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Abstract 22 

Hummingbirds feed from hundreds of flowers every day. The properties of these flowers provide 23 

these birds with a wealth of information about colour, space, and time to guide how they forage. To 24 

understand how hummingbirds might use this information, researchers have adapted established 25 

laboratory paradigms for use in the field. In recent years, however, experimental inspiration has come 26 

less from other birds, and more from looking at other nectar-feeders, particularly honeybees and 27 

bumblebees, which have been models for foraging behaviour and cognition for over a century. In a 28 

world in which the cognitive abilities of bees regularly make the news, research on the influence of 29 

ecology and sensory systems on bee behaviour is leading to novel insights in hummingbird cognition. 30 

As methods designed to study insects in the lab are being applied to hummingbirds in the field, 31 

converging methods can help us identify and understand convergence in cognition, behaviour and 32 

ecology. 33 
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 35 
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 40 
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Introduction 43 

Birds and bees have a history of being lumped together. In medieval times, bees were considered “the 44 

smallest of birds” [1], whereas today the smallest known species of bird, weighing less than 2g, is 45 



called the “bee hummingbird” Mellisuga helenae. But their small size, buzzing flight, and visits to 46 

flowers, have led many species of hummingbird to be coupled with bees in the popular imagination. It 47 

is no coincidence, for example, that both the Japanese (ハチドリ) and Chinese (蜂鸟) words for 48 

“hummingbird” literally translate as “bee bird”. In the natural world too, hummingbirds may share the 49 

same fields of flowers with the eusocial bees, particularly bumblebees Bombus and honeybees Apis, if 50 

not necessarily the same flowers.  51 

Although often compared in their capacity as pollinators, hummingbirds and bees have long 52 

been studied by observers curious about their foraging decisions. The need to visit so many flowers 53 

every day, as well as the sensory signals offered by the brightly coloured flowers they visit, cannot 54 

help but provoke questions about what hummingbirds and bees might learn while foraging. On 55 

occasion, their shared ecology has led to hummingbirds and bees being directly compared to one 56 

another, or methods used with bees, applied to studying hummingbirds. Over time, however, the 57 

research studying these different nectar-feeders had grown apart. Field studies of hummingbird 58 

cognition were not designed with reference to bees, but instead to food-storing birds and to examine 59 

the role of cognitive representations such as local and global spatial memory. In contrast, free-flying 60 

bees were used to examine the cognitive mechanisms underlying foraging decisions, how bees 61 

navigate to familiar flowers, and how their foraging behaviour adapts to different distributions of 62 

resources.   63 

Studying abstract cognitive abilities in bees, however, is now in vogue, while methods and 64 

ideas derived from studies of bee navigation and behavioural ecology are changing the way we think 65 

about hummingbird cognition. In this review, we will move from a historical context, covering the 66 

last time that hummingbirds and bees were studied side-by-side, to developments that have paved the 67 

way for the current state of hummingbird cognition. 68 

 69 

Early Experiments 70 



The American ornithologist Frank Bené conducted early tests on colour preference of hummingbirds 71 

in his garden [e.g. 2]. Bené showed that hummingbirds learned about colours, rather than innately 72 

favouring red as previously believed [3], and described the key role that location plays in 73 

hummingbird memory. In the following passage he describes the effect of moving a feeder visited a 74 

few times by a female black-chin hummingbird 2 feet (60cm) horizontally and 10in (25.5cm) 75 

vertically: 76 

“When the bird arrived, she flew straight to the old site as though the vial was still there, but finding 77 

no feeder, became bewildered and excited. She searched for the vial, but either it escaped her 78 

attention or she failed to associate [the vial in the new location] with the original … A few seconds 79 

later she left.” (Bené, 1945: pg. 13). 80 

Over the next 30 years, a number of studies followed a similar path, with most focussed on colour 81 

preference [e.g. 4,5]. With the 1970s, however, came behavioural ecology and with it optimal 82 

foraging theory. Foraging took centre-stage in the animal behaviour world, with models suggesting 83 

rules by which animals could maximise their net intake of energy [6]. As hummingbirds feed largely 84 

