This is an Accepted Manuscript of an article published by Taylor & Francis Group in *European Journal of Sport Science* published by Taylor and Francis on 08 Sep 2019, available online: http://www.tandfonline.com/10.1080/17461391.2019.1660809

1

2

Title

- 3 Short term effects of a weight loss and healthy lifestyle programme for
- 4 overweight and obese men delivered by German football clubs
- 5

Authors

- 6
- 7 Benjamin Pietsch (corresponding author)¹, Prof. Burkhard Weisser², Prof.
- 8 Reiner Hanewinkel¹, Dr. Cindy Gray³, Prof. Kate Hunt⁴, Prof. Sally Wyke³, Prof.
- 9 Matthis Morgenstern¹
- 10
- 1 Institute for Therapy and Health Research, Harmsstr. 2, 24114, Kiel, DE
- 12 2 Christian-Albrechts-University, Department of Sports Medicine, Kiel, DE
- 13 3 University of Glasgow, Institute of Health & Wellbeing, Glasgow, UK

4 University of Stirling, Institute for Social Marketing, Stirling, UK

14 Keywords

- 15 Weight loss
- 16 Health
- 17 Obesity
- 18 Male
- 19 Behavior
- 20 Gender

21 Abstract

22 Numbers of obese and overweight people continue to grow in Germany as they 23 do worldwide. Men are affected more often but do less about it and few weight 24 loss services attract men in particular. To evaluate the effectiveness of a men-25 only weight loss program, Football Fans in Training (FFIT), delivered by football 26 clubs in the German Bundesliga, we did a non-randomized trial with a waiting 27 list control group. Participants' data were collected between January 2017 and 28 July 2018. FFIT is a 12-week, group-based, weight loss program and was 29 delivered in stadia and facilities of 15 professional German Bundesliga clubs. 30 Inclusion criteria were age 35-65 years, BMI \geq 28 and waist circumference \geq 100 31 cm.. Clubs recruited participants through Social Media, E-Mail and match day 32 advertisement. 477 German male football fans were allocated to the 33 intervention group by order of registration date at their respective clubs. 84 34 participants on waiting list were allocated to the control group. Primary outcome 35 was mean difference in weight loss with treatment condition over time as 36 independent variable. We performed a multilevel mixed-effects linear regression 37 analysis. Results were based on Intention-to-treat (ITT) analysis with Multiple 38 Imputation.. After 12 weeks, the mean weight loss of the intervention group 39 adjusted for club, course and participants' age was 6.24 kg (95 % CI 5.82 to 40 (6.66) against 0.50 kg (-0.47 to 1.49) in the comparison group (p<0.001). The

- 41 results indicate that Football Fans in Training effectively helped German men to
- 42 reduce their weight and waist circumference.

43

44 Background

45 In 2014, more than half of the adult population in Europe was defined as 46 overweight (BMI \ge 25 kg/m²), and a quarter classified as obese (BMI \ge 30 kg/m²).^{1, 2} In Germany, the last nationwide survey (2008-2011) that used 47 objective measurement showed similar numbers for obesity and that 53% of 48 49 adult women and 67% of adult men were overweight.³ While about average in 50 Europe for women the number for overweight men is significantly larger than 51 Europe-wide and also significantly larger than for German women. 52 Overweight and obesity contribute to increased risk of ill-health and premature 53 mortality. For example, in Germany, between 2002 and 2008, the numbers 54 were elevated by 31 % for excess weight related deaths and 37 % for years of life and quality adjusted life years lost.⁴ The Global Burden of Disease (GBD) 55 56 Obesity Collaborators reported four million deaths and 120 million disability 57 adjusted life years for 2015 globally.⁵ Overweight and Obesity also cause 58 increased costs for both individuals and health systems. A study conducted in 59 collaboration with one of Germany's biggest health insurance companies 60 estimated the direct and indirect costs of overweight and obesity to the public 61 health system at 63 billion € in 2015.6 62 Compared with women, overweight men face a disproportionately higher health

risk. A meta-analysis published in 2016 and including 3.9 million people showed

a significantly higher mortality risk in men with BMI higher than 25.7 But despite 64 65 this and the higher prevalence of overweight and obesity in men (67% vs 53%, 66 as mentioned above). German men of all ages are underrepresented in existing health behavior change programs. Some of Germany's biggest commercial 67 68 weight reduction programs reported that female participants made up between 73.7 % and 78.0 % of all attendees.⁸⁻¹⁰ A review of 244 weight loss trials, mostly 69 70 conducted in the United States, similarly showed that 27.0 % of participants 71 were male and only five percent of all trials were men only (32.0 % women only)¹¹ Furthermore, according to the 2017 report by Germany's union of health 72 73 insurance companies, of 1.7 million participants attending their preventive 74 health courses, 81.0 % were female.¹² There are several possible reasons for 75 men's low attendance rates. First is the subjective misperception of their BMI. In 76 a study testing differences in weight status perception after either self-reported 77 or objective BMI measurements, proportionally more men (42.7 % self-reported, 78 54.7 % objectively measured) than women (19.3 % self-reported, 30.9 % 79 objectively measured) had the tendency to estimate their weight as "about right" when statistically being considered overweight (BMI = 25-30).¹³ Secondly, men 80 81 seem to have fewer concerns about health risks¹⁴ and about eating, body weight, and physical appearance.¹⁵ Additionally men report barriers to seeking 82

