
	

	

Flooding	induced	changes	in	the	mobility,	
bioaccessibility	and	solid	phase	

distribution	of	potentially	harmful	
elements	

		
	

	

Diana	Elizabeth	Katherine	McLaren	

January	2019	

	

	

	

	

A	thesis	submitted	for	the	degree	of��

Doctor	of	Philosophy,���

Biological	and	Environmental	Sciences,	�

Faculty	of	Natural	Sciences,		

University	of	Stirling	
	



	 	 	
	

	
2	

	

	

	 	



	 	 	
	

	
3	

DECLARATION	OF	AUTHORSHIP		
	

	

I,	Diana	Elizabeth	Katherine	McLaren,	declare	that	this	thesis	has	been	
composed	by	me	and	it	embodies	the	results	of	my	own	research.	Where	
appropriate	I	have	acknowledged	the	nature	and	extent	of	work	carried	out	
in	collaboration	with	others.		

	

	

	

............................................................	Diana	E	K	McLaren		

27th	January	2019		

	 	



	 	 	
	

	
4	

	 	



	 	 	
	

	
5	

ABSTRACT	
	

The	Intergovernmental	Panel	on	Climate	Change	(IPCC)	predicts	that	the	number	of	extreme	

precipitation	events	will	increase	considerably	by	the	end	of	the	century	for	mid-latitude	land	

masses	 such	 as	 the	 UK.	 Potentially	 harmful	 elements	 (PHEs)	 such	 as	 arsenic,	 cadmium,	

copper,	lead	and	zinc	can	be	chemically	mobilised	during	flood	events,	potentially	increasing	

their	availability	to	receptors.	The	development	of	floodplains	for	residential	and	industrial	

uses	increases	the	risk	of	a	source	-	pathway	-	receptor	linkage	occurring	for	PHEs.	This	thesis	

aims	 to	 characterise	 changes	 in	 the	 solid	 phase	 distribution	 and	 bioaccessibility	 of	 PHEs	

before,	during	and	after	drying	to	provide	new	knowledge	of	PHE	mobility	in	catchments.		

Soils	 were	 collected	 from	 a	 UK	 catchment	 with	 a	 history	 of	 lead	 and	 zinc	 mining	 and	

characterised	in	terms	of	pseudo-total	PHE	content,	the	bioaccessible	content	of	PHEs	and	

their	 solid	 phase	 distribution.	 Laboratory	 inundation	 studies	 using	 microcosms	 were	

conducted	to	understand	PHE	behaviour	during	controlled	wetting	and	drying	episodes.	The	

results	demonstrated	that	flooding	resulted	in	the	mobilisation	of	the	PHEs	into	porewaters.	

However,	 the	 pattern	 of	 mobility	 was	 shown	 to	 vary	 for	 different	 PHEs.	 Bioaccessibility	

testing	after	each	wet	and	dry	cycle	determined	the	changes	in	PHE	availability	to	humans	

and	highlighted	an	increase	in	the	bioaccessible	fraction	of	PHEs	in	this	study	in	the	region	of	

5-10	 %.	 The	 solid	 phase	 distribution	 of	 PHEs	 during	 wetting	 and	 drying	 cycles	 was	 then	

determined	using	sequential	extractions	and	a	self-modelling	mixture	resolution	algorithm	

to	help	explain	the	earlier	findings	on	PHE	availability.	Broad	scale	changes	in	the	solid	phase	

distribution	of	 PHEs	 varied	between	 soils.	 For	 arsenic,	 generally	 the	 greatest	 change	was	

observed	 in	the	 iron	oxide	components.	Other	PHEs	exhibited	redistribution	between	soil	

components,	often	to	those	that	were	more	labile.	

The	spatial	prediction	of,	and	the	influence	of	flooding	on	PHE	bioaccessibility	in	the	Tyne	

catchment	 was	 investigated.	 Microcosm	 experiments	 were	 conducted	 to	 quantity	 the	

flooding	 induced	 changes	 in	 bioaccessibility.	 This	 was	 followed	 by	 a	 combination	 of	

geospatial,	 regression	 and	 machine	 learning	 methods	 to	 map	 PHE	 bioaccessibility	 at	 a	

catchment	scale.	A	key	output	was	the	production	of	maps	highlighting	bioaccessible	content	

of	PHEs	in	flood	prone	areas	of	the	Tyne	catchment.	Furthermore,	flooding	induced	changes	

in	bioaccessibility	were	mapped	at	a	catchment	scale,	which	highlighted	areas	where	there	

was	a	greater	potential	for	flooding	induced	increases	in	bioaccessibility	and	consequently	

human	exposure.		 	
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GLOSSARY	
Bioaccessibility	 The	fraction	of	a	PHE	that	is	soluble	in	the	gastrointestinal	

fluids	 and	 available	 for	 uptake	 across	 the	 gastrointestinal	
wall.	

Bioavailability	 The	 fraction	 of	 a	 bioaccessible	 element	 that	 crosses	 the	
gastrointestinal	wall	into	the	blood	stream.		

Brownfield	 	 	 Land	that	has	previously	been	used	for	industrial	purposes.	

Component	 An	output	of	the	SMMR.	A	component	 is	a	fraction	of	the	
soil	with	a	distinct	chemical	signature/composition.	

Cross	Validation	 A	 technique	 to	evaluate	predictive	models	by	partitioning	
the	original	sample	into	a	training	set	to	train	the	model,	and	
a	test	set	to	evaluate	the	model.	

Chemometrics	 The	use	of	mathematical	and	statistical	methods	to	improve	
the	understanding	of	chemical	information	and	to	correlate	
quality	 parameters	 or	 physical	 properties	 to	 analytical	
instrument	data.	

Clustering	 A	 technique	 for	 classifying	 objects	 into	 groups	 based	 on	
their	properties.	

Hazard	 A	 source	 of	 potential	 damage,	 harm	 or	 adverse	 health	
effects	on	something	or	someone.	

Intrinsic	Soil	Constituent	 An	 assemblage	 of	 soil	 particles	 from	 a	 common	 biogenic,	
geogenic	or	anthropogenic	input,	with	a	consistent	chemical	
composition	present	at	varying	concentrations	in	a	number	
of	similarly	developed	soils.		

Phytoavailable	 	 	 The	availability	of	a	PHE	for	uptake	by	plants.	

Reference	Material	 A	material	with	properties	that	are	sufficiently	homogenised	
and	well	established	to	be	able	to	be	used	for	the	evaluation	
of	method	performance	of	laboratory	and	field	instruments.	

Risk	 The	 likelihood	 that	 a	 person,	 organism	 or	 entity	 may	 be	
harmed	 or	 suffers	 adverse	 health	 effects	 if	 exposed	 to	 a	
hazard.	

Solid	phase	distribution	 The	partitioning	of	soil	components	and	potentially	harmful	
elements	within	soil	as	a	whole.	

Stomatal	conductance	 The	measure	of	the	rate	of	passage	of	carbon	dioxide	(CO2)	
entering,	or	water	vapour	exiting	through	the	stomata	of	a	
leaf.	

Total	Digest	 An	acid	extraction	to	digest	a	solid	sample	into	solution	prior	
to	analysis.	
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1.	INTRODUCTION	

1.1	Background	

The	Intergovernmental	Panel	on	Climate	Change	(IPCC)	predicts	that	the	number	of	extreme	

precipitation	events	will	increase	considerably	by	the	end	of	the	century	for	mid-latitude	land	

masses	 such	 as	 the	 UK	 (Intergovernmental	 Panel	 on	 Climate	 Change,	 2018).	 Periods	 of	

summer	droughts	have	also	been	predicted	to	increase.	Analysis	of	UK	weather	patterns	over	

the	 last	40	years	has	shown	a	change	 from	short	 to	 longer	duration	summer	rain	events,	

increasing	the	risk	of	flood	events	(Jones	et	al.,	2013).	Additionally,	the	intensity	and	number	

of	 extreme	 spring	 and	 autumn	 rainfall	 events	 has	 increased	 (Jones	 et	 al.,	 2013).	 These	

changes	are	likely	to	have	considerable	economic,	social	and	environmental	consequences	

for	catchment	management,	especially	in	flood	sensitive	areas	(Pimentel	et	al.,	1995;	Haines,	

et	al.,	2006;	Ciscar	et	al.,	2011).		

Predicting	 future	 climate	 change	 scenarios	 and,	 in	 the	 case	 of	 this	 thesis,	 the	 impact	 of	

extended	flooding	events	is	therefore	important	for	adaptation	purposes	and	climate	change	

resilience.	 The	Adaptation	 Sub-Committee	 of	 the	 Committee	 on	 Climate	 Change’s	 report	

(Adaptation	Sub-Committee,	2011)	assessed	 the	UK’s	 vulnerability	 to	 climate	 change	and	

concluded	that	it	was	increasing.	The	reasons	given	include	development	on	floodplains;	this	

has	increased	considerably	in	the	last	10	years.	Floodplain	development	for	residential	and	

industrial	 uses	 increases	 the	 probability	 of	 a	 source	 -	 pathway	 -	 receptor	 linkage	 for	

potentially	harmful	elements	(PHEs)	due	to	increasing	human	interaction	with	unsealed	soils	

in	these	floodplain	areas.	It	has	been	estimated	that	there	are	62,000	hectares	of	brownfield	

sites	 within	 England	 alone.	 Increased	 morbidity	 in	 people	 living	 in	 close	 proximity	 to	

brownfield	sites	has	been	shown	to	occur	due	to	the	presence	of	elevated	levels	of	metals,	

inorganic	 compounds,	 organic	 chemicals	 and	 occasionally	 radionuclides	 (Bambra	 et	 al.,	

2014).		

Human	interaction	with	soils	can	occur	regularly	and	consequently	exposure	to	PHEs	could	

occur.	This	could	 lead	to	health	 impacts	depending	upon	the	concentrations	of	PHEs	that	

people	are	exposed	 to	especially	 if	 these	concentrations	exceed	guideline	values	 for	 soils	

(section	 1.4).	 The	main	 pathways	 of	 exposure	 are	 through	 dermal	 contact,	 inhalation	 or	

ingestion	 of	 PHE	 enriched	material.	 Ingestion	 can	 arise	 both	 from	direct	 consumption	 of	

material	or	from	the	consumption	of	vegetables	and	other	plant	material	with	soil	attached,	

or	 from	 PHE	 enriched	 foodstuffs.	 Additionally,	 hand	 to	 mouth	 transport	 is	 particularly	

prevalent	 in	 children	 as	 they	 are	 likely	 to	 directly	 eat	 soil	 when	 playing.	 Inhalation	 and	
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ingestion	of	dust	particles	and	associated	PHEs	can	provide	additional	transport	pathways	

and	are	more	 likely	 to	occur	when	bare	patches	of	 ground	are	present	 (Breshears	et	al.,	

2012).	The	predicted	increases	in	drought	periods	during	summer	months	could	lead	to	an	

increase	 in	 dust	 particles	 from	 dry	 ground	with	 consequent	 increased	 exposure	 to	 PHEs	

associated	with	dust	particles.		

Evidence	suggests	that	the	availability	of	PHEs	to	human	receptors	can	increase	when	some	

soils	are	subjected	to	flooding	(Florido	et	al.,	2011).	Research	into	the	detailed	environmental	

processes	controlling	the	movement	and	availability	of	PHEs	associated	with	 flood	events	

within	a	catchment	(Figure	1.1)	will	strengthen	our	understanding	of	the	consequences	of	

climate	change	induced	flooding	events.	This	is	particularly	important	as	temperature	and	

moisture	regimes	may	significantly	alter	the	availability	of	contaminants	to	humans,	livestock	

and	food	crops.		

	

Figure	1.1:	simple	overview	of	the	movement	and	fate	of	PHEs	within	soil,	with	respect	to	flooding.		

	

This	 chapter	 will	 firstly	 outline	 the	 physical	 movement	 of	 soil	 bound	 PHEs	 to	 show	 the	

potential	for	floodplains	to	provide	both	a	sink	for,	and	subsequent	source	of,	contamination.	

Secondly	 the	 physico-chemical	 changes	 induced	 by	 flooding	 that	 promote	 the	 chemical	
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mobilisation	of	PHEs	will	 be	explored	with	 reference	 to	metal	 and	metalloid	enrichment.	

Finally,	PHE	availability	to	human	and	plant	receptors	will	be	addressed.		

The	aim	of	this	chapter	is	to	explore	the	potential	for	PHE	mobilisation	to	occur	as	a	result	of	

climate	 induced	flooding	conditions	and	will	be	constrained	to	the	key	PHEs:	arsenic	(As),	

lead	 (Pb),	 cadmium	 (Cd),	 copper	 (Cu)	 and	 zinc	 (Zn)	 because	 of	 their	 ubiquity	 as	 soil	

contaminants,	 and	 their	 toxicity	 to	 humans	 and	 the	 wildlife	 when	 present	 in	 elevated	

concentrations.		

1.2	UK	future	climate	change	scenarios	and	hydrological	regimes	

The	 UK	 Climate	 Projections	 2009	 (UKCP09)	 are	 probabilistic	 model	 outputs	 based	 on	

thousands	of	different	 input	scenarios	 (Kay	and	Jones,	2012).	Charlton	and	Anwell	 (2014)	

summarise	 the	 UKCP09	 predictions	 in	 a	 briefing	 report	 stating	 that	 summer	 and	 winter	

maximum	temperatures	in	the	UK	will,	on	the	whole,	rise	based	on	medium	carbon	dioxide	

(CO2)	emission	scenarios	(Figure	1.2).	Annual	precipitation	will	show	little	change;	however,	

winter	precipitation	levels	are	likely	to	increase	up	to	56	%	in	England	for	the	wettest	days	

(Jenkins	 et	 al.,	 2009).	 Southern	 England	 is	 predicted	 to	 experience	 prolonged	 periods	 of	

drought	 with	 summer	 precipitation	 reducing	 by	 65	 %	 in	 some	 areas.	 Although	 annual	

precipitation	 levels	 show	 little	 change,	 the	 predicted	 increase	 in	 extreme	 precipitation	

events	 is	 likely	to	lead	to	increases	in	surface	water	flooding	(Charlton	and	Anwell,	2009).	

This	may	 have	 implications	 for	 PHE	mobilisation,	 as	 outlined	 in	 section	 1.5.	 The	 recently	

published	 UKCP18	 projections	 show	 similar	 results	 to	 the	 UKCP09	 report	 as	 winter	

precipitation	events	are	predicted	to	increase	on	average	by	up	to	35	%	(Lowe	et	al.,	2018).	

Average	rainfall	has	increased	4	%	over	the	past	decade	(2008	–	2017)	when	compared	to	

the	1981	-2010	period	(Lowe	et	al.,	2018).		
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Figure	 1.2:	 emissions	 scenarios	 for	 UKCP09.	 Sourced	 from:	 https://arcc.ouce.ox.ac.uk/wp-
content/D4FC/06-appendix1-Bill-Gething-CCreport-0510.pdf	.	A1F1,	A1B	and	B1	refer	to	emissions	
scenarios.	A1F1	refers	to	a	scenario	characterized	a	population	growth	of	9	billion	in	2050	and	a	
reliance	on	fossil	fuels.	A1B	refers	to	a	scenario	with	similar	population	growth,	but	a	balanced	
use	of	all	energy	sources.	B1	refers	to	a	more	ecologically	friendly	scenario,	with	a	reduction	in	
material	intensity	and	declining	population	after	2050.		

	

Climate	change	resulting	from	anthropogenic	emissions	of	CO2	is	likely	to	have	considerable	

effects	on	the	hydrological	regimes	found	 in	UK	catchments.	Fast	reacting	catchments,	or	

‘flashy’	rivers,	are	more	responsive	to	intense	rainfall	events	due	to	their	higher	base	flow	

index.	Modelling	of	changes	 in	 flood	 frequency	 for	 the	next	30	years	 in	 the	Thames	 river	

basin	show	that	chalk	areas	will	likely	experience	a	10	%	increase	in	peak	flow	rates	and	a	30	

to	50	%	increase	for	clay	areas	of	the	catchment	(Bell	et	al.,	2012).	The	difference	in	peak	

flow	rates	is	related	to	infiltration	rates	through	chalk	and	clay	based	soils;	with	chalk	based	

soils	having	higher	infiltration	rates	than	clays	(Bell	et	al.,	2012).	Although	different	modelling	

approaches	 yield	 different	 results,	 the	 Bell	 et	 al.,	 (2012)	 study	 is	 in	 line	 with	 estimated	

changes	suggested	by	the	Environment	Agency	(Environment	Agency,	2011).	In	addition	to	

underlying	geology	and	soil	 types,	 reduced	stomatal	conductance	as	a	 result	of	 increased	

atmospheric	CO2	levels	could	also	affect	potential	evaporation	leading	to	increased	river	flow	

rates	(Bell	et	al.,	2012).		

Fluctuations	in	river	stage	are	likely	to	influence	redox	transitional	zones	by	reducing	redox	

potential,	 and	 therefore	 altering	 the	 biogeochemical	 factors	 that	 control	 PHE	 fate	 and	
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behaviour	in	riparian	and	floodplain	soils	and	sediments.	The	impacts	of	climatic	change	on	

flow	rates	will	also	in	turn	affect	erosion	and	deposition	rates	in	UK	catchments	(Coulthard	

et	 al.,	 2012).	 Modelling	 of	 sediment	 transport	 in	 the	 River	 Swale,	 using	 the	 Cellular	

Automaton	 Evolutionary	 Slope	 and	 River	 (CAESAR)	 model	 under	 a	 high	 CO2	 emissions	

scenario	reported	increased	river	sediment	yields	of	100	%	(Coulthard	et	al.,	2012).	Increased	

sediment	yield	may	result	in	higher	loads	of	contaminated	sediment	being	transported	and	

deposited	on	floodplain	soils.	However,	an	increased	sediment	load	may	also	result	in	the	

dilution	of	contaminated	sediment	with	‘clean’	sediments.		

1.3	Overview	of	PHE	behaviour	in	soil		

PHEs	such	as	metals,	metalloids	and	radioactive	isotopes	can	be	transported	within	a	river	

system	 dissolved	 in	 the	 water	 column	 or	 associated	 with	 its	 suspended	material.	 Major	

sources	of	PHEs	 into	UK	soils	 include	atmospheric	deposition,	 runoff	 from	sewage	sludge	

application,	 livestock	 manures,	 inorganic	 fertilisers,	 industrial	 wastes	 and	 mining	 wastes	

(Nicholson	 et	 al.,	 2003).	 Geological	 sources	 can	 also	 provide	 elevated	 concentrations	 of	

metals	and	radionuclides	in	soils	(Lieser,	1995;	Garret,	2000;	Khan	et	al.,	2010),	for	example,	

ironstones	have	been	shown	to	be	a	source	of	As	enrichment	in	soils	(Palumboe-Roe	et	al.,	

2005).	Less	than	1	%	of	PHEs	remain	dissolved	within	the	water	column,	whereas	over	99	%	

are	stored	within	river	sediments	(Filgueiras	et	al.,	2004).	Therefore,	the	fate	and	behaviour	

of	 PHEs	 within	 these	 sediments	 is	 of	 interest	 regarding	 exposure	 to	 receptors	 such	 as	

freshwater	flora	and	fauna	within	the	river.	Potential	receptors	are	extended	to	humans	and	

if	 PHE	 enriched	 sediments	 are	 deposited	 onto	 floodplains.	 This	 thesis	 mainly	 considers	

human	receptors;	however	some	comparisons	are	made	to	water	quality	values	that	are	of	

relevance	to	biota.		

Flood	 events	 can	 physically	move	 large	 quantities	 of	 sediment	 within	 the	 water	 column	

through	 a	 catchment	 (Dennis	 et	 al.,	 2003)	 so	 PHEs	 can	 be	 deposited	 and	 consequently	

accumulate	within	floodplain	soils	and	sediments	when	flow	rates	are	reduced	(Frohne	et	

al.,	 2011).	 As	 a	 result,	 floodplains	 themselves	 can	 become	 a	 secondary	 source	 of	

contaminants	as	well	as	a	sink	(Zhao	and	Marriott,	2013).	Subsequent	chemical	mobilisation	

of	 PHEs	 induced	 by	 changes	 in	 pH	 and	 redox	 potential	 (Eh)	 may	 provide	 a	 pathway	 to	

receptors	 through	 the	 increased	 availability	 for	 uptake	 into	 plant	 and	 animal	 tissues.	

Additionally,	PHEs	can	be	released	chemically	into	overlying	water	columns	during	flooding,	

resulting	 in	 implications	 for	 water	 quality	 standards	 such	 as	 those	 set	 by	 the	 Water	
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Framework	Directive	(Lynch	et	al.,	2014).	Both	the	physical	and	chemical	movement	of	PHEs	

is	discussed	below.		

1.3.1	Arsenic		

Arsenic	(As)	is	a	metalloid	with	chemistry	similar	to	that	of	phosphorous	(Smith	et	al.,	1998;	

Environment	 Agency,	 2009)	 and	 is	 found	 in	 soils	 naturally,	 mainly	 originating	 from	

sedimentary	rocks	such	as	mud	stones	and	shales.	Anthropogenic	inputs	include	atmospheric	

deposition	from	the	burning	of	fossils	fuels,	the	use	of	pesticides	such	as	Pb-arsenates	(Smith	

et	al.,	1998;	Wilson	et	al,	2010),	the	previous	widespread	use	of	Cu-Cr-arsenates	as	wood	

preservers	and	anthropogenic	mining	activities.	Mean	concentrations	of	As	in	rural	soils	are	

10.9	mg	kg-1	as	reported	by	the	UK	Soil	and	Herbage	Survey	(UKSHS)	(Environment	Agency,	

2007).	The	Normal	Background	Concentrations	(NBC)	report	gives	As	concentrations	as	32	

mg	kg-1	in	non-mineralised	areas	and	290	mg	kg-1	in	mineralised	areas	(Ander	et	al.,	2013).	

Geological	sources	such	as	ironstones	can	greatly	increase	soil	concentrations	of	As,	which	is	

seen	in	the	areas	around	Northampton	and	Lincoln	(Palumbo-Roe,	2005).	Arsenic	is	usually	

present	in	soil	as	the	more	mobile	and	toxic	(inorganic)	arsenite	(As(III))	at	lower	pH	or	as	

arsenate	(As(V))	during	oxidising	conditions	(Wilson	et	al.,	2010).	Both	species	will	bind	to	

Iron	(Fe)	and	Manganese	(Mn)	oxides,	soil	organic	matter	(SOM)	and	clays.	During	reducing	

conditions	microbes	utilise	As,	reducing	As(V)	to	the	more	mobile	As(III)	after	Fe	reduction,	

but	 before	 sulphate	 reduction	 (Mitsunobu	 et	 al.,	 2006;	Wilson	 et	 al.,	 2010).	 Organic	 As	

usually	makes	up	approximately	<5	%	of	total	As	in	soils	and	is	less	toxic	than	As(III)	or	As(V);	

therefore	its	environmental	impact	is	considered	to	be	low	(Huang	et	al.,	2010).		

The	toxicity	of	As	is	related	to	its	speciation,	for	example	As(III)	is	more	toxic	than	As(V)	as	

As(III)	 is	 highly	 reactive	 with	 living	 tissue	 (Vahter	 and	 Concha,	 2001).	 Change	 in	 redox	

potential	is	the	main	driver	for	As	speciation	during	flooding,	therefore	influencing	As	toxicity	

(Masscheleyn	et	al.,	1991).	Lethal	ranges	of	total	inorganic	As	are	reported	to	be	in	the	region	

of	1-3	mg	kg-1	with	chronic	exposure	resulting	in	skin	lesions	and	damage	to	nervous,	renal,	

endocrine	and	hepatic	systems	(Hughes,	2002).	As	is	a	recognised	carcinogen	with	chronic	

exposure	 leading	to	 increased	risk	of	organ,	skin	and	 lung	cancer	(Kapaj	et	al.,	2006).	The	

majority	of	As	is	absorbed	through	the	intestine	via	the	ingestion	pathway	(Ratnaike,	2003),	

although	inhalation	of	dust	can	also	be	a	prominent	pathway,	especially	in	arid	environments	

(Hysong	 et	 al.,	 2003).	 Dermal	 exposure	 also	 occurs	 but	 provides	 a	 much	 less	 significant	

uptake	pathway	(Ratnaike,	2003).		
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Plant	sensitivity	to	As	is	highly	variable	and	is	dependent	on	plant	species	and	As	speciation.	

