
Optimization Letters (2020) 14:1459–1470
https://doi.org/10.1007/s11590-019-01453-6

ORIG INAL PAPER

Conflict-free routing of multi-stop warehouse trucks

Alexander E. I. Brownlee1 · Jerry Swan2 · Richard Senington3 ·
Zoltan A. Kocsis4

Received: 12 October 2018 / Accepted: 5 July 2019 / Published online: 12 July 2019
© The Author(s) 2019

Abstract
The recent interest in greater vehicular autonomy for factory and warehouse automa-
tion has stimulated research in conflict-free routing: a challenging network routing
problem in which vehicles may not pass each other. Motivated by a real-world case
study, we consider one such application: truck movements in a tightly constrained
warehouse. We propose an extension of an existing conflict-free routing algorithm to
consider multiple stopping points per route. A high level metaheuristic is applied to
determine the route construction and assignment of vehicles to routes.

Keywords Onflict-free routing · Shortest path · Metaheuristic · Graphs ·
Permutations

1 Introduction

Conflict-free routing appears in many applications where routes are constrained to
the extent that vehicles may not pass each other without taking alternative routes.
Previous application areas have included scheduling multiple cranes in steel logistics,
transportation of containerswith automated guided vehicles (AGVs), routing of taxiing
aircraft and movements of trains. The motivating problem for the proposed approach
is the allocation of routes to trucks in a warehouse, such routes being numbered
in thousands per day. Each truck can carry multiple items that must be retrieved
from various locations. Given the tight alleyways in which the trucks manoeuvre,
the efficient allocation of conflict-free routes in real time is crucial. Due to width
constraints, the horizontal gaps between rows are one way.

B Alexander E. I. Brownlee
alexander.brownlee@stir.ac.uk

1 University of Stirling, Stirling FK9 4LA, Scotland, UK

2 University of York, York YO10 5DD, UK

3 University of Skövde, Högskolevägen, Box 408, 541 28 Skövde, Sweden

4 The University of Manchester, Oxford Rd, Manchester M13 9PL, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-019-01453-6&domain=pdf
http://orcid.org/0000-0003-2892-5059

1460 A. E. I. Brownlee et al.

Conflict-free routing approaches allocate point-to-point routes across a graph one
vehicle at a time, adding diversions and waits to avoid the paths of already-routed
vehicles by considering a time-expanded version of the graph. These have proved
very efficient compared to the alternative approaches that compute routes (ignoring
time) and retrospectively amend the routes to avoid collisions, frequently leading to
deadlocks [8].

Earlier work has proposed conflict-free routing approaches based on variations
of the well-known Dijkstra’s [3,17] and A* [4,16,19] shortest path algorithms. The
focus in this article is on the conflict-free routing algorithm QPPTW [17], a variant
of Dijkstra’s shortest path algorithm that accounts for the times of previous vehicle
movements. QPPTW finds a shortest route by expanding routes from the start vertex,
applying labels to each vertex that represent the shortest path to the vertex found so
far. Our proposed modification adds a stack to labels, storing the required intermediate
stops that have yet to be processed. When this stack is empty, the route is complete.
We term this new algorithm QPPTW-m (QPPTW for multiple points).

QPPTW-m is more general than earlier works in conflict-free routing ([8,9,17]
and others), which only considered allocation of routes with a single start and single
end point with no required intermediate stopping points. Clearly, in the more general
case the requirement exists to have intermediate points, visiting multiple points in
a specified order. QPPTW-m is also accompanied by a metaheuristic to determine
the order which to route the vehicles, and allocate jobs to the trucks. In subsequent
sections, we present QPPTW-m and demonstrate its practical applicability.

2 Related work

Conflict-free routing appears in several application areas, including transportation
of containers with automated guided vehicles (AGVs) [8,9], forklift movement[19],
taxiing aircraft [1,3,17] and rail operations [5].

Approaches to these problems can be divided into two groups [8]. The first group of
approaches allocate routes then retrospectively avoid deadlocks, either as part of the
objective function, or though some kind of repair operation. Examples include [13,15],
which usedmetaheuristics to allocate the routes. The second group of approaches (e.g.
[3,4,16,17,19]) tend to use a variation of shortest path algorithms such as Dijkstra or
A∗, with an addition of a time element to only construct collision-avoiding routes. The
closest to the proposed approach is Vivaldini et al. [19], in that it also includes a top-
level heuristic to allocate jobs to trucks. However, all these approaches are for routes
between single (origin,destination) pairs; the present work extends this to multi-point
routes.

