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Abstract. Superspreaders are an important phenomenon in the spread
of infectious disease, accounting for a higher than average number of new
infections in the population. We use mathematical models to compare the
impact of supershedders and supercontacters on population dynamics.
The stochastic, individual based models are investigated by conversion
to deterministic, population level Mean Field Equations, using process al-
gebra. The mean emergent population dynamics of the models are shown
to be equivalent with and without superspreaders; however, simulations
confirm expectations of differences in variability, having implications for

individual epidemics.

1 Introduction

Traditional models of an epidemic consist of ordinary differential equations
(ODEs) that capture the mean change in the number of infected individuals
in the population over time [12,1]. Such models have a well established history,
with an associated set of analytical tools. In these models implicit assumptions
are made about how individual behaviour affects the population as a whole. An
alternative method of modelling an epidemic comes in the form of individual

based models [14]. These models are typically studied by stochastic simulation



of a population, or by considering the model as a Markov chain problem. Again
there is an associated range of analytical tools. In such models explicit assump-
tions are made about the behaviour of individuals, which can be based on field

observations of a population.

Working at either level of abstraction, individual based or population based,
brings the advantages mentioned above; however, if we independently develop
both types of model, we are left with the problem of how to formally relate the
behaviour of individuals to that of the system as a whole. This is important
when we wish to know how population level behaviour emerges from individual
behaviour. Our previous work [18,20] has developed a method which allows us
to write one model (from an individual based perspective) and to automatically
derive the other model (the population level). This approach gives the advan-
tages of having both kinds of model, with relationship between the models being
formal and explicit. In this particular case of epidemiological modelling, the ap-
proach recognises that the transmission process, which is at the heart of infection
dynamics, reflects the behaviour of individual hosts, but that for many practi-
cal purposes, it is necessary to understand, ideally analytically, the dynamics
of the whole system. Conventionally, transmission terms in population models
have been derived informally from implicit models of individual behaviour. For
example, many models assume that hosts in a population make contact with
one another at random, and hence use a simple density-dependent transmission
term to reflect a simple linear increase in the rate of contacts with host density.
However, while this may suffice for very simple assumptions, such as random
mixing, for more complex and biologically realistic patterns of behaviour, trans-
mission terms cannot simply be deduced. Our approach, therefore, allows us to

expand the range of biologically realistic transmission behaviours that can be



incorporated into population level models, and in this paper, we demonstrate
our approach through application to the idea of superspreaders.

Superspreaders are infectious individuals who are somehow responsible for
more infections in the population than average [11, 8,15, 16, 7, 25]. The 80:20 rule
is often cited in this regard, i.e. twenty percent of the infected individuals are re-
sponsible for eighty percent of further infections. The archetypal superspreader
is Typhoid Mary. Mary Mallon was a cook in America in the early 1900s [9)].
She was exposed to typhoid and became an asymptomatic carrier of the bac-
teria. Health officials identified her as the source of many typhoid infections,
and eventually quarantined her to stop the spread of the disease. She remained
incarcerated until her death in 1938. Typhoid Mary is not an unusual case. In
July 2008 UK media reported the story of 43 typhoid carriers who had been
locked up for life between 1907 and 1992 in an asylum. They were deemed a
public health risk [4].

Superspreading is also associated with other diseases, including measles and
SARS [15]. Two main hypotheses have been presented regarding the mechanism
of superspreading: we will refer to these here as supershedders and supercon-
tacters. Supershedders transmit more disease per contact, making subsequent
infection more likely, while supercontacters transmit more disease by making

more contacts in the population. Two obvious questions arise:

1. Does having superspreaders in a population affect the overall epidemiological
dynamics, in particular the form of the transmission term?
2. Does it matter to the formulation of the transmission term what type of

superspreaders are in the population?

Models of epidemics featuring superspreaders have been addressed to some
extent by, for instance, Kemper [11], Lloyd-Smith et al. [15], Fujie and Oda-

gaki [7], but here we are rigorously deriving the population level behaviour



from individual interactions. Using individual based modelling, we can express
the distinctive behaviour of supershedders and supercontacters. The models
can be compared using simulation but we also convert both models to popu-
lation level Mean Field Equations (MFEs), allowing a more analytical approach.
This approach permits investigation of the effect of individual interactions in
the individual-based model (expressed using the process algebra Weighted Syn-
chronous Calculus of Communicating Systems (WSCCS)) on emergent popu-
lation behaviour in the deterministic population-based models (expressed as
MFEs). In particular, we can directly investigate the link between the individual

interactions of superspreaders and the resultant transmission term.

Background information is given in Section 2: Section 2.1 presents the nota-
tion used for the models, and Section 2.2 presents an overview of the technique
of [17,18] for deriving MFE. Appendices A and B give some additional detail.
The core of the paper comprises two models of the different types of super-
spreaders, and comparison of those models via derived MFE. This is presented
in Section 3. In order to answer the superspreaders questions above, results from
the models are presented in Section 3.3. A discussion of those results, and direc-

tions for future work, are presented in Section 4.

