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Abstract

Ship detection is an important topic in remote sensing and Synthetic Aperture Radar has a valuable contribution, allowing detection

at night time and with almost any weather conditions. Additionally, polarimetry can play a significant role considering its capability

to discriminate between different targets. Recently, a new ship detector exploiting polarimetric information was developed, namely the

Geometrical Perturbation Polarimetric Notch Filter (GP-PNF).

This work is focused on devising two statistical tests for the GP-PNF. The latter allow an automatic and adaptive selection of the

detector threshold. Initially, the probability density function (pdf) of the detector is analytically derived. Finally, the Neyman-Pearson

(NP) lemma is exploited to set the threshold calculating probabilities using the clutter pdf (i.e. a Constant False Alarm Rate, CFAR) and a

likelihood ratio (LR).

The goodness of fit of the clutter pdf is tested with four real SAR datasets acquired by the RADARSAT-2 and the TanDEM-X

satellites. The former images are quad-polarimetric, while the latter are dual-polarimetric HH/VV. The data are accompanied by the

Automatic Identification System (AIS) location of vessels, which facilitates the validation of the detection masks. It can be observed that

the pdf’s fit the data histograms and they pass the two sample Kolmogorov-Smirnov and χ2 tests.
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I. INTRODUCTION1

Synthetic Aperture Radar (SAR) allows to measure the reflectivity maps at microwave frequencies of an2

observed scene. The strategic advantage of SAR in ship detection is the possibility to monitor at night time,3

under cloud cover and with meters resolution independently on the distance. For this reason, SAR was largely4

exploited in the past decades to monitor ships from satellites [1–14]. In SAR images, the main feature of ships5

is a relatively large backscattering signal, which is usually brighter in comparison with the sea background.6
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This led to the idea of separating vessels from the background performing a statistical test on the intensity of7

the sea clutter. Once the pdf of the clutter intensity is known, the problem of selecting the detector threshold8

can be solved using the Neyman-Pearson lemma on the probability of detection (Pd) or false alarms (Pf ) [15].9

Unfortunately, the statistical distribution of ships is complicated to derive and therefore the tests are generally10

based only on Pf . In particular, the threshold is selected in order to keep Pf constant (constant false alarm11

rate, CFAR) [1–4, 7, 10, 12, 16, 17]. When the sea statistics are not perfectly fitting the data, the test can still be12

performed but it will not assure a constant Pf .13

The detector exploited in this paper makes use of more polarimetric channels that can be acquired by all14

the recent SAR satellites. Regarding the benefits of polarimetry in the context of ship detection, it can readily15

be observed that the simple exploitation of the cross-polarized channel (HV) rather than the co-polarized ones16

(HH or VV) may increase substantially the detection performance [1, 18]. Several detectors were proposed17

in the recent years. Some of them exploit the different polarimetric channels as independent measurements18

of the same scene [4, 19, 20]. Another class of polarimetric detectors adds some physical rationale exploiting19

knowledge regarding the scattering. The idea behind these methodologies is that the differences between sea20

clutter and targets can be magnified if some specific aspects of the polarimetric return are observed. In this21

second category, there are algorithms with a detection role based on some rationale linked to the physical22

behavior of the sea clutter [21–25]. For instance, some algorithms rely on the assumption that the sea behaves23

as a Bragg surface [26–28]. The ship detector analyzed in this paper belongs to this physical category and is24

based on the assumption that the sea clutter (locally) presents an homogeneous polarimetric behavior. This is25

the Geometrical Perturbation - Polarimetric Notch Filter (GP-PNF) [29–32].26

A very brief introduction to polarimetry is provided here with the mere purpose to show the tools that will27

be exploited in the following. A single target is defined as a deterministic target which does not change its po-28

larimetric behavior in time/space. Therefore, it can be represented by a single scattering matrix or equivalently29

a single scattering vector [26, 33]:30

kL = [HH,HV, V H, V V ]
T
, (1)

where T stands for Transpose, H and V are for linear horizontal and vertical and the repeated letter is31

for transmitter-receiver. The previous is obtained using the Lexicographic basis set and HH , HV , V H32



PUBLISHED IN IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 8, AUG. 2015 3

and V V are the scattering channels. In the case of a reciprocal medium and monostatic sensor, HV =33

V H and k is three-dimensional complex (i.e. kP ∈ C3) [26]. Another largely exploited basis set to con-34

vert the scattering matrix into a scattering vector is the Pauli basis. In the reciprocal case, this is kP =35

1/
√

2 [HH + V V,HH − V V, 2HV ]
T . The targets observed by a SAR system are often distributed over an36

area larger than the resolution cell and composed by different objects. For this reason, each pixel of such37

distributed targets may have a specific polarimetric behavior. Such targets take names of partial targets and38

they can be characterized exploiting the second order statistics [26]. In this context, a target covariance matrix39

can be estimated as [C] = 〈k k∗T 〉 , where 〈.〉 is used here as the finite averaging operator and ∗ stands for40

Conjugate. In case that the Pauli basis is exploited, the covariance matrix takes the name of coherency matrix.41

II. GEOMETRICAL PERTURBATION - POLARIMETRIC NOTCH FILTER42

The main idea of the GP-PNF is that the polarimetric responses of sea clutter and ships are different. The43

GP-PNF is based on the Geometrical Perturbation Filter [34–37]. The latter considers a perturbed version of44

the target to be detected and then it checks for the coherence between original and perturbed version in the data.45

The reader is redirected to [34, 35] for more information regarding the GPF.46

A feature partial scattering vector is introduced [35]:

t =[t1, t2, t3, t4, t5, t6]T = (2)

=[
〈
|k1|2

〉
,
〈
|k2|2

〉
,
〈
|k3|2

〉
,
〈
k∗T1 k2

〉
,
〈
k∗T1 k3

〉
,
〈
k∗T2 k3

〉
]T .

