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ABSTRACT

There are a large number of sites across the UK and the rest of the world that are known to be
contaminated with *Ra owing to historical industrial and military activities. At some sites, where there
is a realistic risk of contact with the general public there is a demand for proficient risk assessments to be
undertaken. One of the governing factors that influence such assessments is the geometric nature of
contamination particularly if hazardous high activity point sources are present. Often this type of
radioactive particle is encountered at depths beyond the capabilities of surface gamma-ray techniques
and so intrusive borehole methods provide a more suitable approach. However, reliable spectral pro-
cessing methods to investigate the properties of the waste for this type of measurement have yet to be
developed since a number of issues must first be confronted including: representative calibration
spectra, variations in background activity and counting uncertainty. Here a novel method is proposed to
tackle this issue based upon the interrogation of characteristic Monte Carlo calibration spectra using a
combination of Principal Component Analysis and Artificial Neural Networks. The technique demon-
strated that it could reliably distinguish spectra that contained contributions from point sources from
those of background or dissociated contamination (homogenously distributed). The potential of the
method was demonstrated by interpretation of borehole spectra collected at the Dalgety Bay headland,
Fife, Scotland. Predictions concurred with intrusive surveys despite the realisation of relatively large
uncertainties on activity and depth estimates. To reduce this uncertainty, a larger background sample
and better spatial coverage of cores were required, alongside a higher volume better resolution detector.

© 2014 Published by Elsevier Ltd.

1. Introduction

(UK), many redundant radium artefacts are now classified and
controlled as low or intermediate level (HMSO, 1996).

1.1. Origin and regulation of radium contaminated land

At the start of 20th century, radium was being used for a
multitude of purposes, including medicines, confectionaries and
what would prove to its most beneficial use: a seemingly unbroken
light source known as “Undark” (Kathren, 1998). Since these early
explorations, not only has our understanding improved into the
radioactive emissions released by radium and its decay series but
also the detrimental mechanisms with which they interact with
living tissue (Rundo, 1993; Paschoa, 1998). In the United Kingdom
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Although the majority of radium production ended in the UK by
the 1930's, radium salts were still imported for medical, industrial
and military purposes into the 1960's (Tyler et al.,, 2013). In the
absence of contemporary legislation, considerable quantities of
highly radioactive radium waste were discarded by means of burial
(Harvie, 1999). Only in 1960 was the use, keeping and disposal of
radioactive sources controlled by statute through the Radioactive
Substances Act 1960 and later the Radioactive Substances Act 1993
(HMSO, 1996). Examples of these legacy burial sites have also been
identified in other parts of Europe and North America (Adams,
1993; Landa, 1993; Adsley et al., 2004).

It has been conservatively estimated that in the UK alone there
are between 150 and 250 Radium Contaminated Legacy Sites
(RCLS), but the number could be closer to 1000 (DECC, 2012).
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Considering the possible extent of contamination and the risk to
society they pose, legislation has now been passed in UK allowing
environmental regulatory agencies to identify, assess and, if needs
be, designate radioactively contaminated land (Tyler et al., 2013).

1.2. Characterisation of radium contamination

Following the potential identification of any land as being
contaminated with radium, the land has to be accurately charac-
terised providing a foundation for subsequent dose calculations
and risk assessments. This will determine whether actions are
required in terms of remediation. Estimates of the source's activity,
burial depth and lateral extent must be provided. Furthermore,
knowledge of the localised extent of the source can be instrumental
in proposed remediation strategies. Localised extent can be defined
by source geometries where: the contamination can be considered
more of a point source (in extreme cases referred to as a “hot”
particle) or dissociated (or more appropriately an extended ho-
mogenous source). This will have implications on exposure path-
ways, transport processes, received dose and ultimately risk. In
general, a point source (PS) is considered to be more hazardous,
since human contact may result in a much higher dose than
extended homogenous source (EHS) of similar activity. In the sce-
nario where the risk a PS poses is considered too high, it should
either be removed and disposed of or isolated to prevent human
exposure (Dale et al., 2008). However, areas of contamination
cannot always be categorised as singular PS or EHS. Often, many PS
of similar activity (usually low activity) can be identified, either
attributed to a number of small radioactive items or larger items
mechanically broken up (Patton et al., 2013). This eventuality can
be thought of as a Heterogeneous Source (HS), but separating HS
from EHS via non-invasive methods can be very challenging. The
aim of this work is to characterise highly radioactive PS.

1.3. Detection of radium contamination

For the most part, in situ, mobile and airborne gamma-
spectrometry are the workhorses for large scale radioactive
contamination land characterisation as alternative analytical
methods tend to be expensive and time consuming, and can often
be unrepresentative (Aage et al., 1999; Guillot, 2001; IAEA, 2003;
Tyler, 2008; Kock et al., 2012). The majority of this research has
been focussed on 3’Cs detection for extended sources (Tyler et al.,
1996; Boson et al., 2009; Carrazana Gonzalez et al., 2012) and “hot”
particle detection (Maucec et al., 2004a; Davies et al., 2007; Tyler
et al, 2010). Up to now, however, very few researchers have
focussed their efforts on characterising RCLS (Thummerer and
Jacob, 1998; Adsley et al., 2004; Haddad et al., 2014). Yet, with an
increasing awareness of the potential number of contaminated sites
in existence, it is essential that efficient methods be developed for
their rapid and accurate characterising.

At any RCLS, the principal contaminant tends to be 22Ra and its
progeny which is a reflection of the long half-life of ?*°Ra and its
persistence in the environmental. Direct gamma-spectrometry of
226Ra in the environment is challenging as it only has one relatively
weak low energy gamma ray from which to infer its activity
(186 keV). Subsequently its daughter products (*'Bi and 2'*Pb) are
conventionally used as a proxy measure. However, this can be
inherently problematic as secular equilibrium is not always
encountered as a result of 22Rn emanation. To address this issue,
many studies assume the fulfilment of equilibrium introducing
systematic uncertainty to any 22°Ra activity estimations
(Thummerer and Jacob, 1998; Hendriks et al., 2001). Before reliable
approximations of depth, activity and localised distribution of 22°Ra

can be made, four inherent confounding factors must first be
respected:

e If the photon flux received by a detector is low, gaining
acceptable counting uncertainty on the measurement can be
impractical.

o 226Ra and daughter products form part of the 23U decay series

where concentration variations can vary considerably over the

scale of meters.

As a source is buried an exponential decrease in unscattered

photons is observed with the vast majority of photons that reach

the detector being scattered.

e At energies below 150 keV, photons, although numerous, tend
to undergo photoelectric absorption making the composition of
the geological matrix an important control on photon flux
(Tyler, 1999, 2008). Backscattered photons (<250 keV) can also
be challenging to interpret.

These factors, acting in combination, influence the confidence
with which a source in the presence of a typically heterogeneous
background radiation field can be resolved. Moreover, once a source
has been identified, considerable uncertainties relating to its
localised extent and activity can remain. It is for these reasons in
situ and mobile gamma-spectroscopy of 22°Ra PS, below observed
activity thresholds (<70 MBq), is considered impractical below
depths of about 70 cm. This is because the majority of the source
signal, particularly the intense low energy peaks below 609 keV, is
enveloped by background noise with increasing source depth.
Measurements beyond this depth must therefore be addressed
with borehole measurements (Wilson and Conaway, 1991; Meisner
et al., 1995; Adsley et al., 2004; Bugai et al., 2005).