help with health needs like socialization to conceal vulnerability¹⁶ and last, some 83 84 men view existing programs as unattractive and difficult to attend to.¹¹ 85 However, it is well established that men who do attend weight loss programs are often successful in losing weight.^{17, 18} Research shows that even 5 to 10 86 87 percent weight loss result in substantial health benefits and lowers future risks.¹⁹ The "Football Fans in Training" program (FFIT), originating in Scotland, 88 89 has demonstrated the power of the professional football setting to attract men in 90 the UK to a men-only group-based weight management and healthy living program.²⁰ The 12-week program was developed in 2010²¹, and evaluated in a 91 92 randomized controlled trial (in 2011-2012) which showed that FFIT was 93 effective and cost-effective, showing benefits in weight loss and other secondary outcomes 12 months after baseline.²² Key to FFIT's success is the 94 95 program's alignment with the emotional attachment of fans to football and use 96 of what has been regarded, until recently at least, as a traditionally male setting.^{21, 23} Building on FFIT's success and popularity in Scotland, other 97 98 programs addressing men's health, weight and physical inactivity have been 99 adapted for other professional sports club environments and for other countries, 100 including rugby and ice hockey, to attract men to lose weight, and improve other 101 health behaviors.

102	After translation and very minor adaptations, FFIT was successfully launched in
103	the German Bundesliga, the most attended football league worldwide, in 2016.
104	Previous research showed the feasibility of recruiting clubs to deliver the
105	program and fans to attend the program. ²⁴ The current study aims to test the
106	effectiveness of the adapted German Football Fans in Training program with
107	German football fans.

108 Methods

109 Intervention and Setting

110 FFIT is a gender-sensitized weight loss program delivered free of charge at

111 professional football club facilities by trained club coaches, originally developed

112 by a team at the University of Glasgow.²¹ FFIT in Germany (Fußballfans im

113 Training) was adapted by translation into German and minor cultural

114 amendments as described below.

115 After an initial health check and baseline measurements, the participants

116 attended twelve weekly sessions of 90 minutes. All sessions included (1) a

117 classroom based session and (2) a group-based physical activity session. Each

118 weekly classroom-based discussion covered a topic related to weight loss or

behavior change. This included: developing a healthier diet by enhancing

120 knowledge about nutrition and alcohol, interpreting food labels and choosing

121 healthier take-out food. Participants were taught to use behavior change 122 techniques including self-monitoring, goal-setting and getting support from other 123 group members, family and friends. Goals were reviewed weekly and through 124 discussion men learnt from one another about how to make changes. A detailed 125 description of the programme and mapping of all behavior change techniques 126 can be found in Gray et al. (2013). The classroom based session also included 127 an incremental walking program designed to increase fitness over time through 128 goals setting and self-monitoring of steps²⁵. The physical activity session was light to moderate physical activity, of increasing duration and intensity as the 129 130 twelve weeks progressed. Club coaches, who had been trained to deliver FFIT, 131 were instructed to include basic workout principles like warm-up and cool-down 132 as well as endurance, muscle, flexibility and coordination training. Football 133 training exercises were also recommended. 134 Some minor adaptations to the original program materials were made to make

136 diet sessions were replaced by more popular choices in Germany.

137 Measurement units were assimilated to German standards (e.g. liters instead of

them appropriate for use in Germany. Examples of foods used in the healthy

138 pints). Additional content was also added to explain the link between obesity

139 and cancer, especially colon cancer, in men.²⁶ A more detailed description of

140 the adaptation process can be found elsewhere.²⁴

135

141 Study Design and participants

142 We conducted a pragmatic non-randomized trial with a waiting list comparison 143 group. Data for both intervention group and comparison group were collected 144 between January 2017 and July 2018. During this time period men were 145 recruited to 29 12-week deliveries of FFIT in 15 clubs. Clubs chose their own 146 recruitment methods (e.g., social media, half-time announcements at home 147 matches, club magazines) and all men interested in participating were invited to 148 apply through the official homepage www.ffit.de, where they were informed of 149 the inclusion criteria. Men were eligible to take part in the program if they were 150 aged between 35 and 65 years with a BMI >= 28 and waist circumference >= 151 100 cm at objective measurements prior to course start. At the initial health 152 check, all potential participants were asked to fill out a German version of the 153 Physical Activity Readiness Questionnaire (PARQ)²⁷. The PARQ questionnaire 154 and blood pressure readings indicated possible contraindications to physical 155 activity. Therefore, men who answered 'Yes' to any PARQ question or who had resting systolic blood pressure of 160 and higher or diastolic blood pressure of 156 157 100 and higher had to provide a letter of support from their physician or were 158 excluded from participating in physical activity during club sessions (although 159 they were still able to take part in the 'classroom' part of the session and the

160 pedometer-based walking program). Most clubs opened recruitment to all male 161 supporters, but three restricted participation in FFIT to season ticket holders. 162 By the end of July 2018, a total of 934 men had registered for 29 courses in the 163 15 clubs, of whom 477 were allocated to the intervention group. Allocation was 164 mostly done on the basis of first come, first served. Two clubs allocated the 165 participants on their own terms which are unknown to the research team. These 166 men were measured twice, with baseline assessments conducted during the 167 initial health check one week prior to program start. The second (follow up) 168 measurement was conducted during the week 12 session of FFIT. Thus, 169 baseline and follow-up measurements were 13 weeks apart. 170 To strengthen the validity of the study, a comparison group (N=84) was recruited from waiting lists.²⁸ The lists included all men who had applied to a 171 172 course at their club but had not been selected by the methods described above. 173 These men, if any, were then invited to take part in objective comparison group 174 measurements in the time leading up to the following course which they were 175 considered to join. Attendance to those measurements was voluntary, without 176 further incentives and the same through all clubs. They were measured twice, 177 following the same protocols as the intervention group measurements, with 178 follow up occurring 13 weeks after baseline data collection. A flow chart of 179 participants is presented in Figure 1.