2 Background

Process algebra [2] is one of a range of Computer Science techniques being ap-
plied to biological systems. While mathematical models have been used in biology
for some time, the computational approach is relatively new, with the majority
of applications being in the last ten years. Computer Science techniques can be
used to formally express theories about the components of a biological system

and the way those components interact. More importantly, just as with mathe-



matical models, those theories can then be explored through computational and
analytical methods.

Process algebra has been strongly adopted for use in Systems Biology, e.g.
[23, 5, 3]. Our group has pioneered the use of process algebra for epidemiology [22,
17,20]. Process algebras are well suited to describing biological systems which
may typically be viewed as networks of (many) interacting components, where
the components themselves may have complex, nondeterministic, individual be-
haviour. In this way, process algebras are similar to Petri Nets. See e.g. [21] for
an overview. Both approaches have a formal mathematical basis, the advantage
of executability, and substantial supporting analytical theory. Petri nets are ap-
pealing to use because of their graphical nature, and are particularly useful when
true concurrency is required (i.e. actions must occur simultaneously, rather than
interleaving concurrency where actions occur discretely, but in any order). For
the work presented here, the main advantage of process algebra over Petri nets
is an analysis technique based on extraction of Mean Field Equation semantics
from process algebra. Process algebra also offers compositional reasoning over

models, although this is not utilised here.

2.1 WSCCS Syntax and Semantics

In WSCCS (Weighted Synchronous Calculus of Communicating Systems) the
basic components are actions and the processes (or agents) that carry out those
actions. The actions are chosen by the modeller to represent activities in the
system. For example, infect, send, receive, throw dice, and so on. The special pre-
defined action 4/ simply indicates the passing of time. Processes are constructed
via a small number of operators, allowing ordering of actions, probabilistic choice
between actions, and parallel composition of processes. The formal syntax and

semantics of WSCCS is presented in Tofts [24], a portion of which is repeated



S1=1./: 852
def

IT=(1=pei)/ 124 peiy/ : 12 x T2
R1I=1./:R2

52 = w.infect : SI3+1.4/: 53
12 = weinfect : I3+ 1./ : I3
T2 = winfect: 0+1.4/:0

R2 = w.infect: R34+ 1./ : R3

S3=1./:51

SI3= piy/: 11+ (1 —pi)/: S1
I3 p.y/:RL+(1—p,)/: 11
R3=1.,/: Rl

Popn = S1{s} x I1{i} x R1{r}[{/}

Fig. 1. Naive SIR model

in Appendix A here for easy reference. In Fig. 1 a simple model of an SIR

epidemic [12] is presented to illustrate the language.

The model defines twelve agents. The susceptible individuals are modelled
by the agents S1, 52, S3 and SI3. The infected individuals are modelled by
the agents I1, I2, T2 and I3. The removed individuals are modelled by the
agents R1, R2 and R3. The system as a whole (described by Popn) comprises s
susceptible individuals, ¢ infected individuals, and r removed individuals acting

in parallel (the x operator).

This is a three stage model reflecting three components of infection trans-
mission. In the first stage, the infected individuals have a probabilistic choice
to make themselves available for contact or not. In the second stage, contact

between individuals happens. In the third stage, contacted susceptibles have



a probabilistic choice regarding whether the infection takes hold or not. This
reflects three components of disease transmission: probability that a contact be-
tween two individuals happens, probability that contact is between a susceptible
individual and an infected individual, and probability of getting the disease fol-
lowing such a contact. Note that choices are made probabilistically, and that the

agents have no decision making capabilities.

The process which can perform the action a and then evolve to process P
is written a : P where a is an action, and P a process. For example, the S1
process performs a 4/ action and then becomes S2. Weighted (probabilistic)
choice is expressed with the + operator. For example, process I3 can recover
with probability p, (and become the process R1) or can continue to be infected

with probability 1 — p, (and become the process I1). The agent 0 does nothing.

Communication occurs via the paired actions infect and infect. These can be
thought of as input and output respectively (so T2 outputs some infection, and
S2, I2 or R2 may absorb that infection, with differing results). The special weight
w prioritises communication; if the infect action can happen, it must. WSCCS
is a synchronous calculus: in every time step every agent has to perform some
action (hence the 4/ actions above — these processes are just marking time until
the next stage). By combining simple known individuals in parallel in Popn,
complex overall population level behaviour emerges. The semantics of WSCCS

is transition based, yielding a Markov chain interpretation of the model.

A number of analyses are available:

1. stochastic simulation,
2. Markov analysis of the underlying semantics,
3. verification of logical properties,

4. algebraic manipulation of the model.



The first three of these could be computationally expensive, requiring generation
of a large underlying state space. Instead we prefer algebraic manipulation of the
model; in this case to transform the model into an equivalent population based

model in the form of MFEs.