1.4. The borehole measurement

Borehole measurements are customarily taken as a depth series,
when the detector is lowered into the borehole. Ensuing spectra
can then provide knowledge into layers of contamination if suffi-
cient spatial coverage is performed to validate extrapolation
(Adsley et al., 2004; Bugai et al., 2005). Otherwise, the shape and
magnitude of standalone spectra offer insight into localised source
arrangements (Giles and Dooley, 1998). Subtle changes occurring
within the spectrum's overall shape, suggestive of alterations in
source geometry and activity, could potentially correspond to the
presence of contamination. Identifying such changes is invaluable
in the search for hazardous “hot” particles in close proximity of the
borehole (Wilson et al., 1997). For a detailed review of borehole
measurements refer to Kobr et al. (2005).

The source geometries, Extended Homogeneous source (EHS),
Point Source (PS) and for completeness Heterogeneous Source
(HS) are illustrated alongside the detector in a borehole geometry
(Fig. 1). First consider a PS, where D is the mass thickness of
shielding (g cm~2) and 4 is its angle perpendicular to the axis of
detector. The measure mass thickness was preferred over
Euclidean distance, since it takes into account the amount of
shielding, related to the density of soil, which can significantly
vary with depth and lateral position (Tyler, 2008). Secondly, an
EHS can be described by E4 indicating its vertical depth with its
midpoint at the centre of the detector's active volume. For
completeness the final geometry HS, is a differing number of PS at
variable D from the detector; this eventuality will be considered
by this study as EHS.

Exploring the parameters, E4 and D, as spectral shape drivers is
the fundamental aim of this study. Nevertheless, other parameters
known to influence spectral shape, although not the primary focus
in this study, such as soil density and the constituent that make up
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Fig. 1. Cross-section of the detector in the borehole including the source geometries of
interest: Extended homogeneous source, Point source and Heterogeneous source.

background must be added by way of assessing the uncertainties
that will be introduced to any conclusions of activity and geometry.

1.5. Spectral processing

Without contamination present, changes in the shape and
magnitude of borehole spectra will almost exclusively be due to
deviations in background activity (°K, 238U series and 23?Th series)
and shielding influences brought about by changes in soil density
and composition (Fig. 2). If a site is contaminated, it is the funda-
mental goal of a surveyor to differentiate between these benign
background fluctuations in spectral shape and those initiated by
the presence of 22°Ra contamination, particularly presented from a
PS at great distance from the detector. However, establishing in-
formation from spectra that have relatively sparse counts contrib-
uted from contamination can be very difficult. Additionally, in most
cases there is likely to be a continuum of activities, shielding ar-
rangements and source geometries within contaminated sites
resulting in a similar continuum of detector response (Wei et al.,
2010). Therefore, characterisation methods applied for 22Ra
contamination must be robust enough to cope with fluctuations in
background but at the same time be sensitive enough to provide
reliable estimates of activity and depth (Fig. 2).
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Fig. 2. Changes in spectral shape brought about by the introduction of a point source
at different distances from the detector. Note the similarity in signal presented by a
point source at distance and typical background spectra.

The important spectral unfolding process, providing insight into
relative spectral contributions, is not an instructive one and firstly
requires extensive knowledge of the individual detectors response
to known source geometries which must be provided by a robust
calibration procedure. Complications often arise when trying to
account for, by analytical calibration methods, the extensive envi-
ronmental scenarios that can lead to spectral changes particularly
for extended sources. Monte Carlo simulations (MCS) present a
more suitable way to account for environmental variables such as
density, soil composition and source geometry (Forster et al., 1990;
Hendriks et al., 2002).

Once a dynamic calibration dataset has been collected, relating
it to field observations can be problematic. A commonly applied
method of interpreting the signal from a detector is gross counting.
This approach provides only a relative measure of the total flux of
photons (or dose rate) and little information of source distribution
since energy discrimination is not performed (Adsley et al., 2004). A
more adequate method that relies on the differential attenuation of
two or more of the numerous intense full energy peaks, 21Bi (609,
1120, 1764 and 2240 keV) and to a lesser extent 2“Pb (295,
351 keV), can be used to establish the amount of shielding between
the source and detector (Miller et al., 1994; Trnkova et al., 2010;
Haddad et al., 2014). However, the method can be severely hin-
dered by the need to strip out background counts and poor
counting statistics, often peaks in low-resolution detectors cannot
be formed. Alternatively, a more sophisticated approach, coined
“Full Spectral Analysis”, can be applied. This method attempts to
add linear combinations of calibration data to the vast majority of
the channels of a field spectrum by a Poisson weighted least squares
fitting procedure (Hendriks et al., 2001; Maucec et al., 2004b) or
Non-negative least squares algorithm (Caciolli et al, 2012;
Guastaldi et al., 2013) followed by a xz goodness of fit test. Unfor-
tunately, this method requires sufficiently low counting uncer-
tainty across the spectrum to reliably fit individual spectral
contributions; a scenario that is not always obtainable in the field.
Moreover, fitting calibration spectra for this application may
become complicated by the fact there is a continuum of contami-
nation and multiple source distribution under investigation.

It is well understood that gamma-spectrometry data taken from
the environment will contain similarities in spectral shape, or, more
precisely, channels will regularly exhibit correlation from one
measurement to next. This will be predominantly due to back-
ground contributions to each individual spectrum (Fig. 2). Diffi-
culties can arise when trying to apply conventional statistical
approaches to a dataset when this redundant cross-channel cor-
relation has not been taken into consideration (Fagan et al., 2012).
Principal Component Analysis (PCA) is a method commonly used to
explore the underlying structure of a multivariate dataset and was
employed in this study to contend with variation in background.

The mathematical derivation (Hotelling, 1933; Chatfield and
Collins, 1980) and in depth discussions regarding the different
implementation of PCA (Hovgaard, 1997; Runkle, 2006) can be
found in the literature. Essentially, PCA multiplies the spectral
matrix by its, mean-centred, singular value decomposed matrix
producing a set of uncorrelated variables. Generally the first few
sets of loadings associated with their corresponding Principal
components (PCs) of the decomposed matrix can then be consid-
ered as representative of the source signal and can be set aside for
further statistical analysis (Im et al., 2007). Another convenient
outcome of the PCA process is that the number of dimensions is
significantly reduced as lower order elements are generally dis-
counted as noise contributions.

The second step utilised the pattern recognition capabilities of a
Neural Network (NN) to classify source geometry and approximate
activity, mass depth (D) and vertical depth (E4) from higher order
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PCs. The basic design framework of neural networks (NNs) is
analogous to the human brain and they have been used to solve
many complex non-linear problems across a variety of fields
including gamma-ray spectroscopy (Yoshida et al., 2002; Dragovic
et al., 2005; Dragovic et al., 2006). They have even been used to
map counts directly to activity and source burial depth (Wei et al.,
2010).

An NN is composed of a number of processing units known as
nodes that are, by convention, separated into three distinct layers:
the input, hidden and output. The input layer is a collection of the
nodes defining the explanatory variables of the problem. The hid-
den layer can in fact be made up of one or more layers and the
output layer, contains the desired response variables. The hidden
layer provides the NN the ability to learn non-linear trans-
formations. Each node has its own weight set, with the weights
defining the strength of the connections between neurons in
adjacent layers (Yoshida et al., 2002). The weights are established
during a training phase where the error between predicted outputs
and desired output of the specified training set is minimised in an
iterative fashion (Medhat, 2012). For a detailed review of the
workings of NNs refer to Gurney (2003).

