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Abstract 
Accurate smoltification and disease management in Atlantic salmon (Salmo salar) 

are key issues for the aquaculture industry. Due to their anadromous lifecycle the 

transfer of salmon from fresh water (FW) to seawater (SW) is crucial to their 

survival; too early can cause mortality, too late can cause desmoltification and long-

term health problems. Both scenarios can increase susceptibility to four viral 

diseases: Salmon alphavirus (SAV), Infectious salmon anemia virus (ISAV), 

orthoreovirus (PRV), and Piscine myocarditis virus (PMCV). They all show similar 

clinical and histopathological symptoms and can easily spread throughout farms. 

Understanding the initial innate immune response to these viruses may provide 

biomarkers that could help identify and monitor infections.  

An in house and onsite Na+/K+ ATPase (NKA) qRT-PCR assay was developed for 

the salmon biomarker ATPase to test smoltification readiness in salmon smolts. 

Tested against NKA enzymatic assays it showed a similar success rate over 3 

years: NKA qRT-PCR (57%), NKA activity assay (60%). Onsite tests confirmed that 

the ATPase mRNA transcript is a useful biomarker for smoltification detection. 

An in-lab and mobile multiplex qRT-PCR assay was developed for detection of SAV, 

PRV and PMCV. The analytical sensitivity of the SAV (86.5% SE 0.11), PRV 

(90.94%, SE 0.09) and PMCV (100.46%, SE 0.19) assays was 102 copies for PMCV 

and 103 for SAV and PRV. Initial results suggest individual assays could be run on 

site at farms. Addition of an internal control, probit analysis and viral positive tests 

are still required for multiplex assay integration. 

Salmon erythrocytes were infected with ISAV, SAV and Poly I:C to investigate 

whether they induce and up-regulate innate immune response genes. All genes 

were expressed at low levels in all parameters investigated including non-infected 

control erythrocytes. These findings suggest erythrocytes act as an initial buffer to 

viral infections and may help stimulate the innate immune response. 
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Tables and Figures 
Figure 1.1 A. The lifecycle of Atlantic salmon (Salmo salar). B. The production cycle 

of Atlantic salmon from broodstock to harvest. Source: www.fao.org. 

Figure 1.2 Structural and morphological differences between the SW adapted 

ionocyte (A) and the FW adapted ionocyte (B). SW adapted ionocytes (A) are larger 

and contain a distinct apical crypt in their structure whereas FW adapted ionocytes 

(B) are generally smaller and have a broad apical surface. Adapted from 

McCormick. (2001). 

Figure 1.3. The changes in gill ionocytes from α1a dominant in FW to α1b dominate 

in SW. In FW parr (A) only α1a ionocytes are present. During smoltification (B) α1a 

ionocytes still dominate with development of α1b ionocytes beginning to be seen. 

The α1b are small and do not extend out above pavement cells in to the open 

environment and are therefore mainly dormant and inactive. During SW transfer α1a 

ionocytes completely disappear and α1b ionocytes increase in size, breaking 

through the pavement cells, exposing themselves to the environment and becoming 

active. Upregulation of CFTR and NKCC1 begin during smoltification and increase 

substantially after SW exposure. Adapted from McCormick. (2013b). 

Figure 1.4 The process of the endocrine system in regards to external 

environmental stimuli and the subsequent internal systems that result in 

behavioural, physiological and morphological changes in the animal. Adapted from 

McCormick. (2009). 

Figure 1.5 The endocrine control of juvenile Atlantic salmon in SW. GH, IGF-1 and 

cortisol interact to promote the physical changes in osmoregulatory organs required 

for SW adaption. 
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Figure 1.6 Teleost retinoic acid-inducible gene I (RIG-I) and RIG-I like receptor 

(RLR) – signalling pathway to viral infection (Highlighted in yellow). Binding of 

Melanoma differentiation-associated gene 5 (MDA5) or RIG-I to single or double 

stranded RNA through pattern recognition receptor (PRR) pathogen associated 

molecular patterns (PAMP) recognition occurs. Recruitment of mitochondrial 

antiviral signalling protein (MAVs) and association of TNF receptor-associated factor 

3 (TRAF3) instigates phosphorylation and activation of interferon (IFN) regulatory 

factor 3 (IRF3) and or 7 (IRF7). These transcriptional factors are then translocated 

into the nucleus and bind with the IFN stimulated response element (ISRE) motif 

that signals the production of type I IFNs and IFN-stimulated genes (ISGs). Adapted 

from Chen et al., (2017). 

Figure 1.7 Map showing the distribution of all 6 types of Salmonid alphavirus (SAV) 

across Europe. Adapted from Jansen et al., (2017). 

Figure 2.1 Locations of the 11 farms sampled in the 3-year study. 

Figure 2.2. Standard curve results for MX3005P NKA qRT-PCR assay (98.9%, SE 

0.24) and SmartCycler™ assay (93.43%, SE 0.119). Each dilution ranged from 107-

101 DNA molecules. These were tested in triplicate with their mean values plotted as 

the Ct value points along with SE (not all visible). 

Figure 2.3 Mean NKA activity assays for I, M and F points for 16 individual sites in 

Scotland (2015). Ormsary A, B and E (ORA, ORB and ORE), Gairloch A and B 

(GLA and GLB); Loch damph (LD); Barvas (BAR); Geocrab A and B (GCA and 

GCB); Russel burn A, B, D and E (RBA, RBB, RBD, RBE); Girlsta (GIR); Mingary 

(MIN); and Clachbreac (CLA). N = 25, NKA enzymatic activity expressed as mean 

± standard deviation (StD). The red dotted line indicates the enzymatic activity 

value used to identify when smoltification has occurred and fish are safe for SW 

transfer. This has been determined by historical data of successful transfers by 

Europharma Ltd. 

Figure 2.4 Mean NKA qRT-PCR for I, M and F points for 16 individual sites in 

Scotland (2015). Ormsary A, B and E (ORA, ORB and ORE); Gairloch A and B 

(GLA and GLB); Loch damph (LD); Barvas (BAR); Geocrab A and B (GCA and 

GCB); Russel burn A, B, D and E (RBA, RBB, RBD, RBE); Girlsta (GIR); Mingary 

(MIN); and Clachbreac (CLA). N = 8, NKA copy number expressed as mean ± StD. 
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Figure 2.5 Mean NKA activity assays for I, M and F points for 13 individual sites in 

Scotland (2016). Ormsary A, B and E (ORA, ORB and ORE); Gairloch A and B 

(GLA and GLB); Loch damph (LD); Geocrab A (GCA); Russel burn A, B, C (RBA, 

RBB, RBC); Mingary (MIN); Girlsta (GIR); and Loch Shin (LS). N = 25, NKA 

enzymatic activity expressed as mean ± StD. The red dotted line indicates the 

enzymatic activity value used to identify when smoltification has occurred and fish 

are safe for SW transfer. This has been determined by historical data of successful 

transfers by Europharma Ltd 

Figure 2.6. Mean NKA qRT-PCR for I, M and F points for 13 individual sites in 

Scotland (2016). Ormsary A, B and E (ORA, ORB and ORE); Gairloch A and B 

(GLA and GLB); Loch damph (LD); Geocrab A (GCA); Russel burn A, B, C (RBA, 

RBB, RBC); Mingary (MIN); Girlsta (GIR); and Loch Shin (LS). N = 8, NKA copy 

number expressed as ± StD. 

Figure 2.7 Mean NKA activity assays for I, M and F points at 9 individual sites in 

Scotland (2017). Ormsary A (ORA); Gairloch A and B (GLA and GLB); Loch damph 

(LD); Geocrab A (GCA); Russel burn A and B (RBA, RBB); Mingary (MIN); and 

Kinlochmoidart (KLM). N = 25, NKA enzymatic activity expressed as mean ± StD. 

The red dotted line indicates the enzymatic activity value used to identify when 

smoltification has occurred and fish are safe for SW transfer. This has been 

determined by historical data of successful transfers by Europharma Ltd. 

Figure 2.8 Mean NKA qRT-PCR for I, M and F points for 9 individual sites in 

Scotland (2017). Ormsary A (ORA); Gairloch A and B (GLA and GLB); Loch damph 

(LD); Geocrab A (GCA); Russel burn A and B (RBA, RBB); Mingary (MIN); and 

Kinlochmoidart (KLM) N = 8, NKA copy number expressed as mean ± StD. 

Figure 2.9 Mean NKA qRT-PCR mRNA copies expressed for I, M and F points for 

sites Russel burn (RBA, RBB, RBC and RBD) and Geocrab (GCA and GCB) against 

degree days (dd) over the 3-year study period. N = 8, NKA copy number expressed 

as mean ± StD. 

Figure 2.10 Onsite qRT-PCR testing of the Na+-K+ assay on the Q16 system. Tests 

were conducted at two different time points at 3 different sites.  

Figure 2.11 Map indicating temperature profile locations of 11 sites sampled over 

the 3-year study. 
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Figure 3.1 Standard curve results for individual SAV (98.9%, SE 0.136), PRV 

(93.2%, SE 0.057), PMCV (99%, SE 0.135) and SIGV (95.68%, SE 0.068) assays 

ran on the LightCycler 2.0 system. Dilution ranges from 107-101 RNA molecules 

were tested in triplicate and their mean values plotted as the CT value points along 

with SE. SAV, PRV and SIGV assays were detected down to 10 molecules of RNA 

and PMCV down to 100 molecules of RNA. 

Figure 3.2 Standard curve results for individual SAV (99.79%, SE 0.034), PRV 

(96.49%, SE 0.04), PMCV (85.73%, SE 0.08) and SIGV (108.8%, SE 0.03) assays 

ran on the SmartCycler™ system. Dilution ranges from 107-101 RNA molecules 

were tested in triplicate and their mean values plotted as the CT value points along 

with SE. SAV, PRV and SIGV assays were detected down to 10 molecules of RNA 

and PMCV down to 100 molecules of RNA. 

Figure 3.3 Standard curve results for multiplex assay against RNA standards of 

SAV 86.5%, SE 0.11), PRV (90.94%, SE 0.09) and PMCV (100.46%, SE 0.19)	 ran 

on the SmartCycler™system. Dilution ranges from 107 – 101 RNA molecules were 

tested in triplicate and their mean values plotted as the CT value points along with 

SE. PMCV assay was detected down to 100 molecules of RNA and SAV and PRV 

down to 1000 molecules of RNA.	

Figure 4.1 A 1% agarose gel run of 4 control RNA samples from ISAV stimulated 

erythrocytes and 4 Poly I:C stimulated erythrocytes. All but Poly I:C F3 showed RNA 

bands at 28s and 18s bands confirming pure RNA. 

Figure 4.2 A 1% agarose gel run of 3 control RNA samples from SAV stimulated 

erythrocytes and 3 Poly I:C stimulated erythrocytes. All but Con F1 1 showed RNA 

bands at 28s and 18s bands confirming pure RNA. 

Figure 4.3 Standard curve results for individual IFNa (E: 91.53%, SE 0.097), IFNb 

(E: 98.84%, SE 0.128), IFNc (E: 91.71%, SE 0.122), Mx (E: 92.10%, SE 0.099), 

IL1B (E: 93.11%, SE 0.055), IFNγrel-2  (E: 96.57%, SE 0.206) and 101 (E: 89.57%, 

SE 0.125) assays ran on the LightCycler 480 II system. Dilution ranges from 108-101 

RNA molecules were tested in duplicate and their mean values plotted as the CT 

value points along with SE. IFNc, Mx, IL1B, IFNγrel-2 and 101 assays were 

detected down to 10 molecules of RNA and IFNa and IFNb down to 100 molecules 

of RNA. 

Figure 4.4 Erythrocyte cDNA generated from 24hr viral infection of SAV and ISAV 

at MOIs 10, 1 and 0.1, Poly I:C stimulated and control tested against 7 Atlantic 
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salmon immune genes and defensins. Interferon (IFN) a, b and c, Interferon-induced 

GTP-binding protein Mx1 (Mx), Interleukin 1 beta (IL-1β), Interferon gamma related 

2 (IFN γrel-2) and Beta defensin 1a (101). N = 8 – 12, copy numbers expressed as 

mean +/- StD. 

Table 1.1 Comparison of the histopathological lesions in Atlantic salmon infected 

with Cardio myopathy (CMS), Heart and skeletal muscle inflammation (HSMI) and 

Pancreas disease (PD) (Modified from Yousaf et al., 2013). 

Table 2.1 Table showing basic information on location, tanks, production and 

owners of all the farms where samples were gathered for the 3 year investigation of 

NKA activity assays and NKA qRT-PCR. The * symbol represents the farms visited 

for onsite analysis of the mobile NKA qRT-PCR. 

Table 2.2 Comparison of NKA enzymatic activity and NKA α1a qRT-PCR 

expression to smolt index over the 3-year sampling period. It was found that in 2015 

and 2016 both tests showed no significantly higher correlation with the smolt index. 

In 2017, NKA activity assays were shown to correlate higher (4/9) with smolt index 

than NKA qRT-PCR (1/9). Green tiles indicate significant increases for NKA activity 

assays and smolt index and significant decrease in NKA qRT-PCR between I and F 

points. Red tiles show no significant change between I and F points. Blue tiles 

signify a decrease in expression of NKA activity assays and smolt index and an 

increase in expression of NKA qRT-PCR. Orange tiles indicate where NKA activity 

assays did not reach the threshold of 10 for safe SW transfer.  

Table 3.1 Primers and probes designed for detection and amplification of SAV, PRV 

PMCV and SIGV RNA standards, and ATPase and GAPDH plasmid standards in 

qRT-PCR tests. 

Table 3.2 List of all primers and probes used for amplification of target regions, 

plasmid standards and sequence analysis (M13 primers (MCS = multiple cloning 

site of pCR™II)) of SAV, PRV and PMCV. 

Table 4.1 Primers, amplicon size and Genebank number of all salmon genes tested 

against erythrocyte cDNA. 

Table 4.2 Standard curve results showing efficiency (%) and standard error (SE) for 

IFNa, b, c Mx, IL1B, IFNγrel-2 and 101.  
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Table 4.3 Mean and standard deviation of SAV and ISAV infected erythrocyte cDNA 

samples against IFNa, b, c, Mx IL-1β, IFNγrel-2 and 101 genes ran on the 

LightCycler 480 II system. 

Table. 4.4 Comparison of Cell line used for growth of both ISAV and SAV over the 

past 20 years. 
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Abbreviations 
AI – Immune adherence 

AS – Atlantic salmon cells 

AMPS – Antimicrobial peptides 

ATP – Adenosine 5’triphosphate disodium triphosphate 

BCP – 1-Bromo-3-chloropropane 

BF2 – Bluegill fry cells 

oC – Degree Celsius 

CARD – caspase recruitment domain 

CC – Chloride cells 

cDNA – complimentary deoxyribose nucleic acid 

CFTR – Cystic fibrosis transmembrane conductance regulator 

CHSE-214 cells – Chinook salmon embryo-214 

CLRs – C-type lectin receptors 

cm – centimetre 

CMS – Cardio myopathy syndrome 

CO2 – Carbon dioxide 

CPE – Cytopathic effect 

CS – Chicken serum 

CSV – Chum salmon reovirus 

Ct – Cycle threshold 

CTD – C-terminal repressor domain 

dd – Degree days 

DEPC-treated water – 0.1% diethylpyrocarbonate treated water 
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DMEM – Dulbecco’s Modified Eagle Medium 

DNA – Deoxyribose nucleic acid 

dNTP – Deoxynucleotide 

ds – double stranded 

dsRNA – double stranded RNA 

dH2O – distilled water 

Ef1a – Elongation factor 1 alpha 1 

eIF-2α – Eukaryotic initiation factor 2 

EMEM – Eagles minimum essential media 

ELISA – enzyme linked immunosorbant assay 

EPC – epithelioma papulsorum cyprinid cells 

FHM – Fat head minnow cells 

FCS – Fetal bovine serum 

g – Grams 

g – Gravitational force 

GBP – Guanylate binding protein 

GH – Growth hormone 

GH-R – Growth hormone receptor 

H2O – Water 

HBSS – Hanks balanced salt solution 

HE – Haemagglutinin-esterase 

hr – Hour 

HSC – Hematopoietic stem cells 

HSMI – Heart and skeletal muscle inflammation 
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IFIT5 – Interferon-induced protein 5 

IFNa – Interferon alpha 1 

IFNb – Interferon beta 1a 

IFNc – Interferon alpha c  

IFN-γ – Interferon gamma 

IFNγrel-2 – Interferon gamma related 2  

IGF-1 – Insulin-like growth factor 1 

IHNV – Infectious hematopoietic necrosis virus 

IKKα – Iĸβ kinase α 

IL-1β – Interleukin 1 beta 

IP – intraperitoneal injection 

IP-10 – Interferon gamma-induce protein 10 

IRAK1 – interleukin-1 receptor-associated kinase 1 

ISA – Infectious salmon anemia 

ISAV – Infectious salmon anemia virus 

ISGs – Interferon stimulated genes 

ISG15 – Interferon-stimulated gene 15 

ISRE – IFN stimulated response element 

JAK-STAT – Janus kinase – signal transduction and activator of transcription 

signalling pathway 

kb – Kilobase 

kg – Kilogram 

l – Litre 

LDH – L-lactate dehydrogenase 

LGP2 – Laboratory of genetic and physiology 2 
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LPS – Lipopolysaccharides 

LRR – Leucine rich repeats 

MAVs – Mitochondrial antiviral signalling protein 

MDA5 – Melanoma differentiation-associated gene 5 

mg – Milligram 

MgCl2 – Magnesium chloride 

MHC – major histocompatibility complexes 

ml – Millilitre 

mm – Millimetre 

mM – Millimolar 

MRC – Mitochondrion rich cells 

mRNA – messenger ribonucleic acid 

Mx – Interferon-induced GTP-binding protein Mx1 

MyD88 – Myeloid differentiation primary response 88 

NAD+/NADH – Nicotinamide adenine dinucleotide 

NCCs – Non-specific cytotoxic cells 

NF – κβ activating kinase – nuclear factor kappa-light-chain-enhancer of activated B 

cells 

NK – Natural killer cells 

NKA – Na+/K+ ATPase 

NKCC – Na+/K+2Cl- co-transporter 

Nkl – Antimicrobial peptide Nk-lysin 

NOAA – National Oceanic and Atmosphere Administration 

ND-40/INGEPAL CA-630 – octylphenoxypolyethoxyethanol 

Nkl – Nk-lysin 



	 	 19	

O2 – Oxygen 

OISST – Optimum Interpolation Sea Surface Temperature 

ORF – Open reading framework 

PAMPS – Pathogen associated molecular pattern 

PBS – Phosphate buffered saline 

PCR – Polymerase chain reaction 

PD – pancreas disease 

PEP – Phosphoenolpyruvate monopotassium salt 

pH - -log10 (hydrogen ion concentration) 

PK – Pyruvate kinase 

PKR – Protein kinase R 

PMCV – Piscine myocarditis virus 

PNV – Piscine nodavirus 

Poly I:C – Polyinosinic:polycytidylic acid 

PRV – Piscine reovirus 

PRR – Pattern recognition receptors 

RT-PCR – Reverse transcription polymerase chain reaction 

qRT-PCR – Quantitative real time polymerase chain reaction 

RdRP – RNA-dependant RNA polymerase sequence 

RIG-I – retinoic-acid-inducible gene I 

RFLP – Restriction fragment length polymerisation analysis 

RLRs – Retinoic acid – inducible gene I – RIG I 

ROS – Reactive oxygen species 

RNA – Ribonucleic acid 
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RT – Reverse transcriptase 

RTG-2 – Rainbow trout gonad cells 

SAV – Salmon alpha virus 

SD – Sleeping disease 

SE – Standard error 

SEID – Sucrose ethylenediaminetetraacetic (EDTA) imidazole deoxycholate 

SHK-1 – Salmon head kidney cell line 

SOCs – Suppressor of cytokine signalling 

ssRNA – Single stranded RNA 

StD – Standard deviation 

TCID50 – Tissue culture infective dose TIR – Toll/IL-IR 

TLRs – Toll like receptors 

TNF-α – Tumour necrosis factor-α 

TRAF3 – TNF receptor-associated factor 3  

TRIF – TIR domain-containing adaptor inducing interferon-β 

TO – Cell line derived from Atlantic salmon head kidney leucocytes 

TRIS-HCl – Tris hydroxymethyl amino methane hydrochloride 

VHSV – Viral hemorrhagic septicaemia virus 

VIG-1 – VHSV-induced gene 

101 – Beta defensin 1a 
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Chapter 1: General Introduction 

1.1 General background 
The Atlantic salmon (Salmo salar) is a key species in the aquaculture industry. 

Currently it is the highest valued (US $) farmed finfish species globally, accounting 

for 16.5% of the total value of fish products traded in 2015, with over 2.3 million 

tonnes produced (FAO 2015). Atlantic salmon are produced in the UK, Ireland, 

Norway, Faroe Islands, USA, Canada, Chile and Australia. Although in high 

demand, the production of Atlantic salmon has been hindered due to difficulties in 

husbandry management of large density populations. This is mainly due to the 

demands of physiological adaptions (smoltification), environmental (temperature, 

light and salinity) and biotic factors (bacteria, virus and parasites) that influence 

health and susceptibility to disease throughout its rearing time (Murray and Edmund. 

2005; Krkosek. 2010). 

Smoltification is a key biological process that all salmon parr must undertake before 

transitioning from fresh water (FW) to seawater (SW). The endocrine system drives 

morphological, physiological, behavioural and biochemical changes preparing the 

fish for SW (Hoar 1976; Folmar and Dickhoff. 1980; Barron 1986; McCormick 1987; 

Dickhoff 1997; McCormick 2001; Ebbesson et al 2008; McCormick. 2009a; 

Stefansson 2012). The timing of transfer from FW tanks to open water SW pens in 

aquaculture is of particular importance. Transferring too early will lead to poor 

performance, mortality and increased likelihood of disease outbreaks. Transferring 

too late can lead to desmoltification. This is a process where the fish begin to 

regress back to a FW adapted state, impacting fish health, survival and eventual 

successfully transfer to SW. The most common methods used to follow 

development of smoltification are the smolt index, SW bath tests, plasma chloride 

measurements and Na+/K+-ATPase (NKA) enzymatic activity assays (Zaugg 1982). 

Although these techniques are generally accepted as reliable indicators of 

smoltification they have their drawbacks (see section 2.1). Following the success of 

NKA assays, molecular tests quantifying one of more mRNA isoforms of NKA with 

current quantitative real time polymerase chain reaction (qRT-PCR) techniques to 

detect smoltification would allow for rapid screening and onsite tests to be applied. 

This impacts husbandry and health management by reducing time and increasing 

reliability and reproducibility of smoltification biomarkers to ensure successful 

transfer of smolts leading to optimised performance. 
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Disease outbreaks can be devastating for farms leading to significant loss if not 

complete collapse of a population. There are multiple viral infections that can afflict 

cultured salmon during their lifetime. Salmon alpha virus (SAV) is the causative 

agent of pancreas disease (PD) in the UK (Fringuelli et al., 2008; Graham et al., 

2012; Hjortaas et al., 2013) and Norway (Hodneland et al., 2005) as well as sleeping 

disease (SD) in Europe in rainbow trout (Oncorhynchus mykiss) (Castric et al., 

1997; Graham et al., 2003, 2007). Piscine reovirus (PRV) is an opportunistic virus, 

causing heart and skeletal muscle myopathy (HSMI) (Palacios et al., 2010; Lovoll et 

al., 2010; Haugland et al., 2011; Finstad et al., 2012; Garseth et al., 2013; Wessel et 

al., 2017). Piscine myocarditis virus (PMCV) is the causative agent of 

cardiomyopathy syndrome (CMS) (Haugland et al., 2011). Infectious salmon anemia 

virus (ISAV) is the causative agent of infectious salmon anemia (ISA) (Kibenge et 

al., 2004) across Europe (Roger et al., 1998; Nylund et al., 2003; Plarre et al., 

2005), Canada (Mullins et al., 1998), USA (Bouchard et al., 2001) and Chile (Godoy 

et al., 2008). The morphological and histopathological similarities between the four 

viruses makes it difficult to ascertain which virus or combination of the viruses the 

fish are infected with. Development of singleplex and multiplex qRT-PCR assays for 

diagnostic detection of these viruses could ensure a fast and clear indication of 

which virus is present and at what concentration. This would then allow for the best 

advice on the next steps needed to reduce or prevent an outbreak, improving overall 

health management. 

All Ectothermic vertebrate erythrocytes vary from mammalian and avian 

counterparts in that they are nucleated and thus contain organelles with the potential 

to actively produce responses to their environment. Immune based responses of 

erythrocytes to pathogenic infections were originally suggested by Morera and 

MacKenzie. (2011), and have since been reported in various fish species 

(Workenhe et al., 2007, 2008; Morera et al., 2011; Dahle et al., 2015; Wessel et al., 

2015; Pereiro et al., 2017). Further evidence has shown that ISAV and PRV can 

infect salmon erythrocytes (Workenhe et al., 2007; Finstad et al., 2014) and 

replicate within them (Workenhe et al., 2008; Wessel et al., 2015). Insight into the 

mechanisms that trigger these responses in erythrocytes would allow us to better 

understand their role in the immune response. 
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1.2 Life cycle of Atlantic salmon 
Wild Atlantic salmon are anadromous salmonidae that can spend the first 1 – 2 

years of their life developing in FW after hatching in rivers. Once reaching a specific 

weight (60 – 120g) and body size (10 – 15cm) (McCormick et al., 1987) the process 

of smoltification then occurs in the subsequent spring. Salmon will normally reach 

this critical weight within the first year and begin smoltification. Smoltification is the 

physiological and morphological process in which salmon parr adapt their biology 

from FW to SW before migrating to sea. The period spent at sea varies dependant 

on growth but can vary from 1 – 4 years with an average of around 1 – 2 years 

(Klemesten et al., 2003). When at an adequate size the salmon then return to their 

natal rivers to spawn (Hoar 1976; Folmar 1980) (Figure 1.1A). This natural lifecycle 

has been adapted for farmed salmon. Broodstocks are selected and eggs stripped 

and incubated until hatched. The fry are then grown in tanks often under light and 

temperature manipulation until developing into salmon parr, where smoltification 

starts either naturally or is artificially induced (8 – 16 months). The smolts are then 

transferred to sea cages where the final growth stage is carried out for up to 2 years 

until a suitable harvest weight is achieved (2 kg+) (Figure 1.1B). 
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Figure 1.1 A. The lifecycle of Atlantic salmon (Salmo salar). B. The production cycle 
of Atlantic salmon from broodstock to harvest.	Source: www.fao.org.	
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1.3 Smoltification 
1.3.1 Osmoregulation 

Atlantic salmon have adapted their anadromous strategy to utilise FW areas for 

reproduction and the oceans for a rich food supply to promote growth, before 

returning to natal rivers to produce offspring (Hoar 1976; Folmar 1980). There are 

many physiological changes and adaptions that juvenile salmon must undertake to 

cope with the high salinity differences between FW and SW, and for adults’ returning 

to their spawning grounds from SW to FW. Arguably the most critical is the 

development of its osmoregulatory ability.  

Plasma osmotic balance must be maintained in teleost fish at all times to ensure 

survival in its environment (Edwards and Marshall, 2013). In FW, the balance is 

maintained through the active uptake of ions (Na+, Cl-, Ca2+) through the gills by the 

use of ionocytes (formerly known as chloride cells (CC) or mitochondrion-rich cells 

(MRC)) and secretion of dilute urine to counter the loss of ions through the passive 

gains of water. Uptake of salts from food can also be absorbed through the intestine. 

In SW, fish must actively drink SW to absorb water and monovalent ions across the 

gut, whilst ionocytes in the gills actively sequester ions (Na+ and Cl-) from the blood 

and pump them back into SW. Divalent ions are excreted through the gut and 

kidney. An osmotic pressure around one third of SW must always be maintained 

within teleost fish regardless of whether they reside in FW or SW (Evans et al., 

2005). 	

1.3.2. Gills/Ionocytes 

Ionocytes are oval shaped cells that are generally located in the secondary lamella 

and opercular epithelium of teleost gills. They contain numerous mitochondria and 

have a network of tubular systems formed in the basolateral membrane forming an 

apical crypt, providing a large surface area for ion exchange (Figure 1.2) 

(McCormick 2001). They were formerly known as CCs when initially described by 

Keys and Willmer. (1932) in the gills of the eel Anguilla vulgaris. They suggested 

that the cells had some form of active chloride activity within the gills. This was later 

confirmed by Foskett and Scheffy (1982) in the Mozambique tilapia (Sarotherodon 

mossambicus) where they demonstrated ionocytes to be the salt (NaCl) secretory 

cell. These findings were further described and confirmed in other teleosts (Foskett 

et al., 1983; Zadunaisky 1984; Karnaky 1986). Further examination of the cells 

uncovered other functions such as acid-base regulation (Evans et al., 2005; Evans 

2008; Perry and Gilmour. 2006; Gilmour and Perry. 2009; Hwang and Perry. 2010) 
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and ammonium secretion (Wilkie 2002; Evans 2005; Weihrauch et al., 2009). 

Although crucial for homeostasis, we will focus on the ionocytes role in ion 

regulation in Atlantic salmon.  

 

 

Figure 1.2 Structural and morphological differences between the saltwater (SW) 
adapted ionocyte (A) and the fresh water (FW) adapted ionocyte (B). SW adapted 
ionocytes (A) are larger and contain a distinct apical crypt in their structure whereas 
FW adapted ionocytes (B) are generally smaller and have a broad apical surface. 
Adapted from McCormick. (2001). 

Initial research into Atlantic salmon ionocytes cells focused on the three key life 

stages – parr, FW smolt and SW smolts. A change in structure and increase in 

ionocyte cell size and abundance were observed in juvenile and FW smolt Atlantic 

salmon whilst still in FW (Langdon & Thorpe. 1984; Langdon 1985; Pisam et al., 

1988). No change was evident in parr however, giving evidence towards adaption of 

ionocytes in FW in preparation for a SW environment. The role of NKA was 

suggested to be a major contributor towards the adaption of the gill epithelium from 

ion absorbing to secretion in both these papers and in previous research (Zaugg 

and McLain. 1970; Saunders and Henderson. 1978). Based on this evidence it was 

proposed by McCormick and Saunders (1987) that increases in NKA in the gills of 

salmon was directly responsible for the development of smolt ionocytes from FW 

adaption to SW adaption. This hypothesis was proven correct when NKA 

concentrations were shown to consistently increase in gill ionocytes during smolt 

SW acclimatisation (Prunet et al., 1989; McCormick 1995,1996, 2000, 2001; 

Bystriansky and Schulte. 2011; Handeland 2013). Further analysis linked growth 

hormone (GH) along with insulin-like growth factor 1 (IGF-1) and cortisol to 

regulatory roles in osmoregulation in salmon ionocytes (see section 1.3.4). 

Subsequently two other major ion transport proteins were shown to be involved in 

A B 
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assisting with the secretion of sodium and chloride ions, Na+/K+2Cl- co-transporter 1 

(NKCC1) (Pelis et al., 2001) and a homolog of cystic fibrosis transmembrane 

conductance regulator (CTFR) (Marshal and Singer 2002). In SW the system 

involves basolateral NKA pumping 3 Na+ ions out of the cell whilst 2 K+ ions are 

pumped in. The subsequent negatively charged cell creates an electrochemical 

gradient that is utilised by NKCC to uptake Cl- into the cell. Chloride then leaves the 

cell through an apical chloride channels known as CFTR based on the electrical 

gradients. Sodium is excreted out the epithelium by the paracellular pathway (Evans 

et al., 2005). 

1.3.3 Key transporter proteins 

1.3.3.1 Na+/K+-ATPase (NKA) Sodium-Potassium Pump 

NKA, known as the sodium-potassium pump, is the enzyme responsible for active 

transport of sodium out of the cell and potassium into the cell. NKA is found in all 

animal cells and contains protein sub units α and β. The α subunits are the catalytic 

drivers and transporters containing the binding sites for ATP, Na+,K+ and its inhibitor 

ouabain (Lingrel and Kuntzweiler, 1994). The β-subunits are glycoproteins that 

stimulate the structure and folding of the protein in the basolateral membrane. Both 

subunits work together to drive the electrochemical gradient required for ion uptake, 

secretion and overall osmotic balance within the cell. A third subunit ϒ (also referred 

to as FXYD) was identified however its direct influence on the NKA process is still 

not entirely understood. It is currently believed to adapt the kinetic function of other 

cells in terms of Na+ and K+ transport (Garty and Karlish. 2006; Geering 2006). 

Recent studies however have shown that it may contribute to the pumps kinetic 

properties and assist in transmission of external signals that regulate NKA 

(Tipsmark et al., 2010). The number of α and β subunits varies between species, 

however it is generally accepted that four α (1 – 4) and three β (1 – 3) are present in 

mammals (Takeyasu et al 1990; Pressley. 1992) and four α (1 – 4) and three β (1 – 

3) in vertebrates (Blanco and Mercer. 1998). When examined in fish however, up to 

9 α subunits and 5 β subunits were found in zebra fish (Rajaro et al., 2001; Liao et 

al., 2009) and up to 5 α subtypes and 4 β subunits in rainbow trout (Richards et al., 

2003; Gharbi et al., 2004).  

The functional significance of the isoforms were poorly understood in fish. Research 

into seawater exposure in Atlantic salmon by Singer et al. (2002) observed a 

significant increase in mRNA levels of the α subunit over a 2-week period. A 

following study on rainbow trout during salinity transfer by Richards et al. (2003) 
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identified 5 isoforms of α (α1a, α1b, α1c α2a and α3), but more significantly showed 

that the isoform α1a was down regulated and α1b up regulated when transferred to 

high salinity SW. Two other isoforms, α1c was α3, were expressed but showed no 

variation in expression when transferred. This led to the suggestion that α1a and 

α1b could play a significant role in FW and SW acclimatisation. This hypothesis was 

verified in several studies in both Atlantic salmon (Mackie et al., 2005; Bystriansky el 

al., 2006; Nilsen et al., 2007; Madsen et al 2009; McCormick et al., 2009b; 

Bystriansky et al., 2011; Stefansson et al., 2012; McCormick et al., 2013a) and other 

salmonid species (Shrimpton et al., 2005; Bystriansky et al., 2007a,b; Larsen et al., 

2008). It was found that α1a was consistently expressed in high concentrations and 

α1b in low concentrations in FW, but within 24 hours of exposure to SW the 

expression of both isoforms reversed. McCormick et al., (2009b) and Madsen et al., 

(2009) showed that α1a was the FW isoform and α1b the SW isoform, and that they 

are present in distinct ionocyte cells. High concentrations of α1a are located in the 

filamental and lamellar ionocytes in FW with low concentrations of α1b in filamental 

ionocytes. The opposite expression was found once salmon are transferred to SW. 

During smolt development, α1a and α1b mRNA levels were transcribed at different 

abundance (Nilsen et al., 2007), with α1b gradually increasing as smolts developed 

salinity tolerance. A decrease of 98% was seen in α1a after SW exposure 

(McCormick et al., 2013a). This suggests that α1a ionocytes are transforming to α1b 

ionocytes gradually during the smolt development process before rapid 

transformation occurs following SW transfer (Figure 1.3). This provided a large body 

of evidence that both isoforms play key roles in the osmoregulation, adaption and 

acclimatisation of ionocytes in salmonids and other euryhaline teleosts. Their 

consistent and reliable expression in FW and SW would suggest they are potential 

biomarkers for smoltification detection in Atlantic salmon. 

1.3.3.2 Na+/K+2Cl- co-transporter (NKCC) 

Na+/K+ 2Cl- cotransporters (NKCC) are a group of proteins that are widely distributed 

throughout the cells and tissues of many animal species (Hass 1994; Hass and 

Forbush. 1998; Mount et al., 1998; Russel 2000). Cotransport of Na+, K+ and Cl- was 

first described by Wiley and Cooper (1974) where they showed net movement of 

Na+ and K+ ions were dependant on concentrations of the ions inside or outside of 

red blood cells. This was later followed by work by Geck et al. (1980) where they 

showed that movement of Na+, K+ and Cl- ions was based on electrical 

concentration gradients towards a neutral balance of ions within and outside ehrilch 

cells (tumour cells). Subsequent research discovered two distinct isoforms of NKCC; 
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NKCC1 cloned from elasmobranch rectal glands (Xu et al., 1994) and human kidney 

(Gamba et al., 1994) and NKCC-2 from human kidney (Gamba et al., 1994) and 

rabbit kidney (Payne and Forbush. 1994). NKCC1 was subsequently found in almost 

all other cell types and is regarded as the secretory isoform when found in the 

basolateral membranes of secretory epithelia. NKCC2 is exclusively found within the 

apical surface of the kidneys and is regarded as the absorptive isoform (Haas and 

Forbush. 2000; Russel 2000).  

In teleost fish NKCC1 is one of the major ion transport proteins utilised for salt 

secretion and its crucial role in uptake of Cl- in SW (Figure 1.3). It utilises low Na+ 

concentrations to recruit Cl- ions into ionocytes (see section 1.3.2). NKCC1 was 

found localised in the basolateral membranes of ionocytes in Atlantic salmon (Pelis 

et al., 2001), killfish (Fundulus heteroclitus) (Marshall et al., 2002) giant mudskipper 

(Periophthalmodon schlosseri) (Wilson et al., 2000) and other species (Cutler and 

Cramb. 2002; McCormick et al., 2003); suggesting that NKCC1 is ubiquitous in the 

ionocytes of euryhaline species. On examination of Atlantic salmon during 

smoltification, Pelis et al. (2001) showed that NKCC1 positive ionocytes increased 

during the smolting period alongside NKA activity, with 3x increase in NKCC1 from 

pre-smolts to smolts. They used the T4 monoclonal antibody developed by Lytle et 

al. (1995) to distinguish between both isoforms of NKCC. Similar findings were 

found in anadromous and landlocked salmon with a 5-fold increase in mRNA levels 

of NKCC1 (Nilsen et al., 2007). These findings suggest a strong correlation between 

NKCC1 and the adaption of Atlantic salmon to SW. Other studies on brown trout 

(Salmo trutta) (Tipsmark et al., 2002), southern flounder (Paralichthys lethostigma) 

(Tipsmark et al., 2008) green sturgeon (Acipenser medirostris) (Sardella and Kultz. 

2009) and brackish medaka (Oryzias dancena) (Kang et al., 2010) showed a similar 

increase in NKCC1 during SW adaption. This further evidenced the link between 

NKCC1 concentration and SW adaption, and suggested a significant increase in 

NKCC1 in FW smolts and other teleost species may indicate SW readiness of the 

animal. This is further supported by other research on teleosts transferred from SW 

to FW, where a marked decrease in the expression of NKCC1 has been observed 

(Tipsmark et al., 2004; Lorin et al., 2006; Tipsmark et al., 2008). 