2.2 Deriving Mean Field Equations

The authors have previously presented [17, 18] a method to transform a WSCCS
model to MFEs. We do not repeat the method here, but give an overview of
benefits and an illustration by application to the simple SIR model of Fig. 1.
The method gives an alternative semantics for WSCCS in terms of Mean Field
Equations. Algebraic rules are applied to the WSCCS syntax of the model to ob-
tain a set of first-order difference equations expressing the average behaviour of
the model. Making use of a central limit theorem, first presented by Kurtz [13],
McCaig [17] showed that this approximation to the original transition based se-
mantics offers a close match for large populations and an exact match at the
limit, where the overall population size is infinite. There are four benefits to this
approach. A new viewpoint of the system is produced, rigorously and symboli-
cally. The resulting MFEs may be amenable to further algebraic analysis using
standard mathematical techniques. The problem of handling exponentially in-
creasing state space is avoided. Finally, and to the biologist most importantly, it
is possible to exploit known (measured) information about individual behaviour
and to link this with emergent population dynamics.

The method is based on algebraic transformation of the syntax of the model.
A table is constructed noting the change in the number of each type of agent
in the system using the function in Fig. 2. This is a simplified version of term
derivation originally presented in [19]. Some auxiliary definitions are required.
Processes can be classified by syntactic features as: communicating (having an

action enabled that is involved in a communication), probabilistic (having only



function calculateTerm (A, w,a): String {
case A in {

probabilistic(A): return w x A;

communicating(A) and priority(A):
term = (Ay * collaborators(A))/(Ar + competitors(A));
if a equals \/ return (A - term) else return term;

communicating(A) and not priority(A):
term = (A x collaborators(A))/(As + collaborators(A) + competitors(A));
if a equals \/ return (A - term) else return term;

1

Fig. 2. Pseudo code to calculate proportion of agents at time ¢ + 1

actions enabled that are not involved in communication), and priority (commu-
nicating and using w weights). For a process communicating on action a, we
define two groups of agents involved in the synchronisation: collaborators are
those processes with the matching action @, and competitors are those processes

with the same action a. We illustrate the use of the method via a simple example.

Derivation of MFEs for a Simple SIR Model. Consider again the simplistic
model of disease spread given in Fig. 1. Transition tables track the evolution of
numbers of agents, and are indexed by (agentl,action) x (agent2) . An entry
indicates the number of agentl evolving to agent2 , by performing the action.
For example, all S1; (the S1 agents at time ¢) evolve to S2;41 (the S2 agents at

time ¢ + 1), but only p.;I1; of I1; evolve to T2 1.

The populated parts of the transition table for the system of Fig. 1 are as

follows:

52,1 12,01 T241 R2im
(S1:,4/)| S1y
(114, /) (1 =pei) Il + peille peilly
(R1t, /) R1;




0 3,11 SI3,s1  I3101 B3
(52, infect) (Szﬁ%
(52, v) 2 = Gm i
(124, %) 12,
(T2, %) T2,
(R24, %) R2,
Sy My Rl

(53¢, V) 534

(SI3¢,\)|(1 —pi)SI3¢  piSI3:

(I3:,V/) (L=pr)I3¢ prl3y

(R31,V/) R3,

Each column leads to a MFE for that agent, but 0 is ignored here since this is

not of interest to us. The method outlined above generates the following MFEs

_q _ piSil
Si+1 =5 N,
piSel
I =(1—p.)1 —_—,
41 = ( pr)l + N,
Rt+1 = Rt erTIt s (1)

Equations for S1443, 11443, R1;43 in terms of S1y, I1;, R1; are produced by sub-
stitution. These are rewritten as one stage difference equations to give eqn (1),

since we are not interested in the intermediate stages of the model.

3 Models

The models presented below are variations on the basic SIR model given in
Fig. 1, with the addition of births and deaths (for biological realism), and of

course, superspreaders. In both cases, the superspreaders are added as a new type



of infected individual U which has different behaviour to the existing infected

individual. Death due to the disease is ignored, but is easily added if required.

3.1 Supercontacters

In the model of Fig. 3 the superspreader is a supercontacter. That is, this individ-
ual is more gregarious and makes more contacts with the rest of the population
than the average infected individual. This is modelled here by setting a special
contact rate for supercontacters: p., = ap.;, where a € IR is the supercontac-
ter multiplier, @ > 1. In other words, supercontacters are more likely to make
contact.

This is not the only way to express that an individual makes more con-
tacts [17]. For example, the supercontacter may have the same p.; as the infected
but evolve to TU2 in which multiple infect actions can be performed. That model
produces the same results as here, with the constraint that the multiplying fac-
tor must be integer (the number of actions can only be a positive integer). Here,
a can be non-integer.

Stage 1 (S1,11,U1, R1) is a birth stage. All agents reproduce with proba-
bility p,. Birth is density dependent (as described in [19]). Newborns are not
available for infection in subsequent stages (B2, B3). Additionally, the infected
and supercontacter agents probabilistically become available to contact others
(so only a subset of infected individuals try to make new infections in the next
stage), with probabilities p.; and p., respectively. Stage 2 is the infection stage.
Communication happens between infected individuals of either type and the rest
of the population.

