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Abstract: Elasticity enables cloud customers to enrich their applications to dynamically
adjust the underlying cloud resources as per their needs, in order to minimize the cost
of infrastructure as well as to satisfy their performance goals. Over the past few years,
a plethora of techniques have been introduced in order to implement elasticity. Control
theory is one such technique that offers a systematic method to design feedback controllers
to implement elasticity. A number of proposals based on feedback controller concepts
have been introduced in the recent past in order to guarantee the QoS needs of a system
deployed over a cloud. Many of these are based on the use of a single controller approach
of various types, such as adaptive and fixed. However, for systems that operate in time-
varying and unpredictable operating conditions, it becomes difficult for such approaches
to perform effectively at all times, in order to comply with the system stated performance
goals. The systems deployed over cloud are subject to unpredictable workload conditions
that vary from time to time, e.g. an e-commerce website may face higher workloads than
normal during festival or promotional schemes. This paper exploits the novel use of a
recently developed multi-controller based approach, where each controller is specifically
designed for one operating region. Moreover, the use of fuzzy logic is exploited to enable
qualitative specification for the selection of the most suitable controller in runtime, based
on system current behaviour. Initial experimental evaluation in comparison with the
conventional single-controller approach demonstrates that our proposed method enhances
the capability of an elastic application to comply with system performance goals.
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1 Introduction

In this modern world of web, Software as a service
(SaaS) applications such as e-commerce websites, news
portals and social networking websites are experiencing
unpredictable workloads. These can occur due to various
real happening events, time of festive or promotional
offers, etc. Some examples of such scenarios are: (1)
Facebook experienced an increase of 10 times in users
within three days with an average 20,000 registrations
per hours Jamshidi et al. (2014); (2) 2,500% increase on
load was observed at Al-jazeeras news website during
the fourth day of the Egyptian revolution in 2011 Kihl
et al. (2013); (3) The workload of an online store
can be of a seasonal pattern, where an increase in
load can be observed in a particular season such as
Christmas Garside (2013), etc. Such applications are
very important and service providers do not want their
applications to suffer from any performance related
issues or service disruption. Moreover, they are also
interested to use underlying computing resources as
efficiently as possible, to save the operating cost.

Cloud computing is the latest technology that enables
the dynamic selection of services Wang et al. (2016),
real time event management Kostantos et al. (2015), on-
line monitoring of resources Lu et al. (2016) and more
importantly, the dynamic readjustment of the resources
to meet the application demands. Cloud elasticity is
the key behind that enables the dynamic readjustment
of resources. The changes in resources are usually
require in response to environmental changes (E.g.
due to workload fluctuations), such that the resources
match to the demands as closely as possible. The core
purposes of elasticity include Galante & De Bona (2012):
(1) Performance: to avoid the degradation of system
performance; (2) Infrastructure capacity: to increase
the capacity of local resources; (3) Cost: to reduce the
running operating cost; (4) Energy: to save the energy
consumed. The cloud consumer has to provide an elastic
system that implements some auto-scaling mechanism.

There are various auto-scaling techniques available.
The most common approach usually adopted in public
clouds is the threshold based rules. The rules follow
the condition-action pattern. The conditions are based
on the performance metrics such as CPU utilization,
message queue length, etc, whereas a rule specifies
the scaling action. For example, if the average CPU
utilization is more than 70 % then add 2 virtual machines
(VM). This approach is very easy to use but it suffers
from two key issues (1) An in depth understanding of the
system is required to quantitatively set the thresholds;
(2) they are unable to cope with uncertainty due to
unpredictable events Jamshidi et al. (2014).