Mycorrhizal	fungi	can	play	an	important	role	in	As	uptake	into	plants	(Meharg	and	Hartley-

Whitaker,	2002).	This	 is	because	mycorrhizal	fungi	aid	phosphorous	(P)	transfer	 into	plant	

tissue	and	As	 is	 chemically	 similarly	 to	P	 (Environment	Agency,	2009).	 Speciation	of	As	 is	

known	to	vary	in	plant	tissue,	suggesting	that	As	transformation	occurs	within	the	plant	itself	

(Meharg	and	Harley-Whitaker,	2002).	Additionally,	 flooding	of	paddy	fields	has	reportedly	

increased	bioavailability	of	As(III)	to	rice	plants	due	to	the	reducing	conditions	present	during	

inundation	(Zhao	et	al.,	2008).		

1.3.2	Cadmium		

Cadmium	 occurs	 naturally	 in	 soils	 as	 a	 result	 of	 geological	 weathering,	 mainly	 from	

sedimentary	rocks.	It	 is	often	associated	with	zinc	(Zn)	bearing	ores	(Environment	Agency,	

2009).	Its	ubiquity	within	the	environment	arises	from	anthropogenic	sources,	particularly	

phosphate	 fertilisers	which	 on	 average	 contain	 around	 79	mg	 kg-1	 of	 Cd	 (Alloway,	 1995;	

Environment	Agency,	2009).	Other	sources	include:	metalliferous	mining,	zinc	ore	smelting	

and	application	of	sewage	sludge	to	agricultural	areas	(Thomson	and	Bannigan,	2008).		

Cadmium	 (Cd)	 mobility	 is	 greater	 at	 lower	 pH	 and	 will	 form	 insoluble	 sulphides	 during	

prolonged	anaerobic	conditions.	SOM	content	is	also	influential	on	Cd	mobility	by	reducing	

its	availability	as	Cd	binds	to	organic	ligands	(Pinto	et	al.,	2004).	Typical	values	of	Cd	in	UK	

soils	are	around	0.39	mg	kg-1	as	reported	in	the	UKSHS	(Environment	Agency,	2007).	The	NBC	

report	gives	values	of	Cd	concentrations	as	1.0	mg	kg-1	in	non-mineralised	areas	and	17	mg	

kg-1	in	mineralised	areas	(Ander	et	al.,	2013).	

Uptake	of	Cd	is	governed	by	plant	species	as	well	as	soil	charcterisitics.	For	example,	some	

garden	 vegetables	 such	 as	 lettuces,	 spinach	 and	 cabbages	 can	 bio-accumulate	 higher	

concentrations	of	Cd	than	potatoes	and	peas	(Alloway,	1995).	Cd	is	not	an	essential	element	

and	is	therefore	toxic	in	low	concentrations	to	plants	and	animals.	In	plants,	phytotoxicity	is	

induced	at	 concentrations	between	5-20	mg	kg-1	 and	 is	often	expressed	by	 chlorosis	 and	

stunted	growth	(Environment	Agency,	2007;	Samantaray	and	Rout,	1997).	

Cadmium	 uptake	 in	 humans	 can	 result	 in	 deleterious	 effects	 on	 the	 kidneys,	 liver	 and	

vascular	 systems	 as	 well	 as	 on	 reproductive	 endpoints	 (Thompson	 and	 Bannigan,	 2008).	

Chronic	effects	of	Cd	can	also	lead	to	osteoporosis	like	symptoms	known	as	itai-itai	disease	

(Pan	et	al.,	2009).	The	lowest	observable	adverse	effects	level	(LOAEL)	for	Cd	in	small	wild	

mammals	is	reported	to	be	3.5–7.5	mg	kg−1	body	weight	day−1	(Shore	and	Douben,	1994).	In	

humans,	the	no	effects	level	is	around	500	µg	week-1	and	biological	half-life	has	been	shown	
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to	be	up	 to	16	years	 for	humans,	highlighting	 the	potential	 for	 retention	within	 the	body	

(Jarup	et	al.,	1983).	

1.3.3.	Copper 

Copper	(Cu)	is	usually	present	in	a	divalent	state	(Cu2+)	in	the	soil	environment	and	has	an	

affinity	 for	 binding	 with	 organic	 matter	 (Alloway,	 2013).	 Sources	 of	 Cu	 enrichment	 in	

floodplain	soils	and	sediments	can	originate	from	geological	sources	such	as	the	weathering	

of	Cu	enriched	parent	material,	or	from	a	variety	of	anthropogenic	sources	such	as	copper	

containing	pesticides,	sewage	sludge,	vehicle	emissions	and	industrial	releases	(Sharma	et	

al.,	2009).	The	NBC	report	gives	values	for	Cu	concentrations	as	62	mg	kg-1	in	non-mineralised	

areas	and	340	mg	kg-1	in	mineralised	areas	(Ander	et	al.,	2013).	Copper	in	soil	typically	binds	

to	 soil	 constituents	 in	 the	order	of	Mn-oxides>	SOM>	Fe-oxides	>	 clay	minerals	 (Alloway,	

2013).	Porewater	Cu	tends	to	be	bound	to	dissolved	organic	carbon	(DOC)	 in	the	form	of	

humic	and	fulvic	acids.		

Copper	is	an	essential	element	required	for	biological	functions	within	the	body.	However,	

exceeding	daily	requirements	of	0.9	mg	day-1	(Goldhaber,	2003)	for	humans	can	result	in	a	

range	of	health	effects	from	nausea	and	irritation	of	nasal	passages	to	damage	of	the	liver	

and	 kidneys	 should	 enough	 be	 consumed	 (Sharma	 et	 al.,	 2009).	 Information	 on	 the	

concentrations	 of	 Cu	 required	 by	 the	 ingestion	 exposure	 route	 to	 induce	 adverse	 health	

effects	 is	 scarce;	 although	Muller-Hocker	 et	 al.,	 (1993)	 reported	 that	 infants	 consuming	

water	containing	2-3mg	L-1	experienced	liver	damage.			

Copper	 is	 an	 essential	 micronutrient	 for	 plants	 and	 used	 in	 various	 processes	 such	 as	

photosynthesis	and	respiration.	However,	concentrations	of	>	5	mg	kg-1	of	plant	tissue	(dry	

weight)	can	result	in	loss	of	yield	in	plants	(Alloway,	2013).		

1.3.4	Lead		

Lead	(Pb)	is	a	naturally	occurring	non-essential	metal	present	as	thirteen	isotopes	(Zimdahl	

and	Skogerboe,	1977)	and	most	commonly	found	in	the	mineral	galena	(PbS)	(Hettiarachchi	

and	Pierzynski,	2004).	It	has	radiogenic	isotopes	which	originate	from	the	Uranium-235,	-238	

and	Thorium-232	decay	series	(Komarek	et	al.,	2008).	Additional	environmental	inputs	of	Pb	

from	 anthropogenic	 activities	 include:	 combustion	 of	 leaded	 petrol,	 fertiliser	 application,	

sewage	sludge	application,	Pb	piping,	paint	particles	and	manufacture,	mining	and	industrial	

activities	 (Komarek	 et	 al.,	 2008;	 Tangahu	 et	 al.,	 2011).	 Median	 soil	 background	

concentrations	within	England	are	47	mg	kg-1	although	this	does	increase	a	thousand-fold	in	



	 	 	
	

	
29	

enriched	areas	(Ander	et	al.,	2011).	The	NBC	report	gives	Pb	concentrations	as	180	mg	kg-1	

in	non-mineralised	areas	and	2,400	mg	kg-1	in	mineralised	areas	(Ander	et	al.,	2013).	

The	 solubility	 and	mobility	 of	 Pb	 greatly	 depends	 upon	 its	 chemical	 form	 in	 the	 soil.	 For	

example,	compounds	such	as	Pb	acetates	and	Pb	chlorides	are	relatively	soluble	whereas	

metallic	Pb	and	Pb	phosphate	are	 insoluble	 in	 soils	 (Canadian	Council	of	Ministers	of	 the	

Environment,	1999).	Anaerobic	conditions	such	as	prolonged	waterlogging	or	inundation	can	

lead	to	the	formation	of	insoluble	and	unreactive	PbS.	pH	is	a	dominant	factor	affecting	Pb	

mobility	 in	 soils	 (Sauve	 et	 al.,	 1998)	 as	 some	 Pb	 compounds,	 inlcuding	 Pb(OH)2	 are	

significantly	more	soluble	at	lower	pH	such	as	pH	4.0	as	opposed	to	pH	7.0	(Canadian	Council	

of	Ministers	of	the	Environment,	1999).	This	is	reflected	in	plant	uptake	of	Pb	being	higher	in	

low	pH	soils	(Allinson	and	Dzialo,	1981).		

Lead	is	toxic	to	humans	and	reported	to	affect	every	organ	within	the	body.	Children	are	the	

most	susceptible	to	Pb	poisoning	due	to	the	accidental	ingestion	of	soil	(Hettiarachchi	and	

Pierzynski,	 2004).	 Furthermore,	 children	 are	 at	 a	 higher	 risk	 from	 Pb	 exposure	 as	 they	

generally	have	a	higher	sensitivity	to	Pb	than	adults	(Entwistle	et	al.,	2019).	Levels	of	50-80	

µg	dL-1	will	induce	symptoms	such	as	joint	pain,	tiredness	and	gastrointestinal	symptoms	in	

adults	 (Canadian	 Council	 of	 Ministers	 of	 the	 Environment,	 1999).	 Lead	 exposure	 is	 also	

known	to	negatively	impact	cognitive	functions,	particularly	in	children.	Studies	have	shown	

that	 performance	 at	 school	 was	 reduced	 at	 blood	 lead	 concentrations	 of	 ≤	 50	 µg	 dL-1	

(Skerfving	et	al.,	2015).		

1.3.5	Zinc		

Zinc	 (Zn)	 is	 a	 transition	 metal	 with	 5	 stable	 isotopes	 and	 approximately	 30	 short	 lived	

radioisotopes	 (Broadley	 et	 al.,	 2007)	 and	 it	 is	 essential	 for	 human	 and	 animal	 life.	 It	

commonly	exists	in	a	2+	oxidation	state,	is	classed	as	redox-	stable	and	can	form	numerous	

soluble	 salts	 and	 compounds.	 It	 enters	 the	 soil	 mainly	 through	 geological	 weathering	 of	

parent	 material	 and	 is	 abundant	 in	 the	 lithosphere,	 particularly	 in	 sedimentary	 rocks.	

Anthropogenic	 inputs	 occur	 though	 mining	 and	 smelting	 activities,	 phosphate	 fertiliser	

inputs	and	sewage	sludge	application,	as	well	as	industrial	emissions	from	galvanising	plants	

(Alloway,	1995;	Newhook	et	al.,	2003;	Broadley	et	al.,	2007).	

Behaviour	in	soils	is	mainly	influenced	by	pH	and	solubility.	Desorption	can	occur	at	lower	pH	

so	calcareous	soils	have	the	potential	to	limit	crop	growth	due	to	the	reduced	availability	of	

Zn.	Toxic	effects	can	be	observed	at	levels	of	300	mg	kg-1	dry	weight	in	leaf	tissue	(Chaney,	

1993)	often	displayed	as	reduced	growth	and	chlorosis	(Nagajyoti	et	al.,	2010).	.	
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Zinc	is	an	essential	element	used	for	biological	functions	such	as	enzyme	activity.	Deficiency	

in	 Zn	 in	 humans	 can	 lead	 to	 impaired	 growth	 and	 Pneumonia	 (Hambidge,	 2000),	 while	

elevated	 concentrations	 can	 prove	 to	 be	 toxic	 (Fraga,	 2005)	 resulting	 in	 vomiting	 and	

anaemia	(Fosmire,	1990).	Recommended	daily	allowances	of	Zn	are	15	mg	day-1	with	toxic	

effects	observed	in	humans	when	intakes	are	in	the	region	of	100-300	mg	day-1.		

1.4	Generic	Assessment	Criteria	for	Soil	PHEs		

Generic	assessment	criteria	(GAC)	are	risk	based	assessment	criteria	used	for	screening	soils	

and	determining	whether	 there	 is	potential	 for	 risk	 to	human	health	 (Lijzen	et	al.,	2001).	

GACs	have	many	different	names	such	as	 ‘soil	screening	values’	and	‘intervention	values’,	

but	will	be	referred	to	as	GACs	within	this	thesis.	The	different	GAC	values	referred	to	in	this	

thesis	are	outlined	in	Table	1.1.		

	

Table	1.1.	Generic	Assessment	Criteria	(GAC)	for	Soil	PHEs.	

GAC	 Developed	by:	 Contaminants	 Year	 Notes:	
ICRCL	Trigger	
Values	 ICRCL	 11	PHEs	5	organic	

substances	 1976	 Superseded	by	
SGVs	

Soil	Guideline	
Values	(SGVs)	
	

Environment	
Agency	

Arsenic,	cadmium,	
chromium,	lead,	nickel,	
mercury,	selenium,	

benzo[a]pyrene,	inorganic	
cyanide	and	phenol.	

2002	 Superseded	by	
C4SLs	and	S4ULs	

Category	4	
Screening	
Levels	(C4SLs)	

DEFRA	

Arsenic,	cadmium,	
chromium	(VI),	lead,	
benzo(a)pyrene	and	

benzene	

2014	 Less	conservative	
than	SGVs	

Suitable	4	Use	
Levels	(S4Uls)	

Land	Quality	
Management	
(LQM)	/Charted	
Institute	of	

Environmental	
Health	(CIEH)	

89	substances	including	
metals,	BTEX,	PAHS,	
phenols,	VOCs	and	

pesticides	

2015	

Uses	revised	
human	health	
exposure	

assumptions	

Dutch	Target	
and	
Intervention	
Levels	

National	
Institute	for	
Public	Health	

and	the	
Environment	

(RIVM)	

12	inorganics	and	
83	organic	substances	 2000	 Dutch	criteria	

	

1.5	Physical	contaminant	(re)-mobilisation	and	deposition		

One	method	for	large	scale	translocation	of	PHEs	from	source	to	floodplain	is	through	the	

physical	(re-)mobilisation	of	contaminant	containing	sediments	and	soils	by	floodwaters.	The	

complex	 nature	 of	 floodwater	 velocities	 and	 currents	 results	 in	 a	 large	 variation	 in	
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suspension	and	deposition	energies.	Sediment	loading	in	the	water	column,	shear	bed	stress	

and	flow	velocity	also	determine	deposition	rates	of	sediment	bound	PHEs	onto	floodplains.	

In	general,	flow	velocities	are	low	on	large	floodplains	and	therefore	such	areas	are	more	

susceptible	to	sediment	deposition	(Forstner	et	al.,	2004).	

A	source	of	soil	contamination	is	historically	mined	ore	fields	which	are	common	in	the	UK	

and	 Europe.	 Floodplains	 within	 ore	 field	 catchments	 can	 contain	 metal	 rich	 alluvium	

originating	 from	spoil	 tips	and	contain	elements	 such	as	Pb,	Zn,	Cd	and	Cu	 (Foulds	et	al.,	

2014)	at	levels	that	can	often	exceed	soil	GACs	(Gozzard	et	al.,	2011,	Section	1.4).	Elevated	

PHE	 concentrations	 may	 cause	 negative	 health	 effects	 for	 receptors	 exposed	 to	 such	

sediments	as	well	as	implications	for	meeting	European	Union	(EU)	wide	targets	such	as	the	

Water	 Framework	 Directive’s	 (WFD)	 chemical	 and	 ecological	 parameters,	 as	 enriched	

sediment	can	influence	PHE	concentrations	of	overlying	waters.	Mine	spoil	material	can	have	

a	high	potential	for	physical	movement	of	PHEs	within	a	catchment	because	of	its	nature	and	

often	close	proximity	to	water	courses.	

Foulds	et	al.,	(2014)	investigated	the	physical	remobilisation	and	consequent	deposition	of	

mining	 alluvium	 in	Welsh	 catchments	 affected	 by	 the	 2012	 floods.	 The	 study	 quantified	

elemental	sediment	contamination	throughout	a	series	of	Welsh	catchments	and	found	a	

large	proportion	of	sampled	sites	exceeded	industrial	soil	guideline	values	(SGVs),	by	up	to	a	

factor	of	71.	Industrial	guideline	values	are	the	most	generous	with	respect	to	the	SGVs.	The	

wider	 implications	of	the	contaminated	sediment	mobilisation	were	explored	by	sampling	

from	previously	inundated	allotments	and	floodplain	grown	silage	bales	(Foulds	et	al.,	2014).	

In	 this	 study	 the	Dutch	soil	 guideline	values	 (Table	1.1)	were	exceeded	 in	allotments	and	

homogenous	contamination	profiles	showed	mixing	of	flood	sediments	into	the	soil	profile	

as	a	result	of	cultivation.	Silage	bales	also	exceeded	Pb	benchmark	criteria	for	animal	feeds	

(EC	Directive	2002/32/EC)	and	the	introduction	of	these	contaminated	foodstuffs	to	cattle	

resulted	in	Pb	blood	poisoning	and	mortality	of	young	livestock.	

The	 study	 by	 Foulds	 et	 al.,	 (2014)	 conveys	 the	 wider	 implications	 for	 physical	 PHE	

remobilisation	in	relation	to	PHE	exposure	and	highlights	a	river’s	effectiveness	at	dispersing	

contaminants.	 It	 also	 reinforces	 the	view	 that	a	geomorphological	approach	 is	needed	 to	

identify	sensitive	sedimentation	zones	in	a	catchment,	as	physical	movement	can	establish	a	

link	between	source	and	receptor.	For	example,	large	scale	bank	erosion	was	responsible	for	

the	deposition	of	mining	waste	contaminated	sediments	on	the	River	Swale	floodplain	during	

autumn	flooding	events	in	2000	(Dennis	et	al.,	2003).	In	light	of	the	predicted	increases	in	
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the	magnitude	and	 intensity	of	 flooding	events	the	 identification	of	contaminant	sources,	

such	 as	 mining	 spoil	 heaps,	 which	 may	 be	 susceptible	 to	 large	 scale	 remobilisation	

downstream,	could	act	as	a	driver	for	the	remediation	of	such	sites.		

Flooding	induced	contaminant	movement	has	been	investigated	using	paired	farms	within	

the	UK.	Paired	farms	can	provide	useful	comparisons	for	assessing	the	effects	of	flooding	on	

contaminant	 levels	 in	grazing	 land	 in	 industrial	 catchments	 (Lake	et	al.,	 2014;	 Lake	et	al.,	

2015).	Lake	et	al.,	(2015)	used	paired	farms	to	assess	soil,	grass	and	animal	product	levels	of	

dioxins	and	polychlorinated	biphenyls	 (PCBs)	and	 found	concentrations	 to	be	significantly	

higher	 in	 industrial	 catchment	 floodplain	 farms,	 as	 opposed	 to	 those	 situated	 in	 non-

industrial	catchments.	Samples	were	also	collected	from	flooded	and	non-flooded	areas	of	

one	field,	with	the	flooded	sections	having	PCB	concentrations	that	were	at	least	four	times	

higher.		

When	 determining	 the	 fate	 of	 (re-)mobilised	 contaminants	 it	 is	 important	 to	 understand	

floodplain	 sediment	 dynamics.	 Greenwood	 et	 al.,	 (2013)	 investigated	 sediment	

remobilisation	over	a	 series	of	 inundation	events	using	 labelling	 techniques	with	artificial	

radioisotopes:	 caesium-134	 (t½	 =	 2.06	 years)	 and	 cobalt-60	 (t½	 =	 5.26	 years).	 Three	

consecutive	 inundation	 events	 were	 studied,	 and	 significant	 amounts	 of	 sediment	 were	

removed	during	the	first	two	flooding	events:	63.8	%	and	11.9	%	respectively.	No	significant	

sediment	 (re-)mobilisation	 occurred	 during	 the	 third	 event	 because	 of	 the	 amount	 of	

sediment	removal	which	occurred	during	the	first	two	events.	Furthermore,	topography	was	

found	to	have	affected	spatial	differences	 in	remobilisation.	The	large-scale	sediment	 loss	

observed	during	the	first	two	flooding	episodes	highlights	the	ability	of	flood	waters	to	act	

as	an	effective	disperser	of	PHEs	from	source	to	floodplain.		

Sediment	transport	models	have	also	been	used	for	predicting	the	fate	of	remobilised	PHE	

enriched	 sediment	 (e.g.	Coulthard	and	Macklin,	2003;	 Singer	et	al.,	2013;	Kinouchi	et	al.,	

2015).	 It	 has	 been	 reported	 that	 up	 to	 90	%	of	 PHEs	 are	 transported	 from	a	 source	 in	 a	

sediment	 bound	 form,	 conveying	 the	 usefulness	 of	 such	 sediment	 dynamic	 tools	 as	

predictors	of	PHE	fate	(Coulthard	and	Macklin,	2003).	The	output	of	one	particular	model	

called	TRACER	showed	that	70	%	of	PHEs	were	retained	within	the	River	Swale’s	floodplain	

sediments	200	years	on	from	mine	closure	(Coulthard	and	Macklin,	2003).	Interestingly,	the	

model’s	outputs	from	the	River	Swale	show	that	the	increased	flood	magnitudes	predicted	

by	climate	models	will	result	in	the	dilution	of	PHE	enriched	floodplain	sediments	with	‘clean’	

sediments	originating	from	‘clean’	areas	within	the	catchment.	This	result	is	very	catchment	
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specific	and	reliant	on	the	geomorphology	of	the	area	and	the	extent	of	PHE	enriched	soils	

and	sediments.		

Rivers	can	physically	remobilise	and	redistribute	PHEs	within	a	catchment	but	it	is	the	ability	

of	flood	events	to	change	the	chemical	behaviour	and	characteristics	of	PHEs	that	dictates	

their	potential	availability	to	receptors	and	ability	to	chemically	mobilise	into	overlying	and	

porewaters.	It	is	therefore	important	to	understand	how	PHEs	behave	under	changes	during	

wetting	and	drying	to	determine	their	risk	to	human	and	ecological	health.		

	1.6	Physico-chemical	changes	

Changes	 in	climate,	particularly	prolonged	wetting	cycles	or	periods	of	drought	can	act	as	

drivers	for	changes	in	soil	components.	This	can	in	turn	affect	chemical	PHE	mobility.	PHEs	

exist	in	soil	and	sediments	in	different	fractions,	which	dictate	their	ecotoxicity,	availability,	

solubility	and	mobilisation	potential.	 The	 fractions	within	 soil	 and	 sediments	have	mainly	

been	 defined	 as	 water	 soluble,	 exchangeable,	 carbonate-associated,	 Fe-Mn	 oxides	

associated,	organic/sulphide	associated	and	residual,	as	shown	in	Figure	1.3	(Li	et	al.,	2001;	

Luo	et	al.,	2011;	Park	et	al.,	2011).	PHEs	associated	with	the	residual	fraction	are	in	general	

less	available	to	plants,	animals	and	microorganisms,	whereas	those	present	 in	 the	water	

soluble	 and	 exchangeable	 fractions	 etc.	may	 be	 available,	 depending	 on	 the	 surrounding	

physico-chemical	environment.		

	

	

Figure	1.3:	common	solid	phase	fractions	of	soil	and	their	potential	for	mobility/availability.  

