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Abstract
1.	 A key aim of ecology is to understand the drivers of ecological patterns, so that we 
can accurately predict the effects of global environmental change. However, in 
many cases, predictors are measured at a finer resolution than the ecological re-
sponse. We therefore require data aggregation methods that avoid loss of informa-
tion on fine-grain heterogeneity.

2.	 We present a data aggregation method that, unlike current approaches, reduces the 
loss of information on fine-grain spatial structure in environmental heterogeneity 
for use with coarse-grain ecological datasets. Our method contains three steps: (a) 
define analysis scales (predictor grain, response grain, scale-of-effect); (b) use a 
moving window to calculate a measure of variability in environment (predictor grain) 
at the process-relevant scale (scale-of-effect); and (c) aggregate the moving window 
calculations to the coarsest resolution (response grain). We show the theoretical 
basis for our method using simulated landscapes and the practical utility with a case 
study. Our method is available as the grainchanger r package.

3.	 The simulations show that information about spatial structure is captured that would 
have been lost using a direct aggregation approach, and that our method is particularly 
useful in landscapes with spatial autocorrelation in the environmental predictor varia-
ble (e.g. fragmented landscapes) and when the scale-of-effect is small relative to the 
response grain. We use our data aggregation method to find the appropriate scale-of-
effect of land cover diversity on Eurasian jay Garrulus glandarius abundance in the UK. 
We then model the interactive effect of land cover heterogeneity and temperature on 
G. glandarius abundance. Our method enables us quantify this interaction despite the 
different scales at which these factors influence G. glandarius abundance.

4.	 Our data aggregation method allows us to integrate variables that act at varying 
scales into one model with limited loss of information, which has wide applicability 
for spatial analyses beyond the specific ecological context considered here. Key 
ecological applications include being able to estimate the interactive effect of 
drivers that vary at different scales (such as climate and land cover), and to 
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1  | INTRODUC TION

A major goal of ecology is to understand the drivers of ecological 
processes (Begon, Harper, & Townsend, 2006) and the current dra-
matic decline of biodiversity (Butchart et al., 2010). There is broad 
agreement that climate is one of the key factors determining the pat-
terns of species richness (Field et al., 2009), and that climate change 
is a significant major threat to biodiversity (Thomas et al., 2004). It 
is also widely acknowledged that land use change is the largest cur-
rent threat to biodiversity (Pimm & Raven, 2000). Climate and land 
use affect biodiversity additively and interactively (Jetz, Wilcove, & 
Dobson, 2007; Travis, 2003), but the nature of these interactions is 
poorly understood (Newbold, 2018). As such, integration of climate 
and land use change in broadscale biodiversity analyses is required 
(Brook, Sodhi, & Bradshaw, 2008; Titeux et al., 2017). Additionally, 
there is increasing recognition that environmental heterogene-
ity—the complexity, diversity and structure in the environment—is 
a near-universal driver of ecological processes (Stein, Gerstner, & 
Kreft, 2014). Disregarding environmental heterogeneity adversely 
affects predictions of climate change effects on biodiversity (Luoto 
& Heikkinen, 2008). Therefore, broadscale modelling needs to in-
clude relative, additive and interactive effects of climate, land use 
and environmental heterogeneity on ecological processes.

Integrating climate and environmental heterogeneity into eco-
logical modelling is complicated by the fact that the spatial res-
olution at which they affect ecological processes varies greatly 
(Newbold, 2018). Advances in remote sensing mean that environ-
mental data are increasingly available at fine spatial and temporal 
resolutions across broad extents (Bush et al., 2017). However, bio-
diversity data vary in terms of the spatial resolutions and extent 
at which they are available (Bellard, Bertelsmeier, Leadley, Thuiller, 
& Courchamp, 2012). Despite large increases in data mobilisation, 
biodiversity data availability remains poor in many regions (Amano, 
Lamming, & Sutherland, 2016). For example, broad-extent data on 
even the best studied groups in well-studied regions (e.g. European 
bird atlases) are typically only reliable at resolutions of 10 km or 
coarser.

As a result, predictor variables that exert their effects on biodi-
versity at relatively fine spatial resolutions must be aggregated to 
the coarser grain of biodiversity response data. While not problem-
atic for regional climatic variables which vary at broad resolutions, 
this is an issue for factors with finer characteristic scales such as land 
use, habitat type or topography (Bailey, Boyd, Hjort, Lavers, & Field, 
2017). In addition, the inability of coarse-grain models to adequately 
represent environmental heterogeneity is a major factor driving 

inconsistencies between coarse-grain and fine-grain predictions of 
the effects of climate change on biodiversity (Bellard et al., 2012).