Control theory is another technique that provides
a systematic method to design feedback controllers
for auto-scaling. Such feedback controllers are designed
to be stable in order to avoid oscillation and settle
quickly to the steady state by appropriately responding
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Figure 1: Real workload examples

to disturbances. They are better for achieving service
level objectives, such as response time or throughput
Abdelzaher et al. (2008). Over the last few years,
feedback controllers have been used for cloud resource
provisioning Lim et al. (2009), Lorido-Botran et al.
(2014). In general practice of engineering and computing
science, control theory is also exploited to achieve
target performance objectives. Some examples amongst
others include web servers Abdelzaher et al. (2002),
Gandhi et al. (2002), database servers Parekh et al.
(2004), cache storage systems Karlsson et al. (2005),
etc. Feedback controllers enable the computing system
to adapt to workload changes at runtime. However, a
badly designed controller may result in oscillation and
instability Zhu et al. (2009). Thus, careful attention is
required while designing a closed-loop control system.
Some of the recently identified challenges related to the
use of feedback controllers for achieving performance
objectives, include difficulty in constructing a system
model and the non-linear behavior of the system
Zhu et al. (2009). More specific challenges in the
context of cloud computing includes uncertainty (such
as difficulty in designing elasticity rules and inaccuracy
of monitoring tools), unavailability (such as detailed
knowledge about cloud environments and workloads)
and the unpredictable workload Farokhi et al. (2015).
Thus, new methodologies and techniques are required to
be explored in order to tackle these challenges.

The majority of control theoretic approaches to
resource provisioning are based on the use of one
controller, either adaptive or fixed Lim et al. (2009),
Lorido-Botran et al. (2014). Such approaches are based
on the use of a single system model that captures
the behavior of the system over the entire operating
period. As mentioned earlier, a modern web can face
varying workload at different time. Some examples of
the real workload can be seen in Figure 1. Different
workload patterns can be observed at different times,
such as Figure la demonstrates the flash crowd effect
with peak burst in workload traffic, whereas Figure 1b
shows diurnal pattern where the workload in day time is
high compared to night. While considering such scenarios
with a highly unpredictable workload, is it possible to
design a single system model that performs well all the
time? A definite answer to this question is difficult.
Therefore, alternative methods of control theory are
required to achieve performance objectives for highly
unpredictable computing systems, as existing research
in this regard is still in its early stages, despite recent
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progress reported in the use of control theory for self-
adaptation Farokhi et al. (2015).

The Multi-Modal Switching and Tuning (MMST)
Narendra et al. (2003) is an extended adaptive control
theoretic technique. It is based on the idea of having
multiple system models where the selection of most
suitable model is realized at runtime. This approach is
suitable for systems of multi behaviour and has been
also exploited for QoS management Patikirikorala et al.
(2011).

Here we report a similar idea that exploits the use
of a multi-controller based approach for cloud resource
provisioning in combination with fuzzy logic switching.
In this case, the individual controllers are specifically
designed for one operating region. Whereas, the selection
of a suitable controller at runtime is achieved using
a switching mechanism based on fuzzy logic. The key
reason of using fuzzy-logic is to incorporate uncertainty
and the qualitative selection of suitable controllers
among the array of controllers.

Experimental  results  obtained  using  this
methodology demonstrate better system performance
in comparison with the use of a single controller, which
cannot guarantee better performance in the presence
of high variability in workload and on account of the
non-linear nature of cloud applications.

The rest of the paper is organized as follows. The
background study of the related concept is given in
Section 2. In Section 3 we introduce the multi-controller
methodology for resource provisioning that includes the
framework, control policy and the switching mechanism.
Section 4 describes the experimental evaluation of
the introduced methodology in comparison with the
conventional approach. Section 5 describes related work
whereas Section 6 concludes the paper.

2 Background Study

2.1 Feedback Controller for Elasticity

A control theoretic approach to implementing elasticity
uses a feedback loop model, where a controller monitors
the inputs and outputs of the system to controls the
output around some desired value. Generally, such
control can be used to satisfy a constraint or guarantee
an invariant on the outputs of the system Ghanbari et al.
(2011). More specifically, the controller has to maintain
the value of a controlled variable, e.g. CPU utilization
or response time, close to a desired value by adjusting
a manipulated variable e.g. the number of virtual
machines (VM) Lorido-Botran et al. (2014). The input
to the target system is the controlled input/manipulated
variable, whereas the controlled variables are normally
measured by sensors.

Figure 2 depicts the mechanism of the feedback
controller, where it observes the system output to correct
any deviation from the desired value. Any changes in
the manipulated variables are applied using the target

disturbance
control

input (u)

measured
output (y)

reference control
input (r) error (e)
— | controller

target system |

Figure 2: Block diagram of feedback control system
adapted from Zhu et al. (2009)

system. The descriptions of various elements are the
following.