	



	 	 	
	

	
34	

PHE	mobilisation	during	inundation	can	result	in	the	disassociation	with	one	fraction	before	

associating	with	another,	potentially	resulting	in	changes	in	mobility/availability.	Influential	

controlling	factors	of	PHE	mobility	processes	include	pH,	temperature,	redox	potential,	SOM	

content	and	microbial	activity.	These	processes	can	be	summarised	as:		

• Dissolution	of	carbonates	and	metal	oxides	during	reducing	periods		

• Dissolution	of	sulphates	during	oxidising	periods	

• Precipitation	of	metal	sulphide	complexes	during	strong	reducing	conditions		

• Adsorption	 onto	 Fe-Mn	 (hydr)oxides	 during	 oxidising	 conditions	 or	 prolonged	

reducing	conditions		

• Decomposition	or	association	with	organic	compounds		

A	rise	in	river	stage	generally	results	in	the	inundation	of	river	bank	sediments	and	floodplain	

soils,	causing	reductions	in	pH	and	oxidisation	reduction	potential	(ORP)	(Frohne	et	al.,	2011).	

A	 high	 ORP	 results	 in	 oxidising	 conditions	 and	 low	 ORP	 promotes	 reducing	 conditions.	

Changes	 in	 pH	 and	 redox	 potential	 can	 significantly	 alter	 the	 speciation	 and	 solubility	 of	

metals,	 therefore	 affecting	 their	 potential	 availability	 and	 mobility	 (Charlatchka	 and	

Cambier,	 2000).	 During	 periods	 of	 inundation,	 aerobic	microbes	 consume	 any	 remaining	

oxygen	over	a	period	of	hours	to	days.	Once	oxygen	levels	have	depleted,	facultative	and	

strict	anaerobes	utilise	electron	acceptors	in	the	order	of:	nitrates,	manganese	oxides,	iron	

oxides	and	sulphate	(Lynch	et	al.,	2014).	The	latter	three	are	displayed	in	equations	1	to	3	

and	Figure	1.4.	The	 reduction	of	 sulphate	produces	 sulphides,	which	can	precipitate	with	

metals	 to	 form	 insoluble	 metal	 sulphide	 complexes.	 This	 reaction	 occurs	 at	 low	 redox	

potentials	of	around	-150	mV	(Du	Laing	et	al.,	2009).		

(1)	 MnO2	+	2e−	+	4H+	↔	Mn2
+	+	2H2O	

(2)	 Fe2O3	+	2e−	+	6H+	↔	2Fe2+	+	3H2O	

(3)		 SO-2
4	+	8e−	+	8H+	↔	S2−	+	4H2O		

Fe-Mn	 (hydr)oxides,	 shown	 in	 equations	 1	 and	 2,	 are	 amorphous	 or	 microcrystalline	

substances	with	a	high	affinity	for	metal	sorption.	Dry	soils	that	are	then	subjected	to	sudden	

rewetting	 demonstrate	 high	 levels	 of	 metal	 release	 into	 overlying	 and	 porewater.	 For	

example,	 under	 reducing	 conditions,	 Fe(III)	 is	 reduced	 to	 Fe(II)	 and	 Mn(III/V)	 to	 Mn(II)	

resulting	in	the	mobilisation	of	associated	PHEs.	This	process	happens	at	about	+200	mV	in	

acidic	 and	 neutral	 soils	 but	 considerably	 lower	 ORP	 values	 for	 alkaline	 soils	 (Bissen	 and	

Frimmel,	 2003).	 The	 release	 of	 PHEs	 from	 Fe-Mn	 (hydr)oxides	 and	 consequential	 rise	 in	
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porewater	 and	 overlying	 water	 PHE	 concentrations	 is	 dependent	 on	 the	 duration	 of	

inundation,	as	prolonged	flooding	can	result	in	the	immobilisation	of	metals	because	of	the	

formation	of	metal	sulphide	complexes,	as	shown	in	Figure	1.4	(Lynch	et	al.,	2014).	This	arises	

from	the	reduction	of	sulphates,	shown	in	equation	3.	Metals	such	as	Cu,	Cd	and	Zn	often	

form	direct	precipitates	with	sulphides	(CuS,	CdS	and	ZnS),	or	PHEs	can	co-precipitate	with	

FeS	minerals	(Du	Laing	et	al.,	2007).	The	formation	of	such	insoluble	compounds	can	result	

in	a	decline	in	porewater	and	overlying	water	PHE	concentrations.		

Relationships	between	organic	matter	and	PHEs	are	complicated	and	depend	on	the	form	of	

the	SOM	and	individual	PHEs. SOM	can	act	as	both	a	source	and	sink	for	PHEs	within	soils	

during	 inundation.	 Complexation	 of	 PHEs	 with	 dissolved	 organic	matter	 (DOM)	 resulting	

from	SOM	degradation	can	result	in	increased	PHE	mobilisation	and	availability	for	uptake	

by	plants (Grybos	et	al.,	2007;	McCauley	et	al.,	2009;	Zheng	et	al.,	2011).	For	example,	SOM	

can	 also	 influence	 As	 mobility	 by	 facilitating	 reduction	 and	 oxidation	 reactions	 in	 soil	

(Redman	et	al.,	2002;	Dobran	et	al.,	2006).	SOM	 is	 reported	 to	be	competitive	with	both	

As(V)	and	As(III)	with	binding	sites	on	Fe-oxides	such	as	hematite	(Redman	et	al.,	2002),	and	

increases	 in	DOC	are	known	to	coincide	with	 increases	 in	As	mobilisation,	particularly	 for	

As(III)	(Dobran	et	al.,	2006).	Increases	in	soil	pH	can	weaken	positive	surface	charges	on	SOM,	

resulting	in	As	release	from	soil	particles	(Grybos	et	al.,	2007).	Flooding	induced	desorption	

can	happen	at	higher	redox	potential	for	OM	than	Fe(II)	(Grybos	et	al.,	2007),	suggesting	that	

SOM	could	play	a	greater	role	in	As	mobilisation	than	Fe	for	some	soils	(Williams	et	al.,	2011).	 

A	return	to	oxidising	conditions	seen	during	receding	flood	waters	promotes	the	oxidation	

of	 sulphides	and	 the	 release	of	 associated	PHEs.	 This	 spike	 in	PHE	concentrations	 can	be	

attenuated by	the	reformation	of	poorly	crystalline	or	amorphous	Fe/Mn	minerals	(Du	Laing	

et	al.,	2007).	Contrastingly,	in	some	cases	slow	oxidation	kinetics	of	many	metal	sulphides	

result	in	a	large	portion	of	metals	being	retained	within	the	sediments	themselves	(Chapman,	

et	 al.,	 1998). Stable	 conditions	 of	 ORP	 over	 time	 can	 promote	 mineral	 aging	 and	 the	

immobilisation	of	metals	and	metalloids	but	repeated	wetting	and	drying	of	sediments	may	

prevent	 this,	 resulting	 in	 the	 increased	 availability	within	 floodplain	 soils	 and	 sediments.	

Understanding	the	effects	of	these	redox-transitional	zones	that	form	on	river	floodplains	as	

a	 result	 of	 inundation	 is	 therefore	 important	 for	 predicting	 the	 behaviour	 of	metals	 and	

metalloids.	A	summary	of	PHE	behaviour	as	a	consequence	of	flooding	is	shown	in	Table	1.2. 
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Figure	1.4:	conceptual	model	of	the	main	physico-chemical	changes	during	flooding.		

 

Table	1.2:	Summary	of	PHE	behaviour	under	flooding.	 

PHE	 Mainly	 associated	
with:	

Main	 drivers	 of	
mobilisation	

Immobilised	
by:	

References	

Arsenic	 Iron	(hydr)oxides	 Redox	potential	
Reactivity	 of	 Iron	
hydr(oxides)	

Sulphides	 Alloway	(2013)	
Roberts	 et	 al.,	
(2010)	
Huang	(2014)	

Cadmium	 Zinc	 bearing	
minerals	
Fe	(hydr)oxides	

Redox	potential	
pH	
Reduction	 of	 Fe/Mn	
oxides	
	

Sulphides	
	

Alloway	(2013)	
Robson	 et	 al.,	
(2014)	
Kashem	 and	 Singh	
(2001)	
Honma	et	al.,	(2016)	

Copper	 Organic	matter	 Complexion	 with	
DOC	

Sulphides	 Du	 Laing	 et	 al.,	
(2009)	
Liu	et	al.,	(2013)	

Lead	 Fe/Mn	hydr(oxides)	
Organic	matter	

pH	
Reduction	 of	 Fe	
oxides	
Complexion	 with	
DOC	

Sulphides	
Phosphates	

Alloway	(2013)	
Du	 Laing	 et	 al.,	
(2009)	

Zinc	 Zinc	 bearing	
minerals	
Fe	(hydr)oxides	

Redox	potential	
pH	
Reduction	 of	 Fe/Mn	
oxides	
Complexion	 with	
DOC	

Sulphides	
	

Alloway	(2013)	
Du	 Laing	 et	 al.,	
(2009)	
Kashem	 and	 Singh	
(2001)	
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1.6.1	Evidence	of	flooding	induced	PHE	mobility	from	the	literature 

Studies	on	how	temperature,	gas	phase	composition,	pH	and	microbial	activity	can	affect	As	

and	Zn	release	(Joubert	et	al.,	2007)	have	shown	temperature	to	have	a	clear	and	significant	

relationship	with	As	release.	The	effects	of	microbial	activity	on	PHE	mobility	were	less	clear	

as	 half	 of	 the	 samples	 displayed	 positive	 relationships	 and	 half	 displayed	 a	 negative	

relationship	between	microbial	activity	and	PHE	mobility.	Experimental	design	was	expected	

to	account	for	the	negative	relationships	observed	because	microbial	activity	itself	is	affected	

by	the	physical	and	chemical	status	of	soils;	highlighting	the	intricate	and	complex	nature	of	

chemical	mobilisation.	Additionally,	 flood	waters	can	 increase	the	 levels	of	DOC;	which	 in	

turn	 can	 promote	 microbial	 activity	 (Lynch	 et	 al.,	 2014).	 Given	 that	 climate	 change	 is	

predicted	 to	 affect	 microbial	 activity	 through	 changes	 in	 temperature	 and	 precipitation	

(Joubert,	 et	 al.,	2007)	 this	may	 result	 in	 changes	 to	 the	 distribution	 of	 PHEs	 in	 soils	 and	

sediments.		

A	study	by	Tack	et	al.,	(2006)	examined	the	effects	of	soil	moisture	content	and	hydrological	

regimes	on	soil	solution	content	of	Cu,	Cd	and	Zn.	Soils	were	either	kept	dry,	at	field	capacity	

or	 inundated	with	water	for	14	days	before	being	returned	to	field	moisture	capacity	and	

sampled.	Concentrations	were	highest	 in	porewaters	of	dried	soils	and	 lowest	 in	those	of	

inundated	soils.	This	is	likely	to	be	due	to	a	surge	of	microbial	activity	within	the	re-moistened	

dried	soils	causing	temporary	anaerobiosis,	highlighting	the	importance	of	sudden	rewetting	

of	dried	soils	(Tack	et	al.,	2006).	Changes	in	redox	potential	are	also	known	to	be	driven	by	

factors	such	as	temperature	and	SOM	content.	For	example,	small	changes	in	water	content	

combined	 with	 optimal	 temperature	 and	 SOM	will	 result	 in	 a	 lowering	 of	 Eh	 promoting	

reducing	 conditions;	 whereas,	 low	 temperatures	 combined	 with	 flooding	 conditions	 can	

result	in	Eh	remaining	positive	(Schulz-Zunkel	and	Keuger,	2009).	

In	laboratory	experiments	conducted	by	Du	Laing	et	al.,	(2007),	contaminated	floodplain	soils	

were	subjected	to	different	durations	of	wetting	and	drying	cycles	to	determine	the	effects	

on	 porewater	 PHE	 content.	 PHE	 content	 was	 found	 to	 vary	 significantly	 with	 moisture	

regime.	Mn	 and	 Fe	 concentrations	 increased	 in	 porewater	 during	 periods	 of	 inundation;	

which	highlights	reductive	dissolution	of	these	oxides	with	Mn	oxides	in	particular	reflecting	

the	hydrological	 regimes.	 Cd	 concentrations	 rise	 initially	 and	 then	decrease	 steadily	 over	

time	 with	 permanent	 inundation.	 This	 is	 likely	 to	 be	 attributed	 to	 its	 combination	 with	

sulphides,	resulting	in	the	immobilisation	of	Cd.	Cyclic	wetting	episodes	followed	by	drying	

showed	 a	 peak	 in	 Cd	 concentrations	 during	 dry	 episodes	 and	 a	 low	 during	 inundation,	
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potentially	because	of	dilution	effect	during	soil	flooding.	Zn	tends	to	peak	during	mid	drying	

periods	and	porewater	concentrations	were	found	to	be	lowest	during	inundation	periods.	

This	 release	 during	 drying	 periods	may	 be	 attributed	 to	 the	 oxidisation	 of	 sulphides	 and	

subsequent	release	of	PHEs.	With	respect	to	Cr	and	Zn,	short	periods	of	inundation	(around	

2	days)	followed	by	longer	periods	of	drying	are	likely	to	result	in	increases	in	their	mobility.	

Our	 current	 understanding	 of	 the	 factors	 controlling	 the	 behaviour	 of	 PHEs	 highlight	 the	

importance	of	potential	climatic	changes	as	intense	periods	of	rainfall	followed	by	prolonged	

periods	of	drying	could	result	in	an	increased	availability	of	PHEs,	potentially	increasing	the	

risk	to	receptors.		

1.7	Availability	to	plants	and	wildlife	

Flooding	 induced	 PHE	 (re-)mobilisation	 has	 been	 reported	 to	 pose	 toxicological	 risks	 to	

aquatic	organisms	occupying	the	water	column	when	they	are	taken	up	in	to	the	body	(Wolz	

et	 al.,	 2009).	 Bioavailability	 is	 the	 proportion	 of	 any	 particular	 PHE	 that	 crosses	 the	

gastrointestinal	 wall	 and	 is	 available	 for	 uptake	 by	 a	 receptor	 (Naidu	 et	 al.,	 2008).	 The	

bioavailable	fraction	of	PHEs	can	be	between	0	%	and	100	%	depending	on	the	source	and	

receptor	characteristics	(Vig	et	al.,	2003).		

Phytoavailability,	defined	as	availability	to	plants,	is	greatly	dependent	and	influenced	by	a	

variety	of	factors,	including	pH,	cation	exchange	capacity,	organic	matter	content,	Fe	and	Mn	

oxides	and	 redox	potential	 (Wong,	2003).	pH	 is	deemed	 to	be	 the	most	 important	 factor	

controlling	metal	 availability	 to	 plants	 and	has	 a	 negative	 correlation	with	 availability,	 as	

PHEs	are	usually	more	available	at	a	lower	pH	(Zeng	et	al.,	2011).	For	example,	reduction	in	

soil	pH	induced	desorption	and	dissolution	from	soil	constituents	for	Cd,	Zn	and	Pb	(Zeng	et	

al.,	2011).	Metals	can	be	maintained	in	an	available	form	by	organic	matter,	which	can	also	

supply	chelating	agents	to	the	soil,	further	increasing	metal	availability	to	plants	(McCauley	

et	 al.,	 2009).	 For	 example,	 the	 addition	 of	 chelating	 agents	 to	 soils	 has	 been	 shown	 to	

increase	the	uptake	of	Pb	by	plants	(Blaylock	et	al.,	1997).	Phytoavailability	is	also	element	

specific,	for	example,	Zn	being	essential	for	 life	 is	readily	taken	up	by	plants,	because	it	 is	

relatively	labile	and	less	strongly	bound	to	soil	than	other	elements,	such	as	Cu	(Smith,	2009).		

The	thin	film	diffusive	gradient	technique	(DGT)	is	an	effective	technique	for	measuring	the	

availability	of	PHEs	by	providing	in	situ	measurements	of	labile	PHE	concentrations.	DGT	was	

first	applied	to	soils	in	1998	and	has	proven	an	effective	mimic	of	plant	uptake	mechanisms	

as	 local	concentrations	are	reduced	(Zhang	et	al.,	1998).	As	a	result,	DGT	can	account	 for	

rates	 of	 supply	 and	 release.	 In	 an	 assessment	 into	 the	 inundation	 of	 floodplain	 soils	
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containing	elevated	 levels	of	Cu,	use	of	DGT	showed	that	Cu	availability	was	considerably	

higher	in	the	first	week	after	inundation	but	then	immobilised	for	the	remaining	study	period	

(van	der	Geest	et	al.,	2008).	Available	Cu	was	predicted	to	be	lost	into	the	overlying	water	

column	or	utilised	by	Mn	and	Fe	hydroxides	at	the	sediment	water	interface	(van	der	Geest	

et	al.,	2008).	However,	other	studies	suggest	that	the	reduction	of	Mn	and	Fe	oxides	result	

in	the	release	of	PHEs	such	as	Cd	and	Zn	(Teuchies	et	al.,	2013),	highlighting	the	implications	

of	short	term	flooding	events	as	previously	unavailable	PHEs	may	become	available	and	be	

released	 into	 the	 overlying	 water	 column.	 However,	 prolonged	 periods	 of	 flooding	 over	

several	weeks	reduced	the	availability	of	certain	PHEs	due	to	reducing	conditions.	This	work	

did	not	consider	the	subsequent	periods	of	drying	that	will	follow	inundation	which	has	been	

shown	 to	 increase	 the	 availability	 of	 some	 inorganic	 elements	 such	 as	 phosphorous	

(Schönbrunner	et	al.,	2012).	DGT	was	not	used	 in	this	project	as	the	receptors	of	 interest	

were	humans,	 so	bioaccessibility	 testing	was	 a	more	 appropriate	method	of	 determining	

availability	of	PHEs.		

Floodplains	containing	enriched	levels	of	PHEs	can	also	have	implications	for	grazing	animals,	

especially	 those	 destined	 for	 human	 consumption.	 The	 movement	 and	 subsequent	

deposition	 of	 alluvium	 results	 in	 fertile	 floodplains,	which	 are	 often	 used	 for	 agricultural	

purposes.	 Smith	 et	 al.,	 (2009)	 examined	 Pb	 partitioning	 in	 Welsh	 mining	 catchment	

floodplains	and	potential	availability	to	sheep.	The	highest	Pb	concentrations	were	found	in	

vegetation	in	winter	months	(January	to	March)	and	the	study	stated	that	Pb	concentrations	

often	exceeded	the	Inter	Departmental	Committee	for	the	Redevelopment	of	Contaminated	

Land	 (ICRCL)	 (1990)	 trigger	 levels.	 There	 is	 a	 potential	 risk	 to	 grazing	 livestock	 of	

bioaccumulation	 of	 Pb	 as	 sheep	 are	 exposed	 to	 both	 soil	 particles	 and	 vegetation	when	

grazing.,	The	study	by	Smith	et	al.,	(2009)	looks	at	the	potential	availability	of	Pb	to	grazing	

animals	 using	 pseudo-total	 Pb	 concentrations	 and	 suggests	 that	 animals	 are	 at	 risk	 of	

toxicological	 effects	 calculated	 from	 soil	 ingestion	 rates	 for	 the	 year.	 However,	 these	

calculations	do	not	consider	the	available	mass	of	ingested	Pb	to	the	sheep	as	the	study	did	

not	chemically	simulate	the	sheep	stomach.	Consequently,	there	may	be	an	over	or	under	

estimation	of	the	potential	risks	of	animals	grazing	on	this	specific	floodplain.		

1.8	Human	Bioaccessibility	

Human	risk	assessments	of	contaminated	soils	assume	that	the	total	amount	of	contaminant	

present	within	a	soil	is	available	for	uptake	within	the	human	body.	This	is	now	considered	

to	 be	 conservative	 as	 only	 a	 proportion	 of	 a	 contaminant	 generally	 dissolves	 within	 the	



	 	 	
	

	
40	

digestive	system	(Pelfrêne	et	al.,	2012).	Human	bioaccessibility	is	therefore	defined	as	the	

proportion	of	a	contaminant	that	is	released	into	solution	by	digestive	fluids	(Wragg	et	al.,	

2011).	Once	a	PHE	crosses	the	intestinal	wall	then	it	can	enter	the	blood	stream,	potentially	

resulting	in	detrimental	health	effects.		

Measurements	of	bioaccessibility	are	intended	to	provide	a	better	estimate	of	the	maximum	

amount	of	PHEs	available	 for	uptake	across	 the	 intestinal	wall	 and	are	particularly	useful	

inputs	 into	 the	 types	of	decision	making	 tools	 typically	used	 for	human	 risk	assessments.	

Such	measurements	are	usually	carried	out	in	vitro	using	simulated	gastrointestinal	fluids,	as	

in	vivo	studies	are	often	costly	and	subject	to	ethical	approval	(Wragg	et	al.,	2011).		

	

Figure	1.5:	overview	of	PHE	movement	inside	the	body. 

	

Quantification	 of	 soil	 ingestion	 has	 been	 estimated	 by	 the	 US	 Environmental	 Protection	

Agency	at	around	200	mg	day-1	(US	EPA,	2002).	However,	some	pica	affected	children	can	

ingest	up	to	20	g	day-1	(Van	der	Wiele,	2007).	Pathways	include	hand	to	mouth	transfer	often	

by	children	engaging	in	outdoor	activities,	ingestion	of	soil	present	on	vegetables	or	other	

garden	produce	or	inhalation	of	airborne	particulate	material	(e.g.	as	a	dust).	Ingestion	and	

inhalation	of	soil	tends	to	be	confined	to	smaller	soil	particles	(<250	µm)	as	they	are	more	

likely	to	be	ingested	and	adhere	to	hands	(Ruby	and	Lowney,	2012;	Cave	et	al.,	2013).	The	

<10	µm	fraction	represents	airborne	particulate	matter	that	can	be	 inhaled	and	has	been	

used	in	studies	that	mimic	epithelial	lung	fluid,	including	studies	by	Dean	et	al.,	(2017).	The	

larger	surface	to	volume	ratio	results	in	higher	concentrations	of	PHEs	being	present	in	these	

fractions	 (Madrid	et	al.,	2008;	Dennis	et	al.,	2003).	Once	PHE	enriched	material	has	been	

ingested	and	digested	in	the	gastrointestinal	environment,	the	bioaccessible	fraction	has	the	

potential	to	cross	the	intestinal	epithelium	and	enter	the	blood	stream	(Figure	1.5).	Once	in	

the	circulatory	system	the	fraction	of	contaminant	is	referred	to	as	the	bioavailable	fraction	

and	 is	 transported	 for	 biotransformation	 within	 the	 liver	 (Van	 der	 Wiele,	 2007).	 The	

definition	of	the	terms	bioaccessibility	and	bioavailability	here	refer	to	those	associated	with	

human	risk	assessment.		
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Pelfrêne	 et	 al.,	 (2012)	 used	 a	 statistical	modelling	 approach	 to	 predict	 bioaccessibility	 in	

agricultural	 soils	 contaminated	 by	 a	 nearby	 Pb	 smelter.	 Strong	 relationships	 were	 found	

between	predicted	and	measured	Pb	bioaccessibility	for	gastric	and	gastrointestinal	phases	

(R2	>	0.84).	It	was	found	that	total	carbonate,	organic	matter,	sand,	phosphate,	free	Fe-Mn	

oxide,	pseudo-total	Al	and	trace	element	content	appeared	as	the	main	variables	governing	

bioaccessibility.	 Following	 on	 from	 this,	 Pelfrêne	 et	 al.,	 (2013)	 applied	 the	 modelling	

approach	to	forest	and	urban	soils	to	investigate	the	effects	of	land	use	on	bioaccessibility.	

Both	 studies	 highlight	 that	 there	 are	 an	 influential	 set	 of	 variables	 on	 contaminant	

bioaccessibility.	However,	the	work	focused	solely	on	a	small	number	of	soil	types	and	PHEs	

so	there	 is	scope	to	 investigate	the	relationships	between	the	solid	phase	distributions	of	

PHEs	and	consequently	predict	bioaccessibility	in	other	soil	types.		