180 Outcome Measures

181 All measurements and questionnaire administration were conducted by the 182 FFIT coaches who had been trained to a standard measurement protocol. In 183 addition, to quality assure data collection, all measurement sessions were 184 supervised by members of the research teams. Men who were not able to take 185 part in the official measurement session were asked to attend at a subsequent 186 time that was convenient to them. The primary outcomes were objectively-187 measured weight and waist circumference. Secondary outcomes were BMI, 188 body fat percentage, and systolic and diastolic blood pressure. Weight and body 189 fat percentage were recorded with an electronic scale (Omron BCM BF 511) 190 with men wearing light clothes and having removed their shoes and anything in 191 their pockets. Waist circumference was measured with an ordinary tape 192 measure about 5cm above the navel. Blood pressure assessments were 193 conducted in a separate room for a more relaxed atmosphere and nobody to 194 talk to. Men were asked to sit down and relax for at least one minute before 195 measurement. Height was measured without shoes. All self-reported data were 196 obtained using a short questionnaire that participants filled out in between the 197 objective measurements.

To assess sedentary time, men were asked to estimate the average number ofhours per day they had spent sitting during the last 7 days. A modified, German

version of the DINE questionnaire²⁹ was used to assess fruit and vegetable 200 201 intake, fatty food intake, sugary food intake and the proportion of whole grain 202 intake among pasta, rice and bread over the last week. In the Fatty Food Score, 203 Sugary Food Score, Vegetable and Fruit Score as well as Whole Grain Score, a 204 higher score indicated a higher number of days during the last week on which 205 the respective food types were consumed. Additionally, the Warwick-Edinburgh 206 Mental Well-being Scale³⁰ was used to measure participants' psychological 207 well-being.

208 Statistical Analysis

209 All statistical analyses were conducted with Stata 15 (Stata Corp, College 210 Station, TX). To follow the Intention-to-treat principle, Multiple Imputation was 211 used to decrease bias due to missing data following the assumption that data 212 were missing at random (MAR).³¹Missing data were imputed using the MICE 213 technique (multivariate imputations by chained equations) with M = 10imputations.³² The pooling of the regression estimates followed Rubin's rule.³³ 214 215 Baseline characteristics were analyzed with linear regression to check for 216 baseline differences between intervention and comparison group. Table 2 217 reports mean values and standard deviations, as well as mean differences 218 between groups. Multilevel mixed-effects linear regression analysis was applied 219 to evaluate effects of the intervention on primary and secondary outcomes.

220 Time of assessment (baseline vs follow-up), group (intervention vs comparison) 221 and the interaction term between time and group were included as fixed effects. 222 Additionally, participants' age was included as a fixed effect because of a 223 significant baseline difference between groups (Table 1). To deal with the 224 clustered structure of the data, random intercepts were included for the three 225 levels, i.e. club, course and individual. Sensitivity analysis was performed with 226 the same regression model using complete data sets only (per protocol) and 227 replacing missing data with the participants' respective data from baseline 228 measurements (LOCF). Adjusted mean scores (95% CI) for baseline and post-229 assessment, mean changes for both groups, intraclass correlations (ICCs) for 230 club and course level and group-by- time interaction effects are presented

232	On average, courses were attended by 18 (Range: 12-26) participants with one
233	or two coaches. Ninety-one of the 477 men (19%) measured at baseline in the
234	intervention group were lost to follow-up 13 weeks later; equivalent figures for
235	the comparison groups were 6/84 (7%) (see Figure 1).
236	
237	Place holder for Figure 1
238	
239	Participants' baseline characteristics are shown in Table 1. Between-groups
240	analysis showed no significant differences except for the men's age. Therefore
241	age was added to all analysis as a confounding variable.
242	
243	Place holder for Table 1
244	
245	Mixed-model regression analysis results indicated significant differences
246	between intervention group and comparison group effects over time for weight
247	and most other outcomes. After undertaking the 12 weeks FFIT program, men
248	in the intervention group had lost an adjusted mean of 6.24 kg in weight (95 $\%$
249	CI: 5.82 to 6.66), while men in the comparison group had lost 0.50 kg (-0.47 to
250	1.49). ICCs were 0.014 for club und 0.000 for course level.

231 Results

251 Figure 2 shows the proportion of participants in the intervention and comparison 252 group who lost more than five and ten percent of their baseline weight, 253 respectively. 254 255 Place holder for figure 2 256 257 Weight loss data translated into a drop of BMI by 1.97 kg/m² (1.81 to 2.13) 258 against 0.15 (-0.18 to 0.48) and of body fat by 2.86 % (2.50 to 3.22) against 259 0.67 (-0.63 to 1.41), both in favor of the intervention group. 260 Further significant group-by-time effects were found for all DINE-based 261 outcomes related to food intake. Fatty food intake and sugary food intake 262 scores both showed a significantly larger drop in the intervention group. The 263 inverse was seen for the intake of vegetables and fruit: intervention group 264 participants increased their vegetable intake score by 0.98 (0.76 to 1.19) 265 compared to 0.31 (-0.07 to 0.69) in the comparison group; fruit intake score 266 increased by 1.52 (1.29 to 1.75) in the intervention group and decreased by 267 0.06 (-0.52 to 0.41) in comparison group. The measured increase in proportion 268 of whole grain products among pasta, rice and bread was 23.40 % (18.69 to 269 28.12) compared to 6.63 % (2.07 to 15.33). Sedentary time in the intervention 270 group decreased by 1.37 hours a day (0.89 to 1.85) on average, which was