The reference input such as CPU utilization is the
desired value of the control variable where the error is
the difference between the desired and measured value.
The control input is the manipulated variable, such
as number of virtual machines, which will change the
behaviour of a system. The disturbances represent the
various changes in the system e.g. the incoming workload
where the measured output is the current measurement
of the control variable retrieved from sensors. The design
of a control system is composed of two steps, i.e. (1) the
formal construction of a system model that determines
the relationship between input and output; (2) design of
the controller based on the model obtained. Whilst using
the principles of control system design, various feedback
controllers are introduced for resource provisioning in the
cloud. These can be categorized as follows:

e Fixed gain controllers: The class of controllers,
where the gains of the controller remains fixed
over the entire operating time. The relationship
model of the input-output are obtained off-line.
This class of controller is very popular because of
its simplistic nature Lorido-Botran et al. (2014).
Proportional Integral Derivative (PID) is the most
common controller from this category. The control
law followed by PID controller is outlined below:

k
upir = kper + K; Y ej+ Ka(ey —ex—1) (1)

j=1

Consider the example of CPU utilization as control
variable and the number of VM as manipulated
variables of the system, the uy is the new number
of VM, e is the control error i.e. the difference
between the desired CPU utilization and measured
CPU utilization. Whereas K, K; and Ky are the
gain parameters. There are various well established
methods available to derive these gain parameters.
However, they can be derived off-line and remains
fixed during the entire period of operation. Various
available resource provisioning proposals include
integral approaches Lim et al. (2009, 2010),
Proportional Integral approach Park & Humphrey
(2009) and PID approach Zhu & Agrawal (2010).
Apart from its simplistic and easy to design
feature, PID controller works well in achieving
the desired performance for systems with little
variability in workloads Patikirikorala & Colman
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(2010). However, the performance suffers for
systems with dynamic and unpredictable workload
conditions Patikirikorala et al. (2011). Thus the
use of PID cannot achieve better performance for
application with mix-workload, where it changes
over the lifetime of the application.

e Adaptive controllers: These types of controllers
have the ability to dynamically adapt them by
adjusting the parameters of the controller with
respect to changes in the environment. Self-
tuning PID controllers and self-regulators are
common examples of such controllers Lorido-
Botran et al. (2014). Some proposals based
on adaptive controllers for resource provisioning
include Ali-Eldin, Tordsson & Elmroth (2012),
Ali-Eldin, Kihl, Tordsson & Elmroth (2012).
The nature of adaptability in this type of
controllers address some limitation of fixed gain
controllers and are suitable for systems with
slowly varying workload Patikirikorala & Colman
(2010). However, it still suffers from certain
problems such as being unable to cope with
sudden burst in workload and system with highly
changing conditions Lorido-Botran et al. (2014),
Patikirikorala & Colman (2010). Moreover, it
suffers from high computational cost because of the
estimation of parameters on runtime Patikirikorala
et al. (2011).

Model predictive controllers are another type
of feedback controllers that incorporate predication
features into the controller. These techniques follow a
proactive approach of elasticity to enrich the underlying
application to foresee future workloads for making elastic
decisions. Such controllers (e.g. look ahead controller
Roy et al. (2011)) solve the optimization problem by
taking a cost function to maintain the output value of
the control closer to a desired value.

Designing a single controller, which works well for
all kinds of applications, is not feasible, as there is
no optimal single controller Ali-Eldin et al. (2013).
Therefore, existing methods can be extended in order
to determine a better solution. One such approach is
to look into the multi-controller based approach. Some
of the available such proposals include Patikirikorala
et al. (2011), Ali-Eldin et al. (2013). These proposals are
further discussed in related work.

2.2 Fuzzy Logic

Fuzzy Logic refers to a computing approach, based on
the notion of degree of truth rather than true/false.
Fuzzy logic has also been used as a tool to deal
with scenarios of decision making in the presence of
uncertainty and imprecise information Zadeh (1996).
It is one kind of many-valued logic that is based on
approximate reasoning rather than fixed reasoning like
Boolean logic. Compared to Boolean logic a variable can
take a value in the range 0 to 1 rather than true or

false. This value determines the degree of membership
in the fuzzy set. An important use of the fuzzy logic
theory is its employment into the qualitative decision
making process by designing the rule based system. Such
a system enables qualitative reasoning, because the rules
can be made from meaningful words/labels that are
easily understood by humans.