Several studies analysed system-level deadlocks and prevention in container ter-
minals [6]. Many rely on the highly-constrained grid structure of the terminals, with
routing being a search over predefined routes [11] or algorithms specific to the layout
[14], rather than our general graph-based approach.

Aspects of the problem we address are shared with other well-known optimisa-
tion problems. The Travelling Salesman Problem (TSP) attempts to find the single
most cost-effective path visiting specified vertices on a graph. An extension of TSP,

123

Conflict-free routing of multi-stop warehouse trucks 1461

the Travelling Thief Problem [2], also incorporates a Knapsack Problem, whereby
the route must be chosen that also maximises the value of items collected by the
travelling vehicle. The Rich Vehicle Routing Problem [12] is also arguably a gener-
alisation of TSP, where routes are allocated to multiple vehicles. Variants of RVRP
make use of time-windows, but the distinction with those mentioned in the present
work is that with RVRP they are target times for each node, rather than times on which
edges are free for traversal. Herein lies the major difference of the present work with
TSP/RVRP: the constraint on the links, which are one-way and, crucially, one vehicle
at a time.

3 Problem

We now introduce the broader application context, then describe the specific problem
addressed by this paper and the model we adopt for its solution. Our partner company,
PostPac, provides anoutsourcingwarehouse service.Customers aremail order retailers
who do not wish to run their own warehouses, instead contracting PostPac to store
goods and post them out on request. This means they can benefit from economies of
scale, by mixing the storage of the different companies to best service all the requests,
and collecting a mixture of orders for a mixture of companies, to best optimise the
retrieval of goods. The issue for PostPac is how to efficiently retrieve goods in the
warehouse.

3.1 Problem description

The component of the PostPac system on which we focus is the truck based retrieval.
The task is one of time optimisation, gathering all the required items from the ware-
house in as short a period as possible. The environment is a grid based warehouse, the
basic layout of which is seen in Fig. 1. This will be developed into the directed graph
model seen in Fig. 2 obeying the following conditions:

1. There are 7 rows, each structured in the same way (see Fig. 1).
2. Each row has 56 storage points, accessible on one side only. Each storage point

has three levels.
3. Each row is split into two parts, one of 36 and one of 20 storage points, allowing

trucks to change rows at the split.
4. Each storage point contains a collection of items of different types.
5. Only the 10 trucks are allowed to move inside the system, and all can move

simultaneously. No personnel are ordinarily allowed in on foot.
6. The horizontal gaps between rows are one way, due to width constraints. The

outer border and middle avenue can be considered two way.
7. On average, there are several thousand orders to gather per day.
8. On any given journey a truck can retrieve a variety of different items, thus fulfilling

a number of orders.
9. Items are delivered by the trucks to a single collection point.

10. It is assumed that jobs have already been allocated to trucks ahead of time.

123

1462 A. E. I. Brownlee et al.

Fig. 1 Warehouse layout: black are the rows, light blue is the area traversable by trucks, and orange (top-left)
is the entrance/exit (color figure online)

Fig. 2 The directed graph model of the warehouse layout

Two key issues cause inefficiency: (1) Trucks waiting on each other, due to the
one way nature of the paths. This is a lack of coordination in their route planning. (2)
Trucks retrieving a set of items travel all over the warehouse far more frequently than
if the items for that trip were chosen more carefully.

We tackle (1) by applying a conflict-free routing algorithm to allocate routes to
each truck. This finds the shortest route (in time) for trucks given a particular per-
mutation of intermediate points for each truck, and a permutation of trucks in which
to allocate their routes. This allows for automated planning of the routes, which also
partially addresses (2). To fully tackle (2), we apply a metaheuristic search over these
two permutation spaces to approximate the globally optimal set of routes for the
trucks.

3.2 Model

The warehouse seen in Fig. 1 is modelled as a directed graph seen in Fig. 2, to support
the one way nature of many of the paths. The storage rows are seen as the yellow
vertices, a truck at one of these vertices can accessmaterials stored at that location.Blue
vertices are locations that trucks can pass through while navigating the environment
but do not provide direct access to storage themselves. The red vertex is the collection
point which all trucks must return to with their items. Finally the black lines represent
edges, and each edge can only be used one way, due to a constraint imposed by the
company. Where a route is large enough to be considered two way it is modelled as
two lines of blue vertices, enabling two directions of travel.

