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Abstract 13 

Numerous algorithms have been developed to retrieve chlorophyll-a (Chla) concentrations 14 

(mg m-3) from Earth observation (EO) data collected over optically complex waters. Retrieval 15 

accuracy is highly variable and often unsatisfactory where Chla co-occurs with other 16 

optically active constituents. Furthermore, the applicability and limitations of retrieval 17 

algorithms across different optical complex systems in space and time are often not 18 

considered. In the first instance, this paper provides an extensive performance assessment 19 

for 48 Chla retrieval algorithms of varying architectural design. The algorithms are tested in 20 

their original parametrisations and are then retuned using in-situ remote sensing 21 

reflectance (Rrs(λ), sr-1) data (n = 2807) collected from 185 global inland and coastal aquatic 22 

systems encompassing 13 different optical water types (OWTs). The paper then 23 

demonstrates retrieval performance across the full dataset of observations and within 24 
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individual OWTs to determine the most effective model(s) of those tested for retrieving Chla 25 

in waters with varying optical properties. The results revealed significant variability in 26 

retrieval performance when comparing model outputs to in-situ measured Chla for the full 27 

in-situ dataset in its entirety and within the 13 distinct OWTs. Importantly, retuning an 28 

algorithm to optimise its parameterisation for each individual OWT (i.e. one algorithm, 29 

multiple parameterisations) is found to improve the retrieval of Chla overall compared to 30 

simply calibrating the same algorithm using the complete in-situ dataset (i.e. one algorithm, 31 

one parameterisation). This resulted in a 25% improvement in retrieval accuracy based on 32 

relative percentage difference errors for the best performing Chla algorithm. Improved 33 

performance is further achieved by allowing model type and specific parameterisation to 34 

vary across OWTs (i.e. multiple algorithms, multiple parameterisations). This adaptive 35 

framework for the dynamic selection of in-water algorithms is shown to provide overall 36 

improvement in Chla retrieval across a continuum of bio-geo-optical conditions. The final 37 

dynamic ensemble algorithm produces estimates of (log10-transformed) Chla with a 38 

correlation coefficient of 0.89 and a mean absolute error of 0.18 mg m-3. The OWT 39 

framework presented in this study demonstrates a unified approach by bringing together an 40 

ensemble of algorithms for the monitoring of inland waters at a global scale from space. 41 

 42 

1. Introduction 43 

Since the successful launch of the Coastal Zone Color Scanner (CZCS) in 1978, satellite 44 

remote sensing (RS) has played an increasingly important role in observing the complex 45 

biogeochemical interactions that occur in the global ocean and its response to drivers of 46 

environmental change (Gordon et al., 1980; Antoine et al., 1996). Radiometric sensors 47 

mounted on satellites have provided the capability to deliver synoptic maps of global 48 
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chlorophyll-a concentration (Chla) (McClain, 2009) which have led to fundamental 49 

contributions in oceanographic research, coastal management and climate change studies 50 

(Brown & Yoder, 1994; Behrenfeld et al., 2005; Hu et al., 2005; Nair et al., 2008; Yang et 51 

al., 2013). Satellite data have also been used in the monitoring of inland waters to provide 52 

information on a suite of functionally relevant indicators of water quality and ecosystem 53 

condition (Gitelson et al., 1993; Kutser et al., 1998; Lindell et al., 1999; Dekker et al., 2002; 54 

Kutser et al., 2005; Simis et al., 2005; Giardino et al., 2010; Tarrant et al., 2010; Hunter et al., 55 

2010; Matthews et al., 2010; Odermatt et al., 2010; Nechad et al., 2010; Dogliotti et al., 56 

2015; Palmer et al., 2015a) however optical complexity in these waters often limits 57 

operational use. In this context, Chla is the main bioindicator of water quality retrievable 58 

from EO data and its variations over space and time offer unique insight into the changing 59 

status of inland waters (Adrian et al., 2009) and the effects of environmental stressors (e.g., 60 

nutrient enrichment, hydrological modifications, climate change) at local, regional and 61 

global scales. 62 

 63 

Various studies have shown promising results for retrieving Chla from inland waters using 64 

EO data (Palmer et al., 2015a , Matthews and Odermatt, 2015; Tyler et al., 2016)  but the 65 

majority of these evaluate performance on individual or small populations of lakes with 66 

often limited variability in their optical properties. With a large number of algorithms 67 

available to the EO community it can be difficult to ascertain the applicability range and 68 

limitations of each method when applied globally (Morel et al., 2007; Matthews, 2011; 69 

Odermatt et al., 2012; Blondeau-Patissier et al., 2014; Tilstone et al., 2017). Algorithm 70 

performance often varies in response to changes in the optical properties of the water 71 

column which in turn are related to the presence of the non-covarying optically active 72 
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constituents suspended particulate matter (SPM, mgm-3) and coloured dissolved organic 73 

material (CDOM, m-1); a simple example is the Case 1 or Case 2 bipartite classification 74 

scheme (Morel & Prieur, 1977) which predefines the conditions where standard ocean 75 

colour Chla algorithms are expected to break-down (McKee et al., 2007; Moore et al., 2009; 76 

Mouw et al., 2015). This paper aims to extend this strategy to assess algorithm performance 77 

in relation to a number of distinct Optical Water Types (OWT) with the ambition of not only 78 

improving the overall performance of retrieval algorithms across a continuum of optical 79 

properties but also improving our ability to select appropriate algorithms and 80 

parameterisations for a given scenario. The accuracy of a number of Chla algorithms will 81 

be assessed over a diverse range of OWTs derived from inland (and some transitional) 82 

waters in support of the UK’s Natural Environment Research Council funded GloboLakes’ 83 

project, which is developing a global observatory for inland waters using archived and 84 

near real-time processing of ocean colour imagery (Envisat MERIS and Sentinel-3 OLCI). In 85 

the context of this research, the performance methodology presented here will inform 86 

the robust selection of an ensemble of candidate algorithms capable of accurately 87 

retrieving concentrations of Chla in approximately 1000 lakes globally (and > 50% of the 88 

Earth’s surface water by area) (Politi et al., 2016; Tyler et al., 2016). The overarching idea 89 

is not to advocate a single algorithm for global application, but to combine several retrieval 90 

models in an ensemble and use the OWT framework to dynamically select optimal models in 91 

space and time and thereby improve the overall accuracy of Chla retrieval across a wider 92 

range of water bodies. To this end, the study was partitioned into the following subtasks: (1) 93 

existing (hereafter denoted original) algorithms and their parameterisations were tested 94 

against an extensive database of in-situ reflectance and Chla measurements; (2) algorithms 95 

were calibrated by empirically adjusting model coefficients where applicable using in-situ 96 
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measurements as a training dataset; (3) calibration was applied using in-situ data grouped 97 

by OWT cluster; (4) the performance of original (ORG), calibrated (CAL) and cluster (CLUS) 98 

retuned algorithms was compared and ranked to benchmark suitable Chla retrieval 99 

algorithms for each defined OWT.  100 

 101 

2. Methods 102 

2.1 Data 103 

The validation and training dataset used to investigate Chla retrieval algorithms consists of 104 

17 individual datasets collected from lakes and other inland water bodies worldwide 105 

(https://www.limnades.org/home.psp). The number of lakes and samples per dataset is 106 

shown in Table 1. A full description of the individual datasets with corresponding 107 

measurement and processing protocols are provided in Spyrakos et al. (2018a). The 108 

database comprises in-situ measurements of inherent and apparent optical properties (IOPs 109 

and AOPs respectively) and biogeochemical constituents collected from 185 aquatic systems 110 

representing a variety of bio-geo-optical conditions. The primary input to the Chla 111 

algorithms considered in this study is the remote sensing reflectance, Rrs(λ) (sr-1) which can 112 

be defined as the wavelength dependent ratio of water-leaving radiance and downwelling 113 

irradiance just above the water surface. Rrs(λ) collected in-situ above the water surface is 114 

essentially the spectral distribution of reflected radiation a satellite sensor would detect 115 

with no atmospheric contribution and is considered reference data for RS algorithm 116 

development and radiometric validation. The validation dataset comprised 2807 117 

hyperspectral Rrs(λ) (sr-1) measurements (interpolated to a common 1 nm spectral 118 

resolution) with corresponding concentrations of Chla. Measurements were obtained 119 

following generally accepted methods originating from more than 40 published studies 120 
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(Spyrakos et al., 2018a). Approximately 73% of Chla estimates used in this study were 121 

obtained spectrophotometrically. Of the remaining estimates, 13% were determined from 122 

HPLC-based methods, 7% fluorometrically and 7% were calculated from absorption 123 

coefficients using the equation of Ritchie (2008). It is known that variability in Chla 124 

quantification methods and interlaboratory protocols may contribute to uncertainty in the 125 

final the Chla estimate (Claustre et al., 2004; Hooker et al., 2005; Sørensen et al., 2007; 126 

McKee et al., 2014). Often refinement and optimization of measurement procedures are 127 

required in inland waters to tackle extreme optical complexities, thus prohibiting the 128 

standardisation of protocols. Nonetheless, Sørensen et al. (2007) suggests that discrepancy 129 

due to measurement variability is particularly consequential when monitoring case 1 130 

waters. Furthermore, spectrophotometric methods, which account for a majority of Chla 131 

samples analysed in this study, have been shown to produce more consistent results 132 

between laboratories when compared to HPLC estimates (Sørensen et al., 2007).  All of the 133 

datasets used in this study were validated by the individual data providers and then quality 134 

checked before inclusion in the LIMNADES database. Hyperspectral Rrs(λ) measurements 135 

were spectrally resampled to the wavebands of MERIS (412, 442, 490, 510, 560, 620, 665, 136 

681, 708, 753 nm) using the sensor spectral response function (https://earth.esa.int). No 137 

radiometric resampling was performed. The measurement range of corresponding 138 

biogeochemical constituent concentrations is shown in Figure 1. A mean Chla concentration 139 

of approximately 33.9 mg m-3 (median=16 mg m-3) indicates a slight over representation in 140 

the dataset of high-biomass eutrophic systems relative to current global estimates (e.g., 141 

Sayers et al., 2015). However, the dataset also included measurements from a number of 142 

oligotrophic or hypereutrophic (Chla up to 1000 mg m-3) systems as well as humic-rich and 143 

mineral-laden systems.  144 
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 145 

Table 1. Summary of the datasets used for algorithm development and validation 146 

Dataset Number of Lakes Number of Samples 
1 1 71 
2 3 251 
3 63 131 
4 44 181 
5 5 218 
6 5 301 
7 1 29 
8 1 38 
9 3 190 

10 6 144 
11 3 48 
12 41 543 
13 2 192 
14 3 10 
15 1 14 
16 1 243 
17 2 203 

Total 185 2807 
 147 

(a)

 

(b)

 

(c)

 

 148 

Figure 1. Biogeochemical constituent range of water bodies included in the validation 149 

dataset. Trophic class divisions (based on Carlson et al., 1996) are indicated with dashed 150 

lines on the Chla constituent histogram (a). 151 

 152 
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2.2 Optical water type framework 153 

Previous work has been done to formally classify the Rrs spectra contained within the 154 

validation dataset into optical water typologies. In Spyrakos et al. (2018b), a k-means 155 

classification was adopted to identify and categorise OWTs based upon the differences in 156 

magnitude and shape of the hyperspectral Rrs spectra. This procedure identified 13 distinct 157 

OWTs, each corresponding to a specific combination of bio-geo-optical characteristics. Rrs 158 

spectra coloured according to OWT are shown in Figure 2a (and the mean Rrs spectra for 159 

each OWT is shown in Figure 2b). There are obvious differences in spectral shape and 160 

magnitude of Rrs for each defined OWT suggesting the applied classification scheme broadly 161 

captures the unique characteristics of the in-situ reflectance measurements. Median values 162 

of the optical constituent components Chla, SPM and CDOM are shown for each OWT group 163 

in Figure 3. The highest median Chla concentrations are observed in OWT 7, whilst SPM and 164 

CDOM occur in the highest concentrations in OWTs 5 and 1 respectively. Differences in the 165 

descending order of OWT group median values for each constituent confirm that OWTs 166 

have not been derived from a simple Chla concentration threshold and instead rely on a 167 

mixed combination of each optical constituent.  168 

 169 

 170 

 171 
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(a) 

(b)  
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Figure 2. (a) Rrs spectra used in the validation dataset coloured by classified optical water 

type. (b) Average Rrs spectra per optical water type. 