The important component of any rule based system is
the knowledge base that represents the knowledge of the
underlying problem, which is a collection of rules in the
form of if-then, made using fuzzy logic statements. The if
part of the rule is referred antecedent and the then part is
called consequent. Applying fuzzy logic to any real world
application requires three steps Bai & Wang (2006):
(1) Fuzzification: the conversion of data often referred
to classical or crisp into fuzzy membership functions,
which are represented with linguistic variables; (2) Fuzzy
inference: the combination of the various membership
functions and the rules to obtain the fuzzy output;
(3) Defuzzification: the method of converting the fuzzy
output to crisp value is called defuzzification. The three
commonly used techniques for this purpose are Centre
of Gravity, Mean of Maximum and Height method Bai
& Wang (2006).

3 Resource Provisioning Using a Multi-
controller Approach With Fuzzy
Switching

The multi-controller approach is used for complex
dynamical systems, wherein an array of controllers
is designed such that each controller is optimized to
achieve better performance in a particular region e.g.
autonomous vehicle control systems ?. This research
inspires from Abdullah et al. (2007), Hussain et al.
(2012), where a multi-controller framework is developed
to simultaneously control the various component of an
autonomous vehicle such as throttle and brake to achieve
a desired speed and track.

The key idea behind this proposed control method
is the expert oriented distribution of the application
workload/arrival rate into various categories. This
categorization then enables the design of individual
controllers for each category. The fuzzy logic switching
enriches the framework to automatically select the most
suitable controller intelligently, keeping in view the
current state of the system. Thus, overall, it provides
more fine grained control over resource provisioning from
time to time. Figure 3 represents the structure of this
framework where the details of each component is given
below,

3.1 System Monitoring

The monitoring in an elastic controller makes use of
the cloud provider Application Programming Interface
(API) to get access to various system performance
metrics such as CPU utilization, request queue length,
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etc. The scaling decisions are dependent on these
performance metrics, because they determine system
behaviour at that point of time. This component of the
framework is responsible to keep track of all system
measurements. These measurement describe the current
system behaviour, which is then utilized by Fuzzy Logic
component to make decision suitable at that point of
time.

3.2 Control Policy

The control approach followed in this work is similar to
other control theoretic approaches for related problems
such as Lim et al. (2009, 2010), Padala et al. (2007),
except where we have used multiple controllers and a
switching methodology. An integral control is utilized,
because it removes the steady state errors Lim et al.
(2009). The performance metric used is CPU utilization.
The control law will adjust the number of VM in order
to keep the overall CPU utilization at a desired level
to achieve the performance goals. Equation 2 defined an
integral control,

Upp1 = ug + K * (Yref -Y;) (2)

The output of the controller (u;4+1) at each iteration
represents the new number of VM that determines the
scaling action (i.e. up or down) and is calculated on the
basis of current number of VM (u;). The parameter K;
is the integral gain parameter that can be estimated off-
line either by using methods like Ziegler Nichols, root
locus or an empirical method Parekh et al. (2002). The
desired CPU utilization is represented by y,.; where y;
is the measured CPU utilization, which is obtained from
system monitors and their difference is called control
error.

The three controllers employed are termed Lazy,
Moderate and Aggressive. In this case, each of these
controllers uses the same control law. However, they are
designed to be operated in different operating regions.

These operating regions are basically the segregation
of the workload/arrival rate into three levels i.e. Low,
medium and high realized using the expert based
categorization adapted from Jamshidi et al. (2014).
However, the selection of the controller is not only
dependent on arrival rate but other parameters too. The
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Figure 3: Resource provisioning framework using
multi-controller with fuzzy switching

Switch Virtual
machines

gain parameter for each controller can then be obtained
empirically by using workload of that level. The ranges
for each region are categorized using the fuzzy set and
adapted from the study carried out in Jamshidi et al.
(2014). The details of workload ranges and controller
selection mechanism are provided in the next section.

