
MARSCHNER REVIEW

Cyanobacteria and loess—an underestimated interaction
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Abstract
Background Biocrusts are important functional units in
dryland ecosystems. Regarded as ecosystem engineers,
cyanobacteria in biocrusts contribute several major
physico-chemical and biological processes. However,
the role of cyanobacteria in the process of loess forma-
tion has been underestimated. Recently, their contribu-
tion to sediment development was presented in the
BLOCDUST model of loess formation.
Scope This perspective paper features the environmen-
tal impact of cyanobacteria and biocrusts with a focus on
processes involved in the formation of loess sediments.

We propose that the formation of loess can be mediated
by cyanobacteria, including initial trapping, and the
accumulation and preservation of loess-forming parti-
cles. Moreover, the initial structure may be further al-
tered by weak mineral weathering, dissolution and min-
eral re-precipitation due to cyanobacterial metabolic
processes. Possible negative aspects of environmental
impact related to the potential toxicity of cyanobacterial
biocrusts are also discussed. We highlight specific
biotic-abiotic interactions between biocrusts and loess
(e.g. exudation of organic polymers, carbonate dissolu-
tion and re-precipitation, and dust-dependent metabolic
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activities of cyanobacteria) which are essential for the
formation of stabilized loess and propose the term
Bsynergosis^ to comprise these interactions.
Conclusion The role of cyanobacteria in loess forma-
tion has only recently been recognized and the possible
biogenic nature of loessification is underestimated as
compared to their eolian nature. Mineral weathering
and mineral precipitation processes as well as mineral
dust flux between litho- and atmosphere mediated by
cyanobacteria and biocrusts require more attention due
to their significant contribution to ecosystem properties.

Keywords Biocrusts . Cyanobacteria . Loess .

BLOCDUST. Organominerals . Synergosis

Abbreviations
BLC biological loess crust
BLM biological loess mat
BSC biological soil crust
BDC biological desert crust
EPS exopolymeric substance
LBF loess biofilm
LPS loess-paleosol sequence

Introduction

Throughout the world, drylands are the most often en-
countered biotopes of biocrusts (Makhalayane et al.
2015; West 1990), where they can cover up to 70% of
the surface (Buis et al. 2009; Karnieli et al. 2002).
Biocrusts are present on all seven continents and in all
climatic regions (Belnap and Lange 2003). They are
particularly significant in the ecology of arid and semi-
arid regions (Belnap 2006; Chamizo et al. 2012; Kidron
et al. 2010). Biocrusts represent associations of
sediment/soil particles with bacteria, cyanobacteria, al-
gae, fungi, lichens and mosses (Belnap and Lange 2003;
Chamizo et al. 2012; Evans and Johansen 1999; Hu
et al. 2002a) and their secreted metabolites (primarily
exopolysaccharides) (Lan et al. 2012), as well as micro-
fauna (Pócs et al. 2006). As a highly productive micro-
environment, biocrusts establish and control basic
physico-chemical processes of the ground surface,
influencing environmental properties at micro and mac-
ro scales. Biocrusts also influence soil development,
hydrological processes, water and energy balance, nu-
trient content, soil temperature, movement of gases,

eolian particle (dust) uptake and deposition and eventu-
ally, plant community development (Weber et al. 2016).

Biocrust diversity is characterized by spatial and
temporal variability (Williams et al. 2013), resulting in
a succession of autochthonous life forms, with
cyanobacteria being common components (Belnap
2001; Lan et al. 2013). The abundance of cyanobacteria
in biocrusts of arid and semi-arid regions distributed
around the world is significant (Colesie et al. 2016,
Fig. 9.4). The cyanobacteria observed in biocrusts be-
long to at least 48 genera, of which 8 genera are present
in all investigated regions (Colorado, Southeastern
Utah, Northwestern Ohio, Mexico, India, Southern Af-
rica, Israel, Iran and Spain) (Online Resource 1).

