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Current forest carbon fixation fuels stream CO2
emissions
A. Campeau 1, K. Bishop 2, N. Amvrosiadi 1, M.F. Billett3, M.H. Garnett 4, H. Laudon 5, M.G. Öquist5 &

M.B. Wallin 1

Stream CO2 emissions contribute significantly to atmospheric climate forcing. While there

are strong indications that groundwater inputs sustain these emissions, the specific bio-

geochemical pathways and timescales involved in this lateral CO2 export are still obscure.

Here, via an extensive radiocarbon (14C) characterisation of CO2 and DOC in stream water

and its groundwater sources in an old-growth boreal forest, we demonstrate that the
14C-CO2 is consistently in tune with the current atmospheric 14C-CO2 level and shows little

association with the 14C-DOC in the same waters. Our findings thus indicate that stream

CO2 emissions act as a shortcut that returns CO2 recently fixed by the forest vegetation

to the atmosphere. Our results expose a positive feedback mechanism within the C budget

of forested catchments, where stream CO2 emissions will be highly sensitive to changes in

forest C allocation patterns associated with climate and land-use changes.
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The flushing of terrestrially-derived C through runoff can
represent up to 30% of the annual C balance of forested
ecosystems, of which greenhouse gases such as CO2 hold a

major contribution1–3. Once released from soils to surface waters,
this CO2 is rapidly evaded to the atmosphere as a result of
physical gas exchange4. This lateral CO2 flux is particularly
relevant to headwater streams, which account for the bulk of
surface water CO2 emissions5,6. Streams thus contribute actively
to atmospheric climate forcing by returning terrestrially seques-
tered CO2 to the atmosphere. To date, the evidence supporting
the terrestrial origin of stream CO2 has relied solely on mass
balance exercises; demonstrating that the pool of groundwater
CO2 is often sufficiently large to sustain stream CO2 fluxes7–9.
Explicit demonstrations of this link are still absent. Most of all,
the specific biogeochemical pathways giving rise to stream CO2,
along with their associated timescales, have yet to be resolved.
Without a clear assessment of the sources of lateral CO2 fluxes,
the terrestrial and aquatic components of catchment C budgets
cannot be reconciled.

Soil and groundwater CO2 can arise from several different
biological sources, each confined across a spectrum between two
main timescales10,11. Operating in the short timescales, is the
current forest fixation of atmospheric CO2, which fuels auto-
trophic root respiration12 and heterotrophic mineralisation of
recent photosynthates, transported to soils via throughfall,
stemflow13 and root leachates14. Alternatively, over longer time-
scales, saprotrophic decomposition embodies all forms of het-
erotrophic decomposition of older plant detritus and soil organic
matter15. In groundwater, saprotrophic decomposition is sup-
ported mainly by dissolved organic C (DOC), which incorporates
an assemblage of chemical properties and ages from the vegeta-
tion and soils traversed by the groundwater during its journey
through the catchment16,17. Boreal forest catchments often
comprise a peat-rich riparian zone, which serves as a repository of
ancient soil organic matter that can support saprotrophic meta-
bolism and may be remobilized through decomposition and
runoff18–20. The source determination of lateral C fluxes may
enable assessment of the vulnerability of these ancient C
stocks19,21,22. Boreal forests also drive a considerable share of the
global continental CO2 sink23, a process that is considered sen-
sitive to a variety of anticipated disturbances24,25. The separation
of timescales in the biological pathways governing lateral CO2

fluxes in boreal forested catchments is thus critical information,
since different CO2 sources will likely follow distinct trajectories
in response to environmental changes.

Here, we identify and apportion the sources of stream CO2

with particular emphasis on the separation of timescales and
biogeochemical pathways involved in the lateral CO2 fluxes
from an old-growth boreal forest catchment. We characterize
the terrestrial and aquatic CO2 sources via repeated measure-
ments of the groundwater and stream water radiocarbon (14C)
content of CO2 and DOC (14C-CO2, 14C-DOC). Our sampling
was designed following a three-level Upslope-Riparian-Stream
transect, repeated over three different occasions during the
growing season, thus allowing to associate spatio-temporal 14C
patterns to different CO2 sources. The transect sampling was
complemented with a year-round characterisation of the stream
water 14C-CO2 and 14C-DOC, to further explore potential
shifts in CO2 sources over time. Automated sensors recording
hourly CO2 concentrations at each location along the transect
and further downstream, allowed us to derive a complete annual
C budget for this forested catchment using the age component
of the lateral C fluxes to reveal links between the terrestrial
and aquatic components. This study reveals that soil respiration,
derived from the current forest C fixation, is the main source
of stream CO2 fluxes.