1.3.3.3 Cystic fibrosis transmembrane conductance regulator (CFTR) 

Cystic fibrosis transmembrane conductance regulator (CTFR) is another ion 

transport protein that acts as a Cl- channel across epithelial cell membranes (Figure 

1.3). It was first discovered when gene sequences for cystic fibrosis were conducted 

in humans (Rommens et al., 1989; Riordan et al., 1989; Kerem et al., 1989). 
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Subsequently, Bear et al. (1992) showed that a recombinant CFTR protein regulated 

concentration of Cl- in the cells and suggested that CFTR was the Cl- channel. The 

CFTR protein was found to be expressed in the airway submusocal glands of 

humans (Jacquot et al., 1993). More specifically in the basal and apical membranes, 

secretory granules and cell cytoplasm. This led to research into CFTRs presence 

and function in other animals. Through electrophysiological measurements the 

CFTR anion channel was identified to be in the apical crypt membrane of ionocytes 

in killfish, and suggested as an active secretor of Cl- in SW teleosts (Marshall et al., 

1995). Immunolocalisation studies later confirmed the location of CFTR in the apical 

crypt in killfish (Mickle et al., 2000) and mudskippers (Periophthalmus schlosseri) 

(Wilson et al., 2000).  Additional work on killfish transferred from FW to SW revealed 

that CFTR was rapidly expressed and increased after 1 hr, and continued to 

increase up until 24 hrs (Singer et al., 1998; Marshall et al., 1999). It also increased 

in parallel with NaCl secretion in ionocytes. This suggested that CFTR had a 

significant role in SW adaptation, and due to its fast regulation it could be the initial 

protein expressed to buffer the immediate effects of SW before the rest of the 

osmoregulatory factors are initiated.  

 

Figure 1.3. The changes in gill ionocytes from α1a dominant in fresh water (FW) to 
α1b dominate in seawater (SW). In FW parr (A) only α1a ionocytes are present. 
During smoltification (B) α1a ionocytes still dominate with development of α1b 
ionocytes beginning. The α1b are small and do not extend out above pavement cells 
in to the open environment and are therefore mainly dormant and inactive. (C) 
During SW transfer α1a ionocytes completely disappear and α1b ionocytes increase 
in size, breaking through the pavement cells, exposing them to the environment and 
becoming active. Upregulation of cystic fibrosis transmembrane conductance 
regulator (CFTR) and Na+/K+ 2Cl- cotransporters 1 (NKCC1) begin during 
smoltification and increase substantially after SW exposure. Adapted from 
McCormick (2013b). 

A C B 



	 	 31	

Two isoforms of CFTR were isolated and cloned from Atlantic salmon (Chen et al., 

2001) termed CFTR1 and CFTR2. Initial tests on Atlantic salmon FW to SW 

exposure indicated CFTR1 mRNA was significantly higher than basal levels over a 

2-week period, whereas CFTR2 was only temporarily expressed at a high rate for 

the first 24 hrs (Singer et al., 2002). Further analysis supported this when Nilsen et 

al. (2007) monitored both isoforms in land locked and anadromous juvenile Atlantic 

salmon. They found CFTR1 mRNA levels continually increased over smolting 

months, however CFTR2 mRNA levels did not. This suggested CFTR1 is the 

dominant isoform associated with SW adaption, however they questioned the role of 

CFTR2 due to its stability in FW. Further research by Stefansson et al. (2012) 

contradicted those of Singer et al. (2002) with CFTR1 findings showing a significant 

reduction in mRNA levels of both isoforms of CFTR post SW transfer. Although 

some contrasting data was found in Atlantic salmon on the expression of each 

isoform pre and post SW transfer, the evidence gathered on the high numbers of 

CFTR found within the apical membrane of ionocytes in other euryhaline species 

during FW to SW transfer (Singer et al., 1998; Marshall et al., 1999; Marshall et al., 

2002; McCormick et al., 2003; Tang and Lee. 2007) suggests CFTR plays an 

important roll in conjunction with NKA and NKCC in SW acclimatisation (McCormick 

et al., 2013b). 

1.3.4 Endocrine control in smoltification 

The endocrine system is a key component in regulating environmental stimulus and 

signalling the development and adaption of most organisms. It has the intrinsic 

ability to co-ordinate responses to all or specific parts of the body though 

interpretation of internal stimuli, such as body development and/or adaption in 

regards to external stimuli such as temperature, day length or salinity. These stimuli 

can result in one or likely more changes in physiology, morphology, biochemistry 

and behaviour that will have a major impact on the performance and survival of the 

animal (Figure 1.4).  
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Figure 1.4. The process of the endocrine system in regards to external 
environmental stimuli and the subsequent internal system pathways that result in 
changes in behaviour, physiology and morphology in the animal. Adapted from 
McCormick. (2009a) 

Understanding the complex systems involved in stimulation of specific target tissues 

in teleosts is particularly difficult due to their divergent evolutionary histories 

producing large variations in their morphology, physiology, behaviour and 

environment (Bern. 1967). A large body of research has been undertaken to 

understand the endocrinology of salmonids, specifically in their ability to 

osmoregulate. The primary endocrine systems focused on were growth hormones 

(GH), Insulin-like growth factor 1 (IGF-1), cortisol and prolactin. 

1.3.4.1 Growth hormone (GH) and Insulin-like growth factor 1 (IGF-1) 

Initial experiments on stimulation of GH in salmoinds indicated that GH promoted 

both growth and SW tolerance (Smith. 1956; Komourdjian et al., 1976; Clarke et al., 

1977; Miwa and Inui. 1985). Due to GH promoting growth in salmonids, and with the 

knowledge that a greater size is associated with salinity tolerance (McCormick and 

Saunders. 1987; Hoar. 1988) tests were carried out on large juveniles to see if GH 

still promoted SW adaption independently of this (Bolton et al., 1987; Saunders et 

al., 1998, Devlin et al., 2000). This research confirmed that GH had an influence on 

SW tolerance independent of fish size. A subsequent review by Sakamoto et al. 

(1993) highlighted the many salmonid species that showed correlation between 

salinity tolerance and an increase in plasma GH. Further research has shown that 

an increase in plasma GH is associated with indicators of smolt development in 

Atlantic salmon, with parr showing low levels of plasma GH as opposed to smolts 

that present large increases in plasma GH (Bjornsson et al., 1997; McCormick et al., 

2000, 2001, 2007; Bjornsson et al., 2011). Agustsson et al. 2001, showed the 

mechanisms involved during smoltification within the GH system in Atlantic salmon. 
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Increases in GH secretion and synthesis increased plasma GH levels whilst GH 

clearance rates increased with GH receptor binding. This promotes the activation of 

the GH-IGF-1 axis during peak smolt SW adaption. Studies by Nilsen et al. (2008) 

on landlocked salmon showed no increase in GH level during the normal smolting 

periods in anadromous salmon, again further highlighting the critical role of 

endocrine control during SW adaption.  

Studies into increased plasma levels of IGF-1 showed a similar trend to GH in 

salmonids with increased SW tolerance (McCormick et al., 1991; McCormick 1996, 

2000, 2002). IGF-1 levels were also shown to increase in parr, and to a higher 

degree smolts during spring (McCormick et al., 2007). This trend has not been 

shown in all studies however, with IGF-1 plasma levels from FW to SW showing no 

change in expression (Nilsen et al., 2008). IGF-1 was suggested to mediate and 

control the expression level of GH in promoting salmon SW adaption during 

smoltification.  

GH has been shown to be the main activator for the stimulation of IGF-1 gene 

expression in the liver and gills of salmonids (Cao et al., 1989; Duan and 

Plisetskaya. 1993; Sakamoto et al., 1995) as well as growth (McLean and 

Donaldson. 1993; Bjornsson et al., 1997). This in theory agrees with the dual 

effector theory of action proposed by Green et al. (1985) stating that GH and IGF-1 

work as a GH/IGF-1 axis. However, GH levels do not systematically control IGF-1 as 

IGF-1 has been shown at high levels during low levels of GH under varying 

environmental factors and in SW acclimatised fish (Laresen et al., 2001; Pierce et 

al., 2002; Stefansson et al., 2003, 2008). Two studies focussing on endocrine 

changes during migration of Atlantic salmon indicated that GH levels significantly 

dropped after several weeks at sea, but IGF-1 remained at higher levels 

(Stefansson et al., 2003; McCormick et al., 2013c). Steffanson et al. (2008) however 

suggested that a high expression of IGF-1 is maintained through stimulation of the 

hepatic growth hormone receptor (GH-R). GH and IGF-1 have been shown to 

increase the number and size of ionocytes in salmonids (Sakamoto et al., 1993; 

Pruent et al., 1994; Xu et al., 1997) as well as increase NKA activity (Madsen et al., 

1995; McCormick et al., 2000; McCormick, 2001). GH has also been shown to up 

regulate NKCC (Pelis and McCormick, 2001). However these hormones do not 

exclusively control smoltification, and the impact of the steroid hormone, cortisol, 

upon SW adaptation also plays a critical role. 
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1.3.4.2 Cortisol 

Cortisol, the major corticosteroid in teleost fish, was the original hormone associated 

with a role in SW acclimatisation due to its role in salt secretion. It was first 

discovered to increase during SW acclimation in Atlantic salmon smolts (Fontaine 

and Hatey. 1954), and subsequently in Mozambique tilapia (Assem and Hanke. 

1981) and coho salmon (Oncorhynchus kisutch) (Specker and Schreck. 1982). 

Ionocytes in Atlantic salmon parr and smolts showed a large increase in their 

cortisol receptors during spring with a 10 fold increase in plasma cortisol levels in 

smolts compared to parr (Shrimpton and McCormick. 1998a; McCormick et al., 

2007). Similar increases were observed in anadromous but not landlocked salmon 

(Nilsen et al., 2008). An increase in NKA activity and NKCC with increased cortisol 

has also been observed (Madsen et al., 1995; Pelis and McCormick. 2001; 

McCormick et al., 2000, 2008; Tipsmark and Madsen. 2009) similar to those 

observed by GH and IGF-1, suggesting a GH-IGF-1-Cortisol axis in SW 

acclimatisation. Early examination of this complex in Atlantic salmon revealed that a 

combination of both cortisol and GH infections increased NKA activity and SW 

tolerance more than individual injections of each hormone (Madsen. 1990; 

McCormick 1996) indicating a combined action between them. A combined IGF-1 

cortisol injection was found to be no different than individual injections of IGF-1 and 

cortisol however (Seidelin et al., 1999). The interactions were further shown when 

injections of cortisol into FW Atlantic salmon promoted higher mRNA abundance of 

the α1a isoform of NKA, but injection of GH alone had no effect on this isoform. 

However, both GH and cortisol combined injections increased α1b mRNA 

abundance (Tipsmark and Madsen. 2009). In the presence of cortisol both GH and 

IGF-1 gill receptor expression increased. Recent research by McCormick et al., 

(2013a) supports this and further states that GH may act as a switch for cortisol from 

ion secreting (FW) to ion uptake (SW). This is due to co-infections of GH and 

cortisol decreasing the mRNA abundance of the α1a isoform and increasing the 

mRNA abundance of the α1b isoform in juvenile Atlantic salmon. This body of 

research suggests that GH and IGF-1 work in synergy with cortisol to promote the 

adaption of osmoregulation in the gills from FW to SW in most euryhaline teleosts 

(Figure 1.5).  
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Figure 1.5. The endocrine control of juvenile Atlantic salmon in seawater (SW). 
Growth hormone (GH), Insulin like growth hormone 1 (IGF-1) and cortisol interact to 
promote the physical changes in osmoregulatory organs required for SW adaption. 
Adapted from McCormick. (2009a). 
 

1.3.4.3 Prolactin  

Prolactin has been shown over many studies to be the promoter of ion uptake and 

inhibitor of ion secretion in many teleost species, increasing and promoting retention 

of Na+ and Cl- ions (Foskett et al., 1983), and is thought to be the FW adapting 

hormone in teleosts (Manzon. 2002). In several salmonid species plasma prolactin 

levels were found to increase over the winter and early spring before a decrease 

during the smolting periods of April and May, and after SW exposure (Prunet et al., 

1986; Young et al., 1989; Yada et al., 1991). Prolactin receptor mRNA has also 

been found to decrease during smoltification and after 1 month of SW exposure in 

anadromous Atlantic salmon, with prolactin ionocyte receptors also decreasing or 

remaining stable (Kiilerich et al., 2007; Nilsen et al., 2008). Its effect on NKA activity 

in salmonids is still to be determined with conflicting research indicating decreases 

(Madsen and Bern. 1992; Shrimpton and McCormick. 1998b) and no effect (Madsen 

et al., 1995; Seidelin and Madsen. 1997; 1999; Tipsmark and Madsen. 2009). It has 

also been shown to reduce the size and stimulate formation of smaller ionocytes 

(Evans et al., 2005). Although there is conflicting evidence with NKA activity, the 

evidence gained so far indicates that prolactin is a prominent hormone in FW 

acclimatisation. It has been proposed that prolactin and cortisol work together in 

controlling both FW and SW adaption dependant on the concentration of GH and 

prolactin present (McCormick. 2001; Sakamoto and McCormick. 2006). As prolactin 

and GH are antagonists to one and other (Madsen and Bern. 1992; Seidelin and 
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Madsen. 1997) it appears whichever is in higher concentrations will stimulate an ion 

absorption (FW) or ion secreting (SW) effect on fish. It has also been suggested that 

there may be a distinct receptor of cortisol that is the FW acclimatiser and SW 

acclimatiser. In teleosts, recent molecular data has shown that there are two 

different receptors which mediate cortisol; glucocorticoid receptors (GR) and 

mineralocorticoid-like receptor (MR). GR receptors were original thought of as the 

primary mediator of cortisol (Mommsen et al., 1999), however in salmonids MR was 

revealed to have an equal affinity to cortisol (Strum et al., 2005). Subsequent 

research has indicated that GRs regulate ion balance (Prunet et al., 2006) and 

suggests that cortisol plays a dual role in FW and SW acclimatisation, as GR was 

shown to have a distinctive role in hypo-osmoregulation during smoltification and 

MR in hyper-osmoregulation in desmoltification of Atlantic salmon (Kiilerich et al., 

2007). This suggests that the MR and prolactin may work in synergy as the 

controllers of FW adaption in salmonids. 

1.3.5 Aquaculture control 

In Atlantic salmon the development of parr-smolt transformation consists of 

physiological, morphological and behavioural changes in preparation for SW 

acclimatisation (McCormick and Saunders. 1987; Hoar. 1988). Many environmental 

factors are essential for the development of salmon leading up to and during the 

smoltification period. The most important of these is photoperiod. In migratory 

salmon smolts photoperiod is the key influencer of development (Hoar. 1976). 

Increased periods of light have been shown to promote out of season (winter – early 

spring) and advanced parr-smolt development in Atlantic salmon (McCormick et al., 

1987; Duston and Saunders. 1990, 1995), proposing the feasibility of controlling 

parr-smolt smoltification development throughout the year and producing a second 

production group of off-season salmon in winter. Continuous light however inhibits 

normal smolt characteristics such as salinity tolerance, gill NKA activity and critical 

parts of the endocrine system (McCormick et al., 1987; Solbakken et al., 1994; 

Steffanson et al., 2007). Enodcrine factors such as GH, IGF-1 and cortisol have all 

been shown to be influenced by photoperiod, which works as a trigger in the light-

brain-pituitary axis (Nilsen et al., 2008; Bjornsson et al., 2011). GH specifically 

appears to be the most responsive, increasing in concentration days after an 

advanced photoperiod (McCormick et al., 1995) but remaining low in continuous 

light (Bjornsson et al., 1995; Bjornsson et al., 2000). To respond to increased 

photoperiods a 6-week short day photoperiod was suggested as a minimum 
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requirement for parr-smolt transformation success (Duncan and Bromage. 1998; 

Handeland and Stefansson. 2001). 

Photoperiod is widely regarded as the seasonal Zeitgeber that triggers the 

development and preparation of Atlantic salmon for migration and is suggested to 

increase the sensitivity of the fish to other environmental cues (McCormick et al., 

1998). One of these cues is temperature, which plays a significant role in the parr-

smolt adaption. Increases in temperature up to 16°C have been shown to promote 

early smolt development including increased NKA activity in Atlantic salmon, as well 

as controlling physiological, morphological and behavioural development (Johnston 

and Saunders. 1981; Solbakken et al., 1994; Handeland et al., 2000, 2013; 

McCormick et al., 2000). However, McCormick et al. (2002) tested both a normal 

and short day length on a normal and advanced increased temperature regime, and 

found that although NKA levels increased faster in the increased temperature 

regime and normal day length, the overall NKA activity peaked at the same time as 

the normal temperature and normal day length regime. Full smoltification was also 

not achieved under short day length and increased temperature regime, suggesting 

that increased temperature can influence smolt development but is not a zeitgeber 

like photoperiod. Following on from this research, Handeland et al. (2004) showed 

that peak NKA activity was seen around 350 degree days (dd) regardless of the 

temperature Atlantic salmon were reared in. Although increases in NKA were seen 

in higher temperatures, all fish groups NKA peaks were obtained around the same 

time frame. Further research by Zydlewski et al. (2005) appeared to support this as 

they found that the effects of temperature were based on temperature experience 

over time, as opposed to meeting a particular temperature threshold to begin and 

terminate smoltification. McCormick et al. (2000) also indicated that low 

temperatures limit the response of Atlantic salmon to increased day length by 

supressing the response of the endocrine system. Suggesting the smolt window is 

controlled more predominately by the endocrine system’s response to photoperiod 

than temperature. From this it can be established that photoperiod initiates the time 

window of the parr-smolt adaption to SW, but other factors such as temperature 

work to influence the successful adaptions and transition into SW. 

During early aquaculture farming production of Atlantic salmon, the natural lifecycle 

of the fish was followed to produce SW ready smolts after 12 – 18 months post 

hatching. These in season smolts were termed S1 smolts. The process involved 

selecting the broodstock in early spring/summer and holding them on site prior to 

stripping of the eggs in autumn/winter. The eggs were then fertilised and left to 
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hatch. Generally after 12 weeks alevins will hatch and grow into parr over the 

subsequent year. In the following year the parr were stimulated by the natural 

seasonal patterns of longer light and rising temperature during spring. The parr 

would then undergo smoltification and were transferred to SW pens. Since then, 

subsequent research into photoperiod and temperature manipulation was carried 

out (as mentioned previously) to produce a faster protocol for off-season SW ready 

smolts from as little as 6 months post hatching. Smolts produced through this 

process were originally named S1/2, but are more commonly referred to as S0 

smolts. These smolts vary from their S1 counterparts as they can be produced out 

of season, usually between July – November. This process involves the artificial 

increase of water temperature and manipulation of photoperiod utilising long day 

and short day regimes to promote faster growth and simulating a full year life cycle 

within a 6-month period. The process of smoltification can be further manipulated 

through the use of special feeds and salt treatments. This can help promote the 

healthy growth and development of the fish during smoltification to limit mortality 

during SW transfer. In reference to the study conducted in Chapter 2, a special feed 

called SuperSmolt® was used. The SuperSmolt® feed helps promote and stimulate 

the hyposmoregulatory changes in salmon during the smolt window. The feeding 

regime involved the use of 24-hour light, which allowed for 24-hour feeding. This 

feed was generally administered over a 4 – 6 week period at each farm. The feed 

period could be extended or reduced at each farm’s discretion. The varying factors 

that increased or decreased the feeding period were based on the time of year the 

feed was first administered and on the results of SW readiness testing. Fish were 

assessed at time points throughout this period and transferred based on their SW 

readiness.  

The crucial period in which smolts adapt themselves morphologically and 

physiologically in preparation for SW is known as the smolt window. This window 

can vary but is primarily dependant on the environmental factors of photoperiod and 

temperature (as mentioned previously). If the fish remain within a FW environment 

for an extended period of time (~150dd) during this window a process known as 

desmoltification can occur. Desmoltification is the process in which most of the vital 

development aspects for SW survival are lost, such as salinity tolerance and 

regression of morphology back to a parr like state (Folmar. 1982; Hoar. 1988).  

Other environmental factors such as acid rain/run off, and the subsequent increase 

of inorganic aluminium (Al) in water can cause debilitating conditions and mortality in 

fish (Hesthagen, 1989; Campbell et al., 1992; Kroglund and Finstad. 2003; Scott 
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and Sloman. 2004; Kroglund et al., 2007, 2008; Monette and McCormick. 2008; 

Nilsen et al., 2010; Nilsen et al., 2013). Inorganic Al accumulates in the gills 

disrupting their structure and function. Moderate exposure to smolts lead to poor 

osmoregulation and poor physiological adaptions, and high concentrations lead to 

mortality (Kroglund and Finstad. 2003; Kroglund et al., 2008; Monette and 

McCormick. 2008). These acidic episodes during smoltification were shown to have 

a significant impact on their survival after SW migration and overall adult return rates 

(Kroglund et al., 2007; Nilsen et al., 2010). It was shown to take up to 2 weeks for 

smolts to recover in FW after exposure to 2 – 7 days of high pH and Al (Nilsen et al., 

2013). Reduction in NKA activity has been identified with high concentrations of Al 

and pH (Kroglund et al., 2007; Nilsen et al., 2010) however in contrast to this other 

research has shown no change in NKA activity (Monette and McCormick. 2008; 

Nilsen et al., 2013). Isoform mRNA abundance of α1a and α1b were found not to be 

altered during exposure, however after transfer back to FW α1a was upregulated at 

an increased rate and α1b down regulated (Nilsen et al., 2013), suggesting Al and 

high pH delay the preparatory secretion of the α-subunits. 

1.4 Biomarkers for Atlantic salmon production 
A biomarker or biological marker is generally defined as a measurable indicator of 

normal biological processes or condition within an organism. They can be used to 

indicate changes in biological processes that impact the physiological state of an 

organism, such as a disease state. The National Institute of Health defined it as “a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacological responses to a 

therapeutic intervention (Atkinson et al., 2001). Consistent and reliable biological 

expression is the most important pre-requisite for a reliable biomarker. A biomarker 

widely used in most eukaryotes including Atlantic salmon is elongation factor-1a 

gene (Ef1a). This is due to its production being ubiquitous across all eukaryotes 

(Sasikumar et al., 2012). It was original suggested by Olsvik et al. (2005) and is now 

currently used as an Atlantic salmon biomarker for gene expression to identify good 

quality RNA/cDNA due to its crucial role in translation during protein synthesis. 

As detailed in section 1.3, NKA activities consistently increases across normal parr-

smolt development. This is a good starting parameter for isolating a biomarker for 

smoltification, as this is a consistent biological process that occurs in all developing 

Atlantic salmon (see section 1.3). The identification of the isoforms α1a as the FW 

isoform and α1b as the SW isoform, and their changes in mRNA abundance during 
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smoltification (see section 1.3.3.1) allows the utilisation of these isoforms as 

potential biomarkers due to the consistency of their up and downregulations during 

this period. The α1a isoform could be used to monitor the full smoltification process 

following its high mRNA abundance at the initial stages of smoltification to a gradual 

decrease over time as they adapt into SW ready smolts (see section 1.3.3.1). 

Expression levels of α1b mRNA could be monitored during and after SW transfers to 

ensure fish are fully adapted by observing whether α1b mRNA is significantly 

upregulated post transfer. 

Other molecular biomarkers have been suggested for Atlantic salmon focusing on 

gene expression during bacterial and viral infections. Salmon macrophages infected 

with Piscirickettsia salmonis indicate 71 gene transcripts that were either 

upregulated or downregualted during infection (Rise et al., 2004). Macrophage and 

dendritic cells infected with ISAV indicated up to 24 genes highly expressed during 

infection (Workenhe et al., 2009). In both these cases a mixture of functional and 

immune genes were either upregulated or downregulated. Focusing on a number of 

these genes showing high and consistent expression changes would potentially 

allow for viral infection monitoring of these diseases. The potential of immune genes 

will be touched upon in the following section on antiviral immunity (section 1.5) with 

focus on erythrocytes as potential biomarkers for innate immunity. 

1.5 Antiviral immune response 

1.5.1 Overview of the immune system 

In vertebrates there are two types of defence mechanisms: innate and adaptive. The 

innate immune system is controlled by germline encoded pattern recognition 

receptors (PRRs), which detect specific parts of invading pathogens known as 

pathogen-associated molecular patterns (PAMPs) (Akira et al., 2006). The adaptive 

immune system is controlled by two types of antigen receptors, T-cell and B-cells 

that respond to specific antigens presented by infected cells. These cells generate a 

fast and specific response to eliminate the pathogen and produce immunological 

memory for quicker response during secondary infections of the pathogen 

(Banchereau et al., 2000). The innate and adaptive immune system work together to 

produce an effective immune response (Carrol and Prodeus. 1998; Carrol. 2004; 

Clark and Kupper. 2005). An example of this is the innate complement system that 

can be activated through the adaptive immune response (Carrol. 2004; Sarma and 

Ward. 2011). The innate immune system is the more primitive of the two systems. 

The evolution of innate and adaptive systems began from basic unicellular amoebae 
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that could phagocytose (Desjardins et al., 2005), to recognition of self and non-self 

in invertebrates (Cooper. 2010), to basic innate and partial adaptive immune 

function supported by leucine rich repeats (LRRs) in jawless vertebrates (Litman et 

al., 2010). It wasn’t until jawed cartilaginous teleosts that adaptive immunity evolved 

with major histocompatibility complexes (MHC), T cell receptors and 

immunoglobulins present. Further sophisticated evolutionary adaptions and 

complexities were seen in the adaptive immune system in higher vertebrates 

(Cooper and Alder. 2006; Buchmann. 2014; Zimmerman et al., 2014). This 

evolutionary adaption has led to differences in the immune system structure 

between different vertebrate species. A notable evolutionary difference is between 

mammals and teleosts; in mammals bone marrow is crucial for maintaining a 

functional immune system, but an equivalent is absent in fish. Head kidney in fish 

however have been shown to contain similar more primitive functioning 

haematopoiesis as seen in bone marrow, as well as being the primary site for 

antibody production (Tian et al., 2009; Secombes and Wang. 2012). Although 

immune structures can vary germ-line encoded PRRs are generally evolutionary 

conserved across vertebrates and invertebrates (Buchmann et al., 2014). The 

immune system has a series of cellular and humoral components, which control the 

immune response. The cellular components are primarily leucocytes, which consist 

of macrophages, monocytes, neutrophils, eosinophils, lymphocytes (T cells, B cells 

and large granular lymphocytes) and auxiliary cells (basophils, mast cells and 

platelets). Humoral components consist of antimicrobial proteins (AMPs), antibodies 

and complement proteins such as cytokines, which signal the pathways and activate 

the innate and adaptive immune response.  

1.5.2 Cellular components of the innate immune response 

1.5.2.1 Macrophages 

Macrophages are specialised cells that act as a first response to pathogenic 

infections and orchestrate the subsequent development of the specific immune 

response. They are free roaming cells that are present within most tissues. These 

cells recognise PAMPs through PRRs located on their cell membrane or 

phagosomes (Mosser. 2003; Gordon. 2007; Dale et al., 2008). These can consist of 

TLRs, C-type lectin receptors (CLRs), and complement receptors (See section 1.5.3 

for more detail). Once PRR-PAMP recognition has occurred the macrophage 

engulfs the pathogen by phagocytosis and breaks it down with digestive enzymes in 

the lysosome. Antigens of the pathogen are then presented for CD4 cells (T-helper 

cells) of the adaptive immune response by MHC class II proteins on the cell surface.  
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The active macrophage also produces pro-inflammatory cytokines such as tumour 

necrosis factor-α (TNF-α), Interleukin-1β (IL-1β), IL-6, IL-12 and IL-18 that activate 

other chemokine’s in recruiting inflammatory leukocytes (neutrophils and 

monocytes) to the site of infection, and produce nitric oxide though induction of the 

NO synthase gene (Mosser. 2003; Gordon. 2007; Dale et al., 2008). Once an 

infection has occurred more macrophages can be differentiated and recruited from 

monocytes to respond to the pathogens, and increase the innate and adaptive 

response. These responses work together to promote a coordinated local and 

systematic immune response. Research into macrophage activity to pathogenic 

infections in teleosts has shown that the interactions are the same as those found in 

mammals (Hodgkinson et al., 2015). The activation and interactions between PRR-

PAMPs and subsequent innate immune system response have been documented in 

bacterial stimulated salmonid macrophages (MacKenzie et al., 2003; Rise et al., 

2004; Iliev et al., 2005, 2006; Ewart et al., 2008; Boltaña et al., 2011) and virally 

stimulated (Falk et al., 1995; Iliev et al., 2005, 2006; Xu et al., 2016).  

1.5.2.2 Neutrophils 

Neutrophils are phagocytosising cells that are one of the first recruited to an 

inflammatory site and work together with macrophages to combat initial pathogen 

infections (Silva. 2010). They locate sites of infection through chemotaxis following 

chemical gradients of chemokines released by macrophages such as IL-8 and 

interferon gamma (IFN-γ), or by the complement system. (Mayadas et al., 2014) 

Activated neutrophils can kill invading pathogens by phagocytosis, production of 

reactive oxygen species (ROS), or by degranulating to release cytotoxic granules 

and generating neutrophil extracellular traps (NETs) (Brinkmann et al., 2004; 

Nahthan. 2006; Mayadas et al., 2014). These characteristics are shared in teleosts, 

however mammalian neutrophils account for the majority of leucocyte cells present 

in the body (30 – 70%) whereas around <5% of leukocytes are neutrophils in most 

teleosts (Silva. 2010; Havixbeck et al., 2015). There is limited research on the role of 

salmonid neutrophils during viral infections (Ronneseth et al., 2006; Montero et al., 

2009) however it is assumed that due to the functional similarities to mammalian 

neutrophils that they play a similar role during viral infections. 

1.5.2.3 Natural Killer (NK) cells 

Natural killer (NK) cells are lymphocytes that act as an alternate form of innate 

immunity by targeting and destroying invading pathogens through detection of 

abnormalities on cell surfaces, such as glycoproteins and bacterial or viral 

molecules by its cell receptors (Vivier et al., 2008). NK cells are activated by Type I 
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intefereons (IFN I) from viral compromised cells and/or macrophage-derived 

cytokines IL-2, IL-12, IL-18 and IL-15. In turn the NK cells induce Type II IFNs (IFN 

II) and TNF-α when exposed to TLR ligands, triggering other parts of the innate 

immune response (Savori et al., 2004; Vivier et al., 2008). Once bound to a target 

pathogenic cell, NK cells secrete perforin, a cytolytic protein, that forms pores in the 

cytoplasm, that in turn facilitate the release of secretory granules (granule serine 

protease, granzymes) into the cell inducing apoptosis (Trapani and Smyth. 2002; 

Voskoboinik et al., 2010). 

In several teleost species NK like cells and non-specific cytotoxic cells (NCCs) have 

been described (Nakanishi et al., 2011). NCCs are thought to be the evolutionary 

precursor to mammalian NK cells (Evans and Jaso-Friedmann. 1992). NCCs act in 

a similar manner to mammalian NK cells by targeting and destroying pathogenic 

cells using granule exocytosis pathways (Praveen et al., 2004). In salmonids limited 

research has been conducted, however NCCs were shown to have variable effects 

on IPNV in rainbow trout (Yoshinaga et al., 1994) but have a positive response to 

viral hemorrhagic septicaemia virus (VHSV) infections (Utke et al., 2008). 

1.5.2.4 Antimicrobial peptides (AMPs) 

Antimicrobial peptides (AMPs) are small molecules (~10 – 50 amino acids) of highly 

conserved peptides divided into several subgroups based on their amino acid 

composition and structure. They have been shown to assist in the immune response 

against bacterial and viral pathogens in most vertebrates and invertebrate species 

(Diamond et al., 2009). In mammals AMPs are produced and synthesised by 

epithelial cells, macrophages, neutrophils, monocytes and NK cells upon 

phagocytosis of the pathogen and through pathogen – receptor binding (Ganz. 

2003). In phagocytosed pathogens the AMPs migrate and fuse to the pathogen and 

begin the synthesis and release of highly concentrated defensins, enhancing the 

antimicrobial ability of the cell (Ganz 2003; Klotman and Chang. 2006; Diamond et 

al., 2009). AMPs have also been shown to initiate cheomtaxis activity to recruit more 

neutrophils to the site of infection (Diamond et al., 2009). 

In teleosts over 90 AMPs have been identified and classified into five major families 

of AMPs; β-defensins, cathelicidins, hepcidins, histone-derived peptides and the 

teleost specific piscidins (Wang et al., 2009; Masso-Silva and Diamond. 2014). 

AMPs are mainly secreted in mucosal tissues as first points of defence but can also 

be expressed from liver kidney and spleen (Masso-Silva and Diamond. 2014). They 

have been shown to play a similar antimicrobial role in the innate immune response 
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against pathogenic infections as in mammals, (Smith et al., 2010) as well as 

contributing to the inflammatory response through neutrophil recruitment and 

enhancement of phagocytosis (Masso-Silva and Diamond. 2014). In salmonids all 

five families have been discovered over several different species (Masso-Silva and 

Diamond. 2014). In vitro testing of a rainbow trout β-defensin displayed antiviral 

action against VHSV (Falco et al., 2008). Following this an in vivo test using head 

kidney leucocytes of rainbow trout stimulated with Poly I:C showed upregulation of 

four β-defensins (Casadei et al., 2009). Hepcidin has also been shown to be 

upregulated in rainbow trout macrophages during Poly I:C stimulation and injection 

of infectious hematopoietic necrosis virus (IHNV)(Chiou et al., 2007). It appeared to 

be a first response to infection as the abundance of hepcidin decreases as the 

infection progresses and IFNs and interferon stimulated genes (ISGs) abundance 

increase. 

1.5.2.5 Cytokines  

Cytokines are small proteins that are critical in cell signalling during the immune 

response. They are produced by numerous immune cells such as macrophages in 

response to PAMP-PRR recognition of an invading pathogen. The initial cytokines 

stimulated by TLRs such as pro inflammatory cytokines TNF alpha, IL-1β and IL-16 

cause a cascade effect stimulating other immune responsive cytokines (e.g. IFNs) 

promoting both the innate and adaptive immune response (Dinarello 2007). The 

major cytokine families found in mammals (IL-1s, TNF, Cysteine knot cytokines, 

Type I and Type II α helical cytokines) have also been discovered in teleosts (Zou 

and Secombes. 2016). This implies that the teleost and mammalian innate immune 

responses contain similar structural properties in combating pathogenic infections, 

although the subsets and individual cytokines within these families may have 

evolved differently to one another. The following section on innate immune response 

(1.5.3) will cover some of the cytokines involved in viral infections of both mammals 

and teleosts. 

1.5.3. The innate immune response 

1.5.3.1 Patten recognition receptors (PRR) and pathogen associated molecular 

patterns (PAMP) 

As previously mentioned, the innate immune response is initiated by the recognition 

of PAMPS of invading pathogens by PRRs. PRRs can then either present at the cell 

surface or signal to the host through intracellular mechanisms by using a multitude 

of signalling pathways through utilisation of adaptor molecules, kinases and 
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transcription factors (Akira and Takeda. 2004). These pathways signal the 

activation, synthesis and reprogramming of the transcriptome resulting in the 

production of antiviral and inflammatory cytokines, other immune signalling proteins 

and immunoreceptors which work together as the early host response to infection 

(Akira et al., 2006). PRRs are not highly specific and can potentially bind to 

numerous molecules with similar recurring patterns related to pathogenic and non-

pathogenic origin. Invading pathogens that can signal PRR-PAMP recognition can 

be bacterial, fungal and viral. The most common bacterial PAMPs that stimulate 

PRRs are from components of their cell wall such as lipopolysaccarides (LPS), 

peptidoglycan and RNA and DNA from the unique structures of the invading 

bacterium (Boltaña et al., 2011). For fungal infection β-glucan from the cell wall is 

the most common PAMP (Brown and Gordon. 2001). Viral PAMPs are detected by 

either viral motifs on the cell surface by transmembrane PRRs or by cytosolic 

recognition of conserved parts of double stranded (dsRNA) or single stranded RNA 

(ssRNA) and DNA (Wilkin and Gale. 2010). The main class of PRRs that detect viral 

PAMPs include the transmembrane Toll like receptors (TLRs) and cytosolic RIG-I 

like receptors (RLRs: Retinoic acid-inducible gene I, RIG I; melanoma 

differentiation-associated gene 5, MDA5; Laboratory of genetic and physiology 2, 

LGP2). As viral infections are the motivation for part of this research we will focus on 

these exclusively. 

1.5.3.2 Toll like receptors (TLRs) 

TLRs are type 1 transmembrane proteins characterised by 3 major domains 

consisting of LRRs, transmembrane and intracellular. TLRs function as both an 

antimicrobial defence promoting the expression of type I IFNs, and as an 

inflammatory response promoting the inflammatory cytokines IL-1β, IL-6 and TNF-α. 

Currently 12 types of TLRs are known for mammals (Akira and Takeuchi. 2006) with 

two identified as PRRs for ssRNA (TLR7 and TLR8) (Heil et al., 2004) and one for 

dsRNA (TLR3) (Alexopoulou et al., 2001). TLR signalling is initiated by dimerisation 

of the TLRs after binding to their PAMP. This sends a signal for the recruitment of 

one of four Toll/IL-IR (TIR) receptor domain cytosolic adapter molecules specific to 

the TLR that began signalling. For TLR3 the adaptor molecule utilised is TIR 

domain-containing adaptor inducing interferon-β (TRIF) that recruits and initiates 

phosphorylation of NF- κβ activating kinase and interferon regulator transcription 

factor 3 (IRF-3) which translocate to the nucleus and induces production of IFNβ 

and type I IFNs (Kawai and Akira. 2009). For TLR7, myeloid differentiation primary 

response 88 (MyD88) is the adaptor molecule used which activates interleukin-1 
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receptor-associated kinase 1 (IRAK1) and Iĸβ kinase α (IKKα) to promote 

phosphorylation and transfer of IRF7 to the nucleus to induce type I IFN production. 

TLR8 follows a similar pathway activating NF- κβ and signaling an antiviral 

response. (Kawai and Akira. 2009). TLR7 has been shown to be the essential TLR 

for overall IFN production in mammals (Honda et al., 2005) however the same is not 

seen in teleosts. 

There are 3 primary TLRs that are responsible for viral PAMP detection in teleosts. 