 172 

 173 

 174 

 175 

Figure 3. In-situ biogeochemical constituent median values for OWT groups ordered by 176 

median Chla concentration. 177 

 178 

2.3 Chlorophyll algorithms  179 

Based on bio-optical theory, Rrs(λ) is related to water IOPs such as absorption, a, and 180 

backscattering, bb (Gordon et al., 1988; Kirk, 1994; Mobley, 1999; Maritorena et al., 2002). 181 

Total IOPs, which are determined by the additive contribution of individual optically active 182 

constituents found in a water body, can be calculated by multiplying the concentration of 183 

each constituent by the appropriate specific inherent optical property (SIOP). As such the 184 

spectral signature of Rrs varies according to changes in constituent composition and 185 
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concentration. Algorithms developed for the quantitative assessment of in-water 186 

constituents exploit the bio-optical model in different ways. Empirical methods establish a 187 

relationship between optical measurements and concentrations of constituents based on 188 

experimental data. They are simple to develop and implement, yet their intrinsic design 189 

make them particularly sensitive to changes in the composition of water constituents. An 190 

alternative analytical approach is to first infer IOPs from the reflectance signal and solve the 191 

radiative transfer equation to produce simultaneous estimates of optically active water 192 

constituents (Gordon et al., 1988; Mobley, 1994). The relationships between IOPs and the 193 

constituent concentrations are empirically derived, and thus these algorithms are said to be 194 

semi-analytical. There are a number of different approaches to semi-analytical modelling 195 

which include spectral matching or look-up-table methods (Kutser et al., 2001; Louchard et 196 

al., 2003; Mobley et al., 2005; Brando et al., 2009), non-linear optimization (Kuchinke et al., 197 

2009), matrix inversion (Hoogenboom et al., 1998; Brando & Dekker, 2003), and direct 198 

inversion methods such as the multiband quasi-analytical model (QAA) (Lee et al., 1999) and 199 

the GSM semi-analytical model (GSM) (Maritonera et al., 2002). Semi-analytical methods 200 

have shown varying performance in case 2 waters (Shanmugam et al., 2010; Dekker et al., 201 

2011; Odermatt et al., 2012). While based on solid physical principles, the general assumptions 202 

and simplifications of the semi-analytical methods, along with empiricism in the relations 203 

between IOPs and AOPs, often lead to ambiguities in water constituent retrieval (Bricaud et 204 

al., 1995; Defoin-Platel & Chami, 2007; McKee et al., 2014). Advanced analytical methods 205 

such as neural networks (Doerffer, 2007) also retrieve simultaneous combinations of 206 

biogeochemical constituents but these rely heavily, from a coverage and performance 207 

standpoint, on the quality of the spectral libraries employed in the training data sets. In this 208 

study, we assess the efficacy of empirical 1, 2 and 3 band algorithms, semi-analytical bio-209 
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optical models and a neural network which focus on the retrieval of Chla concentration.  All 210 

algorithms included in the validation exercise, as summarised in Table 2 and described in 211 

the following section, were openly published (proprietary models were excluded from the 212 

exercise), well documented and developed for a range of optically variable environments. 213 

The tested algorithms can be generally categorised by their architectural designs as: (i) 214 

empirical methods which exploit ratios between Rrs collected remotely at blue and green 215 

wavelengths typically used for open ocean waters (O’Reilly et al., 1998);  (ii) empirical NIR-216 

red band ratio methods which are typically employed in turbid or eutrophic coastal and 217 

inland waters where Chla concentrations exceed 3 mg m-3 (Gitelson, 1992) and red 218 

reflectance may be relatively high; (iii) peak height methods which quantify the reflectance 219 

peak in relation to a standard baseline (Letelier and Abbott, 1996; Huot et al., 2005) and use 220 

the resulting relationship to empirically evaluate Chla; (iv) neural networks; and (v) semi-221 

analytical methods. 222 

 223 

Derived model coefficients have been denoted a, b, c… in each method where applicable. 224 

For models estimating the coefficient of absorption by phytoplankton (aph) as an output 225 

parameter (Model R and Model S), Chla was calculated as a function of aph using the 226 

expression (Bricaud et al., 1998); 227 

 228 

𝐶ℎ𝑙𝑎 =  ቀ
௔೛೓(ସସଷ)

௔
ቁ

భ

್         (1) 229 

 230 

where a and b are derived empirically from the calibration dataset.  231 

 232 
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Model A 233 

Model A refers to the two-band ratio algorithm of Dall‘ Olmo et al. (2003), Moses et al. 234 

(2009) and Gitelson et al. (2011), originally proposed by Gitelson and Kondratyev (1991) and 235 

later adapted to MERIS bands.  This is an empirical formula based on a linear relationship 236 

between in-situ Chla and the ratio of MERIS satellite remote sensing reflectance, measured 237 

at NIR, Rrs(708), and red, Rrs(665), wavelengths; 238 

 239 

𝐶ℎ𝑙𝑎_𝐴 = 𝑎 × ቀ
ோೝೞ(଻଴଼)

ோೝೞ(଺଺ହ)
ቁ + 𝑏        (2) 240 

 241 

where a = 61.324 and b = -37.94 are determined empirically.  242 

 243 

Model B 244 

Model B refers to the three-band algorithm developed by Moses et al. (2009) and adapted 245 

by Gitelson et al. (2011) to include Rrs measured at 753 nm, Rrs(753); 246 

 247 

𝐶ℎ𝑙𝑎_𝐵 = 𝑎 × ቀ
ோೝೞ(଻ହଷ)

(ோೝೞ(଺଺ହ)ିோೝೞ(଻଴଼))
ቁ + 𝑏      (3) 248 

 249 

where a = 232.329 and b = 23.174 are determined empirically. In theory, the combination of 250 

three bands alters the model sensitivity to the presence of optically active constituents by 251 

removing the effects of SPM and CDOM (Rrs(665) and Rrs(708) are comparably influenced by 252 

SPM and CDOM and Rrs(753) is mainly driven by backscattering).  253 

 254 

Model C 255 
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Model C refers to the two-band empirically derived ratio algorithm of Gurlin et al. (2011); 256 

 257 

𝐶ℎ𝑙𝑎_𝐶 = 𝑎 × ቀ
ோೝೞ(଻଴଼)

ோೝೞ(଺଺ହ)
ቁ

ଶ

+ 𝑏 × ቀ
ோೝೞ(଻଴଼)

ோೝೞ(଺଺ହ)
ቁ + 𝑐     (4) 258 

 259 

where a = 25.28, b = 14.85 and c = -15.18.  260 

 261 

Model D 262 

Model D refers to the three-band ratio algorithm of Gurlin et al. (2011) which was calibrated 263 

using field measurements of Rrs and Chla taken from Fremont lakes Nebraska; 264 

 265 

𝐶ℎ𝑙𝑎_𝐷 =  𝑎 × ቀ
ோೝೞ(଻ହଷ)

(ோೝೞ(଺଺ହ)ିோೝೞ(଻଴଼))
ቁ

ଶ

+ 𝑏 × ቀ
ோೝೞ(଻ହଷ)

(ோೝೞ(଺଺ହ)ିோೝೞ(଻଴଼))
ቁ + 𝑐  (5) 266 

 267 

where a = 315.50 , b = 215.95 and c = 25.66.  268 

 269 

Model E 270 

Model E refers to the advanced two-band semi-analytical algorithm proposed by Gilerson et 271 

al. (2010). While this is governed by the ratio of NIR to red reflectance, model coefficients 272 

are determined analytically from individual absorption components contributing to the total 273 

IOPs of the water body. It is assumed that the water term dominates (at red – NIR 274 

wavelengths) where Chla concentration is greater than 5 mg m-3, and that the contribution 275 

to absorption by CDOM and backscattering terms are significantly smaller to give the 276 

following expression; 277 

 278 
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𝐶ℎ𝑙𝑎_𝐸 = ቂ𝑎௪଻଴଼ × ቀ
ோೝೞ(଻଴଼)

ோೝ(଺଺ହ)
ቁ − 𝑎௪଺଺ହቃ 𝑎௣௛଺଺ହ

∗ൗ      (6) 279 

 280 

where aw708 = 0.7864 m-1 and aw665 = 0.4245 m-1 are absorption by water at the specified 281 

wavelengths (Pope & Fry, 1997) and phytoplankton specific absorption (a*ph) at 665 nm, 282 

a*
ph665=0.022 x Chla-0.1675. Substituting a*

ph665 into eq. 6 gives; 283 

 284 

𝐶ℎ𝑙𝑎_𝐸 = ቂ35.75 × ቀ
ோೝೞ(଻଴଼)

ோೝೞ(଺଺ହ)
ቁ − 19.30ቃ

ଵ.ଵଶସ

     (7) 285 

 286 

which can also be modified to allow for regional calibration of the a*
ph665 variable;  287 

 288 

𝐶ℎ𝑙𝑎_𝐸 = ቂ
଴.଻଼଺ସ

௔
× ቀ

ோೝೞ(଻଴଼)

ோೝೞ(଺଺ହ)
ቁ −

଴.ସଶସହ

௔
ቃ

ଵ/௕

      (8) 289 

 290 

Here a may be determined empirically and b is parameterised to fit the data. The water 291 

term becomes less dominant when Chla < 5 mg m-3, and therefore the assumed negligibility 292 

of the influence of CDOM and SPM is no longer valid under these conditions.  293 

 294 

Model F 295 

Model F refers to a simplified version of Gilerson et al. (2010) which relates Chla to the NIR-296 

red reflectance band ratio through a simple power function; 297 

 298 

𝐶ℎ𝑙𝑎_𝐹 = 𝑎 × ቀ
ோೝೞ(଻଴଼)

ோೝೞ(଺଺ହ)
ቁ

௕

        (9) 299 

 300 
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where a and b are defined empirically as opposed to analytically as per Model E. 301 

 302 

Model G 303 

Model G refers to the advanced three-band semi-analytical algorithm proposed by Gilerson 304 

et al. (2010). As per Model E, the three-band model is based on a semi-analytical expression 305 

for the red-NIR ratio of reflectance in combination with water absorption and a*
ph665 (=0.022 306 

x Chla-0.1675); 307 

 308 

𝐶ℎ𝑙𝑎_𝐺 = ቂ𝑎௪଻ହଷ × ቀ
ோೝೞ(଻ହଷ)

(ோೝೞ(଺଺ହ)ିோೝೞ(଻଴଼))
ቁ − 𝑎௪଻଴଼ + 𝑎௪଺଺ହቃ 𝑎௣௛଺଺

∗ൗ   (10) 309 

 310 

where aw753 = 2.494 m-1 (Pope & Fry, 1997). Substituting the expression for a*
ph665 gives; 311 