272	comparison group. For the Warwick-Edinburgh Mental Well-Being Scale no
273	group-by-time interaction effect was found. The increase by 0.19 (0.14 to 0.24)
274	in the intervention group was slightly higher than the 0.14 (0.05 to 0.24) in the
275	comparison group. All adjusted results of the linear regression analysis on basis
276	of ITT and after Multiple Imputation for each outcome are shown in Table 2.
277	Sensitivity analyses showed similar results with a loss of 6.50 kg (6.08 to 6.92)
278	for the intervention group and 0.58 kg (-0.36 to 1.51) in the comparison group
279	when data were per-protocol, and 5.28 kg (4.89 to 5.68) weight loss for the
280	intervention group and 0.50 kg (-0.46 to 1.47) weight loss for the comparison
281	group when missing data at follow-up was conservatively replaced with baseline
282	weight (LOCF imputation). Also, we drew three random samples of 84
283	participants from the intervention group to match the number of comparison
284	group participants. Weight loss results were:
285 286 287 288	 Intervention: 5.66 kg (4.88 to 6.45), Comparison: 0.50 (-0.31 to 1.31) Intervention: 5.54 kg (4.75 to 6.33), Comparison: 0.50 (-0.32 to 1.32) Intervention: 6.50 kg (5.60 to 7.40), Comparison: 0.50 (-0.40 to 1.40)

significantly more than the decrease by 0.30 hours a day (-0.42 to 1.02) in the

289

271

Place holder for Table 2

290 Discussion

291 Summary and perspective

292 In this research report we described the evaluation of a weight loss program 293 delivered to male football fans in close collaboration with 15 professional 294 football clubs in the German Bundesliga. The program is an adapted version of 295 the Scottish "Football Fans in Training", which has been successfully implemented in the Scottish Profession Football League since 2010.^{20-22, 34} 296 297 Earlier research shows the translation and adaptation process as well as the success at recruiting clubs and fans from Germany for the program²⁴ 298 299 Over an 18 month study period, 477 participants were recruited into the 300 intervention arm, and 84 into a comparison arm. Statistically significant 301 differences between the intervention and comparison groups were found for 302 changes in weight, BMI, girth, blood pressure, body fat percentage, fruit and 303 vegetable intake, whole grain percentage, fatty food and sugary food intake and 304 sedentary time. More than fifty percent of men in the intervention group lost at 305 least 5% of their baseline body weight. 306 Previous research has reported that men successfully lose weight once enrolled in either men-only or mixed weight loss programs.^{11, 17, 18} Participation in FFIT in 307

308 Germany resulted in an average weight loss similar to the original trial

309 conducted in Scotland. In their randomized controlled trial, Hunt et al. reported a 310 weight loss of 5.80 kg after 12 weeks compared to 0.42 kg in the control group. 311 ²² Positive changes could be confirmed for German football fans in terms of a 312 healthier diet. The slight weight loss and small trend to positive outcomes 313 among comparison group participants' data also confirmed the findings of Hunt 314 et al. The original research discussed this extensively and was followed by 315 further research into this. 316 The only non-significant group-by-time effect was observed for the Warwick-317 Edinburgh Mental Well Being Scale. Considering the items and guestions asked 318 it is very unclear if this construct measures what was supposed to be an 319 estimation of a rise in overall psychological well-being due to lost weight and 320 improved physical fitness. Other instruments more suited to capturing the 321 positive feelings about a more active and healthy life might lead to different 322 results Hunt et al. reported significantly positive changes and between-group 323 differences for self-reported psychological health and quality of life after using 324 the Rosenberg self-esteem scale and the Short Form of the positive and 325 negative affect scale (PANAS). 326 FFIT in Germany compares well to other research about weight loss programs

327 in professional football or other professional sports. The EuroFIT trial³⁵ which

also used and slightly adapted the FFIT formula to football clubs throughout

329 Europe reported 2.60 kg weight loss and 3.3 cm loss of waist circumference 330 post-program. Positive effects on sedentary time and behavioral components 331 were also reported. The Scottish FFIT has also branched into rugby and 332 hockey. In rugby a pilot trial delivered through professional rugby clubs in New 333 Zealand was held in which the difference in weight loss favored the intervention 334 group by 2.5 kg and loss of waist circumference favored the intervention group 335 by 3.5 cm³⁶. In Canada, in a pilot trial of Hockey Fans in Training participants 336 lost 3.6 kg more than the comparison group and reported positive effects on nutrition and other components aswell.³⁷ 337

338 Limitations

339 The FFIT study in Germany was not a fully powered randomized controlled trial 340 to replicate the original FFIT study.²². Several considerations led to this 341 decision. Observational studies have found that without a specific intervention 342 the weight of German men who met the inclusion criteria for this study is very unlikely to decrease and likely to increase slightly.^{38, 39} It is therefore very 343 344 unlikely that decreases in weight could be attributed to "spontaneous" 345 remission". The focus of our study was easy and practicable implementation of 346 an evidence-based, successful weight loss programme for clubs under routine 347 "field-conditions" and thus we prioritized high external validity. We made these 348 decisions based on the knowledge that clubs did not want to exclude their fans

from a programme which existing evidence suggests the participants are very likely to benefit from. Further, our main aim was to evaluate the transfer of FFIT into the German Bundesliga and whether German fans would also experience similarly positive outcomes. We found that the programme could be transferred and German fans could benefit.