The vector containing the second order statistics of the sea clutter is defined as tsea [29, 30]. The sea47

clutter can be completely characterized by a vector in C6 (in case quad-pol data are available), while, vessels48

can have a large variety of polarimetric signatures depending on orientation, material and structure of the49

vessel. Therefore, it is not possible to characterize each possible polarimetric signature of ships with a single50

vector. The GP-PNF approach is to focus on targets that do not behave as the sea. For this reason, the GP-51

PNF is a heterogeneity detector, that is focused on targets which present polarimetric heterogeneity in the 6D52

complex subset. It is interesting to notice, that such strategy allows to detect targets with backscattering power53

(i.e. Trace of Covariance matrix) comparable to the one of the sea as long as they appear polarimetrically54

different. Geometrically, this means that it is focused on targets that live in the complement orthogonal subset55

to the sea vector (5 dimensional complex). Please note, such strategy has the advantage of not being related56
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to any assumption regarding the specific polarimetric signature of the sea, as long as this is stable in the57

training window exploited. The length of the vector (hereafter defined as power) representing the target in the58

complementary subset can be calculated as: Pt = t∗T t− |t∗T t̂sea|2 = Ptot − Psea. The final expression is:59

γn =
1√√√√√

1 +
RedR

t∗T t− |t∗T t̂sea|2

> T. (3)

where γn is the GP-PNF distance (i.e. the detector) andRedR and T are two detector parameters. More details60

and justifications regarding the mathematical derivations can be found in [30]. From an implementation point61

of view, the vector t is estimated with a boxcar filter with a small window (e.g. 11x11 pixels), while tsea is62

computed with a boxcar filter using a larger window (e.g. 51x51 pixels). It is important to keep in mind that63

this filtering methodology could be optimized in the future. For instance, for the smaller window an adaptive64

filtering could be employed that takes into account the heterogeneity (or non-stationarity) of the target observed65

[38]. In such a way, the polarimetric characteristic of each pixel of a vessel will be preserved providing a better66

discrimination with respect to the sea background. On the other hand, a non-local filter [39] could be used67

instead than the large window, producing better estimates of the clutter background. We leave all these analysis68

for future work.69

Previously, the detector parameters were fixed following an asymptotic approach (〈[C]sea〉 = E [[C]sea]).70

However, Monte Carlo simulations were performed in [30], showing that the estimation of the local sea clutter71

power can improve the performances. Aim of next section is to derive the statistical distribution of γn for the72

sea clutter, in order to have a more rigorous test and to take into account the variability of the sea clutter.73

III. STATISTICAL CHARACTERIZATION74

The aim of this section is to derive an analytical expression for the probability density function (pdf) of γn75

(i.e. the output of the detector).76

Before to start the derivation of the pdf, the test hypotheses are defined:

H0 :sea clutter (4)

H1 :vessel

Initially, the conditional pdf of γn in the hypothesisH0 (only presence of clutter) is derived. This can be written77
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as fΓn
(γn|H0) and represents the likelihood of an output γn given that the hypothesis H0 is true. The problem78

is tackled decomposing the derivation in two parts. In the first, the attention is focused on finding the pdf of the79

random variable (r.v.) that is generating γn. Secondly, a transformation of random variables can be applied to80

derive the pdf of γn [40]. In this context, a possible candidate to be a generator of γn is the vector t, since the81

pdf’s of its components are well known in the hypothesis of complex Gaussian Single Look Complex (SLC)82

pixels [33]. However, magnitudes and inner products of t vectors are unknown. Besides, it would be beneficial83

to have a single r.v. generating γn, since this assures a much easier transformation. After an analysis of the84

final formula of γn, it appears that a good candidate to be the generator of γn is Pt (i.e. the target power).85

A. Distribution of Pt86

Pt is the squared norm of the vector in the subset complementary to the sea vector (i.e. the target subset).87

In the H0 hypothesis, there is absence of any target and therefore the differences between tsea (extracted in88

the training window) and t (extracted in the test window) are only due to estimation errors (e.g. due to finite89

number of samples). The training window contains a much larger amount of samples than the test window.90

Therefore, the underlying signature of the sea can be extracted with a much smaller estimation error in the91

training window. More details regarding training and test windows in practical scenarios are provided in a92

following section. The target vector in the complementary subset can be calculated as tt = t−
(
t̂
∗T
seat

)
t̂sea.93

The χ2 theorem states that, given a Gaussian r.v. x, the test
∑n
i=1

(xi−E[xi])
2

V AR[xi]
(with n number of realizations94

in the considered table, E[.] is the expected value and V AR[.] is the expected variance) has a χ2 distribution.95

In order to be able to use such theorem two assumptions have to be made:96

1. The expected value can be substituted by the components of tsea estimated on large windows. Please note,97

this assumption requires that the number of pixels used to derive tsea is big enough to have a very small98

variance.99

2.
(
t̂
∗T
seat

)
t̂sea ≈ tsea: This means that the sea vector in the training window is not largely different (in100

average) to the test vector tsea ≈ t. This assumption is true as long as the sea is homogeneous and t is obtained101

performing some averaging. Such assumption is expected from a detector based on second order statistics102

(i.e. the latter cannot be extracted with a single SLC pixel). Some analysis of the minimum number of pixels103

required is investigated in the section dedicated to the Monte Carlo simulation.104
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Following the two previous assumptions, the expression tt = t−
(
t̂
∗T
seat

)
t̂sea ≈ t− tsea can be written. The105

power of such vector can be considered: ‖tt‖2 = ‖t−tsea‖2. The squared norm can be decomposed as the sum106

of the components of the vectors t and tsea (6 dimensional in quad-polarimetry):‖tt‖2 =
∑6
j=1 |tj − tjsea|2.107

In order to obtain the same formulation of the χ2 theorem the denominator should contain the variances of108

each component. Dividing both expressions by the variance of the first component (V AR[t1]) it can be ob-109

tained: ‖tt‖
2

V AR[t1] =
∑6
j=1

‖tj−tjSea‖
2

V AR[t1] . Subsequently, a change of basis can be considered that makes equal the110

variances of each of the components. By definition the length of a vector is invariant to change of basis therefore111

such operation does not modify the value of Pt. Moreover, such operation can be always accomplished. A way112

to proceed may be to perform a whitening of the tsea components. Interestingly, such operation is not necessary113

from a practical point of view, since the length of the vector is not influenced by such transformation and we are114

only interested in the length of the vector. Therefore, in the basis where V AR[ti] = V AR[tj ], ∀i, j = 1, ..., 6,115

the previous expression will become:116

‖tt‖2

V AR[t1]
=

6∑
j=1

‖tj − tjSea‖2

V AR[tj ]
. (5)

The final step in order to obtain a χ2 distributed is that the components of the target vector are Gaussian117

distributed. The vector components are estimated performing some average, however, the dimension of the118

test windows may be not large enough for the theorem of the central limit to be valid. Fortunately, we are not119

interested in the single component, but in their sum after the change of bases (which is the operation that would120

allow the χ2 theorem to be applicable). After the latter operation, the elements in Eq. 5 are linear combination121

of 6 r.v. with statistics similar (but not equal) to Gaussian. Such operation can increase up to 6 times the number122

of looks considered. This should make the central limit more valid also for a smaller number of initial average.123

