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 1 

Abstract: Synthetic aperture radar (SAR) is a suitable tool to obtain reliable wind retrievals with high 2 

spatial resolution. The geophysical model function (GMF), which is widely employed for wind speed 3 

retrieval from SAR data, describes the relationship between the SAR normalized radar cross-section 4 

(NRCS) at the copolarization channel (verticalvertical and horizontalhorizontal) and a wind vector. 5 

SAR-measured NRCS at cross-polarization channels (horizontalvertical and verticalhorizontal) 6 

correlates with wind speed. In this study, a semi-empirical algorithm is presented to retrieve wind speed 7 

from the noisy Chinese Gaofen-3 (GF-3) SAR data with noise-equivalent sigma zero correction using an 8 

empirical function. GF-3 SAR can acquire data in a quad-polarization strip mode, which includes 9 

cross-polarization channels. The semi-empirical algorithm is tuned using acquisitions collocated with 10 

winds from the European Center for Medium-Range Weather Forecasts. In particular, the proposed 11 

algorithm includes the dependences of wind speed and incidence angle on cross-polarized NRCS. The 12 

accuracy of SAR-derived wind speed is around 2.10 m/s root mean square error, which is validated against 13 

measurements from the Advanced Scatterometer onboard the Metop-A/B and the buoys from the National 14 

Data Buoy Center of the National Oceanic and Atmospheric Administration. The results obtained by the 15 

proposed algorithm considering the incidence angle in a GMF are relatively more accurate than those 16 

achieved by other algorithms. This work provides an alternative method to generate operational wind 17 

products for GF-3 SAR without relying on ancillary data for wind direction. 18 

Keywords: wind; Gaofen-3 synthetic aperture radar; cross-polarization 19 

 20 

1 Introduction 21 

Sea surface wind, which transfers energy across the airsea interface, is an essential parameter for 22 

atmospheric and oceanographic research. Scatterometer (Vogelzang et al., 2017) and synthetic aperture 23 

radar (SAR) (Chapron et al., 2001) are microwave technologies widely used for wind estimation. 24 

Scatterometer winds are useful for global wind monitoring because of their more than 500 km swath 25 

coverage with a spatial resolution of up to 12.5 km. SAR is capable of sea surface monitoring with a large 26 

swath coverage at a fine spatial resolution. It is especially useful in coastal waters because the operational 27 

wind product of a scatterometer is generated 15–20 km offshore. In the present work, we used the first 28 

Chinese civilian C-band Gaofen-3 (GF-3) SAR with a standard pixel size of 8–25 m and a swath coverage 29 

of 30–40 km in quad-polarization. It features a stripmap mode (i.e., quad-polarization strip (QPS)) that can 30 
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acquire the complete scattering matrix using linearly polarized antennae, including verticalvertical (VV), 1 

horizontalhorizontal (HH), verticalhorizontal (VH), and horizontalvertical (HV). In particular, SAR 2 

measurements at cross-polarization channels are useful for scientific research on hurricanes (Hwang et al., 3 

2012; Shao et al., 2018a). 4 

In recent years, several researchers have focused on developing techniques to retrieve wind from 5 

copolarized (VV or HH) SAR images. They found that a measured normalized radar cross-section (NRCS) 6 

from the Seasat scatterometer launched in 1978 at a copolarization channel is linearly related to the wind 7 

vector (Masuko et al., 1986). This discovery has resulted in the development of the geophysical model 8 

function (GMF). Stoffelen et al. (1997) used ERS-1 SAR images and the European Center for 9 

Medium-Range Weather Forecast (ECMWF) reanalysis winds to design the GMF CMOD4, which uses the 10 

VV-polarization channel. In addition, Quilfen et al. (1998) proposed a similar GMF (i.e., CMOD-IFR) 11 

exploiting another dataset developed at Institut Francais de Recherche pour Exploitation de la MER. 12 

However, the training data contained only a few scatterometer images taken under high-wind conditions 13 

(up to 22 m/s). Subsequently, the GMFs CMOD5 (Hersbach et al., 2007) and CMOD5N for neutral winds 14 

(Hersbach et al., 2010) were proposed. These functions essentially redesigned the previous models to 15 

include high-order nonlinearity for strong winds (up to 33 m/s), and several ERS-2 SAR images under 16 

cyclonic conditions were included in the tuning process. The latest version of the CMOD family is 17 