3.8 Controller Switching

The switching decision determines the selection of a
suitable controller at each instant of time on the
basis of the current system behaviour. The switching
part is constructed using a fuzzy logic-based system.
The construction of any fuzzy logic system consists of
three steps, i.e. extracting domain knowledge, defining
membership functions, and rules. For this research work,
we adapted the domain knowledge and corresponding
membership functions from the research carried out in
Jamshidi et al. (2014), where a fuzzy elastic controller
was constructed that performs resource provisioning
decisions based on the workload and system response
time.

e Domain (Elasticity) knowledge: In Jamshidi et al.
(2014), the knowledge base is constructed using
domain experts, i.e. architects and administrators.
Our adaptation of this work is only the extraction
of the knowledge with respect to workload and
response time. They have constructed a fuzzy set of
five members for each fuzzy variable i.e. workload
and response time. The set for workload are very
low, low, medium, high and wvery high. Similarly
for response time they have instantaneous, fast,
medium, slow and very slow. The ranges for these
linguistic variables are defined from a range [0,
100]. For further details refer to Jamshidi et al.
(2014). Here in this research work, we reduce the
levels from five to three levels by merging (1) In
workload - (very low, low) into low and (fast, very
fast) into high where (2) In response time (fast) is
changed into medium where (medium, low and very
low) is changed to low. These changes are made
to reduce the number of switching rules as well
as to characterize the workload into three levels
where each control can be tune with respect to that
kind of workload (arrival rate). Apart from these
two linguistic variables, we also consider control
error which is the difference between desired
CPU utilization and measured CPU utilization as
following,

€t = Yref - Y;E (3>

The control error is divided into three linguistic
variables, i.e. positive, normal and negative. The
positive means that the current CPU utilization is
less than the desired, the negative specifies that
it is more than the desired level, and the normal
specifies that either the error is 0 or within a
margin of uncertainty due to noise or inaccuracy in
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(c) Response time (d) Control error

Figure 4: Membership functions

the measurement. The full error range is [-100,100].
The final ranges for all variables are given in Table

1.
Fuzzy variable Set member Range
Low 0—48.9
Workload(Arrival Rate) Medium 30.7 — 67.94
High 56.41 — 100
Instantaneous 0—72
Response time Medium 6.1 — 20
Low 18.2 — 100
Negative -5 —-100
Control error Normal -10 — 410
Positive +5 — +100

2. Removed all those rules where control error is
positive and response time is either medium
or slow. The positive control error means
that a scale down operation is required and
such case can only occur when the existing
performance is instantaneous. Thus only 9
possible rules are left in this category, from
which those 3 are selected that produce better
results.

3. For the scale up operation , we considered
rules based on the following two guidelines

i if current performance is poor then select
those rules that react quickly.

ii if current performance is instantaneous
then consider saving cost.

The final rules obtained are given in Fuzzy rules
box where Figure 5 represents their illustration
of how the controller are selected in response to
the input combinations. The range here for the
Response time variable is reduced to 25 here for
display purposes as the output from that point
onward is always Aggressive.

Fuzzy rules Switching mechanism

Table 1 Ranges for fuzzy variables

e Membership functions: The next step is to
define a method that determines how the crisp
input is converted into fuzzy values. This is
achieved through the membership function. The
membership function defines the degree of the crisp
input against its linguistic variables in the range
of 0 to 1. Defining membership function for both
input and output variables are the first step of
fuzzification Bai & Wang (2006). In this research
the membership function is adapted from Jamshidi
et al. (2014) with a modification to comply with
the changes made in the domain knowledge. Figure
4 represents these membership functions.

e Fuzzy rules: The fuzzy rules describe the
relationship between inputs and outputs. In this
case, the inputs are arrival rate, response time
and control error, whereas the output is one of
the controllers. In order to obtain the fuzzy rules
for switching mechanism, we initially listed every
possible combination of inputs and outputs. We
then performed the following steps in order to
obtain the final switching rules,

1. Removed all those rules where control error is
normal. The normal control error means that
no elastic decision is required at this instant
of time because the current CPU Utilization
is within acceptable reference range.