In the hypothesi of homogeneous clutter, it is possible to state that the estimation errors do not have a124

preferential polarimetric behavior, (i.e. they are polarimetrically white). This is because the sample mean125

estimator is the maximum likelihood estimator for the mean and it is unbiased. Therefore, under the previous126

hypothesis, the components of tt are Gaussian zero mean. The actual number of samples necessary to have an127

adequate approximation of a Gaussian is investigated in the following with Monte Carlo simulations.128

After all these considerations, Eq. 5 has a χ2 distribution. The following step consists in multiplying both129

parts by V AR[t1]. The result of scaling a χ2 distribution is a Γ distribution, independently on the scaling factor130
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[40]. Therefore, the target power should be Γ distributed.131

It is possible to conclude that ‖tt‖2 has a Γ distribution, under the assumption that the averaging windows are132

big enough. Interestingly, Pt has the same statistical behavior as the power of a SAR image, which is coherent133

with the idea that such parameter represents the power of a target in case of perfectly homogeneous distribution.134

It has also to be noticed, that for the sea clutter, the Γ distribution is not the most adequate statistical model135

[41]. Here, we only want to point out that the distribution of Pt resembles the one of an intensity image in case136

of homogeneous target.137

B. Distribution of γn138

The theorem of transformation of random variables is employed to transform the pdf of Pt into the one of139

γn (the theorem can be interpreted as a change of variables for an integral) [40]. The transformation is the140

mathematical expression of the detector in Eq.3: γn(pt). The theorem states that fΓn
(γn) = fPt

(p̂t)
∂pt(γn)
∂γn

,141

where p̂t is the solution of γn(pt). Additionally, the pdf is only valid where the solution of γn exists.142

The mathematical derivation is presented in the Appendix, here only the final expression is provided:

fΓn
(γn) =

2

Γ(N)

(
N

µ

)N (
RedR

γ2
n

1− γ2
n

)N+1
2

RedR
γ−3
n × (6)

×exp
[
−RedRN

µ

γ2
n

1− γ2
n

]
rect

[
γn −

1

2

]
,

where N is the equivalent number of looks, µ = E[Pt] and Γ[.] is the Gamma function. The previous parame-143

ters can be estimated as N = 〈Pt〉2
(Pt−〈Pt〉)2 and µ = 〈Pt〉 in the training window.144

In order to have some insight on the dependency of the pdf with respect to its parameters, Figure 1 shows the145

analytic pdf varying RedR, N and Pt. The first plot is obtained fixing N = 1 and RedR = 10−3. These are146

common values in real scenarios. The plots shows that if the power assigned to the target increases than γn has147

higher realizations. This means that the presence of targets or higher estimation errors produce higher values of148

the detector. The second test is obtained varying the value of RedR. This dependency leads to the idea that the149

RedR could be adjusted depending on the value of Pt in the H0 hypothesi in order to have a distribution with150

a mean value relatively small (e.g. 0.1), in order to facilitate the test when executed solving numerically the151

integrals. Theoretically, the selection of the threshold based on a statistical test is not influenced by the actual152

value or RedR, but since γn is contained between zero and one, it may be computationally disadvantageous153
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(a) pdf varying Pt (b) pdf varying RedR

(c) pdf varying N (d) test of consistency

Fig. 1. Plots of analytical pdf’s. (a) pdf with Pt = [10−6, 10−5, 10−4, 10−3, 10−2], N = 1 and RedR = 10−3; (b) pdf with Pt =

10−4, N = 1 and RedR = [10−5, 10−4, 10−3, 10−2, 10−1]; (c) pdf with Pt = 10−4, N = [1, 2, 3, 4, 5] and RedR = 10−3;

(d) test of consistency with green line: RedR = 10, Pt = 1; black cross: RedR = 1, Pt = 0.1; red line: RedR = 100, Pt = 1;

yellow crosses: RedR = 1, Pt = 0.01; N = 1 for all the curves.

to have a threshold very close to 1, leading to higher quantization errors. The dependency on N shows that154

increasing N the variance of γn reduces as expected. Moreover, the mean appears to be unchanged.155

In order to test the consistency of the pdf mathematical expression, Pt and RedR are varied in order to156

obtain the same mean value of γn. Four curves are plotted using the couples of Pt and RedR parameters157

C1 = [1, 10], C2 = [1, 100], C3 = [0.1, 1], C4 = [0.01, 1]. If the transformation is mathematically correct158

these set of values should couple in only two curves. The plots show that this is correct.159

C. Likelihood ratio160

The presence of some a priori information on the target of interest can improve the detection. Unfortunately,161

it is not easy to find an exact statistical distribution for vessels (hypothesis H1). For this reason, only a very162
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general assumption is adopted here. This is that any vessel of interest has a power Pt that is higher than a163

minimum value, empirically found to be related to image artifacts: Pt > Pmint . Clearly, this value is supposed164

to be dependent on the sensor and with a larger dataset it could be refined.165

Pmint corresponds to a minimum value for the GP-PNF: γminn =
(

1 + RedR
Pmin

t

)−0.5

. The vessels pdf consid-166

ers a uniform distribution between γminn and 1: rect
[
γn−(γmin

n +1)/2
1−γmin

n

]
.167

The likelihood ratio (LR) can be expressed as:

Λ =
fΓ(γn|H1)

fΓ(γn|H0)
= (7)

=
rect

[
γn−(γmin

n +1)/2
1−γmin

n

]
2

Γ(N)

(
N
µ

)N (
RedR

γ2
n

1−γ2
n

)N+1
2

RedR γ−3
n exp

[
−RedRN

µ
γ2
n

1−γ2
n

]
rect

[
γn − 1

2

]. (8)

With such formulation, any value lower than γminn will not provide any contribution to the Neyman-Pearson168

test (since it is multiplied by zero). On the other hand, the inverse of the clutter pdf will keep the Λ low when169

the probability of having clutter is high.170

IV. STATISTICAL TESTS171

In this section two Neyman-Pearson tests are devised based on the expression of the clutter pdf and the LR.172

A. Constant False Alarm Rate, CFAR173

This test sets the threshold based on the clutter pdf in order to keep Pf constant. Probabilities can be174

calculated as integrals of pdf’s therefore, in the hypothesis H0, Pf can be calculated as:175

Pf =

∫ 1

Tn

fΓ(γn|H0)dγn, (9)

where Tn is the threshold. Unfortunately, it was not possible to find an analytical solution for Pf , therefore the176

integrals are performed numerically exploiting cumulative sums.177

B. Neyman-Pearson for likelihood ratio178

This test sets the threshold fixing a size of the test α based on probabilities of LR. This is done inverting the179

integral:180

α = P (ΛΓ ≥ Tn|H1) =

∫ 1

Tn

ΛΓ(γn|H0)dγn. (10)

The higher is the probability, the more the test increases the Pd.181
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Fig. 2. Flow chart of the GP-PNF detector.