Currently, broad-extent models tend to measure fine-grain het-
erogeneity in coarse-grain models via coarse aggregated measures 
(Stein & Kreft, 2015; Stein et al., 2014) such as number or percent 
cover of land cover classes (Algar, Kharouba, Young, & Kerr, 2009; 
Zuckerberg, Fink, La Sorte, Hochachka, & Kelling, 2016), mean or 
range of elevation (Graham, Weinstein, Supp, & Graham, 2017; Kreft 
et al., 2006) and number of topographic features (Bailey et al., 2017). 
In these ‘direct’ data aggregation approaches, the summary statistic 
is calculated at the coarser grain by taking, for example, the mean or 
standard deviation of the finer grain measurements. However, ag-
gregating this way causes a loss of information about the structure 
of spatial features (Kitron et al., 2006; Turner, O'Neill, Gardner, & 
Milne, 1989; Wiens, 1989) and means that within-grain variation for 
processes that vary, or exert their effects, over a fine scale is lost 
(Field et al., 2009). More generally, aggregation of data into larger 
spatial units can change the observed strength and/or direction of 
a relationship—this is known as the modifiable areal unit problem 
(MAUP) (Openshaw, 1984). The underlying cause of the MAUP is the 
smoothing effect of averaging data that are spatially heterogeneous 
(Gotway & Young, 2002). Therefore, to incorporate fine-resolution 
environmental heterogeneity into broad-extent models effectively, 
there is a need for data aggregation methods that preserve informa-
tion about the spatial structure of heterogeneity.

An additional challenge to understanding the effects of envi-
ronmental heterogeneity on biodiversity is that the scale at which 
a species responds to the environment varies between species, 
and if species–environment relationships are modelled at inappro-
priate scales, we can draw incorrect inferences from our analyses 
(de Knegt et al., 2010). However, finding the appropriate scale, 
known as the scale-of-effect, can be challenging (Miguet, Jackson, 
Jackson, Martin, & Fahrig, 2016). Scales-of-effect are typically de-
termined using biological understanding of an organism's ecological 
neighbourhood (Addicott et al., 1987). However, we do not always 
have a priori understanding of these scales, and many predictions 
of the factors affecting scales-of-effect remain untested (Miguet 
et al., 2016). In landscape ecology, regressions between the ecolog-
ical response—measured within a focal patch or point—and the en-
vironmental predictor are typically conducted at multiple scales of 
the predictor, and the scale-of-effect is determined as that with the 
greatest statistical support (Holland, Bert, & Fahrig, 2004). However, 
this approach is not suitable when the spatial grain of the response is 
larger than the plausible range of spatial scales at which biodiversity 
responds to environmental heterogeneity. For example, in atlas data, 

systematically examine the scale dependence of the effects of environmental het-
erogeneity in combination with the effects of climate change on biodiversity.
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when a species abundance is measured at a resolution of 10 km, the 
scale at which the species responds to environmental heterogeneity 
may be related to a foraging distance of <10 km (Miguet et al., 2016).

There is a literature on improving data aggregation methods; 
however, this does not link the scale of aggregation to the relevant 
scale-of-effect for the organism or process of interest. Most stud-
ies which either examine the effect of data aggregation (Raj, Hamm, 
& Kant, 2013; Sun, Congalton, Grybas, & Pan, 2017; Wu, 2004) or 
propose new methods for data aggregation (Frazier, 2014; Gardner, 
Lookingbill, Townsend, & Ferrari, 2008) focus only on scaling up cat-
egorical representations of the landscape (i.e. land cover classes). 
Their utility is evaluated by their ability to recover fine-resolution 
landscape pattern metrics at coarser resolutions. While stan-
dardised data aggregation approaches are ideal for studying land-
scape pattern and investigating drivers of landscape change, they 
are not appropriate for ecological analysis because an understanding 
of the scale of the ecological process is not included.

Here, we present a novel method that, for the first time, explicitly 
links data aggregation to landscape ecological theory. We show that 
by calculating fine-scale variation using a moving window at a scale 
appropriate to the ecological process under study (sensu Wiens, 
1989), before aggregating to the coarser scale, we obtain critical 
additional information on environmental heterogeneity (within-
unit variation) over simply calculating variation at the coarser scale. 
Our approach has important implications as it enables—for the first 
time—statistically robust testing of hypotheses about the effects 
of fine-grain environmental heterogeneity on ecological processes 
which have been measured using coarse-grain, broad-extent data. 
Specifically, our approach enables (a) systematic testing of the scale 
dependence of the effects of environmental heterogeneity within 
broad-extent models and (b) testing of the interactive and additive 
effects of environmental heterogeneity within broad-extent models 
at ecologically meaningful scales. Unlike most data aggregation ap-
proaches, our method can be used with both categorical (e.g. land 
cover) and continuous data (e.g. elevation).