Additional	 routes	 for	 PHE	 exposure	 to	 humans	 can	 arise	 through	 the	 ingestion	 of	

contaminated	 animal	 products,	 as	 animals	 grazing	 on	 PHE	 enriched	 soils	 can	 accumulate	

PHEs	in	their	tissues	(Abrahams	and	Blackwell,	2013;	Foulds	et	al.,	2014).	Ruminants	are	a	

prominent	 dietary	 component	 for	 many	 human	 beings.	 Because	 of	 their	 physiology,	

bioaccessibility	 tests	 representing	 the	 human	 GI	 environment,	 such	 as	 the	 BARGE	

(BioAccessibility	 Research	 Group	 of	 Europe)	 Unified	 BARGE	 Method	 (UBM),	 are	 not	

applicable	 for	estimation	of	animal	uptake.	Furthermore,	 the	bioaccessibility	of	polycyclic	

aromatic	hydrocarbons	(PAHs)	in	different	digestive	compartments	in	cows	has	been	studied	

showing	 that	 bioaccessibility	 varied	 between	 the	 different	 compartments	 and	 that	

monogastric	 models	 may	 not	 be	 suitable	 (Jurjanz	 &	 Rychen,	 2007).	 Instead,	 four	

compartments	 need	 to	 be	 simulated:	 the	 rumen,	 abomasum,	 intestinal	 colloids	 and	

intestinal	 liquids.	 Using	 this	 model,	 Jurjanz	 &	 Rychen	 (2007)	 showed	 that	 bioaccessible	

phenanthrene	was	elevated	in	the	rumen	compartment	(17	to	24	%)	but	remained	relatively	

unaffected	 in	 the	 remaining	 compartments,	 with	 intestinal	 fluid	 solubilisation	 rates	

remaining	at	about	25	%	regardless	of	the	compound.			

The	 bioaccessibility	 of	 PAHs	 to	 humans	 has	 been	 reviewed	 by	 Harris	 et	 al.,	 (2013)	 who	

highlighted	that	PAH	bioaccessibility	testing	needs	further	research.	Currently,	the	majority	

of	 bioaccessible	 tests	 are	 based	 around	 the	 ingestion	 of	 soil,	 whereas	 PAHs	 are	 often	

ingested	 in	 foodstuffs	 and	 do	 not	 consider	 dietary	 fats	 that	 are	 known	 to	 be	 influential	

towards	PAH	bioaccessibility.		

There	are	few	studies	 investigating	the	effect	of	flooding	and	hydrological	regimes	on	the	

bioaccessibility	 of	 PHEs.	 One	 study	 by	 Florido	 et	 al.,	 (2011)	 demonstrated	 that	
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bioaccessibility	is	not	consistently	affected	by	flooding	and	that	it	is	likely	other	factors	such	

as	 the	 solid	 phase	 distribution	 of	 PHEs	 that	 will	 impact	 flooding	 induced	 change	 in	

bioaccessibility.	For	example,	one	soil	from	a	mining	affected	catchment	in	south	west	Spain	

demonstrated	an	increase	in	bioaccessible	Pb	of	200	%	whereas	Zn	showed	a	reduction	in	

bioaccessibility.	Reducing	conditions	were	induced	for	15	days	by	flushing	with	N2.	Samples	

and	soil	samples	were	dried	prior	to	bioaccessibility	testing	using	the	Simple	Bioaccessibility	

Extraction	Test	(SBET)	glycine	method.	Consequently,	the	results	obtained	from	this	study	

may	 not	 be	 representative	 of	 the	 effects	 of	 flooding	 on	 PHE	 bioaccessibility	 in	 the	

environment	during	and	post	flooding	events,	as	reductions	in	ORP	may	happen	quicker	in	

artificial	systems	flushed	with	N2.	Drying	of	soils	is	also	known	to	affect	PHE	bioaccessibility	

prior	to	bioaccessibility	testing	which	may	result	in	an	under	or	over	estimation	of	flooding	

induced	changes	in	PHE	bioaccessibility	(Furman	et	al.,	2007).	

Inundation	of	soil	under	anoxic	conditions	has	shown	increased	bioaccessibility	of	Cu	and	Pb	

to	humans.	(Florido	et	al.,	2011).	Soils	were	kept	under	reducing	conditions	before	drying.	It	

is	possible	that	the	increase	in	the	bioaccessibility	of	Cu	and	Pb	could	be	attributed	to	the	

sudden	oxidisation	of	the	soils	post	reduction	phase.	There	is	evidence	that	some	PHEs	peak	

in	availability	during	drying	phases	after	inundation	(Du	Laing,	2007)	which	may	explain	the	

observed	increases	in	bioaccessibility.	This	increase	upon	drying	was	demonstrated	in	a	study	

by	Furman	et	al.,	(2007)	where	wetland	soils	were	either	dried,	freeze	dried	or,	as	wet	soils,	

before	subjected	to	bioaccessibility	testing.	The	results	demonstrated	that	bioaccessible	Pb	

was	 on	 average	 15	 %	 lower	 in	 wet	 soils	 as	 opposed	 to	 dried	 soils	 (corrected	 for	 water	

content),	 indicating	 that	 standard	 sample	 preparation	 methods	 which	 involve	 the	 oven	

drying	of	soil	may	result	in	over	estimation	of	Pb	bioaccessibility.	The	authors	concluded	that	

this	was	because	of	oxygenation	of	soils	during	drying	and	an	increase	in	Mn	extractability.	

Taking	this	into	account,	there	is	scope	to	examine	the	effects	of	wetting	and	drying	cycles	

on	 PHE	 bioaccessibility.	 Combining	 this	 with	 knowledge	 on	 changes	 in	 the	 solid	 phase	

distribution	of	PHEs	would	give	insight	into	the	fractions	of	soil	that	are	most	bioaccessible.	

1.9	Project	Rationale	

Developing	a	greater	understanding	of	the	behaviour	and	fate	of	PHEs	within	catchments	is	

important	for	predicting	the	potential	risk	of	exposure	to	humans	and	biota	as	well	as	water	

quality	parameters	such	as	those	outlined	by	the	water	framework	directive.	Climate	change	

is	 likely	 to	 influence	 the	 hydrological	 cycle	 and	 potentially	 result	 in	 more	 frequent	 and	

extreme	 flood	events.	As	 floodwaters	have	 the	ability	 to	physically	 redistribute	 sediment	
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contaminated	with	PHEs	within	a	catchment,	there	is	potential	for	their	relocation	to	areas	

where	humans	are	present	and	may	interact	with	the	soil	such	as	allotments	or	farmland.	

Inundation	of	floodplain	catchments	that	have	PHE	enrichment	may	provide	a	link	between	

source	 and	 human	 receptors	 via	 flooding	 induced	 increases	 in	 the	 availability	 and	

bioaccessibility	of	PHEs.		

A	review	of	the	literature	showed	that	there	has	been	considerable	interest,	and	studies	into,	

the	remobilisation	of	PHEs	because	of	inundation.	PHE	behaviour	and	fate	in	floodplain	soils	

has	been	shown	to	be	complex,	dependent	on	soil	properties	and	to	be	element	specific.	

Wetting	 and	 drying	 cycles	 have	 been	 shown	 to	 result	 in	 changes	 in	 availability,	

bioaccessibility	 and	 solid	 phase	 distribution	 of	 PHEs.	 Specifically,	work	 has	 looked	 at	 the	

effects	of	altered	wetting	and	drying	regimes	on	PHE	concentrations	in	porewater	indicating	

that	prolonged	periods	of	drying	 followed	by	 inundation	promote	 the	greatest	 release	of	

PHEs	into	solution.		

Most	studies	have	been	confined	to	the	laboratory.	Therefore,	mesocosm	studies	simulating	

repeated	wetting	and	drying	cycles	of	floodplain	soils	using	whole	soil	blocks	could	provide	

greater	insight	in	more	realistic	scenarios.	The	relationships	between	soil	characteristics	and	

PHE	mobility	have	been	studied	fairly	intensively,	but	not	with	respect	to	wetting	and	drying	

cycles	and	how	this	can	influence	the	mechanisms	of	PHE	release.	A	detailed	understanding	

of	the	effects	of	the	magnitude	and	intensity	of	wetting	and	drying	cycles	on	PHE	mobility	is	

lacking	in	the	literature,	meaning	there	is	scope	for	new	studies	to	explore	this	further.		

Consequently,	the	following	recommendations	for	the	assessment	of	flooding	induced	PHE	

mobility	on	human	and	environmental	health	that	will	be	used	for	this	study	are:		

• Detailed	 laboratory	 studies	 involving	 wetting	 and	 drying	 cycles	 to	 geochemically	

characterise	 the	 flooding	 induced	changes	 in	bioavailability	and	bioaccessibility	of	

PHEs.		

• Avoiding	the	use	of	intrusive	sample	preparation	techniques	such	as	drying	prior	to	

bioaccessibility	testing	to	gain	a	more	realistic	insight	into	PHE	bioaccessibility	during	

and	post	flooding.		

• To	determine	any	relationships	between	soil	characteristics,	land	use,	flooding	and	

temperature	 regimes	 and	 bioaccessibility	 allowing	 for	 the	 prediction	 of	 human	

health	risk	indices	of	PHE	enriched	catchments.	
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1.10	Project	aims		

The	primary	aim	of	this	project	was	to	determine	the	effects	of	wetting	and	drying	cycles	on	

the	mobilisation	and	bioaccessibility	of	PHEs	in	a	UK	catchment.	This	was	achieved	by:	

• Assessing	the	mobility	of	PHEs	from	a	range	of	soils	within	a	UK	catchment	under	

wetting	and	drying	cycles.		

Soils	 vary	 greatly	 in	 their	 characteristics,	 and	 therefore	 PHE	 mobilisation	 into	 pore	 and	

overlying	waters	 is	 unlikely	 to	 follow	 the	 same	 trend	 for	 each	 individual	 soil,	 resulting	 in	

heterogeneous	mobilisation	of	PHE	in	a	catchment.	The	underlying	mechanisms	driving	such	

mobility	can	be	examined	by:		

• Geochemically	characterising	changes	in	the	solid	phase	distribution	and	the	human	

accessibility	of	PHEs	before,	during	and	after	drying	and	wetting	–	a	novel	approach	

not	previously	investigated	in	detail.	

Assessing	these	changes	could	provide	useful	information	for	the	effective	management	and	

remediation	of	PHE	enriched	soils	utilised	by	human	receptors.	To	assess	the	spatial	extent	

of	PHE	mobilisation,	the	final	project	objective	was	to:		

• Predict	and	map	changes	in	PHE	bioaccessibility	in	select	catchments	under	flooding.		

• These	predictions	could	be	used	to	locate	areas	within	a	catchment	where	there	is	a	

greater	propensity	for	changes	in	PHE	availability	and	those	areas	where	the	greatest	

risk	of	mobilisation	may	occur	under	inundation.	The	outcomes	from	this	project	are	

catchment	specific	and	a	proof	of	concept	that	geochemical	tools	such	as	sequential	

extractions,	 chemometric	 modelling	 and	 bioaccessibility	 testing	 can	 be	 used	 to	

spatially	 predict	 bioaccessibility	 and	 subsequent	 flooding	 induced	 change	 in	 the	

bioaccessibility	of	PHEs.		

The	objectives	and	project	as	a	whole	are	displayed	pictorially	in	Figure	1.6.	More	specific	

aims	and	objectives	are	outlined	in	each	of	the	data	chapters.	
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Figure	1.6:	Project	overview.	
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2.	SITE	DESCRIPTION	AND	METHODOLOGY	

2.1	Introduction	

This	 chapter	 describes	 the	 study	 site	 and	 sample	 collection	 methodologies	 and	 the	

experimental	 methodologies	 used	 in	 multiple	 chapters	 along	 with	 associated	

instrumentation	and	quality	control	procedures.	Some	methodologies	only	used	in	specific	

experiments	applicable	to	one	chapter	are	described	in	the	associated	chapter.	

2.2	Site	description		

2.2.1	Catchment	overview	

The	Tyne	catchment	in	North	East	England	covers	an	area	of	approximately	2,300	km2	and	

includes	the	rivers	Allen,	Derwent,	Rede,	South	and	North	Tyne.	The	catchment	has	several	

reservoirs	supplying	water	regionally	and	which	are	used	to	regulate	river	flow	in	the	Tyne,	

Wear	and	Tees	river	systems	via	water	transfer	infrastructure.	Upper	areas	of	the	catchment	

are	remote	and	composed	of	narrow	valleys.	The	middle	catchment	is	mainly	comprised	of	

alluvial	floodplain	soils	and	used	for	agriculture.	The	lower	reaches	of	the	river	are	heavily	

urbanised	and	contain	 the	majority	of	 the	catchment’s	1	million	people	 (Tyne	Catchment	

Flood	Management	Plan,	2009).		

2.2.2	Flooding	in	the	Tyne	catchment	

The	steep	sided	upland	valleys	of	the	Tyne	catchment	can	result	in	a	flood	wave	which	travels	

down	through	the	catchment,	increasing	in	size	(Figure	2.1).	Flash	floods	tend	to	occur	in	the	

summer	months	from	localised	cells	of	extreme	rainfall	occurring	in	short	and	intense	bursts.	

For	example,	26.2mm	of	 rainfall	was	recorded	to	 fall	 in	15	minutes	 in	Alston	 (Archer	and	

Fowler,	 2015).	 The	 sudden	 increases	 in	 discharge	 (Q)	 seen	 in	 Figure	 2.1	 shows	 the	

responsiveness	of	the	upper	Tyne	catchment	to	such	rainfall	events.		

Recent	large	flood	events	have	been	recorded	in	2005,	2012	and	2015/2016.	Intense	rainfall	

(50	mm)	was	recorded	over	a	two-hour	period	in	2012,	resulting	in	the	flooding	of	homes,	

landslides	 and	 damage	 to	 highways.	 Flood	 depths	 were	 estimated	 to	 be	 between	

0.1	-	>	1.1	m	(Smith	et	al.,	2017).	The	more	recent	floods	in	2015/2016	were	considered	to	

be	the	highest	on	record	since	the	1771	(Barker	et	al.,	2016).		
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Figure	2.1:	Progress	of	the	flood	wave	through	the	Tyne	catchment.	Sourced	from	Archer	and	Fowler,	
2015.		

	

2.2.3	Underlying	geology	

The	North	and	South	Tyne	catchments	are	mainly	underlain	with	sedimentary	rocks	such	as	

sandstones,	mudstones	and	shales	from	the	Carboniferous	period.	Small	igneous	outcrops	

of	 andesite	 in	 the	North	 Tyne	 and	 dolerite	 in	 the	 South	 Tyne	 are	 also	 present.	 Areas	 of	

mineralisation	are	confined	to	the	headlands	of	the	South	Tyne,	and	in	small	areas	near	the	

North/South	Tyne	confluence	(Figure	2.2).		
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Figure	2.2:	Bedrock	geology	found	in	the	Tyne	catchment.	Sample	locations	added	for	reference.	
Data	sourced	from:	
https://map.bgs.ac.uk/arcgis/services/BGS_Detailed_Geology/MapServer/WMSServer?	

	

Figure	2.3:	Superficial	deposits	or	geology	found	in	the	Tyne	catchment.	Sample	locations	added	for	
reference.	Data	sourced	from:	
https://map.bgs.ac.uk/arcgis/services/BGS_Detailed_Geology/MapServer/WMSServer?	

	

2.2.4	Industrial	history	

The	Tyne	catchment	has	a	rich	industrial	history,	which	still	results	in	the	introduction	of	a	

suite	of	geogenic	and	anthropogenic	contaminants	such	as	metals	and	organic	substances	

into	the	river	system	despite	the	decline	in	heavy	industry.	Currently,	a	significant	source	of	

PHEs	into	the	Tyne	system	is	from	the	many	abandoned	metal	mines	found	in	the	catchment,	

particularly	in	the	rivers	Nent,	East	Allen	and	West	Allen	(Table	2.1).	The	Northern	Pennine	

ore	fields	cover	an	area	of	4,000	km2	and	are	believed	to	have	affected	12,000	km2	of	river	

basin,	including	the	Tyne	valley	resulting	in	sediment	PHE	concentrations	such	as	Pb,	As	and	

Zn	exceeding	SGV	values	(Macklin	et	al.,	1997).	Inputs	from	abandoned	metal	mines	occur	

through	both	point	and	diffuse	sources.	Mine	adits	can	drain	metal	rich	water	from	the	mines	
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directly	 into	 watercourses.	 More	 diffuse	 sources	 occur	 though	 the	 erosion	 and	

transportation	of	PHE	rich	mining	spoil	which	are	found	frequently	in	the	upper	catchments	

(Figure	2.4)	through	both	physical	and	chemical	pathways,	as	outlined	in	Sections	chapter	

1.5	and	1.6.	

Table	2.1:	Ranges	of	sediment	PHE	concentrations	in	mg	kg-1.	nr	=	not	recorded.		

River	 As	 Cd	 Cu	 Pb	 Zn	 Source	

West	Allen	 nr	 5-33	 22-40	 98-3166	 74-1131	 Aspinall	and	Macklin,	1985	

Nent	 nr	 nr	 nr	 224-15,800	 4,360-38,000	 Macklin,	1986	

South	Tyne	 nr	 nr	 nr	 15-10,490	 130-15,270	 Macklin	and	Lewin	1989	
South	Tyne	 nr	 2.3-116.9	 8-384	 410-9,798	 590-16,520	 Macklin	and	Smith,	1990	

South	Tyne	 nr	 1.8-160	 16.8-228	 2,770-13,000	 791-38,200	 Hudson-Edwards	et	al.,,	
1998	

South	Tyne	 nr	 2.6-8.0	 11.1-42.5	 615-2,340	 722-2,340	
Macklin	et	al.,,	1992;	
Hudson	Edwards	et	al.,,	
1998	

	

2.3	Sampling	locations		

2.3.1	Sample	sites		

Samples	for	the	inundation	work	in	Chapters	3,	4	and	5	were	collected	from	the	locations	

shown	in	Figure	2.4.	These	sites	were	chosen	as	they	represent	different	soil	 types	found	

within	 the	 Tyne	 catchment.	 The	 land	 uses	 that	 were	 investigated	 include	 urban,	 rough	

grassland,	improved	grassland	and	arable,	as	these	had	the	largest	percentage	land	cover	at	

a	distance	of	25	m	from	the	Tyne	catchment	watercourses	(Figures	2.5	and	2.6).	The	study	

sites	are	focused	within	the	south	Tyne	catchment	as	this	is	where	most	of	the	mining	activity	

was	 located	 (Macklin	and	Hudson-Edwards,	1997)	and	where	elevated	 levels	of	PHEs	are	

found	in	floodplain	soils.		

Sample	locations	(n=48)	for	Chapter	6	(Figure	2.4)	were	randomly	selected	from	the	EA	flood	

outline	layer	in	ArcMap	10	using	the	‘generate	random	points’	tool.	48	points	were	selected	

to	 be	 generated	 at	 random	 within	 the	 constraints	 of	 the	 flood	 outline	 layer.	 Sampling	

locations	were	generated	at	random	to	avoid	bias	in	the	selection	of	sample	sites.		

The	sampling	locations	were	generated	throughout	the	South	Tyne	catchment	until	Prudhoe,	

as	the	river	becomes	tidal	after	then	and	this	work	does	not	consider	the	implications	of	tidal	

flooding.		
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Figure	2.4:	Sampling	locations	in	the	Tyne	catchment.	
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Figure	2.5:	bar	plot	showing	the	%	cover	of	each	land	use	classification	500	m	and	25	m	from	water	
courses	within	 the	 Tyne	 catchment.	 Summary	 data	 calculated	 from	 the	 25	m	 raster	 dataset	 from	
Rowland	et	al.,	(2017).	

	

Figure	2.6:	land	use	clipped	to	a	500	m	buffer	zone	of	water	courses	within	the	Tyne	catchment.	25	m	
raster	dataset	from	Rowland	et	al.,	(2017).		

	

Soils	1	and	2	(Figure	2.4)	were	selected	on	the	basis	that	they	were	post-industrial	technosols	

and	were	situated	in	an	urban	park	area.	The	soils	are	situated	on	a	former	Lead	Arsenate	

works	and	known	to	be	enriched	in	PHEs	such	as	Pb,	As	and	Zn	(Okorie	et	al.,	2010;	Okorie	

et	al.,	2011;	McCann	et	al.,	2015).	Soil	3	was	collected	from	an	upland	peat	soil.	Whilst	this	

particular	soil	was	not	actually	within	a	floodplain	area,	its	high	organic	content	made	it	of	

interest.		

Soils	4	and	5	(Figure	2.4)	were	collected	from	the	mid	reaches	of	the	Tyne	catchment	and	

were	situated	on	agricultural	soils,	in	areas	that	have	recently	witnessed	extensive	flooding,	

the	last	of	which	was	during	the	storms	of	December	2016.	These	soils	were	chosen	as	they	

are	used	 for	 the	production	of	 food	and	 livestock,	 therefore	PHE	mobilisation	 from	these	

soils	could	create	a	pathway	from	source	to	human	receptors.	Soil	6	was	in	the	upper	reaches	



	 	 	
	

	
54	

of	the	Tyne	catchment,	on	the	River	Nent	floodplain,	downstream	from	mine	spoil	tips	and	

represented	 an	 upland	 grass	 area	 used	 for	 livestock.	 The	Nent	 is	 known	 for	 having	 poor	

ecological	and	chemical	status	for	a	series	of	parameters	used	in	the	WFD,	arising	from	PHE	

concentrations	within	the	river	(Armitage	et	al.,	2007;	Mayes	et	al.,	2009).		

The	final	two	soils,	7	and	8,	were	mine	spoil	tip	material	and	are	therefore	loosely	classed	as	

a	soil	in	this	thesis	(Figures	2.4,	2.7	and	2.8).	They	represent	sources	of	PHEs	within	the	whole	

of	the	River	Tyne	catchment	and	deemed	important	for	understanding	how	PHEs	behave	and	

can	be	a	source	to	human	receptors.		

	

Figure	2.7:	spoil	tip	material	sampled	for	sample	location	7	
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Figure	2.8:	spoil	tip	material	sampled	for	sample	location	8	

2.4	Field	sampling	techniques	

2.4.1	Soil	collection	

All	the	soil	samples	(Figure	2.4)	were	collected	using	a	soil	auger	to	a	depth	of	15	cm.	This	

depth	 was	 considered	 the	 most	 appropriate	 for	 the	 purposes	 of	 human	 exposure	 and	

interaction	with	flood	waters,	as	food	is	generally	grown	within	the	upper	layer	of	soil.	A	1	

m2	sampling	area	was	used,	with	5	samples	being	taken	(Figure	2.9)	and	bulked	together	to	

form	one	 composite	 sample	 to	 average	 out	 small	 scale	 sampling	 heterogeneity.	 Samples	

were	packed	into	pre-labelled	bags	and	returned	to	the	laboratory	for	processing.		

Figure	2.9:	diagram	of	sample	individual	sampling	locations.	Each	auger	location	is	denoted	by	a	star.	
The	five	samples	were	bulked	together	into	one	composite	sample.		

	

1	m	

1	m	
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2.4.2	Bulk	soil	preparation	

The	soils	for	chapters	3,	4,	5	and	6	were	processed	in	the	following	manner.		

Each	soil	(approx.	2	kg)	had	any	vegetation	removed	and	was	gently	broken	up	by	hand	using	

a	pestle	and	mortar,	prior	to	placement	into	foil	trays	and	left	to	air	dry	in	the	laboratory.	

The	 soils	 were	 turned	 over	 by	 hand	 to	 aid	 the	 drying	 process.	 Once	 soils	 were	 dry	 in	

appearance	and	to	the	touch,	they	were	passed	through	a	6.3	mm	sieve	with	the	intention	

of	preserving	most	of	the	natural	aggregates	and	allow	some	homogenisation	to	take	place.	

The	<6.3mm	fraction	was	removed	for	use	in	the	microcosms	and	for	further	characterisation	

work.	The	>6.3	mm	fraction	mainly	consisted	of	stones	and	plant	material	and	was	discarded.		