 312 

𝐶ℎ𝑙𝑎_𝐺 = ቂ113.36 × ቀ
ோೝೞ(଻ହଷ)

(ோೝೞ(଺଺ହ)ିோೝೞ(଻଴଼))
ቁ − 16.45ቃ

ଵ.ଵଶସ

    (11) 313 

 314 

Or for regional calibration of a*
ph665; 315 

 316 

𝐶ℎ𝑙𝑎_𝐺 = ቂ
ଶ.ସଽସ

௔
× ቀ

ோೝೞ(଻ହଷ)

(ோೝೞ(଺଺ହ)ିோೝೞ(଻଴଼))
ቁ −

଴.଻଼଺ସ

௔
+

଴.ସଶସହ

௔
ቃ

ଵ/௕

    (12) 317 

 318 

where a and b are determined empirically. This expression is valid under the same 319 

conditions as defined by Model E. 320 

 321 

Model H 322 



17 
 

Model H refers to the semi-analytical algorithm presented by Gons et al. (2002, 2005 and 323 

2008) which incorporates information on water absorption and backscattering in relation to 324 

the MERIS red-NIR reflectance ratio; 325 

 326 

𝐶ℎ𝑙𝑎_𝐻 =  ቂቀ
ோೝೞ(଻଴଼)

ோೝೞ(଺଺ହ)
ቁ × (𝑎௪଻଴଼ + 𝑏௕) − 𝑎௪଺଺ହ − 𝑏௕

௣
ቃ 𝑎∗⁄     (13) 327 

 328 

where water absorption coefficients are approximated as aw708 = 0.7 m-1, aw665 = 0.4 m-1 329 

(Pope & Fry, 1997), Chla specific absorption coefficient a* = 0.016 m2 g-1 , empirical constant 330 

p = 1.063 and bb is related to Rrs at 778 nm by conversion factor; 331 

  333 

𝑏௕ = 1.61 × 𝜋𝑅௥௦(778) (0.082 − 0.6𝜋𝑅௥௦(778))⁄      (14) 332 

 334 

The algorithm may be recalibrated by adjusting a* and p, denoted a and b respectively in 335 

eq. 15 for model parameterisation brevity to give;  336 

 337 

𝐶ℎ𝑙𝑎_𝐻 =  ቂቀ
ோೝೞ(଻଴଼)

ோೝೞ(଺଺ହ)
ቁ × (0.7 + 𝑏௕) − 0.4 − 𝑏௕

௔ቃ 𝑏⁄      (15) 338 

 339 

Model I 340 

Model I refers to the band index algorithm presented by Yang et al. (2010), which is based 341 

on a conceptual model (Gitelson et al., 2008) that adopts relevant wavebands according to 342 

their sensitivity to water absorption properties; 343 

 344 

𝐼𝑛𝑑𝑒𝑥 =  
൫ோೝೞ

షభ(଺଺ହ)ିோೝೞ
షభ(଻଴଼)൯

൫ோೝೞ
షభ(଻ହଷ)ିோೝೞ

షభ(଻଴଼)൯
        (16) 345 
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 346 

where it is assumed Rrs(665) has maximum sensitivity to phytoplankton absorption, Rrs(708) 347 

is insensitive to phytoplankton absorption but comparably sensitive to CDOM and Rrs(753) is 348 

insensitive to phytoplankton and CDOM absorption and is mainly influenced by 349 

backscattering. Chla is estimated from a three-band index using a simple empirical formula; 350 

 351 

𝐶ℎ𝑙𝑎_𝐼 = 𝑎 × 𝐼𝑛𝑑𝑒𝑥 + 𝑏        (17) 352 

 353 

where coefficients a = 161.24 and b = 28.04 have been calibrated for lakes in Japan and 354 

China.  355 

 356 

Model J 357 

Model J refers to the normalized difference chlorophyll index (NDCI) proposed by Mishra et 358 

al. (2012). This uses a two-band difference ratio to predict Chla concentration in estuarine 359 

and coastal turbid waters; 360 

 361 

𝐶ℎ𝑙𝑎_𝐽 = 𝑎 + 𝑏 ×  ቀ
ோೝೞ(଻଴଼)ିோೝೞ(଺଺ହ)

ோೝೞ(଻଴଼)ାோೝೞ(଺଺ହ)
ቁ + 𝑐 × ቀ

ோೝೞ(଻଴଼)ିோೝೞ(଺଺ହ)

ோೝೞ(଻଴଼)ାோೝೞ(଺଺ହ)
ቁ

ଶ

   (18) 362 

 363 

where a = 42.197 , b = 236.5, c = 314.97. This version of the model has been calibrated using 364 

modelled Rrs spectra.  365 

 366 

Model K 367 
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Model K refers to the normalized difference chlorophyll index (NDCI) proposed by Mishra et 368 

al.(2012) calibrated using field data collected from Chesapeake and Delaware Bay; 369 

 370 

𝐶ℎ𝑙𝑎_𝐾 = 𝑎 + 𝑏 × ቀ
ோೝೞ(଻଴଼)ିோೝೞ(଺଺ହ)

ோೝೞ(଻଴଼)ାோೝೞ(଺଺ହ)
ቁ + 𝑐 × ቀ

ோೝೞ(଻଴଼)ିோೝೞ(଺଺ହ)

ோೝೞ(଻଴଼)ାோೝೞ(଺଺ହ)
ቁ

ଶ

   (19) 371 

 372 

where a = 14.039, b = 86.115, c = 194.325.  373 

 374 

Model L 375 

Model L refers to the NASA OC 4-band ratio algorithm set at MERIS wavebands (OC4E) 376 

(O’Reilly et al., 2000) which relates log transformed Chla concentration to the maximum 377 

ratio of blue (443, 490, 510)  to green (560) Rrs;  378 

 379 

𝐶ℎ𝑙𝑎_𝐿 =  10൫௔ା௕௑ା௖௑మାௗ௑యା௘௑ర൯       (20) 380 

 381 

where 382 

 383 

𝑋 = 𝑙𝑜𝑔10(𝑅௥௦(443) > 𝑅௥௦(490) > 𝑅௥௦(510) 𝑅௥௦(560)⁄ )   (21) 384 

 385 

and coefficients a = 0.3255, b = -2.7677, c = 2.4409, d = -1.1288, e = -0.4990 have been 386 

derived empirically from the NASA bio-Optical Marine Algorithm Data set (NOMAD) 387 

(Werdell et al., 2005). 388 

 389 

Model M 390 
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Model M refers to a previous version of the NASA OC 3-band ratio algorithm set at MERIS 391 

wavebands (OC3E) which employs the maximum Rrs ratio of two blue wavebands (443, 490) 392 

and green (560) to determine Chla concentration; 393 

 394 

𝐶ℎ𝑙𝑎_𝑀 =  10൫௔ା௕௑ା௖௑మାௗ௑యା௘௑ర൯       (22) 395 

 396 

where 397 

 398 

𝑋 = 𝑙𝑜𝑔10(𝑅௥௦(443) > 𝑅௥௦(490) 𝑅௥௦(560)⁄ )     (23) 399 

 400 

and coefficients a = 0.2424, b = -2.2146, c = 1.5193, d = -0.7702, e = -0.4291 have been 401 

derived from the NOMAD dataset. 402 

 403 

Model N 404 

Model N refers to the earliest version of the NASA OC 2-band ratio algorithm set at MERIS 405 

wavebands (OC2E)  where the ratio of blue (490) to green (560) Rrs is used to determine 406 

Chla concentration; 407 

 408 

𝐶ℎ𝑙𝑎_𝑁 =  10൫௔ା௕௑ା௖௑మାௗ௑యା௘௑ర൯       (24) 409 

 410 

where 411 

 412 

𝑋 = 𝑙𝑜𝑔10(𝑅௥௦(490) 𝑅௥௦(560)⁄ )       (25) 413 

 414 
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and coefficients a = 0.2389, b = -1.9369, c = 1.7627, d = -3.0777, e = -0.1054 have been 415 

derived from NOMAD. 416 

 417 

Model O 418 

Model O refers to the NASA fluorescence line height (FLH) algorithm presented by Gower et 419 

al. (1999). It produces an estimate of the magnitude of sun induced chlorophyll fluorescence 420 

(SICF) at 681 nm above a baseline interpolated between 665 and 708 nm; 421 

  422 

𝐹𝐿𝐻 = 𝑅௥௦଺଼ଵ − ቂ𝑅௥௦(708) + (𝑅௥௦(665) − 𝑅௥௦(708)) × ቀ
ఒళబఴିఒలఴభ

ఒళబఴିఒలలఱ
ቁቃ  (26) 423 

 424 

As the output of FLH is a difference in Rrs, the algorithm requires empirical calibration to 425 

convert to Chla concentration; 426 

 427 

𝐶ℎ𝑙𝑎_𝑂 = 𝑎 + 𝑏 × 𝐹𝐿𝐻        (27) 428 

 429 

The operational range of FLH depends, among other factors, on the concentrations of 430 

optically active constituents present in the water column.  431 

 432 

Model P 433 

Model P refers to the maximum peak height (MPH) algorithm presented by Matthews et al., 434 

2012. This is designed with a conditional peak position selector, which searches for the 435 

maximum radiance over three bands, as opposed to one fixed peak as seen in model N. The 436 

baseline is calculated over a larger spectral range, 664 to 885 nm, and the maximum peak 437 
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intensity and position is determined from the maximum radiance measured at wavelengths 438 

681, 709 or 753 nm. SICF is then estimated as follows; 439 

 440 

𝑀𝑃𝐻 = 𝑏𝑟𝑟௠௔௫ − 𝑏𝑟𝑟଺଺ସ − ቂ(𝑏𝑟𝑟 ଼ହ − 𝑏𝑟𝑟଺଺ସ) × ቀ
ఒ೘ೌೣିఒలలర

ఒఴఴఱିఒలలర
ቁቃ   (28) 441 

    442 

where brrmax and λmax are magnitude and position of the greatest in magnitude Bottom of 443 

Rayleigh reflectance from bands 681, 709 or 753 nm. In this context, brr is assumed to be 444 

generally consistent with in-situ measured Rrs. Concentration of Chla was then determined 445 

in waters identified as non-cyanobacteria dominant; 446 

 447 

𝐶ℎ𝑙𝑎_𝑃 = 5.24 × 10ଽ𝑀𝑃𝐻ସ − 1.95 × 10଼𝑀𝑃𝐻ଷ + 2.46 × 10଺𝑀𝑃𝐻ଶ + 4.02 × 10ଷ𝑀𝑃𝐻 +448 

1.97           (29) 449 

Model P was not recalibrated in this study as it is based on brr and not Rrs. 450 

 451 

Model Q 452 

Model Q refers to the Garver-Siegel-Maritorena (GSM) semi-analytical inversion model that 453 

was developed by Garver and Siegel in 1997 and updated by Maritorena et al. (2002). It is 454 

based on an underlying quadratic relationship relating Rrs to the IOPs of the water body at a 455 

given wavelength (λ); 456 

 457 

𝑅௥௦(𝜆) =
௧మ

௡ೢ
మ ∑ 𝑔௜ ቀ

௕್(ఒ)

௕್(ఒ)ା௔(ఒ)
ቁ

௜
ଶ
௜ୀଵ         (30) 458 

 459 
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IOPs are partitioned into their contributing components where bb(λ) = bbw(λ) + bbp(λ) for 460 

water and SPM and a(λ) = aw(λ) + aph(λ) + acdom(λ) for water, phytoplankton and CDOM. The 461 