1: IF arrivalRate IS high AND responseTime IS instantaneous
AND error IS positive THEN controller IS lazy;

2: IF arrivalRate IS medium AND responseTime IS instantaneous
AND error IS positive THEN controller IS moderate;

3: IF arrivalRate IS low AND responseTime IS instantaneous AND
error IS positive THEN controller IS aggressive;

4: IF arrivalRate IS high AND responseTime IS instantaneous
AND error IS negative THEN controller IS moderate;

5: IF arrivalRate IS high AND responseTime IS medium AND
error IS negative THEN controller IS aggressive;

6: IF arrivalRate IS high AND responseTime IS slow AND error
IS negative THEN controller IS aggressive;

7: IF arrivalRate IS medium AND responseTime IS instantaneous
AND error IS negative THEN controller IS moderate;

8: IF arrivalRate IS medium AND responseTime IS medium AND
error IS negative THEN controller IS aggressive;

9: IF arrivalRate IS medium AND responseTime IS slow AND
error IS negative THEN controller IS aggressive;

10: IF arrivalRate IS low AND responseTime IS instantaneous
AND error IS negative THEN controller IS lazy;

11: IF arrivalRate IS low AND responseTime IS medium AND
error IS negative THEN controller IS moderate;

12: IF arrivalRate IS low AND responseTime IS slow AND error
IS negative THEN controller IS aggressive.

The complete process of the fuzzy part works as
follows. The System Monitoring component measures
the input values, which is then fuzzified using the
membership function. The fuzzy inference engine will
determine the fuzzy output from the rules using
defuzzification process to identify the suitable controller
at that point of time. The Switch then enables the



Towards workload-aware cloud resource provisioning using a multi-controller fuzzy switching approach 7

suitable controller as per the decision made by Fuzzy
Logic component, where the elastic application executes
the scaling decision as per the output of the controller.

The defuzzification process ensure the final output
even in case of multiple rules are active at a time.
E.g. Consider the scenario in Figure 6, where for a
given input two rules are active i.e. Rule 1 and Rule 2.
The output of both rules conflict with each other i.e.
Rule 1 suggests Lazy controller where Rule 2 suggests
Moderate controller. We have used the Centre of Gravity
method as the defuzzification method because of its
popularity and usage in real applications Bai & Wang
(2006). This method calculate the area of membership
functions for all the active rules against the range of
fuzzy output variable, which in this case is controller and
then calculate the centre of area using Equation 4.

b
CoG — M 4)

f: f(x)dz

Solving Equation 4 for the normalized input values of
Figure 6 i.e. when (arrivalRate=63, responseTime=3
and error is positive) gives the output value 8.6, which
represents Lazy controller.

4 Experimental Evaluation

Here, we present an experimental evaluation of the
suitability of the proposed methodology in comparison
with a conventional integral controller. For this purpose
we have extended the CloudSim Calheiros et al. (2011)
framework to perform the necessary experimentation.
Moreover, JFuzzyLogic Cingolani & Alcala-Fdez (2012)
library is exploited to implement the switching logic.
A self-written workload generator for producing various
synthetic random workloads is also utilized. The
following two criteria are considered for the evaluation:

e SLO violation: Service Level Objectives (SLO)
are the measurable elements of a Service Level
Agreement (SLA). An SLA is an agreement
between the provider of the service and the
consumer. An SLO violation will be considered, if
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a service request does not complete its execution
with in defined response time.

e Running time: This is referred to as the total
running time of all virtual machines till the
completion of an experiment. Normally cost is
considered for such evaluation. However, the
reason of selecting running time in minutes is that,
the experiments are performed on workloads that
consist of few hours time span. Therefore, in such
a situation, where partial hours are considered as
full hours, the calculation of costs per hour basis
cannot provide a good estimate for comparison.