In stage 3 the agents SI3, which have come into contact with the infection,
become infected with probability p;. A probabilistic choice is also made as to

whether the new infected individual is a supercontacter or not (with probability



o "= pyy — k([S1] + [I1] + |U1] + |R1))

S1 = py/: 52 x B2+ (1 —py).y/ : 52
1T = py(1 = pei)y/ : 12 X B2+ pypeiny/ : 12 x T2 x B2 +
(1 =)L = pei)/ : 124+ (1 — pp)pei/ : 12 X T2
Ul = pp(1 = pew) v/ : U2 X B2+ pppeu-/: U2 x T2 x B2 +
(T =pp)(1 = pew) v/ : U2+ (1 = pp)peu-v/ : U2 x T2
Rl = py.\/: R2x B2+ (1 —p)./: R2

52 = w.infect: SI3 +1./: 53
12 = w.infect: I3+ 1./ : I3
T2 = winfect:0+1.4/:0

U2 < w.nfect: U3 +1./: U3
R2 = w.infect: R34 1./ : R3
B2 = 1../: B3

53 L (1= pa)/: S14pa/: 0
SI3 = pi(1—ps)y/: 11+ pipsy/: Ul
+ (1 =pa—pi)-v/: S1+pay/:0
I3 = po/: RU+ (1= pr —pa)y/ s Il +pay/: 0
U3 = p/: RL+(1—pr —pa)/ : UL +pg.y/: 0
R3 = (1—pg)y/: R1+pgy/: 0
B3 = 1./:51

Popn C = (S1{s} x I1{i} x Ul{u} x R1{r})[{\/}

Fig. 3. Contact superspreader model. I and U make at most 1 contact per
iteration with probabilities p.; and p., = ap.; respectively



ps). Lastly, agents may die of natural causes (with probability pg) or recover
from illness (with probability p,.).

The MFEs arising from the model in Fig. 3 are

_ pipeiSi(le + ally)

Si1 = (1 —pa)S: + (Pry — EN¢) Ny

Nt
It‘*‘l:(l_pd—pr)lt—}-pl( pk)pcjzvt( tta t)’
t
iDs ciS I, + aU,
Upsr = (1 - pg — po)U; + 2P th t)7
t
Rip1 =1 —pa)R +p, (I +Uy) . @

3.2 Supershedders

In the model of Fig. 4 the superspreader is a supershedder. That is, following
infection, this individual delivers more infection to the rest of the population per
contact. Some authors have hypothesised that this is due to genetic factors in-
fluencing, for example the shape of the throat. Another hypothesis is that these
individuals have an altered or compromised immune system, either intrinsically
(genetic differences between individuals) or perhaps as a result of co-infection
with another pathogen (HIV-AIDS being a notable example in humans). Super-
shedding is modelled here by setting a special infection rate for supershedders:
Piv = ap;, where a € IR is the supershedder multiplier.

The model is constructed in three stages in much the same way as the model
of Fig. 3. In this case both types of infecteds are equally likely to make an
infectious contact, but as mentioned in Section 2.2 a different communication
action is used for supershedders, to allow differentiation between contact with a
supershedder and contact with a normal infected individual. This is important
because in stage 3 agents SU3 have been contacted by a supershedder and get
the infection with probability p;,. Agents SI3 have been contacted by a normal

infected individual and get the infection with probability p;. An alternative mod-



po " p0 =k x (|S1] + [11] + |U1] + |R1])

ST = py/:82x B2+ (1 —pp).y/: 52
IT = pp(1 = pei)y/ : 12 X B2+ pppei/ : 12 x T2 x B2+
(1 —pp)(X = pei)y/ : 12+ (1 = pp)pei/ : 12 x T2
Ul = pp(1 = pei)/: U2 X B2+ pypesn/: U2 x TU2 x B2 +
(1 =pp)(L = pei)v/ 1 U2+ (1 = pp)pei/ : U2 x T2
Rl < pyy/: R2Xx B2+ (1 —pp)./: R2

52 = w.infect : SI3 + w.infectU: SU3 +1.,/: S3
I2 = w.infect : I3+ w.infectU: I3+ 1.4/ : I3

T2 = w.infect: 0+ 1./: 0

U2 = w.infect : U3 + w.infectU: U3 + 1./ : U3

TU2 = w.infectU:0+1.,/:0

R2 = w.infect : R3 + w.infectU: R3+ 1.,/ : R3
B2 < 1.,/: B3

S3 = (1—pg)/: S1+pa.y/: 0
SI3 = pi(1—ps)/: I1+pips.y/: Ul
+(1—=pa—pi)y/: S1+pag+/:0
SU3 = piu(1 = ps)v/ i 11+ pupsy/ : Ul
+(1 = pa— piw)vV : S1+pa+/: 0
I3 = po/:RI+(1—pg—pr)/: I14+pay/: 0
U3 < po/ : R+ (1—pg—pr)/: Ul +pg.y/: 0
R3 = (1 —pa)/: R1+pa/:0
B3 = 1./:51

Popn_S = (S1{s} x I1{i} x Ul{u} x R1{r})[{V}

Fig. 4. Supershedder model with density dependent probability of giving birth




elling approach is to allow infected individuals and supershedding individuals to
try to infect in separate steps, but the solution presented here is felt to be more
intuitive in terms of expressing individual behaviour.