C. Local estimation with guard windows182

In order to deal with a non-stationary sea clutter, the distribution parameters are estimated locally. In this183

context, bright vessels may bias the estimator providing thresholds much higher than necessary. Therefore,184

guard windows are exploited: the statistics are extracted in rings around a guard area (where pixels are rejected).185

The test area is inside the guard area. More details on the use of guard windows can be found in the literature186

[1, 15, 42].187

To conclude this theoretical section, Figure 2 presents the flow chart of the GP-PNF including the statistical188

test.189

V. ANALYSIS OF SIMULATED DATA190

Before to start testing the distributions on real data, it is interesting to understand if they are valid under ideal191

conditions. In order to achieve this, Monte Carlo simulations are performed.192

A. Monte Carlo simulation193

The simulations model the scattering vectors as 3 dimensional vectors with zero mean complex Gaussian194

components. Additionally, the scattering vector is colored with the polarimetric signature expected from the195

sea. This is obtained following the procedure described in [33, 38]: ksea = [C]
1
2
seak, where [C]sea is a covari-196

ance matrix of the sea and k is a standard complex Gaussian 3D vector. The polarimetric signature of the sea197

[C]sea is extracted from one the RADARSAT2 datasets introduced in the next section.198

The homogeneity of the clutter is assured by the use of the same covariance matrix for each of the realiza-199

tions. One dataset of 1000x1000 pixels is generated.200



PUBLISHED IN IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 8, AUG. 2015 11

B. Test of fit for pdf201

In this section, the derived distributions are fitted to the simulated data. The GP-PNF is executed employing202

a small window of 11x11 pixels (for estimating t) and a large window of 51x51 pixels (for estimating tsea).203

Figure 3.a shows the data histograms of real and imaginary parts of the first three components of the target204

vector tt (circles) and the fit with Gaussian distributions (solid lines). The color coding of the plot is the205

following: Red is Re{tt1}, Green is Im{tt1}, Black is Re{tt2}, Blue is Im{tt2}, Yellow is Re{tt3} and206

Magenta is Im{tt3}, where the vector in the target space is defined as tt = [tt1, tt2, tt3, tt4, tt5, tt6]T ,Re stands207

for real part and Im for imaginary part. The basis used to represent tt is selected pseudo-randomly, therefore208

the three variances of the components are not identical. On the other hand, the real and imaginary part for each209

component overlap almost completely (please note, when a color is not visible is because it overlaps with the210

corresponding real or imaginary part). It is possible to observe that the fitting with a Gaussian pdf is excellent.211

Figure 3.b presents the data histograms of the target power Pt (circles) and the fit with a Γ distribution (solid212

line). Again the fitting is good (except for the very first histogram bin). The final test is with γn. Again the fit213

seems excellent. It appears that all the exploited pdf are able to capture properly the data distribution for an ideal214

homogeneous sea clutter. In order to have a more quantitative analysis, two methodologies commonly used for215

testing the goodness-of-fit are exploited. These are the two sample Kolmogorov-Smirnov and the χ2 tests. All216

the pdf’s pass both the tests exploiting 100 test samples. It is interesting to evaluate which is the minimum217

number of samples that has to be used to obtain Gaussian distributions. Figure 4 shows the components of218

tt when 5x5, 3x3 and 1x1 windows are used for the average. It is possible to observe that the 5x5 window219

provides an excellent estimation. The plots for Pt and γn are not provided for the sake of brevity, but they220

show good agreement. The estimation with 3x3 is not perfect and also Pt and γn show some divergence from221

the expected pdf (i.e. the estimated pdf has a larger variance than the date histogram). Nevertheless, such222

small windows may still be used in practical exercises provided that it is clear that the test is not a rigorous223

CFAR. For this reason, we would recommend to use the test with at least nine equivalent looks. Absence of224

average provides a rather poor result and the pdf has a much larger variance compared to the data histogram.225

The authors would therefore discourage from applying the test without any average for γn.226

Finally, the CFAR test on fΓ(γn|H0) and the NP test on the LR are applied to evaluate the detection capabil-227
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(a) tt components (b) Pt (c) γn

Fig. 3. Fitting of derived pdf with Monte Carlo simulations. Circles: data histogram; Solid lines: fitted pdf’s. (a) Real and Imaginary parts

of tt components and Gaussian; Red: Re{tt1}; Green: Im{tt1}; Black: Re{tt2}; Blue: Im{tt2}; Yellow: Re{tt3}; Magenta:

Im{tt3}; The other components are omitted. (b) Pt and Γ distribution; (c) GP-PNF and derived pdf. 1000x1000 pixels.

(a) 5x5 (b) 3x3 (c) No average

Fig. 4. Fitting of derived pdf with Monte Carlo simulations: Real and Imaginary parts of tt components and Gaussian. (a) 5x5 pixels

average for test area; (b) 3x3 pixels average for test area; (c) No average for test area. 1000x1000 pixels.

ities. No detections could be identified in the entire simulated scene. The detection masks are not shown since228

they are black everywhere.229

Considering that the fit of the distribution appears to be good in the ideal case, the more interesting and230

challenging scenario of real data is investigated in the following sections.231

VI. REAL DATA ANALYSIS232

A. Presentation of the data233

In order to test the fitting on real data several datasets, quad and dual polarimetric are employed. This allows234

the investigation of diversity in frequency and resolution. During the data acquisitions some validation data235

were acquired collecting the Automatic Identification System (AIS) positions of vessels, that were used to236

identify eventual false alarms and missing detections.237
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TABLE I

DETAILS ON FINE QUAD-POL RADARSAT-2 DATA. TIME IS IN UTC.

