Error for PredictionRohart et al, 2016 [135]11

To detect trends significantly larger than the variance in the
data for search terms

Mann-Kendall trend testsTelfer and Woodburn, 2015 [140]12

Studied the effect of smoking cessation policies with ARIMA
interrupted time series modeling (Multimedia Appendix 1)

ARIMATroelstra et al, 2016 [141]13

To detect whether or not the extracted seasonal components
of the studied trends were stationary

Augmented Dickey-Fuller testZhang et al, 2015 [71]14

To examine the search interest for dabbing between groups
of legal status states in the United States

ANOVAZhang et al, 2016 [51]15

aARIMA: autoregressive integrated moving average.
bANOVA: analysis of variance.

Discussion

Principal Findings
With internet penetration constantly growing, users’ Web-based
search patterns can provide a great opportunity to examine and
further predict human behavior. In addressing the challenge of
big data analytics, Google Trends has been a popular tool in
research over the past decade, with its main advantage being

that it uses the revealed and not the stated data. Health and
medicine are the most popular fields where Google Trends data
have been employed so far to examine and predict human
behavior. This review provides a detailed overview and
classification of the examined studies (109 in total from 2006
through 2016), which are then further categorized and analyzed
by approach, method, and statistical tools employed for data
analysis.
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Figure 4. The four steps toward employing Google Trends for health assessment.

The vast majority of studies using Google Trends in health
assessment so far have included data visualization, that is,
figures, maps, or screenshots. As discussed in the analysis, the
most popular way of using Google Trends data in this field is
correlating them with official data on disease occurrence,
spreading, and outbreaks. The assessment of suicide tendencies
and (prescription or illegal) drug-related queries has been of
notably growing popularity over the course of the last years. As
is evident, the gap in the existing literature is the use of Google
Trends for predictions and forecasting in health-related topics
and issues. Though data on reported cases of various health
issues and the respective Google Trends data have been
correlated in a large number of studies, only a few have
proceeded with forecasting incidents and occurrences using
online search traffic data.

In research using Google Trends in health and medicine from
2006 to 2016, the ultimate goal is to be able to use and analyze
Web-based data to predict and provide insight to better assess
health issues and topics. The four main steps, based on the
presentation of the papers published up to this point in assessing
health using Google Trends, are as follows (Figure 4):

1. Measure the general Web-based interest.
2. Detect any variations or seasonality of Web-based interest,

and proceed with examining any relations between actual
events or cases.

3. Correlate Web-based search queries among them or with
official or actual data and events.

4. Predict, nowcast, and forecast health-related events,
outbreaks, etc.

Limitations
This review followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses guidelines for selecting
the examined papers from the Scopus and PubMed databases.

Though this includes the majority of papers published on the
topic from 2006 to 2016, the studies that are not indexed in
these databases or are not indexed based on the selection criteria
used in this review were not included in further analysis. In
addition, as is evident in Figure 2, research using Google Trends
data has shown a significant increase from each year to the next
since 2013. This review included studies published in Google
Trends research through 2016. However, there are several
studies published in 2017 and 2018 that are not included. This
review provides, at first, an overall description of each examined
study, which is standard review information. The second part
is a classification and assessment of the methodology, tools,
and results of each study. Though the first part mainly reports
what is included in the methodology of each study, the second
part could include a bias, as it is the authors’ assessment and
categorization of the methods employed based on the results
obtained after a very careful and thorough examination of each
individual study.

Conclusions
This review consists of the studies published from 2006 to 2016
on Google Trends research in the Scopus and PubMed databases
based on the selected criteria. The aim of this review was to
serve as a point of reference for future research in health
assessment using Google Trends, as each study, apart from the
basic information, for example, period, region, language, is also
categorized by the method, approach, and statistical tools
employed for the analysis of the data retrieved from Google
Trends. Google Trends data are being all the more integrated
in infodemiology research, and Web-based data have been
shown to empirically correlate with official health data in many
topics. It is thus evident that this field will become increasingly
popular in the future in health assessment, as the gathering of
real time data is crucial in monitoring and analyzing seasonal
diseases as well as epidemics and outbreaks.
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