IOP spectra are then parameterized as a known shape with an unknown magnitude using 462 

the following expressions; 463 

 464 

𝑎௣௛(𝜆) = 𝐶ℎ𝑙𝑎 × 𝑎௣௛
∗ (𝜆),        (31) 465 

 466 

𝑎௖ௗ௢௠(𝜆) = 𝑎௖ௗ௢௠(𝜆) × exp (−𝑆(𝜆 − 𝜆଴)),      (32) 467 

 468 

𝑏௕௣(𝜆) = 𝑏௕௣(𝜆଴) × ቀ
ఒబ

ఒ
ቁ

௒

        (33) 469 

 470 

Originally designed for SeaWiFS, the GSM model uses wavebands that overlap with available 471 

MERIS wavelengths. Inversion of the model produces simultaneous estimates of the 472 

unknown quantities of Chla, CDOM and bbp from Rrs by application of a nonlinear least 473 

square optimisation routine. Global parameters, aw(λ), bbw(λ), nw, t, and gi were taken from 474 

the literature (Pope & Fry, 1997; Smith & Baker, 1981; Gordon et al., 1988), while a*ph, S 475 

and Y were derived empirically from the SeaWiFs Bio-Optical Algorithm Mini-Workshop 476 

(SeaBAM) in-situ dataset.  477 

 478 

Model R 479 

Model R refers to the QAA method devised by Mishra et al. (2013 & 2014). This was 480 

developed primarily for the retrieval of cyanobacteria in turbid waters, however produces 481 
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estimates of Chla as a routine by-product. As a first step, total absorption and particulate 482 

backscattering are estimated from subsurface Rrs (rrs, sr-1) at a given wavelength;  483 

 484 

𝑎(𝜆) =
൫ଵି௨(ఒ)൯ቀ௕್ೢ(ఒ)ା௕್೛(ఒ)ቁ

௨(ఒ)
       (34) 485 

 486 

where  487 

 488 

𝑢(𝜆) =
ି௚బାඥ(௚బ)మାସ௚భ×௥௥௦(ఒ)

ଶ×௚భ
        (35) 489 

 490 

and go = 0.089, g1 = 0.125. The absorption signal is then decomposed into CDOM and 491 

phytoplankton components using known relations and empirical estimations; 492 

 493 

𝑎௖ௗ௢௠(𝜆) = 𝑎௖ௗ௢௠(443) × exp (−𝑆(𝜆 − 443)),     (36) 494 

 495 

𝑎௣௛(𝜆) = 𝑎(𝜆) − 𝑎௪(𝜆) − 𝑎௖ௗ௢௠(𝜆)       (37) 496 

 497 

The slope of CDOM, S, was derived empirically from samples collected from aquaculture 498 

ponds in Mississippi.  499 

 500 

Model S 501 

Model S refers to the artificial neural network (NN) model presented by Ioannou et al. 502 

(2013) which was developed to retrieve IOPs from Rrs at available MODIS (or similar 503 

satellite) wavelengths. This is based on a synthetic dataset of Rrs, where IOPS aph, acdom, bbp 504 
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(and subsequently Chla) are computed directly from the Rrs signal. The model was trained 505 

for Chla concentrations ranging from 0.02 – 70 mg m-3, and as such is only expected to 506 

perform within these conditions. Model S produces Chla as a standalone product (Model S) 507 

and Chla derived from IOPs (Model S2). 508 

 509 

Table 2. Summary of validated models including their original Chla training range. 510 

Model 
Architectural 

approach 

Chla training 

range (mgm-3) 
Reference 

Model A NIR-red band ratio 0 - 70 Moses et al., 2009 

Model B NIR-red band ratio 0 - 70 Moses et al., 2009 

Model C NIR-red band ratio 2.3 - 200.8 Gurlin et al., 2011 

Model D NIR-red band ratio 2.3 - 200.8 Gurlin et al., 2011 

Model E Semi-analytical 0 - 80 Gilerson et al., 2010 

Model F NIR-red band ratio 0 - 1000 Gilerson et al., 2010 

Model G Semi-analytical 0 - 80 Gilerson et al., 2010 

Model H Semi-analytical 0 - 100 Gons et al., 2002 

Model I NIR-red band ratio 0 - 100 Yang et al., 2010 

Model J NIR-red band ratio 0 - 30 Mishra et al., 2012 

Model K NIR-red band ratio 0 - 30 Mishra et al., 2012 

Model L 
Blue-green band 

ratio 
0.012 - 77 O’Reilly et al., 2000 

Model M 
Blue-green band 

ratio  
0.012 – 77 O’Reilly et al., 2000 
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Model N 
Blue-green band 

ratio  
0.012 - 77 O’Reilly et al., 2000 

Model O Peak height 1 - 10 Gower et al., 1999 

Model P Peak height 0 - 350 Matthews et al., 2012 

Model Q Semi-analytical 0 - 100 Maritorena et al., 2002 

Model R Semi-analytical 59 - 1376 Mishra et al., 2013 

Model S Neural network 0.02 - 70 Ioannou et al., 2013 

 511 

2.4 Model version denotations for algorithm calibration and validation 512 

Models were denoted as ORG, CAL or CLUS according to the parameterisation of the model 513 

coefficients. In the first case, the ORG algorithm form represents the original published 514 

parameterisation of the algorithm. Here, model coefficients have been taken directly from 515 

the literature. In CAL form, model coefficients were reparametrized using the best-fit model 516 

for entire in-situ training data set. In CLUS form, model coefficients were determined for 517 

each OWT by sub-setting the training dataset into OWT groups before refitting the models 518 

using the subset data. Coefficients a, b, c, d and/or e correspond to those presented in 519 

models A to R (equations 1-33). 520 

 521 

2.5 Analysis of performance 522 

Standard statistical metrics were used to formally evaluate and describe the performance of 523 

selected Chla algorithms. These were combined as error metrics in a quantitative scoring 524 

system designed to objectively rank each algorithm according to the collective average 525 

performance (based on a modified version of the methodology proposed by Brewin et al., 526 

2015). Points were assigned based on the median value calculated for each error metric 527 
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whereby one point was awarded where an algorithm’s error statistics were shown to be 528 

similar to the median error statistic for all models, and two and zero points were awarded 529 

where the calculated metrics were statistically better or worse respectively. The total 530 

number of metric points were then summed for each algorithm and performance rank was 531 

allocated based on the total point score. Consequently, a high score corresponds to the best 532 

performing models whilst comparatively low scores indicate poor model performance. To 533 

encourage a fairer representation of the validation data and limit bias towards the larger 534 

individual datasets contained within the combined validation dataset, a jack-knife routine 535 

was used to randomly subset 50 percent of the validation dataset 1000 times before 536 

calculating error metrics.  In the case of OWT groups, a leave-p-out cross validation method 537 

was used to randomly subset data, where p was defined as 10 percent of the OWT grouped 538 

data. This produced a probability distribution of error statistics for each algorithm, from 539 

which the mean value was used to determine the final algorithm score. Metrics used as 540 

objective performance indicators are described in the following section along with the 541 

corresponding scoring criteria. All error metrics were applied to log10-transformed values of 542 

Chla concentration, which follows an approximate lognormal distribution (Campbell, 1995). 543 

Transformation to log-log space was aimed primarily to improve symmetry and 544 

heteroscedasticity of skewed regression residuals for statistically compliant metric 545 

calculations (in terms of residual distributions) and to reduce the influence of high 546 

concentration independent variable extremities (within an OWT) on metric results. 547 

 548 

Root Mean Square Error 549 
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The absolute root mean square error (RMSE) was used to provide a general description of 550 

the difference between measured (Chlameas) and predicted (Chlamod) Chla concentration 551 

(units in mg m-3) (Antoine et al., 2008). It is defined as follows: 552 

 553 

RMSE =  ට
ଵ

ே
∑ (𝑙𝑜𝑔10𝐶ℎ𝑙𝑎௠௢ௗ − 𝑙𝑜𝑔10𝐶ℎ𝑙𝑎௠௘௔௦)ଶே

௜ୀଵ     (38) 554 

 555 

where N is the number of model retrievals. The 95% confidence intervals for RMSE were 556 

also calculated to determine similarity between models. These were defined as statistically 557 

different where the confidence intervals did not overlap for two or more models. As such, 558 

the scoring system was defined as: 559 

 560 

 0 points awarded where RMSE is higher than median RMSE and 95% confidence 561 

levels do not overlap. 562 

 1 point awarded where RMSE 95% confidence levels overlap with median RMSE 95% 563 

confidence levels. 564 

 2 points awarded where RMSE is lower than median RMSE and median 95% 565 

confidence levels do not overlap. 566 

 567 

Mean absolute error 568 

The mean absolute error (MAE) was used in this study to quantify the difference between 569 

the modelled and measured Chla variables (Willmot et al., 2005 and Seegers et al., 2018). 570 

MAE was calculated using the following expression; 571 

 572 
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𝑀𝐴𝐸 =
ଵ

ே
∑ |𝑙𝑜𝑔10𝐶ℎ𝑙𝑎௠௢ௗ − 𝑙𝑜𝑔10𝐶ℎ𝑙𝑎௠௘௔௦|ே

௜ୀଵ      (39) 573 

 574 

where N is the number of model retrievals. The 95% confidence intervals for MAE were used 575 

to determine similarity between models which were defined as statistically different where 576 

confidence intervals did not overlap for two or more models. As such, the scoring system 577 

was defined as: 578 

 579 

 0 points awarded where MAE is higher than median MAE and 95% confidence levels 580 

do not overlap. 581 

 1 point awarded where MAE 95% confidence levels overlap with median MAE 95% 582 

confidence levels. 583 

 2 points awarded where MAE is lower than median MAE and median 95% 584 

confidence levels do not overlap. 585 

 586 

Slope and intercept of type-II linear regression 587 

Least squares linear regression was used to calculate the slope (m) and intercept (c) of a 588 

best fit line plotted between Chlamod and Chlameas (units in mg m-3). Type II regression was 589 

used to account for uncertainty in the in-situ data by calculating the perpendicular offsets 590 

between Chlameas and the linear fit: 591 

 592 

 𝑙𝑜𝑔10𝐶ℎ𝑙𝑎௠௢ௗ = 𝑚 × 𝑙𝑜𝑔10𝐶ℎ𝑙𝑎௠௘௔௦ + 𝑐      (40) 593 

 594 
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and assumes that residuals are normally distributed. The scoring system for m and c was 595 

based on the median and standard deviation calculated for each parameter individually such 596 

that: 597 

 598 

 0 points awarded where the standard deviation of m is greater than median 599 

standard deviation of m for all models and m ± its standard deviation does not 600 

overlap with 1 ± two times the median standard deviation of m for all models.  601 

 1 point awarded where the standard deviation of m is less than median standard 602 

deviation of m for all models or m ± its standard deviation overlaps with 1 ± two 603 

times the median standard deviation of m for all models. 604 

 2 points awarded where the standard deviation of m is less than median standard 605 

deviation of m for all models and m ± its standard deviation overlaps with 1 ± two 606 

times the median standard deviation of m for all models. 607 

 608 

 0 points awarded for a particular model where the standard deviation for c is greater 609 

than median standard deviation of c for all models and c ± its standard deviation 610 

does not overlap with zero ± two times the median standard deviation of c. 611 

 1 point awarded where the standard deviation of c for a particular model is less than 612 

the standard deviation of c for all model or c ± its standard deviation overlaps with 613 

zero ± two times the median standard deviation of c for all models. 614 

 2 points awarded where the standard deviation of c for a particular model is less 615 

than the standard deviation of c for all model and c ± its standard deviation overlaps 616 

with zero ± two times the median standard deviation of c for all models. 617 

 618 
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Pearson’s correlation coefficient 619 