CMOD7 for wind retrievals from intercalibrated ERS (ESCAT) and Advanced Scatterometer (ASCAT) 18 

C-band scatterometers (Stoffelen et al., 2017), which are calibrated well within 0.1 dB (Rivas et al., 2017). 19 

Not many models for HH-polarization have been developed because of the lack of SAR data acquired at 20 

the HH-polarization channel. Instead, a polarization ratio (PR) model that converts an HH-polarization 21 

NRCS into a VV-polarization NRCS is generally employed to retrieve wind from HH-polarization SAR 22 

images (Thompson et al., 1998). To date, previous studies have proposed various models (Vachon et al., 23 

2000; Wackerman et al., 2002). Recently, two analytical PR models using a C-band have been developed 24 

by integrating the influence of meteorological conditions. The first, which was presented by Mouche et al. 25 

(2005), considers the dependence of PR on wind direction by using data collected during the validation 26 

with a Polarimetric Airborne Radar of the ENVISAT ASAR over Ocean experiments, in which 27 

observations were collocated with ENVISAT ASAR images acquired at various incidence angles and 28 

polarization channels. The second model was proposed by Zhang et al. (2011). Remarkably, a new GMF 29 

C-SARMOD was proposed by Mouche et al. (2015). This GMF was designed differently from the 30 
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previous CMOD family functions and can be applied directly to HH-polarization SAR images without any 1 

PR model. 2 

The accuracy of retrieved scatterometer winds using such GMFs is about 1 m/s (Vogelzang et al., 3 

2011). As reported in numerous studies (Lehner et al., 1996; Yang et al., 2011; Shao et al., 2014; Monaldo 4 

et al., 2016; Lu et al., 2018; Corcione et al., 2018), the root mean square error (RMSE) of SAR-derived 5 

wind speed retrievals with respect to reliable validation sources is within 2 m/s. The applicability of GMF, 6 

however, relies on prior wind direction. Although wind streaks between 800 m and 3000 m (Alpers et al., 7 

1994) on SAR images can be used to retrieve the local wind direction with 180 ambiguity, wind streaks 8 

are invisible in the presence of the distortions of other sea surface features (Zhao et al., 2016). Moreover, 9 

the copolarization SAR backscattering signal encounters saturation at strong winds (probably greater than 10 

25 m/s) (Hwang et al., 2015; Shao et al., 2017a). Under such conditions, GMF algorithms cannot be 11 

applied to wind retrieval. Cross-polarization NRCS is useful for retrieving wind speed (Fois et al., 2015) 12 

and significant wave height (Shao et al., 2018b) in cyclones. Fois et al. (2015) reported that future ocean 13 

scatterometry will take advantage of the cross-polarization backscattering signal to observe strong winds. 14 

Recently developed methodologies use cross-polarization NRCS to estimate moderate wind (Vachon et al., 15 

2011; Hwang et al., 2012; Huang et al., 2017) and strong wind (up to 55 m/s) from cross-polarization SAR 16 

imagery (Shen et al., 2014; Duan et al., 2017; Shao et al., 2018a) because cross-polarization NRCS does 17 

not saturate as easily as the copolarization backscattering signal. 18 

The accuracy of wind retrieval using copolarization GF-3 SAR images has been assessed in several 19 

studies (Shao et al., 2017b; Ren et al., 2017; Wang et al., 2018; Shao et al., 2019). A simple wind retrieval 20 

algorithm for VH GF-3 SAR underwent preliminary tuning without consideration for the radar incidence 21 

angle (Ren et al., 2017; Wang et al., 2018), showing the effectiveness of retrieving sea surface wind speed 22 

from GF-3 SAR images using cross-polarization channels because operational wind monitoring is an 23 

important aspect of using SAR data. In this work, we studied the dependence of the cross-polarization 24 

NRCS of GF-3 SAR on wind vector and incidence angle. Then, we proposed an accurate semi-empirical 25 

algorithm for low-to-moderate wind speed retrieval from GF-3 SAR images at cross-polarization channels. 26 

The remainder of this paper is organized as follows. Section 2 describes the available datasets. We 27 

collected more than 1000 GF-3 SAR images with visible wind streaks in the QPS mode. The streaks were 28 

collocated with ECMWF reanalysis wind data at 0.125 grids and treated as a tuning dataset. We treated 29 

the measurements from ASCAT onboard the Metop-A/B and buoys from the National Data Buoy Center 30 
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(NDBC) buoys of the National Oceanic and Atmospheric Administration (NOAA) as our validation dataset. 1 