Technically, the method of [18] does not apply here because two different
actions occur in the same step. Appendix B details the extension to the method

required. The model in Fig. 4 leads to (2), the same MFEs as for Fig. 3.

3.3 Results

Two models of the superspreading phenomenon have been presented. The mod-
els are rather different in individual behaviour and some difference in population
dynamics may be expected; however, the derived mean field equations (2) are
identical. As expected simulation of the models also gives the same mean be-
haviour at the population level. In Fig. 5 we plot the mean of 1000 simulations
of each model. The parameters here were chosen to reflect the 80:20 rule of in-
fection by superspreaders. Equivalence of both the MFEs and the simulations
suggests that the particular mechanisms for superspreading are not important
if we are only interested in average behaviour of the population.

It has been shown [17, 18] that in the limiting case, where the total population
size is infinite, MFEs will exactly match the mean behaviour of a model. Fig. 6
plots the mean of 1000 simulations of the model of Fig. 4 and the time series
of the MFEs. The MFEs offer a very good approximation to the mean of the
simulations, lying well within the region defined by one standard deviation either
side of the mean of the simulations. An almost identical graph would be produced
for the model of Fig. 3 (given Fig. 5).

In addition to the MFEs and the simulations being equivalent, further en-
dorsement of our result may be obtained through the literature. Kemper [11]
proposed an ODE model of a system featuring superspreaders. By removing the

terms for birth and death from (2) our MFEs match Kemper’s ODEs under
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Fig. 5. Mean of total infecteds (I + U) of 1000 simulations with pyg = 0.2,k =
0.0008, p.; = 0.06,pq = 0.001,p; = 0.06,x = 16,ps = 0.2,p, = 0.002, Sy
100, 1y =20,Uy = 5: - _ _ Fig. 3, __ Fig. 4.

| +U

140}
120}
100;

8o
60} /-
a0/
20/

500 1000 1500 2000t ™

Fig. 6. Total infecteds (I + U) for Fig. 4 with pyy = 0.2,k = 0.0008,p.; =
0.06, pg = 0.001, p; = 0.06,a = 16, ps = 0.2, p, = 0.002, Sy = 100, I, = 20,Uy =
5: __ MFE; Simulations _ _ _ mean, ... mean+ SD.

the following transformation of our parameters: U = I1,I = I, p;peia/ N =
1, PiPei/N = 12,ps = B,pr = 1.
It is reasonable to ask how the models of Figs. 3 and 4 compare with a similar

SIR model without superspreaders. The MFEs (2) can be shown equivalent to



those of the SIR model, with modified parameters p}, p’, and «’. This is done by
setting o’ = 1, so that I and U have the same behaviour, and equating transmis-
sion in the non-superspreader SIR model with transmission in the superspreader

model, such that

PipL;Se(Ir + Uy) _ PipeiSt (I + aly) (3)
N; Ny '

By noting from (2) that Uy = ps(I; + U;) and I; = (1 — ps)({y + U;) we can
simplify (3):

Pl Se (I + Uy) _ PieiSt (1 — ps) Ly + Up) + aps (Lt + Uy))
Nt Nt

PiDe;i = Pibei(1 — ps + aps)

i.e. the probabilities of making contact and becoming infected after contact are
merely rescaled in the non-superspreader model to achieve the same mean be-

haviour.

At this point we ask, do superspreaders make any difference to the models?
We expect that by introducing more individual variability that variability at
the population level would also increase. This can only be seen through simu-
lation results. In Figs. 7 and 8 we present the results of simulations of the two
models (with and without superspreaders). We can see in Fig. 7 that the mean
of the simulations for these two models is almost identical; however, in Fig. 8
the standard deviations are different. The peak of the standard deviations in
both cases, and the biggest difference between the two, is at around ¢ = 200,
which corresponds to the period when the number infected is rising most rapidly.
This increased variability could play an important role in determining whether
a given realisation of the epidemic will become very large, or die out before it is

established in the population.
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Fig. 7. Mean for models with and without superspreaders with pyg = 0.2,k =
0.0008, p.; = 0.06 (p.; = 0.24),pqy = 0.001,p; = 0.06 (p; = 0.06),a = 16 (o =
1),ps = 0.2,p, = 0.002,Sy = 100,I, = 20,Uy = 5: Simulations ___ without

superspreaders, _ _ _ with superspreaders.
S.D. of I+U
200 [
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Fig. 8. Standard deviation for models with and without superspreaders with
po = 0.2,k = 0.0008,p,; = 0.06 (p, = 0.24),ps = 0.001,p; = 0.06 (p;, =
0.06),a =16 (¢/ = 1),ps = 0.2,p, = 0.002, Sy = 100, Iy = 20,Uy = 5: Simula-
tions ___ without superspreaders, _ _ _ with superspreaders.