Xerotolerance is one of the major ecophysiological
adaptations shaping microbial communities in arid and
semi-arid conditions. Cyanobacteria tend to dominate
microbial populations in desert biocrusts (Makhalayane
et al. 2015; Potts 1994), reflecting their successful sur-
vival strategies against desiccation, the ability to cope
with transient changes between hot/dry and warm/
humid conditions, and versus exposure to high irradi-
ance by visible and UV light (Whitelam and Codd
1986). Cyanobacteria can function as primary colo-
nizers via their ability to grow photoautotrophically
and the capacity of some members to fix atmospheric
nitrogen. Surface colonization can be further enabled by
the production of exopolymeric substances (EPS) lead-
ing to biofilm formation or to complex, multilayered
microbial mats. Cyanobacterial EPS contains sulphate
groups and uronic acids, which give the EPS an anionic
and sticky character (Rossi and De Philippis 2015). The
EPS layer also minimizes water loss and reduces UV
irradiation reaching the cells, thus protecting against
abiotic stress factors. Microalgae and mosses are gener-
ally unable to function as primary colonizers of
constrained environments themselves, and depend on
cyanobacteria to provide stable hydrated microenviron-
ments with necessary nutrients (Zhang et al. 2015). In
addition, cyanobacteria possess extensive metabolic re-
sponses that help them to cope with fluctuations in
moisture and irradiance, and to pass through active-
dormant-active transitions. Efficient protection of mac-
romolecules constitutes one survival strategy of
extremophilic and extremotolerant cyanobacteria. Pro-
tein denaturation in water-deficient cells is prevented by
the accumulation of osmolytes including, intracellular
sucrose and trehalose in drought-resistant cyanobacteria
(Hershkovitz et al. 1991). Further defense mechanisms
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are used against reactive oxygen species (ROS) which
cause damage to membranes, nucleic acids and proteins
(Whitelem and Codd 1986; Billi and Potts 2002). ROS
generation is accelerated under typical dehydrating con-
ditions, i.e. strong sunlight/UV irradiation. Damage by
ROS is partly controlled by cyanobacterial Fe-
superoxide dismutase that neutralizes formed superox-
ide radicals (Shirkey et al. 2000). To prevent ROS
generation by UV, cyanobacteria synthesize UV-
absorbing scytonemin (Garcia-Pichel and Castenholz
1991) and mycosporine-like amino acids (MAAs)
(Cockell and Knowland 1999; Garcia-Pichel and
Castenholz 1993; Rastogi et al. 2014).

The role of biocrust cyanobacteria in sediment parti-
cle accumulation and preservation of land surfaces has
long been recognized (Belnap and Gardner 1993). The
BLOCDUST hypothesis (Biological LOess Crust –
DUSt Trapping) (Svirčev et al. 2013) postulates the role
of cyanobacterial biocrusts in the process of loess for-
mation. According to this hypothesis, the accumulation/
growth of loess sediment in arid and semi-arid regions is
supported via the trapping and accumulation of airborne
dust particles during wet events by sticky cyanobacterial
EPS. Intervening dry periods provide conditions for the
preservation of particles captured and covered by firm
biocrusts.

Loess and related deposits are one of the most wide-
spread Quaternary aeolian sedimentary formations,
most abundant in semi-arid regions of inner Eurasia
(Muhs 2013; Smalley et al. 2011). They present and
preserve parent material for the synsedimentary forma-
tion of soils, such as fertile chernozem. Moreover, loess
has a more applied role and presents a widespread
building ground with specific geotechnical properties
(Sprafke and Obreht 2016). Despite its importance, the
processes required for loess formation are still not fully
understood (Sprafke and Obreht 2016). Loess is usually
defined as eolian sediments formed by the accumulation
of wind-blown dust particles. However, this definition
does not cover post-depositional processes related to the
formation of loess structure. Typically, loess sediments
have homogenous and highly porous structures, with
particles loosely cemented by microcrystalline calcium
carbonate derived from corrosion and re-precipitation of
detrital carbonates (Muhs 2007; Muhs and Bettis 2003;
Pésci 1990; Smalley et al. 2006). The formation of a
typical loess structure is usually attributed to a process
called loessification. Unfortunately, this process is still
poorly understood because it is related to processes

similar to pedogenesis (neo-formation of clays and Fe-
oxides, and carbonate re-precipitation) and diagenesis
(cementation of the particles and stabilization of sedi-
ment structure), placing loessification in between those
processes (Pécsi 1990, 1995; Sprafke and Obreht 2016).
In addition, the mechanisms of particle entrapment dur-
ing dust accumulation are not fully understood. The role
of cyanobacteria within biocrusts and processes related
to their activity, however, have the potential to explain
the processes of particle entrapment, accumulation and
preservation. Here, we propose processes facilitated by
cyanobacteria and their relation to loess formation. Be-
sides construing the bio-geological importance of
cyanobacteria and biocrusts, this article proposes dis-
tinct definitions of some ambiguous key terms and
introduces a new term: Bsynergosis^. Further, the possi-
ble health significance of dust particle accumulation and
of toxins potentially produced by biocrust cyanobacteria
is also discussed.