Date Location Beam
Incidence

angle
Ground

range res. Wind speed
Ships

with AIS

29/11/2013
(17:30) North Sea FQ12 ∼ 320 10.0 m to 9.5 m 32 knots (NW) 11

09/02/2014
(17:30) North Sea FQ15 ∼ 350 9.2 m to 8.8 m 35 knots (SW) 20

A.1 RADARSAT-2238

Two Fine Quad-polarimetric images were acquired during winter 2013/2014 in the North Sea. The data239

were collected under the SOAR project EI-5145. The central frequency is C-band (5.4 GHz), while the240

chirp bandwidth is 30 GHz. The scenes are in Single Look Complex (SLC) format, covering approximately241

25x25 km, with a slant range resolution of 5.2 m and an azimuth resolution of 7.6 m. The image Noise242

Equivalent Sigma Zero (NESZ) is around −36 dB. More details about the acquisitions are provided in Table I.243

In total, 31 validated ships were observed with a variety of dimensions (ranging between 30 m to 200 m in244

length) and typology (e.g. fishing boats, cargos, etc).245

In Figure 5, Pauli RGB color coding images of the two acquisitions are presented. The red is the intensity of246

HH − V V , the blue is HH + V V and the green is HV . In the images, some ships can be identified as bright247

points, while others need some image zoom to be visible. The harsh weather conditions captured by the data248

show a strong sea clutter where several features can be observed. In the images the white rectangles represent249

validated vessels, while the white circle is an azimuth ambiguity. The large red rectangles are the areas used250

for testing the pdf’s fit. In the lower left corner of the 09/02/2014 acquisition a large feature or image artifact251

of unknown origin can be observed (yellow box). The scene was specially selected to observe the capability of252

the local estimator to remove such sea clutter anomaly.253

A.2 TanDEM-X254

In order to test the fit of the pdf’s in X-band and with dual polarimetric data, TanDEM-X images were255

acquired during winter 2012/2013. Two locations in the North Sea close to Aberdeen (Scotland) and Bok-256

nafjorden (Norway) were selected. For all the images, the azimuth resolution is 6.7 m, while the slat range257

resolution is 1.1 m (i.e. the chirp bandwidth is ∼ 150 MHz). The swath width is 15 km and the length of the258
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(a) 29/11/2013 (b) 09/02/2014

Fig. 5. RGB Pauli color composite images. RADARSAT-2, North Sea, Rotterdam. Red: HH − V V ; Green: HV ; Blue: HH + V V .

The two acquisitions shown here correspond to 29/11/2013 and 09/02/2014. The images are visualized in dB, all the colors have the

same normalization that is aimed at enhancing the contrast for sea features. The images are in radar coordinate and they represent areas

on the ground that are approximately 25× 25 km.

TABLE II

DETAILS ON HH/VV TANDEM-X IMAGES EXPLOITED IN THE COMPARISON. TIME IS IN UTC.

Date Location Beam
Incidence

angle
Ground

range res. Wind speed
Ships

with AIS

03/12/2012
(06:33) Aberdeen stripFar008 ∼ 33.50 2.1 m 13 knots (SE) 6+1 buoy

21/12/2012
(06:33) Boknafjorden stripNear008 ∼ 31.90 2.1 m

15 to 23
knots (SE) 7

strip is 50 km. The image Noise Equivalent Sigma Zero (NESZ) should be around −21 dB. Two polarimetric259

channels HH/VV were considered. Table II summarizes further details regarding the acquisitions.260

The analyzed images contain 13 validated vessels and one buoy. The RGB composite image is shown261

in Figure 6. Since quad-polarimetric data are not available a different color coding is exploited: red is the262

intensity of HH − V V , green is the magnitude of the correlation between HH and V V (|〈HH · V V ∗〉|)263

and blue is the intensity of HH + V V . White rectangles and circles represent again vessels and azimuth264

ambiguities respectively. The white diamond in the Aberdeen scene is a buoy 2× 2 meter in dimensions, while265

the diamonds in the Boknafjorden scene are small islands/rocks.266



PUBLISHED IN IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 8, AUG. 2015 15

(a) Aberdeen (03/12/2012) (b) Boknafjorden (21/12/2012)

Fig. 6. RGB Pauli color composite images. TanDEM-X. Red: HH−V V ; Green: |HH ·V V ∗|; Blue: HH+V V . The two acquisitions

shown here correspond to 03/12/2012 (Aberdeen), 21/12/2012 (Boknafjorden). The images are visualized in dB, all the colors have

the same normalization that is aimed at enhancing the contrast for sea features. The images are in radar coordinate and they represent

areas on the ground that are approximately 15x50 km.

A.3 AIS data267

In the four scene exploited, 44 vessels had an operating AIS. Matching the AIS positions with points on268

radar images is not a trivial task. There are several factors that impede an easy matching. Initially, the ship269

GPS position is not updated continuously, but with intervals that can be up to 15min in the areas under analysis.270

In such time gap, the ship can travel significantly. Additionally, a ship moving along the range direction will271

be mislocated in the SAR image. In this analysis, several AIS positioning were recorded starting from 20min272

before and after the actual acquisitions and this time series of positions were used to take into account possible273

delays of the AIS in transmitting the vessel location.274

In the Aberdeen scenes, the most of the vessels are multipurpose vessels, providing services to the oil rigs275

and their length ranges from 75 m and 122 m. Interestingly, in such scene there is also a small buoy (2× 2 m)276

close to the shoreline. In the Boknafjorden dataset, there is a variety of multipurpose and tankers. One of277

the vessels is a standby safety vessel of 47 m. Three vessels are between 50 m and 100 m long and two are278

around 265 m long. In the RADARSAT-2 2013 dataset, the vessels are either oil tankers or general cargo. Two279
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TABLE III

DETECTION PARAMETERS. WINDOWS DIMENSIONS ARE GIVEN IN PIXELS.

Data α Pmint Pf Wsmall Wbig Wguard Wring

RADARSAT-2 0.9 3e− 4 1e− 6 11x11 51x51 51x51 71x71

TerraSAR-X 0.9 3e− 4 1e− 6 33x33 151x151 151x151 201x201

vessels have length less than 100 m, five are between 100 m and 160 m and the last is 230 m. Finally, in the280

RADARSAT-2 2014 scene, the most of the vessels are oil tankers or carriers. Two vessels are less than 100 m,281

six are between 100 m and 150 m, ten are between 150 m and 200 m and the other three are more than 200 m.282

B. GP-PNF results283

In order to gain a better understanding of the detector, Pt and γn are analyzed. Additionally, it is interesting284

to know if γn is able to provide a good visual contrast that may be beneficial in case the detection masks are285

visually inspected by an analyst. The parameters used in all the following analysis are listed in Table III. In the286

table the window sizes are given in pixels. Wsmall is the window used for generating t, while Wbig is used to287

calculate t̂sea. Wguard represents the guard window and Wring expresses how far the training ring area goes288

after the guard window.289

B.1 RADARSAT-2290

The images of Pt and γn are presented in Figure 7 and 8. The GP-PNF employs a test window of 11x11291

pixels and a training window of 51x51 pixels [30]. The value of RedR is equal to 0.1. This value is different292

from the one previously exploited and it was chosen merely because it provides a distribution of γn (for the sea293

clutter) around 0.1.294

As expected, the output of Pt and γn are fairly similar, this is because the two images are completely295

correlated (i.e. they are linked by a deterministic transformation). All the validated vessels can be visually296

identified in the γn images and an eventual manual setting of the threshold seems to be relatively trivial. It can297

be observed that some areas on the sea can have values of Pt as small as −60dB. The fact that Pt is smaller298

than the noise floor is justified by the notch filtering procedure that only considers the component of the target299
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(a) Pt (b) γn

Fig. 7. Pt and γn images. RADARSAT-2, Rotterdam (21/12/2012). (a) Target Power, Pt; (b) GP-PNF γn scaled between 0 and 1.