The Pearson’s correlation coefficient r, is a useful statistic for determining the strength of a 620 

linear relationship between measured and predicted variables (Doney et al., 2009) In this 621 

study, r was used in combination with the zscore to determine if a model value of r was 622 

statistically higher or lower than the mean r-value for all models. zscore was calculated using 623 

the following expression; 624 

 625 

𝑧௦௖௢௥௘ =
௭೘೚೏ି௭೘೐ೌ೙

{[ଵ/(ே೘೚೏ିଷ)]ା [ଵ/(ே೘೐ೌ೙ିଷ)]}భ మ⁄       (41) 626 

where 627 

 628 

𝑧௠௢ௗ = 0.5log ቀ
ଵା௥೘೚೏

ଵି௥೘೚೏
ቁ        (42) 629 

 630 

𝑧௠௘௔௡ = 0.5log ቀ
ଵା௥೘೐ೌ೙

ଵି௥೘೐ೌ೙
ቁ        (43) 631 

 632 

and rmod  is the model r-value, rmean is the mean r-value for all models, Nmod and Nmean are the 633 

number of model retrievals and the mean number of retrievals for all models respectively. 634 

zscore was converted to a p-value assuming a normal probability distribution and statistical 635 

difference was defined where p-value < 0.05.  The scoring system for r was then based on 636 

the determined p-value and the location of the model r-value in relation to mean r such 637 

that; 638 

 0 points were awarded where r is lower than mean r and is statistically different. 639 

 1 point awarded where model r and mean r were statistically similar. 640 
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 2 points awarded where model r was statistically higher than the mean r-value for all 641 

models. 642 

 643 

Average absolute percent difference 644 

Uncertainty between modelled and measured variables (Antoine et al., 2008) was 645 

determined using the average absolute (unsigned) relative percent difference (RPD) defined 646 

as; 647 

 648 

𝑅𝑃𝐷 = 100 ×
ଵ

ே
∑ ቀ

|஼௛௟௔೘೚೏ି஼௛௟௔೘೐ೌೞ|

஼௛௟௔೘೐ೌೞ
ቁ௜ୀே

௜ୀଵ       (44) 649 

 650 

The scoring system for RPD was again based on a mean value of RPD calculated across all 651 

algorithms with the inclusion of the 95% confidence interval. This accounts for lower 652 

confidence in retrieved estimates where a low value of RPD is observed. As such, the RPD 653 

scoring classification was defined as; 654 

 655 

 0 points awarded where RPD for a particular model is greater than mean RPD and 656 

RPD ± its 95% confidence interval does not overlap with mean 95% confidence 657 

interval for all models. 658 

 1 point awarded where RPD ± its 95% confidence interval overlaps with the mean 659 

95% confidence interval for all models. 660 

 2 points awarded where RPD for a particular model is less than mean RPD and RPD ± 661 

its 95% confidence interval does not overlap with mean 95% confidence interval for 662 

all models. 663 
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 664 

Bias 665 

Calculation of the bias was used to assess the likelihood of systematic errors in algorithm 666 

outputs (units in mg m-3) (Seegers et al., 2018); 667 

 668 

𝑏𝑖𝑎𝑠 = 100 ×
ଵ

ே
∑ (𝑙𝑜𝑔10𝐶ℎ𝑙𝑎௠௢ௗ − 𝑙𝑜𝑔10𝐶ℎ𝑙𝑎௠௘௔௦)௜ୀே

௜ୀଵ     (45) 669 

  670 

A value close to zero indicates the algorithm corresponds well with in-situ measurements. 671 

As such, the bias scoring system was defined as follows; 672 

 673 

 0 points awarded where the bias confidence interval for a particular model is greater 674 

than median bias ± its 95% confidence interval for all models plus the model bias 675 

confidence interval does overlap with zero ± median confidence interval. 676 

 1 point awarded where the model bias confidence interval overlaps with median bias 677 

± its 95% confidence interval or the model bias overlaps with zero ± median 678 

confidence interval for all models. 679 

  2 points awarded where the model bias confidence interval overlaps with median 680 

bias ± its 95% confidence interval and the model bias overlaps with zero ± median 681 

confidence interval for all models. 682 

 683 

Percentage of retrievals 684 

The percentage of possible retrievals (%n) was included as a statistical indicator to assess an 685 

algorithm’s capability of producing global estimates of Chla and not, therefore, contributing 686 

to data gaps. This was calculated as follows; 687 
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 688 

%𝑛 =
ே೘೚೏

ே೘೐ೌೞ
          (46) 689 

 690 

where Nmod is the number of algorithm retrievals and Nmeas is the number of in-situ 691 

measurements. The scoring system for %n was based on the average number of retrievals 692 

for all algorithms such that; 693 

 694 

 0 points awarded where %n is less than mean %n for all models. 695 

 1 point awarded where %n is greater than mean %n for all models but less than 99%. 696 

 2 points awarded where %n is greater than 99% 697 

 698 

3. Results 699 

Error metrics were determined for two arrangements of the validation data. In the first case, 700 

objective performance scores were calculated per model for the entire Rrs dataset 701 

converted to Chla in ORG, CAL and CLUS algorithm forms (2807 sample points). In the case 702 

of the CLUS form, coefficients derived for an OWT group subset were used to estimate Chla 703 

from corresponding OWT group spectra. All subsets were then recombined (number of rows 704 

equivalent to ORG and CAL outputs) to calculate error metrics on the entire validation 705 

dataset. In the second validation arrangement, Chla concentrations derived from ORG, CAL 706 

and CLUS algorithm forms were subset into groups defined by their assigned OWT and 707 

performance scores were calculated for each model within the OWT subset group.  708 

 709 

3.1 Full dataset comparison 710 
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Figure 4 shows a quantitative comparison of Chla generated from each of the examined 711 

models against the in-situ measurements. Corresponding error metrics are presented in 712 

Figure 5. Scatterplots in Figure 4 demonstrate the high variability of algorithm performance 713 

generated across the range of tested models. Several algorithms are shown to perform 714 

poorly, some are simply unable to retrieve Chla at the concentrations observed. Apparent 715 

failures occur with three-band Models B, D and G which may be attributable to the elevated 716 

values of Rrs(708) leading  to negative estimates of the independent ratio variable. 717 

Nonetheless, several models perform reasonably well in terms of the accuracy of the Chla 718 

retrieval when considering the significant range of constituent concentrations included in 719 

the validation dataset (Figure 1). Most notably, empirical Models A, C and J produce r-values 720 

in excess of 0.85 and regression slopes close to 1 when compared to in-situ measurements. 721 

For all models, error residuals are heteroscedastic and vary as a function of Chla 722 

concentration, with the most obvious spread of data observed at low concentrations of 723 

Chla. This suggests a targeted water type specific algorithm could improve performance 724 

across the Chla concentration continuum and is further implied by the notable differences in 725 

performance produced by ORG, CAL and CLUS algorithm forms. In almost every case, the 726 

CLUS model form produced more accurate estimates of Chla, as demonstrated in Models E, 727 

F, I and R. For some models, reparametrizing model coefficients with the entire training 728 

dataset (CAL version) causes algorithm performance to degrade, as is the case with Models 729 

B, D and G. No obvious differences in overall algorithm performance were observed 730 

between empirical and semi-analytical model architectural approaches (Table 2 for 731 

architectural summary).  Ignoring OWT classification, i.e. ignoring CLUS model forms, the 732 

most accurate retrievals of Chla were obtained using Models A_ORG, C_ORG, H_ORG and 733 

J_CAL, which each estimate log transformed Chla with a MAE of less than 0.27 mg m-3. 734 



36 
 

 735 
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Figure 4. Comparison of model derived and in-situ measured Chla concentrations. The 1:1 736 

relationship between measured and modelled Chla is represented by a dashed line. 737 

 738 
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Figure 5. Error metrics calculated when comparing model outputs of Chla with in-situ Chla 739 

concentrations.  740 

 741 

The corresponding performance scores as determined by the objective scoring system are 742 

shown in Figure 6. These are ranked according to total error score, with a maximum score 743 

denoting the best performing model of those tested for producing accurate estimates of 744 

Chla concentration. Results are consistent with conclusions inferred from the scatter plots 745 

presented in Figure 4, indicating the objective scoring system is capable of accurately 746 

classifying algorithm performance. The highest scoring algorithms are Models A, C, J, L,M 747 

and R which translate to 3 red-NIR band ratio based algorithms, 2 blue-green ratio based 748 

algorithms and a QAA model. Error statistics for the top-ranked models are shown in table 749 

3. In almost every case, the CLUS version of the algorithm, coloured by light blue on Figure 750 

5, produced a greater score when compared to ORG and CAL counterparts (dark and mid 751 

blue respectively). With a total error score of 14, these are the best performing algorithms 752 

when comparing modelled and measured Chla for the full validation dataset. Those models 753 

exhibiting high discrepancies between modelled and measured Chla are represented with 754 

low scores, such as ORG and CAL versions of Models B, D, E and F. The objective scoring 755 

systems also identifies the apparent poorly performing algorithms of Models G and Q which 756 

produce a zero score in one or more algorithm form. Again, it is shown that recalibrating a 757 

model with the entire calibration dataset (CAL form) using a best-fit approach does not 758 

always improve model performance. The Chla constituent range of the training dataset may 759 

be too large to effectively calibrate the evaluated models (as shown in Figure 1) and as such 760 

produce a detrimental effect on error metrics. This is particularly obvious in the MAE 761 

calculated for Models A, H and N, where an error increase of approximately 2%, 83% and 762 
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11% respectively is observed when comparing ORG and CAL outputs. Nonetheless, 763 

significant improvement in terms of performance score is achieved when converting to the 764 

CLUS algorithm form for low scoring models.  765 

 766 

 767 

Figure 6. Performance scores generated from Chla single model comparisons using the 768 

complete validation dataset. Colours represent form of model, i.e. dark-blue is original form 769 

(ORG), mid-blue is full dataset calibrated form (CAL) and light-blue is OWT calibrated form 770 

(CLUS). 771 

 772 

Table 3. Error statistics generated when comparing modelled log10 Chla with in-situ 773 

measurements for each of the first ranked models, ordered by mean absolute error. 774 

Model r Slope RMSE 
(mgm-3) 

MAE 
(mgm-3) 

RPD Bias  
(mg m-3) 

Intercept %n 

C_CLUS 0.885 0.914 0.256 0.188 79.49 0.057 0.156 98.82 
J_CLUS 0.888 0.885 0.248 0.189 81.92 0.066 0.200 99.46 
A_CLUS 0.883 0.909 0.260 0.191 85.20 0.068 0.173 98.64 
R_CLUS 0.872 0.889 0.267 0.205 91.48 0.079 0.206 98.21 
L_CLUS 0.825 0.839 0.291 0.261 91.04 0.001 0.184 100 
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M_CLUS 0.823 0.875 0.306 0.266 96.16 0.015 0.157 100 
 775 

3.2 Performance per OWT 776 

The second stage of the algorithm validation focussed on performance within a specific 777 

OWT group. Chla concentrations generated using the OWT training subsets (CLUS 778 

parameterisations) were compared to outputs from CAL and ORG models for only the 779 

corresponding OWT assigned spectra. For example, 425 of 2807 spectra were assigned as 780 