Biological loess crusts and biological loess mats

There is a lack of clear definitions in the terminology of
biological crusts. According to some definitions,
biocrusts are characterized by periodical or permanent
surface features influenced by factors including soil
structure and type, irradiance, topographic attributes
(Belnap 1995; Hu and Liu 2003; Lange et al. 1997;
Zaady et al. 2000), mineral resources and water
(Pickett and McDonnell 1989). We refer to a biocrust
as a hardened, crisp structure formed by drying,
consisting of living but dormant, highly specialized
organisms in close association with sediment/soil
particles. In describing the changes in biocrust phys-
ical properties, some language problems can lead to
the use of terms that are redundant (pleonasms) or
even contradictory. It can be easily observed that
environmental changes between dry and wet events
readily lead to a shift between the desiccated and
hydrated appearance of biocrusts. In this context
Bdry biocrust^, the term commonly used in the lit-
erature, is pleonastic and Bwet biocrust^ is
contradictory.

When a biocrust becomes hydrated and active due to
wetting, it can act as a biological terrestrial mat, a fully
functional biological community. The early-
developmental stages of hydrated biocrusts (Zhang
2005) improve the surface microenvironment, which
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in turn provides further aid to colonization and supports
the survival of later successional stages (Acea et al.
2003; Hu and Liu 2003; Kurina and Vitousek 1999;
Langhans et al. 2010; Lukešová 2001). By synthesizing
significant amounts of EPSs, cyanobacteria can promote
further growth of the microcommunity and may enable
protozoa, small invertebrates and microfungi to become
established. Biological terrestrial mat development con-
tinues until a climax community is established under
given environmental conditions. Further successional
steps may lead to the formation of vegetation (if the
wet period continues) or the community may reverse to
the crust stage (if dry conditions return).

So far, biocrusts have been referred to by multiple
names (cryptogamic, microbiotic, cryptobiotic and
microphytic crusts) indicating some common features
of the constituent organisms, but the most often-used
term is Bbiological soil crust^ (BSC) (Belnap et al.
2003a; Langhans et al. 2009). Many factors can be used
to classify BSCs (Belnap 2003a; Berkeley et al. 2005;
Dougill and Thomas 2004; Langhans et al. 2009; Pócs
2009) but especially important are the physicochemical
properties of the growth surface (Chamizo et al. 2012).
Regarding this factor, the question arises as to whether
the term biological soil crusts can be used for all
biocrusts. Declaring all biocrusts as soil crusts can lead
to misunderstandings in both a scientific and etiological
sense. Crust types differ from physical crusts to
biocrusts, where different biological crust types can be
described and called by specific names: biocrusts
formed on soil, loess, sand, rocks and other substrates,
differing in physical and chemical properties.

While substrates, such as unconsolidated sediments
(e.g. sand), and sedimentary, metamorphic or magmatic
rocks are provided with a clear definition of their struc-
ture and genesis, this is not the case with the loess
substrate. The specificity of loess lies in its polygenetic
nature (Sprafke and Obreht 2016), determined by com-
plex environmental sedimentary and post-depositional
processes (Svirčev et al. 2013). While the process of
loess formation remains to be fully understood and
defined, it is certain that quasi-pedogenic and quasi-
diagenetic processes have determined its present struc-
ture (Smalley and Marković 2014). Due to its high
specificity, loess cannot be regarded either as a weakly
consolidated sediment, soil, or rock, but as a distinct
entity (Sprafke and Obreht 2016). For example, dust
deposited to marine or lacustrine sediments is not loess
because of the absence of the loessification process.

In this regard,we propose the terms biological loess
crusts (BLC) and biological loess mats (BLM) for con-
sideration (Fig. 1). The length of dry and wet events, and
shifting frequencies between BLC and BLM have an
effect on initial processes of loessification, as discussed
below.

The role of cyanobacterial BLC and BLM
in the process of loessification

The BLOCDUST model

By the 1990s, it was concluded that loess is Bnot just the
accumulation of dust^ (Pécsi 1990) and a discussion on
(abiotic) cementing agents of silt particles emerged
(Sprafke and Obreht 2016). However, biocrusts are
known to trap airborne dust and consequently cement
it, as a part of the life strategy of crust organisms (Danin
and Ganor 1991; Pietrasiak et al. 2014; Williams et al.
2012; Zaady and Offer 2010). The accumulated dust
particles contribute to the growth- and further strengthen
the cohesion of BLC and BLM (Hu et al. 2002a; Felde
et al. 2017). In a field study (Zaady and Offer 2010),
cyanobacterial crust components were shown to provide
a unique contribution to the loess desert ecosystem by
significantly enhancing atmospheric particle accumula-
tion. According to the BLOCDUST hypothesis (Svirčev
et al. 2013), loess sediment growth in arid and semi-arid
regions is facilitated in the same manner, via trapping
and accumulation of airborne dust particles by sticky
EPS during wet events (Fig. 2). The particles are then
processed through a series of weathering reactions, and
translocated downward as cyanobacteria move up to-
ward the light source. When biological activity halts
during the dry period, the trapped particles remain
immobilized and turn into constituents of cohesive
BLC that resists wind erosion. The switch between the
wet and dry conditions and associated processes repre-
sents one cycle of accumulation. The compilation of
such cycles results in the initial growth of loess.