We first comprehensively test our data aggregation method 
using simulations to understand (a) the situations in which our data 
aggregation method provides additional information over direct 
aggregation methods and (b) the situations in which we are able to 
identify the correct scale-of-effect using our method. Understanding 
this provides a theoretical basis for our approach and is vital to en-
able us to make informed a priori predictions of when and why our 
data aggregation approach is most likely to lead to meaningful new 
insights. We then test our approach empirically with an example 
of when environmental heterogeneity may influence an ecologi-
cal process: relative abundance of Eurasian jay Garrulus glandarius 
across Great Britain. G. glandarius requires a combination of forest 
types: broadleaf for foraging and coniferous for nesting (Holden & 
Cleeves, 2006). Therefore, the spatial structure and distribution of 
these habitats within the bird's neighbourhood are likely to influence 
their abundance. We predict heterogeneity of forest type calculated 
using our approach would be a stronger predictor than simply cal-
culating coarse-grain measures at the landscape scale. Moreover, 

our approach enables us to empirically identify the scale-of-effect 
of heterogeneity of forest type on G. glandarius abundance; and 2) 
assess the interactive and additive effects of heterogeneity at the 
most relevant scale in combination with other, coarse-grain pre-
dictor variables. We predict that the best fit scale-of-effect will be 
~1 km because this sits between the home range size (Pons & Pausas, 
2008) and average dispersal distance (Paradis, Baillie, Sutherland, & 
Gregory, 1998) for G. glandarius; two factors hypothesised to influ-
ence scale-of-effect (Miguet et al., 2016).

2  | MATERIAL S AND METHODS

2.1 | Aggregating environmental heterogeneity at 
organism-relevant scales

There are three steps involved in our moving window data aggre-
gation (MWDA) approach: (a) define the appropriate scales for the 
ecological process; (b) define the appropriate measure of environ-
mental heterogeneity and calculate using a moving window; and (c) 
summarise the moving window-based measure at the grain of the 
response (Figure 1). Our approach is appropriate for any relationship 
between an environmental factor and an ecological process where 
the scale-of-effect is finer than the scale of analysis. For example, 
the relationship between landscape structure and occurrence, abun-
dance, fecundity or genetic diversity (Miguet et al., 2016). We have 
written an r package named grainchanger (Graham, 2019a) to easily 
implement our method. This package provides the tools to aggre-
gate data from predictor to response resolution through either the 
MWDA approach (winmove_agg() function) or the direct data aggre-
gation (DDA) approach (nomove_agg() function).

First, we define the scales of analysis: the scale-of-effect, re-
sponse grain and predictor grain (Figure 1, panel 1). The scale-of-
effect is the characteristic spatial scale at which an organism (or 
ecological process) responds to their environmental context. We can 
find such scales-of-effect by fitting models at multiple scales and 
selecting the best fitting using information criterion such as Akaike's 
information criterion (AIC). The scale-of-effect of environmental 
heterogeneity on the ecological process determines the size of the 
moving window in our method. In our study, we define the size of the 
scale-of-effect as a neighbourhood of x units, where x represents 
the distance from the focal cell to the edge of the window and we 
use the Moore neighbourhood (queen's rule, Moore, 1962).

The response grain is the grain at which the ecological process is 
modelled, and as such the resolution into which the fine-scale pre-
dictor data is being aggregated. This is typically limited by the reso-
lution of the broadscale response data, or is the resolution at which 
broadscale patterns in the ecological process manifest. For example, 
for species richness patterns, the grain size should reflect the size of 
the smallest species range (Rahbek, 2005).

Next, we define a measure of environmental heterogeneity that will 
allow us to quantify environmental heterogeneity within the moving 
window (set by the scale-of-effect of the ecological process of inter-
est). This measure should capture some aspect of the distribution of 
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the variable and not its central tendency. For continuous variables, 
such as elevation or microclimate, simple dispersion measures such 
as variance, standard deviation and range can be used, as can more 
complicated measures such as Rao's Q (Rocchini, Marcantonio, & 
Ricotta, 2017). For categorical variables, such as land cover, number 
of land cover classes and Simpson's or Shannon's diversity or even-
ness measures (McGarigal & Marks, 1994) are widely used measures 
of heterogeneity. The resolution of the analysis within each window 
should correspond to the thematic resolution at which variability in 
the environmental variable of interest is captured (predictor grain), but 
may in fact be constrained by the resolution at which the data are 
measured. We calculate the chosen measure using a moving window 
with neighbourhood size related to the scale-of-effect for each cell of 
the appropriate grain size in the environmental independent variable. 
Each predictor grain cell in the raster contains the measure that quan-
tifies the environmental heterogeneity of the surrounding cells within 
the window (Figure 1, panel 2).