In Section 3, we employed the tuning dataset to study the dependence of the cross-polarization NRCS of 2 

GF-3 SAR on wind vector and incidence angle. We also showed a semi-empirical algorithm for wind speed 3 

retrieval on the basis of the analysis results. We presented the validation results in Section 4 through the 4 

validation dataset and discussed the results in Section 5. We summarized the conclusions in Section 6. 5 

 6 

2 Description of dataset 7 

We acquired 1030 GF-3 SAR images in the QPS mode for our study from December 2016 to 8 

September 2017. These images are suitable for wind retrieval, in which wind streaks are visible at the 9 

copolarization channels. We employed the following equation to convert GF-3 SAR intensity images into 10 

NRCS (Shao et al., 2017b): 11 

 , (1) 

where 0 is the NRCS united in dB, DN is the pixel intensity from GF-3 SAR data, M is the external 12 

calibration factor, and N is the offset constant for a specific imaging mode. Recently, the updated 13 

calibration constants M and N have been officially released. They were derived from a large number of 14 

images over the Amazon rainforest to validate the feasibility of ocean calibration. 15 

We divided all images into two subsets: one is to tune the algorithm and the other is to validate the 16 

algorithm. 17 

2.1 Tuning dataset 18 

Since 1979, the ECMWF has continuously provided hind-cast wind production for investigators 19 

worldwide. It includes global atmospheric-marine reanalysis data at intervals of 6 hours per day (00:00, 20 

06:00, 12:00, 18:00). Although the numerical weather prediction model, including NOAA Global Forecast 21 

System (GFS) winds, has a better time step with an interval of 3 hours, GFS winds have a lower spatial 22 

resolution with 0.5-degree grids than the ECMWF. In fact, previous studies have employed ECMWF 23 

winds for tuning (Hersbach et al., 2007; Shao et al., 2016) and validating (Shao et al., 2017b) wind 24 

retrieval algorithms from SAR images. GF-3 SAR imagery acquired in the QPS mode has a spatial 25 

resolution ranging from 16 m to 50 m, which is higher than that of ECMWF wind vectors (ERA-interim) 26 

in 0.125-degree grids (for both longitude and latitude directions). Thus, we divided each image into a 27 

number of subscenes with a spatial coverage of about 4 km  4 km. We then selected the subscenes 28 
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covering the locations of the ECMWF grid data. We interpolated the ECMWF interval wind time to 1 hour 1 

using a cubic spline interpolation in a temporal scale. The time difference between SAR images and 2 

ECMWF winds was within 30 minutes. This methodology was fully described by Wang et al. (2018) for 3 

the development of wind retrieval using GF-3 SAR data. This method is applied only when the difference 4 

between the ECMWF samples and GF-3 SAR acquisitions is smaller than a few hours. We collected 5 

matchup samples as the tuning dataset, which we then used to study the dependence of the GF-3 SAR 6 

NRCS at the cross-polarization channels on wind vector and incidence angle. 7 

As an example, Figures 1a and 1b show a quick view of the calibrated images at the HV- and 8 

VH-polarization channels, respectively. The images were taken at 22:46 UTC on May 24, 2017 around the 9 

Bohai Sea; the colored arrows represent the ECMWF sea surface wind vectors at 00:00 UTC on July 13, 10 

2012. 11 

 12 

[Figure 1] 13 

 14 

2.2 Validation dataset 15 

To validate the proposed algorithm, we used the wind products from ASCAT. The new-generation 16 

all-weather European active microwave scatterometer Metop-A/B was onboard this satellite and was 17 

initially released in February 2007. Vogelzang et al. (2011) determined ASCAT wind accuracy to be below 18 

1 m/s, rendering ASCAT winds reliable for surface wind vector retrieval with an 1800 km-wide swath. 19 