Results
Interpretation of 14C-contents. Radiocarbon analysis can be
used to determine the average age of CO2 and DOC based on
conventional 14C dating techniques and represents one of
the most robust approaches for the separation of respiratory
processes in soils10,11,26. However, the 14C content of gases or
solute samples potentially originates from multiple combinations
of sources, each with a different 14C-age, thus complicating
the interpretation of the single average 14C-content. While the
incorporation of post-bomb14C in the C cycle, resulting from
the atmospheric testing in the 1950–60s, precludes a linear
interpretation of 14C-content, it can provide clear evidence of
carbon fixed from the atmosphere post ~AD1955 (i.e., when 14C
concentration > 100%). Here, we specifically avoided referring to
the measured 14C contents in terms of age from conventional 14C
dating and instead focused our analysis on the relative differences
in 14C contents between C species, in our case CO2 and DOC, as
well as their changes over time and space to help define the
stream C sources in connection to terrestrial processes.

Stream water 14C-CO2 and 14C-DOC. Stream water 14C-CO2

was surprisingly constant throughout the year, ranging from
102.5 to 105.3 %modern (n= 11) (Fig. 1a, Supplementary
Table 1). In comparison, the stream water 14C-DOC was more
variable and more 14C-enriched, ranging from 103.5 to 112.2 %
modern (n= 8) (Fig. 1a, Supplementary Table 2). Stream water
14C-DOC was negatively related to the riparian water table
position, indicating that more superficial water tables corre-
sponded to more 14C-enriched DOC in the stream waters
(Fig. 1b). There was no significant relationship between stream
water 14C-CO2 and any of the measured variables included in the
study, for example: temperature, discharge, water table position,
C concentrations, net ecosystem exchange (NEE) or photo-
synthetic photon flux density (PPFD) (all p > 0.05, Fig. 1).

Groundwater 14C-CO2 and 14C-DOC. The patterns in 14C-CO2

and 14C-DOC in the connecting groundwater were generally
similar to those of the stream waters. As such, groundwater 14C-
CO2 was also remarkably homogenous across locations, depths
and sampling dates. All samples were enriched in post-bomb 14C,
together ranging from 101.1 to 106.6 %modern (n= 7), with the
exception of one sample collected in the riparian deep soil water
in August, where 14C-CO2 was 99.0 %modern (Fig. 2, Supple-
mentary Table 2). Differences in 14C-CO2 between upslope and
riparian groundwater were not significant (p= 0.6), despite a near
doubling of the CO2 concentrations between the two locations. In
contrast, the range in groundwater 14C-DOC was much larger
than for 14C-CO2. Most of the groundwater 14C-DOC were
enriched in post-bomb 14C, ranging from 100.8 to 116.8 %
modern (n= 9), but there were two groundwater samples for
which 14C-DOC was remarkably depleted (49.7 and 67.8 %
modern, respectively) (Fig. 2, Supplementary Table 2). Both were
collected in the upslope deep location, in August and October.
Excluding these two groundwater samples, the 14C-DOC was
significantly negatively correlated with the DOC concentration
across the groundwater and stream waters (Fig. 3). There was no
similar relationship between 14C-CO2 and CO2 concentrations in
either the groundwater or stream water (Fig. 3).

The 14C-CO2 and 14C-DOC showed little correspondence
in both groundwater and stream waters, with the DOC being on
average 6 %modern more 14C-enriched than the CO2 across all
discrete samples (n= 9), with the exception of the upslope
deep groundwater in August and October (Figs. 1a, 2). In these
groundwater, the difference in 14C content between CO2 and
DOC was even larger, corresponding to 55 and 33 %modern for
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August and October respectively, where DOC was suddenly much
older than CO2 (Fig. 2). In the riparian deep groundwater,
the 14C-CO2 and 14C-DOC matched most closely and also
showed the least temporal variability (only ~2 %modern across
the three-sampling occasions despite a near doubling of the
DOC concentrations between sampling occasions) (Fig. 2). In
the stream waters, the differences in 14C content between CO2

and DOC, was largest during the spring freshet, but decreased
during winter base flow conditions (Fig. 1a).