TLR3 in fish is an ortholog of the human TLR3 that is also located intracellularly and 

is one of the two TLRs responsible for identifying dsRNA viruses (Pietretti and 

Wiegertjes. 2014). TLR 22 is an aquatic exclusive TLR that has been discovered in 

various teleost species (Hirono et al., 2004; Meijer et al., 2004; Rebl et al., 2007; 

Matsuo et al., 2008). It is found on the cell membrane surface and induces an IFN 

response by Poly I:C stimulation (Hirono et al., 2004) and in the presence of dsRNA 

virus (Matsuo et al., 2008). TLR3 and TLR22 are distinct from one another but 

appear to play a dual role in the recognition of dsRNA. TLR3 appears to recognize 

shorter dsRNA and TLR22 longer dsRNA and implies that they both have a 

functional role in the type I IFN induction pathway (Matsuo et al., 2008; Pietretti and 

Wiegertjes. 2014). TLR7 appears to be the PRR for viral ssRNA and promotes both 

the production of type I interferons and pro inflammatory cytokines (Pietretti and 

Wiegertjes. 2014). 

1.5.3.3 Retinoic-acid-inducible gene I (RIG-I) and RIG-I like receptors (RLR) 

The RLRs are cytosolic PRRs that detect replicating viral RNA in the cytoplasm 

during replication in the infected host cell, contrary to TLRs, which detect invading 

virus in the endosome (Kawai and Akira 2006). This occurs in most cell types and 

instigates an anti-viral response by initiating type I IFN production (Akira et al., 2006; 

Yoneyama and Fujita. 2008; Kawai and Akira. 2009). The RLRs consist of 3 

members that are all structurally related, RIG-I, MDA5 and LGP2. All 3 contain a 

DExD/H helicase domain, which is involved in unwinding DNA or RNA, and C-

terminal repressor domain (CTD), which is used to bind to viral RNA (Cui et al., 

2008; Takahasi et al., 2009). RIG-I and LGP2 have been shown to recognise both 

ssRNA and dsRNA with MDA5 recognising short dsRNA and preferentially Poly I:C 

(Kato et al., 2005, 2006; Takahasi et al., 2009). Both RIG-I and MDA5 contain a 

tandem caspase recruitment domain (CARD) – like regions, which are essential for 

interactions with adaptor molecules in antiviral response (Chen et al., 2017). RLRs 

have been identified in some teleost species (Zou et al., 2010; Chang et al., 2011; 
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Ohtani et al., 2010, 2011; Xu et al., 2016) and have been shown to have the same 

structures as mammals. During viral infection in fish RIG-I and MDA5 are bound to 

viral RNA where they recruit mitochondrial antiviral signalling protein (MAVs) and 

begin phosphorylation of IRF-3/IRF7, with those transcriptional factors translocated 

to the nucleus to induce the transcription of type I IFNs, ISGs and inflammatory 

cytokines (Figure 1.6) (Chen et al., 2017). 

Figure 1.6 Teleost retinoic acid-inducible gene I (RIG-I) and RIG-I like receptor 
(RLR) – signalling pathway to viral infection (Highlighted in yellow). Binding of 
MDA5 or RIG-I to single or double stranded RNA through pattern recognition 
receptor (PRR) pathogen associated molecular patterns (PAMP) recognition 
occurs. Recruitment of mitochondrial antiviral signalling protein (MAVs) and 
association of TRAF3 instigates phosphorylation and activation of interferon 
(IFN) regulatory factor 3 (IRF3) and or 7 (IRF7). These transcriptional factors 
are then translocated into the nucleus and bind with the IFN stimulated 
response element (ISRE) motif that signals the production of type I IFNs and 
IFN-stimulated genes (ISGs). Adapted from Chen et al., (2017). 
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1.5.3.4 Interferons (IFN) 

IFNs are a part of the class II helical cytokine family and are a crucial part of the 

innate immune response in jawed vertebrates. They were first discovered in 1957 

(Isaac and Lindenmann. 1957) and subsequently were found to exist in early jawed 

vertebrates (Gnathostomes) and preserved throughout the evolutionary changes 

and gene duplications of teleosts as they branched off and evolved into amphibians, 

reptiles, birds and mammals (Secombes and Zou. 2017). They are grouped into 

type I II and III based on structure, function and receptors. Type I and III have been 

shown to be the main instigators of antiviral response through specific signalling 

pathways (Samuel. 2001; Kotenko et al., 2003 Randall and Goodbourn. 2008) 

whereas type II (IFN- γ) are involved in both the innate and adaptive immune 

response to both viral, bacterial and protozoal infections (Schoenborn and Wilson. 

2007). In teleosts type I IFN has been phylogenetically classified into six groups 

(IFN a - f) (Aggad et al., 2009; Zou et al., 2007, 2014, 2018; Chang et al., 2009; Sun 

et al., 2009). Group I IFNs (a, d and e) are present within all teleosts and in most cell 

types and tissues, whereas group II IFNs (b, c and f) have currently only been found 

within salmonids, cyprinids and Pleuronectiformes (Aggad et al., 2009; Chang et al., 

2009; Zou et al., 2014; Pereiro et al., 2014) and are predominately expressed in 

primary leukocytes and the head kidney (Zou et al., 2007; Sun et al., 2009). 

Salmonids at present have the highest gene copy number of IFNs in jawed 

invertebrates containing all known teleost type I IFNs (a, b, c, d, e, f) (Zou et al., 

2014; Sun et al., 2009). This is likely due to ancient IFNs being conserved during the 

genome duplication event in teleosts. 

Initial tests into Atlantic salmon type I IFNs showed that salmonid cell lines 

containing IFNa were protected against IPNV and induced the ISG Mx protein as 

well as stimulating IFN transcripts in the head kidney from Poly I:C stimulation. 

Subsequent work on Atlantic salmon showed that IFNa was the main subtype 

induced through the RLR pathway, and IFNb and c through the TLR3/TLR22 

pathway (Svingerud et al., 2012). The ISGs Mx, viperin, Interferon-stimulated gene 

15 (ISG15) and Interferon-induced protein 5 (IFIT5) were all shown to be induced by 

IFNa, b and c expressing plasmids through intramuscular injections. IFNa was 

shown to only induce ISGs at the site of injection, however IFNb and c 

systematically induced ISGs in the head kidney heart and liver (Chang et al., 2014). 

The importance of IFNc in long-term antiviral protection was further highlighted by its 

ability to protect fish from ISAV 8 weeks post injection (Chang et al., 2014). This was 

also supported in previous ISAV infections where IFNc showed inhibition of the virus 
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along with IFNa1, which induced Mx and ISG15 (Svingeruld et al., 2013). Similar 

mRNA expression patterns have been found in rainbow trout spleen IgM+ cells, 

where VHSV and Poly I:C upregulated TLR3 and type I IFNs (Abos et al., 2015).  

In teleosts two members of type II IFNs have been identified in salmonids, IFN-γ and 

IFN-γ related molecules (IFNγrel) (Zou et al., 2005; Robertsen. 2006; Sun et al., 

2011). The antiviral activities of these IFNs in salmonids are still not fully 

understood, however IFN-γ were shown to weakly induce Mx expression in rainbow 

trout cells (Zou et al., 2005) and protected Atlantic salmon cells against IPNV and 

SAV 3 (Sun et al., 2011). IFN-γ was shown to have a weaker effect than IFNa in 

protection against IPNV and SAV 3 but was more effective at inducing guanylate 

binding protein (GBP), IRFs and Interferon gamma-induce protein 10 (IP-10). IFN-γ 

was suggested to have a direct role in induction of Mx and ISG15 as IFNa 

antibodies could not completely stop IFN-γ upregulation of these ISGs, indicating 

IFNa and IFN-γ had a dual role in ISG induction (Sun et al., 2011). Further evidence 

suggesting IFN-γ plays a lesser but likely dual role in upregulation of ISGs with IFNa 

has been shown in SAV 3 infected salmonids. IFNa was shown to upregulate ISGs 

and induce an antiviral state preventing virus replication, whereas IFN-γ was able to 

upregulate ISGs to a lesser extent and was unable to prevent virus replication (Xu et 

al., 2010). 

Type III IFNs have yet to be identified in teleosts (Boudinot et al., 2016). 

The initiations of IFN signalling through TLRs and RLRs to a viral infection, and the 

IRFs produced have been outlined in the two previous sections (1.5.3.1 and 

1.5.3.2). However IFNs actions are further mediated through IRFs interaction in the 

Janus kinase – signal transduction and activator of transcription signalling pathway 

(JAK-STAT) to produce antiviral ISGs. This involves the IFNs binding to the JAK1 

and 2 proteins, then recruitment and phosphorylation of STAT, which is then 

translocated to the nucleus and initiates or inhibits the transcription of ISGs 

(Aaronson and Horvath. 2002; Rawling et al., 2004; Yoshimura et al., 2007). The 

JAK-STAT pathway controls the IFN response through a negative feedback loop 

using the ISG suppressor of cytokine signalling (SOCs) (Yoshimura et al., 2007). 

This ISG can increase and decrease cellular signalling of IFN during infections and 

has been shown to negatively effect the IFN pathways in salmonids (Wang and 

Secombes. 2008, Wang et al., 2010; Skjesol et al., 2014). 
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1.5.3.5 Interferon stimulated genes (ISGs) 

As mentioned in the previous sections ISGs are antiviral genes that are stimulated 

by IFNs. Currently a large number of ISGs have been described in mammals, which 

has led to investigations into the evolutionary development of ISGs produced in 

other vertebrate species. A genomic survey into Atlantic salmon ISGs indicated up 

to 117 genes associated with responsiveness to viral infection (Krasnov et al., 

2011a). The biological effects of many of these genes are still to be determined, 

however a core set of genes that are induced in most viral infections have been 

studied in more depth (Verrier et al., 2011) of which we will briefly summarise below. 

Mx genes are almost ubiquitous among vertebrates and are evolutionary conserved 

large GTPases. They are controlled and stimulated by type I and III IFNs against 

mainly ssRNA and dsRNA infections. They do this by inhibiting the transcription of 

viruses during replication in the cytoplasm (Verhelst et al., 2013). Antiviral activity of 

Mx has been shown against multiple viruses in salmonids. Atlantic salmon cell lines 

infected with ISAV showed an increase in Mx production, however resistance to the 

virus and reduction in replication varied (Jensen and Robertsen. 2002; Larsen et al., 

2004; Kibenge et al., 2005; Sun et al., 2011). Similar results were shown for IPNV 

and SAV with upregulation of Mx, but varied resistance to the virus was observed in 

some cell lines and fish compared to others (Jensen and Robertsen. 2002; Larsen 

et al., 2004; Strandskog et al., 2011; Xu et al., 2012; Grove et al., 2013). It appears 

Mx does contribute to the innate immune response, but its effectiveness appears to 

vary between viruses.  

Protein kinase R (PKR) is a protein that is involved in cell proliferation and 

apoptosis. It is activated by binding to dsRNA where it undertakes 

autophosphorylation of eukaryotic initiation factor 2 (eIF-2α), which impedes protein 

synthesis, and translation of viral mRNA (Garcia et al., 2006). Initial studies on 

teleosts found that human PKR could phosphorylate eIF-2α of rainbow trout and 

zebrafish and that IPNV infection promoted an increase in eIF-2α. This suggested a 

fish PKR was present and had similar antiviral properties as in humans (Garner et 

al., 2003). Several PKR like proteins were discovered in other teleosts including a 

variant named PKZ that specifically binds to dsDNA as well as dsRNA (Verrier et al., 

2011). Its role in assisting in viral defence was shown in Atlantic salmon TO cells 

and Chinook embryo cells (Bergan et al., 2008). 

ISG15 is an ubiquitous molecule that conjugates to target proteins in a process 

known as isgylation (Morales and Lenschow. 2013). It appears to have a broad 
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range of targets and will specifically target newly translated proteins (Durfee et al., 

2010). Research on ISG15 has shown it has antiviral properties inhibiting several 

human and mice viruses (Morales and Lenschow. 2013). The isgylation of IRF3 by 

ISG15 was shown to retain activated IRF3 longer and therefore increase the type I 

IFN response creating a positive feedback loop (Lu et al., 2006; Shi et al., 2010). In 

salmonids an ISG15 homologue was first discovered in rainbow trout leukocytes 

infected with VHSV (O’Farrell et al., 2002). Further research on Atlantic salmon 

indicated that ISG15 is upregulated by Poly I:C, ISAV, SAV 3 and IPNV and found to 

actively bind to ISAV and type I IFNa and b proteins This suggests ISG15 acts as an 

antiviral constituent and promotes the type I IFN response in teleosts in a similar 

way to higher vertebrates (Røkenes et al., 2007; Xu et al. 2010).. 

Vig-1 (VHSV-induced gene), later known as Viperin (virus inhibitory protein 

endoplasmic reticulum-associated, IFN-inducible), was first discovered to be highly 

upregulated in rainbow trout leucocytes induced with VHSV (Boundinot et al., 1999). 

The gene and its homologs were subsequently discovered in other mammals and 

vertebrates. In mammals, viperin interacts with numerous RNA and DNA viruses 

and is induced by all 3 IFNs types (I II and III). It inhibits protein secretion, 

preventing replicating viruses from budding and releasing from infected cells 

(Hinson and Cresswell. 2009; Fitzgerald et al., 2011). In salmonids further research 

on rainbow trout macrophages and fibroblast cell lines showed an upregulation of 

viperin against chum salmon (Oncorhynchus keta) reovirus (CSV), dsRNA and Poly 

I:C (DeWitte-Orr et al., 2007). A similar induction of Viperin was seen in Atlantic 

salmon macrophages infected with ISAV (Workenhe et al., 2009) and experimentally 

challenged salmon with SAV (Grove et al., 2013).  

1.5.4 Erythrocytes in immune response 

Erythrocytes are the most abundant cell type circulating in the blood of vertebrates. 

They are characterised as oval shaped and contain respiratory globin pigments. Of 

these respiratory pigments, the haemoglobins are the most common proteins and 

give the cells their distinct red colour. They vary in cell structure with erythrocytes of 

non-mammalian species containing a nucleus and cytoplasm bound organelles 

(Claver and Quagila. 2009). The life span of erythrocytes varies between vertebrate 

groups, with human cells having a half-life of ~120 days and teleosts varying 

between species from 50 – 500 days (Fischer et al., 1998; Morera and MacKenzie. 

2011; Witeska. 2013). The effects of cell ageing in teleosts have been shown in 

rainbow trout with reduction in cellular components and total RNA levels, as well as 

a reduction in aerobic energy production as the cells age (Lund et al., 2000; Phillips 



	 	 52	

et al., 2000). The number of erythrocytes varies in vertebrates from 1 – 5 x 106 mm3 

and appears to increase in number on an evolutionary scale, with teleosts having 

the least and mammals having the highest (Claver and Quaglia. 2009; Morera and 

MacKenzie. 2011). 

Erythrocytes develop from hematopoietic stem cells (HSCs) though the blood cell 

formation process of haematopoiesis followed by erythropoiesis. Both processes are 

highly conserved between teleosts and other vertebrates (Paffet-Lugassay et al., 

2007). The principally accepted basic function of erythrocytes is the transport of 

oxygen (O2) and carbon dioxide (CO2) throughout the body utilizing the respiratory 

globin pigments for gas exchange to and from cells. However, several other 

functions have been attributed to erythrocytes including sugar transport, cell 

proliferation, redox homeostasis, antimicrobial activities and antiviral response 

(Morera and Simon. 2011). Nelson. (1953) first suggested erythrocytes might be 

involved in the innate immune response. He found erythrocyte receptors bound to 

the immune complexes of invading bacteria and proposed the term immune 

adherence (AI). Subsequent research reported that human erythrocytes had 

numerous receptors on their surface (Hess and Schifferli. 2003) with further 

evidence showing erythrocytes assisting in T cell proliferation, cytokine secretion 

and IL-2 expression in humans (Kalechman et al., 1993; Porto et al., 2001). Due to 

nucleated erythrocyte cells being derived from hematopoietic origin, and containing 

similar cellular components and organelles, it would suggest that they could have 

the ability to contribute to the immune response.  

Several studies on teleost erythrocytes have been undertaken over the years 

showing different immune based attributes. One of the first detected was the 

phenomenon known as erythrocyte rosetting. Erythrocyte cells attach by cell 

receptors and fully surround an invading pathogen. This was shown to occur in 

rainbow trout erythrocytes (Passantino et al., 2002), with a subsequent follow up 

study indicating the erythrocytes also secreted cytokine-like factors to influence 

macrophage functions (Passantino et al., 2004). Since then AMPs have been 

isolated from rainbow trout erythrocytes (Fernandes and Smith. 2004) where they 

were shown to have antibacterial proeinaceous activity against gram-positive 

bacteria. They were also found in the haemoglobin of channel catfish (Ictalurus 

punctatus, Rafinesque) (Ullall et al., 2008) where they showed antimicrobial activity 

against white spot disease (Ichthyophthirius multifilis). More recently antimicrobial 

peptide Nk-lysin (Nkl) were found to be expressed in turbot erythrocytes 
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(Scophthalmus maximus) and contributed to the antiviral defence against VHSV 

(Piereiro et al., 2017). 

Specific research into the viral response of teleost erythrocytes provided more 

evidence of their function and contribution in the innate immune response. 

Salmonids erythrocytes stimulated with Poly I:C were shown to upregulate type I 

IFNs, TLRs and ISGs (Workenhe et al., 2008; Morera et al., 2011). Viral infections of 

Atlantic salmon erythrocytes with ISAV and PRV also showed production and 

increases of TLRs, RLRs IFNs and ISGs at varying degrees of abundance 

(Workenhe et al., 2008; Finstad et al., 2014; Wessel et al 2015; Dahle et al., 2015). 

A recent study in rainbow trout contrastingly showed either no change or a slight 

downregulation in IFNs and ISGs with erythrocytes infected with VHSV (Nombela et 

al., 2018). These findings suggest that teleost erythrocytes have a much more 

complex series of functions than first thought and that there is a reliable amount of 

information from both teleosts and other vertebrate erythrocytes indicating, that they 

contribute in some way to the immune response.  

1.6 Atlantic salmon viruses and disease 

1.6.1 Salmon alpha virus (SAV) pancreas disease and sleeping disease 

Salmonid alpha virus (SAV) is a member of the Togaviridae family in the genus 

Alphavirus. It is a small spherical shaped virus consisting of a viral envelope and 

nucleosapid. Within the nucleosapid is a single-strand + sense strand RNA genome 

which contains two open reading frameworks (ORF). The 3’ end of the genome 

codes for structural proteins (capsid E1, E2, E3 and 6k) and the 5’ end for non-

structural proteins (nsP1, P2, P3 and P4) (Strauss and Strauss. 1994; Powers et al., 

2001). There are currently 6 known subtypes of SAV (1 – 6) that have been 

characterised (Fringuelli et al., 2008). The virus causes pancreas disease (PD) in 

Atlantic salmon in the British Isles (SAV 1, 3 – 6) (Fringuelli et al., 2008; Graham et 

al., 2012) and in both Atlantic salmon and rainbow trout in Norway (SAV 3) 

(Hodneland et al., 2005). The virus also causes a different disease in FW reared 

rainbow trout called sleeping disease (SD) (SAV2) throughout Europe (Castric et al., 

1997; Graham et al., 2003; McLoughlin and Graham et al., 2007). SAV 2 was 

thought to be exclusive to rainbow trout in FW, but has also been described in 

Atlantic salmon causing PD in the UK (Fringuelli et al., 2008) and more recently in 

Norway (Hjortaas et al., 2013). This shows the variation and range of the virus, as 

different subtypes infect different fish based on species, habitat and location (Figure 

1.7).  
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Figure 1.7 Map showing the distribution of all 6 types of Salmonid alphavirus (SAV) 
across Europe. Adapted from Jansen et al., (2017). 

PD was first described in Scotland in 1976 (Munro et al., 1984) and subsequently in 

Ireland in 1984 (McArdle and Crummy. 1985) and Norway in 1989 (Poppe et al., 

1989). More outbreaks were recorded in the following years in Ireland (Crockford et 

al., 1999) and Norway, however records for prevalence in Scotland were not 

available due to it not being classed as a notifiable disease at the time. A recent 

survey on 104 active sites in Scotland showed SAV prevalence at 18% (Lester et 

al., 2011) though not all fish infected with SAV showed clinical signs of PD, 

indicating PD prevalence at <18%. PD generally occurs after 1 – 2 years post SW 

transfer. Although numerous subtypes exist, histopathological studies have shown 

similar pathological and morphological similarities for both salmon and rainbow trout 

(McLoughlin and Graham. 2007; Taksdal et al., 2015). External PD symptoms are 

limited but include low or non-feeding fish and abnormal swimming behaviour. 
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Internal symptoms are characterised by severe skeletal and muscle lesions, 

inflammation and degradation, leading to muscle myopathy, complete loss of 

exocrine pancreatic tissue and petechial haemorrhages (McLoughlin et al., 2002; 

McLoughlin and Graham. 2007; Taksadal et al., 2007). A detailed sequential study 

by McLoughlin et al. (2002) observed that the major organs with detrimental lesions 

were the pancreas, heart and skeletal muscles. Acute and chronic pancreatic 

lesions along with muscle and heart myopathy are most commonly found within 

infected fish. 

SD was first recorded in rainbow trout in France (Boucher et al., 1994) and is 

characterised by lethargic fish with swollen abdomens lying on their side at the 

bottom of the tank due to necrosis of skeletal red muscle. Its internal symptoms are 

similar to that of PD with lesions in the exocrine of pancreas, heart and skeletal 

muscle (Boscher et al., 2006). 

1.6.2 Piscine orthoreovirus (PRV) and heart and skeletal muscle inflammation 

(HSMI) 

Piscine orthoreovirus (PRV) is a double stranded (ds) RNA virus in the family 

Reoviridae. It has a genome of 10 RNA segments consisting of 3 size classes, 3 

large (L1, L2 and L3), 3 medium (M1, M2 and M3) and 4 small (S1, S2, S3, and S4) 

where the 5’ end of the S1 and S2 segments are postulated to be the ORF (Palacios 

et al., 2010). PRV was first designated as piscine reovirus but has since been re-

classified as an orthoreovirus due to its closer association to this genus (Markussen 

et al., 2013; Kibenge et al., 2013). PRV has been described in both wild and farmed 

Atlantic salmon in Norway (Palacios et al., 2010; Lovoll et al., 2012; Garseth et al., 

2013) and farmed Atlantic salmon in Ireland (Rodger et al., 2014). PRV or PRV like 

viruses have been detected in both farmed and wild rainbow trout, Coho salmon, 

Sockeye salmon (Oncorhynchus nerka), Chinook salmon (Oncorhynchus 

tshawytscha) and Sea trout (Salmon trutta) in the US and Canada (Marty et al., 

2015; Siah et al., 2015; Garver et al., 2016), Chile (Siah et al., 2015), Japan 

(Takano et al., 2016) and Norway (Garseth et al., 2013).  

PRV is the suspected infection agent for heart and skeletal muscle inflammation 

(HSMI) in Atlantic salmon (Palacios et al., 2010). HSMI was first detected in Atlantic 

salmon in a Norwegian farm in 1999 (Kongtrop et al., 2004a). The disease usually 

occurs in month 5 - 9 post SW transfer of salmon, but has been found to effect some 

fish within a few weeks of SW transfer (Kongtrop et al., 2004b) and in pre-smolt FW 

farms (Lovoll et al., 2012). The disease is characterised by lesions in the heart and 
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red skeletal muscle causing inflammation, and chronic deterioration and failure of 

the heart and muscles (myocarditis and myopathy), leading to mortality rates as high 

as 20% (Kongtrop et al., 2004a, 2004b). External symptoms are limited, but are 

associated with abnormal swimming and low to non-feeding fish. The similarities 

between internal and external symptoms are closely related to both CMS and PD 

(Table 1.1). 

Table 1.1 Comparison of the histopathological lesions in Atlantic salmon infected 
with Cardio myopathy syndrome (CMS), Heart and skeletal muscle inflammation 
(HSMI) and Pancreas disease (PD) (Modified from Yousaf et al., 2013) 

These similarities in symptoms led to PRV being proposed as the infectious agent of 

CMS. However, research by Haughland et al. (2011) indicated PMCV as the 

causative agent of CMS. PRV was still seen in high titres in CMS infected fish 

suggesting it was acting as a possible opportunist (Lovoll et al., 2010; Haugland et 

al., 2011). Further evidence by Garseth et al. (2013) proposed that PRV may not be 

the direct cause of HSMI but acts an opportunist in HSMI outbreaks, as high titres 

were found in wild Atlantic salmon but caused no symptoms associated with HSMI. 

PRV was also found ubiquitously in viral co-infection research by Wiik-Nielsen et al. 

(2016), further suggesting the virus is present in varying titres in Atlantic salmon but 

does not seem to cause disease. Currently there is still no definitive evidence 

associating PRV as the primary cause of HSMI outbreaks, but due to its high titres 

and presence within infected fish during outbreaks it is likely it plays a key role. In 

2017 PRV was experimentally shown to cause HSMI (Wessel. 2017). 

PRV infects Atlantic salmon erythrocytes, with more than 50% of erythrocytes PRV 

positive during trials (Finstad et al., 2014). This was also successfully conducted in 

erythrocytes ex vivo (Wessel et al., 2015). Genes associated with the innate 

immune system were shown to be up regulated by erythrocytes during infections of 

PRV and non-immune genes supressed (Wessel et al., 2015; Dahle et al., 2015). 

Tissue/organ Lesions description CMS HSMI PD 

Heart Epicarditis + + + 

 Compact-myocarditis and degeneration - + + 

 Spongy-myocarditis and degeneration + + + 

Skeletal 
muscle 

Inflammation and degradation - + + 

Liver Necrosis of hepatocytes - - + 

Pancreas Necrosis of exocrine tissue - - + 
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This suggests that salmon erythrocytes have the ability to mount an innate immune 

response towards PRV and also signal a change in transcription and translation of 

other non-immune genes. 

1.6.3 Piscine myocarditis virus (PMCV) and cardio myopathy syndrome (CMS) 

PMCV is a recently discovered double stranded RNA virus designated to the family 

Totiviridae. The virus contains 3 ORFs; ORF1 is thought to encode the major capsid 

proteins, ORF2 encodes RNA-dependant RNA polymerase sequence (RdRP) and 

ORF3 appears to be translated as a separate novel protein that is unseen in any 

currently described Totiviridae family, however it has been shown to have some 

similarities to a chemokine superfamily motif (Haugland et al., 2011).  

PMCV is regarded as the causative agent of CMS (Haugland et al., 2011) and 

currently only affects Atlantic salmon generally between 12 – 18 months post SW 

transfer (Brun et al., 2003). There has been recent research to show that fish as 

early as 5 – 6 months post SW transfer have been susceptible to the disease as well 

(Wiik-Nielsen et al., 2016). The disease was discovered in Norway in 1985 (Armin 

and Trasti. 1988, Ferguson et al., 1990) and later in the Faroe Islands (Poppe and 

Sande. 1994), Scotland (Rodger and Turnbull. 2000) and in migrating salmon in 

Norway (Poppe and Seierstad. 2003). CMS is characterised by lesion promoting 

inflammation and degradation of the ventricular spongious myocardium and atrium 

tissue within the heart. This can lead to pericardial tamponade, blood clots in the 

liver and heart followed by sudden heart failure and mortality (Ferguson et al., 1990; 

Poppe and Seierstad. 2003). Like HSMI, external disease symptoms are difficult to 

identify with healthy looking fish suffering sudden mortality. Disease symptoms can 

include swelling and skin haemorrhages, decreased feeding and slow or erratic 

swimming (Roger and Turnbull. 2000). 

CMS was shown to be transmissible between Atlantic salmon in Scotland (Bruno 

and Noguera. 2009) and Norway (Fritsvold et al., 2009) after infections of tissue 

homogenates of CMS infected fish into naïve fish. Following this, infections of 

PMCV through intraperitoneal injection (IP) were shown to cause cardiac pathology 

similar to CMS in posts smolts (Timmerhaus et al., 2011). The disease is able to 

spread and infect cohabiting fish in open water (Haugland et al., 2011) as well as 

spread horizontally in SW between farms (Jensen et al., 2013). PMCV was also 

discovered in wild Atlantic salmon in 2012 by Garseth et al. (2012). Annual 

outbreaks of CMS reported in Norway have ranged between 49 and 89 (Jensen et 

al., 2013) between 2005 – 2012, indicating the financial impacts this can have on 
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fish farm production, particularly as this disease is prevalent nearer the time of 

harvest. 

1.6.4 Infectious salmon anemia virus (ISAV) and infectious salmon anemia 

(ISA) 

Infectious salmon anemia virus (ISAV) is a highly infectious orthomyxovirus 

assigned to the genus isavirus of which it is the only member. The virus is 

enveloped and spherical in shape, consisting of 8 negative sense single stranded 

RNA segments, which encode 10 proteins (Falk et al., 1997; Mjaaland et al., 1997; 

Clouthier et al., 2002). Nine of these proteins are structural and consist of two 

surface glycoproteins, a haemaggulutinin-esterase (HE) protein, fusion proteins, a 

matrix protein, a nucleoprotein and accessory proteins (RNA polymerase PB1, PB2 

and PA) (Biering et al., 2002; Falk et al., 2004; Aspehaug et al., 2005; Kibenge et 

al., 2007); see Aamelfot and Falk. (2014) for an in-depth review on structure and 

function. It is the causative agent of infectious salmon anemia virus (ISA) in Atlantic 

salmon (Falk et al., 1997; Kibenge et al., 2004) and was first discovered in Norway 

in 1984 (Thorud and Djupvik. 1988). Since then disease outbreaks have been 

reported in salmonids across Europe (Roger et al., 1998; Nylund et al., 2003; Plarre 

et al., 2005), Canada (Mullins et al., 1998; Bouchard et al., 1999; Lovely et al., 

1999), USA (Bouchard et al., 2001) and Chile (Godoy et al., 2008; Mardones et al., 

2009). Fish inflicted with the disease can suffer severe anemia and structural 

damage to internal tissues that can lead to mortality. 

Clinical signs of ISA are similar to that of the 3 viruses mentioned previously with 

lethargic sluggish swimming behaviour near the surface, low to non-feeding fish, 

darkening and haemorrhage of the skin, and pale gills and fins. Internal symptoms 

can be variable but usually involve swollen spleens; petechial haemorrhage in swim 

bladders and muscles; and haemorrhages and necrosis of the kidney, liver and 

renal intestine (Evensen et al., 1991; Mullins et al., 1998, Roger et al., 1998, 

Bouchard et al., 2001, Simko et al., 2000). Controlling the spread of ISAV is 

problematic, as replication of ISAV has been experimentally shown in brown trout 

(Nylund and Jakobsen. 1995) and rainbow trout (Nylund et al., 1997) without any 

disease outbreaks or symptoms, as well as in wild populations (Plarre et al., 2005); 

suggesting that some salmonids may be dormant carriers of the disease. Other 

species of fish may be carriers of ISAV as it has been shown to survive and 

replicate within herring (Clupea harengus) (Nylund et al., 2002) and Atlantic cod 

(Gadus morhua)(Grove et al., 2007) without causing any clinical or disease 

symptoms.  
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ISAV was shown to replicate within erythrocytes and induce IFNa production 

(Workenhe et al., 2008). No subsequent research on ISAV erythrocyte interactions 

has been conducted at this time however. 

1.7 Detection systems for Atlantic salmon aquaculture 
management 
With the abundance and variability of viruses that can potentially infect and cause 

mortality on a large scale in salmon aquaculture systems, it is of upmost importance 

that robust and reliable detection platforms are created. Development of qRT-PCR 

assays has been shown to improve sensitivity in detection of numerous fish viruses; 

SAV (1 – 3) (Hodneland and Endressen. 2006), ISAV (Munir and Kibenge. 2004) 

and piscine nodavirus (PNV) (Hick and Whittington, 2010; Panzarin et al., 2010). 

Although qRT-PCR assays have been developed for PRV (Palacios et al., 2010) 

and PMCV (Løvoll et al., 2010; Haugland et al., 2011), both assays were based on 

initial sequencing information and not as a detection tool. SAV currently has no 

detection assays for SAV 4, 5 and 6, however a recent multiplex assay has 

attempted to cover all subtypes in a multiplex assay, but was only able to detect 1, 2 

and 5 (Shi et al., 2017). The similar external and internal symptoms associated with 

SAV, PRV and PMCV as well as evidence showing co-infection of 2 or all 3 of the 

viruses (Lovoll et al., 2010; Haugland et al., 2011; Wiik-Nielsen et al., 2016) shows 

the difficulties in determining which virus Atlantic salmon are infected with. Having a 

diagnostic tool that can distinguish between viruses and show the quantities of each 

virus present within the animal would help improve management greatly, by 

ensuring the correct steps are taken once results are known to mitigate and control 

the viral loads present on the farm. This idea can expand to non-viral detection with 

biomarkers and other genes for rapid detection of other biological processes in 

Atlantic salmon. 

Multiplex diagnostics is a possible route incorporating multiple virus assays into one 

detection platform. Several marine based multiplex assays have been developed 

(Khawsak et al., 2008; Kou et al., 2008; Panichareon et al., 2010), however non-

specific binding and competition for resources can make multiplex development 

difficult (Henegariu et al., 1997; Brownie et al., 1997; Polz et al., 1998), and is likely 

one of the limiting factors in development of these in the marine field. 

Mobile platforms have been successfully developed for rapid screening of avian 

influenza virus (Wahed et al., 2015) and Ebola virus (Faye et al., 2015). Introducing 

mobile onsite detection platforms for viruses in aquaculture could reduce time to 
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result, improve response times and overall control outbreaks on farms. Several days 

could be saved from the sample being sent from the fish farm to the laboratory, and 

the following analysis and return of the result. This again could be expanded for the 

use of biomarkers and other gene based analysis in management of Atlantic 

salmon. 

This thesis aims to research, develop and answer the following objectives: 

1. To develop and validate a novel NKA qRT-PCR assay utilising the α1a 

mRNA marker for determination of smoltification and compare it to the 

current industry standard NKA activity assay. 

2. To develop and validate a multiplex qRT-PCR assay for in lab and onsite 

detection of SAV, PRV and PMCV 

3. To characterise erythrocyte innate immune response to viral infection of 

ISAV and SAV. 
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Chapter 2: Na K+ ATPase smoltification 

2.1 Introduction 
The Atlantic salmon like many other salmonid species, exhibits an anadromous 

lifecycle, where hatching and early development are confined to FW, followed by a 

migratory phase into SW. During this period fish will have a significant growth in size 

before completing their adult lifecycle by returning to spawn in FW (Folmar. 1980; 

Hoar. 1976). Due to the high salinity differences between FW and SW, salmon must 

adapt their physiology to cope with this osmotic challenge. During the juvenile 

development stage of salmon, many factors and adaptions take place within the fish 

due to physical and environmental cues. Throughout this developmental stage 

environmental factors, mainly seasonal photoperiod and temperature will begin 

initiation of the smoltification process, preparing the fish for transition into the marine 

environment (Duston and Saunders. 1990; McCormick et al., 2000; Bjornsson. 

2007; Handeland. 2013).  

Smoltification is a biological process driven by the endocrine system in which 

salmon parr are able to adapt into SW ready smolts through a number of 

morphological, physiological, behavioural and biochemical changes (Hoar 1976; 

Folmar and Dickhoff. 1980; Barron. 1986; McCormick. 1987; Dickhoff. 1997; 

McCormick. 2001; Ebbesson et al., 2008; McCormick. 2009a Stefansson. 2012). 

Many studies have been undertaken to examine the physiological, behavioural and 

morphological changes that occur in salmon during the smoltification period 

(McCormick et al., 2013b). These have primarily focused on several endocrine 

factors such as growth hormones (GH) and thyroid hormones (Prunet et al 1989; 

McCormick et al 1995, 1996, 2000 2001; Agustsson et al., 2001; Ebbesson et al., 

2008; Bjornsson et al., 2011), insulin-like growth factor 1 (IGF-1) (McCormick et al., 

1995, 1996, 2000; Dickhoff et al., 1997; Agustsson et al., 2001) and cortisol 

(McCormick. 1996, 2000, 2001, Kiilerich et al., 2007, Ebbesson et al., 2008). From 

this research, it was found that GH and cortisol play a significant role in 

osmoregulation in salmon by inducing development of iononcytes for SW regulation 

in the gills. The gill epithelium changes from ion absorbing to ion secreting from the 

migratory stage of FW to SW. McCormick and Saunders (1987) suggested that the 

transport protein NKA was responsible for salt regulation and seawater 

acclimatisation in salmon.  

NKA concentration has been shown to consistently increase in the gills during smolt 

SW acclimatisation (Prunet et al., 1989; McCormick. 1995, 1996, 2000, 2001; 
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Bystriansky and Schulte. 2011; Handeland. 2013). It also appeared to work in 

conjunction with two other ion transport proteins, NKCC, which assists in salt 

secretion through gill chloride cells (Pelis et al., 2001); and CFTR, where chloride 

leaves through an apical channel based on favourable electrical gradients (Marshal 

and Singer. 2002). This led to more research into the effects of NKA expression in 

salmon and its potential use as an indicator for smoltification. Five isoforms of NKA 

were identified and characterised in rainbow trout; α1a, α1b, α1c α2a and α3 

(Richards et al., 2003). Of the five isoforms, α1a and α1b were directly expressed 

following SW transfers. It was found that α1a expression decreased sharply when 

transferred to SW whilst α1b increased sharply. These isoforms and expression 

patterns were later confirmed in Atlantic salmon (Mackie et al., 2005; Bystriansky et 

al., 2006; Nilsen et al., 2007; Madsen et al., 2009). Further data on exposure of 

mature SW living salmon to FW showed a 7 fold increase in expression of α1a and 

60% decrease in α1b (Bystriansky and Schulte. 2011). This trend was also 

confirmed in wild salmon (Stefansson et al., 2012). It was found that α1a is the FW 

isoform and α1b the SW isoform (McCormick et al., 2009b; Madsen et al., 2009). 

This provides growing evidence towards the importance of the two isoforms in SW 

regulation and acclimatisation and their potential use as biomarkers for smoltification 

detection in salmon. 

Currently the most common use for smoltification detection in Atlantic salmon is 

through the smolt index, ATPase enzymatic activity assays (NKA activity assays), 

plasma chloride measurements and SW bath tests. The smolt index is often used, 

but is limited in its approach due to it not being an objective test. It is based on a 3 

point scoring system judged solely on visible morphological changes that is 

subjective to the interpretations of the human observer. 

Gill based NKA activity assays were developed to focus on the measurement of gill 

Na+,K+ ATPase activity using salmon gill tissue throughout the smolt period (Zaugg 

1982). The gill arch is removed and the ATPase enzyme activity measured by 

testing of the protein. This provides a final NKA activity (µmol ADP/mg protein-1 h-). 