Therefore, ASCAT winds are a valuable source of information for studying the accuracy of SAR-derived 20 

wind (Monaldo et al., 2016). The ASCAT winds herein had a 25 km spatial resolution. The time difference 21 

between the exploited ASCAT and SAR products was within 2 hours. Similar to data processing for the 22 

tuning dataset, we selected the subscenes of each GF-3 SAR image covering the locations of ASCAT grid 23 

data. We also collected seven GF-3 SAR images covering the locations of NDBC buoys in U.S. western 24 

coastal waters. The location of available NDBC buoys and the coverage of the GF-3 SAR images are 25 

shown in Figure 2. We treated the matchups, including ASCAT winds, and the measurements of the NDBC 26 

buoys as the validation dataset. 27 

The winds from the NDBC buoys were measured at 5 m height above sea surface, whereas the 28 

traditional SAR-derived wind was assumed to be at a 10 m height above the sea surface. We used the 29 

following function to convert to 10 m height values using the logarithmically variable wind profile: 30 
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U2

U1
=

ln(z/z0)

ln(zm/z0)
,  (2) 

where U2 is the wind speed at height z, U1 is the wind speed at the already known height zm measured from 1 

the NDBC buoy, and z0 is the roughness length taken as a constant 0.000152 as employed in our previous 2 

study (Shao et al., 2017b). 3 

 4 

[Figure 2] 5 

 6 

Figures 3a and 3b show examples of HV- and VH-polarization channels. The images were taken at 7 

09:27 UTC on January 1, 2017. These cases were located around the Yellow Sea and were collocated with 8 

ASCAT winds indicated by the colored arrows. 9 

 10 

[Figure 3] 11 

 12 

3 Methodology 13 

In this section, based on the tuning dataset, we studied the dependence of cross-polarization NRCS of 14 

GF-3 SAR on wind vector and incidence angle and then developed a semi-empirical wind retrieval 15 

algorithm. 16 

3.1 Dependence of cross-polarization NRCS of GF-3 SAR on incidence angle 17 

The information of noise-equivalent sigma zero (NESZ) was not annotated with GF-3 raw data, and 18 

the NESZ of GF-3 SAR at the cross-polarization channels had been roughly analyzed by Ren et al. (2017) 19 

and Wang et al. (2018). As raised by Wang et al. (2018), the information of system noise floor was 20 

privately provided for GF-3 SAR acquired in the present wave mode data, and the NESZ of the QPS mode 21 

has not been officially released. Therefore, we discussed the NESZ correction for the case study shown in 22 

Figure 1, which was provided by the Institute of Electronics, Chinese Academy of Sciences. We showed 23 

the denoised results following the red arrow in Figure 4. We found that the dependency on the range 24 

coordinate improved after NESZ correction. We employed the following equations to obtain the denoised 25 

results: 26 

  ,  (3) 
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  NdenoiseddB
=10×log10Ndenoisedlinear

,  (4) 

where Ndenoisedlinear
, Nobservedlinea

, and NESZlinear are the denoised NRCS, the observed NRCS, and the 1 

NESZ in linear scale. NdenoiseddB
 is the denoised NRCS united in dB. 2 

[Figure 4] 3 

Figure 5a shows the NRCS at the cross-polarization channels versus the incidence angle through our 4 

data collection. We also empirically tuned the function of NESZ in terms of incidence angle to obtain the 5 

denoised NRCS at the cross-polarization channels (see the red lines in Figure 5a). Figure 5b shows that the 6 

coefficient was 0.98 between the NRCS at the HV- and VH-polarization channels. Thus, we show only the 7 

dependence of NRCS from the HV-polarization GF-3 SAR image on wind vector. Figure 5c illustrates the 8 

comparison between the NRCS at the VV- and VH-polarization channels, showing that the VV NRCS was 9 

related linearly to the VH NRCS because the VV NRCS was greater than −20 dB. 10 

 11 

[Figure 5] 12 

 13 

3.2 Dependence of cross-polarization NRCS of GF-3 SAR on wind vector 14 

Figure 6 shows the denoised cross-polarization NRCS versus wind speed from ECMWF. The color 15 

represents the radar incidence angle . We observed a linear relationship between the NRCS and wind 16 

speed at a 10 m height above sea surface U10. 17 

 18 

[Figure 6] 19 

 20 

Figure 7 displays the average HV-polarization NRCS after NESZ correction versus wind speeds at 21 

various incidence angles, where the wind is between 0 and 15 m/s with a 1 m/s bin, and the error bar 22 

represents the standard deviation at each bin. We observed that the HV-polarization NRCS had a linear 23 

relationship with wind speed at various radar incidence angles and that this relationship tends to be strong 24 

because the correlations (COR) were around 0.6 at the selected intervals. However, the HV-polarization 25 