OWT 2 and error metrics were calculated for these 425 points in ORG, CAL and CLUS 781 

versions to determine algorithm performance within OWT 2. Results from objective scoring 782 

are shown in Figure 7. Each model/OWT combination was assigned a performance score 783 

based on the median value calculated for a metric within an OWT and as such, scores are 784 

independent of OWT group. Algorithm performance is highly variable across the tested 785 

models, with scores ranging from zero to 13 or 14 in several of the OWTs. Several models 786 

are shown to perform reasonably well across several OWTs, for example, Model J displays a 787 

relatively high score (jointly ranked first) in OWT 2, 4, 5, 6, 11 and 12. Conversely, Models D, 788 

G and O perform poorly in every OWT.  One noticeable difference when generating error 789 

statistics based on OWT subsets as opposed to the entire validation dataset is the 790 

performance per algorithm version. We now have several cases where the ORG or CAL 791 

version of a model produces more accurate estimates of Chla when compared to those 792 

derived from the refined OWT CLUS reparametrisation. For example, the CAL version of 793 

Model J was found to be a leading candidate model in three OWT groups. This result may be 794 

a consequence of unsuitable model parametrisation in under-sampled OWTs with 795 

comparatively small training datasets, i.e. OWTs 1, 7, 10 and 13. 796 

 797 
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Corresponding error and regression statistics for the maximum OWT model scores are 798 

shown in Table 4. It is clear that significant variability in performance is observed across 799 

each water type, even for maximum scoring algorithms. In five of the 13 OWTs, one or more 800 

models produce a correlation coefficient between measured and modelled Chla which is 801 

greater than 0.7. This indicates only a proportion of the validation dataset is sufficiently 802 

characterised by the algorithms tested; these are OWTs 2, 4, 8, 9 and 12, and collectively 803 

they comprise 58.4% of the total validation dataset (1639 spectra from 2807). These OWTs 804 

mainly lie within the mid-range of the Chla concentration distribution, with median values 805 

of Chla per OWT ranging from 4.2 mg m-3 to 102 mg m-3. The higher section of the Chla 806 

concentration range (OWTs 7, 1, 8 and 6) is retrieved reasonably well with model outputs 807 

producing r-values in excess of 0.5 for each OWT. The lower section of the Chla range is 808 

shown to be the most challenging, with maximum r-values for OWTs 3 and 13 calculated as 809 

0.372 and 0.595 respectively. In these waters where median concentrations of Chla are less 810 

than 1.5 mg m-3, a number of validation sample points lie outside the original training range 811 

for the tested models which may influence the derived error metrics.   812 
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 813 

Figure 7. Performance scores for models tested within each OWT determined from objective 814 

scoring. A high score indicates better performance relative to all tested models within an 815 

OWT. Highest ranking scores (i.e. joint ranked first or second) have been coloured blue.  816 

 817 

Table 4. Error statistics generated when comparing modelled Chla with in-situ 818 

measurements for each of the first and second jointly ranked models in an OWT. 819 
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Cluster Model r Slope RMSE 
(mgm-3) 

MAE 
(mgm-3) 

RPD Bias  
(mg m-3) 

Intercept %n 

1 C_CLUS 0.629 0.757 0.205 0.167 67.65 -0.054 0.593 100 
1 F_CAL 0.443 0.495 0.153 0.268 52.49 0.191 0.931 100 
1 L_CLUS 0.596 0.575 0.159 0.213 53.49 0.009 0.936 100 
1 M_CLUS 0.621 0.738 0.200 0.246 75.19 -0.115 0.698 100 
1 N_CLUS 0.632 0.738 0.199 0.245 75.03 -0.116 0.699 100 
1 R_CLUS 0.625 0.612 0.165 0.175 66.42 -0.080 0.942 100 
2 A_CLUS 0.816 0.958 0.211 0.158 50.36 -0.029 0.072 96.71 
2 C_CLUS 0.789 0.991 0.239 0.165 52.27 -0.028 0.036 98.58 
2 H_CLUS 0.813 0.978 0.218 0.160 49.13 -0.014 0.036 96.70 
2 J_CLUS 0.782 0.948 0.235 0.160 52.08 -0.030 0.082 100 
2 R_CLUS 0.774 1.035 0.258 0.171 53.39 -0.023 -0.012 98.35 
3 L_CLUS 0.268 0.270 0.084 0.230 80.96 -0.001 0.079 100 
3 M_CLUS 0.352 0.450 0.136 0.219 80.13 -0.029 0.088 100 
3 N_CLUS 0.372 0.375 0.112 0.217 75.15 0.000 0.067 100 
4 C_ORG 0.777 0.682 0.175 0.207 109.9 -0.157 0.510 100 
4 C_CLUS 0.705 0.891 0.254 0.194 82.75 -0.047 0.170 98.23 
4 H_ORG 0.742 0.976 0.256 0.198 70.05 0.034 -0.007 95.45 
4 J_CAL 0.790 0.852 0.213 0.187 62.13 0.018 0.146 100 
4 J_CLUS 0.671 0.806 0.243 0.207 83.75 -0.047 0.263 100 
4 K_ORG 0.782 0.617 0.157 0.221 67.40 0.074 0.351 100 
4 R_CLUS 0.772 0.845 0.211 0.171 66.94 -0.045 0.222 94.70 
5 C_CLUS 0.442 0.574 0.196 0.239 134.2 -0.092 0.582 99.58 
5 J_CAL 0.474 0.422 0.141 0.246 137.4 -0.118 0.783 100 
5 J_CLUS 0.450 0.544 0.184 0.239 131.2 -0.093 0.618 100 
5 K_ORG 0.477 0.335 0.111 0.244 103.4 -0.002 0.767 100 
5 L_CLUS 0.286 0.257 0.094 0.268 116.8 -0.030 0.885 100 
5 M_CLUS 0.336 0.315 0.112 0.262 113.6 -0.030 0.819 100 
5 N_CLUS 0.352 0.331 0.118 0.261 111.7 -0.030 0.799 100 
6 A_ORG 0.462 0.564 0.122 0.127 57.71 -0.058 0.770 100 
6 A_CLUS 0.461 0.564 0.123 0.128 55.41 -0.035 0.749 100 
6 C_CLUS 0.466 0.520 0.113 0.126 54.41 -0.037 0.823 100 
6 H_ORG 0.476 0.633 0.136 0.136 51.94 -0.017 0.617 100 
6 H_CLUS 0.474 0.589 0.127 0.134 52.70 -0.030 0.702 100 
6 I_CLUS 0.535 0.598 0.123 0.127 49.89 -0.033 0.691 100 
6 J_CLUS 0.463 0.526 0.114 0.126 54.67 -0.037 0.812 100 
6 L_CLUS 0.205 0.202 0.048 0.171 53.75 -0.003 1.308 100 
6 M_CLUS 0.160 0.160 0.039 0.175 54.25 0.002 1.372 100 
6 N_CLUS 0.162 0.161 0.039 0.175 54.58 0.000 1.373 100 
6 R_CAL 0.521 0.360 0.075 0.134 47.53 -0.014 1.061 100 
7 E_CLUS 0.256 0.631 0.192 0.252 79.22 0.020 0.862 100 
7 H_CLUS 0.563 0.642 0.141 0.152 43.89 4.455 0.866 97.73 
7 R_CAL 0.608 0.759 0.191 0.178 42.79 0.040 0.537 100 
8 A_ORG 0.663 0.841 0.129 0.119 26.86 0.038 0.278 100 
8 A_CAL 0.667 0.856 0.131 0.118 29.89 -0.011 0.300 100 
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8 C_CAL 0.668 0.850 0.130 0.118 30.32 -0.017 0.316 100 
8 H_CLUS 0.712 0.891 0.129 0.108 26.62 0.006 0.210 100 
9 L_CLUS 0.646 0.644 0.192 0.221 71.56 0.001 0.245 100 
9 M_CLUS 0.708 0.704 0.194 0.212 61.34 0.002 0.203 100 
9 N_CLUS 0.713 0.714 0.200 0.211 61.61 -0.001 0.199 100 

10 H_ORG 0.539 0.316 0.166 0.720 989.1 -0.716 1.309 90.16 
10 L_CLUS 0.495 0.489 0.256 0.433 152.7 0.001 0.441 100 
10 M_CLUS 0.382 0.380 0.210 0.458 169.1 0.001 0.534 100 
10 N_CLUS 0.509 0.504 0.259 0.417 161.2 -0.004 0.431 100 
11 J_CLUS 0.697 0.910 0.301 0.233 75.12 -0.043 0.147 100 
12 A_ORG 0.794 0.686 0.180 0.177 60.74 -0.005 0.429 99.70 
12 A_CAL 0.796 0.730 0.188 0.169 62.00 -0.026 0.391 99.10 
12 A_CLUS 0.778 0.824 0.221 0.175 68.34 -0.059 0.300 99.10 
12 C_ORG 0.801 0.635 0.165 0.183 72.11 -0.065 0.557 100 
12 C_CAL 0.792 0.764 0.199 0.168 61.39 -0.022 0.342 99.10 
12 C_CLUS 0.763 0.911 0.249 0.182 68.42 -0.046 0.166 98.49 
12 I_ORG 0.700 0.969 0.270 0.191 66.61 -0.048 0.092 92.17 
12 J_CAL 0.796 0.856 0.225 0.190 54.87 0.077 0.118 100 
12 J_CLUS 0.768 0.777 0.213 0.184 71.74 -0.074 0.373 100 
12 K_ORG 0.788 0.648 0.174 0.264 58.24 0.175 0.297 100 
12 R_CLUS 0.792 0.602 0.160 0.204 83.87 -0.107 0.642 100 
13 B_CLUS 0.262 0.404 0.233 0.620 328.8 -0.431 -0.190 100 
13 L_CAL 0.528 0.381 0.193 0.320 71.72 -0.020 -0.622 100 
13 L_CLUS 0.595 1.238 0.594 0.581 72.72 0.436 -0.190 100 
13 M_CLUS 0.595 1.238 0.594 0.581 72.72 0.436 -0.190 100 
13 S_ORG 0.272 0.381 0.219 0.343 53.30 0.220 -0.862 100 
13 S2_ORG 0.500 0.432 0.223 0.398 48.34 0.362 -0.951 100 
 820 

3.3 Recommendation for a dynamic OWT switching algorithm 821 

Based on objective scoring and individual error statistics, the recommended algorithm 822 

selection for inland waters exhibiting water-leaving reflectance characteristics similar to 823 

those described by Spyrakos et al., (2018b) is shown in table 5. The confirmed choice of 824 

models over the OWT range is varied and complex. Of the 13 groups, eight models identified 825 

as high performers in terms of Chla retrieval appear in their CLUS form, where the re-826 

calibration of the model was based on the OWT group subset data. Two OWTs are more 827 

accurately characterised in terms of Chla retrieval by their original published algorithms 828 

(ORG) and three OWTs by parameterising the proposed models using the complete training 829 



45 
 

dataset (CAL).  This observation is contrary to results presented in the full dataset 830 

comparison, where the performance of almost every model was improved by switching to 831 

CLUS algorithm form, and may be a consequence of the variation in the number of 832 

observations per OWT which in turn affects the retuning of the algorithm. Furthermore, the 833 

process of defining OWTs will inevitably generate extremes where no algorithm will perform 834 

satisfactorily. A general pattern relating to the architecture of the best performing models 835 

per OWT is also evident, whereby OWTs consisting of predominantly low concentrations of 836 