(a) Pt (b) γn

Fig. 8. Pt and γn images. RADARSAT-2, Rotterdam (09/02/2014). (a) Target Power, Pt; (b) GP-PNF γn scaled between 0 and 1.

orthogonal to the clutter background. It is also clear that Pt could be used alone for producing images with300

enhanced contrast between sea clutter and vessels.301

C. TanDEM-X302

The output of the GP-PNF on dual-polarimetric TanDEM-X data is presented in Figure 9. The images of303

Pt are omitted for the sake of brevity. Several vessels are visible in the Pauli RGB images. The resolution of304

TanDEM-X is higher allowing larger averaging. The GP-PNF exploits 33x33 pixels for the test and 151x151305

pixels for the training. Using large windows without losing any vessels helps removing more speckle and it306

eliminates small heterogeneity and artifacts that may affect the results as false alarms. The RedR used for307
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(a) Aberdeen (b) Boknafjorden

Fig. 9. γn images scaled between 0 and 1. TanDEM-X, (a) Aberdeen (03/12/2012); (b) Boknafjorden (21/12/2012).

such images is 0.001. This is because the clutter background for TanDEM-X is much lower than in the case of308

RADARSAT-2, due to the much higher average exploited. Again the selection of RedR is merely related with309

setting the γn distribution around 0.1.310

D. Test of fit for distributions311

D.1 RADARSAT-2312

The area used to derive the histograms and the distribution parameters are indicated by red rectangles in313

the Pauli RGB images. Such areas were selected since they appear relatively homogeneous, however some314

heterogeneity can still be observed.315

The first test considers the components of the target vector tt. The plots of the real and imaginary parts of316

the first three components of tt in a randomly generated basis are presented in Figure 10.317

Again, circles represent data histograms and solid lines are the fitted Gaussian distributions. It can be ob-318

served that the zero mean Gaussian distribution fits adequately the histograms even though it is possible to319

observe that the theoretical pdf are slightly more disperse than the data. This may be due to the fact that320

the 11x11 pixels considered for average are not independent and therefore they correspond to a much smaller321

average. Also, data heterogeneity may impact the estimation of the distribution parameters.322

In order to check that the number of pixels is the main cause of the difference between histograms and pdf a323

test is performed using 31x31 pixels for t and 151x151pixels for tsea. The results (Figure 11) show that the fit324
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(a) 29/11/2013 (b) 14/02/2014

Fig. 10. Fit of Gaussian distribution with real and imaginary parts of the first three components of tt. RADARSAT-2. Red: Re{tt1};

Green: Im{tt1}; Black: Re{tt2}; Blue: Im{tt2}; Yellow: Re{tt3}; Magenta: Im{tt3}. Boxcar used for test area: 11x11 pixels.

(a) 29/11/2013; (b) 09/02/2014.

(a) 29/11/2013 (b) 14/02/2014

Fig. 11. Fit of Gaussian distribution with real and imaginary parts of the first three components of tt. RADARSAT-2. Red: Re{tt1};

Green: Im{tt1}; Black: Re{tt2}; Blue: Im{tt2}; Yellow: Re{tt3}; Magenta: Im{tt3}. Boxcar used for test area: 31x31 pixels.

(a) 29/11/2013; (b) 09/02/2014.

improves, as for the simulated data.325

Figure 12 and 13 present the normalized histograms of Pt and the fitting with Γ distributions (exploiting326

11x11 and 31x31 boxcar windows respectively).327

The fit of the pdf is visually adequate, but not perfect. In particular, it appears that the peak of the distribution328

is slightly higher, which is indicative that the theoretical pdf’s have a larger variance. This is in line with the329

previous analysis of the target components. Another possible reason for such mismatch is a wrong estimation330

of N . The latter is obtained assuming a homogeneous Gaussian scattering, therefore small heterogeneity in331
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(a) pdf (b) CDF

Fig. 12. Fit of Gamma distribution with Pt. RADARSAT-2, (29/11/2013). (a) Γ pdf; (b) Γ CDF.

(a) pdf (b) CDF

Fig. 13. Fit of Gamma distribution with Pt. RADARSAT-2, (09/02/2014). (a) Γ pdf; (b) Γ CDF.

the data can introduce errors in estimating N which have impact on the pdf variance. To sum the integrals332

numerically, cumulative sums are exploited. For this reason it is interesting to understand the impact of such333

estimation errors on the Cumulative Density Function (CDF). These are plotted in Figure 12 and 13.334

To extract some quantitative results, two goodness-of-fit tests, the Kolmogorov-Smirnov and the χ2 test (with335

50 samples and a size of 0.05) are exploited. The tests were passed for both the histograms.336

Finally, the test of fit for the output of the Notch Filter is investigated. This is the most important analysis,337

since the final statistical test is set on γn. Figure 14 and 15 present the pdf and CDF of γn.338

Interestingly, the distribution appears to have a good fit and the previous problem of larger variance of Pt339

seems not to affect significantly the distribution of γn. As for the previous case, the two goodness-of-fit tests340

were passed.341

As a final remark, a larger variance of the estimated pdf will have the effect to have a CFAR test that is more342
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(a) pdf (b) CDF

Fig. 14. Fit of GP-PNF distribution with γn. RADRASAT-2, (29/11/2013). (a) derived pdf; (b) derived CDF.

(a) pdf (b) CDF

Fig. 15. Fit of GP-PNF distribution with γn. RADARSAT-2, (09/02/2014). (a) derived pdf; (b) derived CDF.

conservative. This means that the threshold will be set higher rather than lower, which provides an actual Pf343

smaller than the selected one. Pf clearly decreases at the expenses of a decrease of Pd as well.344

E. TanDEM-X345

Figure 16, 17 and 18 present the fit of the data histograms with the derived pdf’s. The CDF are omitted for346

the sake of brevity. The fits appear better than with RADARSAT-2 data. This is due to a higher number of347

samples used for the average (allowed by the higher resolution of TanDEM-X).348
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(a) Aberdeen (b) Boknafjorden

Fig. 16. Fit of Gauss distribution with real and imaginary parts of tt components: TanDEM-X. (a) Aberdeen; (b) Boknafjorden.