The final step is to aggregate the window-based measures of en-
vironmental heterogeneity from step two to the response grain by 
calculating a summary statistic (e.g. mean, median, Figure 1, panel 
3). This provides a measure that retains more information about spa-
tial characteristics of environmental heterogeneity at the scale-of-
effect on the ecological process when aggregating to a coarser scale 
of analysis than direct data aggregation measures.

2.2 | Aggregating environmental heterogeneity in 
simulated landscapes

2.2.1 | Simulated data

In order to identify the situations under which our MWDA ap-
proach is useful, we used simulated datasets to answer two 

questions: (a) Under what levels of variability in spatial autocorrela-
tion and neighbourhood size (scale-of-effect) does the correlation 
between our MWDA method and DDA break down? (b) In which 
spatial autocorrelation scenarios can we successfully identify the 
scale-of-effect?

For each dataset, we simulated 1,000 cells at the response grain 
resolution (10 km × 10 km). For each response grain cell, we simu-
lated landscapes at the predictor grain resolution (25 m × 25 m) 
using the fractal Brownian motion method (Travis & Dytham, 2004). 
Using this method, the spatial autocorrelation of a landscape is con-
trolled by the fractal dimension parameter where a value close to 
zero generates an uncorrelated (i.e. random and highly fragmented) 
surface, and a value of one a highly autocorrelated (i.e. aggregated 
and clumped) landscape. Each 25 m × 25 m cell has a continuous 
value ranging between 0 and 1. We also created a second dataset 
where each 25 m × 25 m cell has a discrete value between 0 and 4, 
representing five land cover classes. We created these by generating 
a vector of class weightings (representing the proportion of each land 
cover class) and assigning the continuous values to classes based on 
these weightings. For example, the vector containing 0.5, 0.25 and 
0.25 would assign values [0, 0.5] to class 0, values [0.5, 0.75] to class 
1, and values [0.75, 1] to class 2. The continuous landscapes repre-
sent a fine-scale continuous environmental variable such as eleva-
tion, vegetation indices or microclimate. The categorical landscapes 
represent fine-scale categorical environmental variables such as land 
cover, suitable habitat or soil type. Landscape simulations and clas-
sification were done using the NLMR and landscapetools r packages 
(Sciaini, Fritsch, Scherer, & Simpkins, 2018).

For five scenarios of spatial autocorrelation, we simulated 100 
replicate datasets as detailed above. These scenarios were (a) no 
spatial autocorrelation (fractal dimension = 0.1 for all response 
grain landscapes); (b) low, varied spatial autocorrelation (fractal 

F IGURE  1 Graphical representation of the moving window data aggregation (MWDA) method. In calculating the MWDA measure, 
three aspects of scale are considered. Predictor grain is the characteristic spatial scale of the predictor variable, that is, the resolution of 
the environmental data; scale-of-effect determines the appropriate scale of the relationship between predictor and response, for example, 
an ecological neighbourhood; response grain is the grain of the unit into which you are predicting, that is, the resolution of the response 
variable. Note that the colour scale is unitless. Yellow cells represent ‘high’ values and dark blue cells ‘low’ values
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dimension in the range 0.1–0.5); (c) varied spatial autocorrelation 
(fractal dimension in the range 0.1–1); (d) high, varied spatial au-
tocorrelation (fractal dimension in the range 0.5–1); and (e) high 
spatial autocorrelation (fractal dimension = 1 for all response grain 
landscapes).

Next, we calculated variability within a moving window at four 
different neighbourhood sizes: 500 m (1% of response grain), 1 km 
(4%), 1.5 km (9%) and 3.5 km (49%). To avoid edge effects, we pad-
ded each landscape by the neighbourhood size to create the effect 
of a torus: an infinite surface where cells on one edge neighbour cells 
on the opposite edge. We calculated variance for the continuous 
landscapes and Shannon evenness for the categorical landscapes. 
We calculated Shannon evenness using

pi is the proportion of land cover class i and S is the total number of 
land cover classes (McGarigal & Marks, 1994; Pielou, 1969). In all 
cases, we aggregated the moving window measure to the response 
grain by taking the mean across each landscape, resulting in the 
MWDA measure. Finally, we calculated the same measures using DDA 
(i.e. by directly calculating the variance and Shannon evenness for each 
whole landscape).