The aims of this study were:

o Investigate whether PS and EHS can be distinguished from each
other in the borehole geometry.
e Apply optimised method to an RCLS providing estimates of ac-
tivity and source distribution.
2. Materials and methods

2.1. Field site: headland dataset

Dalgety bay, Fife, Scotland, is a former military site where
wartime and post-wartime activities have led to specific areas of

the site becoming associated with *2°Ra contamination (Tyler
et al, 2013). Following the sites decommissioning a new town
was built on the area (also called Dalgety Bay) with a Sailing club
located on the on the west coast where much of the radium
contamination was believed to be deposited (Fig. 3). Public access
along the coast provide the opportunity for the general public to
come into contact with potentially harmful sources via either
direct contact, ingestion or inhalation (Dale et al., 2008; Tyler
et al., 2013).

An intrusive survey was undertaken and borehole measure-
ments were obtained from an area on the headland around the
sailing club previously suspected of having contamination at
depths beyond the capabilities of conventional surface measure-
ments (Tyler et al., 2011). Cores were not necessarily concentrated
around the highest surface signal as indicated by the in situ survey
(Fig. 3), as surface sources and contaminated material were
recovered from many of these locations. Another feature is a large
proportion of the cores were situated either on the edge of the
headland and around the main sailing clubhouse (middle top) as
re-deposition of contamination by sea erosion and contact with
the general public were the primary concerns of the original
survey.

Due to the heterogeneous composition of the soil matrix, a
relatively small diameter auger (60 mm diameter) was used since
penetration into the contaminated site with an auger with a larger
diameter was likely to have been unviable. A total 30 augered holes
with varying depths (0.2—1.6 m) were taken over identified hot-
spots and a 51 x 51 mm Sodium iodide (Nal:Tl) detector, encased in
plastic tubing, was lowered into each hole. Spectra with 1024
channels representing an energy range of 20—3000 keV were
recorded using Ortec's Maestro software, at 0.1 m depth intervals
for at least 600 s to attain reasonable counting statistics. This
dataset is referred to as the “Headland dataset” (HD) for the
remaining discussions.
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Fig. 3. Maps of the headland with gross counts using a 76 x 76 mm handheld Lanthanum bromide detector overlaid. The surface was interpolated using ordinary Kriging. Locations

and numbers of boreholes have been included.
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2.2. Monte Carlo

Monte Carlo codes offer a robust alternative to either labour
intensive and expensive experimental calibration or mathemati-
cally cumbersome deterministic approaches (Stromswold, 1995;
Maucec et al., 2009). For example, acquiring representative labo-
ratory spectra can be hindered by the need to strip out the labo-
ratory background which can vary slightly over long acquisition
times due to problems of radon exhalation. This can, for example,
introduce significant error when using relatively weak calibration
sources at large distances. Field calibration although more charac-
teristic of the background at the HD site presents practical prob-
lems of burying the source and being confident of its distance from
the detector and the exact amount of shielding (i.e. density of soil)
between the source and the detector. Numerous studies, facing
similar challenging calibration situations, have opted for and suc-
cessfully applied Monte Carlo Simulations (MCS) to a variety of
environmental measurements (Maucec et al., 2004a; Allyson and
Sanderson, 1998). The code used in this study was Monte Carlo
N-Particle eXtented (MCNPX) (Briesmeister, 1993).

2.2.1. MCNPX optimisation

The simulations used in this study only retained key features of
the Nal:Tl detector, such as the active volume, aluminium outer
canning and protective plastic piping, since this was found to
accurately account for scattering within the real detector. Beck's
“standard” soil composition was used for all simulations since the
actual soil composition was not known (Beck et al., 1972). Decay
data was obtained from the National Nuclear Data Centre (2013)
and only emissions with relative abundance of 1% were used in
the simulations for all radionuclides.

Although MCS possess clear advantages over conventional
calibration procedures, there is a major drawback, in that the time it
can take to obtain acceptable uncertainty on average particle fluxes
can be unfeasible (Likar et al., 2004). This is because each particle
must be tracked from birth until death where during its lifetime a
large number of irrelevant interactions take place consuming
computer time. Although there are a number of accessible variance
reduction techniques available to use in MCNPX, for example
population control methods, if the modeller does not exercise
considerable precaution, bias can be introduced to the final tally
results (Allyson, 1994; Serov et al., 1998).

This study used a more straightforward procedure. Firstly
Multigroup/adjoint calculations were utilised, to estimate the ver-
tical and lateral extent needed to accurately reconstruct an entire
environmental spectrum from extended sources; commonly
described as the detector's Field Of View (De Groot et al., 2009). In
short, this special treatment of photons sees the problem effectively
reversed, with photons starting in the detector and gaining energy
until a cut off of 2614 keV (the highest environmental photon en-
ergy) was reached (Maucec et al., 2004b). Covering the density
range that was likely to be present at the site (1.1-1.8 g cm~2), it
was found that the soil thickness needed to accurately recreate a
borehole spectrum was 0.5 m above and below the detector 0.55 m
parallel to the borehole. After this, a method outlined by Hendriks
et al. (2002) was used involving only electrons in close proximity to
the detector being tracked and sampling bremsstrahlung energies
for those that were terminated outside this proximity. This was
accomplished by the use of surface source write/surface source
read cards within MCNPX.

2.2.2. Benchmark experiments

To validate the code defining the geometry, materials and
response of the detector a benchmark investigation to a known
source geometry and activity was undertaken. At the time of

measurement, no borehole calibration facility was available. A set
of flat concrete pads doped with 4°K, 238U and 23’Th geared more
towards in situ and airborne calibration were used instead. The
MCNPX Gaussian Energy Broadening (GEB) feature was used to
reconstruct the broadened peaks generated by the detector.

Spectra from the concrete calibration pads and MCS are in good
agreement (Fig. 4). The 232Th and 238U pads were reproduced well.
Minor discrepancies were found in the simulated Compton con-
tinuum of the 4°K pad where it was overestimated compared to the
pad, this was noted by another study (Hendriks et al., 2002). This is
likely to be caused by the different positions of pads at the cali-
bration facility resulting in incomplete removal of background
contribution by the background pad.

2.3. Spectral compilation

Before any spectral interpretation of the HD could be performed,
enough data spanning the range of environmental variables
thought to be present at the site had to be generated so as to
embody the relevant spectral shapes. Additionally, establishing the
overall spread of the spectral population obtained by sensibly
varying model parameters provides uncertainty estimates for any
conclusions made about the parent source distribution. This step is
also essential prior to training an NN as extrapolations outside of
datasets are known to be very unreliable (Moreira et al., 2010).

This procedure could not be performed purely in MCNPX
because of time constraints, because on average it took approxi-
mately 4 h for each simulation to attain acceptable statistical un-
certainty even with optimisation. Instead a resampling procedure
of a discrete range of MCNPX generated spectra, encompassing only
changes in source geometry and density variation, was undertaken.
This permitted more straightforward parameters, such as spectral
drift and relative spectral contribution (or activity) to be sampled
and adjusted afterwards allowing a larger and more robust spectral
dataset to be produced. The rest of this section details this
methodology.