A threshold of activity for determining if smoltification had occurred is then used 

based on previous research or data. Once this threshold is crossed the fish are 

deemed ready for SW transfer (see section 2.2.5 for more detail). This is currently 

regarded as a relatively reliable indicator of smoltification due to the tests being 

objective and quantifiable. However, due to the different roles α1a and α1b play in 

SW acclimatization this assay may not provide a completely accurate picture on the 

overall role of the protein (Richards et al., 2003). Other factors limiting this technique 



	 	 63	

are its inability to be conducted in the field due to toxicity and its time consuming 

process. In addition its statistical solidity is debatable due to inherently high variation 

in results. However, NKA activity assays are currently the only ones that have been 

widely applied and accepted on an industrial scale.  

SW bath tests (survival tests) were the main standard test used for identification of 

SW ready smolts before the development of NKA activity assays. They are still 

currently used today, sometimes in conjunction with NKA activity assays, however 

they are limited in their indication of SW readiness in salmon. Fish are placed in a 

SW bath with sea readiness based on survival rate. High mortalities in SW bath 

tests indicate the fish are not fully adapted for SW conditions with low mortalities 

indicating they are. This is a welfare issue for salmon due to the stressors 

associated with the capture handling and exposure to air as well as the potential 

mortality for underdeveloped smolts exposed to SW. Rises in plasma cortisol level 

are common and it can take days to weeks for fish to recover back to their baseline 

levels (Ashley et al., 2007; Stien et al., 2013). Those that have not fully adapted and 

subsequently die suffer throughout the entire process. Those that do survive are still 

submitted to a stressful and harmful test that can lead to mortality in the days and 

weeks after.  

A similar test to this is the observation of plasma chlorides in smolts. Studies into 

SW acclimatisation have shown that plasma chlorides closely mirrored the osmotic 

changes in Atlantic salmon (Solbakken et al., 1994). Smolts are placed in SW baths 

for a period of time (12 - 24hrs+) and blood taken to assess their plasma chloride 

levels. A FW smolt will have a high plasma chloride level (160 – 200 Cl mM) with a 

SW ready smolt averaging around 150 Cl mM. Smolts can also be left in varying 

concentrations of SW and assessed over time. SW ready smolts will stabalise their 

levels to ~150 Cl mM after ~24hrs. A smolt that is not able to regulate its plasma 

chloride levels will likely suffer mortality with long SW exposure due to the 

underdevelopment of its gills from FW adaption to SW adaption. This test also 

suffers from similar welfare issues stated in the SW bath tests above. 

Ion regulatory tests have also been used to assess the SW readiness of smolts. The 

ions normally tested are the key ones associated with ion regulation in the gills (Na+, 

K+ and Cl-). Monitoring of the ion concentrations has been shown to indicate when a 

smolt is adapting to SW conditions. Increased uptake of Cl- ions through recruitment 

of Na+ occurs in smolts both in preparation for and whilst in a SW environment. This 

is mitigated through the major ion transport protein NKCC1 (see section 1.3.2). 
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Monitoring of these ion concentrations can help assess how far developed a smolt 

currently is and whether it is ready for SW transfer. Blood is taken from the fish and 

ion plasma assessed through ion chromatography. 

In this study S0 fish will be examined, however, unlike standard S0 fish they will be 

on a special feed called Supersmolt® for a period of 4 – 6 weeks under 24hr light. 

The Supersmolt® feed helps promote and stimulate the hypo-osmoregulatory 

changes in the salmon during the smolt window to align together (see section 1.3.5 

for more details). This is to promote a higher percentage of the population to enter 

the SW transfer window at the same time.  

Very few developments of qRT-PCR assays utilizing potential biomarkers within 

salmon during smoltification have been described (Olsvik et al., 2005). Due to the 

recent development of mobile qRT-PCR platforms and the ease, speed and relative 

cheapness of the technique, an assay that is developed to successfully track and 

detect the point of optimal SW transfer of Atlantic salmon would be highly desirable 

for the industry. With numerous indicators of smoltification available (T-GH, GH, 

cortisol and IGF-1), testing and development of qRT-PCR assays could provide a 

fast and effective technique for smoltification analysis.  

Therefore the aims of this research were to develop and validate a novel NKA qRT-

PCR assay for the marker α1a mRNA. In order to do this we would: 

1. Develop and validate an in lab qRT-PCR assay for the biomarker α1a 

2. Conduct a large initial study over 3 years on active hatcheries across 

Scotland where we would compare the efficiency of our NKA qRT-PCR 

assay with the industry standard NKA activity assay at detecting 

smoltification 

3. Develop a mobile diagnostic platform, transfer the assay on to the mobile 

device and conduct field tests onsite at hatcheries. 
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2.2 Materials and methods 

2.2.1 NKA qRT-PCR assay development 

2.2.1.1 Primer design 

Primers and probe were adapted from Nilsen et al. (2007) and Madsen et al. (2008) 

using multiple phylogenetic approaches with different salmoind targets* 

*Europharma Ltd IP protected. 

2.2.1.2 Generation of Plasmid standard  

The assays were designed for the α1a region (ATPase) of S. salar. The target 

region was ligated into plasmid pGEM3 and a quantitative DNA standard was 

derived as described by Weidmann et al. (2003). 

2.2.1.3 qRT-PCR tests of individual standards 

For assay development NKA qRT-PCR was performed in 96 well skirted qPCR 

plates (20µl) containing 1x LightCycler®480 RNA Master Hydrolysis Probes, 3.25mM 

activator Mn(OAc)2, 500nM primers, 200nM probe and 1µl plasmid DNA as template 

on an Agilent Technologies Stratagene MX3005P (version 4.10, build 389). qRT-

PCR reactions were ran in triplicate from 108 - 101 DNA molecules per reaction as 

follows: reverse transcription for 3 min at 63°C, activation for 30 s at 95°C, followed 

by 45 cycles consisting of amplification for 5 s at 95°C and 15 s at 60°C and a 

cooling step of 40 s at 40°C. 

For transfer of the NKA qRT-PCR assay onto the mobile SmartCycler™ system, 

qRT-PCRs were performed using the LightCycler 480 RNA master hydrolysis 

probes (Roche) in 25µl SmartCycler™ tubes. Due to the increase in tube volume 

concentrations were kept the same as described above, but volume was increased 

for all components including template DNA (2.5µl). Dried primer, probe and 

quantitative RNA standard were tested on the SmartCycler™ in triplicate to ensure 

sensitivity was not lost between devices. 

2.2.1.4 Dried standard, primers and probe 

For optimal long term storage and stability, DNAstable® plus (Biomatrica) was used 

to dry quantitative DNA standard, primers and probes using a ratio of 1:4 DNA 

stable solution to sample volume. The solutions were mixed by pipetting every 2 - 5 

min for 15 min and then dried in a DNA speed Vac – DNA110 (Savant). All samples 

were performed in triplicate. Samples were then rehydrated by adding the same 

volume of H2O as the original sample volume. The rehydrated samples were then 
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tested in a qRT-PCR using LightCycler 480 RNA master hydrolysis probes (Roche) 

following the qRT-PCR protocol described above (section 2.2.1.3). Some samples 

were left in a dried condition for 2 weeks then rehydrated and tested by qRT-PCR to 

test long-term storage. 

2.2.2 RNA extraction 

RNA extractions were carried out using the QuickGene Mini80 RNA extraction robot. 

Gill tissue samples were cut and weighed to a specified weight (10-20mg). These 

were then placed in 1.5ml tubes containing 500µl of lysis buffer, three 3.5mm glass 

beads and 0.1mm zirconia beads. The samples were then vortexed for 30 s to 

breakdown the gill tissue followed by centrifugation for 3 mins at 16 800g in a 5418R 

centrifuge (Eppendorf). This was then repeated. Supernatant (350µl) were removed 

from each sample and transferred to new 1.5ml tubes and 175µl of solubilisation 

buffer added. The tubes were briefly vortexed and 175ml of ethanol then added. The 

tubes were then vortexed for 1 minute and briefly spun down in the centrifuge. The 

supernatants of each sample were transferred into the individual microtube columns 

of the Mini80. The supernatant was washed through the column with a further 3 

wash steps of 750µl of wash buffer for each sample. To ensure high RNA yield 50µl 

of elution buffer was used per sample. Elution buffer was left in the column for 4 

minutes before being washed through into empty 1.5ml tubes. RNA concentration 

was determined using the ND-1000 system (NanoDrop, Thermo Scientific) and ND-

1000 version 3.8.1 software. Extracted RNA was then diluted (200-400ng/µl) and 

frozen at -70°C. 

2.2.3 Fish handling and sampling 

Gill tissue samples were collected from 11 farms across Scotland over a 3-year 

sampling period (2015 – 2017). All farms were located on the Western Coast of 

Scotland and used FW tanks for smolt production, except for Loch Shin, which used 

FW sea cages (Table 2.1). The farms were spread from the Mid Western Coast 

beginning at Ormsary, up to the North Western coast and across to the Isle of 

Harris, with the most Northern farm located on the Shetland Islands (Girlsta) (Figure 

2.1). The farms varied in size and production with Russel burn and Ormsary the 

largest producers, and Barvas and Mingary with significantly lower production. For 

each year’s analysis the secondary gill arch was collected at 16 sites (2015), 13 

sites (2016) and 9 sites (2017) for NKA activity assay (n=25) and NKA qRT-PCR 

(n=8) from S0 smolts. Both left and right gill arches were collected from the same 

fish at each time point for NKA qRT-PCR and NKA activity analysis. Gill samples for 

NKA activity assays analysis were collected in 1.5 ml tubes containing a 1% 
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Sucrose ethylenediaminetetraacetic (EDTA) imidazole deoxycholate (SEID) 

solution, and for NKA qRT-PCR analysis in 1.5ml tubes containing RNA later. Three 

time points of initial (I), mid (M) and final (F) were pre-determined with a window of 

1-3 weeks between each point. I points corresponded with the beginning of feeding 

of salmon with SuperSmolt® feed only, and F points with the ending of feeding 

before SW transfer. M points were taken between 2 - 3 weeks after initial feeding. 

For more detail on start and end dates, average fish size and k-factor see appendix 

C2.13. SuperSmolt® is a feed provided by Europharma Scotland Ltd that 

homogenises the osmoregulatory development of salmon during smoltification to 

ensure all salmon are ready for SW transfer at the same time. A constant light 

photoperiod regime (24h) was utilised throughout the testing period (I – F points) at 

each site over the 3-year study. Analysis of NKA enzyme activity assays were 

conducted at the lab at Europharma Scotland Ltd. NKA qRT-PCR analysis were 

carried out at the Institute of Aquaculture, University of Stirling. Sites sampled, as 

well as number of tanks varied from year to year with some only being sampled over 

1 or 2 years.  
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Table 2.1. Table showing basic information on location, tanks, production and 
owners of all the farms where samples were gathered for the 3 year investigation of 
NKA activity assays and NKA qRT-PCR assays. * Represents the farms visited for 
onsite analysis of the mobile NKA qRT-PCR. 

 

 

 

Site Acronym Location No. of 
Tanks 

Fish 
produced  

Company 

Russel Burn RB Russel burn, 
Strathcarron 

6 G tanks 
(340m3), 20 
A and B 
tanks 
(40m3) 

Up to 
3.2million 

The Scottish 
Salmon 
Company 
(SSC) 

Ormsary* OR Ormsary, 
Lochgilphead 
Argyll 

Range of 
tanks of 
variable 
size (95m3 
and 31m3) 

Up to 2.4 
million 

Landcatch 
Natural 
Selection Ltd 

Geocrab GC Geocrab Mill, 
Isle of Harris, 
South Harris 

6 tanks 
(180m3) 

Up to 1 
million 

The Scottish 
Salmon 
Company  

Gairloch GL Inver Kerry, 
Gairloch, 
Ross-shire 

18 (25m3) Up to 570k Landcatch 
Natural 
Selection Ltd 

Loch Damph* LD Loch damph, 
Kishorn, 
Strathcarron 

12 loch 
cages 

Up to 800k Scottish Sea 
Farms Ltd 

Loch Shin LS Loch Shin, 
Overscaig, 
Sutherland 

31 fresh 
water cages 

> 1 million Migdale 
Smolts Ltd 

Barvas BAR Barvas, Isle of 
Lewis 

18  (20m3) 
tanks 

Up to 330k The Scottish 
Salmon 
Company 

Girlsta GIR Girlsta, 
Shetland 

No 
information 

No 
information 

Grieg 
Seafood 
Shetland Ltd 
(Hatchery) 

Mingarry* MIN Mingarry, 
Milton, South 
Uist 

42 (10m3) 
tanks 

Up to 340k Hebridean 
Smolts Ltd 

Clachbreac CLA Clachbreac, 
Ormsary, 
Lochgilphead, 
Argyll 

7 (95m3) 
tanks 

Up to 500k Landcatch 
Natural 
Selection Ltd 

Kinlochmoidart KLM Kinlochmoidart 
Lochailort, 
Inverness-
shire 

7 tanks and 
2 RAS 
systems 
(total vol 
770m3) 

Up to 600k The Scottish 
Salmon 
Company 
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Figure 2.1. Locations of the 11 farms sampled in the 3-year study. 

2.2.4 NKA qRT-PCR assay S0 trials 

NKA qRT-PCR were conducted using Brilliant III ultra-Fast SYBR® Green qRT-PCR 

Master Mix. Reactions were performed in a 20µl volume containing 2x SYBR green 

qRT-PCR master mix, 500nm primers and 1µl RNA as template. RNA samples were 

grouped into I, M and F point plates. Two standard curves were ran 108 - 101 as well 

as 4 negative controls (NTCs) per plate. The temperature profile was adapted in the 

reverse transcription step for 10 min at 50°C, activation for 3min at 95°C, followed 

by 45 PCR cycles as previously described (section 2.2.1.3). 

2.2.5 NKA activity assay 

ADP standards were checked everyday to ensure measured conversion of NADH to 

NAD+ was within a kinetic correlation coefficient of >0.99% with an optical density 

(OD) of between 0.6 - 0.8 between the time points of 0 - 150 seconds. The ADP 

standard curve used ranged from 1nM - 25nM. ADP standards were defrosted, 

vortexed and a 10µl volume pipetted into a 96 well flat bottom non-sterile ELISA 
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Geocrab	

Loch	Shin	
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Gairloch	

Loch	Damph	
Mingarry	
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Shetland	Isles	
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plate in duplicate for each value range. 200µl of Na+ K+ ATPase inhibitor –ve 

ouabain was added to each well and ran in a Versa max microplate reader (SoftMax 

4.5.4) for 5 mins at 25°C. If the standards adhered to the acceptable range of NADH 

conversions then the next step was carried out. If the standards were outside the 

acceptable range the plates were re-run and/or new standards of –ve ouabain were 

made. 

For each day of analysis, three concentrations of SEID solution were made (0.5%, 

1% and 7:3) along with an assay mix containing 0.23nm NADH, 1M imidazole, salt 

solution, 0.53mM adenosine 5’triphosphate disodium triphosphate (ATP), 2.1mM 

phosphoenolpyruvate monopotassium salt (PEP), b-nicotinamide adenine 

dinucleotide reduced disodium salt hydrate (NADH), 3.75mM L-lactate 

dehydrogenase from rabbit muscle, (LDH) pyruvate kinase from rabbit muscle (PK) 

and distilled water (dH20). Twenty-five gill samples from farms and 2 quality control 

gill samples of known activity were prepared per run. Once defrosted, gills were 

placed in a 5ml tissue grinder tube containing 1ml of 7:3 SEID solution. Gills were 

then manually crushed for 1 minute. The gills were graded against a dilution factor 

based on fish weight, and volumes of gill homogenate transferred into 1.5 ml tubes 

in the corresponding volume of 0.1% SEID solution. All samples were then 

centrifuged at 350g for 5 minutes and the supernatants transferred to 1.5ml tubes 

and placed on ice. Bradford protein assays were performed at 25°C for 5 minutes on 

all samples to determine if the proteins fell between a range of 500-1500ug/ml. If 

proteins fell outside this range the dilution of supernatant to H2O was recalculated. 

80µl of each sample were transferred into a new 1.5ml tube containing 320µl of 

H2O. 10 µl of each sample and a protein standard curve were pipetted onto a 96 

well plate in quadruplicate and 200µl of –ve ouabain was then added to each well 

and analysed. Once the protein analysis was verified, 10µl of each sample was 

pipetted into a 96 well plate in octuplicate. 200µl of –ve ouabain was added to one 

half of the plate containing 4 of the 8 repeated samples, with 200µl of +ve ouabain 

added to the other half. NKA activity assay analysis was then performed at 25°C for 

20 minutes. NADH disappearance was measured at 340 nm and NKA activity (µmol 

ADP mg protein-1 h-1) generated based on the variance between the absence and 

presence of ouabain on ATP hydrolysis.  A threshold for determining if smoltification 

had occurred was used at an activity level of 10 µmol ADP/mg protein-1 h-1 and 

above for the protein. This threshold is based on previous successful transfer data 

obtained from Europharma over several years. Known quantitated samples from the 
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previous S0 season were used as quality controls for both the NKA activity assay 

and protein readings alongside the unknown samples. 

2.2.6. 3-year NKA activity and NKA qRT-PCR statistical analysis 

Unpaired T-tests were conducted on NKA qRT-PCR results and NKA activity assays 

for sites sampled at l and F testing points only. For sites sampled at I, M and F 

point’s one-way ANOVAs were used. We compared copy number fold change (fc) 

between sampling time frames on sites for NKA qRT-PCR and NKA activity fc for 

NKA activity assays.  

2.2.7 Smolt index analysis  

Smolt indexes were taken for each fish at each site using a 3-point scoring system 

(Sigholt et al., 1995) based on silvering of fish, presence or lack of parr marks and 

changes in fin morphology. A number range from 1 – 4 was used, with 1 referring to 

parr like morphology and 4 to fully smoltified salmon morphology. Each score was 

totalled and averaged to give the final smolt index of the fish. 

2.2.8 Three year sea water temperature analysis  

Average sea surface temperatures were obtained from the National Oceanic and 

Atmosphere Administration (NOAA) website using 1/4° Optimum Interpolation Sea 

Surface Temperature (daily OISST) data for 2015 – 2017 at 3 locations on the West 

coast of Scotland (South to North). Each fish farm was assigned one of the 3 

location temperatures based on closest proximity. Daily temperatures between June 

and September during a 3-year period were analysed and data from each site were 

compared. 

2.2.9 Three year Degree day analysis 

Daily average temperatures were obtained from the Scottish Salmon company 

(SSC) at sites Russel burn and Geocrab for all 3 years of testing. Degree-days were 

calculated based on the formula DD = (TMax + TMin/2) – T0 from temperatures 

recorded on site against a temperature threshold (T0) of 0°C. TMax and TMin are the 

maximum and minimum daily ambient temperatures recorded.  All I points for each 

site started at 0 dd with subsequent days calculated based on daily temperature 

records up until each F point. For sites that included M points these were also 

recorded. The data obtained was then analysed and compared between sites and 

years.  
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2.2.10 Mobile NKA qRT-PCR testing 

2.2.10.1 SmartCycler™ system 

To test the NKA qRT-PCR onsite a suitcase laboratory was assembled based on 

experiences with a mobile laboratory developed for the detection of haemorrhagic 

fever viruses (Wahed et al., 2015; Faye et al., 2015). The mobile laboratory 

consisted of one suitcase containing everything needed for RNA extraction of gill 

arches, one suitcase containing a PCR flow workbench, and one suitcase containing 

the mobile SmartCycler™. A small onsite test was conducted on salmon smolts 

(n=32) at Clachbreac, Scotland (Landcatch Natural Selection Ltd). Gill arches were 

removed and RNA extracted (see section 2.2.2) and tested by qRT-PCR using dried 

ATPase RNA standard, primers and probes. All extracted RNA was transported 

back to the Institute of Aquaculture on ice where it was re-tested on the 

SmartCycler™. 

2.2.10.2 Genesig Q16 system 

Tests were conducted onsite at 3 fish farms in Scotland (Ormsary, Landcatch 

Natural Selection Ltd; Clachan, Hebridean smolts Ltd; and Loch Damph, Scottish 

Sea Farms) at two different time points. This was to refine the mobility of the onsite 

NKA qRT-PCR platform as well as validate it on a new PCR platform (Genesig Q16 

qRT-PCR system). We tested 28 salmon smolts per site per visit (n = 28). Gill 

arches were removed, and RNA extracted (see section 2.2.2) and tested using an 

ATPase kit (PrimerDesign Ltd) containing 2x Oasig master mix, dried primers and 

probe, positive RNA extraction control and positive ATPase control. The ATPase kit 

was developed using the same primers and probe used for the 3-year analysis and 

SmartCycler™ tests. 
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2.3 Results 

2.3.1 NKA qRT-PCR assay development 

To validate our new primer and probe, qRT-PCR reactions were carried out in 

triplicates on the MX3005 cycler using a decimal dilution range of 107 - 101 RNA 

molecules per reaction. The NKA assay yielded a standard curve of high efficiency 

(98.9%, standard error (SE) 0.24) and sensitivity, detecting down to 102 copies 

(Figure 2.2). 

2.3.2 Dried primer, probe and standards tests 

Primers, probe and standards were successfully dried and rehydrated after daily and 

long-term storage (2 weeks). Primers and probe were tested against both normal 

non-dried standard (105) and rehydrated dry standard (105) to check for any loss of 

efficiency or sensitivity. Both tests showed no loss of sensitivity to non-dried (CT 

24.3 ± 0.3) and dried standard, primer and probe (CT 24.7 ± 0.6). 

2.3.3 Transfer of NKA qRT-PCR assay to SmartCycler™ 

The assay was successfully transferred to the SmartCycler™ system, tested in 

triplicate and yielded a robust standard curve showing high efficiency (93.43%, SE 

0.119) (Figure 2.2). The assay detected down to 102 copies indicating no loss of 

sensitivity between devices. There was however a minor loss in efficiency of ~5%. 

 

Figure 2.2. Standard curve results for MX3005P NKA qRT-PCR assay 
(98.9%, SE 0.24) and SmartCycler™ assay (93.43%, SE 0.119). Each dilution 
ranged from 107 -101 RNA molecules. These were tested in triplicate with their 
mean values plotted as the CT value points along with SE (not all visible). 
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2.3.4 Comparative ATPase assay validation 

2.3.4.1 Analysis of sites sampled at I and F time points 2015 

2.3.4.1.1 NKA activity results 

Of the 16 sites tested by NKA activity assays, 12 showed a significant increase (P< 

0.05) in NKA activity (Figure 2.3, appendix C2.1). Gairloch A and B had the largest 

fc (tank A, 3.77; tank B, 3.7). The lowest fc was recorded at Russel Burn E (1.19). 

No other sites with multi-tank sampling showed a universal increase in NKA activity, 

with Geocrab, Russel burn and Ormsary each having one tank with no significant 

fold change in NKA activity. 
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Figure 2.3. Mean NKA activity assays for I, M and F points for 16 individual sites in 
Scotland (2015). Ormsary A, B and E (ORA, ORB and ORE), Gairloch A and B 
(GLA and GLB); Loch damph (LD); Barvas (BAR); Geocrab A and B (GCA and 
GCB); Russel burn A, B, D and E (RBA, RBB, RBD, RBE); Girlsta (GIR); Mingary 
(MIN); and Clachbreac (CLA). N = 25, NKA enzymatic activity expressed as mean 
± standard deviation (StD). The red dotted line indicates the enzymatic activity 
value used to identify when smoltification has occurred and fish are safe for SW 
transfer. This has been determined by historical data of successful transfers by 
Europharma Ltd. 
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2.3.4.1.2 NKA qRT-PCR results 

A significant decrease in NKA mRNA abundance was observed at 9 of the 16 sites 

(Figure 2.4 appendix C2.4). The largest significant decrease was found at Girlsta 

(3.26 fc) and lowest at Gairloch A (2.11 fc). Of the 6 remaining sites, 4 showed no 

significant decrease in NKA copy number. Russel burn D (2.75 fc) and Clachbreac 

(1.67 fc) were the only tanks to show a significant increase in NKA copy number. 

Ormsary showed a universal decrease in NKA copy number over multi-tank 

sampling. 
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Figure 2.4. Mean NKA qRT-PCR for I, M and F points for 16 individual sites in 
Scotland (2015). Ormsary A, B and E (ORA, ORB and ORE); Gairloch A and B 
(GLA and GLB); Loch damph (LD); Barvas (BAR); Geocrab A and B (GCA and 
GCB); Russel burn A, B, D and E (RBA, RBB, RBD, RBE); Girlsta (GIR); Mingary 
(MIN); and Clachbreac (CLA). N = 8, NKA copy number expressed as mean ± StD. 

 

ORA Initia
l

ORA Mid

ORA Final

ORB Initia
l

ORB Mid

ORB Final

ORE Initia
l

ORE Mid

ORE Final

GLA Initia
l

GLA Mid

GLA Final
105

106

107

Re
lat

ive
 α1
a m

RN
A e

xp
res

sio
n 

(Co
py

 Nu
mb

er)
 

LD Initia
l

LD Mid

LD Final

BAR Initia
l

BAR Mid

BAR Final

GCA Initia
l

GCA Mid

GCA Final

GCB Initia
l

GCB Mid

GCB Final
105

106

107

Re
lat

ive
 α1
a m

RN
A e

xp
res

sio
n 

(C
op

y N
um

be
r) 

RBA Initia
l

RBA Final

RBB Initia
l

RBB Final

RBD Initia
l

RBD Final

RBE Initia
l

RBE Final

GIR Initia
l

GIR Final

MIN Initia
l

MIN Final

CLA Initia
l

CLA Final

GLB In
itia

l

GLB Final
105

106

107

Re
lat

ive
 α1
a m

RN
A e

xp
res

sio
n 

(C
op

y N
um

be
r) 



	 	 78	

2.3.4.2 Analysis of sites sampled at M points 2015 

2.3.4.2.1 NKA activity results 

Eight sites were tested for significance between I - M and M - F. For NKA activity 

assays 4 showed a significant increase between I - M points and 2 between M - F 

points (Appendix C2.7). Ormsary E was the only tank to show no significance 

between all 3-time points. 

2.3.4.2.2 NKA qRT-PCR results 

Of the 8 sites tested for I, M and F points, 5 showed significant decreases between I 

– M points and 2 between M – F points for NKA qRT-PCR (Appendix C2.10). There 

appeared to be no correlation between individual sites with Geocrab and Ormsary 

sites showing opposite results for different tanks. Geocrab A was the only site to 

show no change in NKA copy number over all 3-time points.  

2.3.4.3 Analysis of sites sampled at I and F points 2016 

2.3.4.3.1 NKA activity results 

From the 13 sites sampled, 10 were found to have significant increases in activity 

(Fig 2.5, appendix C2.2). The largest fc was found at Ormsary E (3.73) and lowest 

at Ormsary A (1.41). One site showed a significant decrease in activity (Loch Shin 

1.34). 
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Figure 2.5. Mean NKA activity assays for I, M and F points for 13 individual sites in 
Scotland (2016). Ormsary A, B and E (ORA, ORB and ORE); Gairloch A and B 
(GLA and GLB); Loch damph (LD); Geocrab A (GCA); Russel burn A, B, C (RBA, 
RBB, RBC); Mingary (MIN); Girlsta (GIR); and Loch Shin (LS). N = 25, NKA 
enzymatic activity expressed as mean ± StD. The red dotted line indicates the 
enzymatic activity value used to identify when smoltification has occurred and fish 
are safe for SW transfer. This has been determined by historical data of successful 
transfers by Europharma Ltd. 

2.3.4.3.2 NKA qRT-PCR results 

For NKA qRT-PCR a significant decrease in NKA copy number was found in 7 of the 

13 sites (Figure 2.6, appendix C2.5). The largest fc was found at Gairloch A (2.4) 

and lowest at Girlsta (1.5). Four sites showed significant increases in NKA copy 

number; Russel burn A (2.66), B (1.3) and C (1.92), and Loch Shin (1.53).  
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Figure 2.6. Mean NKA qRT-PCR for I, M and F points for 13 individual sites in 
Scotland (2016). Ormsary A, B and E (ORA, ORB and ORE); Gairloch A and B 
(GLA and GLB); Loch damph (LD); Geocrab A (GCA); Russel burn A, B, C (RBA, 
RBB, RBC); Mingary (MIN); Girlsta (GIR); and Loch Shin (LS). N = 8, NKA copy 
number expressed as ± StD. 
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2.3.4.4 Analysis of sites sampled at M points 2016 

2.3.4.4.1 NKA activity results 

NKA activity showed a significant increase between I and M for 4 of the 6 sites and 

for 2 sites between M and F (Appendix C2.8). Only two sites (Loch Damph and 

Mingary) showed significant increases between I - M - F points. 

 

Figure 2.7. Mean NKA activity assays for I, M and F points at 9 individual sites in 
Scotland (2017). Ormsary A (ORA); Gairloch A and B (GLA and GLB); Loch damph 
(LD); Geocrab A (GCA); Russel burn A and B (RBA, RBB); Mingary (MIN); and 
Kinlochmoidart (KLM). N = 25, NKA enzymatic activity expressed as mean ± StD. 
The red dotted line indicates the enzymatic activity value used to identify when 
smoltification has occurred and fish are safe for SW transfer. This has been 
determined by historical data of successful transfers by Europharma Ltd. 
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2.3.4.4.2 NKA qRT-PCR results 

NKA qRT-PCR showed a significant increase between initial – mid for 5 of the 6 

sites and 1 site mid final (Russel burn B) (Appendix 2.11). Only one site (Russel 

burn B) showed a decrease between I - M - F points. 

 

Figure 2.8. Mean NKA qRT-PCR for I, M and F points for 9 individual sites in 
Scotland (2017). Ormsary A (ORA); Gairloch A and B (GLA and GLB); Loch damph 
(LD); Geocrab A (GCA); Russel burn A and B (RBA and RBB); Mingary (MIN); and 
Kinlochmoidart (KLM) N = 8, NKA copy number expressed as mean ± StD. 
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2.3.4.5 Analysis of sites sampled at I and F points 2017 

2.3.4.5.1 NKA activity results 

Overall 9 sites were examined of which 6 of the 9 sites showed a significant 

increase in NKA activity between I and F points (Figure 2.7, appendix C2.3). Two of 

these were below the threshold of acceptable levels of NKA for safe transfer to SW 

(Gairloch A and B). The largest fc was at Kinlochmoidart (3.02) and the lowest at 

Geocrab (1.12). 

2.3.4.5.2 NKA qRT-PCR results 

NKA qRT-PCR had only one site where NKA copy number decreased between I 

and F points (Mingary)(Figure 2.8, appendix C2.6). Six sites showed an increase in 

copy number between I and F points. The largest fc was at Ormsary (2.19) and 

lowest at Gairloch A and Russel burn A (1.1). 

2.3.4.6 Analysis of sites sampled at M points 2017 

2.3.4.6.1 NKA activity results 

NKA activity showed a significant increase between I and M for 4 of the 6 sites and 

for 2 sites between M and F (Appendix C2.9). Only two sites (Loch damph and 

Mingary) showed significant increases between initial – mid – final points 

2.3.4.6.2 NKA qRT-PCR results 

NKA qRT-PCR showed a significant increase between I and M for 2 of the 4 sites 

(Gairloch B and Geocrab) and for 2 sites between M and F (Ormsary and Russel 

Burn A)(Appendix C2.12).  

2.3.5 Three year sea water temperature analysis 

Average sea temperatures for all 3 years were split into 3 sites based on closest 

location to each farm. Site 1 consisted of Ormsary and Clachbreac. On average 

2017 was warmer from Jun – Sep against 2015 (0.77 – 1.4°C) and Jul – Aug 

against 2016 (0.1 – 0.69°C). Site 2 included Russel Burn, Geocrab, Kinlochmoidart 

and Mingarry. On average 2017 was warmer than 2015 between Jun – Aug (1.12 – 

1.79°C) and 2016 between Jun – Aug (0.29 – 1.05°C). Site 3 included Gairloch, 

Loch shin, Barvas and Loch Damph. Overall 2016 and 2017 were warmer on 

average than 2015 between Jun and September (0.41 – 1.57°C) with 2016 and 

2017 on average within 0.1 – 0.3oC between Jun – Oct. 
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2.3.6 Three year Degree day analysis 

Overall 2 sites were examined over the 3-year period. The dd between I and F 

points were fairly consistent for Russel burn across the 3-year study (327 – 392dd) 

as were the feeding regime period (FRP) (26 – 29 days) (Figure 2.9). Russel burn C 

2016 was the only site to have a longer FRP of 35 days resulting in 504dd at F 

point. For Geocrab there was a much higher variation in dd (255 – 706dd) and FRP 

(23 – 43 days). The shortest FRP and DD were observed at Geocrab B 2017 and 

longest at Geocrab A 2016. Five of the 14 sites tested were observed to have FRP 

>400dd. This is past the generally accepted SW transfer window point. 
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Figure 2.9 Mean NKA qRT-PCR mRNA copies expressed for I, M and F points for 
sites Russel burn (RBA, RBB, RBC and RBD) and Geocrab (GCA and GCB) against 
degree days (dd) over the 3-year study period. N = 8, NKA copy number expressed 
as mean ± StD. 
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2.3.7 Onsite versus Lab testing SmartCycler™ 

On site RNA extraction and qRT-PCR were successfully carried out using the onsite 

mobile lab at one site. From the 32 samples tested on site an average CT of 26.49 

±1.69 SD was found. We then re-tested 16 of the extracted RNA samples a day 

later in the lab with an average CT of 26.96 ± 2.1 SD. No statistically significant 

difference was found between on site testing and in lab testing (p = 0.338).  

2.3.8 Onsite testing Q16 qRT-PCR mobile lab 

On site RNA extraction and qRT-PCR on the Q16 device were successful carried 

out at all 3 sites (Figure 2.9). There was a significant increase in NKA copy number 

at Ormsary between I and F (p = 0.03). Both remaining sites showed no significant 

change in NKA copy number (Clachan: p = 0.59, Loch Damph: p = 0.08). There 

were notable issues with the positive control for both F points at Ormsary and 

Clachan. Positive control variation ranged from 13 – 17 CT where a good positive 

control was expected to range from 17 ± 1.4 CT. Due to these issues we were 

unable to reliably compare copy numbers between sites. The mobile equipment 

used was reduced from our initial tests with the SmartCycler™ system with 

reduction in the size of the cases used and reduction in equipment taken. 

  

Figure 2.10. Onsite testing of the NKA qRT-PCR assay on the Q16 
system at sites Ormsary (ORA), Clachan (CLA) and Loch Damph 
(LD). Tests were conducted at two different time points at 3 different 
sites. N = 28, NKA CT expressed as mean ± StD 
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2.4	Discussion	

Analysis of the initial and final points of all three years showed a significant increase 

in NKA activity at 28 of the 38 sites tested and a significant decrease at 1 site. The 

NKA activity threshold of 10 for SW readiness was not achieved in 8 of the 38 sites 

and 5 sites showed SW readiness already at the initial point of testing. The NKA 

threshold of 10 was determined by Europharma Scotland Ltd based on historical 

data of successful transfers of fish. NKA qRT-PCR assay expression significantly 

decreased at 17 out of the 38 sites. In contrast, a significant increase was seen at 7 

of the 38 sites. The NKA activity assays results were comparable with the NKA qRT-

PCR assay results at 15 out of the 38 sites. As a secondary reference these results 

were compared with the smolt index recorded at each site to try and better 

understand variations in the results of the two tests. For 2015 and 2016, both NKA 

activity assays and NKA qRT-PCR showed similar agreement with the smolt index, 

although not at all the same sites (Table 2.2). In 2017 there was higher agreement 

between NKA activity assays and smolt index (4/9 sites) than NKA qRT-PCR (1/9 

sites). Overall only 27% of all sites showed unanimous agreement between the 3 

tests over the 3-year period.  

 

 

 

 

 

 

 

 

Table 2.2. Comparison of NKA enzymatic activity and NKA α1a qRT-PCR 
expression to smolt index over the 3-year sampling period. It was found that in 2015 
and 2016 both tests showed no significantly higher correlation with the smolt index. 
In 2017, NKA activity assays were shown to correlate higher (4/9) with smolt index 
than NKA qRT-PCR (1/9). Green tiles indicate significant increases for NKA activity 
assays and smolt index, and significant decrease in NKA qRT-PCR between I and F 
points. Red tiles show no significant change between I and F points. Blue tiles 
signify a decrease in expression of NKA activity assays and smolt index, and an 
increase in expression of NKA qRT-PCR. Orange tiles indicate where NKA activity 
assays did not reach the threshold of 10 for safe SW transfer.   
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Russel Burn 

Due to the contrasting results between the tests obtained from the Russel burn site, 

these were analysed in more detail. The site is located on the Western coast of 

Scotland, near Strachcarron and on the edge of Loch Kishorn. Its surrounding 

topography is very rocky with many run off areas from the surrounding hills. There is 

a high concentration of limestone, calcareous tufa, dolomite and colomite with an old 

disused copper mine further up stream. It is a large farm with up to 3.2 million fish 

produced in the S0 season (July – October) and contains 20, 340m3 tanks and 20, 

40m3 tanks for Atlantic salmon smolt production (Table 2.1). 

2015 

For 2015 NKA qRT-PCR showed no significant decrease in NKA mRNA abundance 

at site A (1.57fc) and B (1.32fc). In contrast both NKA activity assays indicated fish 

were ready for SW transfer with NKA activity > 10 NKA (A 2.22 fc, B 2.14 fc). Smolt 

indexes signified a shift towards, but not complete smoltification, having increased 

significantly from the initial test points (A 1.4 – 3, B 1.6 – 3). Degree days were at or 

close to the appropriate SW transfer time of 350 - 400dd at A and B (358dd) and D 

(327dd) suggesting the fish were at the point of SW transfer. Saltwater bath tests 

however were unsuccessful; supporting the NKA qRT-PCR assay results indicating 

that smoltification had still not occurred. At Russel Burn D both NKA activity assays 

(2.26 fc) and NKA qRT-PCR mRNA abundance (2.76 fc) increased significantly from 

initial to final points, however a relatively low smolt index increase (1.75 – 2.7) was 

recorded. At Russel Burn site E NKA activity assays remained stationary over both 

initial and final points (1.1 fc), with NKA qRT-PCR mRNA abundance decreasing 

significantly (2.5 fc), and smolt index increasing (2.2 – 3.6). Although the smolt index 

was on the mid-range scale of 2.2 at the initial point, the final point of 3.6 is a 

significant shift towards complete smoltification. 