NRCS had a slightly decreasing trend with wind speed for speeds slower than a specific value (that we 26 

assumed to be 2–5 m/s). This finding is consistent with the conclusions of previous studies for Rardarsat-2 27 

(Hwang et al., 2015) and Sentinel-1 SAR (Shao et al., 2017a) at the two cross-polarization channels. This 28 
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behavior is somewhat different from the results presented by Hwang et al. (2015), Fois et al. (2015), Shao 1 

et al. (2017a), and Shao et al. (2018b). These studies explored the relationship between NRCSs of 2 

Radarsat-2 SAR fine quad (FQ) mode and moored wind speeds. The difference in these results was due to 3 

the fact that the noise floor for the Radarsat-2 FQ images was evaluated carefully using the annotation file, 4 

whereas the process was only performed in the present study using an empirical NESZ correction. Wind 5 

speed must be great enough to obtain a useful cross-polarization backscattering signal. If the wind speed is 6 

too low, the cross-polarization channels become strongly affected by the presence of noise, resulting in a 7 

decreasing trend for wind speeds slower than a specific value. This phenomenon may explain why the 8 

relationship between GF-3 NRCS at the cross-polarization channels and wind speed is not simply linear at 9 

any incidence angle. We proposed, however, a more convincing physics after removing the noise effect of 10 

cross-polarization in the GF-3 SAR data. Under this circumstance, we anticipated that the performance of 11 

the calibration quality of GF-3 SAR at low wind speed would be improved. 12 

 13 

[Figure 7] 14 

 15 

We also investigated the dependence of denoised NRCS at a cross-polarization channel on wind 16 

direction. The analysis of the HV-polarization channel is presented in Figure 8 (the red lines represent the 17 

tendency at each wind speed bin). We observed that the cross-polarization of the NRCS was modulated by 18 

wind direction at wind speeds greater than 8 m/s. The dependence of the wind direction, however, was 19 

relatively weak compared with the dependence of wind speed on the cross-polarization of the NRCS. This 20 

is why most cross-polarization GMFs do not consider wind direction modulation (Vachon et al., 2011; 21 

Hwang et al., 2012; Duan et al., 2017; Ren et al., 2017). In this study, therefore, we excluded wind 22 

direction modulation in the wind retrieval algorithm at a cross-polarization channel. 23 

 24 

[Figure 8] 25 

 26 

3.3 Tuning the semi-empirical algorithm 27 

To obtain accurate results, we tuned the semi-empirical wind retrieval algorithm for HV and VH 28 

polarization through our dataset. 29 

We followed the methodology established in Vachon et al. (2011) to derive a semi-empirical 30 
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expression for wind speed retrieval from the cross-polarization GF-3 SAR images. The procedure is briefly 1 

summarized as follows: 2 

Step 1: Divide the data into a few finite numbers of bins for incidence angles at intervals of 20–26, 3 

26–35, and 35–50. 4 

Step 2: For each incidence angle bin, remove the appropriate data from the whole dataset. 5 

Step 3: Fit the selected data using the i-degree (i  4) polynomial function of wind speed and 6 

incidence angle based on regression. In the meantime, the standard deviation of measurement error is 7 

recorded for each degree of the polynomial function to fit. 8 

Step 4: The coefficients in the ith polynomial function corresponding to the minimum standard 9 

deviation are the best fit results, and attempt to satisfy the performance at low wind. 10 

Through this analysis, the formula for the proposed semi-empirical algorithm is described as follows: 11 

  σ0=PU10
Q,  (5) 

where 12 

  , and  (6a) 

  ,  (6b) 

where 0 is the denoised NRCS of the cross-polarization GF-3 SAR united in dB, U10 is the wind speed at 13 

10 m above sea surface united in m/s,  is the incidence angle united degree, m is taken as 2, n is taken as 1, 14 

and matrix ai and bi are the polynomial fitted results based on regression using the tuning dataset, as shown 15 

in Table A1. Although the semi-empirical algorithm takes a unique formulation, the tuned constants are 16 

somewhat different for HV and VH polarization. 17 

This function is different from that proposed by Hwang et al. (2012), who used the GF-3 SAR images 18 

acquired in Global Observation and Wide ScanSAR modes in typhoons, for which the retrieved wind 19 

speeds exceeded 10 m/s. The cross-polarization NRCS does not always increase with increasing wind 20 

speed at low wind. The COR between the fitted results and those observed for NRCS were 0.62 for HV 21 

and VH polarization, respectively, as shown in Figure 9. COR can be improved after using additional data. 22 