123

Conflict-free routing of multi-stop warehouse trucks 1463

The system contains 7 access rows, each with 56 storage points. While each storage
point has 3 levels, we can ignore this as all 3 can be accessed once the truck is there
(this only affects the loading time at each vertex). This gives 56 ∗ 7 = 392 storage
points in the system. The graph, then, has 392 vertices for accessing storage, with an
additional 251 vertices for the navigation around the perimeter and central alley, and
1 vertex for the entrance/exit, to give a total of 644 vertices.

4 Proposed routing algorithm

We now focus on the core of the approach, the conflict-free routing algorithm. The
order in which the stopping points are visited, and in which trucks are allocated
routes, is important, but we consider this to be secondary and deal with this in
Sect. 4.3. The conflict-free routing algorithm we adopt extends QPPTW, first pro-
posed by Gawrilow et al. [9] for movements at a container terminal and later adapted
for aircraft taxiing [1,3,17]. The original QPPTWallocates routes for a single start-end
pair.

4.1 The existing QPPTW

Notation in the following is summarised in Table 1. The path layout is represented
as a directed graph G = (V , E) of vertices V and edges E as per Fig. 2. An edge
e ∈ E has an associated weight τe, the estimated time to traverse e. Each e can
only have one truck ti on it at any one time. This limitation is enforced by each
e having an associated sorted-set of time-windows Fe. The Fe specify the times e
is available for use as part of a route. A truck will only be allocated a route for
which there is a chain of time-windows along its entire length, ensuring the route
is conflict free. Additionally, trucks have a minimum separation equivalent to the
width of one storage point at all times. This is ensured by pre-processing G to find
the conflicting edges conf(e) for each e (a conflicting edge being any edge adjacent
to e, i.e. sharing a vertex with e). When a truck is routed via e, the time-windows
of conf(e) are updated to prevent other trucks conflicting with it. Long edges are
divided into lengths of no more than one storage space by intermediate points to
allow separation of consecutive trucks on the same path. QPPTW resembles Dijkstra’s
shortest path algorithm [7],with the addition of time reservations on the edges.Vehicles
are routed in sequence, with each allocated the optimal route considering already
routed vehicles. By only generating routes that fit the time-windows, each route by
default avoids previous routes. This means that, as long as the time-windows are
updated to reflect knownmovements, the approach is applicable to dynamic problems.
Routes can also be updated part-way through by running the routing algorithm using
the current location as the starting point. However, in this article, we discuss only the
static situation.

For ease of comparison, Algorithm 1 replicates QPPTW, with our new additions
highlighted in blue. In the original QPPTW, the search for a shortest route is carried
out by expanding the shortest path found so far from the start vertex, represented by the

123

1464 A. E. I. Brownlee et al.

Table 1 Summary of notation

Symbol Description

G = (V , E) Graph of truck paths: sets of vertices V and edges E

v A single vertex in V

e A single edge in E

τ A specific point in time (timestamp)

τe Weight (traversal time) for e

τvL The loading time for vertex v

ti A single truck to be routed

conf(e) Set of conflicting edges for e

F(e) Sorted set of time-windows for e

L = (vL , IL , predL , viL) Label on vertex v for QPPTW, predL being the previous label; for a
subroute that finishes at intermediate vertex viL

IL = [aL , bL] Time period for label L (the earliest and latest times that the truck
could reach vL)

VQ = {v1, . . . , vend } The list of vertices that a truck is required to visit

Qi = (vstart , vQ , τstart) Request to route truck ti from vstart ∈ V to each vertex in VQ in turn,
starting at time τstart

τin and τout In and out times for an edge

Ri Route constructed for truck i

viL Intermediate node that label Li forms part of the path towards

L The set of all of the labels at vertex v ∈ V

label with the minimumweight removed from a heap (Line 5). Then labels are applied
to the vertex reached by each outgoing edge from the present vertex (loop starting on
Line 16). A label L = (vL , IL , predL) specifies the time period IL = [aL , bL] within
which the current truck being routed could reach vertex vL , given the previous label
predL in the route. The time-windows on the edge are checked for the earliest time
that the edge can be fully traversed for a given start time (loop starting on Line 17). The
earliest time that the vertex can be reached is calculated (in the original QPPTW, this
is Line 29, without the if…else block surrounding it), and a new label created for the
vertex (Line 33). If the label represents a quicker way to reach a vertex (Line 34), the
previous label on that vertex is replaced with the new label. As the algorithm repeats,
the labels are updated to the point where they represent the shortest path, given the
existing time-windows, to each vertex.