There was confirmed aluminium (Al) contamination at all sites. The highest 

contamination occurred at sites A and B with low to minimal contamination at sites D 

and E. It is known that metal contaminants affect the behaviour and physiology of 

fish (Scott and Sloman. 2004). Research into aluminium and acidic water exposure 

has shown that in moderate to high levels of exposure, NKA activity can be effected 

(Nilsen et al., 2010) and that recovery period for smolts can be up to two weeks or 

longer (Nilsen et al., 2013). Transfer of these exposed fish back to good quality FW 

showed an up regulation of α1a mRNA and reduction in α1b as expected in normal 

conditions (Richards et al., 2003; Nilsen et al., 2007; Madsen et al., 2009; 
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Bystriansky and Schulte. 2011). The increase at the final point of site B for the NKA 

qRT-PCR assay may have indicated the fish had recovered from metal 

contamination and were back into full smoltification development (Nilsen et al., 

2013). This may explain the lower α1a expression levels at all 4 sites initial points 

and could be the cause of the increase in expression at the final points of sites A 

and B due to fish health recovery. 

All tanks required a further 3 weeks before fish were successfully transferred to sea 

suggesting the NKA qRT-PCR assay had indicated a failed smoltification process at 

sites A, B and D in contrast to the NKA activity assays which had erroneously 

indicated that the fish were ready for SW transfer at all 4 sites (A, B, D and E). The 

high readings for the NKA activity assay recorded during this period of metal 

contamination are supported by work by Nilsen et al. (2010, 2013). They found NKA 

activity was only slightly, or not at all, affected by aluminium contamination 

treatments; however α1a mRNA levels after 7 days were reduced and after transfer 

back to FW increased substantially, potentially as a compensatory mechanism. 

2016 

A similar trend was observed in the 2016 sampling of Russel Burn sites A, B and C 

where there were again significant increases in NKA qRT-PCR mRNA abundance 

(A: 2.66 fc, B: 1.3 fc and C: 1.92 fc) and NKA activity (A: 1.73 fc, B: 2.27 fc and C: 

2.37 fc). Smolt indexes were stable at site A (2.2 – 2.4), but increased from I to F at 

sites B (2.2 – 2.9) and C (1.74 – 3). Final points with smolt indexes of 3 and below 

would suggest full smoltification had not occurred yet. Degree Days for site A (371) 

and B (366) were within the appropriate SW transfer window of 350 – 400dd 

suggesting the fish were ready for SW transfer. Site C (504) however was overdue, 

and within the window for potential desmoltification due to the fish being kept within 

FW for an extra 3 weeks at temperatures > 12°C  (Stefansson et al., 1998; 

Handeland et al., 2004). There were no reports of metal contamination in 2016. It is 

known that the surrounding area around Russel Burn suffers from Al and other 

deposit run off from the rocky environment. The surrounding rocky area consists of 

high amounts of limestone (CaCO3) and dolomite (CaMg(CO3)) and is located down 

river of a now disused copper mine (Cu2). Without confirmation of metal 

contamination it is difficult to ascertain why the NKA activity assays were showing 

such a strong signal for SW readiness whilst the NKA qRT-PCR was suggesting the 

fish were under some physiological stress before recovery at the first final points. 

The dd recorded at F points for all 3 sites would support the NKA activity assay 
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results suggesting the fish were ready or within the SW transfer window. It should be 

noted however that further final points were conducted at sites A and B before 

successful transfer to sea. This could suggest NKA assays had pre-emptively 

indicated transfer to SW too early with NKA qRT-PCR and smolt indices suggesting 

the fish were not ready. Although data wasn’t available for dd for these further 3 

weeks, it is clear to estimate that the dd would be > 400dd for the majority of this 

time. This suggests the fish would have entered the window where desmoltification 

can occur (Stefansson et al., 1998; Handeland et al., 2004). With conflicting data 

from these 4 data sets and the delay in transfer of the fish it is difficult to ascertain 

which data set was the most reliable at predicting successful SW transfer. 

2017 

For Russel Burn 2017 sampling no significant increases in NKA qRT-PCR mRNA 

abundance were observed (A: 1.11fc and B: 1.36 fc), with NKA activity increasing 

significantly at both sites (A: 2.06 fc and B: 1.55 fc). Smolt indexes for both sites 

increased from I to F (A: 2.2 – 3.15 and B: 2.4 – 3.5) although site A’s final smolt 

index of 3.15 is on the outer range for a final point reading.  There were no reports 

of metal contamination during this year. Both sites dd (A: 392 and B 388) were at 

the optimum time for SW transfer supporting the NKA activity assay results and high 

smolt index for site B. This would suggest that there was an issue with the NKA 

qRT-PCR assay during this year, possibly due to an error during the running of the 

sample, sample handing or another environmental factor not detected in NKA 

activity assays and smolt index. 

After 3 years of data where both tests never agreed fully it is likely a combination of 

environmental factors potentially based on location affected both tests to a different 

degree each year. This is highlighted with the outbreak of metal contamination in 

2015, and irregular smolt indices that vary on degrees of agreement with each 

assay over this 3-year period. Although no metal contamination was recorded in 

2016 and 2017, due to the topography of the site it is possible low levels have been 

present, particularly during times of heavy rainfall. Short periods of limited metal 

contamination could lead to small delays in smolt development than those shown in 

previous research into moderate and heavy contamination (Kroglund and Finstad. 

2003; Kroglund et al., 2007, 2008; Monette and McCormick, 2008; Nilsen et al., 

2010; Nilsen et al., 2013). Daily or weekly testing would need to have been carried 

out to validate or refute this, however. It should be taken into consideration however, 

that the dd recorded at F points for each of the 3-years were around the optimum 
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time for SW transfer in regards to the literature (Stefansson et al., 1998, Handeland 

et al., 2004). Temperature is another possibility for the variations, and this will be 

addressed later in this discussion. 

Other sites 

Only one site, Loch Shin, had both a decrease in NKA activity assay (1.34 fc) and 

increase in NKA qRT-PCR (1.53 fc). Both assays showed the opposite result of 

what we would be expected from each assay during a normal smolting period. The 

decrease in NKA activity (1.34 fc) below the threshold of 10 at the final point, and 

the increase in copy number of NKA qRT-PCR could indicate the salmon were 

undergoing desmoltification. It is well documented that salmon smolts that remain in 

FW past the stage of full smolt development begin to regress back to a parr-like 

appearance and partial morphology (Folmar. 1982; Hoar. 1988). Although limited 

research has been carried out on the endocrine system’s involvement in loss of 

smolt characteristics over time, research into GH (Agustsson et al., 2001) and IGF-1 

(Shimomura et al., 2012) have indicated they play a role and indicate a loss in in 

NKA activity as a potential sign of desmoltification. The smolt index for the initial 

point was relatively high compared to most sites standards (2.85) and peaked at a 

mid point of (3.5), and remained similar at the final point (3.49). We would expect 

fish going through desmoltification to have had a very high smolt index for a 

prolonged period of time in FW before reverting back to their pre-smolt stage (Hoar. 

1988), however the time points between initial and final were only 2.5 weeks apart. 

Without further data previous to the first initial point and without the correct tools to 

characterise de-smoltification it is difficult to say for certain whether this is what 

occurred.  

The 2017 data also showed a unique occurrence in regards to the NKA qRT-PCR 

where 6 of the 9 sites had a significant increase in mRNA abundance (appendix 

C1.6) and 2 where a small but non-significant increase in mRNA abundance was 

recorded. Only one site (Mingary) showed a significant decrease as would be 

expected for the assay. This year also had 5 of the 9 NKA activity assays indicating 

no smoltification at final points. Although points made about desmoltification, metal 

contamination and other factors have been discussed above and may account for 

some of the results, other environmental factors may be able to explain this year’s 

high variation in assay failures, particularly that of temperature. The influence of 

temperature on full smolt development is well documented as a crucial 

environmental factor (Solbakken et al., 1994; McCormick et al., 2000; Handeland et 
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al., 2000, 2004, 2013). Research into the effects of rearing smolts at different 

temperatures has shown that those raised at higher temperatures (12 – 12.7°C) will 

exhibit maximum levels of NKA activity 4 to 6 weeks earlier than those raised at 

lower temperatures (8.3 – 8.9°C), and thus advance the smolt process (Handeland 

et al., 2000; Handeland et al., 2013). Evidence has also shown that smolts 

maintained in FW past their SW transfer window (>400dd) at elevated temperatures 

(12 – 14°C) showed significant down regulation in NKA generally after a 4 – 6 week 

period (Stefansson et al., 1998; Handeland et al., 2004) indicating desmoltification. 

The development of normal smolt morphological changes such as loss of parr 

marks, silvering of the scales and increase in body mass have been shown to 

develop faster in higher rearing temperatures in hatcheries (Handeland. 2004). 

Taking the evidence into account we looked at average sea temperatures for all 3 

years were analysed and temperature profiles split into 3 sites based on closest 

location to each farm to ascertain whether temperature could have had some effect 

on smolt development (Figure 2.10).  

Figure 2.11. Map indicating temperature profile locations of 11 sites sampled over 
the 3-year study. 
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Mingary is one of the few sites where 100% success with the NKA qRT-PCR was 

observed over the 3 years. The sampling times over the 3 years were generally 

consistent, starting in September and ending in October. For Ormsary, sampling 

times took place earlier at 2 of the 3 tested sites in 2016 (July – Aug), therefore it is 

difficult to associate the failures of the assays with temperature influence due to the 

limited variation over all years. Sample periods for Russel Burn have been 

consistent over all 3 years. Most of the NKA qRT-PCR assays were tested during 

the months with highest variation in average temperatures between 2015 and 2017. 

However, the two assays, which were successful in 2015, were tested later in the 

year when temperatures across all 3 years were similar (Sep – Oct); implying that if 

temperature was having an effect then we should see a similar result should have 

been observed across 3 years.  

Geocrab samplings were taken at similar time points between Jun – Aug. No NKA 

activity assays successfully indicated smoltification over the 3 years, however NKA 

qRT-PCR assays did indicate smoltification at one point in both 2015 and 2016. 

Both Jun 2015 and 2016 were on average 1 – 1.3°C cooler than 2017; conversely 

Aug 2016 was warmer than 2015 and close to 2017 levels. Sampling times varied 

per year for Gairloch with tests starting late Sep – Oct 2015 towards Jun – Sep 

2017. There appears to be no correlation between temperature and NKA activity 

assays across 3 years as all assays failed every year. There was also no correlation 

between successful and unsuccessful indications of smoltification for the NKA qRT-

PCR assays during the 3 years, as tests showed decreases and increases of NKA 

mRNA abundance during cooler temperatures in 2015,and warmer temperatures in 

2016. 

For Loch Damph, both assays were effective in both 2016 and 2017 where sampling 

was conducted during September. The variation in average temperature between 

2015 and 2016 was 0.89°C in September and 0.74°C in August, suggesting 

temperature had no influence on the assays. The 2017 sampling took place earlier 

in August, when average temperatures were 1.12°C higher than 2015. It is difficult 

to incorporate the 2017 result as I to F testing was taken over 10 days. A key point 

should be made that although most temperature variations are quite minimal over 

the 3 years of testing the average temperatures for all years between July and 

September were above 12°C and had highs of 15°C in some months for some 

years. This is already in the range shown to increase the speed of smolt 

development through elevated NKA activity (Handeland et al., 2000, 2013) and 

within the window of smolts becoming susceptible to desmoltification when held in 
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FW once full development has occurred (Stefansson et al., 1998 and Handeland et 

al., 2003). Due to the influence that longer rearing times have at these temperatures 

on fish NKA activity, records into total hatchery rearing times at each farm may 

indicate those that have been reared for a longer period of time may be the groups 

that failed for both the NKA activity and NKA qRT-PCR assays. It would appear in 

our case that it was not the fundamental factor in the failures of NKA activity and 

NKA qRT-PCR assays during the 3 years of testing but could have had some 

influence based on rearing times at individual farms. 

A further way to examine the influence of temperature on smolt development was to 

examine dd between sites and years. Unfortunately onsite temperature data was 

only available for 2 sites, Russel Burn and Geocrab, for the full 3-year test period. 

Degree-days were calculated based on the formula DD = (TMax + TMin/2) – T0 

where To = 0°C. Examination of the dd allows for a better spatial observation of 

where the fish are development wise at each time point assessed. As mentioned 

previously, temperature is a crucial environmental factor for successful smolt 

development (Solbakken et al., 1994; McCormick et al., 2000; Handeland et al., 

2000, 2004, 2013) and can have inhibitory effects at elevated temperatures where 

smolts pass their SW transfer window (>400dd) (Stefansson et al., 1998; Handeland 

et al., 2004). When comparing dd between sites, it was found that Russel burn had 

kept within the optimal smolt transfer window at all but one of its F points (RBC 

2016, 504dd). Geocrab in contrast had only one site (GCA 2017, 395dd) within this 

window at its F points with the remaining sites ranging from 460 – 700dd+. At the 

sites where Russel burn (RBA, B, D 2015, RBA, B 2016 and RBA B 2017) and 

Geocrab (GCA 2017) were within the optimal smolt transfer window at F points for 

dd, it would be expected that the NKA activity, NKA qRT-PCR and smolt index 

would all point towards an almost fully developed SW ready smolt. For all 3-years 

NKA activity assays agreed with this as did smolt indices, showing a general move 

towards full smoltification characteristics in 5 out of the 7 sites tested with optimal dd 

for SW transfer. NKA qRT-PCR generally showed the opposite, with no significant 

change or an increase in copy number. It is known that metal contamination affected 

smolt development at Russel burn in 2015, however dd are only a measurement of 

potential growth due to temperature and therefore would not be affected by other 

environmental factors such as metal contamination. For the subsequent 2 years 

however, dd would support the NKA activity assay results indicating the fish were 

ready for SW transfer. For comparison, fish at Geocrab sites were held for a much 

longer period of time (>700dd at GCA 2016). NKA activity for all these sites began 
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at, or above the threshold used to indicate when fish are ready for SW transfer (NKA 

> 10) and increased throughout the testing period. NKA qRT-PCR also reported a 

significant increase (p < 0.001) in α1a in 2017 between I and M points. The 

extended dd would suggest the fish would have moved into a desmoltification state 

during the last 2 weeks of testing, however with the NKA qRT-PCR and NKA activity 

results observed, it is possible the fish may have been in a desmoltification state 

before this. Signs of this were not observed in the smolt indices where they were 

reported within normal I point range (1.1 – 2) and F points (3 – 3.3). NKA qRT-PCR 

also supported this, as the mRNA levels remained stable in 2015 (p = 0.288) and 

decreased as expected in 2016 (p = 0.005). No losses of fish were reported due to 

desmoltification either.  

Due to the conflicting data at both Russel burn and Geocrab, it is hard to pin point a 

particular cause for the variation in the results. This is particularly apparent in the 

Geocrab results as the temperatures remained over 13°C for all sites with >400dd. It 

is possible that fish at these sites were subjected to desmoltification due to the α1a 

mRNA observed increasing at I to M points (GCA 2017) and M to F points (GCA 

2015), and most interesting of all a decrease from I to M and increase from M to F 

(GCA 2015). The trend shown at GCA 2015 is a common trait found for the α1a 

mRNA marker (McCormick et al., 2009b; Madsen et al., 2009; McCormick et al., 

2009b; Madsen et al., 2009; Nilsen et al 2013). The marker slowly decreases to a 

point where the fish are ready for SW transfer, and if the fish are not transferred the 

marker then increases again due to prolonged FW stress in an attempt to revert 

back to FW salmon traits. This is further supported by the high NKA activity 

recorded at Geocrab throughout testing.   Due to the lack of extra sample points 

throughout the testing period it is difficult to assess whether this is true. There are 

only two sites (GCB 2015 and RBB 2016), which showed a similar trend of 

decreasing α1a mRNA from I to M points (GCB 2015 260dd, RBB 2016 270dds) 

followed by an increase at F points (GCB 2015 575dd, RBB 365dd). It is possible 

that if more sampling had been carried out in this dd range of 250 – 400, or more dd 

data was available from other sites, that a trend may have been observed. Due to 

the vast differences in dd between both sites over the 3-year period it would be 

expected that they would look significantly different in comparison with NKA qRT-

PCR activity. On cross-examination however, there is little variation in the I, M and F 

points. Further observation and testing based on dd instead of calendar days would 

allow for closer monitoring of the NKA qRT-PCR and NKA activity. It could also 

allow for trends to be observed for pre and post optimal SW transfer windows based 
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on a dd window. This could also be further enhanced to focus on site-specific 

optimal dd SW transfer ranges. 

To observe any variations in expression between I and F points, a selection of sites 

were also sampled at M points. This was to determine whether the population 

shifted in a particular direction regarding NKA activity assays and NKA qRT-PCR 

mRNA abundance. It is important to monitor the normal full smolt window of 4 – 6 

weeks between I, M and F to ensure a clear depiction of expression is recorded 

throughout the full smolting period. Those farms that sample outside of this window 

risk the validity of both tests as the fish remain in FW potentially past their optimum 

time window. Therefore those sampling at longer time ranges risk the wrong 

interpretation of where the fish are biologically in regards to smoltification. 

Regarding current literature, it would be expected that M points would have a 

relatively high abundance of α1a mRNA similar to those at I points due to the high 

expression of this isoform in its osmoregulatory role in a FW environment (Mackie et 

al., 2005; Bystriansky et al., 2006; Nilsen et al., 2007; Madsen et al., 2009; 

McCormick et al., 2009b, 2013a; Bystriansky et al., 2011; Stefansson et al., 2012). 

However, due to the switching of ionocytes to the α1b isoform in preparation for a 

SW environment it is possible that a small reduction in expression of α1a may be 

observed (Nilsen et al., 2007 and McCormick et al., 2013a). For the NKA activity 

assay a constant increase in activity from I, M and F point would be expected as the 

fish adapt to fully smolted salmon (Prunet et al., 1989; McCormick. 1995,1996, 

2000, 2001; Bystriansky and Schulte. 2011, Handeland. 2013).  

For NKA activity over the 3-year period, a significant increase between I and M was 

found in the majority of sites sampled (13 / 18), but only a significant increase in a 

minority of sites between M and F (5 / 18). The trend of increasing NKA activity is as 

would be expected from previous literature (Prunet et al., 1989; McCormick. 

1995,1996, 2000, 2001; Bystriansky and Schulte. 2011; Handeland. 2013), however 

the limited increase from M – F shows the high variation that is present in NKA 

activity between the population of fish sampled, and suggests that the largest 

increase in NKA activity is within the first few weeks of smoltification development. 

Higher variations in StD were observed in most M and F points when compared to I 

points, suggesting high variation in expression of NKA activity within the population. 

There were two sites where the M point was lower than both the I and F points 

(GCB 2015) and GCA 2017)), and the M point was higher than both I and F points 

(ORA and GCA 2015) and LD and GCA 2016). This could be due to site-specific 

issues with GCA and B during these years and possibly other factors for LD such as 
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environmental. There was no noticeable association with variation in length of the 

sampling period between I, M and F that may have affected this. Other sites as well 

as the same sites, on different years such as LD with the same time scale have not 

shown the same trend.  

For NKA qRT-PCR analysis over the 3-year period there was a significant decrease 

in I and M points for the majority of sites (12 / 18), but only one site (ORA – 2015) 

showed a significant decrease between M and F points. This would again suggest 

that, similar to NKA activity assays that, the largest decrease in α1a mRNA 

abundance was in the first few weeks of smoltification, with a slower decrease in the 

subsequent 2 – 4 weeks. This appears to partly go against the established literature, 

indicating high levels of α1a are present before a rapid changing of ionocytes to α1b 

(Mackie et al., 2005; Bystriansky et al., 2006; Nilsen et al., 2007; Madsen et al., 

2009; McCormick et al., 2009b, 2013a; Bystriansky et al., 2011; Stefansson et al., 

2012), however most F points do show α1a mRNA in excess of 1 x 105 copies 

before transfer, before declining rapidly again to background levels in SW 

transferred smolts. 

From the data gathered over this 3-year study, it would appear that there are two 

distinct drops in α1a expression, with an initial drop from the I to M phase of 

smoltification with a slower reduction in expression towards a baseline level of 1 x 

105 mRNA copies for SW ready smolts at the F phase. This is then followed by the 

rapid decrease in α1a down to low background levels in SW transferred smolts. A 

similar trend can be attributed to the NKA assays, with smolts reaching high levels 

of NKA expression near the M phase followed by a slow increases in NKA towards F 

phase SW ready smolts.  

It is possible that in some or even all RNA samples extracted on site, mRNA 

degradation may have occurred despite being placed in RNA later for NKA qRT-

PCR assays and SEID solution for NKA activity assays. Research on degradation of 

salmon gill tissue over time in RNA later on brain, kidney, liver and muscle indicates 

degradation of mRNA within 4-8 hours at room temperature in RNA later (Seear et 

al., 2008). It also states that all tissues are generally stable for 1-hour post mortem. 

For our onsite tests, the overall process from killing of the fish to running of the PCR 

is approximately done within this 1-hour time frame, reducing the chance of mRNA 

degradation and producing a potentially more reliable result on α1a mRNA levels 

within the gill tissue. In contrast, the collection of gill tissue for lab analysis of both 

NKA qRT-PCR and NKA activity assays were carried out as quickly as possible after 
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killing of the fish with each tissue transferred into RNAlater (NKA qRT-PCR assay) 

and SEID (NKA activity assay), and placed in dry ice and or ice packs. It can then 

take up to or >24 hrs for the samples to reach the lab. The use of dry ice for 

transport was not used universally over all sites and between labs, increasing the 

possibility of degradation during transport. To account for the possibility of mRNA 

degradation, it could be possible to test storage of gill tissue in RNA later and SEID 

at room temperature, chilled (2-8°C) and frozen, and compare to fresh sample 

analysis following such examples in human tissue analysis (Mutter et al., 2004; 

Florrel et al., 2001). We did however find no statistical difference between our on 

site test results and in lab results. These samples were transported in RNAlater in a 

cool box maintained at -5°C and then transferred into a -70°C freezer within 10 

hours of gill extraction. The natural variations of qRT-PCR assays have been 

determined at ±1.4 CT’s (Niesters. 2001). All the comparative data sets from all our 

sites fell within this range.  

It should also be taken into consideration the different efficiencies calculated from 

the samples when compared to the NKA qRT-PCR plasmid standard. The samples 

were extracted as pure RNA, however within the extracted RNA there would have 

been potentially thousands of other mRNA transcripts from different targets. The 

plasmid standard in comparison is specific only to the α1a mRNA target of ATPase. 

The integrity of the RNA samples would also be more susceptible to degradation, 

increasing the chances of target sample breaking down and therefore potentially not 

being amplified by the specific PCR primers and probes. Plasmid DNA standards 

are well known for their robustness, even at room temperature without losing any 

efficiency, producing consistent and reproducible results (Pfaffl, 2004). Therefore, it 

is possible that the samples tested were not always showing the true mRNA 

abundance that was present within fish tested at some sites and times points. This 

may potentially explain some of the unexpected increases and low abundance of 

mRNA at time points where it would have been expected to be the opposite. 

Converting the mRNA extracted to cDNA could help mitigate the potential 

breakdown in integrity of the target and allow easier storage and sampling. 

An in lab NKA qRT-PCR assay was successfully tested with samples from multiple 

fish farms over a 3-year period against NKA activity assays. For the first two years 

although not agreeing at all sites both assays had similar successes and failures in 

detecting smolitification (qRT-PCR 57%, NKA activity 60%). The final year (2017) 

was the only variation to this, as all but one NKA qRT-PCR assay failed to show 

downregulation of α1a mRNA associated with succesful smoltification, with 4 of the 
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NKA activity assays indicating successful smoltification. It is also interesting to note 

that NKA activity assays did not seem to be influenced by metal contamination 

according to our results from 2015 at Russel Burn. This is in line with previous 

research on metal and acid contamination indicating no effect on NKA activity 

(Monette and McCormick. 2008; Nilsen et al., 2013). Results from those studies 

showed that the NKA activity assays gave a false positive signal for SW transfer 

with NKA qRT-PCR assays and salt-water bath treatments indicating the fish were 

not ready for transfer. Further analysis would need to be conducted on NKA activity 

assays with metal contaminated salmon to ascertain the reason as to why this has 

occurred. 

Although various factors including temperature, metal contamination, RNA quality, 

dd and rearing times have been discussed, it has not been possible to address all 

the failures of each assay within the test periods. Given the variety of factors, it 

would appear that some, if not all could play a role in influencing the results of both 

our assays, or that at times it was down to the stock of fish reared that year. It is 

possible that through the use of Supersmolt®, pseudo smolts are produced out with 

standard feed smolts. This could potentially produce smolts that develop faster and 

need to be transferred earlier. Comparissons between fish fed on standard feed and 

Supersmolt® would need to be performed in tandem to asses whether this could be 

true. The use of dd instead of calendar days would also be a benifit for closer 

assessment of the fish during development to observe whether Supersmolt® fed fish 

are developing at a faster rate that was not observable in this study. A 

standardisation of smoltification procedures on each farm for rearing times, 

temperatures etc. would be the optimal way to fine tune both these tests and 

discover the biggest environmental and physical problems effecting them. This 

however is completely impractical from any farms point of view.  

A mobile diagnostic kit for onsite detection of the NKA isoform α1a in salmon gills 

was successfully designed and trialled. Low levels of expression were detected (1 x 

104 mRNA copies) from all extracted gill samples from smoltified salmon. These 

results correlated with previous research stating a fall and low adundance of α1a 

mRNA post smoltification (Richard et al., 2003; Bystriansky et al., 2006; Bystriansky 

and Schulte 2011. Stefansson et al., 2012). 

A modified version of the mobile diagnostic kit containing less equipment for easier 

transport and operation on site, and changing to a new qRT-PCR device (Q16), was 

successfully tested. The extraction and assay were performed successfully at most 
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sites with some issues recorded for internal positive controls, which limited our 

analysis. Positive control CT varied beyond the normally accepted variation of 1.4 CT 

at 3 of the time points tested (Ormsary F and Uist F). This gave incorrect copy 

numbers for the resulting samples as the positive was off by ~1 log. No definitive 

cause for this variation was discovered, however a new buffer solution has been 

developed specifically for the positive control, which may alleviate this issue. We 

saw no significant decrease in ATPase CT for all 3 sites, but an increase at Ormsary. 

This could be due to the varying time ranges of when we started sampling (mid 

smolt for Ormsary and Clachan), and the time between sample points (Loch Damph 

- 9 weeks, Clachan - 2 weeks and Ormsary - 4 weeks). In particular, Loch Damph 

smolts were to be held for another 2 weeks post final point sampling leading to a 

total smolt period of 11 weeks. Supersmolt® feed used to induce smoltification at this 

farm was only administered to fish after the second sampling indicating both were I 

points. 

There are various factors including morphological and environmental which may 

have played a part in these results that have been highlighted previously in this 

discussion. These experiences however also indicate that planning visits is crucial in 

applying the mobile qRT-PCR platform in order to efficiently test the I – M and F 

points reflecting the protocol and timeline implemented at each hatchery. The 

deployment study showed that we were able to optimise the suitcase lab by 

reducing its size and materials needed as well as optimise the RNA and qRT-PCR 

protocols. The Q16 was also successfully able to run whilst being transported in a 

car, which opens up the possibilities for multiple site visits as tests from one farm 

can be conducted whilst travelling to the next. 

To identify smoltification in salmon we have successfully developed an in lab and 

onsite qRT-PCR platform for the detection of the NKA transcript α1a. High sensitivity 

was shown for the in lab (98.9%, SE 0.24) and mobile (93.43%, SE 0.119) assays 

when tested using a quantitative RNA standard (both within optimal efficiency range 

of 90 – 105%). 

Multiple qRT-PCR assays have been developed both academically and industrially 

for detection of ATPase α1a for in lab testing. To our knowledge, this is the first 

assay developed in the lab that has been specifically modified to work on a mobile 

platform on site at fish farms. Both onsite assays were successfully tested on 

multiple farms. These tests have proven it is possible to test during a smolt period 

on site and provide results on the same day. This leaves the possibility for further 
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refinement of the assay, development of other biomarkers and transferring viral 

assays targeting salmon disease for onsite testing. 
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Chapter 3: Multiplex Viral Diagnostics 

3.1 Introduction 
Salmon alphavirus (SAV), Piscines reovirus (PRV) and Piscine myocarditis virus 

(PMCV) are 3 of the most prominent viruses causing major detrimental impacts on 

salmon health and production within the salmon aquaculture industry in Europe. The 

most prominent of these pathogens is salmonid alphaviruses (SAVs). There are 

currently 6 known subtypes of SAV that have been characterised (Fringuelli et al., 

2008). The virus causes PD in Atlantic salmon in the UK (SAV 1 - 6) (Fringuelli et 

al., 2008; Graham et al., 2012; Hjortaas et al., 2013), and both Atlantic salmon and 

rainbow trout in Norway (SAV 3) (Hodneland et al., 2005). The virus also causes 

SD, which afflicts rainbow trout across Europe (Graham et al., 2003, 2007; Castric 

et al., 1997; Jansen et al., 2017). All subtypes show similar pathological and 

morphological effects (muscle and heart myopathy, pancreatic lessions, non feeding 

fish and abnormal swimming behaviour)(McLoughlin et al., 2007) and cannot be 

distinguished by histopathological analyses.  

PRV, a recently discovered double stranded RNA virus has been strongly 

associated as the infection agent of heart and skeletal muscle inflammation (HSMI) 

in Atlantic salmon (Palacios et al., 2010; Finstad et al., 2012), and recently has been 

shown to be the causative agent of the disease (Wessel et al., 2017). HSMI is 

characterised by lesions in the heart and red skeletal muscle, causing moderate to 

severe inflammation of the tissues, which can then lead to heart and muscle failure 

(myocarditis and myopathy). External symptoms are low, with non-feeding and 

abnormal swimming being the most commonly observed. The virus was considered 

to be the cause of cardiomyopathy syndrome (CMS) in salmon but research by 

Lovoll et al. 2010 and Haugland et al. 2011 showed the virus was acting as a 

potential opportunistic secondary infection in CMS infected fish. Further evidence of 

its opportunistic nature was shown by Garseth et al (2013) where high titres were 

observed in Atlantic salmon with no HSMI symptoms. It was also shown that PRV 

can stop secondary infections of SAV (Lund et al., 2016). Recent findings by Wessel 

et al. (2017) now suggest that PRV is in fact the etiological agent, however not all 

strains can induce HSMI. As more evidence is gathered on PRV it is clear that due 

to its abundance, it plays a key role in disease outbreaks in salmon. 

PMCV is another recently discovered double stranded RNA virus (Haugland et al., 

2011) that is the causative agent of CMS in Atlantic salmon. It generally affects 
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salmon between 12 – 18 months after SW transfer (Brun et al., 2003) and is 

characterised by lesions on the heart, causing inflammation and degradation of the 

atrium and ventricular spongious myocardium. This can lead to heart failure and 

mortality of the fish if infection is severe enough (Ferguson et al., 1990; Poppe and 

Seierstad. 2003). External observations of the disease are similar to both PRV and 

SAV with decreased feeding, abnormal or erratic swimming behavior, swelling and 

skin hemorrhages (Rodger and Turnbull. 2000). These symptoms are not always 

present, with healthy looking fish displaying sudden mortality. The virus is able to 

infect cohabiting fish and spread into the water column, and though it is not yet 

known how this is achieved it has been postulated (Haugland et al., 2011). Due to 

the similarity of the internal and external morphological impacts these 3 viruses have 

on Atlantic salmon, coupled with potential opportunistic secondary infections after 

one has caused primary infection, demonstrates why a fast and effective detection 

platform would greatly help in the detection of each virus. This could help mitigate 

and limit the outbreaks of disease and in turn reduce mortality and loss of profit for 

fish farm production. 

The introduction of qRT-PCR has produced the most popularly and sensitive 

platform for detection of mRNA (Bustin. 2000). The development of this technique 

allowed real time viewing of amplification at each cycle threshold (Ct) as well as the 

use of target amplicon specific primers and probes. When comparing reverse 

transcription polymserase chain reaction (RT-PCR) to qRT-PCR, increases in 

detection and sensitivity are generally found (Bustin and Mueller. 2005). This has 

been shown to be the case in numerous fish viruses such as SAV (Hodneland and 

Endresen. 2006) and ISAV (Munir and Kibenge. 2004). One of the most effective 

and commonly used probe formats for qRT-PCR is dual-labeled fluorogenic probes 

(TaqMan probes). This assay was originally proposed and developed by Holland et 

al. (1991) and was tested and finalised by Heid et al. (1996). TaqMan probes utilise 

two reporter dyes, one at the 5’ end containing the fluorescent reporter dye that is 

quenched by the other at the 3’ end. Detection of the reporter dye is only possible 

when correct hybridisation, polymerisation and cleaving of the probe occur. 

Therefore at each cycle the fluorescence detected is directly proportional to the 

concentration of DNA template present (Holland et al., 1991; Heid et al., 1996; 

Bustin. 2000). The advantage of this probe was the increase in speed, sensitivity, 

real time viewing of quantification and reduction in contamination due to its closed 

tube system (Heid et al., 1996).  
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The development of specific mRNA target probes in qRT-PCR assays has provided 

the ability to run multiplex assays. These can contain multiple mRNA target specific 

primers and probes aimed at different targets within the same reactions and 

protocol. This can lead to decreased assay preparation and running time. Multiplex 

assays have been successfully developed and used for a multitude of human 

viruses; gastroenteritis (Pang et al., 2005), human influenza (Suwannakarn et al., 

2008) and respiratory tract infection (Brittain-Long et al., 2008) to name a few. 

Developments of marine based multiplexes have been produced for viral (Khawsak 

et al., 2008; Kou et al., 2008; Panichareon et al., 2011; and Hoferer et al., 2017), 

bacterial (Cerro et al., 2002) and parasitic (Li et al., 2017) assays. These have been 

developed at a slower rate using a variety of different multiplex techniques. 

Inherently there are fundamental problems that must be addressed and adhered to 

when using qRT-PCR to ensure that the assays produced provide accurate 

technological and biological results that can be interpreted and compared correctly. 

Specificity of the primers and probe to amplify the correct target region, quality of 

RNA used (both standards and samples), operator variability and data analysis are 

just some of the aspects that can have a detrimental effect if not adhered to (Bustin 

and Nolan. 2004). These factors resulted in the publication of a set of minimum 

information for publication guidelines for qRT-PCR assays (MIQE) (Bustin et al., 

2009). These issues, particularly those of specificity, are amplified during multiplex 

development due to the increasingly complex nature of the mix as more assays are 

added (Elnifro et al., 2000).  

Following these guidelines we aimed  

1. To produce 3 individual qRT-PCR assays for the detection and rapid 

screening of all subtypes of of SAV, PRV and PMCV.  

2. To incorporate these 3 assays into a multiplex qRT-PCR assay with an 

internal control (IC) using Taqman probes.  

3. To transfer the multiplex assay to a mobile qRT-PCR device (SmartCycler™ 

system).  

4. To test this assay against positive samples of SAV, PRV and PMCV.  

5. Overall we aimed at producing a sensitive and specific multiplex assay that 

would be able to detect SAV, PRV and PMCV both in lab and on site at fish 

farms.  
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3.2 Materials and Methods 

3.2.1 Design of primers 

Primer design for the detection of SAV, PRV, PMCV and SIGV were designed by 

aligning all available sequences from Genebank (SAV (147), PRV (81), PMCV (94) 

and SIGV (6)) in a clustalV alignment using Lasergene software 

MEGALIGNDNASTAR®. Primers and probes were placed into conserved regions 

(Table 3.1). To cover the variability of the SAV genotypes, several combinations of 

primers and probes were originally designed. Norwegian, Scottish and Irish SAV 

genotypes (SAV 1, 3-6) were detected by two 5’ primers (SAV FP, SAV FP3), one 

probe (SAV LNA), and one 3’ primer (SAV RP2). Sleeping disease virus (SAV 2) 

was detected by one of the two 5’ primers already mentioned (SAV FP), one probe 

(SAV SD LNA P) and one 3’ primer (SAV SD RP). All primers were additionally 

tested in silico for any secondary structures and primer-dimer formation with 

VisualOMP Version 7.2.48.0 (DNA software, Inc.). 

Subsequently, when combining the selected assays in to a multiplex reaction the 

primers and probes used for SAV were refined and reduced to two primers that 

covered all 6 SAV genotypes (SAV UP2, RP4) and one probe (SAV LNA P). In all 

cases LNA nucleotides were used in the probes to reduce probe length and to allow 

the use of shorter conserved sequence signatures.  

Additionally, different sets of primers were designed to amplify target regions of the 

viral genomes (Table 3.2). These amplified fragments were used to develop the 

respective quantitative RNA standards. Again all primers were additionally tested in 

silico for any secondary structures and primer-dimer formation with VisualOMP 

Version 7.2.48.0 (DNA Software, Inc.). 
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Table 3.1. Primers and probes designed for detection and amplification of SAV, 
PRV PMCV and SIGV RNA standards in qRT-PCR tests. 

Virus Primer or 
probe 

Sequence (5” -> 3”) TM (oC) Product 
size (bp) 

SAV SAV UP2 AAGAAATGTACCAGATTTTCCACTAC 59.1 106 

 SAV RP4 gCATgTTRCgACggTgYTAATCTCTAC 60.9  

 SAV LNA 6FAM-AATCGGCA+GA+GC+GTC--
BBQ 

46.6  

PRV PRV FP2 GGTTCAAACGACAGACCAGACAG 62.4 78 

 PRV RP2 CATTATGCCACGCATATCGTCTC 60.6  

 PRV LNA CY5-ATTgAAgCTAAgCgACg—BBQ 42.3  

PMCV PMCV FP2 GACCAACCCAGAACCAGCG 60.7 82 

 PMCV RP TCAACACCCATCTGTCTTTGGTATG 61.3  

 PMCV2 
LNA P3 

LC610-ATTgAAgCTAAgCgACg--BBQ 41.8  

Sigma FP gTgACATTCCAAgTAACTgATT 49.6 91 

 RP CAACggCAgTTTggATA 50.0  

 LNA YAK-CCCTCCgTgTCCTCCCggTACC-
BHQ2 

68.3  
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Table 3.2. List of all primers and probes used for amplification of target regions, 
plasmid standards and sequence analysis (M13 primers (MCS = multiple cloning 
site of pCR™II)) of SAV, PRV and PMCV. 