A	sub	sample	of	 the	<6.3	mm	fraction	was	removed	as	a	grab	sample	 (approx.	100	g)	 for	

further	characterisation	work.	This	subsample	was	oven	dried	at	105	°C	for	at	least	48	hours	

until	a	constant	weight	was	achieved.	Once	dry,	the	samples	were	ground	to	<250	µm	in	a	

rotary	ball	mill	before	being	placed	in	zip	lock	bags	ready	for	further	analytical	procedures	

such	 as	 loss	 on	 ignition	 (LOI)(Section	 2.8)	 and	 digests	 for	 pseudo-total	 element	 content	

(Section	2.11).	

2.5	Microcosm	set	up	

2.5.1	Microcosms	used	in	Chapters	3	and	4	

Microcosms	were	used	in	Chapters	4	and	5	to	determine	any	flooding	induced	changes	on	

the	solid	phase	distribution,	mobility	and	bioaccessibility	of	PHEs	in	the	eight	soils	shown	in	

Figure	2.4.	

1	L	HDPE	bottles	sourced	from	Azlon	were	used	for	the	microcosm	experiment.	Rhizons	(5	cm	

flex	from	Rhizosphere)	were	placed	into	the	bottom	of	the	bottles	at	a	45	degree	angle.	The	

microcosms	were	then	filled	with	250	g	of	the	<	6.3	mm	fraction	of	soil	–	three	replicates	

were	produced	for	each	of	the	eight	soils,	 resulting	 in	24	microcosms	 in	total.	The	plastic	

tubing	from	the	Rhizons	was	taped	to	the	top	of	the	plastic	bottle	to	prevent	the	Rhizon	from	

moving	within	the	soil	column.		
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Figure	 2.10:	 photograph	 of	 the	 microcosm	 set	 up	 showing	 the	 plastic	 tubing	 from	 the	 Rhizons	
connected	to	an	exetainer	for	porewater	extraction		

	

The	microcosms	were	carefully	filled	with	500	ml	of	Tyne	river	water	(pH	7.7),	trying	not	to	

disturb	the	underlying	soils.	The	elemental	concentrations	of	the	river	water	are	provided	in	

Table	 A.2.1.	 The	 bottles	 were	 left	 with	 their	 tops	 off	 to	 observe	 changes	 in	 ORP	 in	 an	

environment	where	 the	 overlying	water	 is	 in	 contact	with	 oxygen,	 as	 it	would	 be	 in	 the	

natural	 environment.	 The	 flooding	 and	 drying	 regimes	 for	 inundation	work	 conducted	 in	

Chapters	4	and	5	are	outlined	in	Figure	2.11.	

2.5.2.1	Microcosm	sample	collection	

Samples	were	collected	every	two	days	(Figure	2.11)	to	observe	the	patterns	of	PHE	mobility	

in	sufficient	detail,	similar	to	the	study	by	Du	Laing	et	al.,	(2007)	and	the	first	sample	was	

collected	after	24	hours,	similar	to	Frohne	et	al.,	(2011).	Both	studies	examined	the	effects	

of	changing	inundation	regimes	on	metal	mobilisation	so	were	influential	in	the	setup	of	this	

study.	

Porewater	samples	were	collected,	according	to	the	regime	outlined	in	Figure	2.11.	12	ml	

exetainers	were	attached	to	a	vacuum	pump	to	create	a	vacuum.	The	collection	of	porewater	

was	achieved	by	the	insertion	of	the	exetainers	onto	the	needles	attached	to	the	Rhizons	

(Figure	2.10).	Exetainers	were	left	in	place	for	two	days,	although	most	would	fill	in	minutes.	

Pore	waters	were	acidified	to	2	%	HNO3	and	stored	in	plastic	15	ml	falcon	tubes	at	4	°C	prior	

to	analysis	by	inductively	coupled	optical	emission	spectroscopy	(ICP-OES).		
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Overlying	water	samples	were	collected	with	a	5	ml	pipette.	The	tip	was	placed	as	close	to	

the	sediment	surface	as	possible	without	disturbing	the	soil	surface.	15	ml	was	collected	and	

filtered	through	a	Whatman	No	2	filter	paper	into	a	15	ml	falcon	tube.	Filtration	was	carried	

out	to	remove	any	sediment	that	was	also	collected.	Samples	were	acidified	to	2	%	HNO3	

acid	and	stored	at	4	°C	prior	to	analysis	by	ICP-OES.		

Soil	samples	were	collected	at	the	end	of	each	wetting	and	drying	cycle	to	determine	redox	

induced	changes	in	the	solid	phase	distribution	and	bioaccessibility	of	PHEs.	A	spatula	was	

used	to	take	a	surface	scrape	of	soil	after	the	removal	of	the	inundation	water	at	the	end	of	

each	wetting	 stage.	Water	was	 carefully	 removed	using	 a	 large	 pipette	 and	 discarded	 as	

overlying	water	 sub	 samples	 had	 already	been	 taken.	Approximately	 3	 g	 of	material	was	

collected	by	surface	scrapes	for	the	UBM	(Section	2.12)	and	the	Chemometric	Identification	

of	Substrates	and	Element	Distributions	(CISED)	methodologies	(Section	2.13).	Scrapes	were	

placed	 into	50	ml	falcon	tubes	and	centrifuged	at	3500	rpm	for	5	minutes	to	remove	any	

further	water	from	the	sample.	The	samples	were	then	immediately	subjected	to	the	UBM	

and	CISED	methodologies	(Sections	2.12	and	2.13).	Samples	were	not	dried	as	the	aim	of	this	

work	was	to	quantify	the	availability	and	solid	phase	distribution	of	PHEs	during	soil	wetting	

and	drying	cycles.	An	additional	surface	scrape	was	taken	and	weighed	prior	to	oven	drying	

at	105	°C	to	constant	dry	weight.	This	was	used	to	determine	the	moisture	content	of	each	

sample	for	moisture	correction	(Section	2.6).		

	

	

Day	1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 23	

P	 P	 P	 P	 P	 P	 C,	B,	P	 P	 P	 C,B,P	 P	

	           

25	 27	 29	 31	 33	 35	 37	 39	 41	 43	 	

P	 P	 P	 P	 P	 P	 C,B,P	 P	 P	 C,B,P	 	

           

C	=	CISED	 	        

B	=	Bioaccessibility		 	        

P	=	Porewater	 	        

	 Flooded	 	        

	 Dry	 	        
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Figure	2.11:	diagram	showing	the	time	steps	at	which	CISED,	bioaccessibility	and	porewater	samples	
were	 taken.	 Overlying	 water	 samples	 were	 only	 collected	 when	 soils	 where	 inundated	 and	 are	
discussed	in	Chapter	4.	CISED	and	bioaccessibility	data	are	discussed	in	Chapter	5.		

	

2.5.2	Catchment	scale	inundation	experiment	in	Chapter	6	

The	48	floodplain	samples	collected	throughout	the	Tyne	catchment	floodplain	(Figure	2.4)	

were	 inundated	for	a	period	of	one	week	to	provide	data	on	flooding	 induced	changes	 in	

bioaccessibility	over	a	sufficient	number	of	samples	for	spatial	mapping.		

10	g	of	ground	homogenised	sample	(section	2.4.2)	was	placed	into	a	50	ml	plastic	bottle	and	

then	inundated	with	30	ml	of	Tyne	river	water	to	form	a	1:3	solid:liquid	ratio.	The	samples	

were	left	for	a	period	of	one	week	in	an	incubator	set	to	11	°C.	This	temperature	was	selected	

as	it	isthe	average	winter	temperature	in	the	UK.	After	one	week,	the	water	was	pipetted	off	

and	the	volume	recorded.	Water	samples	were	filtered	through	a	Whatman	No	2	filter	paper	

into	 15	 ml	 falcon	 centrifuge	 tubes.	 The	 water	 samples	 were	 made	 up	 to	 a	 2	 %	 HNO3	

concentration	for	preservation	and	refrigerated	at	4	°C	until	analysis	by	ICP-OES.	The	volume	

of	overlying	water	was	subtracted	from	the	initial	volume,	to	determine	the	volume	of	pore	

water.	This	information	was	used	for	mass	balance	concentrations	to	determine	PHE	content	

in	the	solid	and	liquid	phases	during	inundation.	The	partitioning	of	PHEs	into	overlying	water	

was	determined	using	the	following:		

%	PHE	mobilised	into	overlying	water	=	(PHE	total	(mg/kg)	/	100)	*	(PHE	water	(mg/ml)*Overlying water vol (ml))	

Once	the	overlying	water	was	removed,	a	surface	scrape	of	the	remaining	10	g	of	soils	 in	

each	 microcosm	 was	 collected.	 The	 surface	 scrapes	 (approximately	 1	 g)	 from	 each	

microcosm	 were	 subjected	 to	 the	 UBM	 method	 (Section	 2.12),	 to	 determine	 flooding	

induced	changes	in	the	bioaccessibility	of	the	48	samples.	The	remaining	sample	was	dried	

to	determine	the	moisture	content	of	the	soil	to	allow	for	moisture	correction	(Section	2.6.2).		

2.6	Soil	moisture	content	

2.6.1	In	the	field	

Soil	moisture	content	was	determined	using	an	Eilkelkamp	soil	moisture	meter	connected	

to	a	Thetaprobe.	The	probe	was	inserted	into	the	soil	so	that	the	prongs	were	entirely	in	

the	soil.	Five	measurements	at	each	auger	location	(Figure	2.9)	were	taken	and	averaged.		
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2.6.2	In	the	lab		

The	moisture	content	of	each	sample	was	determined	by	measuring	 the	weight	 loss	 that	

occurs	when	a	soil	is	heated	to	105	°C	for	at	least	48	hrs	until	a	constant	weight	was	achieved.	

Each	soil	was	weighed	prior	to	and	after	drying,	the	decrease	in	weight	was	calculated	as	a	

proportion	of	the	initial	weight	and	expressed	as	a	percentage	weight	loss.	Moisture	content	

values	quoted	in	this	thesis	have	been	calculated	using	the	following	equation:	

100×
-

=
w

dw

M
MMMC 	

Where:		 MC	is	the	moisture	content	(%)	

	 	 Mw	is	the	mass	of	wet	sample	(g)	and	

	 	 Md	is	the	mass	of	dry	sample	(g)	

The	 bioaccessible	 PHE	 data	 for	 the	 wet	 samples	 in	 Chapter	 5	 and	 6	 was	 corrected	 for	

moisture	content	using	the	following	equation:	

100
1001 +

×=
MCCC 	

Where:		 C1	is	moisture	content	corrected	bioaccessible	PHE	concentration	(mg	kg-1)	

	 	 C	is	measured	bioaccessible	PHE	concentration	(mg	kg-1)	

MC	is	the	moisture	content	(%)	

All	 bioaccessible	 data	 for	 the	 wet	 test	 soils	 were	 corrected	 for	 moisture	 content	 in	

subsequent	data	interpretations	in	this	thesis.	The	same	equation	was	used	to	correct	the	

CISED	data	from	wet	soil	samples	in	Chapters	5	and	6.		

2.7	Soil	pH	

The	pH	of	each	soil	was	measured	using	a	glass	slurry	electrode	and	Orion	720A	meter.	The	

pH	meter	was	calibrated	to	4,	7	and	9.	To	10.0	g	(±	0.01	g)	of	the	<2mm	dry	sub-sample	size	

fractions	of	each	sample	25	ml	of	0.01	M	CaCl2	was	added.	The	samples	were	magnetically	

stirred	for	one	minute	and	then	left	to	settle	for	10	minutes.	Prior	to	analysis	the	samples	

were	stirred	to	reform	the	suspension.	Buffer	check	solutions	were	analysed	before	and	after	

every	ten	soil	suspensions.		
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2.8	Loss	on	ignition	(LOI)	and	particle	size	analysis	

2.8.1	LOI	

Organic	matter	may	be	estimated	rapidly	by	Loss	on	Ignition,	which	determines	the	organic	

matter	 content	 of	 soil	 by	 the	 loss	 in	weight	 of	 a	 dry	 soil	 sample	 after	 ignition	 at	 a	 high	

temperature.	 Most	 of	 the	 weight	 loss	 is	 due	 to	 oxidation	 of	 organic	 carbon	 but	 some	

additional	weight	loss	is	due	to	decomposition	of	free	carbonates	and	to	loss	of	structural	

water	from	clays.		

10	g	of	the	<250µm	subsamples	of	each	soil	was	oven	dried	at	105	°C	for	at	least	48	hours	

and	 placed	 in	 a	 desiccator	 to	 cool.	 Crucibles	 were	 weighed	 (±0.01	 g)	 and	 filled	 with	

approximately	5	g	of	sample	and	reweighed	(±0.01	g).	The	crucibles	were	placed	in	a	muffle	

furnace	 for	4.5	hrs	at	450	 °C.	Once	 the	 required	 time	period	had	elapsed,	 crucibles	were	

placed	in	a	desiccator	to	cool	before	being	reweighed	(±0.01	g).	LOI	is	calculated	using	the	

following	equation:		

!"# =

%2 −%3

%2 −%1
∗ 100	

Where:			 W1	was	the	weight	of	the	dry	empty	crucible	

	 	 W2	was	the	weight	of	the	crucible	and	oven	dry	sample	

	 	 W3	was	the	weight	of	the	crucible	and	sample	after	the	muffle	furnace		

	

2.8.2	Particle	size	analysis	

Soil	samples	from	the	<	6.3	mm	sevied	fraction	were	added	to	50	ml	plastic	sample	bottles	

to	 a	depth	of	 approximately	0.5cm	and	 topped	up	 to	1.5cm	with	distilled	water.	 2	ml	of	

dispersant	 sodium	 hexametaphosphate,	 (NaPO3)6,	 was	 added	 to	 aid	 deflocculation	 and	

samples	were	agitated	mechanically	for	30	minutes.	

A	Coulter	LS	230	laser	granulometer	was	used	to	determine	particle	sizes	from	2	to	2,000	μm	

within	each	sample.	A	magnetic	stirrer	was	used	to	create	a	vortex	ensuring	a	representative	

sample	was	obtained.	Five	measurements	were	made	of	each	sample	and	the	mean	used.	

Particle	 sizes	 were	 classified	 according	 to	 the	 Udden	 –	Wentworth	 classification	 scheme	

(Wentworth,	1922)	for	grain	size	and	are	given	as	a	percentage	volume	frequency.	

2.9	Oxidation-reduction	potential	(ORP)	

ORP	 probes	 containing	 a	 platinum	 (Pt)	 electrode	 were	 placed	 within	 the	 soils	 under	

experimentation.	The	probes	were	placed	2	cm	from	the	bottom	of	the	soil	column	in	the	
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microcosm	 experiments	 and	 connected	 to	 a	 pCE-PHD	 1	 data	 logger.	 An	 AgCl	 3M	 KCl	

reference	electrode	was	also	connected	to	the	data	logger	and	placed	in	contact	with	the	

soil	surface	to	provide	a	fixed	chemical	reference	potential.	The	difference	between	the	two	

potentials	was	displayed	by	the	data	logger	in	mV.	The	reference	electrode	has	a	potential	

of	+210	mV	versus	 the	Standard	Hydrogen	Electrode,	so	ORP	was	calculated	as	 the	value	

displayed	on	the	data	logger	+	210	mV.		

2.10	X-Ray	Diffraction	analysis		

X-Ray	 diffraction	 (XRD)	 is	 a	 non-destructive	 technique	 used	 to	 identify	 and	 quantify	 the	

mineralogy	of	rocks,	soils	and	sediments.	XRD	analysis	for	this	work	was	conducted	at	the	

British	Geological	Survey	(BGS)	in	Keyworth.		

2.10.1	Sample	prep	

15	g	of	the	<250	µm	fraction	was	wet	micronised	with	acetone	for	10	minutes	and	then	dried	

at	55	°C,	disaggregated	and	back	loaded	into	standard	aluminium	sample	holders.	

2.10.2	Instrumentation	

A	Phillips	PW1700	series	diffractometer	with	cobalt	target	tube	operating	at	45kV	and	40mA	

was	used	for	the	XRD	analysis.	The	soil	samples	were	scanned	from	3-75°2	 theta	at	0.70°2	

theta	per	minute.	The	data	were	analysed	using	PANalytical	X’pert	software	that	was	coupled	

to	an	International	Centre	for	Diffraction	Data	(ICDD)	database	running	on	a	dedicated	PC	

system,	for	interpretation	purposes.			

2.11	Pseudo-totals	metal	content	by	microwave	digestion	

0.250	g	(±0.002	g)	of	<250	µm	of	soil	was	weighed	out	into	Teflon	tubes	prior	to	the	addition	

of	2	ml	of	concentrated	HNO3.	The	Teflon	tubes	were	then	loaded	into	a	MARS	microwave	

(CEM	Corporation).	A	pre-set	programme	was	selected	that	is	suitable	for	the	digestion	of	

soils.	Once	the	programme	was	completed,	the	soils	were	filtered	through	a	Whatman	No	2	

filter	paper	with	 the	addition	of	deionised	water.	 Samples	were	made	up	 to	100	ml	with	

deionised	water	resulting	in	a	matrix	of	2	%	HNO3.	Samples	were	then	stored	in	a	refrigerator	

prior	to	analysis	by	ICP-OES.		

2.12	Unified	BARGE	method		

2.12.1	Background	

The	 Bioaccessibility	 Research	 Group	 of	 Europe	 (BARGE)	 developed	 the	 Unified	 BARGE	

Method	(UBM)	to	harmonise	the	use	of	bioaccessibility	testing.	The	Dutch	Rijksinstituut	voor	
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Volksgezondheid	 en	 Milieu	 (RIVM)	 methodology	 was	 determined	 to	 be	 the	 most	

representative	 of	 the	 human	 gastrointestinal	 tract	 and	 was	 adapted	 by	 BARGE	 for	 the	

purposes	of	repeatability	and	reproducibility.	An	inter-laboratory	comparison	exercise	was	

undertaken	to	test	the	new	methodology	and	ensure	consistent	results,	which	are	published	

in	Wragg	et	al.,	 (2011).	The	UBM	was	selected	 for	 this	work	because	there	are	published	

studies	validating	the	UBM	against	in	vivo	studies	(Denys	et	al.,	2012).	Additionally,	there	are	

published	studies	that	provide	reference	data	using	the	BGS	102	reference	soil	for	quality	

control	purposes.		

2.12.2	Soil	preparation	

The	UBM	was	used	to	determine	the	bioaccessibility	of	metals	within	each	of	the	soils	and	

sediments	 sampled.	 Many	 studies	 use	 the	 <250	 µm	 fraction	 of	 the	 soil	 to	 perform	

bioaccessibility	tests	because,	as	described	in	chapter	1,	it	poses	the	largest	threat	to	human	

health	through	adherence	to	hands,	ingestion	and	inhalation.	In	this	thesis,	the	samples	used	

were	<650	µm	and	when	collected	wet	from	the	inundation	experiments	it	was	not	possible	

to	separate	out	 the	<250	µm	fraction.	However,	 larger	particles	will	 still	adhere	 to	hands	

when	 wet,	 therefore	 this	 adaptation	 to	 the	 method	 was	 considered	 appropriate	 work	

conducted	in	this	thesis.	A	subsample	of	each	soil	at	each	time	step	was	dried	to	determine	

and	correct	for	the	moisture	content	of	each	soil	(Section	2.6).	This	allowed	for	a	comparison	

between	bioaccessibility	at	different	points	drying	the	wetting	and	drying	regime.		

2.12.3	Preparation	of	digestive	fluids	

Four	digestive	solutions	are	used	 in	 the	UBM:	saliva,	gastric	 fluid,	duodenal	 fluid	and	bile	

which	are	each	made	by	the	combination	of	an	organic	and	inorganic	solution.	37%	HCl	or	

1M	NaOH	were	used	to	amend	the	pH	if	necessary.	The	fluids	were	kept	in	a	37	°C	water	

bath	 for	 an	 hour	 prior	 to	 starting	 the	UBM	procedure	 to	 allow	 them	 to	 thoroughly	 heat	

through.	

2.12.4	Analytical	method	

The	 procedure	 was	 carried	 out	 according	 to	 the	 schematic	 in	 Figure	 2.12	 and	 has	 been	

described	in	full	in	other	publications	(Wragg	et	al.,	2009	and	Roussel	et	al.,	2010).	The	UBM	

was	 conducted	 at	 a	 temperature	 of	 37	 °C	 over	 three	 stages	 (the	 mouth,	 stomach	 and	

intestinal	 tract)	 to	mimic	 conditions	 in	 the	 human	 body.	 The	mouth,	 stomach	 and	 small	

intestinal	cavity	stages	were	kept	at	pH	1.2	and	intestinal	tract	stage	at	pH	6.3.	The	test	is	

meant	to	be	representative	of	the	body	 in	a	fasting	condition	which	should	provide	more	

conservative	results.	Two	test	extracts	were	produced	at	the	end:	the	gastric	phase	which	
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consists	of	the	mouth	and	stomach	compartments,	and	the	 intestinal	phase,	consisting	of	

the	small	and	large	intestinal	phases.		

0.3	g	(±	0.001	g)	of	soil	was	accurately	weighed	out	and	placed	into	a	labelled	50	ml	Beckman	

polycarbonate	tube	with	a	screw	on	cap.	4.5	ml	of	saliva	was	added	by	pipette	and	inverted	

by	hand	for	approximately	10	seconds	before	the	addition	of	6.75	ml	of	gastric	 fluid.	The	

target	 pH	 is	 1.20	 (±0.05)	 and	was	 adjusted	 by	 the	 addition	 of	 37	%	HCL	 or	 1M	NaOH	 as	

required.	Samples	were	 inverted	again	by	hand	for	10	seconds	before	rechecking	the	pH.	

This	process	was	repeated	until	the	pH	remained	stable.	Once	a	stable	pH	was	reached,	the	

tubes	were	then	placed	into	a	rotator	water	bath	at	37	°C	for	1	hour.	Once	the	tubes	were	

removed,	the	pH	was	checked	and	if	pH	<1.50	then	the	procedure	was	repeated	from	the	

beginning.	 If	pH	was	>1.50	 then	 the	gastric	only	 samples	were	centrifuged	at	4500	g	and	

supernatant	 removed.	 The	 supernatant	 was	 acidified	 to	 2	 %	 HNO3	 with	 500	 µL	 of	

concentrated	HNO3	and	kept	refrigerated	prior	to	analysis	by	ICP-OES.		

The	gastro	intestinal	samples	received	13.5	ml	of	duodenal	fluid	and	4.5	ml	of	bile	by	pipette	

before	inversion	for	10	seconds	by	hand.	The	pH	should	be	pH	6.5	(±0.05)	and	was	adjusted	

by	addition	of	37	%	HCL	or	1M	NaOH	as	required.	The	tubes	were	then	placed	into	a	rotator	

at	37	°C	for	4	hours.	Once	removed,	the	final	pH	was	noted	and	samples	were	centrifuged	

for	15	minutes	at	4500	g.	 the	supernatant	was	removed	by	pipette	and	samples	acidified	

with	1	ml	of	HNO3	before	refrigeration.		

	



	 	 	
	

	
65	

	

Figure	2.12:	schematic	of	the	UBM	method,	after	Wragg	et	al.,	(2011).	

	

2.12.5	Data	analysis		

Data	 from	the	 ICP-OES	analysis	were	corrected	 for	moisture	content	using	the	 formula	 in	

Section	2.6.	 Bioaccessibility	was	 expressed	 in	mg	of	 bioaccessible	 content	per	 kg	of	 solid	

matrix.	A	bioaccessible	%	of	an	element	was	also	expressed	using	the	following	equation:		

,-./00122-341	% =
789:;9<=><?89	8@	A?8>::;B?AC;	D;<>C	(DF	GFHI)

789:;9<=><?89	8@	<8<>C	D;<>C	?9	B>DKC;	(DF	GFHI)

	*100	
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2.13	The	Chemometric	Identification	of	Substrates	and	Element	Distributions	
(CISED)	

2.13.1	Introduction	

The	CISED	method	 is	 a	non-specific	 sequential	extraction	procedure	 that	used	a	 range	of	

extractants	ranging	from	de-ionised	water	to	5	M	aqua	regia.	The	elemental	data	from	each	

extractant	are	then	subjected	to	a	chemometric	mixture	resolution	algorithm	to	determine	

the	number	and	composition	of	physio-chemical	components	in	soil	(Section	2.15).		