T T T T T
' Calibration pad i

— MCNP fit

' Calibration pad Th

bt
o
Ty

— MCNP fit

bt
oy

Countss ™'
o

001 F

' Calibration pad U 1

— MCNP fit

1F 1
01 F a
0.01 & 1

T T T T T
500 1000 1500 2000 2500
Energy (keV)

Fig. 4. Benchmark experiment results showing MCNPX fitted data (lines) to calibration
pad (Potassium, Thorium and Uranium) data (dots).
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All source and background spectra were simulated within
MCNPX covering representative densities from 1.1 to 1.8 g cm™3
with intervals of 0.1 g cm 3, typical of the densities range found
within the cores taken at the site. Energies below 300 keV were
disregarded to avoid systematic uncertainties associated with var-
iations in geological matrix (Hendriks et al., 2002; Caciolli et al.,
2012). Fig. 5A demonstrates good agreement in count rate below
300 keV between MCS and field spectra “28 90 cm” although this
was not the case for spectra obtained. Good agreement in spectral
shape was nonetheless maintained above 300 keV for the
remaining measurements.

A base count rate of ~24 counts per second (for the energy range
above 300 keV) was used as the mode count rate of a lognormal
distribution established from a background core with minimum
and maximum count rates of 13 and 65 counts s~! respectively.
Whilst the probability of reaching background count rates of 65
counts s~' was considered extremely unlikely at Dalgety bay
headland, it was thought best to take a conservative approach with
the little spatial coverage of background data that was available.
Although, this would raise the limit of detection and uncertainty on
final activity and depth predictions the spectral shape recognition
capabilities of the proposed method was anticipated to negate such
fluctuations. Relative contributions from each of the natural decay
series were found to be reasonable well correlated within back-
ground cores demonstrated by Pearson's linear correlation coeffi-
cient above 0.8. This deviation was accounted for within the model.

The background dataset was then spiked using selected simu-
lated source spectra of corresponding density and a randomly
sampled activity. Spectral drift was introduced into each spectrum
by sampling a Gaussian distribution with a standard deviation of
3 keV (at 1461 keV) typically found within the temperature and
magnetic field variations within the environment for the detector
in question. The MCS were recorded to a much higher statistical
accuracy, typically >95%, to form the “Training dataset (Fig. 5). Field
results were known to have a greater noise element due to the
limited counting time and detector volume (Minty and Hovgaard,
2002). Accordingly, Poisson noise was introduced into individual
bins depending on a sampled count rate (>600 s). The addition of
noise established the “Validation dataset” and was considered to be
more representative of the error structure of the HD (Fig. 5A).
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Fig. 5. A) Example simulated background alongside a field measurement taken from
core 28 at 90 cm. Note that the “Training spectrum” is far more statistically defined
than either the Poisson noise induced “Validation spectrum” and “s28 90 cm”. B) Full
Width at Half Maximum binning intervals used on all spectra.

Clearly using over 1000 energy bins presents a large relative
variation within individual bins from one spectrum to the next,
particularly as counts become sparse at higher energies. To reduce
this surplus noise without too much loss of energy distinction, the
energy range 300—2918 keV was irregularly binned according to
the estimated Full Width at Half Maximum established using the
same Gaussian Energy Broadening model fit implemented in
MCNPX (Briesmeister, 1993). Higher energy spectral features can be
observed more easily as the sparse nature of counts is diminished,
for instance the 2%Th (2614 keV) and 2'*Bi (1764 keV) peaks
(Fig. 5B). Conversely, at low energy where the FWHM is lower
spectral structure is not lost, observe the low energy '*Bi (609 keV)
can still be observed.

All relevant sample data: source Activity (A), PS depth (D) and
vertical depth (Eg4) was recorded for individual spectra. PCA was
then carried out on the combined simulated dataset and HD to
allow comparison. All steps mentioned were carried out using the
base features in the software package R (R Development Core Team,
2012).

2.4. Neural network: training procedure

To optimise the performance of the NN and ensure that the
trained network was learning general patterns within the problem
rather than adapting to the training data itself, three separate data
sets were produced: the training set, a test set and cross validation
set (Dragovic et al., 2005). All datasets were mean centred and
scaled relative to the variance. Initially, each NN was trained and
tested with statistically defined MCNP spectra (spectral drift was
added to ensure SCs remained similar). The essential stage of cross
validation was performed using data with Poisson noise introduced
“Validation dataset” which was known to be more characteristic of
the noisy HD (Fig. 5). The transformation used in the hidden layer
was a sigmoidal function and the algorithm used to train the
network was resilient backpropogation (Riedmiller and Braun,
1993). The R package RSNNS was used to construct and train all
NNs (Bergmeir and Benitez, 2012).

The architecture of an NN may be different from one problem to
the next depending on the problem's level of complexity. It was
discovered early on to reach the optimised level of performance for
this problem it was better to divide the procedure into three
separate networks since this eliminated crosstalk effects between
the output neurons specifying the activity and depth parameters of
an EHS and a PS. The first NN's purpose was to classify spectra into
one of the three classes: background, EHS or PS. The final networks
were then used to make estimates regarding activity (kBq or
Bq kg 1), burial depth (g cm~2) and lateral extent (cm). Crucially,
they were only trained and tested with spectra that were identified
by the classification network. To ensure that the correct architec-
ture for each network was selected an exhaustive search was
conducted to: establish the number of PCs to use in the input layer,
the number of hidden nodes and hidden layers, and the number of
learning epochs. Decisions made regarding the design of the
network were based around minimising the error within the vali-
dation dataset. This was checked again using confusion matrices for
classification results (Zell et al, 1993) and R? values for any
regression results produced by the EHS and PS networks (Moreira
et al., 2010). Between 1000 and 2000 training data were found to
adequately train all the networks. Test and validation sets were 30%
of the training set.

Uncertainty on regression results was estimated by resampling
the predicted output values 50 times using the original background
parameters. These values were then fed back into the original
network alongside the training data and the standard deviation of
the injected values was used as the uncertainty. Caution was taken
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not to bias the latent variables used by PCA with introduction of
new values, since this would have influenced final NN outputs. To
avoid this eventuality the procedure was looped where error
spectra values were introduced into the original dataset one at a
time.

3. Results and discussion
3.1. Analysis of principal components

90% of the total variance within the dataset was explained by the
first 5 principal components, which suggests the latter PCs possess
largely noise elements. Visual analysis of the PC 1 and PC 2 loadings
demonstrates the merit of the PCA transform: at this early stage of
analysis point source effective depth is being separated within PC
space with shielding thickness variation (Fig. 6). This is confirmed
by the shallow point source depth (larger lighter points towards the
bottom of the plot), in contrast to deeper sources (smaller darker
points) towards the top left of the plot. Interestingly, distance from
the background pack (Crosses) would appear to infer activity.

Arguably conventional separation techniques, such as a Maha-
lanobis distance metric could be used to delineate a boundary be-
tween source and background (Runkle, 2006). Moreover, a linear
regression between PC1 and PC2 could be performed to establish a
relationship with depth and activity (Adams et al., 2012). However,
a number of problems may be encountered using these approaches.
Firstly, separation via parametric methods (i.e. Mahalanobis dis-
tance) invariably contains a distribution-based assumption, nor-
mally a multivariate Gaussian distribution, to define separation
limits from the background dataset. This assumption is often not
correct leading to misclassification. Secondly and most crucially,
separation of the extended source population, encompassed by the
black lines in Fig. 6, from point sources in the intermediate range
(2—20 g cm™2) is not possible through a linear regression tech-
nique, and this is of particular importance since a large proportion
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black dotted lines. The headland dataset are represented by black triangles.

of the HD lie within this region. Furthermore analyses of lower
order PCs, using a similar approach, becomes increasingly chal-
lenging. This suggests that to reliably separate extended sources
from point sources more information from lower order PCs is
needed but the relationship is likely to be non-linear. To confront
these issues three separate NN were used to establish structure
within the PC loadings.