The algorithm terminates when a route Ri to the destination vertex is found. The
route Ri is reconstructed by following the ancestor predL of each label in turn. Ri is
allocated to truck ti , and the F(e) are trimmed, split or deleted to reflect times that ti
is present on each e. If a complete path exists between vstart and vend on G, QPPTW
will always return a route: delay caused by conflicts with other vehicles will simply
make the time of arrival at the target vertex vend later. The time complexity of QPPTW
is polynomial in the number of time-windows: O(|F |3 log |F |) [18].

123

Conflict-free routing of multi-stop warehouse trucks 1465

Algorithm 1 QPPTW: additional steps for QPPTW-m in blue (color figure online)
Input: Graph G = (V , E) with weights τe for all e ∈ E , the set of sorted time-windows F(e) for all

e ∈ E , a routing request Qi = (vstart , VQ , τstart)with the source vertex vstart ∈ V , the list of vertices
to visit in-order VQ = {v1, . . . , vend } ∈ V and the start time τstart .

Output: Quickest conflict-free route R from vstart to vend via each vertex in VQ , starting at the earliest
at taui , respecting the given time-windows F

1: Let H = ∅ ; Let L(v) = ∅ ∀v ∈ V
2: Create new label L such that L = (vstart , [τ1,∞), nil, v1)
3: Insert L into heap H with key τ1 ; Insert L into set L(vstart)

4: while H �= ∅ do
5: Let L = H .getMin(), where L = (vL , IL , predL , viL) and IL = [aL , bL]
6: if vL = viL then � Label represents route to intermediate target
7: if vL = vend then � Actually, a route to the final target
8: From L , rebuild route R from vstart to vend and return R
9: else � A route to an intermediate vertex
10: viL = vi+1

L � Update sub-route end to next intermediate point
11: aload = aL + τvL � Earliest end time for loading period

12: Lload = (vL , [τ1,∞), L, viL) � Add label for loading period
13: L = Lload � Use the new label to further expand the route
14: end if
15: end if
16: for all outgoing edges eL of vL do

17: for each F j
eL ∈ tailset(F(eL), aL), where F j

eL = [a j
eL , b j

eL] do
18: � Expand labels for edges where time intervals overlap:

19: if a j
eL > bL then

20: next eL � Consider next outgoing edge (Line 16)
21: end if
22: if b j

eL < aL then

23: next F j
eL � Consider next time-window (Line 17)

24: end if
25: Let τin = max(aL , a j

eL), τout = τin + τeL
26: if isLoading(vL) then
27: Let τout_check = τout + τvL
28: else
29: Let τout_check = τout
30: end if
31: if τout _check≤ b j

eL then
32: Let u = head(eL)

33: Let L ′ = (u, [τout , beL], L)

34: for each L̂ ∈ L(u) do � Dominance check
35: if viL = viL ′ then � only check labels for same subroute

36: if L̂ dominates L ′ then
37: next F j

eL � Next time-window (Line 17)
38: end if
39: if L ′ dominates L̂ then
40: Remove L̂ from H and from L(u)

41: end if
42: end if
43: end for
44: Insert L ′ into heap H with key aL

′ and into set L(u)

45: end if
46: end for
47: end for
48: end while
49: return “no vstart to vend route exists”

123

1466 A. E. I. Brownlee et al.

4.2 Additions to QPPTW

Our proposed extension is simple: the addition of a stack containing the intermediate
vertices to visit. The head of the stack is used as the target vertex, and when reached,
is removed so the algorithm can continue the route towards the next target. We also
add “wait” periods, which extend the time periods for labels on intermediate vertices
to accommodate the truck loading operation. The precise changes to the algorithm are
summarised below, and highlighted in Algorithm 1. We term the extended algorithm
QPPTW-m (QPPTW for multiple points).