(a) Aberdeen (b) Boknafjorden

Fig. 17. Fit of Gamma distribution with Pt. TanDEM-X. (a) Aberdeen; (b) Boknafjorden.

(a) Aberdeen (b) Boknafjorden

Fig. 18. Fit of GP-PNF distribution with γn. TanDEM-X. (a) Aberdeen; (b) Boknafjorden.
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(a) CFAR with Pf = 10−6 (b) NP with α = 0.9

Fig. 19. Detection masks using local statistical tests on the GP-PNF. RADARSAT-2, (2013/11/29) (a) CFAR on pdf; (b) N-P on LR.

F. Detection results349

F.1 RADARSAT-2350

The CFAR is performed with Pf = 10−6, while the LR exploits a size α = 0.9 and Pmint = 3 · 10−4. The351

result of the detection exploiting guard windows is presented in Figure 19 and 20. The guard area is 40 pixels352

wide (around the test area) and the training area is a ring 20 pixels large (around the guard area). This provides353

2000 samples to estimate tsea.354

It can be observed that the CFAR test presents some false alarms. The images are roughly composed of355

3000x5000 pixels, which provide around 15 million pixels. Considering the setting Pf = 10−6, around 15356

false alarms are expected. They mostly come as single points and therefore they could be eliminated with a357

morphological filter, nevertheless it is valuable to also have a solution that does not rely on morphological filters.358

Moreover, testing the detector with lower values of Pf showed that few false alarms are not eliminated unless359

the value of Pf becomes unreasonably small (e.g. 10−20). From this, it could be concluded that such points360

do not belong to the sea clutter distribution, but they are outliers, i.e. consequence of some small heterogeneity361
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(a) CFAR with Pf = 10−6 (b) NP with α = 0.9

Fig. 20. Detection masks using local statistical tests on the GP-PNF. RADARSAT-2, (2014/02/09) (a) CFAR on pdf; (b) N-P on LR.

or image artifacts (that are always present in SAR images). Since they have a different distribution they are362

conceptually targets for the statistical tests. To reject them from the masks some a-priori information regarding363

”proper targets” is needed. This is the reason why a statistical test based on a likelihood ratio is exploited. The364

empirical value used here for Pmint is 3 · 10−4, since this was showing good rejection of artifacts. The result365

of the LR mask illustrates how all the false alarms are eliminated and none of the targets are lost (i.e. perfect366

detection performance with Pf = 0 and Pd = 1). It has also to be said that one azimuth ambiguity is detected.367

This means that another detection stage aimed at cleaning azimuth ambiguities has to be carried out [43].368

G. TanDEM-X369

This section presents the results of the detection on TanDEM-X data (Figure 21 and 22). Considering the370

resolution is different, the guard window now is 120 pixels around the test area and the training area is 60 pixels371

around the guard area.372

Again, it appears that the CFAR presents some false alarms, due to the large amount of pixels in the image373

and the presence of image artifacts. In order to remove them the LR test can be applied. The value of Pmint is374

again chosen equal to 3 · 10−4. Clearly, the value of Pmint may depend on the sensor and the dimension of the375
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(a) CFAR with Pf = 10−6 (b) NP with α = 0.9

Fig. 21. Detection masks using local statistical tests on the GP-PNF. TanDEM-X Aberdeen. (a) CFAR on pdf; (b) N-P on LR.

(a) CFAR with Pf = 10−6 (b) NP with α = 0.9

Fig. 22. Detection masks using local statistical tests on the GP-PNF. TanDEM-X Boknafjorden. (a) CFAR on pdf; (b) N-P on LR.
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test window (since larger windows are able to average out more point-like anomalies), but here the same value376

is used for simplicity and the issue of optimizing it depending on the specific detection task is left as a future377

work. The detection result is again excellent, with Pf = 0 and Pd = 1. However, as mentioned previously,378

azimuth ambiguities are detected as for the previous case.379

As a final remark, it is interesting to notice that γminn resulting from the use of Pt is actually lower than380

the mean of the γn histogram in the red rectangle. This means that using γminn as a brute threshold (without381

exploiting the LR test) would result in an enormous number of false alarms.382

H. Comparison with single channel detectors383

In this section, a comparison of the new statistical tests with a CFAR applied on single channel intensity384

images is presented. The distribution exploited for the analysis is the K-distribution, the probability of false385

alarms is set to Pf = 10−4 and the integral are solved analytically. Such detectors were selected because the386

K-distribution was observed to model the sea clutter accurately [1, 44] and the numerical solution does not387

imply any assumption that may not be fulfilled in these specific datasets. The CFAR test was carried out on388

SLC intensity of each of the polarimetric channels separately. Image filtering was not changing dramatically389

the detection masks unless the average was more than 15x15 pixels (when the performance were getting lower).390

Figure 23 shows the detection masks for the four scenes choosing the polarization channel that gives the best391

detection (the other masks are omitted for the sake of brevity). Finally, all the detection results are summarized392

in Table IV. In Figure 23 the stars indicate vessels that were not detected (i.e. miss-detections). With TerraSAR-393

X data, the detection performance appear relatively similar with only one target missing in the HH CFAR394

mask. This is a small metallic buoy 2× 2m large. A reason for such similar performance is that the areas were395

the vessels are located in the TerraSAR-X scenes present a sea state that is not very high. On the other hand,396

on the RADARSAT-2 datasets, where the sea state was rougher, the performances are different. Here several397

miss-detection can be counted. In the scene from 2013, one missing vessel labelled as ’2’ is a 105 m long oil398

tanker travelling at about 20 km/h, while the vessels ’1’ and ’3’ were not providing any information regarding399

type and dimensions, but only location (we could guess that they are smaller boats). In the 2014 scene, the400

missing vessel labelled as ’1’ is a 44 m long trawler, ’2’ is a cargo 80 m long travelling at 10 km/h and ’3’ is401

an oil tanker 140 m long travelling at 21 km/h.402
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(a) HV RADARSAT-2 2013 (b) HV RADARSAT-2 2014

(c) HH TerraSAR-X Aberdeen (d) HH TerraSAR-X Boknafjorden

Fig. 23. Detection masks using a local CFAR tests on the intensity of single images. (a) RADARSAT-2, 2013, HV channel; (b)

RADARSAT-2 2014, HV channel; (c) TerraSAR-X Aberdeen, HH channel; (d) TerraSAR-X Boknafjorden, HH channel.