3.2. Classification network

The first NN was used to classify spectra into one of the three
classes. It was established by using the first 5 PCs, a hidden layer
with 16 neurons and 1500 learning epochs gave the smallest
Relative Mean Squared Error (RMSE) on the cross validation dataset
(~15%) in the case of the classification network. It must be noted at
this early stage, throughout this work comparatively large errors
were encountered on output neurons for the cross validation sets
due to the noise introduced during spectral compilation (Section
2.3). Another outcome was that networks were trained using
relatively few iterations compared to other studies (Moreira et al.,
2010; Dragovic et al., 2006).

The final output of the classification NN (CNN) was decided by
the “Winner takes all” approach and the overall performance
assessed by calculating the misclassification rate (Zell et al., 1993).
The highest misclassification was witnessed on the background
results (10.2%) due to the low activities used at large depths for both
PS and EHS within the cross validation set. It was decided to include
these levels in order to attain detection limits. Generally PS's were
classified well above a certain threshold, dependent on the activity
and depth, representing the minimum detectable activity (MDA)
where source becomes misclassified as background as source count
contributions became negligible (Fig. 7A). EHS were also charac-
terised well, however misclassified shallow depth PS (5—20 g cm~2)
can be seen distributed along on the MDA boundary (<10 Bq kg™1)
(Fig. 7B). As expected as the extent depth (E;) becomes less and the
overall volume of the contaminated layer is reduced, leading to less
source contributions, the MDA increases to about 30 Bq kg~ . The
most significant case of misclassification can be seen subtended
within PS results between 5 and 20 g cm~2 and below 10 kBq in
which a 37% classification rate was found (Fig. 7A). This implies the
two populations must still significantly overlap within PC space and
the NN struggles to separate as too few source counts were
contributed to the already noisy background spectra. The second
reason is that the spectral shape, regardless of noise, in these
specific geometries is too similar, using only energies above
300 keV, for the NN to separate. It is likely a combination of the two
has led to this misclassification uncertainty. If energies below
300 keV could be sufficiently characterised these populations could
be more effectively resolved. This however presents a real
challenge.

This method presents a real improvement in comparison to a
traditional parametric approach where this degree of separation
would not be possible (Fig. 6). Consideration must also be drawn to
the areas of significant misclassification, for example, PS's under
10 kBq at depths below 20 g cm~2. This circumstance does not pose
a great risk compared to more active PS which are more than likely
be classified correctly (Fig. 7A).

3.3. Point and extended neural networks

Quantification of activity and depth (both D and Eg) was per-
formed using two final NNs: Point (PNN) and Extended (ENN).
Interestingly both required only 3 PCs as inputs to accurately esti-
mate depth, but it was soon recognised that to stabilise activity
estimates a fourth input neuron specifying total counts should be
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Fig. 7. Classification Neural Network output for A) Point source and B) Extended source. Discrete depths have been jittered slightly to give a better sense of population density. The

legend in plot A conceals largely background-misclassified points.

included. The number of hidden neurons and the size of training set
needed to accurately map the problem in both NN cases were
roughly similar to the CNN (Table 1). Again, a relatively small
number of iterations were required to attain RMSE minima on the
cross validation datasets (<25 000) and it was documented during
training that both networks were found to diverge rapidly after
convergence: indicative of sudden overtraining (Medhat, 2012).

During the training of preliminary networks it was established
by limiting the maximum activity of training and test sets to real-
istic environmental constraints, for example PS (<5 MBq) and EHS
(<3 kBq kg!), uncertainties on more probable lower activity
sources could be reduced. Such activity constraints are well within
activities found during intrusive surveys of Dalgety bay headland
(Patton et al., 2013).

Drawing attention to accuracy of the models, the overall ability
of both NN's to generalise a relationship was good for activity es-
timates. This is supported by high R? values (PNN = 0.955 (<0.001)
and ENN = 0.937 (<0.001)) for both NN's. PS depth prediction was
additionally very good (R* value of 0.942 (<0.001)). Predictions
made by the ENN for vertical depth (E;) were not as reliable (R?
value of 0.670(<0.001)). This suggests that very subtle changes in
spectral shape occur as the thickness of the layer contamination is
varied, and these cannot be identified as easily as the change in
spectral shape of PS with variable depth. This is understandable
since the majority of photons that reach the detector will have
originated from areas close to the detector. Thus with increasing

Table 1

Input parameters and R? values (and accompanying p-values in brackets) produced
for the cross validation dataset for Point Neural Network and Extended Neural
Network.

Neural Iteration Number of Size of  R? value
network number neurons in training Depth Activit
hidden layer set €p ctivity
Point 25,000 16 1000 0.942 (<0.001) 0.910 (<0.001)
Extended 8000 10 2000 0.670 (<0.001) 0.965 (<0.001)

thickness of contamination relatively less signal is received due to
the inverse square law. Consequentially, accurate measurements of
E,4 are unlikely and predictions made by the ENN for this parameter
should be treated with caution.

3.4. Analysis of the headland dataset

To demonstrate the capacity of the method, analysis of two
cores from the HD is included (Fig. 8). Firstly, confidence within the
ENN predictions is provided by comparing the similarity in shape of
the total count rate (Fig. 8A.1 and Fig. 8B.1) and activity estimates
(Bq kg~1) (Fig. 8A.2 and Fig. 8B.2) with core depth for both the
cores. Interestingly, the majority of the HD measurements (~70%)
that were identified as having contamination were predicted to be
EHS. This outcome supports general intrusive findings at the
headland where the majority of contaminated material is well
distributed ash and clinker from the burning of radioactive artefacts
(Patton et al., 2013).

An important finding was the identification of a relatively thick
(~90 cm) elevated activity extended layer (357 + 69 Bq kg~ 1) at
130 cm within “s21” (Fig. 8B.2). This coincides with a large spike in
total count rate (Fig. 8B.1). In the original survey this was disputed
to be a point source due to the Gaussian nature of the total count
rate increase within the depth series. Even with further analysis
using the differential peak method the source signal could not be
classified. This scenario clearly demonstrates the value of the cur-
rent approach.

The highest predicted extended activities (600—700 Bq kg™ 1)
were found in a relatively thin contaminated section of core “s7” at
160—180 cm (Fig. 8A.2). This area did not contribute the highest
total count rate (>1000 counts per second) though; as seen in core
“s21” (Fig. 8B.1). This highest count rate was caused by a thicker
(95 + 11 cm) less active (520 + 85 Bq kg~ ') layer. This shows that
using this technique can provide insight into the thickness of a layer
meaning that more accurate estimations of activity can be made
instead of assuming a completely distributed source. Another key
feature that the CNN identified at core depths between 90 and
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130 cm was the presence of PS's in between two extended layers
(Fig. 8A.3). The PNN provided clarification that these sources were
at relatively short distances away from the detector (~35 g cm™2)
and at low activities (~30 kBq). Although PS were identified by the
network, the consistency of the activities and depth would suggest
the detector is in a pocket of low contaminated soil with larger
activities at greater distances from the detector. Algorithmic iden-
tification of this situation would be very challenging. This empha-
sises the importance of human interpretation. To verify this notion
further cores would have to be taken. This scenario highlights a real
limitation of the borehole measurement without substantial spatial
coverage. Similar geometries that are beyond the scope of the
technique to differentiate, and that would require further spatial
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Fig. 9. Estimated uncertainties associated with Headland dataset source measure-
ments A) Point Source and B) Extended Homogeneous Source.

coverage would be for example, localised areas of homogeneous
contamination that are not distributed symmetrically around the
borehole and measurements above or below an extended layer.