on sugar, the energetic costs and benefits of foraging were relatively straightforward to calculate [7], 85 

and the factors that made hummingbirds amenable to simple field experiments, e.g. ease of 86 

observation and discrete foraging decisions, meant that hummingbirds became prime candidates for 87 

testing these new theories. 88 

 89 

Optimal foraging in birds and bees  90 

From early experiments and observations by the likes of Fabre and Romanes, to the Nobel prize 91 

winning work of von Frisch, there is a long history of studying the behaviour of bees. However, it was 92 

in tests of optimal foraging theory that bees were compared directly to hummingbirds for the first 93 

time. 94 

These studies demonstrated that hummingbirds and bees did not forage randomly. Rather, 95 

they avoided revisiting flowers more than expected by chance [8,9] and moved differently depending 96 



on flower quality. Both hummingbirds and bees travelled further following visits to poorer quality or 97 

depleted flowers [10,11], remaining in profitable patches and moving out of unprofitable patches. 98 

The drawback to these studies was, ironically, the theory that inspired them. Comparisons of 99 

hummingbirds and bees were based on animals using optimal “movement rules” or “departure rules”. 100 

Behaviour was mainly examined as distances and directions between flower choices, rather than 101 

aspects such as time and location. Sequences of choices were analysed for patterns that could 102 

represent possible movement rules, which became increasingly complex. One rule, for example, was 103 

for a bumblebee to move to the closest unvisited flower unless the last movement was downward or 104 

was the first movement in a patch [12].  105 

Among the many conditions in this rule, the need to avoid “just visited” flowers highlights 106 

one way in which spatial memory could be seen as compatible with these movement rules. Avoiding 107 

the “just visited” flower could, for example, involve bees and hummingbirds using their memory to 108 

keep track of the flowers they have already visited to avoid revisiting them. This possibility was not 109 

taken particularly seriously in the earlier optimal foraging studies of hummingbirds and bees in favour 110 

of constraints, presumably movement rules, which reduced the probability of revisits to near-zero. 111 

The direction an animal had arrived at a flower was the only memory suggested to influence foraging 112 

decisions, with larger memory “capacity” implying memory for more previous arrival directions.  113 

The role that memory played reflects the paucity of influence of the relatively young field of 114 

animal cognition on more theoretically-minded early studies of optimal foraging, despite work on the 115 

learning abilities of hummingbirds and bees by Bené, von Frisch, and of memory systems by Menzel 116 

and colleagues [13]. For example, honeybees entrained their circadian cycle to the intervals at which 117 

they tended to forage, anticipating food as the relevant time approached [14] while bumblebees 118 

learned the rate at which the flower offered nectar [11], and the colour of rewarding flowers [15]. 119 

Furthermore, bumblebees had to learn how to manipulate flowers to reach the nectar they contained 120 

[16] using trial and error. This trial and error was related to the apparent difficulty of handling the 121 

flower: at more morphologically complex flowers bees took longer and had to visit more flowers 122 

before realising success.  123 



Whereas early evidence for learning in foraging bees involved bees learning flower colour, 124 

morphology, or reward, in hummingbirds the spatial location of flowers appeared of primary 125 

importance [17]. Hummingbirds learned to prioritise visits to artificially enriched patches of flowers 126 

[18] and would preferentially visit flowers on the edges of their territory in the morning and more 127 

central flowers in the afternoon [19]. Some hummingbirds also returned to flowers at discrete but 128 

locations distant from each other, at regular intervals [e.g. 20]. This behaviour suggested that some 129 

hummingbird species might form repeated routes, or “trap-lines” between flowers, a behaviour first 130 

described in euglossine bees [21], which requires learning the location, and possibly the refill interval, 131 

of multiple flowers.  132 

 133 

Hummingbirds meet Animal Cognition  134 

Since the heyday of optimal foraging, much of the research on learning and memory in foraging in 135 

bees has fallen into three, somewhat overlapping, areas. First, Menzel and colleagues in the 1970s and 136 