CO2 and DOC concentrations. The average CO2 concentrations
doubled between the upslope mineral soils and the riparian
organic-rich soils (d= 0.45) (Fig. 4e, f). In the riparian soils, the
CO2 concentrations were similar between the shallow and deep
layers (17.7 ± 3.5 and 14.9 ± 3.3 mg C L−1, respectively n= 8028
(d= 0.2)), while in the upslope soils, the CO2 concentrations were
significantly lower in the shallow compared with the deep layers
(4.6 ± 2.0 mg C L−1 n= 707, and 11.7 ± 3.3 mg C L−1 n= 8027
(d= 1.2), respectively) (Fig. 4e, f). Stream water CO2 con-
centrations during the open water season were significantly
higher in the location adjacent to the transect (3.4 ± 1.1 n=
3496), compared with the stream gauging station, located 250 m
downstream (2.8 ± 0.9 n= 3235), (d= 1.3) (Fig. 4d). Year-round
hourly stream water CO2 concentrations were recorded at the
downstream location, but showed no significant difference
between the ice-covered and open-water period (d= 0.48, annual
mean 2.8 ± 1.4 n= 8311) (Fig. 4d). The stream water CO2

concentrations never exceeded the groundwater CO2 concentra-
tions in the riparian or upslope location (Fig. 4d–f).

Groundwater DOC concentrations were on average five times
higher in the riparian compared with the upslope groundwater
(39.2 ± 10.4 mg C L−1 n= 11, and 7.4 ± 6.7 mg C L−1 n= 8,
respectively, p < 0.0001) (Fig. 4e, f). DOC concentrations were
similar across the two groundwater depths, in both the riparian
and upslope soils (p= 0.06, p= 0.5, respectively). The riparian
DOC concentrations increased steadily between May and
October, by 87 and 33% in the shallow and deep layers,
respectively (Fig. 4e). This increase was not as clear in the
upslope soils. The stream water DOC concentrations (19.8 ± 4.8
mg C L−1 n= 8) were significantly lower and never exceeded
the riparian groundwater DOC concentrations (p ≤ 0.0001)
(Fig. 4d, e). Together, the trends in DOC and CO2 concentrations
along the upslope-riparian-stream transect resulted in a progres-
sive shift, from a slight dominance of CO2 over DOC in the
upslope groundwater (average CO2-C:DOC= 1.5), to a clear
dominance of DOC over CO2 in the riparian groundwater
(average CO2-C:DOC= 0.4), which was more pronounced in the
stream waters (average CO2-C:DOC= 0.1).

Hydro-climatic conditions and catchment C budget. The NEE
(determined by Eddy Covariance) of the forest ecosystem in
the catchment for the study year was −205 gm−2 yr−1 (Fig. 5).
The annual runoff for the catchment during the study year
was 257mm, representing about half of the annual precipitation
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(507mm). The stream specific discharge (q) ranged from 0.036 to
10.8mm d−1 (Fig. 1a). The modelled upslope and riparian water
export within the upper one metre was 236 and 243mm, respec-
tively, which is similar to the catchment annual runoff (Supple-
mentary Fig. 1c). Runoff through the shallow soil depths (0–0.5 m)
contributed to 58 and 73% of the total runoff in the upslope and
riparian location, respectively (Supplementary Fig. 1c).

The annual CO2 export from the riparian location was more
than double that of the upslope location (Fig. 5). The contribution
of the riparian soils was even more substantial for the annual
DOC export, which was more than five times larger compared
with the upslope site (Fig. 5). Downstream CO2 export
represented only 13% of the initial riparian groundwater CO2

export, which can be attributed to rapid CO2 evasion to the
atmosphere. The downstream DOC export was more comparable
to the riparian groundwater DOC export, representing about
70% of the initial flux. The cumulative age of the lateral C fluxes
was 104 and 110 %modern for CO2 and DOC, respectively.
The difference in 14C content between the annual CO2 and
DOC exported from the catchment could be explained by a 75%
contribution from currently fixed CO2 from the atmosphere (i.e.,
during the last growing season (2015–2016), with the remaining
fraction originating from the bulk DOC mineralization.