354 Although an effort was made to recruit participants to a comparison group we 355 were not wholly successful and there are many fewer participants in that group 356 compared to in the intervention group. It was difficult to recruit to the 357 comparison group for several reasons. First, there were only limited numbers of 358 men on waiting lists. Second, clubs would often decide not host comparison 359 group measurements particularly if they had not yet made a decision to 360 continue delivering the FFIT programme. Third, participation in the 361 measurements was not required for those wanting to participate in the next 362 upcoming course. Limiting the size of the intervention group was out of the 363 question as the program funding required that as many participants as possible 364 should benefit and it would also have sharply reduced the overall sample size. 365 Because of this large equality between group numbers we simulated an even 366 number as part of our sensitivity analysis described in the results. The numbers 367 indicated that the effects are strong enough to maintain in this much smaller 368 sample.

369 In spite of the lack of randomization, baseline data were very similar between 370 intervention and comparison group, with the exception of participants age, 371 which was significantly different between groups. Thus, age was included in the 372 regression models as a fixed effect, alongside club, course and time. We were 373 not able to follow up any fans that did not participate in the end of course 374 measurements. Thus, all results were analyzed following the Intention-to-treat 375 principle with Multiple Imputation to deal with drop-outs and missing data. There 376 were no drop-outs on course level. Although every FFIT coach was trained to 377 standard measurement protocols, facility circumstances during measurements 378 differed between clubs and sometimes courses. As blood pressure is strongly 379 affected by the environment or discomfort during the measurement procedure 380 this might have resulted in confounding effects for the BP outcomes. Such 381 systematic influences on club or course level have been considered in our 382 statistical model with the addition of club and course as a random effect.. To 383 assure high quality, all data collection sessions at clubs were monitored by the 384 scientific project staff. Outcomes like sedentary time and diet-related 385 information were self-reported and limited to the last week. This week could 386 have been influenced by confounding events like illness, injuries or holidays.

387 Conclusion

388 The study suggests that "Football Fans in Training" is a very promising program 389 to help fill a gap in Germany's health care landscape as far fewer men than 390 women are attracted to take part in existing preventive courses and offers of 391 health systems, including weight reduction programs. To date, there have been 392 very few programs that are specifically designed to try and attract men in 393 Germany. The FFIT has previously been shown to be very effective in Scotland 394 in attracting overweight, middle-aged men and supporting them in weight loss 395 and lifestyle changes, building on its concept of using the socio-cultural 396 environment of the professional football clubs as a 'draw'. We have shown that 397 the idea and concept was transferrable to professional football in Germany 398 before²⁴ and successful in promoting positive health and lifestyle changes in 399 men here. Long-term results have still to confirm that FFIT in Germany enables 400 participants to sustain weight loss. Future research will evaluate weight loss 401 results one year after initiation of courses. 402 Although the psychological mechanisms behind the attraction of FFIT for men in

403 the UK, Germany or elsewhere have not been fully evaluated yet the supposed

404 appeal consisting of a mixture of a "male" environment and methodical

405 approach as well as an emotional connection for the participants should be

406 applicable to various fields in German health promotion. Health care providers

- 407 of all institutions have to make the effort of developing programs men are more
- 408 likely to attend. The FFIT might also show promise to be disseminated to a
- 409 broader field, including smaller professional clubs and clubs on an amateur
- 410 level. This should be one aim of future research. FFIT in Germany also extends
- 411 the evidence that the FFIT works in various different countries and sports when
- 412 emotionally engaged men are targeted.

413 Acknowledgements

414	We want to thank all the clubs for their participation and our colleagues from
415	mm sports and IFT-Nord for their help in recruiting and collecting the data.
416	Between January of 2016 and July of 2018 FFIT was carried out by the
417	following professional German Soccer Clubs in alphabetical order: 1. FC Köln,
418	1. FC Nürnberg, 1. FSV Mainz 05, Bayer 04 Leverkusen, Borussia Dortmund,
419	DSC Arminia Bielefeld, Eintracht Braunschweig, FC Ingolstadt 04, Hertha BSC,
420	Holstein Kiel, RB Leipzig, Schalke 04, SV Darmstadt 98 and SV Sandhausen.
421	
422	"The Fußballfans in Training project utilises the Football Fans in Training
423	programme, the development and optimisation of which was undertaken by a
424	research team led by Glasgow University in partnership with the SPFL Trust.
425	We gratefully acknowledge some source material from the Nutrition & Dietetic
426	Department, NHS Forth Valley and Men's Health Clinic, Camelon, Falkirk. The
427	programme development is described in Gray et al (2013), the results of the
428	programme evaluation are reported in Wyke et al (2015) and Hunt et al (2014).
429	These publications (and others relating to the programme) are available from
430	www.ffit.org.uk."

431 Conflicts of Interest

- 432 The authors declare that there are no conflicts of interest. "Fußballfans im
- 433 Training" is funded by the "Stiftung Deutsche Krebshilfe" (German Cancer Aid)
- 434 The German Cancer Aid had no influence on the article or authors.