Ideally we would like to produce an approximation for the standard deviation
in much the same way as the MFE approximate the mean. Developing such a

method would be an important piece of future work to extend our method.



4 Summary, Conclusions and Future Work

We began by asking:

1. Does having superspreaders in a population affect the overall epidemiological
dynamics, in particular the form of the transmission term?
2. Does it matter to the formulation of the transmission term what type of

superspreaders are in the population?

Through the models presented in this paper we have shown that the answer to
the second question, given the assumptions that we have made, is “no”. Despite
differences in individual behaviour, the models of supershedders and supercon-
tacters have the same mean behaviour. However, if we think beyond the model
to the practical aspects of disease control then it is likely that the differences
will be very important. Lloyd Smith et al. [15] suggest that control efforts should
be aimed at identifying the superspreaders in order to control an outbreak more
quickly, and, for sexually transmitted diseases at least, Cohen et al. [6] have
suggested a mechanism for doing this. However, identifying superspreaders is
much easier if they are supercontacters (for example, gregarious individuals, or
those who have many sexual partners) than if they are supershedders, unless
their supershedding is associated with an identifiable pathology.

Further, the similarities between the transmission rates in the two super-
spreader models present another problem. The utility of models is usually demon-
strated through matching with historical epidemic data, e.g. as we have done for
AIDS in [20]. In this case, both superspreader models would match data equally
well. Moreover, the non-superspreader model would provide a similar match.
This means that if we are only interested in the mean behaviour of the system,
then we could argue that the simpler non-superspreader model would be the most
parsimonious and is therefore the one that should be used. In addition we can

see from equation (3) that if we estimated p} and p,; for the non-superspreader



model under circumstances where superspreaders exist then we would overesti-
mate these terms. This could be argued to be an advantage if were to think about
control because it would mean that we would overestimate the amount of control
needed and therefore would be more likely to control the disease. However, if we
are able to carry out targeted treatment on superspreaders then that could be
much more effective. In this case the best solution may depend on the “strength”
of the superspreader and our ability to identify them. As we have said, if we are
only interested in mean behaviour then the non-superspreader model will do
just as well. However, there is a significant difference between the models when
we consider the amount of variability within the stochastic simulations. We can
see from Fig. 8 that the superspreader models have more variability within the
simulations than the non-superspreader models, especially in the early stages.
This is not surprising since in the early stages of an epidemic the dynamics can
change radically depending on whether or not one of the first individuals infected
is a superspreader. This was discussed in more detail in Galvani and May [§].
This means that it becomes much more difficult to predict the course of a single
epidemic when there are superspreaders present. Therefore the answer to the
first question is “no” if we are only interested in the mean, but for almost all

practical purposes the answer is *

‘yes”.

Two strands of further work can be carried out, one with a biological em-
phasis, the other oriented to Theoretical Computer Science. A useful question to
ask is: have we captured supershedders and supercontacters adequately in our
models? In fact, we have experimented with several different ways of presenting
the models. Aside from the modelling choices already mentioned in Section 3 it
could be regarded, for example, that there should be a class of supercontacting
susceptible individuals as well as supercontacting infected individuals (we do not

expect their behaviour to change on getting the disease). This quickly leads to a



model in which only supercontacting individuals get the disease, so is rejected.
Likewise, is there a supersusceptible group (with compromised immune systems
perhaps) who might turn into supershedders? As above, this would produce a
subclass of the population with the disease, concentrating on the supersuscepti-

bles and supershedders.

We have shown that the two models presented in this paper are equivalent in
terms of MFE, yet they are not equivalent under any of the usual process algebra
equivalences (since they have different actions, and the branching probabilities
are different). An interesting development in terms of Theoretical Computer
Science and Mathematics might be to define an equivalence relation for WSCCS

based on mean field equation semantics.

The application of Theoretical Computer Science techniques to biological
systems is still at an early stage of development. We have shown here that by
using process algebra to describe the model in terms of individual behaviour,
we can rigorously derive a population level model, allowing investigation of the
relationship between individual interactions and transmission dynamics. We see
this as a major benefit of using process algebra, but there are others: using a
process algebra gives access to a range of ways to explore a model, each lending
different insights to overall system behaviour. This ability will become even more

useful when investigating more complex systems.

Acknowledgements This work was supported by EPSRC through a Doctoral
Training Grant (CM, from 2004-2007), and through System Dynamics from Indi-
vidual Interactions: A process algebra approach to epidemiology (EP/E006280/1,
all authors, 2007-2010). We are grateful to the anonymous referees for their help-

ful comments.



References

10.

11.

R.M. Anderson and R.M. May. Population biology of infectious-diseases .1. Nature,
280:361-367, 1979.