Discussion
This study provides, to our knowledge, the first explicit evidence
that stream CO2 fluxes are sustained by currently fixed CO2 from
atmosphere via the forest vegetation’s photosynthetic activity
(i.e., during the last growing season (2015–2016). The first piece
of evidence supporting our interpretation was the persistent
gaps between 14C-CO2 and 14C-DOC in groundwater and stream
water, highlighting a major disconnect in the cycling of the two C
species. Secondly, the homogeneity of the 14C-CO2 in ground-
water and stream water, which remained systematically close to
the current atmospheric 14C level, indicated that CO2 was sus-
tained by a large and steady source, likely associated with current
photosynthesis. Previous studies have provided indications that
groundwater inflow of soil-derived CO2 is sufficient to support
stream CO2 sources7–9. However, explicit demonstrations of the
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link between soil and stream CO2, along with determination of
the biogeochemical pathways involved, were still lacking. Our
results imply that stream CO2 fluxes are cycled rapidly, and likely
provide a fast pathway for returning CO2 fixed from the atmo-
sphere by the forest vegetation during this year’s growing season.
The main implication of this work is that anticipated alterations
in boreal forest growth and ecosystem level C allocation patterns,
driven by climate change and other disturbances, will produce a
rapid response in the stream CO2 fluxes, since both processes are
tightly linked by the current forest activity.

The systematic offset between the 14C-DOC and 14C-CO2 in
groundwater and stream water is key evidence of the limited
overlap in their respective sources and controls (Figs. 1a, 2). The
substantial variability in groundwater and stream water 14C-
DOC, which contained both severely 14C-depleted and 14C-
enriched post-bomb values (Figs. 1, 2), indicated that DOC arises
from more diverse sources than CO2 and is cycled more slowly,
up to millennia. There was a clear connection between the 14C-
DOC and hydrological retention and flowpaths (Figs. 1b, 3), as
suggested by previous studies in this catchment using indepen-
dent methods19,27,28. Activation of fast flowing superficial flow-
paths29 was associated with the transport of modern 14C-DOC,
with rising water tables leading to an increase proportion of post-
bomb 14C and dilution of the DOC, for example during spring
freshet (Figs. 1b, 3). These dynamic superficial flowpaths are
supplemented by intermittent activations of deeper flowpaths
associated with longer water retention times30 and the transport
of aged-DOC, for example, the upslope groundwater later in the
growing season (Figs. 2, 3). Despite these profound changes in
hydrological flowpaths across locations and seasons, the
groundwater and stream water 14C-CO2 remained relatively
unchanged (Figs. 1, 2). In fact, the groundwater 14C-CO2 was
similar between the upslope mineral soils and the riparian organic
soils, despite major contrasts in soil properties and contributing
flowpaths (e.g., a near doubling of the CO2 concentrations and a
five times increase in DOC concentrations (Fig. 4e, f), and a shift
from severely 14C-depleted to post-bomb enriched DOC between

the two locations later in the growing seasons (Fig. 3). This
suggest that the sources governing groundwater CO2 can override
these dynamics in hydrological flowpaths and soil chemistry.

Inconsistencies between the 14C content of DOC and CO2 have
been reported in other catchments including the Amazon river
network31 and various peatland dominated catchments32–34

(Supplementary Fig. 2). Other studies comparing the 14C content
of DIC and DOC in surface waters also concur with these
observations35. Although the form of these isotopic incon-
sistencies may vary across catchments, the 14C-DOC often reveals
greater levels of post-bomb C than the CO2, suggesting more
association with moderately old organic C reservoirs31,35.
Severely 14C-depleted CO2 and DIC in surface waters are also
more frequently reported than DOC, but these are typically
connected to weathering of carbonate-containing minerals36,37.
Such geological sources of CO2 are absent in this catchment, as
indicated by the δ13C-CO2 values that were consistent with the
C3 plant metabolic pathway (Supplementary Fig. 238). A con-
siderable number of observations in the literature demonstrate a
close agreement between the surface water 14C-CO2 and the
current atmospheric 14C level, together with a clear photo-
synthetic δ13C value31,35. These observations, comply with ours,
and suggests that surface water CO2 sources may often arise from
rapid C cycling processes within catchment soils.