This	method	was	chosen	because	it	addressed	some	issues	that	arise	with	other	sequential	

extraction	 techniques.	 Firstly,	 the	 method	 can	 be	 completed	 in	 8	 hours,	 which	 was	

advantageous	 for	 the	 inundation	 work	 carried	 out	 in	 this	 study,	 as	 samples	 had	 to	 be	

subjected	 to	 the	 CISED	method	 immediately	 after	 being	 collected.	Many	 techniques	 also	

have	a	high	salt	content	in	the	reagents,	which	can	be	problematic	when	analysing	extracts	

by	ICP-OES,	as	they	can	block	the	nebulizer(Cave	et	al.,	2004).	The	simple	acid	extractants	

used	in	the	CISED	method	means	this	does	not	occur.		

2.13.2	Analytical	method		

Aqua	 regia	was	made	 to	 the	 following	 concentrations	 using	 analytical	 grade	 reagents,	 as	

shown	in	Table	2.2.	Deionised	water	was	sourced	from	a	Duo™	water	purification	system.		

2	g	 (±0.02	g)	of	 soil	was	weighed	out	 into	50	ml	plastic	 falcon	centrifuge	 tubes.	10	ml	of	

extractant	was	added	(step	1)	before	the	tubes	were	rotated	for	10	minutes	at	approximately	

30	rpm.	The	tubes	were	then	centrifuged	for	10	minutes	at	4500	G.	Upon	completion,	the	

extracts	were	carefully	removed	by	a	pipette	and	stored	in	15	ml	plastic	falcon	centrifuge	

tubes	prior	to	analysis	by	ICP-OES.	Volumes	of	each	extract	were	recorded.	The	process	was	

repeated	for	the	remaining	steps	in	Table	2.2,	producing	14	extracts	for	each	sample.	Extracts	

were	stored	at	4	°C.		
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Table	2.2:	Concentration	and	volume	of	aqua	regia	and	H202	at	each	step	

Step	
Extractant	concentration	

(Aqua	Regia)	 Volume	(ml)	Added	
Volume	of	H2O2	(ml)	

Added	

1	and	2	 DI	 10	 -	

3	and	4	 0.01	M	 10	 -	

5	and	6	 0.05	M	 10	 -	

7	and	8	 0.1	M	 9.75	 0.25	

9	and	10	 0.5	M	 9.50	 0.50	

11	and	12	 1.0	M	 9.25	 0.75	

13	and	14	 5.0	M	 9.00	 1.00	

	

2.14	Elemental	quantification	of	total	digest,	UBM	and	CISED	solutions	using	ICP-
OES		

2.14.1	Instrumentation	

Major	and	trace	elemental	concentrations	were	determined	using	an	Thermo	Scientific	iCAP	

6300	 series	 ICP	 spectrometer	 coupled	 to	 a	 240	 sample	 autochanger.	 The	 equipment	

contained	a	high	energy	Echelle	cross	dispersion	optical	system	with	a	wavelength	coverage	

of	166	to	847	nm	and	a	high	performance	solid	state	Charge	Injection	Device	(CID)	camera	

system.	iTEVA	operating	software	provides	full	control	of	the	instrument.			

2.14.2	Analytical	method	

Approximately	5	ml	of	sample	was	used	by	the	instrument	for	analysis.	The	CISED	extractions	

were	 collated	 by	 matrix	 type,	 for	 example,	 all	 0.01	 M	 samples	 were	 used	 in	 one	 run.	

Respective	standards	were	made	for	each	matrix.	Standards	contained	Al,	As,	Ba,	Ca,	Cd,	Co,	

Cr,	Cu,	Fe,	K,	Li,	Mg,	Mn,	Na,	Ni,	P,	Pb,	S,	Si,	Sr,	V	and	Zn	ranging	from	50	to	10,000	µg	L-1.	The	

standards	were	made	within	24	hours	of	use	and	kept	 refrigerated	until	needed.	The	 full	

range	of	standards	were	analysed	at	the	start	and	end	of	each	run	to	check	for	drift.	Random	

standards	and	blanks,	subsampled	from	the	standards,	were	analysed	at	intervals	of	every	

10	samples	during	the	run	for	the	purposes	of	quality	control.	Outputs	were	converted	to	mg	

kg-1	using	the	following	equation:		
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L = M	(

N

O
)	

Where:		

M	is	the	element	concertation	in	mg	kg-1		

C	is	the	element	concentration	in	the	extract	(mg	L-1)	

V	is	the	sample	volume	in	ml	

O	is	the	mass	of	the	sample	(g)	

	

2.15	Data	manipulation	

2.15.1	Self-modelling	mixture	resolution	algorithm	(SMMR)		

Soils	are	made	up	from	a	mixture	of	components	originating	from	the	underlying	geology,	

biogenic	inputs,	river	and	wind	deposited	material	and	anthropogenic	inputs	(Rowell,	1994).	

To	 understand	 the	 fate	 and	 behaviour	 of	 PHEs,	 it	 is	 first	 important	 to	 understand	which	

components	are	present	in	soil	and	the	distribution	of	PHEs	within	each	of	the	components.	

Components	are	made	up	of	various	elements,	and	as	a	result,	they	have	unique	chemical	

signatures.	For	example,	a	Fe-oxide	component	will	mainly	consist	of	Fe.		

The	 application	 of	 a	 mixture	 resolution	 algorithm,	 described	 by	 Cave	 et	 al.,	 (2004),	 can	

determine	 the	 number	 and	 composition	 of	 components	 present	within	 each	 soil	 studied	

using	multivariate	techniques.	The	SMMR	essentially	unmixes	a	mixture	of	elemental	data,	

to	 determine	 the	 soil	 components	 present.	 The	multi	 element	 data	were	 entered	 into	 a	

matrix	that	had	the	extractable	solids	for	23	elements	over	the	14	extracts.	Where	data	were	

below	the	reporting	limit,	the	value	was	replaced	by	that	of	half	the	reporting	limit.	Elements	

were	removed	from	the	input	when	75	%	of	their	values	were	below	the	reporting	limit.	

The	algorithm	is	programmed	into	MATLAB™	and	can	be	run	in	a	complied	version	of	the	

software	 as	 described	 by	 Cave	 et	 al.,	 (2004).	 The	 algorithm	 generates	 characterization	

proportion	and	composition	matrices,	as	shown	in	Figure	2.13.	Matrix	A	is	the	concentration	

data	for	the	elements	of	interest	in	each	of	the	14	extracts	from	the	CISED	method	(Section	

2.13).	Once	these	data	are	subjected	to	the	algorithm,	the	proportion	of	each	component	

leached	(matrix	B)	and	the	concentration	of	each	component	(matrix	C)	are	derived.		
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Figure	2.13:	A	simplified	schematic	of	the	CISED	algorithm		

	

Matrix	B	is	plotted	as	a	series	of	extractograms	(Figure	2.16)	showing	the	extracted	solids	for	

each	component	over	the	14	steps	shown	in	Table	2.2.	Matrix	C	shows	the	percentage	of	

each	 element	 associated	with	 each	 component.	 For	 example,	 a	 Fe-oxide	 component	will	

likely	have	a	high	(>50	%)	percentage	of	Fe.	Wragg	(2005)	summarised	the	algorithm	steps	

from	 the	 work	 done	 by	 Cave	 et	 al.,	 2004.	 The	 summarised	 steps	 by	 Wragg	 (2005)	 are	

reported	below:		

1. The	 extraction	 matrix	 A	 is	 scaled	 to	 its	 maximum	 and	 subjected	 to	 principal	

component	analysis	(PCA)	to	estimate	the	number	of	components	present.	This	 is	

implemented	within	the	MATLAB™	programme.		

2. Varimax	rotation	(within	MATLAB™)	of	the	scores	from	the	PCA	(0-1)	gives	the	first	

approximation	of	the	shape	of	each	of	the	extraction	profiles	of	each	component.		

3. To	estimate	the	relative	proportion	of	each	of	the	leached	components	needed	to	

make	 up	 the	 leachate	 concentration	 data	 (matrix	 A),	 a	multiple	 linear	 regression	

(MLR)	 is	carried	out	within	MATLAB™.	The	dependant	variable	 is	 the	sum	of	each	

row	in	the	leachate	concentration	matrix	(scaled	to	1)	and	the	independent	variable	

is	the	scaled	score	matrix	from	the	PCA	in	stage	2.	The	columns	of	the	scaled	score	

matrix	are	multiplied	by	their	corresponding	MLR	coefficients,	creating	a	new	matrix	

that	 has	 its	 rows	 scaled	 to	 1.	 This	 new	 matrix	 is	 a	 first	 approximation	 of	 the	

proportion	of	the	extraction	profiles	(scaled	matrix	B).		

4. The	 composition	 of	 each	 component	 (matrix	 C)	 can	 be	 calculated	 as	 a	 first	

approximation,	once	both	scaled	data	matrix	A	and	B	are	known,	using	the	equation	

A	=	BC,�or	in	its	pseudoinverse	form	C	=AB’[B’B]-1,	where	B’	is	the	transpose	of	B.		

5. Because	in	the	first	approximation	of	matrix	C	some	values	are	negative	values	they	

are	 corrected	 to	 0	 and	 a	 second	 approximation	 of	 matrix	 B	 is	 required	 within	

MATLAB™	 using	 the	 equation	 B	 =	 [C’C-1]	 C’A.	 This	 second	 approximation	 and	

subsequent	iterations	are	used	to	refine	the	approximation	of	the	proportions	and	
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compositions	of	each	of	the	components	until	no	further	significant	changes	to	the	

proportions	or	compositions	information	for	each	component	is	made		

6. At	this	stage	an	 input	 from	the	operator,	 to	 interpret	the	number	of	components	

determined	by	the	CISED	algorithm	to	enable	completion	of	the	mixture	resolution	

process,	 is	 required.	 The	 algorithm	 provides	 a	 graphical	 plot	 (an	 iteration	 and	

average	 fit	 plot),	 an	 example	 of	 which	 is	 shown	 in	 Figure	 2.14.	 This	 shows,	 the	

modelled	number	of	components	present	in	the	extracted	soil	sample	and	how	many	

iterations	of	the	data	set	were	carried	out	to	achieve	a	close	fit	between	the	actual	

and	modelled	data.	The	modelled	number	of	components	generally	ranges	from	2-

15,	with	differing	degrees	of	closeness	of	fit.		

7. The	iteration	and	average	fit	plot	(Figure	2.14)	is	split	into	two	halves.	The	upper	half	

identifies	 the	number	of	 iterations	 completed	by	 the	 algorithm	 to	determine	 the	

number	of	components	present	and	the	fit	of	the	modelled	data	compared	to	the	

actual	 input	data	for	that	number	of	components.	The	lowest	point	on	the	fit	 line	

gives	the	first	indication	of	the	number	of	acid	extractable	components	present	in	

the	test	soil	that	gives	a	good	fit	between	the	actual	and	modelled	data.		

8. The	 lower	half	 of	 the	 iteration	 and	average	 fit	 plot	 (Figure	2.14)	 summarises	 the	

average	difference	between	the	actual	extraction	and	the	modelled	extraction	data	

using	Bayesian	 information	criterion	(BIC)	and	Akaike	 information	criterion	(AICc).	

The	lowest	point	on	this	plot	tells	the	operator	how	many	components	are	present	

in	the	test	soil.	This	value	is	then	required	as	an	input	 into	the	mixture	resolution	

algorithm	implemented	by	MATLAB™.		

9. Once	the	number	of	components,	as	determined	using	the	iteration	and	average	fit	

plot,	 is	 inputted	 into	 the	 mixture	 resolution	 algorithm,	 the	 final	 component	

composition,	 the	 concentration	 of	 each	 component	 in	 each	 stage	 of	 the	 CISED	

extraction	(profile	concentration	data)	and	information	on	the	distribution	of	each	

of	the	 input	elements	are	calculated	and	provided	as	graphical	or	tabular	outputs	

resulting	in	completion	of	the	mixture	resolution	algorithm.		

The	application	of	the	CISED	algorithm	generates	several	outputs	that	report	the	amounts	of	

extractable	solids	in	each	component	at	each	extraction	point,	the	proportion	of	major	and	

trace	elements	associated	with	each	component	(%)	and	the	distribution	of	each	element	

within	each	component	(mg	kg-1).	Modelled	and	actual	data	are	displayed	in	plots	to	give	an	

indication	of	model	fit.	
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The	number	of	 components	 to	be	used	 is	 decided	using	AICc	 scores.	 The	 lowest	 score	 is	

chosen.	 For	 example,	 the	 most	 parsimonious	 model	 for	 Figure	 2.14	 would	 use	 10	

components.	

	

	

Figure	2.14:	AICc	to	determine	the	number	of	components	used	within	the	model	

	

The	model	performance	is	assessed	using	the	model	fit	plots,	as	shown	below	in	Figure	2.15.		

	

Figure	 2.15:	 plots	 showing	 the	 actual	 data	 plotted	 against	 the	 modelled	 data,	 to	 assess	 model	
performance	and	fit.		
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The	component	extraction	profile	and	distribution	plots	are	used	for	aiding	the	identification	

of	 each	 component.	 Component	 identification	 is	 done	 using	 the	 plots	 in	 Figure	 2.16,	 in	

conjunction	with	 information	 on	 land	 use,	mineralogy	 (from	 XRD	 data	 in	 this	 study)	 and	

underlying	 geology.	 The	 extraction	 profile	 and	 distribution	 plots	 can	 portray	 information	

about	each	component.	For	example,	a	component	that	is	mainly	composed	of	Al	and	Fe,	

such	 as	 that	 below,	 and	 has	 a	 late	 extraction	 profile	 where	 the	 majority	 of	 solids	 are	

extracted	over	the	higher	acid	concentrations,	can	be	identified	as	an	Al-Fe	oxide.	Extraction	

profiles	can	be	 indicative	of	 the	reactivity	and	availability	of	a	component,	as	more	 labile	

components	will	be	extracted	over	lower	acid	strengths	then	less	available	components.		

	

Figure	2.16:	extraction	profile	(left)	and	composition	plot	(right)	

	

Finally,	 the	 distribution	 plots	 give	 an	 indication	 of	 the	 elemental	 association	 with	 each	

component.	 For	 example,	 Figure	 2.17	 below	 shows	 the	 distribution	 of	 As	 in	 each	 of	 the	

modelled	 components.	 Elements	 that	 have	 an	 error	 bar	 intersecting	 the	 y	 axis	 have	

uncertainty	associated	with	the	component	that	element	originates	from.		
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Figure	2.17	Arsenic	distribution	plot	generated	using	the	CISED	SMMR	

	

2.16	Quality	Control		

2.19.1	Sample	analysis		

A	set	of	8	standards	ranging	from	50	to	10,000	µg	L-1	were	run	at	the	start	and	end	of	each	

set	of	samples.	This	was	done	to	determine	if	any	drift	in	the	measurements	by	the	ICP-OES	

were	present	during	sample	analysis.	Standards	and	blanks	were	also	placed	after	every	10	

samples	in	the	auto-changer.		

2.19.2	Blanks	

Blanks	samples	were	used	in	the	total	digest,	UBM	and	CISED	procedures	to	assess	for	any	

contamination	of	equipment.	Samples	analysed	in	this	study	were	all	within	2	times	the	LOD	

values	shown	within	Table	2.3.		

LOD	 values	 were	 determined	 by	 analysing	 eight	 replicates	 of	 a	 standard	 of	 known	

concentration.	The	LOD	values	is	defined	as	the	minimum	concentration	of	a	substance	that	

can	be	measured	and	reported	with	99%	confidence	that	the	analyte	concentration	is	greater	

than	zero	and	is	determined	from	analysis	of	a	sample	in	a	given	matrix.	LOD	values	were	

calculated	using	the	following	equation:		

LOD	=	(STDEV(A:B)*2.998)	

A:B	refers	to	the	range	of	concentrations	from	the	ICP-OES	and	2.998	refers	to	the	t	

statistic	for	the	number	of	standards	run.		
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Table	2.3:		University	of	Stirling	ICP-OES	limits	of	detection	(µg	l-1)		

Sample	ID	 Al	 As	 B	 Ba	 Ca	 Cd	 Co	 Cr	 Cu	 Fe	 K	 Li	

LOD	(µg	l-1)	 3.52	 3.40	 0.33	 0.12	 13.69	 0.19	 0.28	 0.70	 0.71	 2.63	 9.83	 13.63	

	 	 	 	 	 	 	 	 	 	 	 	 	
Sample	ID	 Mg	 Mn	 Mo	 Na	 Ni	 P	 Pb	 S	 Si	 Sr	 V	 Zn	

LOD	(µg	l-1)	 1.46	 0.67	 0.58	 5.23	 5.39	 2.58	 2.98	 18.73	 7.17	 0.70	 0.93	 2.43	

	

2.19.3	Reference	materials	

The	certified	reference	material	‘Reference	Material	No.	142	R’	from	the	Community	Bureau	

of	Reference	was	used	during	the	pseudo-total	digest	procedures.	The	reference	material	

provides	reproducible	pseudo-total	concentrations	for	eight	elements	to	verify	the	digestion	

procedure	performance.	All	values	in	this	study	were	within	the	tolerated	limits	of	the	CRM.	

To	determine	the	accuracy	of	the	UBM	results,	a	guidance	material	(BGS	102)	was	used.	BGS	

102	is	a	homogenised	ferritic	brown	earth	soil	and	is	described	as	“naturally	contaminated”,	

with	elevated	PHEs	such	as	Pb	and	As	originating	from	local	geology	(Wragg,	2009).		

BGS	102	has	been	well	documented	by	Hamilton	et	al.,	(2015)	which	provides	reproducible	

concentrations	 for	55	elements.	Currently	 there	are	no	certified	reference	soils	 for	use	 in	

bioaccessibility	 studies,	 only	 guidance	 materials,	 most	 of	 which	 only	 provide	 the	

bioaccessible	fractions	for	a	small	number	of	PHEs.	BGS	102	was	selected	because	it	had	the	

widest	range	of	reproducible	values	for	both	the	gastric	and	gastrointestinal	phases	used	by	

the	UBM.	The	total	elemental	concentrations	of	BGS	102	are	documented	in	its	certificate	of	

analysis.	The	data	below	in	Figures	2.18	and	2.19	show	the	BGS	102	concentrations	for	As	

and	Pb,	and	compare	them	to	the	guidance	concentrations	found	in	the	BGS	102	certificate	

of	analysis	(Wragg,	2009).	Arsenic	data	were	within	the	threshold	limits.	One	value	of	Pb	was	

out	with	the	tolerable	limit.	As	it	was	not	possible	to	repeat	the	UBM	on	these	samples,	the	

Pb	data	were	treated	with	caution.				
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Figure	2.18:	BGS	102	UBM	data	(gastrointestinal)	for	As	from	this	work	(n=4).	The	orange	line	indicates	
the	guidance	concentration	 for	Arsenic	as	per	 the	BGS	certificate	of	analysis.	The	dotted	 red	 lines	
indicate	the	confidence	intervals	(1	S.D).		

	

	

Figure	2.19:	BGS	102	UBM	data	(gastric)	for	Pb	from	this	work	(n=4).	The	orange	line	indicates	the	
guidance	concentration	for	Pb	as	per	the	BGS	certificate	of	analysis.	The	dotted	red	lines	indicate	the	
confidence	intervals	(1	S.D).		
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3.	CHARACTERISATION	OF	POTENTIALLY	HARMFUL	ELEMENTS	
FROM	A	SELECTION	OF	SOILS	WITHIN	THE	TYNE	CATCHMENT	
WITH	REFERENCE	TO	HUMAN	HEALTH 

3.1	Introduction	

Soils	 can	 act	 as	 a	 sink	 and	 source	 for	 environmental	 contaminants	 originating	 from	both	

geogenic	and	anthropogenic	sources	such	as	industrial	wastes,	agriculture,	power	generation	

from	coal	combustion,	vehicle	emissions	and	metal	ore	mining	(Caboche	et	al.,	2010;	Reis	et	

al.,	2014;	Wragg	et	al.,	2012;	Cox	et	al.,	2013).	The	UK’s	history	of	metal	mining	has	resulted	

in	 areas	 of	 disused	 mine	 workings	 enriched	 with	 metals	 and	 metalloids,	 which	 can	 be	

mobilised	 chemically	 and	 physically	 throughout	 a	 catchment	 via	 flooding	 (Alloway	 and	

Davies,	1971;	Geeson	et	al.,	1998;	Smith	et	al.,	2009;	Foulds	et	al.,	2014).	These	materials	

can	be	introduced	into	river	systems	by	processes	such	as	erosion	and	surface	run	off	(Dennis	

et	al.,	2003;	Foulds	et	al.,	2014).	As	rivers	are	effective	dispersers	of	eroded	material,	they	

can	therefore	move	significant	quantities	of	potentially	harmful	elements	(PHEs)	throughout	

the	catchment,	introducing	them	to	floodplain	soils	via	deposition	during	periods	of	high	flow	

(Dennis	et	al.,	2003;	Macklin	et	al.,	2006;	Foulds	et	al.,	2014).	The	presence	of	PHE	enriched	

sediment	on	floodplain	soils	can	have	ecotoxicological	consequences	for	crops,	livestock	and	

ultimately	humans	through	acute	or	chronic	poisoning	if	concentrations	are	high	enough	or	

through	 long	exposure	 times.	Direct	 source-receptor	pathways	 through	 the	 ingestion	and	

inhalation	of	PHE	enriched	soils	and	sediments	can	occur	as	a	result	of	our	interactions	with	

soil	for	recreation,	work	and	the	production	of	foodstuffs	(Albering	et	al.,	1999;	Wijnhoven	

et	 al.,	 2006;	 Roy	 and	McDonald.	 2015).	 For	 example,	 evidence	 has	 shown	 that	 livestock	

receiving	 foodstuffs	 grown	on	a	PHE	 contaminated	 floodplain	 resulted	 in	 lead	 (Pb)	blood	

poisoning	and	livestock	mortality	(Foulds	et	al.,	2014).		

When	considering	source-receptor	pathways,	characterising	the	solid	phase	distribution	of	

PHEs	is	important	for	understanding	their	availability,	as	only	the	bioavailable	fraction	of	a	

soil	is	taken	up	by	a	receptor	following	solubilisation	after	ingestion,	inhalation	and	dermal	

contact	(Cox	et	al.,	2013).	Bioaccessibility	is	defined	in	Section	1.8	as	the	fraction	of	a	PHE	

that	is	dissolved	into	gastrointestinal	fluid.	This	measure	of	PHE	availability	may	be	a	more	

appropriate	 way	 of	 assessing	 the	 health	 risks	 associated	 with	 ingestion	 of	 PHE	 enriched	

material	compared	to	the	use	of	the	pseudototal	concentration	of	a	PHE	(Wragg	et	al.,	2011).	

This	is	because	bioaccessibility	testing	provides	a	more	realistic	estimate	of	PHE	content	that	

is	 potentially	 available	 for	 uptake	 across	 the	 cell	 wall,	 as	 opposed	 to	 using	 pseudo-total	
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concentrations.	Understanding	 the	 relationships	 between	 the	 pseudo-total	 content,	 solid	

phase	distribution	and	bioaccessibility	of	PHEs	can	provide	the	essential	knowledge	needed	

to	underpin	decision-making	processes	 involved	with	contaminated	 land	remediation	and	

development,	as	well	as	determining	the	risks	associated	with	PHE	enriched	material	in	flood	

prone	areas.		