The BLOCDUST hypothesis describes and empha-
sizes the role of BLC and BLM cyanobacteria in the
process of initial loess formation and stabilization in arid
and semi-arid environments. Stabilization of the soil
surface mediated by cyanobacteria within biocrusts has
been documented in numerous studies (Table 1). The
stabilized soil surface is characterized by an enhanced
compressive strength and a higher resistance to
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accumulated raindrop kinetic energy than that of bare
soils. Two main mechanisms of stabilization are distin-
guished: the immobilization of soil particles through an
extensive filamentous network (coarser particles) and the
adhering of particles on the EPS surface (finer particles).
Through their EPS, cyanobacterial communities enhance
cementation between the trapped particles through
bioweathering, mineral disaggregation and subsequent
mineral precipitation. Current knowledge of these pro-
cesses within biocrusts is meager and necessitates more
studies, both in the field and laboratory. An overview of
the weathering processes in lithic environments related to
biocrusts is presented in Garcia-Pichel et al. (2016).

The complex structure of cyanobacterial EPS in-
cludes extracellular polysaccharides, organic acids
(e.g. uronic acids), UV protective pigments, proteins,

nucleic acids, lipids, reactive functional groups (e.g.
sulphates, phosphates) and peptides. Such composition
provides EPS with favorable properties for the
bioweathering and mineral disaggregation of trapped
particles mainly through the activity of incorporated
organic acids (Viles 1995). The chemical composition
of EPS is not enough to cause weathering of mineral
particles itself: specific micro-environmental conditions
are also required. The basic metabolic processes of
aerobic respiration and photosynthesis regulate the O2/
CO2 ratio and establish oxidizing/reductive, alkaline/
acidic microenvironments respectively, which further
promote mineral dissolution in the contact zone of the
EPS with mineral particles. The required micro-
environmental conditions for weathering of minerals
depend upon their crystalline structure (Wolff-

Fig. 1 a Biological loess crust (BLC) sampled in the Ruma brickyard (Vojvodina, Serbia); b corresponding biological loess mat (BLM)
grown in the laboratory

Fig. 2 BLOCDUST model of BLM and BLC influence on loess
formation in semi-arid regions/environments: the LBF and BLM
actively trap and accumulate airborne particles; BLC prevents

erosion during dry periods. The succession of LBF-BLM-BLC
during the cycles advances loess development
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Boenisch et al. 2006), with carbonates having higher
weathering rates than silica minerals. Cyanobacteria-
driven dissolution of carbonates is considered to occur
during aerobic transpiration, providing increased CO2

concentration and a slightly reductive, acidic environ-
ment (Danin 1983; Garcia-Pichel 2006). In some
cyanobacteria, dissolution is also supported by a highly
specific Ca2+ uptake and transport mechanism driven by
P-type Ca2+-ATPases (Garcia-Pichel et al. 2010;
Ramírez-Reinat and Garcia-Pichel 2012).

Contrary to carbonates, siliceous substrates are
of a much lower weathering rate, primarily due to
high Si-O bond abundance, which tends to be the
strongest and most resistant to dissolution.
However, weathering of silicates in sandstones in
arid landscapes mediated by cyanobacteria was
observed by Büdel et al. (2004) and a similar
scenario of silica weathering was predicted to occur
in cyanobacteria-dominated desert biocrusts
(Garcia-Pichel and Belnap 1996).

Bioweathering in terrestrial environments medi-
ated by cyanobacteria is recognized as a survival
mechanism (Gorbushina 2007). In BLC communi-
ties, the airborne particles present the main source
of essential mineral nutrients (Svirčev et al. 2013).
Through weathering of mineral particles including
feldspars, muscovite, amphiboles, pyroxenes, apa-
tite and dolomite, cyanobacteria acquire bio-
essential elements (Ca, Na, K, P, Mg, Fe) of
which Fe2+ is crucial for photosynthetic activity
(Rubin et al. 2011).

The change in redox conditions of the microenviron-
ment from acidic to alkaline caused by cyanobacterial
photosynthesis and silicate weathering induces the sub-
sequent precipitation of carbonates from formerly dis-
solved detrital carbonate and atmospheric CO2 (Goudie
and Viles 2012). The alkaline state of EPS induces the
deprotonation of functional groups providing binding
sites for cations (e.g. Ca2+, Mg2+, Fe2+) (Braissant et al.
2003), while their binding is further supported by the
uronic acids present (Braccini et al. 1999). The capacity
of EPS to bind cations can be saturated in the case of
their constant supply when all of the available functional
groups of the polymer are occupied. The remaining
available cations combined with alkaline micro-
environmental conditions can initialize nucleation of
carbonate species on the surface of the EPS in the
contact zone with mineral particles (Dupraz et al.
2009), providing a mineral cement between the particles

and the EPS (Fig. 3) which is crucial for the permanent
immobilization and preservation of the particles.