Attention must be drawn to the errors associated with pre-
dictions of activity and depth from the NN's (Fig. 9). Standard de-
viations from both networks showed similar patterns, generally
with increasing burial depth and decreasing activity the relative
standard deviation increased. This is particularly prevalent with the
point source estimations at effective depths of 30—40 g cm~2 and
less than 20 kBq (Fig. 9A), and low activity (<100 Bq kg~ ') sections
(<40 cm) of contamination (Fig. 9B), and this practically renders
these readings unusable. This is understandable as source spectral
shape would have become increasingly difficult to differentiate
from background as source counts became too few.

Interestingly, the deepest and highest activity predictions for PS
occurred at the base of two cores that were positioned close
together, suggestive of high activity at depth. Without further
boreholes to confirm this, the actual activities are challenging to
deduce as they are so far away from the detector.

There are practical ways to alleviate some of the uncertainty
associated with field results, indicated by the large error bars
(Fig. 9). Firstly reduction in counting uncertainty across the energy
range could be attained by using another detector. Nal(Tl) detectors
have relatively low energy resolution and the size used in this
survey was particularly small (51 x 51 mm). If a larger, higher
resolution detector was used, such as a larger volume Lanthanum
bromide, uncertainties could be reduced (Yongpeng and Bin, 2012).

Another way to reduce uncertainty would be to collect more
background results to provide a better understanding of the back-
ground population. This study was limited by this fact resulting in a
conservative estimate of background population being made. This
would have would have invariably raised the limit of detection and
introduced more uncertainty on final activity and depth pre-
dictions. Other than collecting further background cores at the site,
cores could have also been drilled deeper beyond contamination
(providing little stratification of background constituents was
present), giving more reliable background estimates for individual
cores. However, this was not possible at much of the site as hard
rock restricted further augering.
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4. Conclusions

226Ra contamination at depths typically below 50 cm cannot be
reliably measured using conventional surface gamma-ray mea-
surements. Borehole gammaspectroscopy is used for the purpose of
characterisation, where details of the geometric nature of
contamination and activity estimates are vital if formal risk as-
sessments are to be developed in order to protect the general
public. Current methods of spectral processing, however, either do
not have the ability to perform the task or prove unreliable.

An approach has been described based upon feature extraction
using PCA, followed by NN's to relate key features of representative
MCS to obtained field results. This method provided a reliable
means to characterise the geometric nature of contamination, offer
activity and depth estimates of point sources, and give insight into
potential layers of homogeneous contamination. The potential of
the technique was demonstrated by analysis of core data taken
from Dalgety Bay Headland where prediction from the majority of
cores suggested that contamination was mostly dissociated: sup-
porting intrusive survey findings.

Nevertheless, limitations associated with the nature of the
borehole measurement still remain and cannot realistically be
solved unless adequate spatial coverage is performed, making some
predictions very uncertain, particularly of PS at distance. The use of
improved detector technology and better understanding of the
background could, however, alleviate some of the estimated un-
certainty associated with predictions from the method.

Acknowledgements

The authors would like to thank the Scottish Environmental
Protection Agency and the Natural Environmental Research Council
(NE/1018956/1) for funding the work, and the Dalgety Bay Sailing
Club for allowing access onto the site. Additional thanks must be
given to Mike Davies and Pete Burgess for useful suggestions.

References

Aage, HK., Korsbech, U., Bargholz, K., Hovgaard, J., 1999. A new technique for
processing airborne gamma ray spectrometry data for mapping low level
contaminations. Appl. Radiat. Isotopes 51, 651—662.

Adams, A., 1993. The origin and early development of the Belgian radium industry.
Environ. Int. 19, 491-501.

Adams, ].C., Joyce, M., Mellor, M., 2012. The advancement of a technique using
principal component analysis for the non-intrusive depth profiling of radioac-
tive contamination. Nucl. Sci. IEEE Trans. 59, 1448—1452.

Adsley, L., Davies, M., Murley, R., Pearman, ., Scirea, M., 2004. 3D GPS mapping of
land contaminated with gamma-ray emitting radionuclides. Appl. Radiat. Iso-
topes 60, 579—582.

Allyson, ].D., 1994. Environmental Gamma-ray Spectrometry: Simulation of Abso-
lute Calibration of In-situ and Airborne Spectrometers for Natural and
Anthropogenic Sources. PhD thesis. Glasgow University, p. 274.

Allyson, ].D., Sanderson, D.C.W., 1998. Monte Carlo simulation of environmental
airborne gamma-spectrometry. J. Environ. Radioact. 38, 259—282.

Beck, H., De Campo, ]., Gogolak, C., 1972. In Situ Ge (Li) and Na (Tl) Gamma-ray
Spectrometry. US Department of Energy, Environmental Measurements Labo-
ratory, HASL-258, New York.

Bergmeir, C., Benitez, J.M., 2012. Neural networks in R using the Stuttgart neural
network simulator: RSNNS. J. Stat. Softw. 46, 1-26.

Boson, ]., Plamboeck, A.H., Rameback, H., Agren, G., Johansson, L., 2009. Evaluation
of Monte Carlo-based calibrations of HPGe detectors for in situ gamma-ray
spectrometry. J. Environ. Radioact. 100, 935—940.

Briesmeister, J.F., 1993. MCNP-a General Monte Carlo N-particle Transport Code. LA-
12625.

Bugai, D., Kashparov, V., Dewiere, L., Khomutinin, Y., Levchuk, S., Yoschenko, V.,
2005. Characterization of subsurface geometry and radioactivity distribution in
the trench containing Chernobyl clean-up wastes. Environ. Geol. 47, 869—881.

Caciolli, A., Baldoncini, M., Bezzon, G.P,, Broggini, C., Buso, G.P., Callegari, L, et al.,
2012. A new FSA approach for in situ y ray spectroscopy. Sci. Total Environ. 414,
639—-645.

Carrazana Gonzdlez, J., Cornejo Diaz, N., Jurado Vargas, M., 2012. Application of the
Monte Carlo code DETEFF to efficiency calibrations for in situ gamma-ray
spectrometry. Appl. Radiat. Isotopes 70, 868—871.

Chatfield, C., Collins, AJ., 1980. Principal Component Analysis. In Anonymous
Introduction to Multivariate Analysis. Springer, pp. 57—81.

Dale, P, Robertson, I, Toner, M., 2008. Radioactive particles in dose assessments.
J. Environ. Radioact. 99, 1589—-1595.

Davies, M., McCulloch, G., Adsley, 1., 2007. Experience of monitoring beaches for
radioactive particles. J. Radiol. Prot. 27, A51.

De Groot, A., Van der Graaf, E., De Meijer, R., Maucec, M., 2009. Sensitivity of in-situ
y-ray spectra to soil density and water content. Nucl. Instrum. Methods Phys.
Res. A Accel. Spectrom. Detect. Assoc. Equip. 600, 519—523.

DECC, 2012. Radioactive Contaminated Land Statutory Guidance Environmental
Protection Act 1990: Part 11A. Contaminated Land. Department of Energy and
Climate Change 2012.