Exposure	to	soils	and	sediments	exceeding	Generic	Assessment	Criteria	(GACs)	such	as	those	

outlined	in	Table	1.1,	may	pose	a	risk	to	human	health.	Category	4	Screening	Levels	(C4SLs)	

or	 Suitable	 4	 Use	 Levels	 (S4ULs)	 are	 health	 based	 generic	 assessment	 criteria	 (GACs)	

developed	for	the	Department	for	Environment,	Food	and	Rural	Affairs	(Defra)	by	CL:AIRE	

and	Land	Quality	Management	LTD	respectively.	GACs	are	screening	criteria	that	have	been	

created	using	the	Contaminated	Land	Exposure	Assessment	(CLEA)	tool	(v1.06)	and	can	be	

used	 to	 determine	 whether	 long-term	 risks	 to	 humans	 from	 soil	 PHEs	 may	 occur,	 and	

whether	further	site	investigations	need	to	be	conducted	with	respect	to	human	health	risk	

assessment	 (CL:AIRE,	 2010).	 They	 are	 calculated	 using	 total	 concentrations,	 with	 the	

assumption	that	a	PHE	is	100	%	bioaccessible,	except	for	lead,	with	is	assumed	to	be	60	%	

bioaccessible.		

The	aim	of	this	chapter	is	to	assess	the	role	that	the	solid	phase	distribution	of	PHEs	has	on	

their	 bioaccessibility	 in	 a	 range	 of	 soil	 types	 from	 the	 Tyne	 catchment	with	 reference	 to	

human	exposure,	and	thus	providing	new	knowledge	of	geochemical	controls	on	PHEs	within	

certain	soils	within	the	Tyne	catchment.	This	chapter	also	provides	pre-inundation	data	for	

the	soils	referred	to	in	Chapters	4	and	5,	to	aid	interpretation	of	flood	induced	changes	on	

PHE	bioaccessibility	and	mobility.	The	aim	is	broken	down	into	the	following	objectives:			

• To	characterise	the	bioaccessibility	and	solid	phase	distribution	of	a	selection	of	PHEs:	

Arsenic	(As),	Cadmium	(Cd),	Copper	(Cu),	Lead	(Pb)	and	Zinc	(Zn)	using	the	BARGE	UBM	

gastro-intestinal	 extraction	 and	 a	 non-specific	 sequential	 extraction	 process	 to	

determine	the	geochemical	fractionation	of	PHEs	for	the	soils	under	investigation		

• To	compare	PHE	concentrations	with	GACs	to	determine	their	hazard	to	human	health	

• To	determine	which	solid	phases	are	the	source	of	the	bioaccessible	PHEs	in	soils	

3.2	Methods	

A	 full	 site	 description	 and	 justification	 for	 sample	 site	 locations	 along	with	 the	 analytical	

methods	applied	to	the	soils	are	given	in	Section	2.2.	Table	3.1	provides	a	brief	overview	of	

the	 soils	used	within	 this	 chapter,	with	 their	 spatial	distribution	 shown	 in	Figure	2.4.	 Soil	



	 	 	
	

	
78	

samples	were	collected	within	the	Tyne	catchment	using	the	methods	described	in	section	

2.4	and	analysed	for	pseudo-totals	metal	content,	LOI,	pH,	XRD	and	LOI	(Sections	2.7,	2.8,	

2.10,	2.11).	

Table	3.1:	Test	soil	description	and	sampling	location.	

Sample	
number	 Location	 Geology	 Description	 Land	use	

Soil	1	 St	Anthony’s	
Head	 Sandstone	 Technosol	from	a	former	Pb	

works	site	 Recreational	parkland	

Soil	2	 St	Anthony’s	
Head	 Sandstone	

Technosol	from	a	former	Pb	
works	site.	Fragments	of	pure	
Pb	present	

Recreational	parkland	

Soil	3	 Nenthead	
Sandstone,	
mudstone	and	
limestone	

Histosol.	Peat	soil	in	upper	
catchment	 Rough	grazing	

Soil	4	 Corbridge	

Sandstone	with	
alluvium	
superficial	
deposits		

Cambisol	soil	from	mid	
catchment	 Agricultural		

Soil	5	 Corbridge	
Sandstone,	
mudstone	and	
limestone	

Cambisol	from	mid	catchment.	
Sourced	from	river	bank	 Rough	grazing	

Soil	6	 Nent	Valley	

Limestone,	
sandstone,	
siltstone	and	
mudstone	with	
alluvium	
superficial	
deposits		

Stagnosol	from	upper	
catchment	 Rough	grazing	

Soil	7	 Nenthead	
Sandstone,	
mudstone	and	
limestone	

Spoil	tip	material	 Rough	grazing	

Soil	8	 Nenthead	 Limestone		 Spoil	tip	material		 Rough	grazing.	Tourist	
attraction	

	

3.2.1.	Bioaccessibility		

The	 BARGE	 Unified	 Bioaccessibility	 Method	 (UBM)	 was	 used	 to	 determine	 the	

bioaccessibility	of	PHEs	of	interest	in	the	soils	under	investigation.	A	full	description	of	the	

method	is	found	in	Section	2.12.		

3.2.2	Chemometric	Identification	of	Substrates	and	Element	Distributions	(CISED)	

A	sequential	extraction	procedure	was	applied	to	the	test	soils	to	identify	the	presence	of	

soil	 components	 (and	 the	 association	 of	 PHE	 therein)	 such	 as	 carbonates,	 iron	 oxides,	

sulphides	etc.	The	CISED	methodology	used	(Section	2.13)	was	that	described	by	Cave	et	al.,	

2004;	Wragg,	2005;	Marinho	et	al.,	2016;	Reis	et	al.,	2014).		

3.2.3.	Self-modelling	mixture	resolution	algorithm	for	CISED	data	(SMMR)	

A	chemometric	self-modelling	mixture	algorithm	outlined	in	Cave	et	al.,	2004	was	applied	to	

the	chemical	composition	data	and	used	to	identify	the	number,	chemical	composition	and	

amount	of	each	component	in	each	sample.	Components	are	defined	by	using	multivariate	
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techniques	to	the	chemical	composition	data	from	the	CISED	extraction	process	for	each	soil.	

The	SMMR	process	is	described	fully	in	Section	2.15		

3.2.4	Statistical	analysis		

The	soils	in	this	study	were	collected	from	geochemically	similar	locations	within	the	Tyne	

catchment.	As	a	result,	the	CISED	identified	components	were	categorised	into	a	common	

set	of	physico-chemical	groupings,	referred	to	in	this	work	as	clusters.	This	allows	the	clusters	

which	are	the	hosts	of	PHEs	and	those	which	contribute	towards	the	bioaccessibility	to	be	

identified.	 Clustering	 provides	 a	 broader	 overview	 of	 the	 soils	 and	 the	 PHE	 distributions	

within	them	than	the	individual	components	associated	with	each	soil.		

The	 use	 of	 this	 approach	 can	 provide	 a	 greater	 insight	 into	 PHE	 potential	 availability	 to	

humans	and	ecological	receptors,	however	when	applied	to	multiple	samples	the	amount	of	

data	(variability	of	number	and	composition	of	each	component)	and	resulting	interpretation	

become	cumbersome.	For	example,	components	that	are	all	dominated	with	Ca	are	likely	to	

be	grouped	together	into	a	carbonate	cluster.	This	can	allow	for	easier	comparison	of	the	

distribution	of	PHEs	across	different	soils	as	a	common	set	of	clusters	is	generated	from	all	

the	components	from	each	soil	under	investigation.	The	grouping	of	components	into	cluster	

is	outlined	in	Figure	3.1.		

	 	

Figure	 3.1:	 Schematic	 showing	 the	 grouping	 of	 similar	 components	 to	 form	 clusters,	 and	 the	
combination	of	common	clusters	to	make	up	the	solid	phase	distribution	of	soil.		
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A	 clustering	 methodology	 described	 in	 detail	 by	 Wragg	 (2005)	 was	 used	 to	 group	 soil	

components	from	the	CISED	into	more	general	‘clusters’	such	as	an	Iron-Oxide	cluster	and	

subsequently	determine	PHE	distribution	within	each	cluster.	This	involved	creating	a	matrix	

of	 15	 element	 columns	 (after	 removal	 of	 elements	 with	 >75	 %	 of	 values	 <LOD)	 and	 70	

extraction	rows	containing	the	total	extracted	solids	(mg	kg-1)	for	each	extraction	step	for	

each	soil	and	percentage	major	and	trace	element	composition	(Aluminium	(Al),	Arsenic	(As),	

Calcium	 (Ca),	 Cadmium	 (Cd),	 Chromium	 (Cr),	 Copper	 (Cu),	 Iron	 (Fe),	 Potassium	 (K),	

Magnesium	 (Mg),	Manganese	 (Mn),	 Sodium	 (Na),	 Phosphorus	 (P),	 Lead	 (Pb),	 Sulphur	 (S),	

Silicon	(Si),	Zinc	(Zn)).	The	matrix	was	laid	out	as	follows:	

1.	 the	 data	were	 arranged	 in	 to	 columns	 in	 the	 following	 order	 (left	 to	 right)	 -	 the	

sample	name,	the	acid	extractant,	the	component	name,	the	major	elements	that	contribute	

to	 the	naming	of	 all	 of	 the	 components,	 and	 the	 total	 extracted	 solids	 in	 each	of	 the	14	

extracts	(1-14)	

2.	 the	columns	were	populated	with	the	major	contributing	elements	as	a	percentage	

ranging	from	0-100	%	from	the	CISED	mixture	resolution	algorithm	and	the	total	extracted	

solids	as	the	original	CISED	extraction	data	prior	to	mixture	resolution	analysis.	

The	matrix	was	mean	centered,	scaled	and	then	subjected	to	hierarchal	cluster	analysis	using	

Euclidean	distance	as	a	distance	metric	and	Ward’s	method	to	determine	the	combination	

of	clusters.	The	resulting	colour	map	(Figure	3.2)	displays	the	distribution	of	elements	and	

their	 extraction	 points.	 These	 data	 were	 used	 to	 determine	 the	 point	 at	 which	 the	

dendrogram	should	be	split	(denoted	by	a	black	line	in	Figure	3.2)	to	determine	the	number	

of	clusters	present	within	the	eight	soils	under	investigation.	The	splitting	was	done	using	

information	from	the	extractograms	produced	by	the	SMMR	and	the	composition	and	the	

elemental	data	in	the	colour	map.	For	example,	a	visual	inspection	of	the	colour	map	(Figure	

3.2)	acts	as	a	starting	point	for	cluster	determination	as	obvious	clusters	can	be	seen	from	

the	colours	in	the	extraction	number	and	element	composition	sides	of	the	colour	map.		

Analyses	were	performed	in	R	3.2.4	(R	Core	Team,	2016)	using	the	gplots	package	(Warnes	

et	al.,	2015)	heatmap()	function	for	hierarchal	cluster	analysis	and	production	of	the	colour	

map.			

3.2.5	Comparison	to	environmental	quality	standards		

Pseudo-total	metal	concentrations	were	compared	to	threshold	criteria	 listed	in	Table	3.2	

below	 to	 determine	 any	 potential	 human	 health	 risk	 associated	 with	 the	 soils	 under	
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investigation.	A	combination	of	Category	4	Screening	Levels	(C4SLs)	and	Suitable	4	Use	Levels	

(S4ULs)	were	used,	covering	the	suite	of	PHEs	used	in	this	study.	These	values	were	chosen	

as	they	are	the	most	up	to	date	values	available	in	the	UK	(Table	1.1).	The	C4SLs	and	S4ULs	

are	calculated	with	the	assumption	that	the	PHEs	in	soil	are	100	%	bioavailable,	except	for	

lead,	which	is	calculated	under	the	assumption	that	it	is	60	%	bioavailable.	Bioavailability	in	

this	work	 is	 defined	 as	 the	proportion	of	 a	 PHE	 that	 is	 available	 for	 uptake	by	 the	body.	

Bioaccessibility	 is	 described	 in	 Section	 1.7	 and	 can	 be	 used	 as	 a	 proxy	 for	 bioavailability	

(Brandon	et	al.,	2006;	Hillwalker	and	Anderson,	2014).		

Table	3.2:	Contaminated	land	assessment	values	–	C4SLs	and	S4ULs.	All	values	are	expressed	in	mg	kg-
1	dry	weight.		

	 Arsenic	1 Cadmium	1 Copper	1 Lead	2 Zinc	1 

Residential	–	home	grown	produce 37 11 2400 200 3700 

Residential	–	no	home	grown	produce 40 85 7100 330 40000 
Allotments 43 1.9 520 84 620 

Commercial 640 190 68000 2700 730000 

Residential	Open	Space 79 120 12000 760 81000 

Parkland	Open	Space 170 560 44000 1400 170000 

1. S4ULs	–	Land	Quality	Management	 ltd	(2015)	
2. C4SLs	–	DEFRA	(2014)	 	

	

The	values	selected	for	the	purposes	of	this	study	were	the	Parkland	Open	Space	values	as	

the	 sampling	 locations	 were	 all	 open	 countryside	 space	where	 humans	may	 spend	 time	

recreationally.		

3.3	Results	and	Discussion		

3.3.1	Pseudo-total	metals	content,	soil	characteristics	and	mineralogy	

The	pseudo-total	PHE	content,	pH	and	organic	carbon	content	(Table	3.3)	were	analysed	to	

chemically	characterise	the	soils	and	determine	the	variation	in	soil	characteristics	across	the	

catchment	 and	 identify	 areas	 where	 PHE	 enrichment	 is	 present.	 Soil	 3	 had	 the	 highest	

organic	carbon	content	as	 it	was	a	peat	soil,	 located	in	the	upper	Tyne	catchment	(Figure	

2.4).	 Soil	 3	 was	 also	 more	 acidic	 than	 the	 remaining	 soils	 in	 the	 Tyne	 catchment,	 again	

because	it	was	a	peat	soil.	Soil	8	had	the	lowest	organic	carbon	content,	likely	to	be	because	

it	is	considered	only	loosely	a	soil	and	was	composed	of	mine	spoil	material.	The	remaining	

soils	in	the	Tyne	catchment	are	close	to	neutral	and	show	little	variation	in	pH.	This	is	likely	

to	be	related	to	their	common	underlying	geology	(Figure	2.2).	The	small	variation	in	pH	is	

likely	to	be	a	result	of	soil	type	and	land	use.	For	example,	soils	1	and	2	have	organic	carbon	
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content	ranging	from	14.9	%	to	20.6	%.	Both	soils	are	in	a	residential	park	area	with	trees,	

which	are	likely	to	influence	the	organic	matter	content.		

Table	3.3:	Characterisation	of	the	soils	used.	Values	in	bold	italics	exceed	GACs.	All	element	data	are	
in	mg	kg-1.		

Soil As Cu Cd Pb Zn Soil	organic	carbon	(%) pH 

1 136 6.32 0.284 744 466 14.9 6.89 

2 572 528 13.7 19200 8580 20.6 6.54 

3 1.16 5.01 0.41 172 44.4 90.6 2.95 

4 6.59 20.7 1.60 157 143 6.73 6.81 

5 1.06 4.10 2.40 319 540 2.89 6.99 

6 25.6 68.3 21.4 3750 7710 18.3 6.22 

7 33.0 168 53.4 29400 17000 7.18 6.87 

8 21.3 1520 1.54 25300 53400 1.00 6.47 

	

Comparing	the	PHE	concentrations	to	GACs	identified	any	soils	that	may	pose	a	risk	to	human	

health	via	the	ingestion	or	inhalation	exposure	pathways.	Only	soil	2	exceeded	GACs	for	As	

and	soils	2,	6,	7	and	8	for	Pb.	The	average	PHE	concentration	(across	the	8	test	soils)	was	

ranked	 as	 follows:	 Cd<As<Cu<Pb<Zn.	 Pseudo-total	 PHE	 content	 appears	 to	 be	 related	 to	

location	in	the	catchment	and	land	use.	For	example,	high	Pb	concentrations	were	observed	

in	soils	7	and	8,	which	are	mine	spoil	tip	material	in	the	Pb	and	Zn	mining	areas	of	the	upper	

catchment	(Table	3.1,	Figure	2.4).	Elevated	Pb	concentrations	were	also	observed	in	soil	2	

(Table	 3.3),	 which	 was	 collected	 from	 a	 former	 lead-arsenate	 works	 (where	 elevated	

concentrations	of	As	are	also	observed).	Elevated	Pb	concentrations	were	also	reported	for	

soil	6	(Table	3.3),	which	was	located	downstream	from	the	Pb	and	Zn	mine	spoilt	tips.	It	is	

hypothesised	that	flood	transported	Pb	enriched	material	has	been	deposited	there.		

A	qualitative	analysis	of	the	mineralogy	of	the	eight	soils	is	reported	below	in	Table	3.4.	These	

data	were	used	to	aid	identification	of	each	component	/	cluster	in	the	SMMR	and	hierarchal	

clustering	outputs.	 Lead	and	Zn	bearing	minerals	 such	as	cerussite,	galena	and	sphalerite	

were	present	in	soils	7	and	8,	the	mine	spoil	material	and	are	likely	to	be	the	sources	of	the	

elevated	concentrations	of	Pb	and	Zn	in	these	soils.		
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Table	3.4:	XRD	results	showing	mineralogy	of	the	8	soils	under	investigation.	?	refers	to	a	tentative	identification.	*	refers	to	Pb	bearing	minerals	and	+	to	Zn	bearing	
minerals	L	=	low	mass,	M	=	medium	mass	and	H	=	high	mass	for	broad	quantification.	

  Sulphides/sulphate Oxides/hydroxides phosphate Metal 
  pyrite galena* sphalerite+ barite hematite goethite lepidocrocite ?pyrochroite fluorapatite lead* 

1 L 	   L   ?L 	  
2 	    L 	    M 
3 L 	         
4 	    L 	  ?L 	  
5 	    L 	  ?L 	  
6 L 	      ?L 	  
7 	 L 	   L 	    
8   L-M L ?L L   L   ?L M-H 

	

  Silicates Phyllosilicates/	clay	minerals Carbonates 
  quartz cristobalite albite microcline pyroxene mullite muscovite clinochore kaolinite calcite siderite dolomite cerussite* 

1 H 	 L L 	  L L L L 	   
2 H L L L 	 L L 	 L L-M 	   

3 H L L 	     L 	    
4 H 	 L L 	  L L L L 	   

5 H 	 L 	   L L L L 	   
6 H 	 L 	   L L L 	  L 	
7 H 	 L L 	 L L 	 L L L 	 L-M 
8 L-M                         
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3.3.2	Bioaccessibility	of	PHEs		

Table	3.5	provides	a	summary	of	the	As,	Cd,	Cu,	Pb	and	Zn	bioaccessibility	for	each	of	the	

eight	test	soils.	The	bioaccessible	fraction	for	As	ranged	from	5-35	%	(<LOD	to	152	mg	kg-1)	

in	the	gastric	phase,	and	unlike	pseudo-total	concentrations,	did	not	exceed	some	GACs.	This	

highlights	that	the	use	of	pseudo-total	PHE	concentrations	for	human	health	risk	assessment	

may	lead	to	unnecessary	and	more	costly,	detailed	site	investigations	as	the	bioaccessible	

content	of	a	PHE	may	be	considerably	lower	than	assuming	the	pseudo-total	concentration.	

The	bioaccessible	fraction	(BAF)	is	defined	in	Section	1.8	as	a	percentage	of	the	bioaccessible	

content	and	differs	from	the	bioaccessible	content,	which	is	given	in	mg	kg-1.		

Gastrointestinal	values	given	in	Table	3.5	were	generally	lower	for	the	gastric	values	ranging	

from	0.2-19	%	(<LOD	to	133	mg	kg-1),	indicating	that	whilst	PHEs	are	mobilised	into	solution	

in	 the	 gastric	 phase,	 the	 increase	 in	 pH	 and	 addition	 of	 enzymes/bile	 salts	 during	 the	

gastrointestinal	phase	can	result	in	lower	measured	bioaccessibility.	This	could	be	a	result	of	

different	 processes	 occurring	 in	 the	 gastrointestinal	 fluids,	 for	 example,	 through	 re-

association	of	soluble	metal	with	the	soil	matrix,	increased	pH	resulting	in	PHE	precipitation	

(Pb	and	Zn)	or	complexion	by	pepsin	(Roussel	et	al.,	2009).	Bioaccessible	As	was	higher	in	the	

gastrointestinal	 phase	 for	 soil	 6,	 however	 the	 difference	was	 6	mg	 kg-1	between	 the	 two	

phases.		

	

Table	3.5:	bioaccessible	fraction	of	PHEs	expressed	as	a	%	of	the	pseudo-total	content.	<LOD	denotes	
samples	that	were	below	the	limits	of	detection.	Bioaccessible	content	are	the	actual	values	in	mg	kg-1	
are	expressed	in	()	below	the	%	values.	Values	in	bold	exceed	GACs.		

Gastric	(bioaccessible	%) Gastrointestinal	(bioaccessible	%) 

Soil	No. As Cu Cd Pb Zn As Cu Cd Pb Zn 
1 34	 

(46.8) 
35 

(18.5) 
48 
(1.9) 

41 
(302) 

28 
(132) 

0.2 
(0.3) 

0.2 
(0.1) 

0.3 
(0.01) 

0.3 
(2.0) 

0.2 
(0.9) 

2 26 
(152) 

23 
(123) 

59 
(8.1) 

40 
(7,805) 

23 
(1,970) 

19 
(113) 

26 
(137) 

35 
(0.7) 

16 
(3,160) 

9 
(801) 

3 <LOD 
	

72 
(12.9) 

50 
(0.2) 

48 
(83.9) 

53 
(23.6) 

0.0 
	

0.0 
	

0.0 
	

0.0 
	

0.0 
	

4 <LOD 
	

36 
(7.7) 

22 
(0.3) 

47 
(73.8) 

26 
(37.7) 

<LOD 
	

58 
(12.2) 

22 
(0.1) 

5 
(8.7) 

5 
(7.2) 

5 <LOD 
	

55 
(5.0) 

>LOD 
	

62 
(198) 

50 
(268) 

<LOD 
	

15 
(1.4) 

6 
(0.1) 

5 
(18.3) 

5 
(9.5) 

6 8 
(2.1) 

50 
(33.9) 

52 
(11.2) 

65 
(2,450) 

30 
(2,360) 

14 
(3.6) 

58 
(39.7) 

24 
(5.3) 

27 
(1,017) 

11 
(892) 

7 5 
	(1.71) 

31 
(52.8) 

49 
(26.1) 

36 
(10,800) 

56 
(9,580) 

3 
(1.2) 

40 
(68.1) 

76 
(40.6) 

5 
(1,417) 

37 
(6,388) 

8 35 
(7.5) 

0.6 
(9.7) 

49 
(0.77) 

17 
(4,350) 

16 
(8,600) 

17 
(3.8) 

4 
(61.0) 

57 
(0.9) 

3 
(779) 

10 
(5,431) 
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Bioaccessible	Cu	and	Cd	was	highly	variable	for	the	soils	under	investigation,	ranging	from	

0.6-72	%	(5.0	to	123	mg	kg-1	and	<LOD	to	26.1	mg	kg-1	respectively).	Bioaccessibility	for	Pb	

and	 Zn	 in	 the	 remaining	 soils	was	 also	 considerable,	 ranging	 from	16-65	%	 in	 the	 gastric	

phase.	Large	masses	of	Pb	(10,811	and	4,344	mg	kg-1)	and	Zn	(9,578	and	8,597	mg	kg-1)	were	

available	in	soils	7	and	8	respectively,	with	the	Pb	values	exceeding	GACs	(Table	3.3).		

3.3.3	Comparison	of	Bioaccessible	PHEs	to	General	Assessment	Criteria	

Bioaccessibility	data	were	compared	to	lowest	observed	effect	levels	from	the	literature	and	

GACs	 to	contextualise	 the	 results	of	 this	 study	 (Table	3.5).	The	GACs	are	generated	using	

generic	exposure	parameters,	 therefore	site-specific	uses	and	exposure	pathways	such	as	

ingestion	 of	 contaminated	 foodstuffs	 are	 not	 considered.	 The	 only	 route	 of	 exposure	

considered	in	this	work	is	through	direct	ingestion	of	soil,	as	no	methods	were	used	for	the	

determination	of	uptake	via	dermal	contact.	Inhalation	was	not	considered	as	no	methods	

for	determining	the	uptake	of	PHEs	through	the	lungs	were	used	in	this	thesis.		