2.2.2 | Correlation between MWDA and 
DDA approaches

In order to understand the kinds of landscapes where using our data 
aggregation approach provides different information to standard 
approaches, we calculated the Spearman correlation between the 
MWDA and DDA measures for each spatial autocorrelation scenario 
and neighbourhood size.

2.2.3 | Identifying the scale-of-effect

In order to understand the specific circumstances (degree of spa-
tial autocorrelation, scale-of-effect and signal to noise ratio) under 
which we can successfully identify the scale-of-effect, we also simu-
lated a response variable for each dataset and neighbourhood size. 
We calculated this response variable as yw = MWDAw + ɛ where yw 
is the response variable and MWDAw is the MWDA measure for 
neighbourhood size w and ɛ ∼ N(0, σ). We use three levels of σ: low,  
moderate and high. Low σ represents data with minimal noise and 
was calculated as the first percentile of the MWDA measure within 
each spatial autocorrelation scenario and window combination; 
moderate σ represents data with a moderate amount of noise and 
was the 10th percentile of the MWDA measure; high σ represents 
data with a large amount of noise and is the median of the MWDA 
measure.

For each yw, we fit a univariate linear model with each MWDAw 
as the covariate and use AIC to select the best-fitting model. We 
then calculate the % of replicates in which the model containing the 
correct MWDAw, and thus scale-of-effect, was selected.

2.3 | Case study: relative abundance of 
Garrulus glandarius

2.3.1 | Data

We obtained relative abundance data for Eurasian Jay G. glandar-
ius from the British Trust for Ornithology 2007–2011 Bird Atlas 
(Balmer et al., 2013), which are available at 10 km × 10 km resolu-
tion. For this citizen science project, volunteers undertook two 
1-hr timed surveys in at least eight 2 km × 2 km in every 10 km 
cell in Britain. During these timed surveys, volunteers counted all 
birds encountered; however, for this study, we convert the counts 
to presence/absence and determine the proportion of surveyed 
2 km × 2 km cells that were occupied for each 10 km cell. These 
data provide an index of relative abundance for Britain at a reso-
lution of 10 km and have previously been used to map major gra-
dients in abundance (Gibbons, Reid, & Chapman, 1993).

We obtained land cover data from the 25 m resolution Land Cover 
Map (LCM) 2007 (Morton et al., 2011), which is the closest match to 
the 2007–2011 abundance index data. LCM 2007 is a remotely sensed 
dataset that describes 24 land cover classes. For each 10-km cell, we cal-
culated forest % and urban % from the LCM 2007 data. We downloaded 
mean annual temperature (bio1) from WorldClim (Hijmans, Cameron, 
Parra, Jones, & Jarvis, 2005) at 5 arcminute resolution (~10 km) and 
matched to the corresponding 10-km cell. We obtained a full set of re-
sponse and covariates for n = 1,719 10-km cells (Figure 2).

2.3.2 | Aggregating environmental heterogeneity

For the G. glandarius case study, we aggregated the two forest types 
in LCM 2007 from 25 m to 10 km resolution using Shannon evenness 
of broadleaf and coniferous forest as the measure of environmental 
heterogeneity with both a MWDA and a DDA approach (MWDA 
Shannon and DDA Shannon respectively). We excluded all other land 
cover classes from the calculation. In order to identify the appropriate 
scale-of-effect, we calculated MWDA Shannon for six neighbourhood 
sizes: 50 m, 100 m, 500 m, 1,000 m, 1,500 m and 3,500 m. We aggre-
gated this measure into a response grain of 10 km resolution to match 
the G. glandarius abundance data. For DDA Shannon, we calculated 
Shannon evenness of forest types for the entire 10 km cell.

2.3.3 | Statistical analyses

The G. glandarius relative abundance index is a non-binomial propor-
tion variable. As such, we applied a logit transform to the index and 
modelled using ordinary linear regression (following Warton & Hui, 
2011). We included Shannon, forest %, urban %, temperature and 
the interaction of temperature with Shannon as covariates. We fit 
this model for each of the six MWDA measure and the DDA Shannon 
measure. In order to identify the appropriate scale-of-effect, we 
used AIC and BIC to find the best-fitting model.

All analyses were performed in r version 3.5.1 (R Core Team, 
2018).