The EPS-influenced organomineralization presented
here occurs as a passive, biologically-influenced process,
driven by changes in the physical state of the organic
exopolymer (Dupraz et al. 2009; Trichet and Défarge
1995). Microbial organomineralization commonly ap-
pears in sedimentary biofilms found in aquatic environ-
ments (Gallagher et al. 2010) andwas recently recognized
in cyanobacteria-dominated BLC (Dulić et al. 2017).

Chemical leaching of airborne dust particles followed
by organomineralization and subsequent precipitation
could lead to the formation of mineral bonds between
the particles, resulting in their slightly cemented state.
However, cementation through bioweathering and min-
eral precipitation promoted by cyanobacterial activity
should not be confused with the weak cementation of
loess particles influenced by post-depositional large-
scale silicate weathering and precipitation of secondary
carbonates, which is one of the main characteristics of
loess in arid and semi-arid regions (Pécsi 1990, 1995;
Sprafke and Obreht 2016). The main role of biocrusts
and, in this case cyanobacteria, is in particle stabiliza-
t ion , preserva t ion and eros ion prevent ion .
Cyanobacterial weathering is related to the onset of
weak particle alterations followed by EPS mineraliza-
tion (calcification/silification) and meager carbonate
precipitation, enhancing the formation of primary loess
structure. In contrast, alteration and weathering of de-
posited loess on a larger scale is a consequence of
increased humidity, the consequential increase in other
microbial activity, the development of higher vegetation
and consequent increase in humic acids. These process-
es are related to loessification in the mature phase solely
under humid and relatively warm conditions, when de-
posited loess is strongly influenced by pedogenesis. As
a result of those processes, a neo-formation of clays and
Fe-oxides occurs, as well as precipitation of carbonate
from original horizons and secondary carbonate forma-
tion in lower horizons.

The BLOCDUST model proposes that loess forma-
tion in arid and semi-arid environments is suppored by
BLC and BLM cyanobacterial activity, influenced by
environmental shifts between dry and wet events. Sta-
bilization and preservation of the deposited material
against wind and water erosion is a central phenomenon
in the initial process of loess genesis (Svirčev et al.
2013). The presented scenario may describe not only
trapping, deposition and preservation of particles
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induced by cyanobacteria, but also may shed light on
loess granulometry, magnetic properties, thickness, per-
meability and geographical zonation. From this point of
view, loess is not only an eolian sediment (Pécsi 1990;
Smalley et al. 2011; Sprafke and Obreht 2016) but is
also a biogenic one. Therefore, the processes discussed
here should be further assessed in field and laboratory
studies to fully understand the bio-geo interactions
influencing loess formation. Moreover, it remains to be
explored how useful are cyanobacterial biomarkers in
assessing this issue and also in paleoclimatic reconstruc-
tion, since loess is known as one of the best terrestrial
paleoclimate and paleoenvironmental archives (Kukla
1977; Marković et al. 2008; Marković et al. 2011; Pécsi
1990; Pye 1995; Schaetzl et al. 2018; Smalley et al.
2011; Sprafke and Obreht 2016; Stevens et al. 2011;
Yang and Ding 2014).

Introduction of a new term: Synergosis

After the presented analysis of the processes and com-
ponents involved in LPS formation, it is appropriate to
give a synthesis of the events leading to loess formation.
We propose a new term, synergosis, for a special, sus-
tainable relationship between certain biotic and abiotic
constituents located in direct contact and Bbenefiting^
from each other. The following text presents the rela-
tionship between BLC and loess as an example of
synergosis. The result of this synergotic interaction is
stabilized loess. Similar relationships can also be found
in some other biogenic formations in nature (soil, stro-
matolites, travertine, sinter, calcareous nodules and

other biogenic rocks) (e.g. Kleinteich et al. 2017; Reid
et al. 2000; Riding 2000).

The term synergosis originates from the word
synergos (Greek συνεργός), meaning Bworking
together^ (from syn- Btogether^ plus ergon Bwork^).
The term synergy originates from the same root, which
is defined as the benefit that results when two or more
agents work together to achieve something neither one
could have achieved on its own (Corning 2005). The
suffix -osis denotes a process, condition, state or action.