Chla are better characterised by the blue-green ratio Models M and N, which were 837 

developed for low chlorophyll, open ocean conditions. Conversely, Model R, which was 838 

originally developed for regions of mid to high Chla concentration, has been identified as a 839 

leading candidate for eutrophic OWTs 6 and 7. Model H was the leading performer for OWT 840 

10 where concentrations of Chla are often high but the optical signal is primarily dominated 841 

by the presence of other optically active constituents. The remaining mid-range Chla 842 

concentrations have been captured by several versions of the red-NIR band ratio algorithm.  843 

 844 

Table 5. Recommended model for each defined OWT (Spyrakos et al., 2018b) ordered by 845 

OWT group median Chla concentration (Figure 3). Calibration coefficients for each model 846 

have been highlighted in bold.  847 

OWT Model Architectural 

approach 

Equation a b c d e 

7 R_CAL 
Semi-

analytical 

𝑎௣௛(𝜆) = 𝒂(𝜆) − 𝑎௪(𝜆)

− 𝑎௖ௗ௢௠(𝜆) 
0.0135     
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𝑎௖ௗ௢௠(𝜆)

= 𝑎௖ௗ௢௠(443)exp (−𝒂(𝜆

− 443)) 

1 C_CLUS 
NIR-red band 

ratio 

𝐶ℎ𝑙𝑎_𝐶 = 𝒂 × ൬
𝑅௥௦଻଴଼

𝑅௥௦଺଺ହ
൰

ଶ

+ 𝒃

× ൬
𝑅௥௦଻଴଼

𝑅௥௦଺଺ହ
൰ + 𝒄 

86.09 -517.5 886.7   

8 H_CLUS 
Semi-

analytical 

𝐶ℎ𝑙_𝐻

= ቎
൬

𝑅௥௦଻଴଼

𝑅௥௦଺଺ହ
൰ × (0.7 + 𝑏௕)

−0.4 − 𝑏௕
𝒂

቏ 𝒃൘  
1.25 0.0174    

6 R_CAL 
Semi-

analytical 

𝑎௣௛(𝜆) = 𝒂(𝜆) − 𝑎௪(𝜆)

− 𝑎௖ௗ௢௠(𝜆) 

𝑎௖ௗ௢௠(𝜆)

= 𝑎௖ௗ௢௠(443)exp (−𝒂(𝜆

− 443)) 

0.0135     

12 A_CLUS 
NIR-red band 

ratio 
𝐶ℎ𝑙𝑎_𝐴 = 𝒂 × ൬

𝑅௥௦଻଴଼

𝑅௥௦଺଺ହ
൰ + 𝒃 

80.7 
 

53.18 
    

11 J_CLUS 
NIR-red band 

ratio 

𝐶ℎ𝑙𝑎_𝐽

= 𝒂 + 𝒃 × ൬
𝑅௥௦଻଴଼ − 𝑅௥௦଺଺ହ

𝑅௥௦଻଴଼ + 𝑅௥௦଺଺ହ
൰

+ 𝒄 × ൬
𝑅௥௦଻଴଼ − 𝑅௥௦଺଺ହ

𝑅௥௦଻଴଼ + 𝑅௥௦଺଺ହ
൰

ଶ

 

19.31 153.5 105.4   
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4 J_CAL 
NIR-red band 

ratio 

𝐶ℎ𝑙𝑎_𝐽

= 𝒂 + 𝒃 × ൬
𝑅௥௦଻଴଼ − 𝑅௥௦଺଺ହ

𝑅௥௦଻଴଼ + 𝑅௥௦଺଺ହ
൰

+ 𝒄 × ൬
𝑅௥௦଻଴଼ − 𝑅௥௦଺଺ହ

𝑅௥௦଻଴଼ + 𝑅௥௦଺଺ହ
൰

ଶ

 

18.44 149.2 374.9   

5 K_ORG 
NIR-red band 

ratio 

𝐶ℎ𝑙𝑎_𝐾

= 𝒂 + 𝒃 × ൬
𝑅௥௦଻଴଼ − 𝑅௥௦଺଺ହ

𝑅௥௦଻଴଼ + 𝑅௥௦଺଺ହ
൰

+ 𝒄 × ൬
𝑅௥௦଻଴଼ − 𝑅௥௦଺଺ହ

𝑅௥௦଻଴଼ + 𝑅௥௦଺଺ହ
൰

ଶ

 

14.03986.115194.33   

2 A_CLUS 
NIR-red band 

ratio 
𝐶ℎ𝑙𝑎_𝐴 = 𝒂 × ൬

𝑅௥௦଻଴଼

𝑅௥௦଺଺ହ
൰ + 𝒃 53.29 -30.08    

10 H_ORG 
Semi-

analytical 

𝐶ℎ𝑙𝑎_𝐻

= ቎
൬

𝑅௥௦଻଴଼

𝑅௥௦଺଺ହ
൰ × (0.7 + 𝑏௕)

−0.4 − 𝑏௕
𝒂

቏ 𝒃൘  
1.063 0.016    

9 N_CLUS 
Blue-green 

band ratio 

𝐶ℎ𝑙𝑎_𝑁 =  10൫𝒂ା𝒃௑ା𝒄௑మା𝒅௑యା𝒆௑ర൯ 

𝑋 = 𝑙𝑜𝑔10(𝑅௥௦ସଽ଴ 𝑅௥௦ହ଺଴⁄ ) 

0.0536 7.308 116.2 412.4 463.5 

3 M_CLUS
Blue-green 

band ratio 

𝐶ℎ𝑙𝑎_𝑀

=  10൫𝒂ା𝒃௑ା𝒄௑మା𝒅௑యା𝒆௑ర൯ 

𝑋 = 𝑙𝑜𝑔10(𝑅௥௦ସସଷ > 𝑅௥௦ସଽ଴ 𝑅௥௦ହ଺଴⁄ ) 

0.1098 -0.755 -14.12 -117 -17.76 

13 M_CLUS
Blue-green 

band ratio 

𝐶ℎ𝑙𝑎_𝑀

=  10൫𝒂ା𝒃௑ା𝒄௑మା𝒅௑యା𝒆௑ర൯ 

𝑋 = 𝑙𝑜𝑔10(𝑅௥௦ସଽ଴ 𝑅௥௦ହ଺଴⁄ ) 

-5020 
2.9e+0

4 

-

6.1e+0

4 

5.749e

+04 

-

2.026

e+04 

 848 

OWT recommended algorithms (as shown in table 5) were combined to form a dynamic 849 

switching algorithm, which selects the optimum Chla model for a given OWT. Estimates 850 
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generated by the dynamic switching algorithm are compared to in-situ measurements of 851 

Chla concentration in Figure 8 (c). Points are coloured according to OWT group and shaped 852 

according to the chosen algorithm architectural approach. In order to qualitatively compare 853 

overall performance, scatterplots of the output from the best performing original form 854 

algorithm Model C_ORG (8 a) and the top performing single (non-dynamic) algorithm Model 855 

J_CLUS (8 b) are also shown in this figure. The corresponding histogram of residuals for 856 

Model C_ORG, Model J_CLUS and the dynamic switching algorithm are shown in Figure 8 d. 857 

It is clear that overall improvement in Chla retrieval accuracy is achieved by focussing on an 858 

OWT framework. Firstly, retuning model coefficients within an OWT group (Figure 8 b) 859 

improved the overall RPD calculated between measured and modelled Chla from 158% for 860 

Model C_ORG to 81.9% for the optimised Model J_CLUS. Next, dynamically altering the 861 

chosen algorithm per OWT (Figure 8 c) further reduced the RPD to 68.5%. The final version 862 

of the dynamic switching algorithm estimates log-transformed Chla from Rrs with a MAE of 863 

0.18 mg m-3 (Figure 8 c). In terms of objective scoring, improvements in the final Chla 864 

outputs generated by the dynamic switching algorithm produced a total score of 15, which 865 

was the highest recorded score from all 48 algorithms tested.   866 
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(a)  

 

(b)  
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(c)  

(d)   

 867 

Figure 8. Validation of Chla estimated from Model C_ORG (a), Model J_CLUS (b) and a 868 

combination of the best performing models per OWT group denoted the dynamic switching 869 

algorithm (c).Points have been coloured according to their OWT group classification and 870 

shaped according to the chosen model architectural approach (8 c only). A dashed 1:1 line 871 

representing a perfect modelled relationship has been annotated for reference. Regression 872 

statistics of correlation coefficient, linear slope and intercept, root mean square error 873 
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(RMSE), mean absolute error (MAE), relative percentage difference (RPD) and bias are 874 

shown for each model. A histogram of residuals for model outputs are shown in (d). 875 

 876 

4. Discussion 877 

4.1 Implications for remote sensing 878 

In this validation exercise we have shown how accuracy in the retrieval of Chla from Rrs can 879 

be improved by targeting specific OWTs in algorithm development. In a comparison of single 880 

model retrievals, in other words, a single architecture across the entire dataset, it was 881 

shown that accuracy of the models was highly variable (Figure 4 and 5). Models A, C, J and R 882 

were highlighted as leading performers based on their objective score and error statistics. 883 

The empirical three-band ratio algorithms were shown to perform poorly when compared 884 

their two-band counterparts. For almost every model validated, the statistically tuned per 885 

OWT CLUS version produced the most accurate results. When comparing results on an OWT 886 

basis, the validation metrics were also highly variable (Figure 7). Model J appeared as a high 887 

scorer from ranked objective scoring the greatest number of times, and 15 of the 48 tested 888 

models were identified as leading performers in at least one OWT. Improvement in the final 889 

objective score and the corresponding error statistics was made by unifying an ensemble of 890 

the top performing algorithms for each OWT, as presented in Table 5. The resulting dynamic 891 

switching algorithm produced a relative percentage improvement in log-transformed MAE 892 

of 25% when compared to the top performing algorithm in its original form (Model C_ORG) 893 

(Figure 8 a and c). This result demonstrates that overall improvement in retrieval 894 

performance can be achieved by focusing on distinct OWTs during algorithm development. 895 

There remains uncertainty in the accuracy of retrievals obtained from several of the 896 

associated OWTs, particularly where low concentrations of Chla are observed in the 897 
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presence of highly variable CDOM. However, this adaptive method allows for a directed 898 

effort in improving algorithms over specific OWTS and could be used to prioritise water 899 

bodies for future validation and algorithm development exercises. 900 

 901 

This study did not attempt to validate every algorithm developed for retrieving 902 

concentrations of Chla from water colour observations. Instead, the intention was to test a 903 

range of empirical, semi-analytical and neural network model types to determine those best 904 

suited in terms of performance statistics for RS in complex and optically deep inland waters 905 

and to present those models in an adaptive framework that delivered accurate retrievals 906 

across a global continuum of environmental conditions. It was therefore interesting to 907 

observe apparent clustering in the high-scoring-model architectural approaches, whereby 908 

many OWTs were represented by similar models, as shown in Figure 8 c.  These clusters 909 

appear at defined positions on the Chla concentration continuum (independent of other 910 

optically active constituents which also affect the Rrs signal), with typical blue-green ratio 911 

ocean colour algorithms representing clearer oligotrophic conditions, red-NIR band ratios 912 

capturing the mid-range meso- to eutrophic concentrations and more complex semi 913 

analytical models covering the hypereutrophic events. This result has some physical 914 

meaning as the validated algorithms have known capabilities and limitations in optically 915 

complex waters (see table 2 for algorithm training ranges). For example, the blue-green 916 

ratio algorithms are more sensitive to changes in Chla concentration at low reflectance 917 

levels due to the dominance of blue wavelength absorption for chlorophyll pigments, whilst 918 

semi-analytical models such as QAA are better equipped at dealing with additional optical 919 

complexity instigated by the presence of independently varying concentrations of other 920 

optically active constituents. Apparent architectural clustering suggests the defined OWTs 921 