80s brought a combination of behaviour and neuroscience to short and long-term memory in both 137 

free-flying and harnessed bees [13], leading to other aspects of cognition and perception in the 1990s 138 

and early 2000s, including categorisation, attention, and, later, behaviours described as displaying 139 

“complex” cognition [22,23]. Secondly, by analysing the behaviour of navigating bees and other 140 

insects in detail, researchers such as Land, Collett and Cartwright described how insects learn a 141 

location in terms of a collection of remembered views [24]. This approach would later include 142 

bumblebees and other insects [e.g. 25], be applied to detailed analyses of specialised behaviours such 143 

as learning flights [e.g. 26], and employed to test the role that the visual flow of information across 144 

the retina (optic flow) plays in perceiving depth [27] and controlling flight [28]. Finally, the 1980s 145 

and 90s saw behavioural ecologists continue to probe at the ecological importance of bee foraging. 146 

Questions included the co-evolutionary relationship between bees and the flowers they pollinate, 147 

naturalistic foraging by bees over longer periods of time, and how experience shaped foraging 148 

behaviour in natural situations, including trap-lining. In the 21st century, the literature examining what 149 



and how foraging bees learn about their flowers is both impressively diverse and intellectually 150 

vibrant. 151 

 Work on hummingbirds across this period were not so much inspired by bees but by other 152 

birds. During the 1980s and early 90s behavioural ecologists and comparative psychologists 153 

collaborated to understand the psychological mechanisms underlying natural behaviours, aiming to 154 

examine whether and how natural selection has shaped animal cognition [e.g. 29]. Although inspired 155 

by an animal’s ecology, the methods used were typically taken from experimental psychology, rather 156 

than the naturalistic foraging tasks used in studies of bees. For example, in an analogue of the radial 157 

maze, hummingbirds kept track of “emptied” and “not-emptied” flowers [30]. Subsequent adaptations 158 

of laboratory paradigms included delayed-match-to-sample [31,32] and putting “local” and “global” 159 

cues in conflict [33]. Although rather vague on the information that hummingbirds actually used, e.g. 160 

“global cues”, these psychologically-inspired studies demonstrated the learning capabilities of wild 161 

hummingbirds. These experimental methods showed that hummingbirds relied on spatial location 162 

over flower appearance [31,32], could learn a location after a single visit [32,34], distinguished 163 

between seen-but-unvisited flowers and novel flowers [35], learned spatial location faster with 164 

differently coloured flowers [36], and could learn the contents and refill rates of different flowers [37–165 

39].  166 

 A drawback to this psychologically-inspired approach is that the “cues” it tested were defined 167 

only in very general terms, e.g. local v.s. global cues, rather in terms of the information hummingbirds 168 

in the wild were actually using. What, for example, is a “global” cue, to a hummingbird tested in a 169 

mountain valley? Flightpaths of the birds revealed that hummingbirds trained to visit a prominent, red 170 

artificial flower, and tested with the flower either moved 1.3-1.7 m or removed entirely, initially 171 

searched where the flower used to be. This suggested that hummingbirds do not relocate flowers by 172 

looking for them and flying in that direction, no matter how conspicuous the flowers [40]. What they 173 

actually did use to relocate a flower remained a mystery.  174 

 175 



Where are we now? 176 

From the early studies of optimal foraging to more recent investigations of learning and memory, 177 

there is now a large and diverse literature on foraging cognition in bees encompassing neurobiology, 178 

sensory ecology, and behavioural ecology. Studies of hummingbird foraging cognition over this 179 

period has tended to remain separate from these studies of bees, although this is now beginning to 180 

change. Bees are now providing inspiration for hummingbird researchers who are looking at their 181 

questions from a new perspective either by adopting methods more commonly used with insects or by 182 

testing insect-inspired hypotheses in hummingbirds. Two examples which demonstrate this “feathered 183 

bee” perspective follow.  184 

 185 

Case study 1: Trap-lining 186 

In addition to learning intervals between flower visits, hummingbirds can also use circadian timing 187 

and ordinal timing to keep track of flowers in different locations [e.g. 41]. The use of circadian timing 188 

is consistent with the time-of-day dependence of some hummingbird foraging [19], and with the well-189 

documented role that circadian rhythms play in foraging in other animals. The use of ordinal timing 190 

was a bit more surprising, but was apparently crucial for successfully tracking which flowers were 191 

rewarded. In order to time their visits appropriately, hummingbirds learned both the time of day 192 

together with the order in which flowers were rewarded. When flowers were presented at the 193 

appropriate time of day but out of order, for example, by presenting the flowers for the first time in a 194 

day at the time at which the third patch had been rewarded, hummingbirds foraged randomly [41].  195 