Synergosis is thus conceived as a bio-abiosis, and is
intended to describe the productive efficiency of living
and non-living parts of nature when they are Bworking^
together. It represents a close, long-term, productive,
sustainable and advantageous interaction between biotic
and abiotic components coupled in a physical associa-
tion. In this sense, the parallel and simultaneous exis-
tence of both, BLC and loess deposit, i.e. stabilized
loess, is the product of synergosis. The success, or if a
more neutral expression is desired, the strength of the
synergotic interaction in this particular case, is measured
by the systematic stabilization, maintenance and spread-
ing of stabilized loess and the loess environment.

Inspiration for the introduction of the term synergosis
was found in the related term Bsymbiosis^, which defines
an interaction between different organisms living in close
physical association, usually to the advantage of each of
them, or any type of close and long-term biological
interaction between two different organisms (Martin and
Schwab 2013). In any case, symbiosis, as a qualitatively
different creation based on the relationship between its
members, refers to living partners. Lichen, as an example
of symbiosis, is an association formed bymicroalgae and/

Fig. 3 Tubular EPS network of
the cyanobacterium Leptolyngbya
sp. surrounds and immobilizes
loess particles. The white arrows
point to places of subsequent
precipitation of carbonates and
calcification/silification of the
EPS through the process of
organomineralization. The miner-
alized EPS acts as a cement be-
tween the particles and enhances
their preservation
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or cyanobacteria and microfungi, each of which receives
significant benefits from the association, sometimes so
much, that they cannot grow as vegetative forms outside
of the symbiosis. In parallel with this example, stabilized
loess is a consequence of synergosis between living and
inanimate units of nature: BLCs and loess. In principle,
any plant communities growing in arid and semi-arid
regions may serve as a biocomponent in the described
synergosis. A further significant difference between sym-
biosis and synergosis is that symbiosis typically involves
individuals or small communities, while synergosis in-
volves larger-scale (and longer-term) interactions.

Due to the interaction of BLC and loess constituents, a
stable (not transient) but growing product, stabilized
loess, emerges. Our premise is that BLCs, as the biotic
unit, on the surface of loess are actively involved in the
accumulation, sedimentation and stabilization of airborne
particles (mainly dust) during loess formation, while the
abiotic unit (loess and its constituents) at the same time
serves as the physical substrate and a source of mineral
nutrients for the growth of the BLCs. By working togeth-
er in this way, BLCs (and/or suitable plants) and wind-
blown dust, later becoming stabilized sedimentary de-
posits, constitute, sustain and expand the loess environ-
ment as final result of the intitial synergotic interaction.

The place of cyanobacterial BLC and BLM
in the context of climate change

Loess-paleosol sequences (LPSs) are among the best pre-
served terrestrial Quaternary archives (Hao et al. 2012;
Marković et al. 2011; Muhs 2013; Obreht et al. 2016;
Obreht et al. 2019) although their formation in China
may have started as early as the Miocene (Guo et al.
2002). The successive layers of loess and paleosol forma-
tions evidence past environmental changes, primarily in
the past dynamics of dust, vegetation cover and the surface
processes they influence. Loess formation is an ongoing
process, which currently mostly takes place in warm and
arid regions, including in China (Lehmkuhl et al. 2014),
Israel (Zaady and Offer 2010) and Iran (Dulić et al. 2017;
Kehl 2010). Since rainfall is highly limited in arid and
semi-arid regions, dew, fog and humid air are considered
potential sources of water in these regions (Kidron et al.
2002; Lange et al. 1992; Maphangwa et al. 2012). Such
conditions support the development of dry (semi-desert)
steppe vegetation, dominated by different developmental
stages of biocrusts (Bowker and Belnap 2008; Rosentreter

1984). Dew has been found to play a role in biocrust
activity (Rao et al. 2009a) and can promote the diurnal
change between biocrust active and dormant states.
Biocrust organisms are also recognized to promote dew
formation (Fischer et al. 2012; Liu et al. 2006; Rao et al.
2011). The limitedwater availability favours the endurance
of BLC compared to higher plants during prolonged dry
periods and enables rapid development of BLM during
intervening short wet periods (e.g. dew). Zaady and Offer
(2010) have demonstrated that morning dew is a sufficient
moisture source for cyanobacterial biocrusts to trap atmo-
spheric dust. The BLC-BLM change and the reversibility
of the process are essential for loess formation (Fig. 4) and
may contribute to relatively high accumulation rates of
loess during glacial periods.