Dragovic, S., Onjia, A., Stankovic, S., Anicin, I, Bacic, G., 2005. Artificial neural
network modelling of uncertainty in gamma-ray spectrometry. Nucl. Instrum.
Methods Phys. Res. A Accelerators Spectrom. Detect. Assoc. Equip. 540,
455—463.

Dragovi¢, S., Onjia, A., Baci¢, G., 2006. Simplex optimization of artificial neural
networks for the prediction of minimum detectable activity in gamma-ray
spectrometry. Nuclear Instrum. Methods Phys. Res. A Accelerators Spectrom.
Detect. Assoc. Equip. 564, 308—314.

Fagan, D.K.,, Robinson, S.M., Runkle, R.C., 2012. Statistical methods applied to
gamma-ray spectroscopy algorithms in nuclear security missions. Appl. Radiat.
Isotopes 70, 24282439,

Forster, R., Little, R., Briesmeister, J., Hendricks, J., 1990. MCNP capabilities for nu-
clear well logging calculations. Nucl. Sci. IEEE Trans. 37, 1378—1385.

Giles, J., Dooley, K., 1998. High resolution gamma-spectroscopy well logging system.
J. Radioanalytical Nucl. Chem. 233, 125b—130.

Guastaldi, E., Baldoncini, M., Bezzon, G., Broggini, C., Buso, G., Caciolli, A., et al., 2013.
A multivariate spatial interpolation of airborne y-ray data using the geological
constraints. Remote Sens. Environ. 137, 1-11.

Guillot, L., 2001. Extraction of full absorption peaks in airborne gamma-
spectrometry by filtering techniques coupled with a study of the derivatives.
Comparison with the window method. J. Environ. Radioact. 53, 381-398.

Gurney, K., 2003. An Introduction to Neural Networks. CRC Press, p. 139.

Haddad, K., Al-Masri, M.S., Doubal, AW., 2014. Determination of >*°Ra contami-
nation depth in soil using the multiple photopeaks method. J. Environ. Radioact.
128, 33—-37.

Harvie, D.I,, 1999. The radium century. Endeavour 23, 100—105.

Hendriks, P., Limburg, J., De Meijer, R., 2001. Full-spectrum analysis of natural y-ray
spectra. J. Environ. Radioact. 53, 365—380.

Hendriks, P.H.G.M., Maucec, M., de Meijer, RJ., 2002. MCNP modelling of
scintillation-detector y-ray spectra from natural radionuclides. Appl. Radiat.
Isotopes 57, 449—457.

HMSO, 1996. CM 2919 (1995) Review of Radioactive Waste Management Policy-
final Conclusions.

Hotelling, H., 1933. Analysis of a complex of statistical variables into principal
components. J. Educ. Psychol. 24, 417.

Hovgaard, J., 1997. Airborne Gamma-ray Spectroscopy. Airborne Gamma-ray
Spectrometry.

IAEA, 2003. Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry
Data. Nuclear Fuel Cycle and Materials Section, International Atomic Energy
Agency, p. 173.

Im, H,, Lee, Y., Park, Y.J., Song, B.C., Cho, ]., Kim, W., 2007. Noise reduction in prompt
gamma spectra acquired in short times. Nucl. Instrum. Methods Phys. Res. A
Accelerators Spectrom. Detect. Assoc. Equip. 574, 272—279.

Kathren, R.L., 1998. NORM sources and their origins. Appl. Radiat. Isotopes 49,
149-168.

Kobr, M., Mares, S., Paillet, F,, 2005. Geophysical well logging. In: Anonymous
Hydrogeophysics. Springer, pp. 291—-331.

Kock, P, Lanke, ]., Samuelsson, C., 2012. A real-time statistical alarm method for
mobile gamma spectrometry—Combining counts of pulses with spectral dis-
tribution of pulses. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect.
Assoc. Equip. 681, 55—60.

Landa, E.R., 1993. A brief history of the American Radium Industry and its ties to the
Scientific Community of its early twentieth century. Environ. Int. 19, 503—508.

Likar, A., Vidmar, T., Lipoglavsek, M., Omahen, G., 2004. Monte Carlo calculation of
entire in situ gamma-ray spectra. J. Environ. Radioact. 72, 163—168.

Maucec, M., de Meijer, RJ., Rigollet, C., Hendriks, P.H.G.M., Jones, D.G., 2004a.
Detection of radioactive particles offshore by y-ray spectrometry Part I: Monte
Carlo assessment of detection depth limits. Nucl. Instrum. Methods Phys. Res. A
Accel. Spectrom. Detect. Assoc. Equip. 525, 593—609.

Maucec, M., de Meijer, RJ., van der Klis, M.M.L.P,, Hendriks, P.H.G.M., Jones, D.G.,
2004b. Detection of radioactive particles offshore by y-ray spectrometry Part II:
Monte Carlo assessment of acquisition times. Nucl. Instrum. Methods Phys. Res.
A Accel. Spectrom. Detect. Assoc. Equip. 525, 610—622.

Maucec, M., Hendriks, PH.G.M,, Limburg, J., de Meijer, R]J., 2009. Determination of
correction factors for borehole natural gamma-ray measurements by Monte
Carlo simulations. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect.
Assoc. Equip. 609, 194—204.

Medhat, M.E., 2012. Artificial intelligence methods applied for quantitative analysis
of natural radioactive sources. Ann. Nucl. Energy 45, 73—79.

Meisner, J., Nicaise, W., Stromswold, D., 1995. Csl (Tl) with photodiodes for identi-
fying subsurface radionuclide contamination. Nucl. Sci. IEEE Trans. 42, 288—291.

Miller, K.M., Shebell, P., Klemic, G.A., 1994. In-situ Gamma-Ray spectrometry for the
measurement of uranium in surface soils. Health Phys. 67, 140—150.


http://refhub.elsevier.com/S0265-931X(14)00345-2/sref1
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref1
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref1
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref1
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref2
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref2
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref2
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref3
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref3
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref3
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref3
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref4
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref4
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref4
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref4
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref5
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref5
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref5
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref6
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref6
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref6
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref7
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref7
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref7
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref8
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref8
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref8
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref9
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref9
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref9
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref9
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref9
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref10
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref10
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref11
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref11
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref11
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref11
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref12
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref12
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref12
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref12
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref13
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref13
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref13
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref13
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref13
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref14
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref14
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref14
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref15
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref15
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref15
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref16
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref16
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref17
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref17
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref17
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref17
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref17
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref18
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref18
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref18
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref20
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref20
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref20
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref20
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref20
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref21
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref21
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref21
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref21
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref21
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref21
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref21
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref21
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref22
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref22
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref22
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref22
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref23
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref23
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref23
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref24
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref24
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref24
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref25
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref25
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref25
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref25
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref26
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref26
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref26
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref26
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref27
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref28
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref28
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref28
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref28
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref28
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref29
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref29
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref30
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref30
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref30
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref31
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref31
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref31
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref31
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref31
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref32
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref32
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref33
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref33
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref34
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref34
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref35
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref35
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref35
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref36
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref36
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref36
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref36
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref37
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref37
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref37
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref38
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref38
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref38
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref38
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref39
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref39
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref39
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref39
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref39
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref39
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref40
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref40
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref40
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref41
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref41
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref41
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref41
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref42
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref42
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref42
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref42
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref42
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref42
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref43
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref43
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref43
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref43
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref43
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref43
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref44
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref44
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref44
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref44
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref44
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref44
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref45
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref45
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref45
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref46
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref46
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref46
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref47
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref47
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref47

140 A. Varley et al. / Journal of Environmental Radioactivity 140 (2015) 130—140

Minty, B., Hovgaard, J., 2002. Reducing noise in gamma-ray spectrometry using
spectral component analysis. Explor. Geophys. 33, 172—176.