 Animals in the laboratory can be trained to learn arbitrary sequences of choices or actions, but 196 

this training requires hundreds of sessions [e.g. 42]. Rufous hummingbirds, however, when foraging 197 

from a number of patches each of which contained reward only at a certain times of the day, learned 198 

the sequence of rewarded patches within a single day. This affinity for learning a sequence of rewards 199 

is akin to the trap-lining behaviour previously described for non-territorial hummingbirds. Although 200 

rufous hummingbirds are aggressively territorial and not traditionally considered as trap-liners, when 201 



presented with multiple single flowers, they rapidly form one or two consistent routes between them 202 

[43].  203 

 This approach, in which hummingbirds were presented with increasing numbers of flowers 204 

rather than explicitly trained to a sequence, was inspired by work on trap-lining bees. Rather than 205 

training bees on prescribed sequences, researchers such as Thomson, Ohashi, Lihoreau, and Chittka, 206 

simply presented bees in the laboratory and in field arenas with artificial flowers that refilled after 207 

predetermined intervals [44,45]. Bumblebees spontaneously formed trap-lines between these locations 208 

and, similar to the hummingbirds [43], the route of their trap-line tended to follow the shortest 209 

possible route between the flowers. Nevertheless, the trap-lines of bees and hummingbirds do differ.  210 

For example, individual bees trap-line in either a clockwise or counter-clockwise direction around a 211 

patch of flowers, with most bees strongly preferring to fly in one of these two directions [45].  In 212 

contrast, individual hummingbirds, tested under the same conditions as traplining bees will switch 213 

between two or three trap-lines, with most showing no preference between flying clockwise or 214 

counter-clockwise [43]. Also, while both bumblebees and hummingbirds alter their trap-line in 215 

response to changes in the spatial geometry of the flowers, bumblebees will modify their route to 216 

prioritise highly rewarded locations [46], and hummingbirds modify their trap-lines only to avoid a 217 

poorly rewarded location. Both modifications of the foraging route, although slightly different, 218 

suggest that both bees and hummingbirds remember the location and quality of single flowers within 219 

their trap-lines, which is somewhat “episodic-like” in the combination of information on content, 220 

location, and time [47]. 221 

Despite differences in the duration of a bumblebee’s foraging life, which may be only a few 222 

weeks, and that of a hummingbird, which may live for multiple years, similarities in the formation and 223 

modification of trap-lines at smaller scales shows how hummingbirds and bees have converged in 224 

their responses to their foraging problems. 225 

 226 

Case study 2: View-based navigation 227 



How vertebrates remember spatial locations has been addressed predominantly from one of two 228 

perspectives: whether animals encode the overarching shape, or “geometry”, of their surroundings 229 

[48], such as the relative length of walls or the shape of an array of feeders, or, how animals use 230 

“landmarks”, which are usually discrete objects with a constant relationship to the goal [49]. Although 231 

early studies of how hummingbirds remembered space were heavily influenced by these laboratory 232 

studies of landmarks and geometry, hummingbirds did not use the “geometry” of an array of flowers 233 

or landmarks [50–52], except under very particular conditions [53]. Similarly, hummingbirds can use 234 

multiple landmarks to identify flower locations [50,52], but do so only under very particular 235 

conditions [54]. Overall, the approaches used by comparative cognition researchers to study spatial 236 

cognition in the laboratory have not proven to be particularly useful when studying hummingbirds in 237 

the field [55]. 238 

 Rather than focussing on abstract qualities such as “landmarks” and “geometry”, research on 239 

spatial memory in bees has been directed at determining the sensory information available to 240 

navigating bees and how they use it to guide behaviour [56]. One of the insights of Cartwright and 241 