J.C.M. Baeten. A brief history of process algebra. Theoretical Computer Science,
335(2/3):131-146, 2005.

M. Bernardo, P. Degano, and G. Zavattaro, editors. Formal Methods for Com-
putational Systems Biology, volume 5016 of Lecture Notes in Computer Science.

Springer-Verlag, 2008.

J.  Booth. Britain’s Typhoid Marys locked up for life in an
Epsom  asylum. The Times, July 28 2008. Available at
http://www.timesonline.co.uk/tol/news/uk/health /article4414995.ece (Accessed:
2/2/2010).

M. Calder and J. Hillston. Process algebra modelling styles for biomolecular pro-
cesses. In Transactions on Computational Systems Biology XI, volume 5750 of

Lecture Notes in Computer Science, pages 1-25, 2009.

R. Cohen, S. Havlin, and D. ben Avraham. Efficient immunization strategies for
computer networks and populations. Physical Review Letters, 91(24):247901, Dec
2003.

R. Fujie and T. Odagaki. Effects of superspreaders in spread of epidemic. Physica
A-Statistical Mechanics and its Applications, 374:843-852, 2007.

AP Galvani and RM May. Epidemiology - Dimensions of superspreading. Nature,
438(7066):293-295, NOV 17 2005.

L.N. Gibbins. Mary Mallon: disease denial, and detention. Journal of Biological
Education, 32:127-132, 1998.

R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A foundation
for computer science. Addison-Wesley, 1989.

J.T. Kemper. Identification of superspreaders for infectious-disease. Mathematical

Biosciences, 48:111-127, 1980.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

W.0. Kermack and A.G. McKendrick. Contributions to the mathematical theory
of epidemics i. Proceedings of the Royal Society of London Series A, 115:700-721,

1927.

T.G. Kurtz. Solutions of ordinary differential equations as limits of pure jump

markov processes. Journal of Applied Probability, 7:49-58, 1970.

J.O. Lloyd-Smith, A.P. Galvani, and W.M. Getz. Curtailing transmission of severe
acute respiratory syndrome within a community and its hospital. Proceedings of

the Royal Society of London Series B, 270(1528):1979-1989, 2003.

J.O. Lloyd-Smith, S.J. Schreiber, P.E. Kopp, and W.M. Getz. Superspreading and

the effect of individual variation on disease emergence. Nature, 438:355—-359, 2005.

L. Matthews and M. Woolhouse. New approaches to quantifying the spread of

infection. Nature Reviews Microbiology, 3:529-536, 2005.

C. McCaig. From indiwiduals to populations: changing scale in process al-
gebra models of biological systems. PhD thesis, University of Stirling, 2007.
http://hdl.handle.net/1893/398.

C. McCaig, R. Norman, and C. Shankland. Deriving mean field equations
from large process algebra models. Technical Report CSM-175, Department
of Computing Science and Mathematics, University of Stirling, March 2008.
http://hdl.handle.net/1893/1584.

C. McCaig, R. Norman, and C. Shankland. Process algebra models of population
dynamics. In Algebraic Biology, volume 5147 of Lecture Notes in Computer Science,
pages 139-155. Springer-Verlag, 2008.

C. McCaig, R. Norman, and C. Shankland. From individuals to populations: A
symbolic process algebra approach to epidemiology. Mathematics in Computer
Science, 2(3):139-155, 2009.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 27(4):541-580, April 1989.

R. Norman and C. Shankland. Developing the use of process algebra in the deriva-

tion and analysis of mathematical models of infectious disease. In Computer Aided



Systems Theory - EUROCAST 2003, volume 2809 of Lecture Notes in Computer
Science, pages 404-414. Springer-Verlag, 2003.
23. C. Priami. Process calculi and life science. Flectronic Notes in Theoretical Com-

puter Science, 162:301-304, 2006.

24. C. Tofts. Processes with probabilities, priority and time. Formal Aspects of Com-
puting, 6:536-564, 1994.

25. ML.E.J. Woolhouse, C. Dye, J.F. Etard, T. Smith, J.D. Charlwood, G.P. Garnett,
P. Hagan, J.L.K. Hii, P.D. Ndhlovu, R.J. Quinnell, C.H. Watts, S.K. Chandiwana,
and R.M. Anderson. Heterogeneities in the transmission of infectious agents: Im-
plications for the design of control programs. Proceedings of the National Academy

of Sciences of the United States of America, 94:338-342, 1997.

A Syntax of WSCCS

The possible WSCCS expressions are given by the following BNF grammar:
Av=X|a:A| Z{wiAili € I} | Ax B | A[L | ©(A) | A[S] | X = A

Here X € Var, a set of process variables; a € Act, an action group; w; € #/, a
set of weights; S a set of renaming functions, S : Act — Act such that S(v/) = v/
and S(a) = S(@); action subsets A C Act with / € A; and arbitrary indexing
sets I. Actions form an abelian group with identity 1/ and the inverse of action

a being a@. Actions occur instantaneously and have no duration.