The uniformity of 14C-CO2 and its similarity with the current
atmospheric 14C level, underlined that groundwater and stream
water CO2 was sustained by a large and steady source, with
rapid turnover times and omnipresent across this catchment
(Figs. 1a, 2). Forest C fixation can fuel groundwater CO2 via
autotrophic root respiration12 or the transport of recent photo-
synthates to soils by root exudates14, throughfall and stemflow13,
thereafter mineralized by the soil microbial communities. Inva-
sion of atmospheric CO2 in groundwater and stream water could
not explain this close agreement between the 14C-CO2 content of
the current atmospheric 14C level, as indicated by high CO2

concentrations in soil and stream waters, consistently above
atmospheric saturations (Fig. 4d–f) and the low δ13C-CO2 values,
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conformed with C3 derived organic matter (Supplementary
Fig. 238). The stability of the 14C-CO2 content was remarkable,
considering the dramatic seasonal changes in groundwater and
stream water C concentrations, forest productivity, precipitation,
runoff and temperature over the year. In fact, the 14C-CO2 was
independent of all measured environmental variables monitored
in this study and showed no connection to seasonal patterns,
further supporting a steady source (Figs. 1–3). Seasonal changes
in hydro-climatic conditions are major controls on forest C
fixation, soil respiratory processes39,40 and hydrological con-
nectivity between soils and streams41, but the large amount of
CO2 fixed by the forest vegetation during the growing season is
likely sufficient to support the lateral CO2 export throughout the
year (Fig. 5).

Based on the cumulative 14C content of stream CO2, an esti-
mated 75% of the lateral CO2 export from the catchment possibly
originated from the forest C fixation during the last growing
season, with the remaining fraction arising from saprotrophic
respiration, subsidized by the cumulative bulk 14C-DOC export
(Fig. 5). This rough estimate agrees well with studies partitioning
the vertical soil CO2 fluxes, where autotrophic root respiration
contributes 50–64% of the total soil respiration in various forested
catchments12,15, as well as in a nearby boreal forest catchment26.
This flux is likely supplemented by heterotrophic mineralization
of recent photosynthates, but the relative importance of these
processes cannot be separated here. While there is general con-
sensus that autotrophic root activity makes up a major fraction of
vertical soil CO2 efflux42, there is also awareness that miner-
alization of root exudates and DOC transported via throughfall
and stemflow may not be adequately quantifiable due to rapid
turnover rates14. The specific contribution of these different
biological pathways to lateral CO2 export remains to be further
investigated, but our results support a steady and widespread
connection to rapidly cycling CO2 sources fuelling lateral CO2

export. Only a small fraction (ca. 2%) of the net CO2 fixed from
the atmosphere by the vegetation that year (NEE: −205 g Cm−2

yr−1) was lost through the lateral CO2 export (Fig. 5). This is
consistent with mass balance estimates from the same catchment
reported by Öquist, Bishop1 during years with similar precipita-
tion. Considering that precipitation and runoff were low during
our study year, the fraction of currently fixed CO2 lost through
lateral CO2 export in this forested catchment is likely higher in
other years (up to 9%1).

Since the bulk DOC pool contains a mixture of C ages, the 14C-
DOC in this catchment could reflect refractory DOC compounds,
not mineralized during transit, masking an underlying connec-
tion between 14C-CO2 and 14C-DOC. Further studies are needed
to assess the age-composition of DOC, but this does not invali-
date that the current atmopsheric 14C-CO2 was reflected in the
stream and groundwater of this boreal forest catchement.
Saprotrophic respiration may be limited in theses CO2-rich
groundwater, owing to lack of oxygen38 and short water transit
time in the transiently saturated zone43,44. The best agreement
between 14C-CO2 and 14C-DOC was observed in the deep
riparian groundwater, which is found below the dominant source
layer. The latter is responsible for the majority of DOC19, DIC41

and water export to the stream43. Longer residence time in the
deeper groundwater may promote DOC mineralization, likely
through fermentative processes38, hence a closer overlap between
14C-CO2 and 14C-DOC.

Closer agreements between the 14C-DIC and 14C-DOC than
those observed in this study have sometimes been reported in
larger river catchments and lakes45–47. This highlights that the
terrestrial DOC export may remerge as an important source
sustaining CO2 emissions further downstream; when connectivity
with the catchment soils decreases8,48 and longer water residence

time allows for in-situ mineralisation to occur49. Both aged and
modern DOC were exported from this catchment during the
study year, but our results do not indicate any significant incor-
poration of severely 14C-depleted or highly 14C-enriched post-
bomb DOC in the lateral CO2 export. Emerging new research is
now demonstrating that aged-DOC may be bioavailable for
freshwater microbial communities leading to the production of
aged-CO2

22,50,51.The remobilization of ancient DOC in the
upslope soils of this catchment is a concern, and more studies are
needed to assess its sources and fate. While previous studies have
shown that aquatic DOC mineralization remains low across the
Krycklan catchment52–54, there is also mounting evidence of
deeper groundwater contribution increasing further downstream
and potentially transporting aged-DOC19,48,55. Further studies
are needed to address the generality of our findings, and the
potential mineralization of aged-DOC within higher order rivers
and streams.