(1)J� =
(

−
∑

pi ln pi

)

∕ ln S,
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3  | RESULTS

3.1 | Aggregating environmental heterogeneity in 
simulated landscapes

3.1.1 | Correlation between MWDA and 
DDA approaches

Correlation between MWDA and DDA measures was lowest for 
smaller neighbourhood sizes and in varied spatial autocorrelation 
scenarios (Figure 3a). The pattern was similar between categorical 
and continuous variables. For the continuous variable, there was a 
weak negative correlation between MWDA and DDA for the var-
ied, and low, varied spatial autocorrelation scenarios at the small-
est neighbourhood size. The reason for this is that high values of 
spatial autocorrelation result in low MWDA and high DDA, whereas 
the opposite is the case for low values of spatial autocorrelation 
(Appendix SI, Figure AI.2).

3.1.2 | Identifying the scale-of-effect

In most spatial autocorrelation scenarios, neighbourhood sizes and 
levels of noise in the data, we were able to identify the scale-of-
effect with reasonable accuracy (Figure 3b). We had the least ability 

to detect the correct scale-of-effect in the no spatial autocorrelation 
scenario and at intermediate window sizes (4% and 9% of the land-
scape). We were better able to identify the correct scale-of-effect 
when the predictor variable was continuous, rather than categorical: 
mean % correct for each noise level ranged from 89.6% in the high 
noise data to 99.5% in the low noise data for the continuous variable, 
but 74%–95% for the categorical variable. The scenario in which we 
had least accuracy in detecting the scale-of-effect was the high noise, 
categorical, no spatial autocorrelation scenario when the window size 
was 4% of the landscape (15% of replicates correctly identified).

To set the noise levels in the context of an empirical analysis, 
we calculated the R2 values for the model with the correct scale-
of-effect for each spatial autocorrelation scenario, window size and 
noise level. The models in the low noise scenario had R2 values in the 
range 0.41–0.91. The models in the moderate noise scenario had R2 
values in the range 0.1–0.61. The models in the high noise scenario 
had R2 values in the range 0.03–0.28.

3.2 | Case study: Garrulus glandarius abundance

The best-fitting model judged by both AIC and BIC was that con-
taining the MWDA measure of Shannon diversity with a neighbour-
hood size of 100 m (Table 1). There was little to distinguish between 
the MWDA measure at 50 m, 100 m and 500 m (ΔAIC & ΔBIC < 3), 

F IGURE  2 Study site and distribution 
of Garrulus glandarius relative abundance, 
where a value of one, represented by the 
lighter colours, is the highest abundance 
and values approaching zero, represented 
by the darker colours, are cells with the 
lowest abundance (a). Mean centred 
and scaled values of the four predictor 
variables (b). MWDA Shannon is shown at 
the 100 m scale-of-effect



     |  773Methods in Ecology and Evolu
onGRAHAM et al.

suggesting that the true scale-of-effect is in this range. The model 
containing the direct approach to data aggregation (DDA Shannon) 
had the least support.

The model containing MWDA Shannon (100 m) explained a rea-
sonable amount of variation in relative abundance of G. glandarius 
(R2 = 0.37). All β coefficients were statistically significant and pos-
itive, with the strongest relationships being with MWDA Shannon 
(100 m) and temperature. We also found a small positive interaction 
between MWDA Shannon (100 m) and temperature (Figure 4). This 

interaction was significant for all values of MW Shannon and for 
all but the lowest temperature values (<6.5°C; calculated using the 
Johnson–Neyman interval; Johnson & Fay, 1950).

4  | DISCUSSION

Our results provide a compelling argument for using our novel, three-
step approach to evaluate the effects of fine-scale environmental 

F IGURE  3 Spearman's ρ between the moving window (MWDA) and direct (DDA) data aggregation measures for each spatial 
autocorrelation scenario and neighbourhood size (a). Percentage of replicates where the correct scale-of-effect was identified for each 
spatial autocorrelation scenario and neighbourhood size (b)
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heterogeneity on coarse-scale ecological processes. One key reason 
why fine-grain environmental heterogeneity is often considered un-
important within coarse-grain models is because the within-unit var-
iability is lost when aggregating to coarse grains (Field et al., 2009). 
By (a) defining the relevant scale(s) at which heterogeneity matters; 
(b) using a moving window to calculate environmental heterogene-
ity; and (c) aggregating to the scale of the response, our approach 
provides important additional information over existing approaches 
by capturing such within-unit variability. Our approach is most use-
ful when an understanding of the effect of heterogeneity on broad-
scale patterns is the goal of a study, and there is a scale mismatch 
between the predictor and response data. Additionally, we note that 
through modelling at the appropriate scale, we gain a greater under-
standing of mechanism (Levin, 1992; Wiens, 1989), which in turn can 
increase model transferability and predictive power (Scheiner et al., 
2000; Yates et al., 2018).