We anticipate that more data will be available in the continuation of the GF-3 SAR mission. As a 23 

preliminary result, however, we believe the proposed algorithm is suitable for wind retrieval with the 24 

available dataset, which shows the effectiveness of including the incidence angle in a cross-polarization 25 

GMF. 26 
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 1 

[Figure 9] 2 

 3 

4 Results 4 

Figure 10 shows an example of a SAR-derived wind map for the region previously shown in Figure 3 5 

at the HV-polarization channel. The comparison of wind speed with ASCAT wind speed is listed in Table 6 

A2 for HV and VH polarization. Results showed that the maximum difference for the four matchups was 7 

2.80 m/s for HV polarization and 2.75 m/s for VH polarization, indicating that the algorithm is applicable 8 

for wind retrieval. Figure 11 presents another retrieval case using an acquisition taken at 09:51 UTC on 9 

May 25, 2017. The results for this case showed the details in the SAR-derived wind map. Although we 10 

propose an empirical method to remove the noise at cross-polarization, the SAR-derived wind speeds at 11 

both sides of this image are greater than these in the middle. Therefore, we believe the denoise issue still 12 

warrants further study. 13 

 14 

[Figure 10] 15 

 16 

[Figure 11] 17 

 18 

In this study, we collected around 500 GF-3 SAR images acquired in the QPS mode and covering the 19 

ASCAT footprint. In total, we used 801 matchups to validate the empirical cross-polarization wind speed 20 

retrieval algorithm. As shown in Figures 12a and 12b, the RMSEs of wind speed for VH and HV 21 

polarization were 2.16 and 2.12 m/s, respectively. In addition, we obtained eight matchups with 22 

measurements for the NDBC buoys. The RMSE of wind speed was 2.02 for HV polarization and 1.94 m/s 23 

for VH polarization, as shown in Figures 13a and 13b. 24 

 25 

[Figure 12] 26 

 27 

[Figure 13] 28 

 29 
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As mentioned in the introduction, the standard error of SAR-derived wind speed was about 2 m/s for 1 

copolarization channels. If less accurate wind directions with low spatial and temporal resolution were 2 

exploited (e.g., derived from numeric prediction and scatterometer observation), the statistical error would 3 

become larger. Although the observed RMSE for retrieved wind speed in cross-polarization (i.e., 2.12 m/s 4 

against ASCAT wind) was slightly worse than that in copolarization, the advantage of the proposed 5 

cross-polarization wind retrieval algorithm is that it worked without prior information on wind direction. 6 

To systematically evaluate retrieval accuracy, we compared the results of winds derived from ASCAT 7 

using the existing five VH-polarization algorithms developed for Radarsat-2 (Vachon et al., 2011; Hwang 8 

et al., 2015; Huang et al., 2017) and GF-3 SAR (Ren et al., 2017; Wang et al., 2018) at low-to-moderate 9 

wind speeds. Figure 14 shows that the RMSEs of the wind speed were 2.45, 4.71, 2.90, and 2.46 m/s using 10 

the algorithms provided by Vachon et al. (2011), Hwang et al. (2015), Wang et al. (2018), and Ren et al. 11 

(2017), respectively. This analysis showed that using the GF-3 SAR QPS data, the proposed 12 

semi-empirical algorithm performed better than other algorithms. 13 

 14 

[Figure 14] 15 

 16 

5 Discussion 17 

The bias (SAR-derived wind speed minus ASCAT wind) analysis of the semi-empirical algorithm at 18 

HV-polarization channel is presented in Figure 15. We used a bin size of 2 for the incidence angle and 1 19 

m/s for wind speed to group data pairs, and the error bars represent the standard deviation of each bin. The 20 

variation of bias frustrated the incidence angle. We believe this wavy behavior caused this issue: the 21 

polynomial function was employed to include the incidence angle in the semi-empirical algorithm. The 22 

error appeared acceptable at low wind speed (probably up to 4 m/s). The variation of bias significantly 23 

increased with increasing wind speed, although an ASCAT wind also has inherent potential errors at low 24 

wind speed. This performance generally revealed an area that could be improved in the accuracy of GF-3 25 