This study reveals that stream CO2 fluxes are fuelled by the
current forest C fixation and its associated soil respiration pro-
cesses in a boreal forest catchment. This close connection between
the forest C sink and lateral CO2 fluxes had already been put
forward based on inter-annual coupling in flux measurements1.
Our study provides further description of the mechanistic
underpinning of this connection between terrestrial and aquatic C
fluxes. The lateral CO2 export rapidly mobilises a significant
fraction of the C currently fixed from the atmosphere by the
forest vegetation. Groundwater CO2 inputs support surface
waters CO2 emissions across multiple types of aquatic ecosys-
tems7–9, thus suggesting that rapidly cycling CO2 sources may
have a widespread contribution to aquatic CO2 emissions. Owing
to the prevalence of root respiration and mineralization of
recent photosynthates in forested soils, our results may also be
generalized across a large number of forested ecosystems and
biomes. Forest C balance and ecosystem level C allocation pat-
terns in the northern high latitudes are vulnerable to a large
number of disturbances including global warming, increased
forest fire frequency, insect outbreaks and industrial and com-
mercial exploitation56–58. Stream CO2 emissions will quickly
feedback on these disturbances, because of the speed of stream
CO2 cycling and its close connection to the current forest activity.

Methods
Catchment characteristics. The study was conducted in a 0.13 km2

catchment located in northern Sweden within the Krycklan Catchment Study
(64°14′N, 19°46′E)59. The catchment has been heavily studied for more than
two decades and is occasionally referred to as “Västrabäcken” or “C2” across the
literature. The catchment is almost completely forested (99%), with Scots pine
(Pinus sylvestris) (64%) and Norway spruce (Picea abies) (36%). The active root
depth is mostly distributed above the average groundwater table position60. The
average tree stand age is 103 years old59. Man-made ditching of the stream to
improve forest productivity occurred about a century ago. The stream is adjacent a
peat-rich riparian zone, with the soil profile consisting of ~70 cm thick peat
transitioning to the underlying till at ~90 cm depth. The age of the accumulated
solid peat ranges from modern near the surface to 2810 years BP at 70 cm depth
(Bishop, unpublished data). The organic soil content is > 80% in the riparian zone,
which is considerably higher than the upslope podzols (< 5%)61. The latter is
composed of well-developed iron podzols on sandy till, comprising a 5 cm humus
layer at the surface, overlying a 12 cm thick sandy bleached E-horizon and a 60 cm
thick B-horizon61. The underlying bedrock is composed predominantly of base-
poor Sveco-fennian metasediments-metagraywacke and holds no known carbonate
containing minerals. Carbonate alkalinity is rather produced by weathering of
silicate minerals38.

The climate is cold temperate humid and bears a persistent snow cover from
November to April. The 30 year mean annual precipitation is 640 mm
(1981–2010), of which 35% falls as snow59. The annual precipitation during our
study year (507 mm) corresponds to the bottom 6% of the previous 30 years
observations (1981–2012). The 30 years mean annual, July and January
temperatures are +1.8, +14.7 and −9.5 °C, respectively59. The annual peak stream
discharge in the region typically occurs during spring in connection to snow melt,
but storm events during summer and autumn can also generate peak flows in
some years. The winter is typically dominated by low flow conditions.
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Soil and stream instrumentation. Groundwater and stream water sampling was
carried out following an upslope-riparian-stream transect, as described in ref. 38,41.
Groundwater wells were installed along the assumed hydrological flowpaths,
with a first set located at 1–2 m (riparian) and the second at 10–12 m (upslope)
distance from the stream. The 10-year mean water travel time for the entire
catchment is estimated at 690, ranging between 470 and 2064 days62. The water
turnover time, from the water divide to the stream and with depths ranging
between 0.5 and 3 m, is estimated to 4.6 years43. The area represented by the
groundwater transect was estimated at 2540 m2 with an average width of 17.7 m,
occupying 2% of the total catchment area43. The estimated time for water to exit
this transect is in the scale of a month (near the upslope mineral soils) to hours
(near the stream)43.