Our simulations provide the theoretical basis of our data aggre-
gation method. They show that our method is particularly useful in 
landscapes where within-unit heterogeneity is variable—or at least 
where all coarse-grain cells display high within-unit heterogeneity. 
Additionally, our method has greater utility when the scale-of-effect 
is small relative to the response grain. Given most environmental 
variables display some level of clumping or aggregation (Diniz-Filho, 
Bini, & Hawkins, 2003), and this is variable across broadscales (Wu, 
2004), it is likely that our method is widely applicable. The low cor-
relation between the MWDA and DDA measures in most scenar-
ios for smaller neighbourhood sizes shows that our method retains 
more information about spatial structure than direct approaches. 
This is key information if we are to understand mechanism in ecol-
ogy (Wiens, 1989) as it means that the MWDA measures capture 
environmental heterogeneity at the scale at which the ecological 
process responds to it. Additionally, we showed that measures cal-
culated using our approach are most correlated with and least able 

to detect the correct scale-of-effect when no cells display spatial 
autocorrelation. It is unlikely that this would occur in reality given 
most landscapes display some level of within-unit heterogeneity at 
coarse resolutions. The smaller correlation between MWDA and 
DDA measures, and the greater ability to detect the correct scale-
of-effect at smaller neighbourhood sizes, indicates that it is more im-
portant to examine environmental heterogeneity at an appropriate 
scale in landscapes with a higher level of environmental heteroge-
neity. This is in agreement with the assertion that changing scale in 
spatially heterogeneous landscapes can drastically alter conclusions 
(Scheiner et al., 2000; Wu, 2004) and that the nature of the effect 
of changing scale depends on the form of heterogeneity in the land-
scape (Wiens, 1989).

In order to make accurate inferences (Scheiner et al., 2000) 
and thus gain a greater mechanistic understanding of the effect of 
environmental drivers (Wiens, 1989), it is key that we understand 
the appropriate scale at which to model processes. While classical 
multi-scale landscape ecology analyses may be employed when the 
response is measured at point locations (Holland et al., 2004), no 
analogous methods currently exist when we only have coarse-grain 
(i.e. larger than plausible scales-of-effect) response data. Using sim-
ulations, we showed that our data aggregation approach addresses 
this, as it is suitable for detecting the correct scale-of-effect in most 
cases for coarse-grain response data. Our case study demonstrated 
this in practice, finding that the scale at which forest cover diversity 
affects G. glandarius abundance is in the range of a 50–500 m neigh-
bourhood size. This fits with our prediction that the scale-of-effect 
would be related to the territory size and dispersal distance (Andrén, 
1990; Paradis et al., 1998).

A key benefit of being able to include information about fine-
scale environmental heterogeneity in a coarse-scale model is that we 
can evaluate the interactive effects of climate and land cover, which 
is considered a difficult problem and open research area (Bellard 
et al., 2012; Jetz et al., 2007; Newbold, 2018; Travis, 2003). We 
found an interactive effect between spatial heterogeneity of forest 
type and temperature, which suggests that at higher temperatures, 
the influence of forest diversity on G. glandarius abundance is stron-
ger. This means that management for forest diversity will become 
more important under global climate change, reflecting theoretical 
and expert-based expectation (Heller & Zavaleta, 2009).

In addition to deeper understanding of environmental change, 
our approach also allows us to make conservation relevant conclu-
sions about the scale at which to manage landscapes. The positive ef-
fect of forest diversity on relative abundance of G. glandarius, when 
calculated using a moving window with radius 100 m, suggests that 
management efforts should aim to maintain an even balance of both 
broadleaved and coniferous forests at this scale in order to benefit 
populations of G. glandarius. The model selection approach allowed 
us to establish that it was the local-scale forest diversity driving G. 
glandarius abundance. However, had we calculated forest diversity 
at the response grain size (10 km x 10 km), we may have concluded 
that this was an appropriate scale to manage woodlands for G. glan-
darius. Such management may not capture habitat diversity at the 

TABLE  1 Results of the model comparison. We calculated 
Shannon diversity of forest cover type using our moving window 
data aggregation method (MWDA Shannon) and direct data 
aggregation methods (DDA Shannon). We calculated MWDA 
Shannon at six scales (defined by the size of the moving window). 
We then fit seven models of Garrulus glandarius abundance 
changing only the Shannon diversity measure in each. Model 
performance was evaluated using Akaike's information Criterion 
(AIC) and Bayesian Information Criterion (BIC). This allowed us to 
identify the scale at which G. glandarius most strongly responds to 
Shannon diversity of forest cover type