SAR-derived wind speed at low wind. The variation of bias remained at around 1.5 m/s as wind speeds 26 

exceeded 4 m/s, indicating that the proposed semi-empirical algorithm was stable. Therefore, ECMWF 27 

data generally underestimate the wind data (Stopa and Cheung, 2014) used for tuning the proposed 28 

algorithm. The probable explanation is the observed underestimation of retrieved results comparing with 29 
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the ASCAT winds. 1 

 2 

[Figure 15] 3 

 4 

6 Conclusion 5 

We investigated the potential of a semi-empirical algorithm that considers wind speed and incidence 6 

angle for wind speed retrieval using noisy cross-polarization GF-3 SAR images. To study the dependence 7 

of the cross-polarization NRCS on wind vector and incidence angle, we used GF-3 SAR images acquired 8 

in the QPS mode and collocated with ECMWF wind data at a 0.125°  0.125° grid, herein called the 9 

tuning dataset. The cross-polarization NRCS had a linearly increasing trend with wind speed; however, 10 

linearity was lost at low wind speeds. This behavior was caused by a low signal-to-noise ratio, although the 11 

empirical NESZ correction in terms of incidence angle was included in the data process. Our work also 12 

confirmed the weak dependence on wind direction. Therefore, we could exclude this parameter in 13 

retrieving wind speed at the cross-polarization channels. 14 

We divided the collocated tuning dataset into three classes of incidence angles between 20 and 50. 15 

As for each class, NRCS was related to wind speed and incidence angle through a polynomial function, in 16 

which the coefficients were fitted based on regression. In particular, we tuned the coefficients for HV and 17 

VH polarization. We used another validation dataset that includes GF-3 SAR images collocated with 18 

ASCAT winds and NDBC buoys to verify the applicability of the semi-empirical algorithm. The retrieval 19 

results showed around 2.10 m/s RMSE of wind speed using the proposed algorithm in cross-polarization. 20 

This value is less than the 2.45 m/s RMSE of wind speed obtained by the best of the five other algorithms 21 

we compared. This error analysis also indicated that the variation of bias was about 1.50 m/s with 22 

increasing wind speed at values greater than 4 m/s. Although we did not use a priori knowledge of wind 23 

direction, this validation showed that the retrieval results of the proposed algorithm were better than those 24 

of other existing algorithms. The proposed algorithm showed efficiency for operational wind monitoring 25 

using GF-3 SAR images acquired in the QPS mode. 26 

In the near future, we plan to collect more data acquired in the QPS mode, including images taken at 27 

wind speeds up to 20 m/s and images at low wind covering moored buoys. Currently, NESZ information is 28 

not stored with GF-3 SAR images, and we only illustrate the denoised results using an empirical method 29 

based on the limited data collection. Thus, noise data must be anticipated released with GF-3 SAR data in 30 
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the future. This work will be extended to other image modes, such as Spotlight Mode, Standard Stripmap, 1 

and Ultra Fine Stripmap, in the future. 2 
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 3 

Table.1. Coefficients tuned for the wind speed retrieval algorithm in cross-polarization 4 

 20<26 26<35 35<50 

Coefficient 
HV polarization HV polarization HV polarization 

VH polarization VH polarization VH polarization 

a0 
-196.991 145.090 -117.687 

-248.022 182.714 -110.858 

a1 
11.415 -11.714 4.001 

15.385 -14.225 3.609 

a2 
-0.196 0.186 -0.048 

-0.273 0.229 -0.042 

b0 
-0.810 0.164 -0.087 

-0.906 0.143 -0.124 

b1 
0.031 -0.008 0.001 

0.034 -0.007 0.002 

 5 

Table.2. Comparisons of wind speed with ASCAT for the case taken at 09:27 UTC on January 01, 2017 6 

Geographic 
coordinate () 

ASCAT 
wind speed 

(m/s) 

SAR-derived wind speed (m/s) Difference (m/s) 
HV 

polarization 
VH 

polarization 
HV 

polarization 
VH 

polarization 
124.4E, 38.9N 8.60 8.57 8.23 0.03 0.37 
124.6E, 38.9N 8.80 6.50 6.07 2.30 2.73 
124.4E, 39.1N 8.00 5.20 5.25 2.80 2.75 
124.6E, 39.1N 8.20 8.65 7.34 0.45 0.86 