Moreira, M.C.E, Conti, C.C., Schirru, R., 2010. A new Nal(Tl) four-detector layout for
field contamination assessment using artificial neural networks and the Monte
Carlo method for system calibration. Nucl. Instrum. Methods Phys. Res. A Accel.
Spectrom. Detect. Assoc. Equip. 621, 302—309.

National Nuclear Data Center, 2013. Nuclear Datasheets.

Paschoa, A.S.,1998. Potential environmental and regulatory implications of naturally
occurring radioactive materials (NORM). Appl. Radiat. Isotopes 49, 189—196.
Patton, N., Gemmill, J., Milne, J., 2013. Appropriate Person Report. Scottish Envi-

ronmental Protection Agency.

R Development Core Team, 2012. R: a Language and Environment for Statistical
Computing.

Riedmiller, M., Braun, H., 1993. A Direct Adaptive Method for Faster Back-
propagation Learning: the RPROP Algorithm, pp. 586—591.

Rundo, J., 1993. History of the determination of radium in man since 1915. Environ.
Int. 19, 425—438.

Runkle, R., 2006. Analysis of spectroscopic radiation portal monitor data using
principal components analysis. IEEE Trans. Nucl. Sci. 53, 1418—1423.

Serov, L.V., John, T.M., Hoogenboom, J.E., 1998. A new effective Monte Carlo Midway
coupling method in MCNP applied to a well logging problem. Appl. Radiat.
Isotopes 49, 1737—1744.

Stromswold, D., 1995. Calibration facilites for borehole and surface environmental
radiation measurements. J. Radioanal. Nucl. Chem. 194, 393—401.

Thummerer, S., Jacob, P., 1998. Determination of depth distributions of natural ra-
dionuclides with in situ gamma-ray spectrometry. Nucl. Instrum. Methods Phys.
Res. A Accelerators Spectrom. Detect. Assoc. Equip. 416, 161-178.

Trnkova, L., Trojek, T., Thinova, L., 2010. Gamma spectrometric measurements of
depth-related radionuclide distribution in walls. Appl. Radiat. Isotopes 68,
832—835.

Tyler, A.N., 1999. Monitoring anthropogenic radioactivity in salt marsh environ-
ments through in situ gamma-ray spectrometry. ]. Environ. Radioact. 45,
235-252.

Tyler, A.N., 2008. In Situ and Airborne Gamma-ray Spectrometry. Radioactivity in
the Environment. Elsevier, pp. 407—448.

Tyler, A.N., Sanderson, D.C.W., Scott, E.M., Allyson, J.D., 1996. Accounting for spatial
variability and fields of view in environmental gamma ray spectrometry.
J. Environ. Radioact. 33, 213—235.

Tyler, A.N., Scott, EMM., Dale, P, Elliott, A.T., Wilkins, B.T., Boddy, K., et al., 2010.
Reconstructing the abundance of Dounreay hot particles on an adjacent public
beach in Northern Scotland. Sci. Total Environ. 408, 4495—4503.

Tyler, A.N., Ruffell, A., Dale, P., 2011. Dalgety Bay Headland Investigation (Prepared
for Scottish Environmental Protection Agency).

Tyler, A., Dale, P., Copplestone, D., Bradley, S., Ewen, H., McGuire, C., et al., 2013. The
radium legacy: contaminated land and the committed effective dose from the
ingestion of radium contaminated materials. Environ. Int. 59, 449—455.

Wei, W., Du, Q., Younan, N.H., 2010. Particle swarm optimization based spectral
transformation for radioactive material detection and classification. Comput.
Intell. Meas. Syst. Appl. 1-6.

Wilson, R., Conaway, J., 1991. Simulations of a Spectral Gamma-ray Logging Tool
Response to a Surface Source Distribution on the Borehole Wall. Los Alamos
National Laboratory Publication, pp. 1118—1122.

Wilson, R.D., Koizumi, CJ., Meisner, J.E., Stromswold, D.C., 1997. Spectral Shape
Analysis for Contaminant Logging at the Hanford Site. Los Alamos National
Laboratory Publication, pp. 457—461.

Yongpeng, W., Bin, T.,, 2012. Monte-carlo simulation of response functions for nat-
ural gamma-rays in LaBr3 detector system with complex borehole configura-
tions. Plasma Sci. Technol. 14, 481.

Yoshida, E., Shizuma, K., Endo, S., Oka, T., 2002. Application of neural networks for
the analysis of gamma-ray spectra measured with a Ge spectrometer. Nucl.
Instrum. Methods Phys. Res. A Accelerators Spectrom. Detect. Assoc. Equip. 484,
557—-563.

Zell, A., Mache, N., Huebner, R., Mamier, G., Vogt, M., Herrmann, K., et al., 1993.
SNNS-Stuttgart Neural Network Simulator, pp. 1-155.


http://refhub.elsevier.com/S0265-931X(14)00345-2/sref48
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref48
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref48
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref49
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref49
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref49
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref49
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref49
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref50
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref51
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref51
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref51
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref52
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref52
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref19
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref19
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref53
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref53
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref53
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref54
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref54
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref54
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref55
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref55
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref55
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref56
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref56
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref56
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref56
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref57
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref57
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref57
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref58
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref58
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref58
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref58
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref59
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref59
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref59
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref59
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref59
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref59
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref60
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref60
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref60
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref60
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref61
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref61
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref61
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref62
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref62
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref62
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref62
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref63
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref63
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref63
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref63
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref64
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref64
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref65
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref65
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref65
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref65
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref66
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref66
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref66
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref66
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref67
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref67
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref67
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref67
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref68
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref68
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref68
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref68
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref69
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref69
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref69
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref70
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref70
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref70
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref70
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref70
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref71
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref71
http://refhub.elsevier.com/S0265-931X(14)00345-2/sref71

	Development of a neural network approach to characterise 226Ra contamination at legacy sites using gamma-ray spectra taken  ...
	1. Introduction
	1.1. Origin and regulation of radium contaminated land
	1.2. Characterisation of radium contamination
	1.3. Detection of radium contamination
	1.4. The borehole measurement
	1.5. Spectral processing

	2. Materials and methods
	2.1. Field site: headland dataset
	2.2. Monte Carlo
	2.2.1. MCNPX optimisation
	2.2.2. Benchmark experiments

	2.3. Spectral compilation
	2.4. Neural network: training procedure

	3. Results and discussion
	3.1. Analysis of principal components
	3.2. Classification network
	3.3. Point and extended neural networks
	3.4. Analysis of the headland dataset

	4. Conclusions
	Acknowledgements
	References