The groundwater characterisation at both locations was focused to the upper
one metre of the soil profile, where most of the runoff generation is confined43. The
groundwater installation comprised a set of wells with screening of the upper 0–0.5
m (shallow) and lower 0.5–1 m (deep), respectively. For each of the two locations
and depths, two identical sets of groundwater wells were installed, with one
allowing manual sampling of the groundwater and the other containing sensors for
continuous reading of groundwater temperature and CO2 concentration.
Alongside, a fifth well was installed at each of the upslope and riparian locations
where water table position was recorded.

Continuous reading of dissolved CO2 concentration at each location and depth
was enabled using Vaisala CARBOCAP GMP221 nondispersive infrared (NDIR)
CO2 sensors (range 0–3%, 0–5%, in the stream and groundwater, respectively,
except for the upslope shallow groundwater where the range was 0–1%). The
sensors were enclosed inside a water-tight, gas-permeable Teflon membrane
(PTFE) and sealed with Plasti Dip (Plasti Dip international, Baine, MN, USA) to
ensure that the sensor was protected from water, but remained exposed to
dissolved gas. The groundwater CO2 concentration in the riparian and upslope
location at the deep and shallow depth was recorded during the full year. The
upslope shallow groundwater well was completely dry for 245 days out of the
studied year, but all other sensors remained below the groundwater table at all
times. The measurements in the stream adjacent to the groundwater wells were
restricted to the open-water season. However, year-round measurements of stream
water CO2 concentration was undertaken in a heated dam house (C2), located 250
m downstream from the soil transect location. The continuous reading of
groundwater and stream water CO2 concentrations were validated against manual
snapshot measurements, using an acidified headspace method63, which showed an
average 11 and 9% difference in the groundwater and stream water, respectively.
All three stations along the transect (upslope, riparian and stream) were
instrumented with pressure transducers (MJK 1400, 0–1 m, MJK Automation AB)
recording water table height, and temperature sensors (TO3R, TOJO Skogsteknik).
Groundwater temperature was measured at 0.8 m from the ground surface, and
stream water temperature was recorded in two locations, adjacent to the transect
and 250 m downstream. All continuously measured data were collected hourly and
stored on external data loggers (CR1000, Campbell Scientific, USA).

Discharge was determined at a V-notch weir in the downstream heated dam
house at C259. Stream discharge was determined by applying stage height-discharge
rating curves to hourly water level measurements. The discharge for each of the
four groundwater sampling points (riparian/upslope, deep/shallow) was modelled
according to Amvrosiadi, Seibert43. To calculate total discharge through the
riparian and upslope profiles, Darcy’s law was applied in combination with the
transmissivity profiles, and the local water table gradients43. The fraction of
discharge flowing through the shallow (0–0.5 m) and deep (0.5–1 m) soil layers was
estimated based on the same transmissivity profiles.

Soil and stream water chemical analysis. Groundwater and stream water
samples were collected monthly for DOC at each location and depth during the ice-
free season (May–November 2015). The DOC concentration was analysed from
10ml of ground and stream water, filtered through glass-fiber Whatman GF/F
filters (0.7 μm) in the field and stored in high-density polyethylene bottles. Prior
to analysis, samples were acidified and sparged to remove inorganic carbon. The
samples were analysed using a Shimadzu Total Organic Carbon Analyzer TOC-
VCPH, following storage at 4 °C for 2–3 days64.

Radiocarbon analysis. The radiocarbon sampling was carried out in two
phases, first a repeated catchment scale characterisation of groundwater and stream
water in May (spring), August (summer) and October (autumn), and con-
secutively, a complete year characterisation in the stream waters. In total,
21 samples were collected and analysed for 14C-CO2 and 16 for 14C-DOC in
groundwater and stream water between May 2015 and June 2016. The stream water
samples were collected directly adjacent to the groundwater transect during the
open water periods and downstream in the heated dam house (C2) during the ice-
covered periods for accessibility. Simultaneous measurement of 14C-CO2 at both
stations in July 2015 showed close correspondence, with only a <0.1 %modern
difference, which was within the range of measurement precision. The hillslope
transect sampling included all four groundwater locations and depths; riparian/
upslope and deep/shallow. However, the available water volume in the shallow

riparian and upslope locations was insufficient for radiocarbon analysis in August
and October.