435 Tables

Table 1: Participant characteristics at baselin	۱e
---	----

	Intervention Group (n=477)	Comparison Group (n=84)	p-value
	Mean (SD)	Mean (SD)	
Age	48.82 (7,82)	52.62 (7,63)	0.001
Height (cm)	179.71 (6,60)	179.73 (5,91)	0.981
Weight (kg)	113.52 (17,19)	111.89 (16,02)	0.419
BMI (mmHg)	35.14 (4,71)	34.70 (4,76)	0.430
Waist Circumference (cm)	119.62 (11,37)	119.63 (11,64)	0.997
Body Fat (%)	34.37 (5,01)	33.78 (5,40)	0.327
Systolic BP (mmHg)	152.35 (19,12)	154.49 (17,63)	0.355
Diastolic BP (mmHg)	95.59 (11,35)	96.06 (11,31)	0.730
Fruit Score	3.04 (1,96)	3.34 (1,96)	0.198
Vegetable Score	3.37 (1,64)	3.27 (1,66)	0.614
Fatty Food Score	23.94 (6,99)	24.52 (5,75)	0.479
Sugary Food Score	11.05 (4,06)	11.52 (4,59)	0.350
Whole Grain (%)	27.70 (31,20)	22.09 (26,40)	0.124
Sedentary time (h/day)	8.29 (3,42)	9.05 (3,41)	0.063
WEMWEBS	3.79 (0,52)	3.78 (0,46)	0.887

n, sample size; SD, standard deviation; BP, Blood Pressure; WEM, Warwick-Edinborough Mental Well-Being Scale; Whole Grain, whole grain proportion of total starchy food Intake

436

437 Table 2: Adjusted mean scores and changes in outcomes from baseline to post-intervention as well as group-by-time interaction effects

		Mean (95%CI)	Mean (95%CI)	Mean (95%CI)	ICCs	p-value
Objectively measured outcomes						
Weight (kg)	Intervention	113.08 (111.19 to 114.97)	106.84(104.94 to 108.74)	-6.24 (-6.66 to -5.82)	0.014 (Club)	< 0.001
	Control	113.17 (109.20 to 117.15)	112.68 (108.69 to 116.67)	-0.50 (-1.47 to 0.47)	0.000 (Course)	
BMI (kg/m²)	Intervention	35.07 (34.61 to 35.53)	33.10 (32.63 to 33.57)	-1.97 (-2.13 to -1.81)	0.004(Club)	< 0.001
	Control	34.90 (33.85 to 35.95)	34.75 (33.69 to 35.81)	-0.15 (-0.48 to 0.18)	0.000(Course)	
Girth (cm)	Intervention	119.42 (117.96 to 120.90)	111.59 (110.06 to 113.12)	-7.83 (-8.44 to -7.23)	0.024(Club)	< 0.001
	Control	119.84 (116.94 to 122.74)	118.69 (115.76 to 121.62)	-1.15 (-2.27 to -0.37)	0.000 (Course)	
Systolic blood pressure (mmHg)	Intervention	152.50 (150.36 to 154.65)	141.39 (138.92 to 143.86)	-11.11 (-13.14 to -9.08)	0.013(Club)	0.003
	Control	154.15 (149.48 to 158.82)	149.37 (144.81 to 153.93)	-4.78 (-8.75 to -0.81)	0.001(Course)	
Diastolic blood pressure (mmHg)	Intervention	95.52 (94.11 to 96.92)	87.05 (85.56 to 88.55)	-8.46 (-9.50 to -7.42)	0.025 (Club)	< 0.001
	Control	96.45 (93.69 to 99.22)	94.62 (91.80 to 97.46)	-1.83 (-4.03 to 0.38)	0.000 (Course)	
Body Fat (%)	Intervention	34.29 (33.76 to 34.82)	31.43 (30.89 to 31.98)	-2.86 (-3.22 to -2.50)	0.002(Club)	< 0.001
	Control	34.17 (33.00 to 35.36)	33.50 (32.33 to 34.68)	-0.67 (-1.41 to 0.63)	0.000(Course)	
Self-reported outcomes						
WEM	Intervention	3.80 (3.75 to 3.84)	3.99 (3.93 to 4.04)	0.19 (0.14 to 0.24)	0.000(Club)	0.367
	Control	3.75 (3.64 to 3.86)	3.89 (3.78 to 4.00)	0.14 (0.05 to 0.24)	0.000(Course)	
Sedentary time (h/day)	Intervention	8.19 (7.81 to 8.57)	6.82 (6.30 to 7.33)	-1.37 (-1.85 to -0.89)	0.013(Club)	0.013
	Control	8.94 (8.12 to 9.75)	8.64 (7.77 to 9.50)	-0.30 (-1.02 to 0.42)	0.000(Course)	
DINE-based measures						
Fatty food score	Intervention	23.97 (23.31 to 24.64)	19.38 (18.37 to 20.39)	-4.60 (-5.58 to -3.61)	0.004(Club)	< 0.001
	Control	24.42 (22.94 to 25.91)	22.81 (21.29 to 24.32)	-1.61 (-3.04 to -0.19)	0.000(Course)	
Sugary food score	Intervention	11.00 (10.62 to 11.38)	7.66 (7.20 to 8.13)	-3.34 (-3.80 to -2.87)	0.000(Club)	0.009
	Control	11.59 (10.76 to 12.43)	9.47 (8.61 to 10.33)	-2.12 (-2.97 to -1.28)	0.016(Course)	
Fruit score	Intervention	3.06 (2.88 to 3.42)	4.57 (4.35 to 4.81)	1.52 (1.29 to 1.75)	0.000 (Club)	< 0.001
	Control	3.31 (2.90 to 3.72)	3.25 (2.81 to 3.70)	-0.06 (-0.52 to 0.41)	0.000 (Course)	
Vegetablescore	Intervention	3.35 (3.19 to 3.51)	4.33 (4.11 to 4.55)	0.98 (0.76 to 1.19)	0.000(Club)	0.003
	Control	3.35 (2.98 to 3.62)	3.56 (3.20 to 3.93)	0.31 (-0.07 to 0.69)	0.000(Course)	
Whole-grain proportion (%)	Intervention	28.11 (24.50 to 31.72)	51.51 (47.22 to 55.81)	23.40 (18.69 to 28.12)	0.000(Club)	0.001
	Control	22.16 (14.33 to 30.00)	28.79 (20.70 to 36.88)	6.63 (2.07 to 15.33)	0.000(Course)	

- 439 Figures
- 440 Figure 1: Participant Flow Chart
- 441 Figure 2: FFIT participants with over 5 percent and over 10 percent weight loss
- 442 after 12 weeks.