Virus Primer or 
probe 

Sequence (5” -> 3”) TM (oC) Product 
size (bp) 

SAV SAV UP2 AAGAAATGTACCAGATTTTCCACTA
C 

59.1 317 

 SAV DP2 CTAGTGGAGGCAAGGAAGTGAA 60.4  

PRV PRV UP TTCTATGACGACCAACATAACACTT
CA 

60.4 835 

 PRV DP AGGGATTGTGTGACCAGAGTGC 62.1  

PMCV PMCV UP TGTCAAACAAGATGAAGAGTTTTTT
ACTG 

59.6 910 

 PMCV DP CTAGACTCCTACTCTGAATCCCTCT
TCAT 

65.3  

M13 M13 UP GTAAAACGACGGCCAG 51.7 MCS 

 M13 DP CAGGAAACAGCTATGAC 50.4  

3.2.2 PCR 

PCR reactions were carried out for SAV, PRV and PMCV in 0.2ml tubes containing 

a final volume of 50 µl per reaction, using a final concentration of 400 nM primers 

(Table 3.2), and 1x MyTaq™ HS Mix (Bioline). Template plasmid DNA containing 

the region of interest of the SAV genome was kindly provided by Dr. Michael Leaver 

(Institute of Aquaculture, University of Stirling), whilst plasmid DNA containing 

regions of PRV and PMCV genome were ordered from, and synthesized by Life 

Technologies. Several 10-fold dilutions for each plasmid DNA were prepared and 1 

µl of each dilution was used as template for the PCR reactions. All reactions were 

run in a T gradient thermocycler (Biometra) using the following conditions: activation 

for 3 min at 95°C, followed by 35 cycles of denaturing for 15 s at 95°C, annealing for 

15 s at 55°C, and extension for 30 s at 72°C. The PCR products were run on a 2% 

agarose gel stained with ethidium bromide and analysed using GeneSnap version 

7.12 (Syngene). 

3.2.3 Purification of PCR products 

PCR products were purified using the DNA Clean & Concentrator™ 5 Kit (Zymo 

Research), according to manufacturer’s instructions, using a 5:1 ratio between the 

DNA binding buffer and the PCR products. Purified DNA was eluted into 20µl DNA 

elution buffer. DNA concentration was determined using the ND-1000 system 
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(NanoDrop, Thermo Scientific) and ND-1000 version 3.8.1 software. Purified PCR 

products were directly used for the ligation procedure, and then kept at -20°C for 

long-term storage. 

3.2.4 Ligation, cloning and transformation 

This procedure was carried out using the TA Cloning Kit Dual promoter pCR™II kit 

(Invitrogen), according to manufacturer’s instructions, using a vector to PCR insert 

ratio of 1:3. The ligation mixtures consisted of the purified PCR products (SAV: 

12ng, PRV: 32.1ng, PMCV: 35ng), 1x Express Link™ T4 DNA Ligase Buffer, 50 ng 

pCR™II vector and 5U ExpressLink™ DNA Ligase to a final volume of 10µl. The 

ligations were incubated for 1 h at room temperature and then were stored at -20°C. 

After the ligations were carried out, 2ul of each ligation reaction was transferred to 

separate vials containing 50 µL One Shot® TOP10F’ chemically competent 

Escherichia coli, provided with the TA Cloning Kit Dual promoter pCR™II kit 

(Invitrogen). Transformation was carried out according to manufacturer’s 

instructions. From each transformation vial 50µl, 100µl and ~150-200µl were spread 

on separate Luria-Bertani (LB) agar plates containing 100µg/ml ampicillin. As 

TOP10F’ cells were used, the LB plates needed to be equilibrated by pre warming 

them for 30 min at 37°C before addition of the spread from each transformation vial. 

The plates were then incubated overnight at 37°C. 

The following day, plates were analysed for growth. Ten single colonies were picked 

per transformation reaction and placed in separate falcon tubes containing 5 ml of 

LB broth supplemented with 100µg/ml ampicillin. The tubes were then incubated 

overnight at 37°C in a Maxq 2000 shaker (Barnstead lab line) at ~ 2g. 

The cultures obtained for each transformation reaction were split into two tubes. 

One tube contained 4.5 ml bacterial suspension and was used to perform the 

plasmid DNA extraction, whereas the remaining volume was transferred to a tube 

containing 0.5 ml sterile glycerol (consisted of same volumes of LB broth and 

glycerol). The bacterial cultures mixed with the glycerol were kept at -70°C, as 

reserve stocks. Plasmid DNA extraction was then conducted following the protocol 

outlined in the High Pure Plasmid Isolation Kit (Roche). Plasmid DNA was eluted in 

100µl elution buffer (10mM Tris-HCl, pH 8.5) and the concentrations were 

determined in the ND-1000 system (as described in section 3.2.3). Plasmid DNAs 

were stored at -20°C. 
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3.2.5 Recombinant plasmid analysis 

3.2.5.1 Restriction fragment length polymorphism analysis 

Restriction fragment length polymorphism (RFLP) reactions were carried out for 

each plasmid DNA. SAV was digested using the restriction enzymes BamHI-HF and 

BseRI, PRV with NotI and PMCV with BamHI-HF and MfeI. All restriction enzymes 

were purchased from New England BioLabs. The different reactions consisted of 50 

µl solutions containing 1µg plasmid DNA, 10 U of each restriction enzyme, and 1x 

buffer solutions (CutSmart™ for SAV and PMCV digestion reactions; NEBuffer 3.1 

for PRV digestion reaction). All reactions were incubated at 37°C for 1 h in a T 

gradient thermocycler (Biometra). 250ng of each reaction was then loaded onto a 

1% agarose gel stained with ethidium bromide alongside the same amount of non-

digested SAV, PRV and PMCV plasmids for comparison. Gel analysis was 

conducted using GeneSnap version 7.12 (Syngene). 

3.2.5.2 Sequencing 

Plasmid DNAs obtained in section 3.2.4 were sent for sequencing to GATC Biotech, 

using LIGHTrun sequencing. LIGHTrun sequencing was prepared in tubes 

containing a mixture of 5µl plasmid DNA (80-100 ng/µl) and 5µl primer (5 µM). 

Primers used for sequencing were M13-FP (5’-GTAAAACGACGGCCAG-3’) and 

M13-RP (5’-CAGGAAACAGCTATGAC-3’). When sequences were obtained, they 

were analysed using the Lasergene software 7 (DNASTAR®) to determine correct 

orientation and insertion into the vector pCR™II. The promoter (SP6, T7) used in the 

following transcription steps was dependant on whether the inserts were in a 

forward or reverse orientation. 

3.2.6 In vitro transcription 

3.2.6.1 PCR M13 FP-RP primers 

Sigma virus (SIGV) was provided from the Institute of Pasteur Paris, and a plasmid 

with the SIGV G gene ligated into pCR™II was provided by supervisor Manfred 

Weidmann. For SAV, PRV, PMCV and SIGV a further set of PCR reactions were 

conducted to ensure the inserts were present in each of the eluted plasmid DNA, as 

well as to obtain PCR products containing T7 and SP6 promoter sites. PCR 

solutions (50µl final volume) contained 400mM M13 FP-RP primers, 1x MyTaq™ 

HS Mix (Bioline), and several dilutions of plasmid DNA. The reactions were then run 

in a T gradient thermocycler (Biometra) using the following protocol: activation for 1 

min at 95°C, followed by 35 cycles of denaturing for 15 s at 95°C, annealing for 15 s 
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at 60°C and extension for 15 s at 72°C. PCR products were ran on a 1% agarose 

gel (2% agarose gel in the case of SAV) stained with ethidium bromide. 

3.2.6.2 Purification of PCR products 

For SAV and PMCV PCR products, a further purification step was performed, as it 

was not possible to obtain a single band. The target bands were identified using a 

white/UV transilluminator, cut from the gels using sterile blades, and then placed in 

separate 1.5ml tubes. Purification of the PCR products by centrifugation was 

conducted using the Wizard® SV Gel and PCR Clean-Up System (Promega), 

according to manufacturer’s instructions. Purified DNA was eluted in 30µl nuclease-

free water and the concentrations were estimated using the NanoDrop ND-1000. 

3.2.6.3 In vitro transcription 

For each transcription reaction (40µl final volume), 0.2-ml tubes containing 1x 

Transcription Buffer solution, 2.5mM rNTP’s, 40 U T7 RNA polymerase (Roche) and 

1 µg M13 PCR product were placed in a T gradient thermocycler at 37°C for 2 h 

followed by a 2 min inactivation phase at 65°C. 

3.2.6.4 DNase treatment 

Removal of remaining plasmid DNA from the transcription reaction was carried out 

by DNase treatments with the DNA-free™ kit (Ambion). First of all, a routine DNase 

treatment was performed in a 50µl solution containing each of the initial transcription 

volumes, 1x DNase I Buffer, and 2 U rDNase I in a 1.5ml tube. The reaction was 

incubated at 37°C for 30 min. 5 µl DNase inactivation reagent were then added and 

incubated at room temperature for 2 min. The tubes were then centrifuged at 

14500g for 1.5 min and the supernatant containing the RNA was transferred to a 

new 1.5ml tube. 

In some cases a further rigorous DNase treatment was conducted using the same 

kit, with some modifications. The following protocol was repeated twice. Tubes 

containing the previously DNase-treated RNAs were initially heated at 95°C for 5 

min and then cooled on ice for 3 min. Then, these tubes containing 1x DNase I 

Buffer and 2 U rDNase I were incubated for 30 min at 37°C. After this incubation, a 

second addition of 2 U rDNase I was added to the tubes and incubated for further 30 

min at 37°C. Once this incubation was complete, 0.2 volumes of DNase inactivation 

reagent were added to the tubes and incubated at room temperature for 2 min. The 

tubes were then centrifuged at 14 500g for 1.5 min and the supernatant transferred 

to a new 1.5ml tube. 
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The volumes of 10x DNase I Buffer and DNase Inactivation Reagent used for each 

treatment was calculated based on the current remaining volume for each RNA after 

performing a DNase I treatment. 

3.2.7 qRT-PCR test for remaining plasmid DNA 

The DNase-treated RNA samples were analysed by real time one-step RT-PCR 

using the QuantiTect® Probe RT-PCR Kit (Qiagen) to check for any remaining 

plasmid DNA and their respective CP values. Reactions were run in LightCycler® 

capillary tubes (20µl) (Roche) containing 1x QuantiTect Probe RT-PCR Master Mix, 

500 nM primers, 200 nM probes (Table 3.1), 0.2µl QuantiTect RT Mix and 1µl 

transcribed RNA. In addition, the same reaction was performed omitting the 

QuantiTect RT Mix (RT- reaction). Non-template controls (NTC) were also included 

and consisted of the same reaction volumes, with nuclease-free water added 

instead of transcribed RNA. 

Capillary tubes were then placed in a LightCycler 2.0 thermocycler (Roche). The 

same temperature profile was used for all samples: reverse transcription for 20 min 

at 50°C, activation for 15 min at 95°C, followed by 45 cycles consisting of 

amplification for 0 s at 95°C and 1 min at 60°C, and a final cooling stage for 5 min at 

40°C. Analysis was conducted using LightCycler® software version 4.1.1.21 

(Roche), with the CT values obtained for both the RNA and RT- reactions. Based on 

the difference of the CT values between the RNA and RT- reactions, a decision was 

made on whether further DNase treatments were required (see section 3.2.6.4) to 

remove any remaining plasmid DNA. 

3.2.8 Quantification of transcribed RNA 

Quantification of each transcribed RNA sample was conducted using the Quant-iT™ 

RiboGreen® RNA Reagent Kit (Invitrogen), according to manufacturer’s instructions. 

A high-range assay was conducted, using different dilutions of RNA standard from 1 

µg/ml to 20ng/ml. The RNA standard contained 16S and 23S rRNA from E. coli. 

RNA standards, controls and samples were prepared in 1.5ml tubes. Each solution 

was transferred onto 4 separate wells on a 96 well polystyrene ELISA microplate (F-

bottom, chimney well, Fluotrac™ 600 high binding, Greiner bio-one). The analysis 

was performed in a Synergy HT Multi-Mode Microplate Reader (BioTek) and the 

quantification was conducted with Gen5 2.04 software. Calculations were then made 

between the samples and negative control to determine the concentration of RNA 

present in each of the transcribed RNA samples. The samples were then diluted in 
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tRNA solution (100ng/µl) (Sigma-Aldrich, UK) to 109 - 101 molecules/µl for SAV, PRV 

and SIGV and 108 - 101 molecules/µl for PMCV. 

3.2.9 qRT-PCR tests of individual standard curves 

Analysis of the RNA standards for SAV, PRV, PMCV and SIGV were conducted 

using LightCycler® 480 RNA Master Hydrolysis Probes (Roche). Reactions were run 

in LightCycler® capillary tubes (20µl) (Roche) containing 1x LightCycler®480 RNA 

Master Hydrolysis Probes, 3.25mM activator Mn(OAc)2, 500nM primers, 200nM 

probes (Table 3.1), and 1µl RNA as template. Concerning the RNA templates, serial 

dilutions of SAV, PRV and PMCV in vitro transcribed RNA from 107 - 101 molecules 

were included in the reaction to gauge an initial standard curve. The qRT-PCR 

reactions were run in the LightCycler 2.0, as follows: reverse transcription for 3 min 

at 63°C, activation for 30 s at 95°C, followed by 45 cycles consisting of amplification 

for 5 s at 95°C and 15 s 60°C and finally, a cooling step of 40 s at 40°C. Analysis of 

the reactions was conducted using LightCycler® software version 4.1.1.21 (Roche). 

This process was then repeated using triplicates of each dilution to produce 

standard curves. Standard curve efficencies were calculated using a standard qPCR 

effiencey formula: E = 10(-1/Slope). Full process, protocol and analysis were conducted 

in the same procedure as stated above. 

3.2.10 Transfer of individual assays to Smart Cycler system 

After validation of each of the three viral standards (SAV, PRV and PMCV) on the 

LightCycler® 2.0 we then transferred each of these assays onto the SmartCycler™ 

system (Cephid). The same 480 RNA Master Hydrolysis probe kit and temperature 

protocol was used as before (section 3.2.9). The total volume had to be corrected as 

the SmartCycler™® requires 2.5µl of RNA in a final mix volume of 25µl per reaction. 

Concentrations were kept the same for each component of the master mix.  

The process was again repeated in triplicate for each assay to produce a standard 

curve indicating the efficiency and copy number detection threshold. 

3.2.11 Incorporation of individual assays into multiplex assay 

3.2.11.1 Assay optimisation 

To optimise each individual assay within the complete multiplex assay, the 

efficiencies of each of the 3 RNA standards within the multiplex mix tested using the 

QuantiTect Multiplex RT-PCR kit (Qiagen). Reactions were run in LightCycler® 

capillary tubes (20µl) (Roche) containing 2x QuantiTect Multiplex RT-PCR NoROX 

Master mix, 200µm primers and probes (Table 3.1), 0.2ul/reaction QuantiTect 
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Multiplex RT Mix and 1ul RNA as a template. A serial dilution of 107 - 101 molecules 

was used for each RNA standard. The qRT-PCR reactions were ran in the 

LightCycler® 2.0 system as follows: reverse transcription 20 min at 50°C, activation 

15 min at 95°C, followed by 45 cycles consisting of amplification at 94°C for 45 s 

and 75s for 60°C followed by a 10 min cooling step at 40°C. Subsequent alterations 

to the working concentration as well as the removal and replacement of primers and 

probes, primer dimer evaluation using syber green qRT-PCR, asymmetric PCR and 

visual OMP analysis were conducted. The new concentrations and combinations 

were re-tested following the protocol above to find the optimal set-up for each assay 

that would produce the most efficient and sensitive assays within the multiplex as 

possible. Concentrations and primers used in the final multiplex assay can be found 

in (Table 3.1). 

3.2.11.2 Sigma virus positive control assay 

After successful incorporation of the viral assays into a multiplex assay the 

procedure was repeated for the addition of the SIGV assay as the positive control. 

The sigma assay was tested as detailed above (3.2.11.1).  

3.2.11.3 Mimic PCR Sigma development, testing and incorporation into the 

multiplex assay 

Due to issues during incorporation of the SIGV assay into the multiplex mix, a switch 

from the originally developed assay (competitive) to a mimic PCR assay (non-

competitive) was proposed and developed. The mimic assay was designed by 

selecting the front and reverse primers from the PMCV assay and the probe from 

the SIGV assay (Table 3.1) to form a hybrid target incorporating all 3-target 

seqeunces. This was then synthesised and inserted into a pcDNA 3.1 (+) plasmid 

(GeneArt AG, Regensburg, Germany). A restriction digest of the plasmid was then 

conducted using the restriction enzyme PMEI to linearise the plasmid. In vitro 

transcription was then undertaken as stated in section 3.2.6. 

3.2.12 Multiplex assay triplicate tests 

SAV, PRV and PMCV RNA standards were ran on the SmartCycler™ in triplicate to 

assess the sensitivity and specificity of the multiplex assay on the mobile platform. 

The procedure was carried out using the optimised protocol described in section 

3.2.11. 

3.2.13 Positive SAV viral RNA testing on SAV assay 

To examine the coverage and specificity of the SAV primers and probes they were 

tested against all 6 SAV subtypes. One µl (0.025 Tissue culture infective dose 
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(TCID50)) of SAV 1 – 6 RNA (1.25 TCDI50/100ul) were ran in triplicate following our 

standard SAV singleplex protocol (see section 3.2.9). As AFBI laboratories own 

subtype SAV 6, primers and probe were sent there for analysis. 
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3.3 Results 

3.3.1 Generation of DNA Standards 

3.3.1.1 Initial RT PCR, purification and ligation of plasmid DNA 

The target regions for SAV, PRV and PMCV were amplified from the originally 

supplied plasmids using RT-PCR and specified designed primers (Table 3.2) to 

allow purification of the PCR product, followed by ligation into pCR™II vectors 

containing the T7 and Sp6 promoters. This was successfully completed for all 3 

viruses with PCR product size fragments identified for SAV (316 bp), PRV (834 bp) 

and PMCV (907 bp) (Appendix C3.1) 

3.3.1.2 Transformation of competent cells 

To obtain multiple clones of each pCR™II vector, each ligation for SAV, PRV and 

PMCV was transformed into E. coli cells. This was successfully carried out through 

transformation of the ligation mixtures into competent TOP10F E. coli cells using the 

TA cloning Dual promoter (pCR™II) kit (Invitrogen) and cultured on LB plates 

containing ampicillin for selection overnight. 

3.3.1.3 Isolation of pCR™II plasmid from E.coli and sequencing 

To isolate the cloned pCR™II vectors from E. coli a mini prep was conducted on 10 

colonies from each of the transformed overnight cultures in LB broth using the High 

Pure Plasmid Isolation kit by Roche. Nano drop analysis was conducted on all 

isolated plasmids to check concentration and purity of plasmid DNA. Isolated 

plasmids showing a purity of less than 1.6 in the 260/280nm absorbance range in 

NanoDrop analysis were removed from further analysis. Analysis indicated all but 

one plasmid contained high purity and concentration levels within similar range of 

each other. One PMCV plasmid was removed due to low levels of purity. All 

remaining plasmids were subjected to RT PCR’s using M13 FP-RP primers. 

PCR products were then analysed on agarose gels to check that the target inserts 

were present. Bands forming at the target size for SAV (540bp), PRV (1078bp) and 

PMCV (1151bp) indicated successful insertion into the plasmid. Positive results for 

the target size for SAV were found in 4 out of 10 of the SAV plasmids, for PRV 6 out 

of 10 of the PRV plasmids and for PMCV 1 out of 10 in the PMCV plasmids. These 

plasmids were sent for sequencing by GATC Biotech, using LIGHTrun sequencing 

to determine orientation, length and check for any significant changes (mutations) in 

the genetic structure of the insert (Lasergene software 7 (DNASTAR®)). Analysis 

indicated that 2 out of the 4 SAV sequences, 4 out of the 6 PRV sequences and 1 
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out of the 1 PMCV sequences contained the target inserted in a negative 

orientation. Based on all these findings plasmid 10 SAV (pl10SAV), plasmid 9 PRV 

(pl9PRV) and plasmid 7 PMCV (pl7PMCV) were selected for transcription. 

3.3.1.4 Restriction fragment length polymerisation analysis 

A restriction digestion was conducted on pl10SAV, pl9PRV and pl7PMCV as a 

tertiary procedure to test for successful insertion and orientation of the target size for 

each virus. The gel indicated successful insertion and a negative orientation for 

each plasmid, with the 3 expected bands for negative orientation (SAV 120bp, PRV 

550bp and PMCV 350bp) secreted in the digested plasmids (Appendix C3.1). 

3.3.2 Transcription of plasmids 

3.3.2.1 Transcription of plasmid DNA 

M13 primer directed PCR in vitro transcription of each plasmid was carried out and 

all remaining plasmid DNA was removed to generate an RNA standard from each 

plasmid. This was conducted through initial transcription of each plasmid, followed 

by several DNase treatments to remove the remaining plasmid DNA. RNA and DNA 

in the transcription mixtures were analysed in RT-qPCR and qPCR using specific 

primers and probes (Table 3.1), and CP values were compared. Following several 

qRT-PCR/qPCR tests and DNase treatments, differences in the CP values between 

plasmid DNA and RNA were found to have significantly increased enough for all 3 

transcribed RNA’s to allow for dilution of quantitative RNA standards. Negative 

controls showed no signs of contamination. 

3.3.2.2 Quantification of transcribed RNA 

To produce the RNA standards, quantification of each transcribed RNA was 

analysed using ssRNA specific fluorescent dye RiboGreen. The unknown RNA 

samples were compared to a RNA standard with known concentration and negative 

controls. The readings of the unknown samples were analysed and the 

concentration of RNA calculated. RNA concentrations (quantified in molecules/µl) 

were calculated as 2.89 x 109 (SAV), 4.4 x 109 (PRV), 8.9 x 108 (PMCV) and 

4.84x1010 (SIGV). Serial dilutions of the RNA standards for SAV, PRV and PMCV 

were successfully produced in dilutions from 109 - 101 for SAV, PRV and SIGV, and 

108 - 101 for PMCV. 
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3.3.3 Determination of individual qRT-PCR assay sensitivities 

3.3.3.1 LightCycler 2.0 

To determine overall efficiency of the RNA standards for all 4 assays using the 

designed primers and probes, multiple qRT-PCR reactions were carried out using 

decimal dilutions ranging from 107 – 101 molecules per reaction. Initial qRT-PCR’s 

containing one sample per dilution were undertaken to determine the dilution 

qualities and efficiency. The results indicated that all 4 assays were highly efficient 

(SAV 98.9% SE 0.136; PRV 93.2%, SE 0.057; PMCV 99%, SE 0.135 and SIGV 

95.68% SE 0.068)(Figure 3.1), with CP values increasing by about 3 cycles between 

each dilution, as well as no contamination in the negative controls. SAV, PRV and 

Sigma assays detected down to 10 molecules of RNA, indicating high sensitivity 

with PMCV detecting down to 100 molecules of RNA. The assays were tested in 

triplicate to further test their efficiency and sensitivity. For PRV (98.8%, SE 0.027) 

efficiency was found to increase slightly and sensitivity remains the same. For SAV 

(95.95%, SE 0.061), PMCV (98.56%, SE 0.027) and SIGV (93.07%, SE 0.066) 

efficiency dropped slightly with sensitivity remaining the same. 

 

Figure 3.1. Standard curve results for individual SAV (98.9% SE 0.136), 
PRV (93.2%, SE 0.057), PMCV (99%, SE 0.135) and SIGV (95.68% SE 
0.068) assays ran on the LightCycler 2.0 system. Dilution ranges from 107-
101 RNA molecules were tested in triplicate and their mean values plotted 
as the CT value points along with SE. SAV, PRV and SIGV assays were 
detected down to 10 molecules of RNA and PMCV down to 100 molecules 
of RNA. 
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3.3.3.2 SmartCycler™ System 

To assess each of the 4 assays suitability for onsite testing we transferred and 

tested them in triplicate on the SmartCycler™. The qRT-PCR reactions were carried 

out using decimal dilutions of 107-101 molecules per reaction. A large increase in 

efficiency was found for SIGV (108.8%, SE 0.03) with a smaller increase seen in 

SAV (99.79%, SE 0.034). A small decrease in efficiency was found for PRV 

(96.49%, SE 0.04) however PMCV (85.73%, SE 0.08) was noticed to have dropped 

significantly between the two devices (Figure 3.2). All 4 assays showed no change 

in sensitivity between the two devices. 

 

Figure 3.2. Standard curve results for individual SAV (99.79%, SE 0.034), PRV 
(96.49%, SE 0.04), PMCV (85.73%, SE 0.08) and SIGV (108.8%, SE 0.03) 
assays ran on the SmartCycler™ system. Dilution ranges from 107-101 RNA 
molecules were tested in triplicate and their mean values plotted as the CT 
value points along with SE. SAV, PRV and SIGV assays were detected down to 
10 molecules of RNA and PMCV down to 100 molecules of RNA. 

3.3.4. Determination of Multiplex qRT-PCR assay sensitivity 

To optimise the multiplex assay, different dilutions of primer and probe were tested 

along with short and longer temperature protocols. Once these were established the 

assay was tested in triplicate using the RNA standards of SAV, PRV and PMCV on 

the SmartCycler™system to establish sensitivity and efficiency of each virus. A large 

decrease in efficiency was observed for SAV (86.5%, SE 0.11) and PRV (90.94%, 

SE 0.09) as well as a decrease in sensitivity from 10 to 1000 copies. A large 
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increase in efficiency for PMCV (100.46%, SE 0.19)	 was seen as well as an 

increase in sensitivity from 1000 to 100 copies (Figure 3.3). 

	

Figure 3.3. Standard curve results for multiplex assay against RNA 
standards of SAV 86.5%, SE 0.11), PRV (90.94%, SE 0.09) and PMCV 
(100.46%, SE 0.19)	ran on the SmartCycler™ system. Dilution ranges from 
107-101 RNA molecules were tested in triplicate and their mean values 
plotted as the CT value points along with SE. PMCV assay was detected 
down to 100 molecules of RNA and SAV, and PRV down to 1000 
molecules of RNA. 

3.3.5 Positive viral SAV RNA tests on SAV assay 

The SAV assay detected all 6 subtypes of SAV at varying concentrations. SAV 1, 3 

and 6 showed highest specificity with CT ranging from 19 – 22 (106 – 105 copies), 

with SAV 2 and 5 showing much more specificity of CT ranging from 29 – 33 (104 – 

103 copies), and SAV 4 very low to no specificity with CT of 37 – 38 (101 copies). 
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3.4 Discussion 
To create molecular standards for SAV, PRV, PMCV and SIGV, qRT-PCR plasmids 

for each target region were created using PCR amplification, ligation and 

transformation. Orientation and successful insertion were confirmed through RFLP 

analysis and sequencing. All four derived individual RNA standards showed high 

efficency on the LightCycler® 2.0 for SAV (95.95%, SE 0.061), PRV (98.8%, SE 

0.027), PMCV (98.56%, SE 0.027) and SIGV (93.07%, SE 0.066) and sensitivity 

detecting down to 101 RNA molecules for SAV, PRV and SIGV and 102 for PMCV. 

The assays were transferred successfully to the mobile SmartCycler™ system 

where the showed high efficency for SAV (99.79%, SE 0.034), PRV (96.49%, SE 

0.04), PMCV (85.73%, SE 0.08) and SIGV (108.8%, SE 0.03); and sensitivity 

detecting down to 101 RNA molecules for SAV, PRV and SIGV and 102 for PMCV. 

The assays on the LightCycler® 2.0 were all a good pre-requisite for multiplexing as 

they were all within the optimal efficiency range of 90 – 105%. PMCV and SIGV, 

assays presented a potential problem when transferring the multiplex to the 

SmartCycler™ as they were both slightly out with the optimal efficiency range. High 

variation in efficiencies out with the optimal range in multiplex assays reduces the 

PCR efficiency drastically due to competition for resources in qRT-PCR reactions 

(Weidmann et al., 2008). Although an efficiency of >105% was recorded for SIGV, 

the standard deviation between individual Ct’s are relatively small (0.1 – 0.8) and 

below the natural variation range for qPCR of +/- 1.4 (Niesters. 2001). Efficencies 

higher than 100% are common in qRT-PCR possible due to an excessive amount of 

intial target RNA and overamplification due to residual synthetic activity of the 

reverse transcriptase enzyme (Suslov and Steindler. 2005) It is also known that the 

efficiency calculation using the formula E = 10 (-1/slope) is not optimal and is suggested 

that it overestimates the actual efficiency of the assay (Pfaffl. 2004). 

Several PRV qRT-PCR assays have been developed prior to this one. Two of the 

assays were initially focused on the identification of the PRV viral genome (Palacios 

et al., 2010 and Haugland et al., 2011) and then subsequently used in field-testing 

on wild fish (Garseth et al., 2013) and genome analysis (Kibenge et al., 2013). Other 

assays focused predominately on immunological responses to PRV infections, 

primarily focusing on HSMI (Finstad et al., 2012; Wessel et al., 2017). This is the 

first assay specifically focused as a detection model for the virus, and that 

incorporates Taqman LNA probes technology. The primer design incorporates the 

largest number of sequences associated with PRV increasing its specificity and 

range. The high sensitivity of the assay should ensure it effectively detects and 
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quantifies viral genome from asymptomatic carriers during field-testing.  Taking 

these factors into account and coupling it with its high efficiency, this may be the 

most sensitive and robust PRV assay currently developed. 

Currently two qRT-PCR assays have been developed for PMCV (Løvoll et al., 2010, 

Haugland et al., 2011). Both assays were developed based on initial sequence 

information for an unknown virus, which led to the discovery of the family Totiviridae 

and the identification of PMCV. Subsequently, Løvoll’s qRT-PCR protocol was used 

to identify the virus in wild Atlantic salmon (Garseth et al., 2012) and other fish 

species (Bockerman et al., 2011, Tengs and Bockerman, 2012) as well as test 

myocardial lesions (Wiik-Nielsen et al., 2012). The assay developed here is the only 

one utilizing TaqMan LNA probes and incorporates all available GenBank 

sequences available for PMCV in the development of the primers and probes used. 

The focus of this assay as a detection tool, its high sensitivity and specificity 

provides an up to date and highly robust PMCV detection assay. 

SAV has had a vast array of studies conducted on it over the years on viable 

techniques to detect the virus, such as immunoperoxidase-based virus 

neutralization assays (Graham et al., 2003), antibody detection (Jewhurst et al., 

2004, Graham et al., 2011) and two-step RT-PCR assays (Villoing et al. 2000b). 

Based on qRT-PCR detection platforms alone however, there is currently only one 

qRT-PCR assay that has been developed for subtypes 1, 2 and 3 (Hodneland and 

Endressen. 2006). This at the time was an adequate test for SAV until a further 3 

subtypes were discovered (Fringuelli et al., 2008). A recent qRT-PCR study has 

attempted to detect all 6-sub types, but has so far only shown to detect 1, 2 and 5 

(Shi et al., 2017). The individual SAV assay produced in this study was shown to 

detect SAV 1, 3 and 6 to a high specificity, but 2, 4 and 5 to a lower specificity than 

would be desirable for lower copy number detection. As an individual assay it would 

be possible to create and incorporate other SAV primers that cover subtypes 2, 4 

and 5 to enhance it’s specificity to these subtypes. Only two primers and one probe 

were used to cover all 6 subtypes in this assay. The reasoning for this was to reduce 

complexity when incorporated into the multiplex assay. Its potential in its current 

form could lead it to be used as the first qRT-PCR platform for detection of SAV 6. 

Further validation tests would need to be conducted before it could be reliably used. 

Multiplex analysis requires the ability to show reliable and repeatable evidence 

demonstrating that the efficiency and sensitivity of the assays incorporated are not 

impaired from their singleplex results (Elnifro et al., 2000 Bustin et al., 2009). One of 
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the major problems with the addition of new primer sets is the unpredictability of 

non-specific binding (primer dimers) (Henegariu et al., 1997) and how to 

successfully reduce and remove them (Brownie et al., 1997). The nonspecific 

products can be amplified at an increased rate compared to the desired target due 

to their small size and out compete for resources within the reaction, impairing the 

amplification of the desired targets. Certain targets can also show a bias in template 

to product ratios by out competing and dominating the reaction at the beginning due 

to faster amplification leaving fewer resources for the remaining targets (Polz et al., 

1998). Varying concentrations of other PCR components, such as buffers, enzymes 

and activators (Mn(OAc)) can also help overcome sensitivity and specificity 

problems (Elnifro et al., 2000).  

The SAV, PRV and PMCV assays were initially incorporated into one multiplex 

assay. Triplicate runs on both the LightCycler® 2.0 and SmartCycler™ system 

showed that efficiency and sensitivity had dropped for SAV (86.5%, SE 0.11) and 

PRV (90.94%, SE 0.09) from the singleplex assays. This was undesirable, however 

a small drop off in efficiency and sensitivity was expected due to the increased 

competition for resources in the multiplex mix. The drop off in efficiency for SAV was 

drastic and below the recommended 90% for an efficient multiplex assay 

(Weidmann et al., 2008). PRV was only reduced slightly, with PMCV (100.46%, SE 

0.19) increasing slightly. Addition of the SIGV assay to the multiplex was attempted 

and tested against SAV. As SAV had the lowest efficiency within the multiplex at the 

time it would therefore likely be affected the most by the addition of the Sigma 

assay. SAV was drastically affected by the SIGV assay with delayed amplification 

and detection reduced to below 104 copies. A mimic target driven by the PMCV 

primers and detected by the Sigma probe was synthesized to reduce the number of 

primers used in the multiplex reaction mix (Table 3.1). The synthesized sequence 

ligated in to plasmid pcDNA_3.1 (+), however caused issues with linerialisation and 

transcription during the process to produce the mimic standard. 

When the target PMCV primers were ran in a PCR with the mimic plasmd only a 

non-specific high bp band was obsereved. The plasmid was then linerilised using 

the restriction enzymes PMEI to ensure the primers were able to bind more 

effectively to the target region and to reduce any potential inhibitory binding effects 

that supercoiled plasmid DNA would have on the primers. A PCR was performed 

again using the linearised plasmid but no bands were produced when the PCR 

product was ran on an agarose gel. Analysis of potential seconday structures of the 
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linearised DNA using visual OMP analysis may indicate problems with accessibility 

to the PCR primers. If no significant secondary structures are found utilising multiple 

restriction enzymes at opposite ends of the target region, including the T7 promoter 

site could be another option to re-test the primers and in vitro transcription by 

isolating a smaller target region. Failing all of this, selecting a different plasmid may 

solve the problem as the current plasmid is highly complex containing all known cut 

sites for restriction enzymes and including multiple different promoter sites. Using 

M13 primers as was done for SAV, PRV and PMCV to isolate the target would have 

been ideal however no plasmids were available that incorporated the T7 promoter, 

our PMCV and SIGV target and M13 primers within the one specific region on the 

plasmid. Redesigning the mimic based on the PRV primers could be a possibility, 

but as its efficiency is lower there may be even more competition for resources 

between the mimic and PRV assay during qRT-PCR. 

Many problems still remain to be solved before this multiplex assay can be 

completed. Adjustments of the primer and probes sequences, concentration and 

targeted areas have been extensively explored in this study. Another possible 

direction to explore if the suggested mimic plasmid solutions were to fail would be to 

split the multiplex into two assays; one incorporating the PRV, PMCV and SIGV 

assay, and another with multiple SAV assays targeting specific subtypes of SAV 

more effectively. The problem with this approach would be the increase in the 

number of assays and therefore tests needed to screen all 3 viruses at once. 

Successful development of the multiplex assay on both lab and mobile platforms 

would give huge advantages to fish farms affected by these 3 viruses across the 

UK, Norway and the rest of Europe. Identifying any virus that is present on the farm 

using one test instead of 3 would lead to earlier detection and subsequent faster 

reaction time to prevent, quarantine and manage positive viral detection on a farm. 

This in turn would save time and money for fish farmers, reducing their costs by 

using fewer tests, correct treatments and reducing overall loss of fish. The 

importance of having a test that can screen for all 3 viruses is highlighted by the 

evidence showing co-infections of the 3 viruses in salmon (Lovoll et al., 2010; 

Haugland et al., 2011; Wiik-Nielsen et al., 2016). As stated previously, the viruses 

generally show similar external symptoms so it would be difficult to tell what the fish 

has been infected with and whether co-infections have taken place without 

histopathology. This could then lead to one of the viruses being identified as the 

source and treated, only for the secondary co-infection to then take over after 
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treatment if not identified during histopathology. 

In conclusion, highly efficient and sensitive qRT-PCR assays have been produced 

for SAV, PRV, PMCV and SIGV virus, and transferred onto a mobile platform for 

onsite testing. The SAV assay detected SAV subtypes 1, 3 and 6 efficiently. A 

preliminary multiplex assay was developed and optimised incorporating SAV, PRV 

and PMCV and transferred onto a mobile platform. Further adjustments to this assay 

and addition of an internal positive control are required before probit analysis and 

sample testing can be undertaken. Splitting of the multiplex into two assays was 

also suggested and is a possible path to follow to increase sensitivity and specificity. 
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Chapter 4: Do salmon erythrocytes elicit an immune 
response when infected with ISAV and SAV? 

4.1 Introduction 
The immune response is based on a linked network structure that begins with 

pattern recognition receptors (PRR) that bind to specific structural targets of 

pathogens, referred to as pathogen-associated molecular patterns (PAMPs). PRRs 

then trigger a cascade effect on activation of specific innate host defence modules 

such as phagocytes, inflammasomes, eosinophils, and basophils, dependant on the 

signalling proteins secreted e.g. toll like receptors (TLRs) and c-type lectin receptors 

(CLRs) (Medzhitov. 2007).  

Erythrocytes are the most abundant circulating cell present in all vertebrates. Their 

principally accepted basic function is transport of oxygen and carbon dioxide 

throughout the body through gas exchange from their respiratory globin pigments. 

The process in which different vertebrates control this is similar, however teleost 

species possessing functional anion exhanges within their haemoglobin lack the 

ability to buffer extracellular acid loads as effectively as air breathing vertebrates 

(Nikinmaa. 1997). 

As more research has been conducted, new and other potential functions have been 

discovered for human, mammalian, fish, reptile and bird erythrocytes; which have 

benn described in an extensive review by Morera and MacKenzie (2011). One of the 

most interesting potential functions found is the ability for erythrocytes to directly 

influence the immune response. This was first described by Nelson. (1953) in 

human erythrocytes, where the term immune adherence (AI) was proposed. This 

involved the binding of immune complexes on bacteria to erythrocyte receptors, 

signifying a direct role in immune response. These findings were later verified where 

numerous compliment receptors on human erythrocytes were discovered (Hess and 

Schifferli. 2003). Similar immune based responses have been found in bird 

erythrocytes with the production of cytokines (Passantino et al., 2007), TLR’s and 

type I IFNs (St Paul et al., 2013). Piscine erythrocyte research has also now 

suggested that they play an active role in the immune response, and contain the 

transcriptional and translational functions to express genes and proteins that identify 

and respond to pathogens (Morera and MacKenzie. 2011). 