 7 
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 1 

Fig. 1. Case of HV-polarization Gaofen-3 (GF-3) SAR image taken at 22:46 UTC on 24 May 2017 around 2 

the Bohai Sea after calibration, in which colored arrows represent the European Centre for Medium-Range 3 

Weather Forecasts (ECMWF) wind vectors: (a) HV polarization and (b) VH polarization. 4 

 5 

 6 
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 1 

Fig. 2. Information of NDBC buoys and corresponding GF-3 SAR images; rectangles represent the spatial 2 

coverage. 3 

 4 

 5 

 6 

 7 
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 1 

Fig. 3. GF-3 SAR image taken at 09:27 UTC on 1 January 2017 around the Yellow Sea after calibration; 2 

the colored arrows represent ASCAT wind vectors. (a) HV polarization. (b) VH polarization. 3 

 4 

 5 

 6 
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 1 

Fig. 4. Denoised NRCS from the HV-polarization GF-3 SAR image with NESZ correction versus the 2 

incidence angle following the red arrow in Figure 1. 3 

 4 
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 6 

 7 

 8 
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 10 

 11 
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 1 

Fig. 5. (a) NRCS from the HV-polarization GF-3 SAR image versus the incidence angle, in which the red 2 

liens represent the fitted NESZ in term of incidence angle. (b) NRCS at the HV-polarization channel versus 3 

the NRCS at the VH-polarization channel. (c) NRCS at the VV-polarization channel versus the NRCS at 4 

the VH-polarization channel. 5 

 6 
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 8 
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 1 

Fig. 6. Denoised NRCS at the HV-polarization channel versus ECMWF wind speed for GF-3 SAR; colors 2 

represent incidence angles. 3 
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 8 
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 1 

Fig. 7. Denoised NRCS of the HV-polarization GF-3 SAR versus ECMWF average wind speed for 2 

incidence angles between 20 and 50 degrees and 1 m/s of wind speed bins between 0 m/s and 15 m/s; 3 

error bar represents the standard deviation at each bin. 4 
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 1 

Fig. 8. Denoised NRCS at the HV-polarization channel versus wind direction for the GF-3 SAR at each 2 

wind speed bin. Red lines present the tendency. Wind speed ranges from (a) 0 m/s to 4 m/s, (b) 4 m/s to 8 3 

m/s, 8 m/s to 11 m/s, and 11 m/s to 15 m/s. 4 
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 1 

Fig. 9. Denoised SAR-measured NRCS of the cross-polarization GF-3 SAR versus simulated results using 2 

Eq. (3). (a) HV polarization. (b) VH polarization. 3 
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 1 

Fig. 10. SAR-derived wind map of HV-polarization GF-3 SAR image taken at 09:27 UTC on 1 January 2 

2017 using the proposed algorithm. 3 
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 1 

Fig. 11. Quick-look image and SAR-derived wind map of the cross-polarization GF-3 SAR image taken at 2 

09:51 UTC on 25 May 2017 using the proposed algorithm. (a) Quick-look image for HV polarization. (b) 3 

SAR-derived wind map for HV polarization. 4 
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 1 

Fig. 12. Comparison between measurements from ASCAT and retrieved wind speeds for 1 m/s of wind 2 

speed bins, in which error bars represent the standard deviation of each bin. 3 
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 1 

Fig. 13. Comparison between measurements from NDBC buoys and retrieved wind speeds. (a) HV 2 

polarization. (b) VH polarization. 3 
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 1 

Fig. 14. Comparison between SAR-derived wind speeds using the existing five algorithms and average 2 

ASCAT winds for 1 m/s of wind speed bin, in which error bars represent the standard deviation of each bin: 3 

(a) using the algorithm proposed in Vachon et al. (2011), (b) using the algorithm proposed in Hwang et al. 4 

(2015), (c) using the algorithm proposed in Wang et al. (2018), and (d) using the algorithm proposed in 5 

Ren et al. (2017). 6 
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 1 

Fig. 15. (a) Bias (SAR-derived wind speed minus ASCAT wind speed) versus incidence angle for 2 of 2 

incidence angle bin. (b) Bias versus ASCAT winds for 1 m/s of wind speed bin. Error bars represent the 3 

standard deviation of each bin. 4 