1. The definition of labels is extended to include a reference to the intermediate
node viL that the label forms part of the path towards. The inputs to the algorithm
are amended: rather than only a destination vertex vend , a list of vertices to visit
in-order VQ is provided. Consequently, Step 2 is amended so the first label L is
created with the first vertex to visit in V .

2. At Step 9 a new if statement is added. The original QPPTW checks here whether
the current label represents a route to the target, and if so, returns the route (Steps 7–
8). We add a check to determine whether the present label represents a route to
the intermediate target vi . If vi is also the final target, we return the complete
route as before. If not, we update the intermediate target to the next vertex in VQ

(Steps 10–13).
3. Each intermediate vertex involves a loading operation, so we update the earliest

time the truck can leave vi by adding the loading time (Step 11). Loading time is
determined by the level accessed. We then create a new label Lload for vi for the
new times (Step 12).

4. There is no need to add the new label to the heap as it will just be removed at the
next stage. Rather, the label that was obtained from the heap (L) is replaced with
the newly created one (Lload) (Step 13). Lload will be used as the parent for any
further expansion of the route.

5. At Steps 26–29, a new variable τout_check is created. τout is the estimated exit time
for the edge currently considered to expand the route. τout_check includes loading
time if the vertex reached by the edge has a loading operation. τout_check is then
used to check against the current time-window, so the route will only be expanded
if the current edge has a time-window long enough to accommodate both loading
and edge traversal. Time-windows are also updated to reflect conflicting edges so
this ensures no conflicts with other truckswhile the present route’s truck is loading.

6. At Step 35, an extra if, so the new label v′ is only checked for dominance against
labels for the same subroute (i.e. the same intermediate target vi).

7. We also propose a change to improve efficiency at Step 17. The available time-
windows F(eL) for each edge eL are stored in a sorted set, in order of ascending
end time. Rather than iterating over thewhole setF(eL), the tail set is used, starting
with the first window to end after the current label’s start time. This way, we only
consider time-windows that can be used by the truck.

123

Conflict-free routing of multi-stop warehouse trucks 1467

4.3 Higher level search

Outside the core algorithm, there are two levels to the problem to consider. Clearly,
the order in which the intermediate points are visited has an impact on collection time.
This can be formulated as a search over permutations, the well-known Travelling
Salesman Problem, an instance of which exists for each collection trip. Furthermore,
the order in which routes are allocated to vehicles has been shown to make a small,
but nevertheless notable, difference to total transit times for QPPTW [4,17]. Simply,
because the routes are reserved via the time-windows, it is possible for an earlier truck
to be routed in such a way that it prevents several later trucks being routed optimally.
Merely allocating the routes in a different order, without changing their start times,
can avert this problem. So, we have a permutation of length n trips for which routes
need allocated, and n permutations of varying lengths (one per trip).

5 In practice

Weask two questions: (Q1)Does the approach solve the problem? (Q2) Is the approach
suitable for real-world use? Q1 can easily be answered. For the real-world scenario
described in Sect. 3.1, with 57 truck movements (covering around 6 h), the algorithm
was able to allocate conflict-free routes. Precise comparisonswith the existingmanual-
routing approach cannot be made because the existing routes were not recorded.
However, PostPac was satisfied that the automated routes were superior to manual
allocation.

For Q2, a single run of QPPTW-m allocated routes within 5 s, in Java running on a
standard Intel™ i7 CPU. We noted above that the approach is impacted by the order
of both intermediate vertices and the order in which routes are allocated; consequently
for real-time use we should consider the total run time of the high-level metaheuristic
search over these permutations. To explore this, simple experimental runs were carried
out with a hillclimber (HC) and simulated annealing (SA), implemented with the
Haiku toolkit [10].

The representation was a set of permutations: one for the trips to route, and, for each
trip, a permutation of items to collect (i.e. locations to visit). Both metaheuristics used
two perturbation operators, chosen with equal probability: (1) swap trips to route; and
(2) swap items for collection within a trip chosen at random. The objective tominimise
was total collection time, as computed for the routes returned byQPPTW-m, assuming
an average speed of 1 unit of storage space per second and loading times of 30, 180
and 300s for items on levels 1, 2, and 3 respectively. The specific instance allocated
routes for 10 trucks; more importantly these needed routes allocated for 57 trips in
total. Both algorithms were run for 1000 evaluations. Item locations and requirements
for each order were allocated at random, with allocations of items to specific truck
trips determined by an earlier optimisation run. The problem scenario and results are
available at the URL given at the end of the paper.