In CloudSim, the requests/jobs of a workload are
submitted with the length of the job that determines
the service time of that job. We consider a fixed service
time of 400 milliseconds for each job, where the desired
response time is considered as 1.6 seconds. Thus an SLO
violation will be considered, if a job takes more than
1.6 seconds. The Running Time of a virtual machine
is the time since it is created until destroyed, either
as a result of a scaling decision or when the execution

controller

ResponseTime workinad

(b) When the control error is positive (scale down)

Figure 5: Action surface for controllers fuzzy switching mechanism
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finishes completely. In all experiments, virtual machine
boot up time are not considered and a 5-minute cool
down period is applied between two scaling decisions.
Two scenarios are evaluated here, one using synthetic
workloads, whereas the other is based on real workload
extracted from Wikipedia traces Wikibench (2009).
The various workloads used for evaluation contains
arrival rate of up to 6000 job requests per minute, as
can be seen in Figure 7. Each workload is categorized
into three levels as per the percentage ranges defined
for arrival rate in the switching logic section. The
gain parameters of the controllers are obtained off-
line using an experimental trial and error method by
generating various synthetic random workloads based
on a specific workload category, such as for Lazy
gain, the workloads with low arrival rate are utilized.
Different experiments are then performed using these
random synthetic workloads with various gain values.
The gain with best results i.e. with a low number of
SLO violation and small running time are selected for
final experimentation from each category. Whereas gain
for conventional controller has obtained with workload
from minimum possible requests per minute to maximum
requests per minute. The summarized gain parameters
used for final experimentation can be seen from Table 2.

Controller Gain
Lazy -0.08

Moderate -0.1
High -0.8

Conventional -1.1

Table 2 Integral gains used for experiment

4.1 Synthetic

Three synthetic workloads are generated. Each workload
is generated for two hours span with 8 chunks, whereas
each chunk is from a different category that is selected
randomly, except the 1st chunk. The 1st chunk contains
arrival rates from low, moderate and high categories
respectively as shown in Figure 7a — 7c. For each minute
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Figure 8: Aggregated results for synthetic workloads

the number of requests is generated randomly based on
the respective category range.

Figure 8 presents the aggregated results obtained.
As can be seen, in comparison with single integral
controllers, the multi-controller approach with respect to
Running Time is comparatively expensive but in smaller
magnitude. E.g. In case of WL_High, the RunningTime
of multi-controller is higher (5678 vs 5279) than
conventional. However, the multi-controller approach in
terms of the performance parameter is much better,
i.e. the percentile time of SLO wiolation occurred in
experiment. E.g. in case of WL_High, The number of SLO
violation is 5.92 % using our multi-controller approach,
where for the same experiment; it is 16.79 % using
the conventional approach. This shows that the multi-
controller approach in comparison with other single
controller based approaches has significantly higher
potential to guarantee system stated performance.

4.2 Real Data: Wikipedia Trace Logs

The Wikipedia trace logs presented of five days recorded
from 18th September, 2007 to 23rd September, 2007
presented in Figure 1b. This trace is scaled down to
2 hours horizontally and to 6000 requests per minute
vertically, as shown in Figure 7d for the experimentation.
The results of the experiment itself are shown in Figure
9. These results are approximately identical to the results
described above in synthetic workload scenarios. The
multi-controller approach in terms of Running Time is
comparatively expensive but in smaller magnitude (5482
vs 4723) than the conventional approach, whereas in
terms of SLO violation, it performs significantly better
(6.06 % vs 10.14%).

The key objective of an elastic controller is to
maintain better performance by minimizing the number
of SLO violation close to zero. In both of the scenarios
i.e. synthetic and real, the multi-controller approach
although remains slightly expensive. However it performs
significantly better in terms of maintaining system
performance by reducing the number of SLO violation
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from an average of 19 % to 8% in synthetic case and
similarly from 10% to 6% in the case of real workload
example. The reason of being expensive is the design
of the rules i.e. in scale down, if arrival rate is higher
then prioritize performance otherwise saving cost as
can be seen from Section 3.3. Thus depending on the
situation, in comparison with single controller approach,
the proposed approach adapt to suitable controller to
achieve better performance.

Passino et al. (1998) suggests the consideration of two
important factors i.e. minimizing the amount of memory
used and computation time while implementing the
fuzzy based control mechanism. Thus considering both
of the issues, the switching mechanism is designed with
minimum number of rules i.e. 12 in total. The small set of
rules avoid memory usage by computing directly at each
instant of time rather than from any persistent storage.
Moreover, in order to avoid the computational overhead
each input and output is defined using a combination of
triangular and trapezoid functions only and with the use
of just three membership functions. The triangular and
trapezoid functions has the advantage of being simple
and efficient in comparison with other Passino et al.
(1998).