443 Figure 1

447 Figure 2

450 References

1. World Health Organization. Global status report on 451 noncommunicable diseases. 452 http://apps.who.int/iris/bitstream/handle/10665/148114/978924 453 1564854 eng.pdf?sequence=1. Published 2014. Accessed 454 August 23rd, 2018. 455 2. Abarca-Gómez L, Abdeen ZA, Hamid ZA, et al. Worldwide 456 trends in body-mass index, underweight, overweight, and 457 458 obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 7.9 million children, 459 460 adolescents and adults. Lancet. 2017;390(10113):2627-2642. 461 3. Mensink GB, Schienkiewitz A, Haftenberger M, Lampert T, Ziese T, Scheidt-Nave C. [Overweight and obesity in 462 Germany: results of the German Health Interview and 463 464 Examination Survey for Adults (DEGS1)]. Bundesgesundheitsblatt Gesundheitsforschung 465 Gesundheitsschutz. 2013;56(5-6):786-794. 466 4. Lehnert T, Streltchenia P, Konnopka A, Riedel-Heller SG, 467 Konig HH. Health burden and costs of obesity and overweight 468 in Germany: an update. Eur J Health Econ. 2015;16(9):957-469 470 967. 5. 471 The GBD 2016 Obesity Collaborators. Health Effects of 472 Overweight and Obesity in 195 Countries over 25 Years. N 473 Engl J Med. 2017;377(1):13-27. 474 6. Effertz T, Engel S, Verheyen F, Linder R. The costs and 475 consequences of obesity in Germany: a new approach from a prevalence and life-cycle perspective. Eur J Health Econ. 476 2016;17(9):1141-1158. 477 478 7. Di Angelantonio E, Bhupathiraju SN, Wormser D, et al. Body-479 mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. 480 481 Lancet. 2017;388(10046):776-786.

482	8.	Bischoff SC, Damms-Machado A, Betz C, et al. Multicenter
483		evaluation of an interdisciplinary 52-week weight loss program
484		for obesity with regard to body weight, comorbidities and
485		quality of life—a prospective study. Int J Obes. 2011;36:614.
486	9.	Frey I, Dapp N, König D, Deibert P, Predel H, Berg A. Weight
487		Management through M.O.B.I.L.I.S., an Exercise Based
488		Weight Loss Program: 2-Year Results. German Journal of
489		Sports Medicine. 2010;61(1):19.
490	10.	Scholz GH, Flehmig G, Scholz M, et al. Evaluation des DGE-
491		Selbsthilfeprogramms "Ich nehme ab ". Ernährungs-Umschau.
492		2005;52(6):226-231.
493	11.	Pagoto SL, Schneider KL, Oleski JL, Luciani JM, Bodenlos JS,
494		Whited MC. Male inclusion in randomized controlled trials of
495		lifestyle weight loss interventions. Obesity. 2012;20(6):1234-
496		1239.
497	12.	Medizinischer Dienst des Spitzenverbandes Bund der
498		Krankenkassen e.V. Präventionsbericht 2017.
499		https://www.gkv-
500		spitzenverband.de/media/dokumente/krankenversicherung_1/
501		praevention selbsthilfe beratung/praevention/praeventions
502		<pre>bericht/2017_GKV_MDS_Praeventionsbericht.pdf. Published</pre>
503		November 2017. Accessed September 12th, 2018.
504	13.	Robinson E, Oldham M. Weight status misperceptions among
505		UK adults: the use of self-reported vs. measured BMI. BMC
506		<i>Obesity.</i> 2016;3:21.
507	14.	Gregory CO, Blanck HM, Gillespie C, Maynard LM, Serdula
508		MK. Perceived health risk of excess body weight among
509		overweight and obese men and women: differences by sex.
510		<i>Prev Med.</i> 2008;47(1):46-52.
511	15.	Pliner P, Chaiken S, Flett GL. Gender Differences in Concern
512		with Body Weight and Physical Appearance Over the Life
513		Span. Pers Soc Psychol Bull. 1990;16(2):263-273.
514	16.	Davies J, McCrae BP, Frank J, et al. Identifying Male College
515		Students' Perceived Health Needs, Barriers to Seeking Help,