In the transition from stadials to interstadials, a gradual
increase in annual moisture availability would prolong a
BLM stage An intensified BLM stage would in turn
advance grass species and thus influence the develop-
ment of successional stages of loess (Fig. 4). Further
change towards a warm and humid climate (e.g. changes
atglacial to interglacial level) would result in a general
vegetation change to the forest-steppe type, characterized
by a dense vegetation cover of grass, shrubs and trees.
Warm and humid climate conditions and a high biomass
content would intensify synsedimentary pedogenesis and
the formation of soil horizons. Subsequent soil formation
from the Ah-horizon of the chernozem or phaeozem, to
the B-horizon of the cambisol or luvisol (Bronger et al.
1998; Bronger 2003) is a consequence of a change from
semi-arid to more humid climatic conditions and the
significant presence of higher plants (Fig. 4). If the cli-
mate changed towards a dryer and colder type, vegetation
cover would be reduced and paleosol horizons would be
buried by new layers of loess, contributing to the growth
of total LPSs.

Environmental and health aspects of cyanobacterial
BLC and BLM related to erosion

Throughout semi-arid and arid areas biocrusts stabilize
surfaces against wind and water erosion (Belnap 2003b;
Belnap et al. 2003b; Eldridge and Leys 2003;
Makhalayane et al. 2015; Rodríguez-Caballero et al.
2013). As sediment surface protectors, biocrusts are
highly vulnerable to the compressional and shear forces
generated by off-road vehicles (e.g. four-wheel drive
trucks, all-terrain vehicles and military vehicles),
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trampling and grazing by livestock and different human
activities (Belnap and Eldridge 2003; Belnap et al.
2007; Kovda 1980; Williams et al. 2008). Due to their
sensitivity to anthropogenic and natural disturbance,
they are in a degraded state in many areas under exten-
sive erosion bywind (Belnap and Gillette 1998;Maestre
et al. 2006). The wind and water erosion of (disturbed)
biocrusts are thought to lead to a chain reaction as
exposed and windblown silt from the substrate has more
abrasive force than the wind itself. A disruption in the
biocrust may thus lead to that of a larger area. On a
regional and long-term scale, land use in loess regions
and consequent erosion cause colluviation, while cli-
matic fluctuations are of only secondary importance
for colluviation (Lang 2003).

The process of wind erosion of biocrusts may affect
human and animal health in two ways. One concern is
related to the inhalation of dust induced by the lack of
biocrust cover. Loess environments may be hazardous,
threatening human occupation, health and livelihood
(Derbyshire 2001). North-western China is a major
source of windblown dust originating from loess de-
posits that can adversely affect both human and animal
health. The volume of loess being lost from the Chinese
Loess Plateau close to Huang He (Yellow River) in a
single year is equivalent to the thickness of loess accu-
mulated over 100–300 years (Dai 1987). Written re-
cords of the past 500 years suggest that 2–36 dust storms
per year occur on or near the Chinese Loess Plateau.
Dust storms also influence the quality of life conditions
in Beijing, which lies more than 1000 km from the
source area (Liu 1985). The effect of such dust upon

human health in these extensive loess regions, including
many large cities, has still to be fully evaluated, but
pneumoconiosis (non-industrial silicosis: NIS) is thought
to affect about 24 million people in North-western China
(Dai 1987; Derbyshire 2001; Liu 1985; Xu et al. 1993).
In one highly exposed village, 45% of a random sample
of 150 adults aged 30 and over had the disease (Norboo
et al. 1991; Saiyed et al. 1991). Further atmospheric
aerosol formation of novel particles has been character-
ized in China originating from loess dust by condensa-
tion, coagulation and photo-induced, surface-mediated
reactions (Nie et al. 2014). The toxicology and ecotoxi-
cology of these particles requires investigation.

Another potential health risk in arid and semiarid
regions is via the inhalation of wind-blown biocrust
particles, which may include cyanobacterial metabolites
produced in BLM during the wet- and preserved in BLC
during the dry events. Terrestrial and aquatic
cyanobacteria can produce a wide range of potent toxins
(cyanotoxins) (Metcalf and Codd 2012) of both ecotox-
icological and human health relevance. The ecotoxicol-
ogy of cyanotoxins in terrestrial settings is still poorly
known and has to be extrapolated from the more inten-
sively studied production, fates and health significance
of these potent cyanobacterial products in aquatic envi-
ronments. Some of the cyanotoxins, including hepato-
toxic microcystins which are inhibitors of the protein
phosphatases and phosphoprotein phosphatases of
humans, animals and plants, are bound to have adverse
effects on practically any eukaryotic organism in any
environment provided adequate exposure levels and
cellular uptake mechanisms exist (Metcalf and Codd