Unlike mammalian erythrocytes, piscine erythrocytes are nucleated and contain 

organelles in their cytoplasm (Claver and Quagila. 2009). Antimicrobial peptides 
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(AMPS) such as antibacterial proteinaceous factors against Planococcus citreus 

have been isolated from rainbow trout erythrocytes (Fernandes and Smith. 2004). 

AMPs were also derived from a β-chain of the respiratoy transport pigment 

haemogloblin in channel catfish (Ictalurus punctatus, Rafinesque) and shown to 

express antimicrobial properties against parasites (Ullal et al., 2008). The AMP Nk-

lysin (Nkl) was also found to be expressed by turbot (Scophthalmus maximus) 

erythrocytes, suggesting an antiviral role against Rhabdovirus in the fish (Pereiro et 

al., 2017). Previous evolutionary studies have suggested that the AMPs derived 

from haemoglobin were an evolutionary innate immune precursor conserved within 

the current haemoglobin transport pigment today (Jiang et al., 2007).  

Studies into rainbow trout erythrocytes identified PRR and PAMP responses to Poly 

I:C stimulation (Morera et al., 2011). These included upregulation of the expression 

of genes encoding IFN-α, TLR and the immune cell recruiting CC chemokine 

(CCL4). Infection of Atlantic salmon erythrocytes by salmon anaemia virus (ISAV) 

showed expression of IFN system genes in response to ISAV infection (Workenhe 

et al., 2008). This was also shown for the expression and up regulation of the 

antiviral immune genes IFN-α, RIG-I, Mx and PKR during PRV infection of Atlantic 

salmon erythrocytes (Finstad et al., 2014; Wessel et al., 2015; Dahle et al., 2015). 

These findings illustrate the potential complexity of piscine erythrocytes functions. 

The presence of PRRs and subsequent PAMP-PRR responses would suggest that 

piscine erythrocytes actively contribute to the active immune response. The data 

available is still lacking and has only been demonstrated in a small number of 

species and in regard to specific viruses and diseases. 

ISAV and SAV are both highly infectious viruses causing severe economic loss to 

the salmon fish farming industry (see section 1.6 for more detail). ISAV is a fish 

orthomyxovirus assigned to the genus isavirus and is the causative agent of the 

highly infectious disease infectious salmon anaemia (ISA) (Kibenge et al., 2004). 

Disease outbreaks have occurred across Europe (Roger et al., 1998, Nylund et al., 

2003 and Plarre et al., 2005), Canada (Mullins et al., 1998; Bouchard et al., 1999; 

Lovely et al., 1999), the USA (Bouchard et al., 2001) and Chile (Godoy et al., 2008; 

Mardones et al., 2009). Fish infected with the disease suffer severe anemia and 

damage to internal tissue usually leading to mortality.  External symptoms consist of 

slow moving fish near the surface, darkened and haemorrhaging skin, and pale gills 

and fins. Internal histopathology generally shows haemorrhages and necrosis in the 

kidney, liver and renal intestine (Mullins et al., 1998, Roger et al., 1998, Bouchard et 

al., 2001, Simko et al., 2000). ISAV has been shown to actively enter and replicate 
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within erythrocytes, entering by endocytosis and inducing the interferon pathway 

immune response (Workenhe et al., 2007; Workenhe et al., 2008). No follow up 

studies at present have been undertaken. 

Examining the potential immuno-based responses that erythrocytes exhibit and 

trigger when infected with viruses would give us a better understanding of how 

erythrocytes contribute to the innate immune response and systems in fish. ISAV is 

an ideal candidate to focus on as it has been shown in previous research to infect, 

replicate and induce an immune response within erythrocytes. Examining whether a 

similar response is found in erythrocytes infected with SAV would be greatly 

beneficial to understanding and combating the virus. 

In order to verify if virus replication in erythrocytes induces the expression of innate 

immune response genes we aimed to: 

1. Isolate and infect erythrocytes from Atlantic salmon with ISAV and SAV at 

MOIs (multiplicity of infection, see formula in section 3.4) 10, 1 and 0.1 

alongside Poly I:C stimulated and non-infected control erythrocytes for a 24 

hr period 

2. Extract erythrocyte RNA and convert to complementary DNA (cDNA) to test 

against a set of viral response gene to observe if any immune responses 

were recorded. 
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4.2 Materials and Methods 

4.2.1 Fish handling and sampling 

Fish were sourced from the University of Stirling’s Institute of Aquaculture fish farm, 

Buckieburn in May of 2017. Blood was harvested from six individual juvenile salmon 

(0.5 – 1ml) per visit. The blood from each fish was transferred into individual falcon 

tubes on ice containing 30ml of Dulbecco's Modified Eagle's medium high glucose 

(DMEM) mix containing 10% chicken serum (CS) and primocin (90µg/ml) and 

transported back to the lab on ice for immediate processing. 

4.2.2 Processing of blood 

All tubes were centrifuged at 700g for 10 mins. The supernatant was removed and 

the pellets resuspended in 30ml of DMEM and primocin (100µg/ml). The 

resuspended pellets were poured into 10ml of histopaque per tube. The tubes were 

centrifuged at 700g for 15 mins and the supernatant removed. The pellets were fully 

resuspended in 10ml of Dulbecco's phosphate-buffered saline (DPBS) and 

centrifuged at 700g for 15 mins. The supernatant was removed and the pellets 

resuspended in 30ml of DMEM and primocin (100µg/ml). Dilutions of 1:10 and 1:100 

were made from the neat stocks of erythrocytes per fish to calculate each 

concentration. The 1:100 dilutions were observed under a microscope and cells 

counted using a haemocytometer. The six non-diluted erythrocyte preparations were 

diluted in DMEM, CS and primocin (90µg/ml) to a concentration of 2 x 106 cells/ml. 

These were plated in quadruplicates per fish in 12 well plates (6 x 4 x 12) and left to 

incubate at 15°C, 1% CO2 for 24 hours to allow the cells time to acclimatise.  

4.2.3 Growth and cultivation of viral supernatants 

We used Chinook salmon embryo-214 (CHSE-214) cells for growth of both ISAV 

and SAV. CHSE-214 cells were passaged overnight in 25cm3 flasks at 22°C, 5% 

CO2 to 80% confluence. ISAV and SAV were made up of 5ml stocks diluted at 1/100 

and 1/1000 dilutions in Hank’s balanced salt solution (HBSS), 2% fetal bovin serum 

(FCS). Media was removed from each flask and 1ml of each dilution of ISAV and 

SAV added to individual flasks with 1ml of 2% HBSS added to control flasks 

containing no virus. These were then incubated at 15°C, 1% CO2 for 1 hour. The 

virus cultures were then removed from each flask and replaced with 5ml of Eagles 

minimum essential media (EMEM) and incubated at 15°C, 1% CO2 with daily checks 

for cytopathic effect (CPE). ISAV and SAV supernatants were then harvested by 

transferring them to 15ml tube and centrifuging at 2500g for 15mins at 4°C. The 

supernatant was then transferred to fresh tubes, and the virus suspensions diluted 
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to 1 x 105 cells per ml in 2% HBSS. Media was removed from the flasks and 8 ml of 

ISAV added to one flask, and 8ml of SAV to the other for 1 hr at 15°C, 1% CO2. 

Virus suspensions were then removed and replaced with 40mls of EMEM media. 

CPE was checked daily. Cultures when then harvested as before into 50ml tubes, 

and stored at 4°C for short term and -80°C long term. 

4.2.4 Ultracentrifugation and quantification of ISAV and SAV 

5ml of Optriprep cushions were layered into the base of ultracentrifugation tubes 

and 25ml of viral supernatant added on top, ensuring layers were not mixed. These 

were then centrifuged at 25 000g for 90mins. The supernatant was discarded and 

100µl of 1x NTE (NaCl-Tris-EDTA buffer) added to each tube and chilled overnight 

at 4°C to resuspend concentrated viruses. All samples were pooled and diluted out 

in to 1/10, 1/100, 1/1000 and 1/10000 dilutions. The samples were quantified by 

virus specific qRT-PCR on the LightCycler® 480 thermocycler (Roche) using 

Lightcycler® 480 RNA master hydrolysis probes (Roche). The samples were ran in 

triplicate alongside known quantitative standard curves for each virus, which were 

ran in duplicate. The same temperature profile was used for all samples: reverse 

transcription for 3 mins at 60°C, activation for 30 s at 95oC; and PCR cycle of 95°C 

for 5 s, 60°C for 15 s repeated for 40 cycles. 

4.2.5 “Infection” of erythrocytes with ISAV, SAV and Poly I:C 

For each of the 6 fish erythrocytes samples that were processed plated and 

incubated; (see section 4.2.1 and 4.2.2) each plate was “infected” in triplicate with 

an MOI of 10, 1 and 0.1 of ISAV (6 plates) and SAV (6 plates) (see appendix C4.1). 

MOI for each virus was calculated from the average copy number obtained through 

qRT-PCR multiplied by 0.7 to account for cell viability: TCID50 x 0.7 = Total viable 

cells. The MOI was calculated using this formula: P(0) = 1 - e-moi. Concentrations of 

each MOI were then subsequently calculated for infection. We added Poly I:C at 

10ug/ml per well. Each plate was centrifuged at 1000g for 1 min before infection with 

the virus and stimulation with Poly I:C. We removed 500µl from each well. Each well 

was then infected or stimulated with the virus or Poly I:C. The plates were then 

returned to the incubator for 1hr at 15oC, 1% CO2. 500µl of DMEM, CS and primocin 

(100µg/ml) were added back to each well and incubated for 24 hrs at 15oC, 1% CO2.  

4.2.6 Harvesting and RNA extraction of erythrocytes 

1.5ml of cells from each of the first wells were transferred into 2ml tubes and 

centrifuged at 200g for 1 min. The supernatant was removed from each tube. This 

was repeated with the two remaining wells at each MOI per fish. 500ul of PBS was 
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added to each pellet and resuspended by vortexting. Tubes were centrifuged at 

200g for 1 min with the supernatant removed. We added 0.2% 

octylphenoxypolyethoxyethanol (NP-40) to each pellet, vortexted for 10 s and 

centrifuged at 16 800g for 1 min. The supernatant was transferred into Tri reagent. 

1-Bromo-3-chloropropane (BCP) was added to each tube, vortexted for 10 s and 

then incubated on ice for 15 mins. The tubes were then centrifuged at 12 400g for 

10 mins. The top layer of solution (RNA) was removed and placed in new 1.5ml 

tubes containing isopropanol. These were then mixed by inversion and placed at -

80°C overnight. The samples were then centrifuged at 16 800g for 10 mins at 4°C to 

form a pellet. All liquid was removed from each samples and the pellet washed with 

1ml of 75% ethanol and centrifuged at 5 500g for 5 mins. All liquid was removed 

from each tube and allowed to air dry. The pellets were resuspened in 20µl of H2O 

and the RNA concentration checked on a NanoDropTM 1000 spectrophotometer 

(ThermoFisher). A random selection of extracted RNA samples from ISAV and SAV 

controls as well as Poly I:C stimulated samples were ran on a 1% agarose gel to 

confirm 28s and 18s bands were present with no DNA contamination. All RNA was 

then stored at -80°C.	

4.2.7 Generating cDNA of ISAV, SAV, Poly I:C and Control RNA 

cDNA synthesis was conducted using Tetro reverse transcriptase (Bioline). Each 

reaction consisted of oligo (dt)18 (5µm), random hexamers (20µm), 10mM dNTP mix, 

5X RT buffer, Tetro Reverse Transcriptase (200µ/µl), DEPC-treated water and RNA 

(up to 5µg). The reactions were ran in a thermal cycler (Techne Flexigene) at 25°C 

for 10 mins, 45°C for 60 min for reverse transcription and 85°C for 5 min to 

terminate the reaction. Each cDNA reaction was diluted 1/10 in DEPC-treated water 

and stored at -20°C. 

4.2.8 Preparation and testing of target specific primers 

Primer pairs for 31 salmon immune genes primers (table 4.1) were diluted to a 

working concentration of 10mM in DEPC-treated water. All primer sets were ran 

against a positive salmon cDNA sample (SPL/IC) in triplicate to check primer 

efficiencies. We used a custom made in house Syber green containing 10 x 

immolase buffer (Bioline), 50mM MgCl2, 25mM dNTP, 1/100 diluted sybr green 

(Invitrogen) and immolase (Bioline) 2500 units. These were ran in a LightCyler® 480 

Instrument II (Roche) at 95°C for 10 mins and 95°C for 30s; followed by PCR at 

62°C for 30s, 72°C for 30s and 80°C for 5s (x40); and a melt curve 95°C for 5s 

(ramp rate 4.8°C/s), 75°C for 60s (ramp rate 2.5°C/s). All triplicate samples were ran 
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on a 1.5% agarose gel and checked for target bands. Those that failed or showed 

double bands were removed from further testing. 

4.2.9 Generation and testing of Atlantic salmon gene standards 

4.2.9.1	PCR	

All valid primer pairs for each gene from the previous step were re-run in triplicate 

using MyTaq HS mix (Bioline) to produce a larger volume of PCR product for 

purification and generation of each standard. Each reaction consisted of 5x MyTaq, 

primers (20µm) MyTaq HS DNA polymerase, DEPC-treated water and positive 

salmon cDNA template (SPL/LC) that covers all Atlantic salmon mRNAs. The 

reactions were ran on a thermocycler (Eppendorf MasterCycler) at 95°C for 1 min; 

and 95°C for 15s, 60°C for 15s and 72°C for 10s (x40). All reactions were ran on a 

1.5% agarose gel.  

4.2.9.2	PCR	purification	

PCR products were purified using PureLink® PCR purification kit (ThermoFisher). 

4x binding buffer was added to 1x PCR product (50 -100µl) and added to PureLink® 

spin columns. The columns were centrifuged at 10 000g for 1 min and the flow 

through discarded. 650µl of wash buffer was added to each column and centrifuged 

at 10 000g for 1 min with flow through discarded. The columns were then 

centrifuged at maximum speed (12 000g) for 2 – 3 mins with the residual wash 

buffer discarded. The columns were then placed in 1.5ml collection tubes and 50ul 

of elution buffer added. The columns were incubated at room temperature for 1 min 

and then centrifuged at max speed (12 000g) for 2 mins. The purified PCR 

concentrations were quantified on a spectrophotometer (ND-1000). Any genes 

showing poor quality were removed from further testing. The genes were diluted to 

10ng/µl and a 10 fold serial dilution made of each.  

4.2.9.3 qRT-PCR test of standard curves 

All standards were ran in duplicate on the LightCyler® 480 Instrument II (see section 

4.2.8). Failed standards were removed from further analysis. 

4.2.10 cDNA gene expression quality check 

All cDNA from ISAV, SAV infected and Poly I:C stimulated cells and control cDNA 

were tested against the salmon gene elongation factor 1 alpha (Ef1α) first as it is 

suggested as a good reference gene for gene expression in qRT-PCR examination 

of Atlantic Salmon (Olsvik et al., 2005). All samples and Ef1α standards were ran in 

duplicate on the LightCyler® 480 Instrument II (see section 4.2.8). Low quality 
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samples were removed from further testing. We insured coverage of samples from 

at least 4 different fish across SAV, ISAV, Poly I:C and controls. 

4.2.11. qRT-PCR tests of SAV, ISAV, Poly I:C and control cDNA against salmon 

immune genes 

Using the remaining 16 genes (Table 4.1), qRT-PCR reactions were ran against	42 

cDNA samples (15 ISAV, 13 SAV, 5 Poly I;C and 9 Controls) using the LightCyler® 

480 Instrument II (see section 4.2.8). All samples and standard curves were run in 

triplicate. Due to the small volume of RNA obtained per sample from erythrocyte 

extractions, it was not possible to re-run any optimised standards for any of the 

other genes that had initially failed. 
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Table 4.1. Primers in 5`to 3`orientation, amplicon size and Genebank number of all salmon 
genes tested against erythrocyte cDNA  

Primer Sequences 
Amplicon 
size (bp) 

GenBank Acc. 
No. 

EF1α-F  CAAGGATATCCGTCGTGGCA   
EF1α-R ACAGCGAAACGACCAAGAG 327 AF321836 
IFNa1-F TGCAGTATGCAGAGCGTGTG   
IFNa1-R TCTCCTCCCATCTGGTCCAG 101 NM_001123710.1  
IFNb-F TGCATTGGAGGCTATGCGATAT   
IFNb-R TTCCCAAACACCACCTACGACA 151 EU735552.1 
IFNc-F ATGTATGATGGGCAGTGTGG   
IFNc-R CCAGGCGCAGTAACTGAAAT 118 JX524153.1 
IFNe-F TGGCCTTCATTTCGCATACT    
IFNe-R GTTTTCATAGACTTTACGCATTG 157 AGKD01000007 
IFNf-F TGTTCTTTACCCGGTTGTCTATG    
IFNf-R AAGCTTTTCCCCCTCCTGTA 184 AGKD01028711 
IFNγrel-2-F  GAAAGGCCCTTTGGATCTGAACA   
IFNγrel-2-R CAACAGCATCATTGGTCTTAATG 299 AGKD01091451 
Mx-F CCTCCTGAAATCCGCGAAGAC   
Mx-R GAGTCTGAAGCATCTCCCTCTG 365 NM_001123693.1 
RIG-I-F ACTGATCGGGAGAGGACACAA    
RIG-I-R CTTGACCACATTGCCAACGTAT  202 NM_001163699.1 
MDA5-F AGCTCAATGGGTTCAGGAGAA   
MDA5-R CTCTTCAGCCACTGTTGTTGC 181 KU376486.1  
S02(TNFα1)-F ACTGGCAACGATGCAGGACAA   

S02(TNFα1)-R 
GCGGTAAGATTAGGATTGTATTCA
CCCTCT 144 NM_001123589.1  

IL-1β-F CCGTCCCCATTGAGACTAAAG   
IL-1β-R TGTCGCTCTGCTGGCTGA 156 NM_001123582.1 
gIP (CXCL_11)-F TGCCGGAACATGGAGATCAT   
gIP (CXCL_11)-R TTTACTGCACACTCCTTTGGTT 127 XM_014143455.1 
S27 (IL17C3)-F CTGCAAGGTTCATAATGAGCATCC   

S27 (IL17C3)-R 
CCTCTTCTTGTCCGAATCTTCTGAG
T 186 AGKD01040242 

S32  
Cathelicidin 1-F 

TGTCCTCTGAAGAAAAATGGGAAA
CT   

S32  
Cathelicidin 1-R TCTTCTTGTCCGAATCTTCTGCAT 156 GQ870278  
S33  
Cathelicidin 2-F CCTCTGAAGAAAAATGGGAAACG   
S33  
Cathelicidin 2-R 

CCTCTTCTTGTCCGAATCTTCTGAG
T 170 NM_001123573 

S101 Beta-
defensin-1a-F 

GCAACTAGAATGTCTTGTCAACGT
ATGG    

S101 Beta-
defensin-1a-R 

TGAGAAACACAGCACAAGAATCCC
T 200 *IP protected 
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4.3 Results 

4.3.1 Erythrocyte processing, cultivation, infection and RNA extraction 

Erythrocyte cells were successfully processed, plated and cultivated for 24 hrs from 

12 individual Atlantic salmon at a concentration of 2 x 106 cells per ml. Infection of 

the erythrocyte cells with ISAV and SAV were successfully carried out on 6, 12 well 

plates each (1 per fish) at MOIs of 10, 1 and 0.1. RNA extractions were positive in 

31 of the 36 ISAV extractions, 26 of 36 SAV extractions, 9 of 12 Poly I:C extractions 

and 23 of 24 control extractions (12 ISAV, 11 SAV). Quality and concentration was 

assessed through spectrophotometer measurements. Further RNA quality tests 

were conducted using RNA gel electrophoresis. Four samples from ISAV, 3 from 

SAV controls and 3 - 4 samples from Poly I:C stimulated erythrocytes showed RNA 

bands at 28s and 18s (Figure 4.1 and 4.2). 

 

Figure 4.1. A 1% agarose gel run of 4 control RNA samples from ISAV stimulated 
erythrocytes and 4 Poly I:C stimulated erythrocytes. All but Poly I:C F3 showed RNA 
bands at 28s and 18s bands confirming pure RNA. 

 

28s 
18s 

POLY I:C CONTROL ISAV 
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Figure 4.2. A 1% agarose gel run of 3 control RNA samples from SAV stimulated 
erythrocytes and 3 Poly I:C stimulated erythrocytes. All but Con F1 1 showed RNA 
bands at 28s and 18s bands confirming pure RNA. 

4.3.2 cDNA generation of ISAV, SAV, Poly I:C and controls and Ef1α qRT-PCR 

quality test.  

All 54 RNA samples (18 ISAV, 18 SAV, 6 Poly I;C and 12 controls) were 

successfully converted to cDNA. The Ef1α qRT-PCR confirmed good gene 

expression (Cts < 25) for 42 of the 54 samples (15 ISAV, 13 SAV, 5 Poly I;C and 9 

Controls).  

4.3.3 Primer target and qRT-PCR standard testing on salmon genes 

Of the 31 primer combinations tested against positive salmon cDNA (SPL/IC), 21 

produced the expected bands at their target size. The remaining 10 produced either 

double bands or no bands at all. These primer pairs were removed from further 

analysis. The remaining 21 mRNA targets were successfully purified and diluted into 

a working concentration of 10ng/µl. A further 3 genes were removed when they 

produced no standard curve during qRT-PCR runs against the positive salmon 

cDNA template (SPL/LC). 

4.3.4 qRT- PCR tests of ISAV, SAV, Poly I:C and control erythrocyte cDNA 

tests against 18 salmon genes 

4.3.4.1 Standard curves 

Out of 18 of the genes tested 7-produced efficient standard curves (Table 4.2, 

Figure 4.3), 6 had efficiencies lower than 90% (GIP, S27, RIG I, MDA5, S2 and S32) 

28s 
18s 

POLY I:C CONTROL SAV 
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and 5 showed no standard curves (IFNe, IFNf, EF1α, 105 and S33). Targets below 

90% were not re-analysed. 

Table 4.2. Standard curve results showing efficiency (%) and standard error (SE) for 
IFNa, b, c Mx, IL-1β, IFNγrel-2 and 101  

Gene Efficiency (%) Standard error (SE) 
IFNa 91.53 0.097 
IFNb 98.84 0.128 
IFNc 91.71 0.122 
Mx 92.10 0.099 
IL-1β 93.11 0.055 
IFNγrel-2  96.57 0.206 
101 beta defensin-1-a 89.57 0.125 
 

Figure 4.3. Standard curve results for individual IFNa (E: 91.53, SE 0.097), IFNb (E: 
98.84%, SE 0.128), IFNc (E: 91.71%, SE 0.122), Mx (E: 92.10%, SE 0.099), IL-1β 
(E: 93.11%, SE 0.055), IFNγrel-2 (E: 96.57%, SE 0.206) and 101 (E: 89.57%, SE 
0.125) assays ran on the LightCycler® 480 II system. Dilution ranges from 108 - 101 
RNA molecules were tested in duplicate and their mean values plotted as the CT 
value points along with SE. IFNc, Mx, IL-1β, IFNγrel-2 and 101 assays were 
detected down to 10 molecules of RNA, and IFNa and IFNb down to 100 molecules 
of RNA. 
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4.3.4.2 Comparison of SAV MOI, control and Poly I:C comparisons 

For each of the 7 genes with efficient standards, the copy numbers expressed were 

compared from the MOIs, controls and Poly I:C cDNA for significant differences in 

expression. For all 7 genes, no significant differences were found between MOIs 

and controls. A significantly higher mean expression of Mx was observed in Poly I:C 

stimulated cells than in cells infected at all 3 MOIs (M10: p = 0.028, M1: p = 0.016, 

M0.1: p = 0.025). Significantly lower mean expression of 101 (beta defensin 1a) was 

recorded in MOI 10 (p = 0.003) and 1 (p = 0.002) compared to Poly I:C. Controls of 

IFNc (p = 0.013) and Mx (p = 0.024) showed significantly lower mRNA abundance 

than those observed in Poly I:C stimulated. High variations in copy number between 

samples were found in all MOIs of IFNa, b, Mx, IFNγrel-2 and 101 and MOI 10 of 

IFNc (Table 4.3, Fig 4.4). IL-1β showed the least variation across all MOIs, control 

and Poly I:C. There appeared to be a correlation of decreasing copy number with 

decreasing MOI in IFNb stimulated SAV (r = 0.168). This would suggest that for 

SAV infection IFNb is upregulated to slightly higher levels in high MOIs. 

Table 4.3. Mean and standard deviation of SAV and ISAV infected erythrocyte 
cDNA samples against IFNa, b, c, Mx IL1B, IFNγrel-2 and 101 genes ran on the 
LightCycler® 480 II system. 

SAV ISAV 
Gene MOI Mean Std Gene MOI Mean Std 
IFNa 10 319.8 273.7 IFNa 10 622.8 599.3 
 1 597.5 539.7  1 782.8 557.0 
 0.1 271.0 186.8  0.1 525.6 388.3 
IFNb 10 739.3 1193.0 IFNb 10 5829.0 4296.0 
 1 128.7 152.3  1 29.8 47.7 
 0.1 28.4 19.3  0.1 217.3 37.7 
IFNc 10 3668.0 3442.0 IFNc 10 4740.0 2456.0 
 1 2760.0 1776.0  1 3296.0 2331.0 
 0.1 1996.0 1317.0  0.1 3281.0 1779.0 
Mx 10 498.9 806.3 Mx 10 498.9 806.3 
 1 263.3 264.8  1 263.3 265.8 
 0.1 472.3 457.7  0.1 472.3 457.7 
IL1B 10 1031.0 475.5 IL1B 10 1679.0 803.8 
 1 1300.0 474.2  1 1860.0 690.9 
 0.1 816.1 379.6  0.1 1557.0 655.0 
IFNgrel2 10 10619 19591.0 IFNrel2 10 3523.0 6844.0 
 1 2664.0 2210.0  1 1745.0 2044.0 
 0.1 3819.0 2254.0  0.1 2978.0 5312.0 
101 10 334.8 260.0 101 10 338.4 364.5 
 1 258.1 155.7  1 456.6 305.3 
 0.1 1548.0 2557.0  0.1 1104.0 1111.0 

 
 



	 	 139	

4.3.4.3 Comparison of ISAV MOIs, control and Poly I:C 

For 6 of the 7 genes no significant differences were found between MOI and 

controls (Table 4.3). There was a significantly lower mean expression of Mx at MOI 

1 (p = 0.024) than in the control. For 101, all 3 MOIs showed a significantly lower 

mean expression than those in Poly I:C (M10: p = 0.002, M1: p = 0.003, M0.1: p = 

0.0144). Significantly higher expression of IFNa was found in controls compared to 

Poly I:C stimulated (p = 0.03), but a significantly lower expression found in Mx (p = 

0.013) for the control compared to Poly I:C stimulated. High variations in copy 

numbers were observed across all genes at all MOIs (Table 4.3, Figure 4.4). IL-1β 

again showed the least variation across MOIs, Poly I:C and controls. There 

appeared to be a correlation of increasing copy number with decreasing MOI in 

IFNb stimulated ISAV (r = 0.159). This would suggest that for ISAV infection IFNb is 

upregulated to slightly higher levels in low MOIs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 	 140	

 

 

SAV M
 10

SAV M
 1

SAV M
 0.

1

ISAV M
 10

ISAV M
 1

ISAV M
 0.

1
Poly

SAV co
n

ISAV co
n

100

101

102

103

104

105

C
op

y 
N

um
be

r

IFNa 

SAV M
 10

SAV M
 1

SAV M
 0.

1

ISAV M
 10

ISAV M
 1

ISAV M
 0.

1
Poly

SAV C
on

ISAV C
on

100

101

102

103

104

105

C
op

y 
N

um
be

r

IFNb

SAV M
 10

SAV M
 1

SAV M
 0.

1

ISAV M
 10

ISAV M
 1

ISAV M
 0.

1
Poly

SAV C
on

ISAV C
on

100

101

102

103

104

105

C
op

y 
N

um
be

r

IFNc

SAV M
 10

SAV M
 1

SAV M
 0.

1

ISAV M
 10

ISAV M
 1

ISAV M
 0.

1
Poly

SAV C
on

ISAV C
on

100

101

102

103

104

105

C
op

y 
N

um
be

r

MX 

SAV M
 10

SAV M
 1

SAV M
 0.

1

ISAV M
 10

ISAV M
 1

ISAV M
 0.

1
Poly

SAV C
on

ISAV C
on

100

101

102

103

104

105

C
op

y 
N

um
be

r

IFNγrel-2

SAV M
 10

SAV M
 1

SAV M
 0.

1

ISAV M
 10

ISAV M
 1

ISAV M
 0.

1
Poly

SAV C
on

ISAV C
on

100

101

102

103

104

105

C
op

y 
N

um
be

r

101 

SAV M
10

SAV M
1

SAV M
 0.

1

ISAV M
10

ISAV M
1

ISAV M
0.1 Poly

SAV C
on

ISAV C
on

100

101

102

103

104

105

C
op

y 
N

um
be

r

IL-1β



	 	 141	

Figure 4.4. Erythrocyte cDNA generated from 24hr viral infection of SAV and ISAV 
at MOIs 10, 1 and 0.1, Poly I:C stimulated and control tested against 7 Atlantic 
salmon immune genes and defensins. Interferon (IFN) a, b and c, Interferon-induced 
GTP-binding protein Mx1 (Mx), Interleukin 1 beta (IL-1β), Interferon gamma related 
2 (IFN γrel-2) and Beta defensin 1a (101). N = 8 – 12, copy numbers expressed as 
mean +/- StD. 
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4.4 Discussion 
SAV and ISAV were successfully grown in CHSE-214 cells. There were numerous 

cell lines for each virus, which could be utilised, each with advantages and 

disadvantages. The CHSE-214 cell lines were chosen due to the extensive work 

carried out over the past 20 years showing consistent and competent growth of all 

SAV subtypes and ISAV (Table 4.4). 

Table. 4.4. Comparison of cell lines used for growth of both ISAV and SAV over the 
past 20 years 

Cell line SAV ISAV 

CHSE-214 Nelson et al., 1995, Castric et al., 
1997, Villoing et al., 2000, Graham 
et al., 2003, Hodneland et al., 2005, 
Boscher et al., 2006, Graham et al., 
2008, Hearth et al., 2009 Pettersen 
et al., 2013, Graham et al., 2014 

Bouchard et al., 1999, Kibenge et al., 
2000, Bouchard et al., 2001, Grant and 
Smail. 2003, Godoy et al., 2008 

TO Graham et al., 2008 Wergeland and Jakobsen. 2001, Grant 
and Smail. 2003, Kibenge et al., 2006 

RTG-2 Nelson et al., 1995, Villoing et al., 
2000, Graham et al., 2003, Graham 
et al., 2008 

N/A 

CHH-1 Hearth et al., 2009, Pettersen et al., 
2013 

N/A 

AS Nelson et al., 1995, N/A 

BF-2 Nelson et al., 1995, Graham et al., 
2008 

Godoy et al., 2008 

FHM Nelson et al., 1995, Graham et al., 
2008 

N/A 

EPC Nelson et al., 1995, Graham et al., 
2008 

Godoy et al., 2008 

SHK-1 Graham et al., 2008 Hearth et al., 
2009 

Dannevig et al., 1995, Falk et al., 1997, 
Kilbenge et al., 2000 Simko et al., 2000, 
Bouchard et al., 2001 Grant and Smail 
2003, Falk et al., 2004 Godoy et al., 
2008, Kilbenge et al., 2016 

ASK N/A Devold et al., 2000, Falk et al., 2004, 
Plarre et al., 2005, Kilbenge et al., 2016 
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The original concentration of ISAV harvested was too low for an MOI of 10, so a 

density gradient ultracentrifugation was conducted to increase the concentration of 

ISAV. It has been shown that density gradient ultracentrifugation can increase and 

further purify virus particles (Fauquet et al., 2005). After ultracentrifugation ISAV 

concentration were found to have increased high enough to allow infection of ISAV 

at an MOI of 10.  

To ensure no false positive results were obtained for gene expression, all leukocytes 

and immune-gene expressing entities were removed from the salmon blood 

obtained from the farm through a rigorous wash procedure. It is essential that these 

components are removed due to their immunological responses during viral 

infections (Medzhitov 2007; Tajeuchi and Akira. 2010). Although all steps were 

taken to remove leukocytes there is likely still a small <1% remaining. Due to the low 

numbers of leukocytes found within 1ml of untreated blood and the steps taken to 

remove them, any remaining leukocytes are unlikely to have contributed any 

noticeable expression of viral response genes. All erythrocytes from each fish were 

successfully concentrated and plated at 2 x 106 cells/ml and incubated overnight to 

allow for acclimatisation before viral infection and Poly I:C stimulation. Blood 

extraction, washing, concentrating and plating of the erythrocytes were carried out 

within 12 hours, reducing any variation in blood physiology from live to sacrificed fish 

(Clark et al., 2013). To ensure a homogenised culture for infection within the 

erythrocytes was achieved, an absorption based infection protocol was conducted. 

Tenfold dilutions of MOI for each virus were utilised to determine linear dependency 

between virus infection and innate immune gene expression. 

RNA extraction was successfully carried out on all samples following our custom 

protocol involving wash steps including NP-40 and standard Tri-reagent extraction. 

The original procedure for RNA extraction using Tri-reagent alone failed to produce 

competent pure RNA without DNA contamination, so an extra wash step utilising 

NP-40 was implemented. NP-40 is a non-ionic detergent known for its ability to 

breakdown cytoplasmic cell membrane, but leave nuclear membranes untouched. 

Using this reagent isolated the nucleus for RNA extraction and removed all other 

DNA contamination from within the cytoplasm of the cell. This was adapted from a 

previous method used to extract rainbow trout erythrocytes (Morera et al., 2011). 

This reagent has been shown to be useful when working with nucleated cells in 

gene expression studies of low cell numbers (Le et al., 2015). The use of NP-40 

helped to reduce DNA and other cytoplasmic contamination, increase the quality of 

extracted RNA and ensure that only mature cytoplasmic RNA was acquired from the 
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salmon erythrocytes. This would suggest NP-40 as a suitable addition to the 

production of an optimised and homogenised RNA extraction procedure for salmon 

erythrocytes. 

The 54-erythrocyte RNA samples (18 ISAV, 18 SAV, 6 Poly I:C and 12 controls) 

were successfully converted to cDNA, to increase the stability and reduce the loss of 

RNA quality due to degradation. To assess the quality of the cDNA produced from 

each of the 54-erythrocyte samples they were tested for Ef1α mRNA by qRT-PCR. 

Ef1α mRNA has been shown to have many roles and is produced ubiquitously 

across all eukaryotes (Sasikumar et al., 2012). Ef1α’s specific role in the successful 

translation during protein synthesis suggests that it would be a useful 

reference/housekeeping gene for RNA quality. This has been shown in Atlantic 

salmon where Ef1α mRNA was suggested as a reference gene for assessing RNA 

in gene expression studies (Olsvik et al., 2005) and it is commonly used in gene 

expression studies in many other fish species (Williams et al., 2003; Tang et al., 

2007; Zheng and Sun. 2011). On this basis the results from the qRT-PCR tests led 

to the removal of 12 lower quality samples. These samples had originally shown 

relatively good RNA quality on the ND-1000 spectrophotometer. This helped 

reduced any variations that non-specific amplification, low quality and contaminated 

cDNA samples would have on our final results. 

Research on the salmon erythrocyte immune response to virus infection is currently 

limited to PRV and ISAV. PRV has been shown to infect erythrocytes and promote 

expression of IFNs, RIG-I, Mx and PKR whilst supressing other mRNAs (Finstad et 

al., 2014; Wessel et al., 2015; Dahle et al., 2015). Contrasting data has come from 

these two results with Wessel et al. (2015) showing large up regulation of IFN after 1 

day compared to low up regulation of Mx, RIG-I and PKR, before dropping 

significantly by day 7 where Mx, RIG-I and PKR had peaked. Whereas Dahle et al. 

(2015) showed a limited increase in expression of these 4 genes after 1 week with 

significantly higher fold changes observed after 4 – 5 weeks. It should be noted that 

all genes were expressed at higher levels than control erythrocytes at this time, 

indicating at least a small increase in expression was observed. 

High variation in expression of each gene is also noticeable per sample in both 

experiments; showing upregulation of these genes can be irregular and highly 

variable to the individual. Other factors that may explain this are low expression and 

variation in degradation between cells, or cell life cycle stages and reduced activity 

due to older cells. This has been shown in rainbow trout, with erythrocytes showing 



	 	 145	

less activity with reduced cellular components and total RNA levels with increasing 

age (Lund et al., 2000; Phillips et al., 2000). When we compare these results, there 

were similarities in low mRNA abundance and high variation of Mx, and IFN with 

Dahle et al. (2015); however as stated previously our virus positives are generally 

not significantly higher in gene expression than our erythrocyte controls and Poly I:C 

stimulated cells. An explanation for the higher expression seen by Dahle et al. 

(2015) could be due to the research being carried out in vivo. Other cells and 

tissues, and in particularly contamination of leukocytes may have stimulated the 

expression of the immune genes in these erythrocytes. 

Similar high-level expressions have been shown in ISAV infected salmon 

erythrocytes for IFNα1, IFNα2 and Mx (Workenhe et al., 2008). Mx and IFN 

increased by up to 10 fold over 24 hrs, and remained above 7 fold for the remaining 

4 days. A recent publication on rainbow trout erythrocytes exposed to viral 

haemorrhagic septicaemia virus (VHS) showed similar results to the results 

presented here with no significant upregulation in Mx or any other immune genes 

when compared to non infected control erythrocytes. (Nombela et al., 2018). 

Previous research on Poly I:C stimulation in rainbow trout revealed that IFNα and 

CCL4 were significantly up regulated over a 24 hrs period, with Mx slightly but not 

significantly upregulated. Our findings highlight that Mx was significantly higher than 

all SAV MOIs, but were similar for ISAV. The results found in this study for ISAV and 

Poly I:C stimulation are further supported by Workenhe et al. (2008) who observed 

similar results between IFN and Mx over a 24 hr period. They did, however find a 

significant upregulation of Mx and down regulation of IFN after 72 hrs. These results 

suggests that erythrocytes may up or down regulate certain immune genes based 

on the type of virus, the PAMP it is stimulated with and for how long it has been 

infected or stimulated for. Due to the base functionality of leukocytes as active 

substantial immune responders to invading pathogens, it is not reasonable to 

assume a similar functional mechanism and response via PAMP stimulation of 

erythrocytes to PAMP stimulation of leukocytes. 

The innate immune system is mediated through a collection of distinct modular 

structures, formed of subsets of leukocytes that are stimulated by their intra and/or 

extracellular PRRs responding to PAMPS of invading pathogens (Medzhitov. 2007). 