516		and Recommendations to Help Men Adopt Healthier
517		Lifestyles. J Am Coll Health. 2000;48(6):259-267.
518	17.	Robertson C, Avenell A, Stewart F, et al. Clinical Effectiveness
519		of Weight Loss and Weight Maintenance Interventions for
520		Men: A Systematic Review of Men-Only Randomized
521		Controlled Trials (The ROMEO Project). American Journal of
522		Men's Health. 2015.
523	18.	Young MD, Morgan PJ, Plotnikoff RC, Callister R, Collins CE.
524		Effectiveness of male-only weight loss and weight loss
525		maintenance interventions: a systematic review with meta-
526		analysis. <i>Obes Rev.</i> 2012;13(5):393-408.
527	19.	Knell G, Li Q, Pettee Gabriel K, Shuval K. Long-Term Weight
528		Loss and Metabolic Health in Adults Concerned With
529		Maintaining or Losing Weight: Findings From NHANES. Mayo
530		<i>Clin Proc.</i> 2018;93(11):1611-1616.
531	20.	Hunt K, Gray CM, Maclean A, Smillie S, Bunn C, Wyke S. Do
532		weight management programmes delivered at professional
533		football clubs attract and engage high risk men? A mixed-
534		methods study. BMC Public Health. 2014;14:50.
535	21.	Gray CM, Hunt K, Mutrie N, et al. Football Fans in Training:
536		the development and optimization of an intervention delivered
537		through professional sports clubs to help men lose weight,
538		become more active and adopt healthier eating habits. BMC
539		<i>Public Health.</i> 2013;13:232.
540	22.	Hunt K, Wyke S, Gray CM, et al. A gender-sensitised weight
541		loss and healthy living programme for overweight and obese
542		men delivered by Scottish Premier League football clubs
543		(FFIT): a pragmatic randomised controlled trial. Lancet.
544		2014;383(9924):1211-1221.
545	23.	Wyke S, Hunt K, Gray C, et al. Football fans in training (FFIT):
546		a randomised controlled trial of a gender-sensitised weight
547		loss and healthy living programme for men. Published January
548		2015. Accessed 25.03.2019.

549	24.	Pietsch B, Hanewinkel R, Weisser B, Morgenstern M.
550		Fußballfans im Training. Können Vereine der
551		Fußballbundesliga ihre Fans zum Abnehmen bewegen?
552		Prävention und Gesundheitsförderung. 2018;13:218-224.
553	25.	Baker G, Gray SR, Wright A, et al. The effect of a pedometer-
554		based community walking intervention" Walking for Wellbeing
555		in the West" on physical activity levels and health outcomes: a
556		12-week randomized controlled trial. International Journal of
557		Behavioral Nutrition and Physical Activity. 2008;5(1):44.
558	26.	Moghaddam AA, Woodward M, Huxley R. Obesity and risk of
559		colorectal cancer: a meta-analysis of 31 studies with 70,000
560		events. Cancer Epidemiology and Prevention Biomarkers.
561		2007;16(12):2533-2547.
562	27.	PAR-Q Questionnaire (german version). Deutsche
563		Gesellschaft für Sportmedizin und Prävention (DGSP).
564		https://daten2.verwaltungsportal.de/dateien/seitengenerator/lei
565		tlinie_vorsorgeuntersuchung_4.10.2007-anlage-1.pdf. 2018.
566		November 21st, 2018.
567	28.	Hutchins SS, Brown C, Mayberry R, Sollecito W. Value of a
568		small control group for estimating intervention effectiveness:
569		results from simulations of immunization effectiveness studies.
570		J Comp Eff Res. 2015;4(3):227-238.
571	29.	Roe L, Strong C, Whiteside C, Neil A, Mant D. Dietary
572		intervention in primary care: validity of the DINE method for
573		diet assessment. <i>Fam Pract.</i> 1994;11(4):375-381.
574	30.	Tennant R, Hiller L, Fishwick R, et al. The Warwick-Edinburgh
575		Mental Well-being Scale (WEMWBS): development and UK
576		validation. Health Qual Life Out. 2007;5:63-63.
577	31.	Sterne JAC, White IR, Carlin JB, et al. Multiple imputation for
578		missing data in epidemiological and clinical research: potential
579		and pitfalls. Br Med J (Clin Res Ed). 2009;338:b2393-b2393.
580	32.	White IR, Royston P, Wood AM. Multiple imputation using
581		chained equations: Issues and guidance for practice. Stat
582		<i>Med.</i> 2011;30(4):377-399.

583	33.	Royston P, White IR. Multiple imputation by chained equations
584		(MICE): implementation in Stata. J Stat Softw. 2011;45(4):1-
585		20.
586	34.	Gray CM, Wyke S, Zhang R, et al. Long-term weight loss
587		following a randomised controlled trial of a weight
588		management programme for men delivered through
589		professional football clubs: the Football Fans in Training
590		follow-up study.
591		https://www.ncbi.nlm.nih.gov/books/NBK513426/. Published
592		July 2018. Accessed November 20th, 2018.
593	35.	Wyke S, Bunn C, Andersen E, et al. The effect of a
594		programme to improve men's sedentary time and physical
595		activity: The European Fans in Training (EuroFIT) randomised
596		controlled trial. <i>PLoS Med.</i> 2019;16(2):e1002736.
597	36.	Maddison R, Hargreaves EA, Wyke S, et al. Rugby Fans in
598		Training New Zealand (RUFIT-NZ): a pilot randomized
599		controlled trial of a healthy lifestyle program for overweight
600		men delivered through professional rugby clubs in New
601		Zealand. BMC Public Health. 2019;19(1):166.
602	37.	Petrella RJ, Gill DP, Zou G, et al. Hockey Fans in Training: A
603		Pilot Pragmatic Randomized Controlled Trial. Med Sci Sports
604		Exerc. 2017;49(12):2506-2516.
605	38.	Fildes A, Charlton J, Rudisill C, Littlejohns P, Prevost AT,
606		Gulliford MC. Probability of an obese person attaining normal
607		body weight: cohort study using electronic health records. Am
608		J Public Health. 2015;105(9):54-59.
609	39.	Haftenberger M, Mensink GBM, Herzog B, et al. Changes in
610		body weight and obesity status in German adults: results of
611		seven population-based prospective studies. Eur J Clin Nutr.
612		2015;70:300.
613		