Fig. 4 Formation of different sediment types in relation to water availability, biotope types, vegetation cover and adequate geo-substrates or
sediments
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2012). For humans, the highest risks in the arid and
semi-arid environments seem to be associated with the
inhalation of toxin-containing cyanobacterial dust and
aerosolized cyanotoxins from the biocrusts. Low but
toxicologically relevant amounts of microcystins (3 to
56 μg m−2) have been found in desert biocrusts in Qatar
(Metcalf et al. 2012). There is also evidence of
cyanobacterial neurotoxins in Qatar desert biocrusts.
β-N-methylamino-L-alanine (BMAA), produced by
aquatic and terrestrial cyanobacteria, is a non-encoded
amino acid and suspected environmental risk factor for
sporadic amyotrophic lateral sclerosis (ALS) and related
human neurodegenerative diseases (Bradley and Cox
2009; Nunn 2017). The BMAA neurotoxin isomers,
2 , 4 - d i am i no bu t y r i c a c i d ( 2 , 4 -DAB ) an d
aminoethylglycine (AEG) also occur and persist in the
Qatar cyanobacterial biocrusts (Metcalf et al. 2015;
Richer et al. 2015). Anatoxin-a(S), an organophosphate,
rapidly-acting cyanobacterial neurotoxin, has also been
found in the Qatar cyanobacterial biocrusts and has been
linked to lethal poisonings of dogs drinking rainwater
from natural depressions on the crust (Chatziefthimiou
et al. 2014; Metcalf et al. 2012). Information on the
production and fates of cyanotoxins in loess material is
lacking, although the high potential for cyanotoxin pro-
duction by loess cyanobacteria by analogy with aquatic
cyanobacteria (Metcalf et al. 2012) and the Qatar biocrust
studies (Metcalf et al. 2012, 2015; Richer et al. 2015)
motivate the analysis of loess material for cyanotoxins.

The consequences of degrading and removing
biocrusts are long lasting and need to be solved by com-
plex restoration processes (Rossi et al. 2017; Zhao et al.
2016). Attempts have been made to establish artificial
BSCs to stabilize soil and to reduce losses due to wind
and water erosion. For instance, the concept of BSC
carpet engineering has been proposed (Wei 2005). Resto-
ration of exposed loess surfaces has been a great challenge
in recent decades. Moss-dominated BLC have already
been tested as a means to mitigate extensive loess erosion.
While laboratory results were promising (Xiao et al. 2011;
Zhao et al. 2014a), the successful implementation of field
applications has differed significantly (Xiao et al. 2015),
so the problem persists. For land restoration, much interest
has been focused on the effects of cyanobacterial inocu-
lation in arid and semiarid regions (Acea et al. 2001;
Belnap 1993; Bu et al. 2015; De Caire et al. 2000; Hu
et al. 2002a; Lan et al. 2014; Nisha et al. 2007; Rao et al.
2009b; Rossi et al. 2017; Tiedemann et al. 1980; Wang
et al. 2009). Since the moss-dominated biocrusts are the

last development stage of biocrusts and require a preced-
ing adaptation of the habitat (Belnap 2003c), the restora-
tion of exposed loess surfaces should be addressed with
pioneering cyanobacterial species. Nonetheless, while
producing artificial cyanobacterial biocrusts by inocula-
tion and spraying in the field are feasible, their persistence
in the field is still a future challenge (Bu et al. 2013; Rossi
et al. 2015).

Conclusions

This paper has summarized the wide-scale occur-
rence of cyanobacteria in biocrusts and the integral
role of cyanobacteria in the formation of loess as
envisaged via the BLOCDUST hypothesis. Emerg-
ing concepts and arising needs include:

1. Synergosis: a new term proposed here to describe
large-scale biotic - abiotic interactions of a specific
type. Stabilized loess would not develop without
this beneficial interaction: the constituents of loess
serve as a nutrient source for the organisms of
BLCs, while BLC organisms bind and preserve dust
in the form of loess. By working together in this
way, BLCs and loess constituents form, sustain and
expand stabilized loess as the result of synergosis.

2. The role of cyanobacteria in loess formation
(loessification) has only recently been recog-
nized, and the possible biogenic nature of
loessification is underestimated as compared
to its eolian nature.

3. The BLOCDUST hypothesis of cyanobacteria-
promoted loessification needs to be tested in labo-
ratory and field experiments to justify a potential
theory for the eolian-biogenic formation of loess.

4. With reference to cyanotoxin production, the signif-
icance of terrestrial cyanobacteria to human health
is poorly understood compared to that of aquatic
cyanobacteria. Information is needed on the
cyanotoxin content of BLCto permit adequate hu-
man health risk assessment of airborne exposure to
loess-derived particles. Inhalation of biocrust/dust
particles caused by erosion can be considered as a
potential health hazard.

5. The practice of using cyanobacterial crusts for the
stabilization and restoration of exposed substrates is
still a developing field.
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