53 
 

may fall into higher-level groupings that could be used to further simplify algorithm 922 

selection. This result was also demonstrated by Spyrakos (2018b) using phylogenetic trees 923 

to identify sub groups within an OWT cluster and it reaffirms our understanding of the 924 

limitations of the tested RS algorithms in optically challenging aquatic systems. To this end, 925 

the number of required algorithms and/or parameterisations may be collapsed without 926 

significantly compromising overall performance and could lead to a decision tree for 927 

algorithm selection based around dominant and commonly occurring optical features, as 928 

shown in Figure 9. Where formal OWT classification is unachievable, the recommendation 929 

for a switching algorithm based on biological conditions would be; blue-green band ratio 930 

methods such as Model M in oligotrophic environments where Chla concentrations 931 

normally fall below 3 mgm-3, NIR-red band ratio methods such as Model C where Chla is 932 

frequently in excess of 3 mgm-3 but less than 155 mg m-3 and the semi-analytical method of 933 

Model R in hypereutrophic conditions where Chla concentrations commonly exceed 160 934 

mgm-3. If no prior knowledge of water colour or Chla variability is known, Model C_ORG 935 

would be the recommended method. 936 

 937 
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 938 

Figure 9. Decision tree depicting recommended algorithms for lakes where formal OWT is 939 

unknown. 940 

 941 

Improvement in the accuracy of the Chla retrieval was demonstrated by changing not only 942 

the architectural type of model used in the retrieval but also by calibrating the chosen 943 

model with OWT specific coefficients. In the case of single model top performer Model J, the 944 

RPD decreased from 278 to 81 percent (correlation coefficient increased from 0.80 to 0.88 945 

and MAE decreased from 0.36 to 0.26) simply by fitting the model to data collected for a 946 

specific OWT. This method allows for improved characterisation of regions with significant 947 

optical variability, both temporally and seasonally, which in turn improves the accuracy and 948 

effectiveness of the method overall. As a consequence, the recommended dynamic 949 

switching algorithm is more accurate than a general algorithm and more effective than a 950 

regionally developed algorithm. Several of the OWTs were under-represented by (a) our in-951 

situ data (b) the models tested in this study, resulting in poor error statistics for OWTs 3, 5, 952 
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6, 10 and 13. While this appears a large number of misrepresented spectra, it equates to 953 

32.6% percent of the entire in-situ validation dataset and embodies the very low or very 954 

high extreme Chla concentrations. A useful by-product of the dynamic switching framework 955 

is therefore its effective exposure of areas that require further attention. Our results can be 956 

used to identify OWT-specific modelling requirements for RS applications and highlight gaps 957 

in knowledge and data needs. Additionally, with widely variable validation results found 958 

across OWTs, the dynamic switching framework can act as a flagging system to express 959 

confidence in the Chla retrieval. In this context, Chla concentration determined in OWTs 960 

identified as poorly characterised could be flagged as ambiguous in a manner similar to 961 

atmospheric correction failures, hence providing a better insight into realistic uncertainty 962 

budgets. Furthermore, this framework also allows for better error characterisation by 963 

providing estimates of OWT-specific error which are potentially more useful to end-users 964 

with interests in specific water types. 965 

 966 

4.2 Methodologies 967 

This paper investigated the accuracy of several algorithms designed to retrieve 968 

concentrations of Chla from measurements of water colour in optically complex aquatic 969 

environments. Chla was calculated from an extensive database of in-situ Rrs 970 

measurements resampled at MERIS wavebands (Spyrakos et al., 2018b). To our 971 

knowledge, this is the most comprehensive dataset of inland water reflectance spectra 972 

that covers a continuum of optical water types both spatially and temporally. Many of 973 

the observations contained within this dataset have been used in previous studies to 974 

parameterise algorithms tested in this paper (e.g., Matthews & Odermatt, 2015). Ideally, 975 

a validation exercise of this magnitude would be conducted with an independent dataset 976 
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of in-situ observations to avoid the influence of data dependency on performance results.  977 

This is currently not feasible due to a lack of systematic validation work covering the range 978 

of OWTs considered in this study and most existing data have been acquired specifically for 979 

algorithm development. Moreover, removing data that have been used to derive the 980 

original algorithms would make it difficult to undertake a fair comparison. Potential bias 981 

was dealt with to some extent by testing a variety of model types, as well as varying 982 

model coefficients. Moreover, a jack-knife method was applied to the validation dataset 983 

to subsample data and determine error statistics as a distribution. The diversity of 984 

performance results suggest model data dependency may not be strongly influencing the 985 

outcome. For example, the blue-green ratio ocean colour models (L, M and N) were 986 

identified as top performers in several OWT clusters however, no oceanic observations 987 

have been included in the Rrs validation dataset. This is further demonstrated by 988 

comparing the number of observations with the RMSE calculated for the top performing 989 

models in each OWT (table 4), as shown in Figure 10. Excluding OWT 13 (which is the 990 

most difficult type to model in terms of Chla due to extreme low concentrations) a 991 

regression slope of -6.9e-5 indicates no trend exists between the number of observations 992 

within an OWT group and RMSE calculated for the OWT candidate model and as such the 993 

final result is not influenced by data bias.  994 

 995 
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 996 

 997 

Figure 10. Scatterplot showing number of observations within an OWT against root-mean-998 

square-error (RMSE) calculated for OWT top performing models. Points have been 999 

coloured according to their OWT group classification. A regression slope of -6.9-5 (black line, 1000 

excluding OWT 13) suggests no significant trend exists between these parameters.  1001 

 1002 

While this study focussed on the OWTs defined by Spyrakos et al. (2018b), it is recognised 1003 

that these are unlikely to represent all water types occurring in natural waters and that 1004 

OWTs may be defined by alternative methods (McKee et al., 2007; Moore et al., 2009) or 1005 

underrepresented by the availability of in-situ data e.g. OWTs 1 and 13. Furthermore, 1006 

uncertainty in OWT classification is expected, particularly at class member boundaries 1007 

where component optical properties overlap (Spyrakos et al., 2018b). However, the OWT 1008 

framework presented in this paper is the most comprehensive to date in terms of data 1009 

size and range. The proposed method of subdividing data into optical water typologies 1010 

before applying algorithms or assessing algorithm performance is a key message of this 1011 

study and is entirely transferrable to other water environments or classification schemes. 1012 
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Additional data may improve OWT classification accuracy and overall OWT coverage. It 1013 

may also improve individual algorithm performance by further refining model coefficients 1014 

(Salama et al., 2012). However it would not necessarily change the final 1015 

recommendations for the dynamic switching algorithm. Most importantly, it would not 1016 

alter the general efficacy of an ensemble method built on an OWT framework. We 1017 

encourage the algorithms and parameterisations published here to be further refined and 1018 

validated against new bio-optical datasets as they are collected. 1019 

 1020 

The objective scoring system developed by Brewin et al. (2015) and modified for this 1021 

study proved an effective tool for automatically generating an overview of algorithm 1022 

performance. It provided a means of objectively ranking models based on their 1023 

performance relative to average error statistics as demonstrated in Figures 6 and 7. 1024 

However, it is important to acknowledge that the resulting score does not represent 1025 

absolute performance and as such, the objective scoring system should be used in 1026 

conjunction with standard error statistics to determine the most effective algorithms 1027 

where equal scores are generated.  The objective scoring system is also extremely 1028 

effective for highlighting the underperforming algorithms and the trophic conditions 1029 

under which the tested algorithms break down. This is particularly relevant when 1030 

validating a large number of models over a wide range of optical and/or biological 1031 

conditions. 1032 

 1033 

4.3 Future work 1034 

In this paper, we have validated a host of algorithms to determine those capable of 1035 

accurately retrieving Chla concentration remotely in inland waters. The ultimate ambition in 1036 
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this context is the production of accurate global products that can be exploited for status 1037 

assessment and climate studies. Advances in computer processing power have allowed the 1038 

development of machine learning and artificial intelligence procedures in satellite 1039 

applications (Kim et al., 2014; Bilx et al., 2018; Ceccaroni et al., 2018). Whilst these are 1040 

relatively under-validated on a global scale, their approach to algorithm selection with 1041 

limited a priori knowledge of environmental condition is an exciting prospect, and has 1042 

similarities to the framework presented in this paper. Our tractable goal requires a unified 1043 

approach to data processing routines that are able to adapt to the optical complexities of 1044 

inland waters and the framework presented in this study is a step forwards in achieving this 1045 

(Palmer et al., 2015b & Mouw et al., 2015). The analysis has focussed on an extensive 1046 

database of in-situ Rrs with the assumption that these correspond to the true water-leaving 1047 

reflectance at the bottom of the atmosphere. The next stage of this research is to transfer 1048 

results to reflectance obtained from satellites including archived Envisat MERIS and 1049 

Sentinel-3 OLCI data. The presented methodology adopted for image processing will guide a 1050 

focussed effort in developing an operational RS application suitable for optically complex 1051 

inland waters. 1052 

 1053 

5. Conclusions 1054 

With an ever-increasing number of published algorithms designed for retrieving Chla 1055 

concentration from space, it has never been more crucial to report realistic limitations and 1056 

uncertainties of well documented methods and to ensure that all algorithms are 1057 

comprehensively validated and benchmarked against each other using datasets that 1058 

incorporate  the complexity of lake OWTs found globally. In this study, a series of Chla 1059 

retrieval models have been validated using a comprehensive dataset of in-situ 1060 
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measurements collected from over 185 inland waters to determine those capable of 1061 

recovering accurate concentrations of Chla in optically complex environments. A total of 48 1062 

algorithms were explored and an objective scoring system was developed to automatically 1063 

rank models based on their relative statistical performance. From this study, several key 1064 

conclusions can be made: 1065 

 The most suitable and accurate models of those assessed for estimating Chla within 1066 

the biogeochemical range presented where OWT is uncategorised were Model 1067 

A_ORG, Model C_ORG, Model H_ORG and Model J_CAL (Moses et al., 2009, Gurlin et 1068 

al., 2011, Gons et al., 2005 & Mishra et al., 2012 respectively) which produced a MAE 1069 

for log10 Chla of 0.23, 0.24, 0.23 and 0.27 mg m-3 respectively. 1070 

 The variable performance of the algorithms tested emphasises the importance of 1071 

model selection and validation and caution should always be exercised when 1072 

implementing models across a wide range of water bodies. The presented dynamic 1073 

switching algorithm attempts to resolve performance variability by altering the 1074 

selected model for a given OWT. This produces estimates of Chla concentration from 1075 

reflectance measurements with a final correlation coefficient of 0.89 and a MAE of 1076 

0.18 mg m-3. 1077 

 An objective scoring system is an extremely useful method for automatically 1078 

determining performance for a wide range of models. It promotes confidence in the 1079 

result and insurance for reporting purposes. However, it is not sufficient for making 1080 

informed decisions regarding algorithm choice and in these cases, results should be 1081 

considered in conjunction with error statistics. 1082 

 Overall performance was improved by focussing algorithm development within 1083 

distinct OWT clusters. This was demonstrated in two ways; by calibrating models for 1084 
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specific OWTs and by adjusting the model architecture to better represent an OWT. 1085 

This framework should be exploited in the design of future operational models.  1086 

 This research is helping us progress towards a unified approach for global monitoring 1087 

of chlorophyll in inland waters from space. 1088 
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