5 Related Work

Control theory is one of the available techniques
employed for dynamic resource provisioning in cloud
computing. There are various kinds of control theoretic
approaches available in the literature. However, to the
best of our knowledge, there is no prior work that
exploits the use of multi-controller based approaches
in combination with fuzzy logic to make informed
decision based on current system behaviours. Some of
the approaches exploited in similar scenarios are briefly
summarized in this section.

A multi-model framework is proposed using MMST
for QoS management in Patikirikorala et al. (2011).
This framework is based on the use of multi-controllers;
where each controller is designed for a different operation
region. A particular controller is selected using model
prediction error only. Moreover, details of how the
different operating regions shall be realized are not
available. Contrary to this approach, the proposed
approach used not only control error but the current

state of the system to select the most suitable controller.
Moreover, the operating regions are realized using
experts based categorization of workloads.

Ali-Eldin et al. (2013) proposed an analysis technique
for workload classification at the data center level.
This classification is then used to detect a suitable
controller which results in better resource provisioning.
This approach classifies one workload from another by
determining the pattern of a workload. Based on the
pattern, a workload is assigned to a specific controller
that performs better for that kind of workload. Our
approach differs in the context, where we classify the
workload of an elastic application into various categories
and then use fuzzy switching to select the most suitable
controller in runtime.

A Proportional threshold controller by Lim et al.
(2009) is based on a dynamic range of reference point
rather than a fixed set point. A similar technique is
also used for elastic storage Lim et al. (2010). Both
of these approaches are however based on the use
of a single controller. Other approaches include the
use of adaptive techniques that dynamically adapt to
changes at runtime. Such as adaptive hybrid elasticity
controller by Ali-Eldin, Tordsson & Elmroth (2012),
adaptive controller for bursty workloads Ali-Eldin, Kihl,
Tordsson & Elmroth (2012) and a self-tuning controller
for predictable eScience Park & Humphrey (2009). All
these are based on the dynamic readjustment of the gain
parameters. On the contrary, our approach provides an
adaptive methodology using multi-controller and fixed
gains that do not require any on-line estimation or
learning technique.

There are various fuzzy based controllers used to
implement elasticity in cloud Jamshidi et al. (2014),
Xu et al. (2007), Wang et al. (2011). The fuzzy rule
engine in such proposals drives the elastic system that
determines how to scale. Such approaches in general
are different from control theoretic approaches where
the controller used satisfies a constraint or guarantees
an invariant on the outputs of the system Ghanbari
et al. (2011). However, this research work partially builds
on the expert based categorization for workload and
response times for the autonomic fuzzy based elastic
controller Jamshidi et al. (2014).

6 Conclusion

We solve the problem of horizontal elasticity of cloud
computing using a novel multi-controller approach with
fuzzy switching. The introduced control methodology is
used to dynamically alter the number of allocated virtual
machines in order to keep the CPU utilization close to a
desired level. We compare the introduced methodology
with the conventional single controller based approach
used for similar problems. Initial experimental results
performed on various synthetic and real workloads
demonstrate that the use of a multi-controller with
intelligent switching mechanism achieves much better
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performance than its conventional counterparts. Thus
it enhances the capability of an elastic application to
guarantee the system stated performance.

Ongoing and future work will continue to further
address the main challenges associated with multiple
switching control systems. This includes the following:

i SASO properties Analysis: SASO stands for
Stability, Accuracy, Short settling, and Overshoot,
which are the most important properties that
have to be considered for a control system when
evaluating. The analysis of these properties will help
in the formal evaluation of the proposed control
methodology in comparison with the state of the art
approaches.

ii Chattering: One of the main issue for many switching
control methodologies, e.g. sliding mode control,
that results in high oscillation in the output of the
system. It is consider more serious than transients
encountered during the controllers’ switching when
the scheme is not ’bumpless’.

iii Performance: In future, the use of additional real case
studies and a full range of cloud workload patterns
will be explored for a more detailed comparative
performance analysis and benchmarking against
other state-of-the-art approaches.
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