Collet [57], for example, was that a single view of a constellation of “landmarks” could provide 242 

spatial information. By matching the size and position of landmarks as projected on the retina, bees 243 

can pinpoint familiar locations without extracting abstract spatial cues such as “vectors” or 244 

“bearings”. Subsequent modelling and experiments on bees and other navigating insects has shown 245 

how information such as depth can be detected through patterns in optic flow [e.g. 27] and that even 246 

segmenting landmarks against the background might not be necessary for successful view-matching 247 

navigation [58]. View-based navigation now encompasses a wide range of strategies in which the 248 

visual information an animal perceives can itself lead an animal to its location, without the need for an 249 

animal to compute the spatial relationships between landmarks and a goal [59]. From experiments 250 

inspired by view-matching insects [e.g. 57], there is some evidence that hummingbirds might too 251 

relocate flowers using remembered views. When landmarks around a reward were made twice as 252 

large as in training, hummingbirds searched for the reward in locations that maintained the view, but 253 

not the distances, of the landmarks [work in review].  254 



Recent developments in the capabilities of high-speed cameras and methods for tracking and 255 

reconstructing head movements are also allowing hummingbird researchers to look closer at the 256 

details of spatial behaviour. Detailed analyses of the head movements of navigating bees have shown 257 

how, rather than just learning a static snapshot, bees can use particular movements to extract and learn 258 

a rich and dynamic portrait of their surroundings. By moving their heads in ways that generate 259 

particular patterns of visual motion, bees and wasps can directly perceive the distances of different 260 

features [27], determine the distance of landmarks from a goal location [24], and shear 3D objects 261 

from their background [60]. Recently, these in-depth examinations of behaviour have been put 262 

together with cutting-edge view-reconstruction techniques, to gain a “view from the cockpit” of 263 

navigating wasps [61]. Although hummingbirds do not appear to show specialised learning 264 

behaviours, such as orientation flights, many birds show patterns of head movements associated with 265 

recognising objects and determining distances [62], behaviours that could affect what birds learn 266 

about spatial locations. The tools developed to study visual navigation in bees and other insects, could 267 

therefore allow hummingbird researchers to take a literal “bird’s eye view” of navigation, examining 268 

how views, behaviour, and landmarks come together to guide hummingbirds back to their flowers.  269 

 270 

Conclusion 271 

In recent years, eye-catching demonstrations of “complex” cognitive processes in bees have 272 

made headlines [e.g. 63, reviewed in 23]. Although removed from traditional studies of foraging bees, 273 

these studies have captured the attention of psychologists and biologists interested in the evolution of 274 

human cognition and raise the question of how tiny brains can produce such seemingly complex 275 

behaviour [22].  276 

As studies of bee cognition appear to be increasingly influenced by the methods used to 277 

investigate, and questions asked of, vertebrate cognition, it is worth noting that this inspiration rarely 278 

goes in the other direction. Despite being discredited by evolutionary biology for over a century, the 279 

comparisons made in animal cognition still appear dominated by the “scala naturae”, assigning 280 



species to a rung on a hypothetical evolutionary ladder. Although some species, such as corvids and 281 

cephalopods, may find themselves moving up the ladder following reports of their “sophisticated” 282 

cognition, most comparisons tend to look upwards. Thus, studies of fish or insects might look for 283 

cognitive abilities seen in birds and primates [e.g. 64], but it is rare for studies of birds and primates to 284 

look for abilities discovered in fish or insects. Research on hummingbird cognition represents an 285 

exception to this rule. Although separated by millions of years of evolution, and experiencing the 286 

world in vastly different ways, by ignoring the “scala naturae” in favour of ecology and treating 287 

hummingbirds as feathered bees, it is possible to look at birds that have been studied in one way or 288 

another for most of the twentieth century with fresh eyes. By focussing on the details of behaviour, 289 

the available visual information, and using naturalistic scenarios rather than elegant but contrived 290 

experimental designs, studies of bees are now inspiring a new generation of studies of hummingbirds. 291 

 292 
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