VII. DISCUSSIONS403

Few conclusions can be drawn regarding the fit of the derived pdf’s.404

• Simulated data: The fit with Monte Carlo simulation is excellent, suggesting that the analytical derivation405

using the proposed assumptions is valid.406

• Number of looks exploited: From simulations and tests on real data, the derived pdf’s seem to not fit properly407

the data histograms when not enough samples are used. In particular, it appeared that the fitting was good with408

25 independent samples and started to show some problem with less than nine independent samples. This409
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TABLE IV

DETECTION RESULTS (NUMBER OF DETECTIONS / TOTAL NUMBER).

Detector Aberdeen Boknafjorden RS2 2013 RS2 2014

GP-PNF 7/7 7/7 11/11 20/20

CFAR HV - - 8/11 17/20

CFAR HH 6/7 7/7 7/11 17/20

CFAR VV 6/7 7/7 5/11 16/20

expected behavior has the consequence of broadening the estimated pdf and it is an indicator that the statistical410

tests cannot be used rigorously if the average is higher than nine equivalent looks. In a CFAR test, the effect of411

the broadened variance leads to a more conservative setting of the threshold that will be higher than necessary.412

This will return a Pf lower than the selected one (which is not problematic), but it may also lower Pd. On413

the other hand, it has to be said that smaller averages would facilitate the detection of weak targets, which414

eventually may compensate the lost due to an higher threshold. In order to be able to state precisely which the415

smallest window that should be used is, much more data has to be analyzed. Therefore, this is left as future416

work.417

Some conclusions could also be drawn regarding the results provided by the detection masks.418

• The CFAR test seems to show several false alarms in all the detection exercises (except the TanDEM-X419

Aberdeen test site where the wind conditions were lower). The false alarm rate is fixed to Pf = 10−6. One420

explanation to such false alarms is the large amount of pixels in the image (tens of millions). However, some421

of the false alarms cannot be removed unless the value of Pf becomes extremely small. Therefore, we could422

conclude that such pixels do not belong to the same distribution of the clutter, but are outliers. A reason for423

such outliers can be image artifacts. To reject such pixels, it is possible to exploit some erosion morphological424

filter. However, in order to do not rely on morphological filters another solution is proposed, considering a425

Neyman-Pearson test on the likelihood ratio (LR).426

• The LR test is based on the idea that a point to be called target should present a minimum power Pmint . The427

selection of Pmint depends on the likeliness of having artifacts in the image (closeness to a city), the window428

size (which helps averaging them out) and the sensor characteristics. The value used in this paper is the same429
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for both satellites and was empirically derived. It could be improved once much larger datasets are analyzed.430

• The comparison with single channels detectors showed that the use of polarimetric data is especially benefi-431

cial when the detection is aimed at small or fast moving targets in high sea clutter. In situations where the sea432

clutter is low and the vessels do not move fast, probably a single channel detector may be sufficient.433

VIII. CONCLUSIONS434

In this work, two statistical tests for the ship detector based on the Geometrical Perturbation - Polarimetric435

Notch Filter (GP-PNF) were devised. The probability density function pdf of γn (i.e. the output of the GP-PNF436

detector) was derived. The pdf of Pt (i.e. the power of the target in the polarimetric subset perpendicular437

to the sea clutter) was analytically derived as a Γ distribution (provided that the averaging exploited contains438

more than nine independent pixels). Secondly, the pdf of γn can be derived with a transformation of random439

variables. Two Neyman-Pearson tests were proposed to set the threshold on γn following a constant false alarm440

rate (CFAR) or using a likelihood ratio (LR).441

The pdf’s and statistical tests were tested with Monte Carlo simulations and real data. Two RADARSAT-2442

fine quad-polarimetric and two TanDEM-X dual-polarimetric HH/VV acquisitions were considered. The data443

presented fairly high values of sea clutter, which were beneficial to test the performances of the tests in more444

challenging scenarios.445

The fit of the pdf’s showed good visual results, with theoretical pdf’s that were following narrowly the446

data histograms. In order to obtain some quantitative results, the two sample Kolmogorov-Smirnov and the447

χ2 goodness-of-fit tests were executed and passed. The statistical tests were finally used to obtain detection448

masks. The CFAR test presents some false alarms, probably linked to the presence of small scale heterogeneity449

or artifacts. On the other hand, the LR test presents a perfect detection performance (if the azimuth ambiguities450

are not considered) withPf = 0 andPd = 1. Some azimuth ambiguities were detected since they are replicas of451

ship signatures and therefore they triggered detection. This means that some post- or pre-processing algorithms452

should be carried out to remove azimuth ambiguities.453

IX. APPENDIX454

The derivation of fΓn
(γn) as a transformation of fPt

(pt) is provided in this section. The theorem of trans-455

formation of random variables states that fΓn(γn) = fPt(p̂t)
∂pt(γn)
∂γn

, where pt(γn) is the solution of γn(pt)456
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and ∂ denotes derivative.457

The solution of γn(pt) is458

p̂t = RedR
γ2

1− γ2
. (11)

The pdf of Pt is a Γ and it can be written as459

fPt(pt) =
1

Γ(N)

(
N

µ

)N
pN−1
t exp

[
−N pt

µ

]
. (12)

After substituting p̂t the expression becomes460

fPt
(pt) =

1

Γ(N)

(
N

µ

)N (
RedR

γ2
n

1− γ2
n

)N−1

exp

[
−RedRN

µ

γ2
n

1− γ2
n

]
. (13)

The derivative of the transformation γn(pt) is461

∂γn(pt)

∂γn
=

2RedR

γ3
n

(
γ2
n

γ2
n − 1

)2

(14)

Multiplying together the last two expressions it is possible to obtain:462

fΓn
(γn) =

1

Γ(N)

(
N

µ

)N (
RedR

γ2
n

1− γ2
n

)N−1

exp

[
−RedRN

µ

γ2
n

1− γ2
n

]
2RedR

γ3
n

(
γ2
n

γ2
n − 1

)2

(15)

Such expression can be simplified obtaining:463

fΓn(γn) =
2

Γ(N)

(
N

µ

)N (
RedR

γ2
n

1− γ2
n

)N+1
2

RedR
γ−3
n exp

[
−RedRN

µ

γ2
n

1− γ2
n

]
rect

[
γn −

1

2

]
,

(16)
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