Table 2 shows results from both algorithms, aggregated over 30 independent runs.
Alsogiven as a reference are the results for 1000 randomlygeneratedpermutations.The
results were not normally distributed, so medians and interquartile ranges are given.

123

1468 A. E. I. Brownlee et al.

Table 2 Total time (s) for the routes allocated by QPPTW-m, and run times (s): for a single run of QPPTW-
m using a randomly generated permutation of items and trucks; and for a run of a hillclimber and simulated
annealing over 1000 evaluations each

Algorithm Total route duration Run time

Random (single) 2584094985 4.480.43
Hillclimber (1000 evals) 2459551533 3621329
Simulated annealing (1000 evals) 2461351412 3734280

Values are medians over 1000 runs (random) and 30 runs (HC/SA), with interquartile ranges in subscript

Table 3 Total time (s) for the routes allocated by Dijkstra’s algorithm, and run times (s)

Algorithm Total route duration Run time Conflicts

Random (single) 63752276 0.2040.008 875345
Hillclimber (1000 evals) 62798234 1962.45 881.5238
Simulated annealing (1000 evals) 62781196 1972.94 875.5241

As with Table 2, results for random permutations, and a run of a hillclimber and simulated annealing over
1000 evaluations each. The final column shows the number of conflicts introduced by these route allocations.
Values are medians over 1000 runs (random) and 30 runs (HC/SA), with interquartile ranges in subscript

HC found the shortest route times for our specific scenarios, though the differencewith
SA was found to not be statistically significant. Both HC and SA showed a significant
improvement over random permutations, of around 5% total route time. A single run
of QPPTW-m for the several hours’ worth of truck movements using a randomly
generated permutation takes 4–5s. The run times for both metaheuristics are around
an hour and so are indeed practical for real-world use, if planning schedules ahead of
time.

This was compared to a baseline approach of running Dijkstra’s shortest path algo-
rithm [7] to allocate the routes to each truck in turn. The results for this, using the
same approaches for determining the permutations of trips to route and items to col-
lect, are given in Table 3. It is clear that this approach finds shorter paths overall, in a
much shorter time. However, as this approach did not consider conflicts, we checked
how many occasions these routes would result in multiple trucks sharing an edge (a
conflict). This is shown in the final column of Table 3. Conflicts occurred over 800
times during the 51 movements. The large number of conflicts to be avoided provides
some explanation for the much longer route durations using QPPTW-m.

5.1 Impact of tail set

We tested the impact of changing the original QPPTW algorithm to iterate only over
tail sets (Algorithm 1, Step 17). Repeating the experiment above, we generated 1000
random instances of the routing problem (that is, random permutations of trips to
route and items to collect). Two variants of QPPTW-m were run for each instance:
one using the tail set, and one iterating over the full set of time-windows. The count
of iterations of the inner loop was then recorded. The histogram of both counts over
the 1000 runs was determined to be normally-distributed. Without the use of a tail set,

123

Conflict-free routing of multi-stop warehouse trucks 1469

the loop ran a mean of 134,660,652 times; with the tail set it ran a mean of 3,584,477
times. A two-tailed t-test on these two distributions found p < 0.001, suggesting that
the addition of tail set leads to a significant reduction in iterations of the QPPTW inner
loop.

6 Conclusions

We have presented an extension of the original QPPTW conflict-free routing algo-
rithm from [9] for routes with multiple stops. This is accompanied by a top-level
metaheuristic to choose the order in which stops should be visited and the order in
which to allocate routes to the vehicles. The approach was demonstrated to run in a
reasonable time for a real-world application.

Acknowledgements This work was part funded by the UK EPSRC [Grants EP/J017515/1 and
EP/N029577/2].