Sample collection for 14C-CO2 included two different methods, one using
manual spot measurements applied to groundwater and stream water (n= 11) and
the other allowing for time-integrated sampling in the stream water (n= 10).
Manual spot measurements of 14C-CO2 were carried out with the super headspace
method whereby manually equilibrated CO2 samples were trapped onto molecular
sieve cartridges (MSCs) (see ref. 65 for further details). The integrated
measurements of 14C-CO2 were performed using passive samplers comprising
MSCs installed below the water surface, which slowly collects stream water CO2

over extended time periods (see ref. 66 for further details). The samplers were based
on the MSC described above, but attached to a gas permeable hydrophobic filter
(Accurel PP V8/2 HF tubing; Membrana GmbH, Germany67). These passive
samplers were deployed for periods ranging from 26 to 72 days; collectively they
cover more than a full year (May 2015–June 2016). The trapping capacity of
the MSC was never exceeded (< 100 ml CO2). Unfortunately, two time integrated
14C-CO2 samples were discarded due to contamination that resulted from cracks in
the MSC glass casing during deployment or transportation that caused stream
water or air contamination of the sample. At the NERC Radiocarbon Facility
(East Kilbride, UK), CO2 samples were recovered from the MSCs by heating and
cryogenically purified.

The 14C-DOC analysis was performed on 1 L samples of groundwater and
stream water collected in acid-washed glass bottles. The samples were filtered in the
laboratory through 0.7 μm glass fibre filters, rotary evaporated and freeze-dried.
Acid-fumigation of samples was undertaken to guard against carbonate
contamination, and the dried DOC was combusted to CO2 in an elemental analyser
(Costech ECS 4010, Italy) and cryogenically recovered. Manual spot measurements
of stream water 14C-DOC were taken at each change of the passive 14C-CO2

samplers in order to characterize cumulative 14C-DOC under a large range of
hydrological conditions.

All radiocarbon samples were converted to graphite using Fe-Zn reduction and
measured by accelerator mass spectrometry at the Scottish Universities
Environmental Research Centre (East Kilbride, UK). Stable carbon isotope
measurement (δ13C) was performed on an aliquot of the recovered CO2 using
isotope ratio mass spectrometry (IRMS; Thermo-Fisher Delta V, Germany) and
reported relative to the Vienna PDB standard. All radiocarbon results were
normalised to a δ13C of −25 ‰ using the measured δ13C values, and expressed as
%modern and conventional radiocarbon age (years before present (BP), where 0
BP=AD 1950), with ± 1σ analytical precision. The passively collected 14C-CO2

samples were additionally corrected for the +4.2 ‰ isotopic fractionation effect
caused by the gas trapping into the molecular sieves66. The northern hemisphere
atmospheric 14C-CO2 content during the study period ranged from 101.4 to 100.8
according to ref. 68.

Catchment C budget and statistical analysis. The contribution of currently fixed
CO2 from the atmosphere by the forest vegetation during the growing season of the
studied year (2015–2016; Atm14C (%)) was estimated using a simple two-
endmember mixing model, solving for the mass of current atmospheric 14C-CO2

(Atm14C) required to explain the observed gap between the cumulative lateral 14C-
CO2 and 14C-DOC export as follows:

Atm 14C ð%Þ ¼ 14C� CO2 � 14 C�DOC
� �

= Atm14C� DOC
� �

´ 100
The forest NEE and PPFD were obtained from the ICOS data from the

Svartberget site (http://www.icos-sweden.se/). The groundwater C export for
each soil depth and location was estimated by combining the modelled specific
discharge according to Amvrosiadi, Seibert 43, along with the measured hourly CO2

concentrations and the interpolated monthly point measurements of DOC
concentrations. The total 14C content export at the upslope, riparian and stream
locations was estimated by calculating the weighted average 14C content of both
CO2 and DOC export over the full year. Significant differences in soil or stream
water chemistry were tested using the non-parametric Wilcoxon test, with p-values
reported in brackets in the result sections. For large sample sizes, such as
hourly measurements of CO2 concentrations, statistical differences between means
were tested using Cohen’s d test for effect size. Differences were considered
statistically significant when p-value < 0.01. Mean values followed with the standard
deviation and the number of observations are presented in brackets in the text.
All analyses were performed using R Core Team (2013). R: A language and
environment for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. URL http://www.R-project.org/.

Data availability
All radiocarbon data are presented in Supplementary Tables 1 and 2. The accompanying
datasets and codes generated analysed during the current study are available from the
corresponding author on reasonable request.
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