Combinations of PAMP-PRR interactions lead to the activation of distinct 

immunological pathways. A key promoter in viral detection is TLR3, which signals 

the production of IFNs and inflammatory cytokines (IL-1β and IL-16) from tissue 

resident macrophages in recognition of viral nucleic acid and other viral components 
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(Takeuchi and Akira. 2010). Induction of anti viral immunity is also promoted through 

intracellular proteins RIG-I and MDA5, which stimulate type I IFNs by recognition of 

both single and double stranded viral RNA (Gitlin et al., 2006; Kato et al., 2006; 

Pichlmair et al., 2006). 

Type I and II IFNs were originally shown to be essential for immunity in mice (Muller 

et al., 1994) and were subsequently shown in other vertebrates (Samuel. 2001). 

Viral infected leukocytes in mammals drive IFN-α expression, whilst IFNβ is 

produced predominantly in fibroblasts (Derynck et al., 1980; Goeddel et al., 1981). 

More specifically, the majority of IFN-α production is from a subtype of dendritic cells 

(DC) called plasmacytoid DCs. These are the main promoters of IFN-α and can 

produce >200 fold IFN-α than any other cell type (Siegal et a., 1999; Colonna et al., 

2004). Evidence suggests these cells are present within teleosts (Ohta et al., 2004; 

Pettersen et al., 2008; Lovy et al., 2008, 2009) with functional identification recently 

reported in rainbow trout (Bassity and Clark. 2012) and zebra fish (Danio rerio) 

(Shao et al., 2015). Further research is needed to confirm functional similarities and 

differences between teleost and mammalian dendritic cells. 

IFN expressions in teleost leukocytes have shown that stimulation with the PAMP 

Poly I:C produced a large up regulation of IFN type I and II in rainbow trout (Zou et 

al., 2007) and Atlantic salmon (Sun et al., 2009). Previous to this, human embryonic 

kidney 293 cell transfected with Atlantic salmon IFN genes indicated high 

expression of IFN transcripts and induction of the antiviral protein Mx that protected 

the fish from IPNV (Robertsen et al., 2003). Mx is an important antiviral protein 

known as an interferon stimulated gene (ISG) that is stimulated by type I and III 

IFNs in most vertebrates (Verhelst et al., 2013), and has been shown to promote 

resistance to ISAV and IPNV in Atlantic salmon (Jensen and Robertsen. 2002; 

Larsen et al., 2004; Kibenge et al., 2005; McBeath et al., 2007). This system shows 

the major influence leukocytes have on the anti viral response to invading 

pathogens in vertebrates. 

Although the full system of genes, proteins, pathways and the types of leukocytes 

that activate and control the innate immune response is not yet entirely understood 

in salmonids, there is substantial evidence of its key role in the innate immune 

response to resistance and suppression of pathogens that infect them. The system 

appears highly conserved across all vertebrates with the IFN systems initiation of 

antiviral ISGs clearly present within many fish species, indicating it plays a similar 

role to other higher vertebrates. This would suggest that although certain 
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components may vary in teleosts the final result is a system that promotes 

resistance to viral infection. 

When we compare the leukocyte response during viral infection and PAMP 

stimulation to our erythrocyte results, we consistently observe a switch of the cells of 

leukocytes from a neutral to a highly active antiviral state represented by a large 

increase in mRNA transcripts related to the antiviral response. This then triggers a 

cascade of expression of other cytokines and anti viral proteins driving the 

development of a systemic antiviral response. In leukocytes, the pathways involved 

have been extensively studied in the vertebrates, with increased progress being 

made in identification and expression of Atlantic salmon peripheral blood leukocytes 

(PBL) with the development of an oligonucleotide microarray (OMN) (Krasnov et al., 

2011b). In contrast, most immune genes tested in erythrocytes in this work showed 

consistent low mRNA abundance regardless of virus, MOI, POLY I:C stimulation 

and controls.  

For Wessel et al. (2015) erythrocyte mRNA abundance did appear to follow a similar 

trend as the leukocytes system with high IFN-α mRNA abundance early, followed by 

high mRNA abundance of Mx and PKR later. An increase in RIG-I mRNA 

abundance was also recorded early, but showed a much lower relative increase (~5 

to 20 fold) above basal levels compared to IFN (~5 to 150 fold). After 7 days, this 

trend swapped with RIG-I mRNA abundance increasing up to 90 fold and IFN 

decreasing to ~ 0 – 40 fold. Following a standard viral PRR-PAMPs response of a 

leukocyte, RIG-I should be stimulated and expressed in higher abundance before 

IFN followed by ISG. It may be that at the first time point of 1 day, that RIG-I had 

signalled a high production of IFN transcripts and therefore explains the high 

abundance of these transcripts over RIG-I.  

High expressions of IFN and Mx and gradual increases in IL-1β to ISAV injections 

have been shown in Atlantic salmon (McBeath et al., 2007). Other studies, including 

those presented here, appear to show that erythrocytes do not have the same high-

level expression and systematic control of immune response as leukocytes. 

However, low-level expression of immune genes in erythrocytes does not mean that 

they don’t play an important role in regulating homeostatic balance. Morera et al. 

(2011) hypothesised that although expression of mRNA in PAMP-activated 

leukocytes is far greater than that seen in erythrocytes, the high abundance of 

erythrocytes in circulation could lead to millions of mRNA transcripts/ml of blood. 

The numbers of leukocytes present in circulating blood of fish is ~2% whereas 
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erythrocytes are over 90% (Witeska. 2013). So although activated leukocytes 

express high levels of mRNA, their relatively low numbers per ml of blood question 

whether the overall mRNA levels expressed are significantly higher than those 

expressed in low concentration by ~ 50 times more abundant erythrocyte cells per 

ml. Thus the effects of erythrocyte mRNA transcripts could be more significant in 

regulating homeostatic balance than first thought. 

Varying degrees of expression were reported between genes based on virus type, 

PAMPs and exposure time. A common trend has appeared throughout all these 

studies indicating that non-infected erythrocytes appear to exhibit low-level 

expressions of innate immune genes. Based on the evidence shown in this research 

and previous work, it is unlikely that erythrocytes upregulate innate immune genes 

to the levels that leukocytes and other immune tissues do. It is more likely that they 

have a stable background of genes expressed that act as a barrier against initial 

viral infection and contribute to the PRR driven response. 

Evidence of erythrocyte functional response has been shown in other organisms. In 

mammalian erythrocytes, surface glycoproteins were shown to act as decoy 

receptors for pathogens creating a pathogen sink (Baum et al., 2002). Human 

erythrocytes showed specific binding of immunodeficiency virus (HIV)-1 (Beck et al., 

2009), and binding of immune complexes (IC) that act as a passive transporter to 

macrophages (Hess and Schifferli. 2003). Bird erythrocytes have been shown to up 

regulate cytokine transcripts, TLR and type I IFNs (Passantino et al., 2007; Morera 

et al., 2011; St Paul et al., 2013). Antimicrobial production from haemoglobin was 

found in both vertebrates and invertebrates that produced respiratory proteins of 

highly toxic reactive oxygen species (ROS) (Jiang et al., 2007). The antimicrobial 

action appears to be an ancient innate immunity mechanism conserved from over 

500 million years ago, suggesting that this was the evolutionary origin of current 

haemoglobin activity (Jiang et al., 2007). Further antimicrobial activity has been 

shown in rainbow trout, where AMPs showing antibacterial action were isolated from 

erythrocytes (Fernandes and Smith. 2004), and were similarly found within the 

haemoglobin of channel catfish (Ullal et al., 2008). Further research into nucleated 

erythrocytes will contribute to our understanding of their role in immune and anti 

microbial response. 

We have demonstrated that nucleated erythrocytes of Atlantic salmon express low 

levels of certain immune genes, suggesting a constitutive expression of these 

proteins in circulating erythrocytes. Infection with varying MOIs of ISAV and SAV 
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and stimulation of Poly I:C showed no clear increase in expression of any of the 

genes tested. From this and previous research, it appears that piscine erythrocytes 

exhibit an active immune response by acting as a barrier and as a possible first line 

of defence to viral infection, and promoting a PRR driven response. To further 

analyse this a longer time series over similar periods to previous work, as well as 

testing more immune genes, viruses and samples, would help in our understanding 

to the extent to which erythrocytes interact with the PPR-driven response during 

infection in Atlantic salmon. It may be the case that 24 hrs was not may not long 

enough for ISAV and SAV to attach, infect or stimulate the erythrocytes into 

signalling the PRR system within erythrocytes. 

The in vitro culture could also be lacking key activating factors produced by 

leukocytes. To test this, whole blood cultures could be run and stimulated in a 

similar manner to this experiment’s protocol. Erythrocytes and leukocytes could then 

be purified from these culture and their expression levels measured. The controls for 

all 7 genes showed very little variation in expression except for a few outliers in 

IFNβ, IFNλ-rel2 and 101 indicating overall stability in the levels of expression often 

irrespective of treatment. This along with previous research supports the case that 

erythrocytes at minimum are maintaining a constant low-level expression of these 

genes, and specific genes may fluctuate from low to high over a period of time.  
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Chapter 5: Future Prospective 
To improve husbandry management of Atlantic salmon in the Aquaculture industry 

worldwide, fast, reliable and effective diagnostic tools for smoltification and viral 

detection are needed. Understanding the immunological processes and cellular 

components involved in first responses to viral infections in the innate immune 

system could open up the potential to utilise biomarkers associated with infection to 

monitor and assess salmon health throughout their lifecycle, from hatcheries to open 

SW pens.  

In Chapter 2 we developed an in lab and onsite NKA qRT-PCR assay for the α1a 

mRNA transcript ATPase, which was shown to be as effective at smoltification 

detection as industry standard NKA activity assays. Further in lab NKA qRT-PCR 

and NKA activity assays comparison could be continued to give a larger database of 

yearly variation in success of each assay, and provide more site specific data. This 

would allow known environmental factors, fish population specifics and site-specific 

factors to be taken into account based on each site, and applied to the analysis of 

future tests. These tests could also include fish farms that do not use the supersmolt 

feed to verify that the NKA qRT-PCR assays work as effectively as those that do 

and in comparison to NKA activity assays. The tests could also be expanded to 

monitor S1 fish to assess whether a similar trend or different trend to S0 fish is 

found. It would be interesting to see if this applies to the UK as well, and if so the 

expansion into this area would likely require study on other smoltification biomarkers 

that could be utilised as effectively. Changing the measurement times of I, M and F 

points from calendar days to dd could also open up better spatial monitoring of the 

NKA activity assay and NKA qRT-PCR. Through analysis of the data no trends were 

found, however the potential to monitor both assays to a closer degree by switching 

test periods over dd (e.g. 0dd, 100dd, 200dd, 300dd etc.) would allow for a more 

reliable interpretation of how the α1a marker and NKA activity changes throughout 

the smolt period. Utilising dd would be a better indicator over calendar days as the 

developmental period before during and after smoltification has been heavily 

researched (see section 1.3), providing a good basis to plan and estimate dd time 

points to sample at leading up to when fish should be at the point of SW transfer 

(350 – 400dd) and when they begin to enter desmoltification (400dd>). This could 

help answer some of the questions about the abnormal results seen throughout the 

years for both assays and potentially show how the α1a mRNA abundance changes 

throughout the smolt period.  
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Further testing of the mobile assay should be pursued to increase the robustness of 

the α1a mRNA transcript as a smoltification biomarker for onsite detection. This 

would provide a preliminary onsite qRT-PCR test that is faster, provides results on 

the day, and is cleaner and potentially cheaper than NKA activity assays. Alongside 

this, further assays utilising smoltification biomarkers could be developed in lab and 

transferred onto the same mobile diagnostic platforms. Originally this project 

incorporated a second biomarker, GAPDH. The assay was developed and tested on 

2015 samples, however all test points for all sites showed no statistically significant 

variation between them. Due to this we did not use the assay for the subsequent two 

years.  

There are numerous other biomarkers that could be utilised and tested for 

smoltification monitoring. Developing several biomarker assays would give a greater 

overall picture on the progress salmon are making during smoltification, improve 

reliability, help reduce false positives and identify compromised assays. Farms could 

make a judgement call more easily when observing 3 or more biomarker results 

over just the current one that has been developed at the moment. A previous 

masters thesis conducted in 2014 at the University of Stirling (Kelly Wood, Masters 

thesis, 2014) utilised a CCL4-like chemokine as a potential biomarker. The idea 

behind using this biomarker was that CCL4 mRNA abundance would increase 

during smoltification. This would be due to increased inflammation from damage 

sustained in the gills whilst adapting to a SW environment during smoltification 

development. The preliminary study however only indicated a significant increase at 

1 of 4 sites, suggesting the marker was not a good indicator for smoltification. 

Following on from this idea, the testing of other mRNA transcripts involved in the 

inflammatory response (see section 1.5.3) as well as re-testing CCL4 at more sites 

could help produce several reliable biomarkers for monitoring smoltification.   

The monitoring of abundance and ratio changes between α1a and α1b over a smolt 

period could allow for a better indication of the development process as α1a 

ionocytes switch to α1b ionocytes. The use of biomarkers that are affected by 

environmental factors such as metal contamination, but remain at stable levels 

throughout the smolt period could also help to monitor and ascertain when these 

outbreaks occur and act quickly to remedy the situation. In Atlantic salmon and other 

species metallothioneins (MT) (Fabrin et al., 2018; Stankeviciute et al., 2018) and 

hepatic glutamic oxaloacetate transaminase (GOT) (de la torre et al., 1998) have 

been shown as a reliable indicator of metal contamination in FW environments. 
Utilising a ubiquitous biomarker such as EF1a that remains stable throughout the 
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salmon lifecycle could be used as a baseline control to compare against the results 

from the other biomarkers tested and potentially indicate abnormal sample results. 

Optimisation of the mobile lab to reduce the size, weight and amount of equipment 

required on farms could be addressed before more onsite tests are conducted. 

Reducing and replacing basic equipment such as centrifuges and vortexes with 

smaller portable versions would increase the portability and ease of transport on and 

off sites. The boxes could be professionally re-designed to a higher quality product 

to increase the ease of usability and reduce contamination in the case of spilt 

solutions. To do this, another industrial partner or industrial funding would need to 

be acquired due to the current partner stepping down following this project’s 

conclusion. 

The results also showed that the NKA activity assay was susceptible to metal 

contamination giving a false positive result on numerous occasions; whereas NKA 

qRT-PCR indicated that smoltification was not proceeding as normal. This suggests 

the qRT-PCR assay is more reliable in compromised environmental conditions. We 

would have to acquire data on metal run off pumped into any farms affected by 

metal contamination to be able to compare it with the smoltification data of both the 

NKA activity and NKA qRT-PCR assays. With this data we would be able to obtain a 

better understanding of how smoltification is influenced, and then to advise how the 

farms should respond to metal influx. 

Viral outbreaks of SAV, PRV, PMCV and ISAV are routinely reported yearly with 

varying degrees of disease outbreak amongst fish farms in Europe, Canada, the 

USA and Chile (see section 1.6). Production of a reliable qRT-PCR assay for 

detection of these diseases would be highly valuable to the industry, particularly due 

to the clinical and histopathological similarities between SAV, PRV and PMCV 

making diagnosis difficult, delaying treatment and preventing loss of fish. The 

development in this study of a multiplex assay for both in lab and on site detecting of 

SAV (1 - 6), PRV and PMCV provides a significant tool which could be used by 

farms to monitor, determine and treat viral infections throughout the year. On site 

analysis could be conducted in emergency cases, or lab based analysis for routine 

checks. 

Currently the multiplex assay is incomplete, with an internal positive still to be 

incorporated as well as probit analysis, positive sample tests for PRV and PMCV 

and blind samples for all 3 viruses to fully verify it. As suggested in the discussion of 

Chapter 3, failing the incorporation of the 3 viruses and the internal control the assay 
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could be split into two duplex assays containing PRV-PMCV and a dedicated SAV 

(1 - 6) assay. As ISAV is an important detrimental virus, this too could be 

incorporated into a duplex assay with any of the 3-original viruses. 

The multiplex assay could also be used in a future study monitoring viral infections 

of all four viruses. In doing so, the viral infections could be monitored on a daily or 

weekly basis through qRT-PCR tests of infected fish to observe at what viral 

abundance the infection triggers disease within the fish. This could be done 

experimentally by infecting smolts and post smolts with each of the viruses and 

monitoring them alongside uninfected controls over a 6 – 8 week period, or until 

clinical signs of disease are observed. This would generate a data set that could 

provide a viral abundance threshold point where the fish switch from an infected to a 

disease state. This would enhance the ability of the original assays from purely 

detection of the virus to detection, monitoring and assessment. Based on the viral 

abundance recorded an estimated assessment on how long the fish is likely to 

become susceptible to disease outbreak could be made. This would not only alert 

farmers to the virus being present within their farms, but would also give an 

estimation of how bad the infection is and how long they have to prevent further 

outbreaks within their farm. This could significantly help the industry reduce loss of 

fish and profit by not only stopping further outbreaks but also treating fish that have 

not yet shown clinical signs of disease but have been infected with the virus. It 

would also help in the case of PRV, which is known to be an opportunistic virus (see 

section 1.6.2). Detecting low to moderate levels of this virus would alert farms to the 

susceptibility of those fish as they have been immunocompromised and likely more 

vulnerable to primary viral infections such as SAV, PMCV and ISAV. 

We have shown in Chapter 4 that erythrocytes appear to have a significant 

constitutive level of antiviral mRNA abundance in Atlantic salmon. This suggests 

that a “barrier” is in place that does not require significant transcriptomic 

reprogramming. This is supported by recent studies focusing on infections of 

erythrocytes with the same or similar virus (see section 4.4). Following on from this 

project, a future study using a similar methodology but focusing on analysis over a 

longer time series would give a better understanding of whether there is variation in 

up or downregulation of these genes in viral infected erythrocytes. It has been 

shown in teleost that as erythrocytes age there is a reduction in cellular components 

and total RNA levels, as well as a reduction in aerobic energy production (see 

section 1.5.4). Conducting a longer time series test would allow us to view how 

erythrocytes react to viral infection as they age. A separate time series where 
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erythrocytes are cultivated for 2, 4, 6, 8 weeks etc. before infection with the virus is 

another approach that could be applied. It would also allow for a more robust 

comparison with recent studies that have focused on longer time series. 

As stated in the discussion of Chapter 4, it may be the case that 24 hrs is not long 

enough for the virus to attach and infect the erythrocyte cells, and therefore may not 

have initiated any PRR-driven response. Setting up a time series of 5 – 7 days 

should give enough time for the virus to interact with the erythrocyte and to monitor 

a response, however this time period could be extended as in other erythrocyte 

studies (Dahle et al., 2015) to observe any delayed up or downregulation of genes. 

This would be of particular interest for PRV infections as they are known to remain 

dormant in salmon (Lovoll et al., 2010; Haugland et al., 2011; Garseth et al., 2013; 

Wiik-Nielsen et al., 2016), but are known to infect and replicate within erythrocytes 

(Finstad et al., 2014; Wessel et al., 2015). Following a time series of 1 – 6 weeks of 

a PRV infection could shed light on whether the virus can go undetected during 

initial infections by erythrocytes and whether the erythrocytes are eventually 

stimulated into responding many weeks after infection. This would also be 

interesting with a dual infection assay where PRV is initially infected and another 

virus is infected at different time points after initial infection. PRV has been shown to 

act as an opportunistic secondary infection after salmon are infected with another 

virus, and even preventing other secondary infections from occurring (Lund et al., 

2016). Studying how PRV and secondary viral infections influence erythrocytes in 

detecting, being infected and responding to this dynamic could provide good insight 

into this infection model in erythrocyte innate immune response.  

Other viruses (PRV and PMCV) could be tested in the same manner, and monitored 

to see if any variations in mRNA levels are observed and are potentially viral 

specific. A study focused on observations into whether all 4 viruses can infect and 

replicate within erythrocytes would also be beneficial to our understanding of how 

erythrocytes can initiate a primary defence, buffer initial infection or are 

compromised on a virus specific basis. In doing these tests, any genes that may be 

upregulated on a consistent basis could be further utilised as biomarkers to detect 

infections within fish before the virus has time to spread throughout the fish farm and 

cause disease. This could be utilised through the development of a qRT-PCR assay 

as demonstrated in Chapter 2 and 3 of this thesis. Understanding the viral infection 

model of erythrocytes and potentially showing that it is a first point of infection could 

open up new developments for rapid molecular diagnostics in salmon, and 

potentially other aquaculture species. Antibodies could be developed to monitor 
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erythrocyte responses or used to monitor levels of antiviral proteins. Blood samples 

could be taken to diagnose and monitor fish for viral infection and load present 

within erythrocyte cells. This would help benefit welfare by not having to sacrifice the 

fish during sampling by only taking a small sample of blood before returning fish to 

their tanks or pens. This would also benefit the industry by providing more quick 

detection tools to identify, treat and reduce infections within fish farms. 

As stated in Chapter 4 there is growing evidence in both teleosts and other 

vertebrates that not only do nucleated erythrocytes appear to participate in the 

innate immune response, but also non-nucleated erythrocytes (see section 4.4). The 

evidence shown across both vertebrates and invertebrates on erythrocytes 

containing haemoglobin have been shown to actively secrete AMPs in the presence 

of infectious pathogens and promote the release of ROS. Not only should there be 

more focus on further studies of teleost erythrocytes, but a similar increase in focus 

should be given to the immunological response and capabilities within vertebrates 

and invertebrates erythrocytes. Combining our understanding of teleost erythrocytes 

with higher vertebrates could provide us with the evolutionary links to the 

immunological variations and development of erythrocytes, and how they have 

changed in the innate and potentially active immune response.  

The qRT-PCR assays described in this thesis provide novel tools for the detection of 

both smoltification and viral infection in Atlantic salmon, which could be of great 

advantage to fish farms in the future. Additionally, this research has examined how 

viral infection of erythrocytes leads to stimulation of the innate immune response. 

The results presented here provide a platform for future studies to further develop 

and refine these assays for use in the aquaculture industry. 
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Appendices 
 

Chapter 2 
	

Table C2.1 Details of the mean NKA activity assays, fold change and p-value for 
initial and final points for 16 sites sampled in 2015. 

Site Initial Activity 
(Mean) 

Final Activity 
(Mean) 

Fold change Significant 
(p<0.05) 

GLA 1.97 ± 0.30 7.42 ± 3.60 3.77 <0.001 
GLB 2.29 ± 1.00 8.48 ± 2.44 3.70 <0.001 
LD 6.06 ± 2.05 13.81 ± 3.74 2.27 <0.001 
RBD 7.91 ± 1.59 17.90 ± 4.90 2.26 <0.001 
RBA 6.71 ± 1.59 14.84 ± 3.43 2.22 <0.001 
ORA 6.50 ± 2.84 13.93 ± 3.21 2.14 <0.001 
RBB 6.02 ± 1.44 12.87 ± 3.37 2.14 <0.001 
ORB 6.99± 2.80 14.38 ± 3.85 2.05 <0.001 
BAR 6.98 ± 2.09 12.84 ± 4.10 1.84 0.004 
MIN 6.28 ± 2.54 10.80 ± 4.54 1.71 0.032 
GCA 9.92 ± 3.08 15.10 ± 3.93 1.52 0.064 
ORE 6.97 ± 2.34 9.74 ± 3.121 1.39 0.113 
CLA 7.60 ± 5.08 9.68 ± 2.76 1.27 0.331 
GCB 11.00 ± 3.52 13.41 ± 2.46 1.21 0.1798 
RBE 11.30 ± 2.50 13.50 ± 5.19 1.19 0.314 
GIR 4.52 ± 1.936 13.38 ± 3.54 2.96 <0.001 

 

Table C2.2 Details of the mean NKA activity assays, fold change and p-value for 
initial and final points for 13 sites sampled in 2016. 

Site Initial Activity 
(Mean) 

Final Activity 
(Mean) 

Fold change Significant 
(p<0.05) 

GLA 6.08 ± 3.74 8.59 ± 3.31 1.41 0.511 
GLB 3.95 ± 1.42 6.10 ± 1.81 1.54 0.020 
ORA 7.83 ± 1.95 11.01 ± 2.16 1.41 0.008 
ORB 6.10 ± 1.49 11.35 ± 2.93 1.86 0.002 
ORE 4.00 ± 1.25 14.91 ± 2.73 3.73 <0.001 
MIN 4.13 ± 1.12 11.83 ± 3.17 2.86 <0.001 
LS 13.31 +/ 2.10 9.92 ± 2.14 1.34 0.007 
RBA 8.29 ± 3.69 14.33 ± 2.32 1.73 0.002 
RBB 6.36 ± 2.45 14.42 ± 3.65 2.27 <0.001 
RBC 7.561 ± 3.08 17.93 ± 3.44 2.37 <0.001 
LD 7.56 ± 1.10 13.70 ± 3.37 1.81 <0.001 
GIR 6.04 ± 1.50 19.11 ± 7.13 3.16 0.001 
GCA 12.40 ± 1.93 13.33 ± 5.11 1.08 0.846 
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Table C2.3 Details of the mean NKA activity assays, fold change and p-value for 
initial and final points for 10 sites sampled in 2017. 

Site Initial Activity 
(Mean) 

Final Activity 
(Mean) 

Fold change Significant 
(p<0.05) 

LD 11.36 ± 3.72 13.41 ± 1.65 1.18 0.177 
ORA 6.99 ± 4.58 18.38 ± 4.92 2.60 <0.001 
GLA 3.16 ± 1.05 8.55 ± 2.43 2.70 0.001 
GLB 3.63 ± 0.96 7.20 ± 1.71 1.98 <0.001 
GCA 12.11 ± 2.03 13.6 ± 3.96 1.12 0.612 
RBA 5.52 ± 2.33 11.35 ± 2.15 2.06 <0.001 
RBB 8.15 ± 4.53 12.6 ± 2.30 1.55 0.026 
KLM 5.15 ± 2.08 15.53 ± 1.23 3.02 <0.001 
MIN 5.54 ± 6.79 11.18 ± 6.75 2.02 0.118 
 

Table C2.4 Details of the mean Na+ K- qRT-PCR assays, fold change and p-value 
for initial and final points for 16 sites sampled in 2015. 

Site Initial Copy number 
(Mean) 

Final Copy Number 
(Mean) 

Fold 
change 

Significant 
(p<0.05) 

GIR 2143000 ± 853292 656857 ± 449975 3.26 <0.001 
MIN 982143 ± 482088 337417 ± 131421 2.91 0.012 
ORE 1458000 ± 508203 532857 ± 244397 2.74 0.001 
ORA 1176000 ± 460046 399625 ± 191597 3.02 <0.001 
ORB 1319000 ± 844766 456375 ± 215721 2.89 <0.001 
LD 2453000 ± 711874 670875 ± 295712 3.65 <0.008 
BAR 1917000 ± 667712 888375 ± 473250 2.16 0.001 
GLA 1195000 ± 299151 567571 ± 313763 2.11 <0.001 
RBE 838375 ± 289400 334143 ± 226982 2.51 0.023 
GCB 1502000 ± 762587 991333 ± 559937 1.51 0.220 
RBB 809625 ± 248795 613250 ± 246717 1.32 0.135 
GCA 1135000 ± 280587 846375 ± 514960 1.31 0.288 
RBA 938125 ± 587866 1475000 ± 841963 1.57 0.164 
GLB 230375 ± 52312 417875 ± 307338 1.81 0.130 
CLA 607500 ± 636633 540125 ± 295695 1.12 0.791 
RBD 300875 ± 111831 829333 ± 210599 2.76 <0.001 
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Table C2.5 Details of the mean Na+ K- qRT-PCR assays, fold change and p-value 
for initial and final points for 13 sites sampled in 2016. 

Site Initial Copy number 
(Mean) 

Final Copy Number 
(Mean) 

Fold 
change 

Significant 
(p<0.05) 

GLA 1137000 ± 341164 476587 ± 197507 2.40 <0.001 
GLB 1148000 ± 414213 547688 ± 205257 2.10 <0.001 
ORA 1038000 ± 322637 618688 ± 137320 1.68 <0.001 
ORB 732563 ± 462127 691750 ± 199407 1.63 0.749 
ORE 535375 ± 167498 449125 ± 191111 1.20 0.185 
MIN 1373000 ± 246014 673000 ± 138819 2.04 <0.001 
LS 736938 ± 137903 1128000 ± 201630 1.53 <0.001 
RBA 328938 ± 120884 875000 ± 168491 2.66 <0.001 
RBB 426636 ± 117626 553571 ± 106833 1.30 0.015 
RBC 454000 ± 111541 874875 ± 314199 1.92 <0.001 
LD 1264000 ± 337435 794188 ± 156557 1.59 <0.001 
GIR 775250 ± 205355 515533 ± 133851 1.50 <0.001 
GCA 935125 ± 296623 585375 ± 154943 1.60 0.005 
 

Table C2.6 Details of the mean Na+ K- qRT-PCR assays, fold change and p-value 
for initial and final points for 9 sites sampled in 2017. 

Site Initial copy number 
(Mean) 

Final copy number 
(Mean) 

Fold 
change 

Significant 
(p<0.05) 

LD 544125 ± 119475 852188 ± 148516 1.57 <0.001 
ORA 425467 ± 71487 929813 ± 259999 2.19 <0.001 
GLA 895375 ± 231684 812867 ± 169952 1.10 0.266 
GLB 400938 ± 83463 641063 ± 152740 1.59 <0.001 
GCA 474938 ± 131467 800438 ± 145754 1.68 <0.001 
RBA 847500 ± 195862 945214 ± 132438 1.11 0.213 
RBB 483357 ± 166367 657063 ± 147710 1.36 0.006 
KLM 523462 ± 243882 686077 ± 169909 1.31 0.062 
MIN 690563 ± 109574 525688 ± 204994 1.31 0.009 
 

Table C2.7 Details of the mean NKA activity assays, p-value and significance 
(yes/no) for initial against mid and mid against final points for 8 sites sampled in 
2015 

Site Initial vs Mid Mid vs Final 
 Significance p-value Significance p-value 

GLA No 0.663 No 0.966 
ORA Yes 0.046 No 0.723 
ORB Yes 0.006 No 0.987 
ORE No 0.162 No 0.978 
BAR No 0.331 No 0.09 
LD Yes <0.001 Yes 0.01 

GCA No 0.550 No 0.870 
MIN Yes 0.001 Yes 0.040 
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Table C2.8 Details of the mean NKA activity assays, p-value and significance 
(yes/no) for initial against mid and mid against final points for 6 sites sampled in 
2016 

Site Initial vs Mid Mid vs Final 
 Significance p-value Significance p-value 

ORA Yes 0.046 No 0.723 
GLA No 0.663 No 0.966 
MIN Yes <0.001 Yes 0.040 
LD Yes <0.001 Yes 0.010 

GCA No 0.555 No 0.874 
RBB Yes <0.001 No 0.866 

 

Table C2.9 Details of the mean NKA activity assays, p-value and significance 
(yes/no) for initial against mid and mid against final points for 4 sites sampled in 
2017 

Site Initial vs Mid Mid vs Final 
 Significance p-value Significance p-value 

ORM No 0.27 Yes 0.018 
GLB Yes <0.001 No 0.997 
GCA No 0.443 No 0.095 
RBA Yes 0.037 Yes 0.034 

 

Table C2.10 Details of the mean Na+ K- qRT-PCR assays, p-value and significance 
(yes/no) for initial against mid and mid against final points for 8 sites sampled in 
2015 

Site Initial vs Mid Mid vs Final 
 Significance p-value Significance p-value 

GLA No 0.096 No 0.058 
ORA No 0.443 Yes 0.042 
ORB Yes 0.043 No 0.733 
ORE No 0.539 No 0.338 
BAR Yes <0.001 No 0.788 
LD Yes <0.001 No 0.999 

GCA Yes 0.028 No 0.403 
MIN Yes 0.001 Yes 0.040 

 

Table C2.11 Details of the mean Na+ K- qRT-PCR assays, p-value and significance 
(yes/no) for initial against mid and mid against final points for 6 sites sampled in 
2016 

Site Initial vs Mid Mid vs Final 
 Significance p-value Significance p-value 

ORA Yes 0.011 No 0.455 
GLA Yes <0.001 No 0.979 
MIN Yes <0.001 No 0.860 
LD Yes <0.001 No 0.081 

GCA No 0.311 No 0.176 
RBB Yes 0.027 Yes <0.001 
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Table C2.12 Details of the mean Na+ K- qRT-PCR assays, p-value and significance 
(yes/no) for initial against mid and mid against final points for 4 sites sampled in 
2017 

Site Initial vs Mid Mid vs Final 
 Significance p-value Significance p-value 

ORM No 0.530 Yes <0.001 
GLB Yes <0.001 No 0.994 
GCA Yes <0.001 No 0.209 
RBA No 0.421 Yes 0.017 
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Table C2.13 Details of the start and sea transfer dates, averge size and k-factor of 
the fish during the Supersmolt® feeding regime at all sites over the 3-year testing 
period. *Degree days (dd) for sea transfer are only recorded for sites Russel burn 
and Geocrab due to no onsite temperature data availability from all other sites. 

Site 

 

Year Supers
molt 
feed 
(SS) 
start 
date 

Avg size SS feed 
start (cm) 

Avg size SS 
feed end 
(cm) 

K-Factor 
(range) 

Sea 
transfer 
date and 
degree 
days (dd)* 

Russel Burn A 2015 28/07/15 13.73 ± 0.67 15.65 ± 0.87 1.29 – 1.42 25/08/15 
359dd 

2016 22/07/16 14.38 ± 1.07 16.86 ± 1.20 1.29 – 1.38 16/08/16 
371dd 

2017 26/07/17 15.96 ± 0.96 17.86 ± 1.07 1.23 – 1.40 22/08/17 
392dd 

Russel Burn B 2015 28/07/15 14.36 ± 1.04 15.78 ± 0.97 1.31 – 1.38 25/08/15 
359dd 

2016 28/07/16 15.14 ± 1.07 16.03 ± 0.83 1.18 – 1.47 23/08/16 
366dd 

2017 02/08/17 16.14 ± 0.85 19.49 ± 1.24 1.17 – 1.39 29/08/17 
388dd 

Russel Burn C 2016 28/07/16 14.74 ± 1.22 16.18 ± 1.04 1.17 – 1.40 31/08/16 
504dd 

Russel Burn D 2015 06/08/15 14.08 ± 0.74 15.66 ± 0.98 1.23 – 1.42 01/09/15 
328dd 

Ormsary A 2015 07/08/15 15.54 ±1.24 18.98 ± 1.24 1.22 - 1.35 02/09/15 

2016 29/07/16 14.75 ± 0.80 17.15 ± 0.88 1.21 – 1.26 05/09/16 

2017 21/08/17 15.72 ± 1.05 18.55 ± 1.56 1.16 – 1.27 19/09/17 

Ormsary B 2015 14/08/15 15.08 ± 0.76 16.93 ± 1.36 1.16 – 1.27 07/09/15 

2016 29/07/16 14.66 ± 0.69 18.24 ± 1.86 1.23 – 1.31 05/09/16 

Ormsary E 2015 15/09/15 15.83 ± 0.91 17.66 ± 0.88 1.21 – 1.25 07/10/15 

2016 09/08/16 13.72 ± 1.16 18.15 ± 1.08 1.2 – 1.31 22/09/16 

Geocrab A 2015 27/07/15 14.01 ±- 0.69 17.15 ± 0.76 1.24 – 1.29 26/08/15 
463dd 
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2016 04/07/16 14.24 ± 0.44 17.90 ± 1.19 1.11 – 1.36 15/08/16 
706dd 

2017 19/07/17 15.95 ± 0.96 17.33 ± 0.75 1.22 – 1.28 09/08/17 
395dd 

Geocrab B 2015 27/07/15 13.05 ± 0.48 16.97 ± 1.05 1.18 – 1.31 03/09/15 
576.5dd 

Gairloch A 2015 22/09/15 15.96 ± 0.92 17.83 ± 1.34 1.20 – 1.23 21/10/15 

2016 03/08/16 15.11 ± 0.88 17.56 ± 1.62 1.20 – 1.30 12/09/16 

2017 27/07/17 14.85 ± 0.68 19.07 ± 0.83 1.15 – 1.31 19/09/17 

Gairloch B 2015 22/09/15 15.86 ± 1.06 17.40 ± 1.06 1.21 – 1.31 29/10/15 

2016 17/08/16 14.19 ± 0.77 16.27 ± 0.89 1.21 – 1.30 19/09/16 

2017 16/08/17 15.01 ± 0.99 18.30 ± 1.2 1.13 – 1.27 25/09/17 

Loch Damph 2015 09/09/15 17.04 ± 0.87 19.31 ± 1 1.07 – 1.2 30/09/15 

2016 02/09/16 16.24 ± 0.96 19.20 ± 0.9 1.17 – 1.19 21/09/16 

2017 05/09/17 17.26 ± 1.12 17.69 ± 1.35 1.13 – 1.26 18/09/17 

Loch Shin 2016 02/08/16 17.01 ± 0.98 18.28 ± 1.26 1.19 – 1.28 24/08/16 

Barvas 2015 16/09/15 16.55 ± 1.4 18.98 ± 0.99 1.15 – 1.21 22/10/15 

Girlsta 2015 26/08/15 16.78 ± 1.52 20.9 ± 1.84 1.12 – 1.24 20/10/15 

2016 30/08/16 19.06 ± 1.29 21.38 ± 1.35 1.15 – 1.28 28/09/16 

Mingarry 2015 02/09/15 15.98 ± 1.16 19.45 ± 1.26 1.13 – 1.21 08/10/15 

2016 31/08/16 16.1 ± 1.23 19.55 ± 1.18 1.19 – 1.24 06/10/16 

2017 14/09/17 18.08 ± 1.28 19.35 ± 0.92 1.19 – 1.21 04/10/17 

Clachbreac 2015 07/08/15 16.1 ± 1.19 18.92 ± 1.18 1.11 – 1.23 14/09/15 

Kinlochmoid-

art 

2017 24/08/17 16.68 ± 1.13 19.29 ± 1.00 0.95 – 1.07 29/09/17 
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Chapter 3 
Figure C3.1 Agarose gel results showing the restriction fragment polymorphism of 
digested and undigested SAV, PRV and PMCV plasmids. Digested plasmids 
showed the expected target bands of 550 bp PRV (green circle), 350 bp PMCV 
(yellow circle) and 120 bp SAV (red circle) and the respective plasmid vector. 
Undigested plasmids (columns 1, 3 and 5) only the undigested plasmid. A 10 kb 
ladder (0.1µg/µl) was used for measurement. 
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Chapter 4 
	

Figure C4.1 Layout of erythrocyte infection assay for ISAV and SAV infection at 3 
MOIs (10, 1 and 0.1) 

Figure C4.2 Layout of erythrocyte infection assay for Poly I:C stimulated wells.	
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