Data access statement The source code of the proposed algorithm, the scenario used in the experiment and
generated results can be obtained from http://hdl.handle.net/11667/130.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Benlic, U., Brownlee, A.E.I., Burke, E.K.: Heuristic search for the coupled runway sequencing and
taxiway routing problem. Transp. Res. C: Emerg. Tech. 71, 333–355 (2016)

2. Bonyadi, M.R., Michalewicz, Z., Barone, L.: The travelling thief problem: the first step in the transition
from theoretical problems to realistic problems. In: 2013 IEEECongress on Evolutionary Computation
(CEC), pp. 1037–1044. IEEE (2013)

3. Brownlee, A.E.I., Weiszer, M., Chen, J., Ravizza, S., Woodward, J., Burke, E.: A fuzzy approach to
addressing uncertainty in airport ground movement optimisation. Transp. Res. Part C: Emerg. Tech.
92, 150–175 (2018a)

4. Brownlee, A.E.I., Woodward, J., Weiszer, M., Chen, J.: A rolling window with genetic algorithm
approach to sorting aircraft for automated taxi routing. In: Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1207–1213. Kyoto, Japan (2018)

5. Caimi, G., Fuchsberger, M., Burkolter, D., Herrmann, T.,Wst, R., Roos, S.: Conflict-free train schedul-
ing in a compensation zone exploiting the speed profile. Proc. ISROR RailZurich 161, 1–20 (2009)

6. Carlo, H.J., Vis, I.F., Roodbergen,K.J.: Transport operations in container terminals: literature overview,
trends, research directions and classification scheme. Eur. J. Oper. Res. 236(1), 1–13 (2014)

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1),
269–271 (1959)

8. Gawrilow, E., Klimm, M., Möhring, R.H., Stenzel, B.: Conflict-free vehicle routing. EURO J. Transp.
Logist. 1(1–2), 87–111 (2012)

9. Gawrilow, E., Köhler, E.,Möhring, R.H., Stenzel, B.: Dynamic routing of automated guided vehicles in
real-time. In: Krebs, H.J., Jäger, W. (eds.) Mathematics-Key Technology for the Future, pp. 165–177.
Springer, Berlin (2008)

10. Kocsis, Z.A., Brownlee, A.E.I., Swan, J., Senington, R.: Haiku: a scala combinator toolkit for semi-
automated composition of metaheuristics. In: LNCS, pp. 125–140. (2015)

123

http://hdl.handle.net/11667/130
http://creativecommons.org/licenses/by/4.0/

1470 A. E. I. Brownlee et al.

11. Koo, P.H., Lee, W.S., Jang, D.W.: Fleet sizing and vehicle routing for container transportation in a
static environment. OR Spectr. 26(2), 193–209 (2004)

12. Lahyani, R., Khemakhem, M., Semet, F.: Rich vehicle routing problems: from a taxonomy to a defi-
nition. Eur. J. Oper. Res. 241(1), 1–14 (2015)

13. Lei, L., Shiru, Q.: Path planning for unmanned air vehicles using an improved artificial bee colony
algorithm. In: Proceedings of Chinese Control Conference, pp. 2486–2491. (2012)

14. Li, Q., Adriaansen, A., Udding, J., Pogromsky, A.: Design and control of automated guided vehicle
systems: a case study. In: 18th IFAC World Congress IFAC Proceedings Volumes 44(1), pp. 13,852–
13,857. (2011)

15. Liang, J.H., Lee, C.H.: Efficient collision-free path-planning of multiple mobile robots system using
efficient artificial bee colony algorithm. Adv. Eng. Softw. 79, 47–56 (2015)

16. Mandow, L., De La Cruz, J.L.P.: Multiobjective A* search with consistent heuristics. J. ACM 57(5),
27 (2010)

17. Ravizza, S., Atkin, J.A.D., Burke, E.K.: A more realistic approach for airport ground movement
optimisation with stand holding. J. Sched. 17(5), 507–520 (2013)

18. Stenzel, B.: Online disjoint vehicle routing with application to AGV routing. Ph.D. Thesis, TUBerline,
Germany (2008)

19. Vivaldini, K., Galdames, J., Pasqual, T., Sobral, R., Araújo, R., Becker, M., Caurin, G.: Automatic
routing system for intelligent warehouses. IEEE Int. Conf. Robot. Autom. 1, 1–6 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Conflict-free routing of multi-stop warehouse trucks
	Abstract
	1 Introduction
	2 Related work
	3 Problem
	3.1 Problem description
	3.2 Model

	4 Proposed routing algorithm
	4.1 The existing QPPTW
	4.2 Additions to QPPTW
	4.3 Higher level search

	5 In practice
	5.1 Impact of tail set

	6 Conclusions
	Acknowledgements
	References