The informal interpretation of the operators is as follows:

— 0 a process which cannot proceed, representing deadlock ;

X the process bound to the variable X ;

— a:A a process which can perform the action a becoming the process A ;

X{w;.A;|i € I} the weighted choice between processes A; , the weight of A;
being w; . Considering a large number of repeated experiments of this pro-

cess, we expect to see A; chosen with relative frequency w; /X;crw,; . Weights



are generally positive natural numbers or reals, but may also incorporate the
special weight w which is greater than all natural numbers. This is used in
priority and is written mw™ where m,n > 0. The binary plus operator can
be used in place of the indexed sum i.e. writing X{1;.a:0,22.b:0]i € {1,2}}
as 1.a:0+2.0:0;

— A x B the synchronous parallel composition of A and B . At each stage
each process must perform an action with the composed process performing
the composition (denoted #) of the individual actions, e.g. a: A X b: B
yields a#tb: (A x B). This is a powerful operator: models are constructed by
describing simple individuals and composing a number of those in parallel.
Here we use an extended notation [17] A{n} which is syntactic sugar for n
instances of process A in parallel, where n € IN ;

— A[L a process which can only perform actions in the group L . This operator
is used to enforce communication on actions b ¢ L. Two processes in parallel
may communicate when one carries out an action and the other carries out
the matching co-action, e.g. infect and infect. Communication can be used to
model passing of information from one process to another, or to coordinate
activity. Such communication is strictly two-way; that is, only two processes
may interact on this action ;

— O(A) represents taking the prioritised parts of the process A only ;

— A[S] represents A relabelled by the function S (we do not use relabelling in
this paper, but it is included for completeness) ;

— X ¥ A represents binding the process variable X to the expression A .

B Multiple Alternative Communicating Actions

The method of [17] applies to a subset of WSCCS models. One of the restrictions

imposed is that only a single communicating action may be presented in each



communication step. In the model of Fig. 4 two communicating actions are in
the same step: this is required to distinguish supershedders and normal infecteds.
This section presents a general extension to the method to handle agents such

as S2,12,U2 and R2 of Fig. 4.

The general form of the agent is

A=w.a1: Al +w.a2. A2 +1.b.A3 .

Two sets of collaborating agents C1 and C2 perform the actions a; and a3
respectively. Communication is prioritised. The agent A can perform either aq
or ag, evolving differently in each case, but cannot perform both actions together.
The action b is a non-communicating action and because of priority will only be
executed if neither a; nor as can synchronise with another process. There may be
other processes able to collaborate with C'1 and C'2. These are the competitors
of A. The total number of agents doing the a action, i.e. the A; agents plus their
competitors, is denoted N;. The extension to the method method calculates the
number of A agents communicating with C1 agents and becoming A1, and the
number of A agents communicating with C2 agents and becoming A2.

m

o T) is used. This represents
'

In the following, the multinomial coefficient (
the number of unordered ways to choose a group of p objects, a group of g objects

and a group of r objects from a group of m distinct objects, with m = p+qg+ 7.

The number of A; which communicate with C1; is

A N,—A
2ok Zj k(k,j,Att—k—j) (Clt—k,C2t —j,Ntt—A,,t—Clt—CQt—&-k—&-j)
A N=A : (4)
t t— 4t
2k Zj (k,j,Atfkfj) (Cltfk,Cthj,NtfAthlt7C2t+k+j)

On the numerator we have the weighted sum of all possible evolutions of A agents
to Al agents. That is, if the evolution is to a state with 42 A agents, then we

multiply the likelihood of getting to that state by 42. Similarly, if the evolution



is to a state with a single A agent, then we multiply by 1. This is k in the
expression above. The second component of the numerator indicates the number
of A communicating with C1 agents, and the third component indicates the
number of competitors of A communicating with C'1 agents. The denominator
is the same sum, unweighted, representing all possible evolutions of A.
Fortunately (4) can be simplified using Vandermonde’s convolution [10],

yielding
A C1,
Ny

This term is valid only when N; > C1; 4+ C2;. If Ny < C1; + C2; then there are
more actions from C1 and C2 than there are from A and its competitors. In this
case, the number of A communicating with C1 is

AtC'1t
Cl, +C2;

Therefore, the general term for the number of A; agents which communicate

with C1; is

A.Cl,  ACL,
N, 'Cl,+C2

calculateTerm(A, w, a;) = min <

The result for two actions can be generalised to cover cases where there are

n different actions a1, ao, ..., a,, and rephrased in the language of Fig. 2, giving

caleulate Term(A, w, ay,) =
min((As * collaborators(A, an))/(Ar + competitors(A, an)),

(A¢ * collaborators(A, arm,))/(sum(i, collaborators(A, a;))))

where m ranges over 1...n. The auxiliary function collaborators(A, a,,) denotes
the set of agents collaborating on action a,, (similarly for competitors), and

sum(i,expression) iterates over expression for all values of i.