Shannon measurement AIC BIC

MWDA Shannon (100 m) 3,975.0 4,013.2

MWDA Shannon (50 m) 3,976.4 4,014.5

MWDA Shannon (500 m) 3,977.4 4,015.6

MWDA Shannon (1,000 m) 3,984.7 4,022.8

MWDA Shannon (1,500 m) 3,991.0 4,029.1

MWDA Shannon (3,500 m) 4,001.9 4,040.1

DDA Shannon 4,005.0 4,043.2
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relevant scale and lead to inappropriate management (Turner, 1989; 
Wiens, 1989).

Although using a moving window prior to data aggregation is not 
necessarily new, studies tend to favour a one-size-fits-all approach by 
using a 3 × 3-cell window. For example, topographic measures such as 
topographic position index and terrain ruggedness index have been 
calculated in such a way to create multipurpose datasets for use in 
biodiversity modelling (Amatulli et al., 2018) or to examine the effect 
of topographic heterogeneity on tropical forest structure and compo-
sition (Jucker et al., 2018). Similarly, a global standardized dataset of 
habitat heterogeneity was calculated using information on adjacent 

pixels, but without consideration of the scale of the ecological process 
(Tuanmu & Jetz, 2014). Adopting a one-size-fits-all approach means 
that the appropriate ecological scale—a key factor in gaining a mecha-
nistic understanding (Levin, 1992; Wiens, 1989)—is not incorporated. 
Our MWDA method builds on these approaches by explicitly defining 
the scale at which heterogeneity affects the ecological process within 
the analysis. Multi-scale moving window approaches have been used 
in landscape-scale analyses using response data available at a point 
or patch scale (e.g. Bellamy, Scott, & Altringham, 2013; Osborne, 
Alonso, & Bryant, 2001; Wilson, O'Connell, Brown, Guinan, & Grehan, 
2007). Our MWDA approach moves the logic from these two separate 

F IGURE  4 Partial effect plots for Garrulus glandarius relative abundance. Interaction plots are shown for MW Shannon and temperature; 
estimates are provided for ±1 SD of the moderating variable
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literatures forward and provides a method for integrating data that 
vary at different scales in a broad-extent analysis. At present, running 
our MWDA method at very fine grains across global extents is difficult 
without access to high-performance computing facilities. However, 
ongoing improvements in both the efficiency of r for analysing large 
datasets—which we will implement in future versions of grainchanger—
and improvements in computer technology and accessibility mean that 
this is unlikely to be an issue in the near future.

To fully understand the effect on ecological processes of global 
change drivers at multiple scales, we must develop an understanding of 
their interactions and develop modelling approaches which incorporate 
these interactions at an appropriate scale (Newbold, 2018; Travis, 2003). 
We have outlined a method for aggregating data on fine-scale processes 
that retain information about the underlying spatial structure in environ-
mental heterogeneity at the appropriate scale for the ecological process 
being analysed. This is crucial if we are to combine spatial data at multi-
ple scales and utilise the growing availability of fine-resolution environ-
mental data and broad-extent biodiversity data. For simplicity, we used 
a generalised linear modelling framework in our analyses. However, vari-
ables generated using our data aggregation method could be used as an 
input to more complex machine-learning approaches to species distribu-
tion (Elith et al., 2006); or to community modelling approaches, such as 
generalised dissimilarity modelling (Ferrier, Manion, Elith, & Richardson, 
2007), and hierarchical modelling of species communities (Ovaskainen 
et al., 2017). We used model selection to find the scale-of-effect; how-
ever, this could be found using machine-learning methods that can han-
dle correlated variables (Bradter, Kunin, Altringham, Thom, & Benton, 
2013) or Bayesian approaches (Stuber, Gruber, & Fontaine, 2017) that 
allow variables generated at multiple scales of effect to be incorporated 
into one model. Additionally, our method has broader applicability be-
yond spatial ecology. We focussed here on spatial scale; however, our 
method could be applied to solve similar issues around temporal scales. 
Combining data at incompatible spatial and temporal scales is a chal-
lenge within many fields including geography, sociology, earth and en-
vironmental sciences, agriculture and geology (Gotway & Young, 2002). 
Our method has the potential to be applied to similar problems in a 
wider range of contexts and disciplines than those examined here.
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