The	maximum	As	bioaccessibility	for	this	study	was	152	mg	kg-1	(ranging	between	1.71	and	

152	mg	kg-1),	which	exceeded	allotment	GACs	and	was	in	a	similar	range	to	the	open	parkland	

GAC	of	172	mg	kg-1.	Based	on	an	accidental	soil	ingestion	rate	of	100	mg	day-1	acute	exposure,	

As	poisoning	is	unlikely	unless	large	quantities	of	soil	(e.g.	kilograms)	were	to	be	consumed	

at	the	concentrations	observed	in	this	study	(Hogan	et	al.,	1998).	Lethal	doses	of	As	are	seen	

at	an	 individual	dose	of	100-300	mg	and	effects	such	as	vomiting	are	 induced	at	doses	of	

about	5	mg	(Ratnaike,	2003).	Children	can	exhibit	pica	behaviour,	which	is	defined	for	this	

work	as	an	ingestion	rate	of	soil	that	far	exceeds	the	200	mg	day-1	seen	in	an	average	child,	

resulting	in	soil	ingestion	rates	of	up	to	5,000	mg	day-1	(Calabrese	et	al.,	1991).	As	a	result,	

regular	use	of	some	of	the	higher	enriched	locations	(sites	1	and	2)	by	children	could	result	

in	chronic	As	poisoning	by	ingestion	of	soil	through	playing.	Soil	2	exceeds	residential	open	

space	 GACs,	 indicating	 that	 young	 individuals	 could	 be	 at	 risk	 of	 As	 exposure	 through	

repeated	playing	activities.		

Minimal	risk	levels	for	chronic	doses	of	Cd	have	been	proposed	at	0.1	mg	kg	day-1	for	periods	

equal	to	or	greater	than	1	year	(ATSDR,	2012).	Some	sites	in	this	study	have	a	bioaccessible	

Cd	concentration	of	26	mg	kg-1,	however,	chronic	effects	may	be	seen	only	if	considerable	

quantities	of	soil	were	to	be	regularly	 ingested,	especially	by	 infants.	GACs	for	Cd	are	not	

exceeded	for	Parkland	open	space	but	are	 for	allotment	values	 for	some	sites	 (Table	3.3)	

suggesting	that	a	risk	to	human	health	may	be	present	through	the	production	of	food	stuffs,	

but	not	for	the	other	generic	exposure	pathways	used	for	parkland	open	spaces.	
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For	this	study	GACs	were	not	exceeded	for	total	Cu	at	any	of	the	study	sites	so	it	is	unlikely	

that	the	bioaccessible	levels	of	Cu	will	be	detrimental	to	human	health.	Copper,	as	outline	in	

Section	1.3.3	is	an	essential	element,	where	deficiencies	as	well	as	exceedances	can	lead	to	

adverse	health	effects.		

Bioaccessibility	of	the	Pb	in	soils	in	this	study	that	exceed	GACs	ranged	from	14	and	10,800	

mg	kg-1	(BAF	17-68	%).	A	study	by	Mielke	et	al.,	(1998)	which	modelled	blood	Pb	levels	of	soil	

suggested	 that	 soil	 Pb	 levels	 exceeding	 80	 mg	 kg-1	 could	 result	 in	 chronic	 poisoning	 of	

children	exhibiting	pica	behaviour.	However,	Mielke	et	al.,	(1998)	also	report	that	blood	Pb	

levels	in	children	increase	above	background	at	soil	concentrations	of	500-1,000	mg	kg-1.	The	

results	from	the	Mielke	et	al.,	(1998)	study	suggest	that	exposure	to	the	soils	that	exceed	

GACS	for	bioaccessible	Pb	in	this	study	(Table	3.5)	would	likely	result	in	Pb	blood	levels	above	

background	 levels.	 Background	 levels	 for	 people	 living	 in	 rural	 areas	 in	 the	 Northern	

hemisphere	are	3.2	µg	dl-1	(Tong	et	al.,	2000).		

The	solid	phase	distribution	of	Pb	is	known	to	affect	mobility	and	mine	spoil	tip	‘soils’	have	

been	reported	to	have	a	lower	bioaccessible	fraction	than	other	soil	because	of	the	presence	

of	the	more	insoluble	forms	of	Pb	(Ruby	et	al.,	1993;	Gasser	et	al.,	1996;	Roussel	et	al.,	2009).	

However,	because	of	the	high	pseudo-total	metal	concentrations	associated	with	the	spoil	

tip	samples	in	this	study	(samples	7	(29,400	mg	kg-1)	and	8	(25,300	mg	kg-1)),	the	bioaccessible	

content	(10,811	and	4,344	mg	kg-1	respectively)	exceeded	the	GAC	of	1,400	mg	kg-1	so	may	

result	 in	 significant	 exposure	 if	 sufficient	 quantities	 of	 material	 were	 to	 be	 ingested.	

Bioaccessible	concentrations	also	exceeded	GACs	for	Pb	in	soil	6,	a	floodplain	soil	with	2,450	

mg	kg-1.	Soil	6	 is	 located	downstream	from	the	mine	spoil	 tips,	 therefore	the	elevated	Pb	

concentrations	may	occur	from	remobilisation	of	Pb	from	the	mining	areas.		

Although	 an	 essential	 element,	 a	 Zn	 intake	 of	 100-300	mg	 day-1	 is	 reported	 to	 result	 in	

adverse	health	effects	such	as	induced	Cu	deficiency,	impaired	immune	system	function	and	

anaemia	 (Fosmire,	1990).	10	g	of	material	 from	the	soil	with	the	highest	bioaccessible	Zn	

content	(9,578	mg	kg-1)	would	have	to	be	consumed	daily	to	result	in	adverse	health	effects,	

providing	there	were	no	other	oral	sources	of	Zn.	GACs	were	not	exceeded	for	Zn	for	open	

parkland	 spaces	 for	 the	 two	mining	 spoil	 tip	 soils	which	had	 the	highest	Zn	bioaccessible	

concentrations	 (Table	 3.5).	 Despite	 the	 highest	 bioaccessible	 concentrations,	 the	 mining	

spoil	tips	had	the	lowest	percentage	bioaccessible	fraction.	
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3.3.4	Identification	and	interpretation	of	soil	clusters	from	the	CISED	extractions	

A	chemometric	self-modelling	mixture	algorithm	outlined	in	Cave	et	al.,	2004	and	used	by	

other	researchers	(e.g.	Wragg,	2005;	Marinho	et	al.,	2016;	Reis	et	al.,	2014)	was	applied	to	

the	extraction	data	and	used	to	identify	the	number,	chemical	composition	and	amount	of	

each	component	in	each	sample.	

The	colour	map	 (Figure	3.2)	 shows	that	10	clusters	were	associated	with	 the	8	soils	used	

within	this	study.	These	have	been	identified	as	described	by	Wragg	and	Cave	(2012)	using	a	

combination	of	the	CISED	outputs	(extractograms,	composition	plots	etc),	 the	colour	map	

and	data	from	XRD	analysis.	Individual	component	extractograms,	are	shown	in	Figure	3.3	as	

patterns	 in	 extract	 steps	 8-14	 (shown	 on	 the	 right-hand	 side	 of	 the	 colour	 map)	 were	

obscured	in	the	colour	map	by	the	large	extractable	mass	of	cluster	9.	

	

	

Figure	3.2:	colour	map	and	associated	clustergram	for	the	8	soils.	The	dendrogram	on	the	left-hand	
side	shows	the	relationship	between	the	individual	components.	The	horizontal	lines	divide	the	colour	
map	into	soil	clusters	shown	by	splitting	the	dendrogram	with	the	vertical	black	line	in	the	left-hand	
side.	High	concentrations	are	shown	in	yellow/white	with	low	concentrations	in	red.	The	white	vertical	
line	on	the	colour	map	divides	the	elemental	data	for	each	contributing	component	on	the	left	from	
its	extraction	position	on	the	right.	Extraction	data	ranges	from	deionised	water	at	X1	to	5	M	Aqua	
Regia	at	X14.	Clusters	are	numbered	on	the	right	hand	side	of	the	figure,	according	to	their	ease	of	
extractability.	NB:	Data	used	in	the	hierarchal	cluster	analysis	have	been	mean	centred	and	scaled.	
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Figure	3.3:	Extractograms	for	clusters	1	–	10.	
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Cluster	1:	Residual	pore	salts	and	organics:	The	presence	of	Na	and	K,	combined	with	an	early	

extraction	window	in	the	colour	map	indicates	that	this	cluster	is	likely	to	be	residual	pore	

water	salts	(Cox	et	al.,	2013).	A	low	mass	of	material	was	extracted	at	each	stage	of	the	CISED	

approach	 (89	approx.	 50	 mg	 kg-1).	 However,	 as	 masses	 were	 low	 in	 the	 second	 half	 of	

extraction	profile	in	comparison	to	other	clusters,	this	pattern	is	not	clear	in	Figure	3.2.	The	

lack	of	a	clear	extraction	window	is	shown	in	Figure	3.3.	The	presence	of	S	was	similar	to	the	

findings	of	Wragg	and	Cave	(2012)	suggesting	that	this	cluster	could	have	originated	from	

organic	material.		

Cluster	2:	 Exchangeable:	most	 samples	 associated	with	 this	 cluster	 showed	a	peak	 in	 the	

extracted	 solids	 between	DI	 and	 0.05	M,	with	 a	 saw-tooth	 pattern	 across	 the	 extraction	

profile.	The	dominant	elements	in	this	cluster	were	P,	Na,	K	and	Zn	and	are	considered	to	be	

associated	with	 the	 exchangeable	material	 based	 on	 a	 similar	 extraction	 profile	 seen	 by	

Wragg	 and	 Cave	 (2012)	 with	 elemental	 composition	 as	 described	 by	Whitehead	 (2000).	

Extractable	masses	peaked	at	about	250	mg	kg-1	with	the	addition	of	weak	acid	but	were	

continually	extracted	throughout	the	profile	in	lower	quantities.		

Cluster	3:	Carbonate	cluster:		The	XRD	analysis	identified	the	presence	of	calcite,	siderite	and	

dolomite	in	the	test	soils	that	contain	this	extractable	component,	which	is	represented	in	

the	colour	map	by	the	presence	of	Ca	and	Mg.	Most	of	this	component	was	extracted	on	the	

first	addition	of	acid,	over	a	narrow	range	of	acid	concentrations	(0.01	–	0.05	M),	peaking	at	

about	400	mg	kg-1.	In	a	similar	way	to	Cox	et	al.,	(2013),	this	cluster	has	been	identified	as	a	

carbonate	fraction.	Zn	was	also	identified	as	being	present	in	this	cluster	in	small	amounts	

and	could	be	associated	with	calcite	(Anju	and	Banerjee,	2011).	

Cluster	4:	Mn	oxides:	This	cluster	was	dominated	by	Mn	and	has	a	clear	extraction	window	

peaking	at	about	0.1	M,	after	 the	addition	of	H2O2	which	 is	known	to	dissolve	Mn	oxides	

(Manning	and	Golberg,	1996).	Similar	extraction	profiles	are	seen	in	the	literature	(Cave	et	

al.,	2004;	Palumbo-Roe	et	al.,	2005;	Wragg	et	al.,	2014).		

Cluster	5:	Zinc	minerals:	Zn	dominates	this	cluster	and	is	therefore	likely	to	be	derived	from	

Zn	bearing	minerals.	The	main	extraction	windows	occurred	between	acid	concentrations	

0.05	and	1	M	with	peaks	occurring	at	0.05	or	0.5	M.	Peak	extractable	masses	were	5,500	mg	

kg-1.	Smithsonite	(ZnC03)	is	common	within	the	Nent	valley	of	the	upper	Tyne	catchment	and	

could	 be	 a	 source	 of	 the	 components	 within	 this	 cluster	 (Nuttal	 and	 Younger,	 2002),	

however,	smithsonite	was	not	identified	by	XRD	making	this	unlikely.	The	dominance	of	Ca	

in	 the	 samples	 is	 also	 suggestive	 of	 secondary	 Zn	 bearing	 minerals,	 such	 as	 carbonate	
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minerals,	being	the	source	of	the	extractable	Zn.	Calcite	(confirmed	by	XRD)	can	sequester	

Zn	(Chaterjee,	2009)	and	has	been	shown	to	be	present	in	mine	workings	and	on	spoil	tips	in	

the	Nent	valley	(Nuttal	and	Younger,	2002).		

Cluster	 6:	 Pb	 dominated	 cluster:	 this	 cluster	 contained	 Pb,	 Fe,	 Ca	 and	 Zn	 with	 peaks	 in	

extracted	solids	seen	between	0.05	and	5	M	aqua	regia,	with	a	similar	profile	to	cluster	5.	

Extractable	masses	were	lower,	peaking	at	1,000	mg	kg	-1.	The	dominance	of	Pb	(approx.	50	

%)	and	Zn	(approx.	20	%)	led	to	this	cluster	being	defined	as	a	Pb	mineral	cluster.	Cerussite	

was	 identified	by	XRD	and	 is	 likely	to	be	a	source	of	 the	Ca	and	Pb	 in	this	cluster.	A	 later	

extraction	window,	likely	to	be	from	the	presence	of	Pb,	differentiated	cerussite	from	the	

carbonate	cluster.	The	presence	of	manganese	(25	%)	from	one	of	the	samples	is	 likely	to	

arise	from	association	of	Pb	with	manganese	Mn-oxides	(O’Reilly	and	Hochella,	2003).			

Cluster	7:	Al	 and	Fe	oxides:	Al	 and	Fe	were,	 for	most	 samples,	 the	most	prevalent	 in	 the	

components	found	in	this	cluster.	The	varying	extraction	windows	and	association	with	other	

elements	such	as	As,	Cu,	Pb	and	Si	suggest	that	they	are	relatively	impure	Al-Fe	oxides.	The	

presence	of	Si	can	indicate	an	association	with	clay	materials	(Wragg,	2005).	The	majority	of	

mass	was	extracted	after	the	addition	of	0.1	M	aqua	regia,	peaking	at	500	mg	kg-1	after	the	

addition	of	1	M	aqua	regia.			

Cluster	8:	Fe	oxides:	The	presence	of	Fe	(and	S)	and	late	extraction	windows	have	defined	

this	fraction	as	a	Fe-oxide	fraction,	consisting	of	both	pure	and	impure	Fe	oxides,	indicated	

by	the	presence	or	absence	of	associated	elements	and	possibly	sulphides.	Clear	extraction	

windows	were	seen	with	the	majority	of	solids	being	extracted	by	0.5	–	5	M	Aqua	Regia.	XRD	

analysis	of	the	soils	identified	hematite	and	goethite	as	mineral	sources	of	Fe	oxides,	which	

are	crystalline	Fe-oxides	and	difficult	to	dissolve,	hence	the	late	extraction	window	shown	in	

Figure	3.3.	The	slight	variation	in	extraction	profiles	for	each	of	the	components	in	this	cluster	

is	likely	to	be	related	to	the	pureness	and	degree	of	crystallinity	of	the	Fe	oxides.		

Cluster	9:	Sphalerite:	This	cluster	consisted	of	a	single	component	from	soil	8	which	was	from	

spoil	tip	material	and	was	mainly	composed	from	Fe	(35	%),	Ca	(30	%),	Zn	(20	%)	and	Al	(10	

%).	Magnesium,	S	and	Si	are	also	present	(2-4	%).	The	window	of	extraction	was	clear	and	

occurred	at	acid	concentrations	of	0.5-5	M.	The	presence	of	Fe,	Zn	and	S	indicates	that	this	

cluster	 is	 likely	 to	 be	 derived	 from	 impure	 sphalerite	minerals	 (ZnS)	 and	 associated	with	

calcite	or	some	other	calcium	dominated	minerals.	XRD	analysis	confirmed	the	presence	of	

sphalerite	within	this	sample	which	is	known	to	have	been	mined	in	the	Nent	Valley,	from	

where	this	spoil	pit	sample	was	taken	(Nuttall	and	Younger,	2002).		
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Cluster	 10:	 Galena:	 this	 cluster	 has	 been	 defined	 as	 galena	 (PbS)	 because	 the	 dominant	

components	were	Pb	and	S,	and	the	masses	extracted	with	the	addition	of	1	M	and	5	M	Aqua	

Regia.	 It	 is	well	documented	that	galena	was	mined	within	the	area	(Macklin	et	al.,	1994;	

Nuttall	 and	 Younger,	 1999;	 Nuttall	 and	 Younger,	 2002).	 Extractable	 masses	 were	 low,	

peaking	at	140	mg	kg-1	and	hence	this	extraction	window	was	not	clear	 in	the	colourmap	

(Figure	3.2).	Galena	was	confirmed	by	XRD	analysis	in	the	spoil	tip	samples	(7	and	8)	but	not	

in	sample	3	from	which	this	component	originates,	suggesting	quantities	were	around	the	

LOD.			

3.3.5	Solid	phase	distribution	of	PHEs	

The	distribution	of	the	PHEs	of	interest	is	summarised	in	Figure	3.4	and	Table	3.6.	Figure	3.4a	

shows	the	majority	of	As	was	associated	with	the	Al-Fe-oxide,	Fe-oxide	and	Sphalerite	phases	

(clusters	7	and	8),	which	is	well	documented	in	the	literature	(Wragg,	2005;	Pedersen	et	al.,	

2006;	Wragg	et	al.,	2007;	Wragg	and	Cave,	2012;	Smedley	and	Kinniburgh,	2013;	Palumbo-

Roe	et	al.,	2015).	Another	clear	source	of	As	was	the	carbonate	cluster,	an	association	that	

is	also	documented	in	the	literature	(Magalhaes,	2002).	The	association	of	As	with	the	easily	

extractable	carbonate	phases	(cluster	3)	suggests	that	this	source	could	potentially	influence	

the	 amount	 of	 As	 mobilised	 from	 soil	 because	 of	 the	 greater	 solubility	 of	 carbonates	

compared	to	Fe	oxides.		

The	majority	of	Cd	(Figure	3.4b)	was	associated	with	the	Zn	minerals	and	sphalerite	clusters	

in	the	soils	used	in	this	study.	Cadmium	is	reported	to	have	a	geochemical	association	with	

Zn,	 particularly	 in	 Zn	mining	 impacted	 soils	 (Anju	 and	 Banerjee,	 2010).	 Cadmium	 is	 also	

known	to	be	associated	with	Fe	and	Mn	oxides,	because	of	their	strong	affinity	for	metals	

(Lion	et	al,	1982;	Dong	et	al.,	2007),	but	concentrations	were	low	in	these	clusters	compared	

to	others.	This	is	likely	to	be	because	the	Zn	minerals	and	sphalerite	clusters	are	associated	

with	 the	mining	 impacted	 soils,	 and	 therefore	 geochemical	 enrichment	 results	 in	 higher	

concentrations	of	Cd	(Table	3.3).	Copper	was	mainly	associated	with	the	Al-Fe-oxide,	Mn-

oxide	Pb	and	Zn	mineral	phases	(Figure	3.4c),	with	outlier	values	in	the	exchangeable	phase	

(cluster	2).		
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Table	3.6	Clusters	associated	with	each	soil	and	their	PHE	content	in	mg	kg-1.	

Soil	No.	 Cluster	 As	 Cd	 Cu	 Pb	 Zn	

1	 Carbonate	
Mn-oxide	
Al-Fe	oxide	

20	
9.4	
140	

0.9	
0.6	
2.1	

6.2	
8.3	
49	

71	
18	
355	

71	
80	
285	

2	 Porewater/organic	
Exchangeable	
Carbonate	
Zn	mineral	
Al-Fe	oxide	

.	
24	
19	
13	
400	

3.7	
6.9	
3.9	
10	
2.7	

12	
9.7	
38	
42	
165	

.	
570	
570	
4200	
3600	

.	
795	
450	
2500	
900	

3	 Exchangeable	
Carbonate	
Al-Fe	oxide	
Fe-oxide	
Galena	

0.05	
0.4	
0.35	
0.9	
0.47	

0.01	
0.02	
0.27	
0.35	
.	

.	
0.2	
14	
1.56	
.	

.	
1.25	
18	
100	
58	

.	
1.05	
43	
64	
1.29	

4	 Exchangeable	
Carbonate	
Mn-oxide	
Al-Fe	oxide	
Fe-oxide	

0.12	
0.45	
.	

0.61	
.	

0.07	
0.40	
0.03	
0.47	
0.05	

.	
1.51	
2.02	
5.55	
5.1	

.	
34	
7.35	
115	
.	

0.87	
32	
.	
24	
60	

5	 Exchangeable	
Carbonate	
Mn-oxide	
Al-Fe	oxide	
Fe-oxide	

0.04	
1.21	
0.08	
0.42	
1.21	

0.01	
0.27	
0.34	
0.1	
0.27	

.	
0.58	
2.69	
.	

0.58	

6.9	
33	
227	
22	
33	

2.74	
70	
80	
.	
70	

6	 Porewater/organic	
Exchangeable	
Carbonate	
Mn-oxide	
Zn	minerals	
Fe-oxide	

.	
0.35	
.	
.	
.	
14	

0.38	
0.61	
2	
.	
11	
0.21	

.	

.	
1.51	
35	
1.87	
5.77	

.	

.	

.	
1100	
1000	
210	

.	
175	
600	
125	
2800	
80	

7	 Porewater/organic	
Exchangeable	
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Figures	3.4a-e:	boxplots	showing	the	distribution	of	extractable	PHEs	in	each	cluster	for	the	8	combined	soils.	Clusters	are	ordered	from	the	most	easily	extractable	to	the	
least	easily	extractable.	Triangles	represent	the	mean	for	each	cluster.	The	sphalerite	phase	is	omitted	for	the	Zn	plot	as	it	contains	a	single	component	with	a	value	of	30605	
mg	kg-1.	Circles	represent	outliers,	which	are	defined	as	1.5	times	the	interquartile	range	above	the	upper	quartile	and	below	the	lower	quartile.	
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The	majority	of	Pb	was	associated	with	the	more	easily	extractable	Pb	mineral	phases	(cluster	

6)	 suggesting	 the	 presence	 of	 more	 soluble	 mineral	 forms	 of	 Pb,	 as	 opposed	 to	 those	

associated	with	galena	 (Figure	3.4d).	 Lead	was	also	 found	 to	be	associated	with	 the	Mn-

oxides	cluster,	which	is	well	documented	in	the	literature	because	their	affinity	to	bind	with	

PHEs,	particularly	Pb	and	Cd,	even	at	 low	concentrations	(Degs	et	al.,	2001;	Hettiarachchi	

and	Pierzynski,	 2002;	Dong	et	al.,	 2007).	 Zinc	 and	Pb	mineral	 phases	provide	 the	highest	

source	of	Zn	(Figure	3.4e).		

3.3.6	Relationship	between	CISED	clusters	and	bioaccessibility	

The	 CISED	 extraction	 process	 identified	 the	most	mobile/potentially	 available	 sources	 of	

PHEs	within	the	study	soils	and,	in	conjunction	with	the	bioaccessibility	testing,	provided	an	

insight	into	the	sources	of	bioaccessible	PHEs.	The	solid	phase	distribution	of	PHEs	and	their	

ease	of	extractability	within	soil	components	is	known	to	affect	the	bioaccessibility	of	a	PHE	

(Cox	et	 al.,	2013;	Wragg	et	 al.,	2014).	 For	 example,	 As	 and	 its	 association	with	 different	

minerals	has	been	reported	to	result	in	significant	variations	in	bioaccessibility	(Meunier	et	

al.,	 2010).	 Some	 studies	 such	 as	 Pelfrêne	 et	 al.,	 (2012)	 report	 that	 physico-chemical	

parameters	 such	 as	 free	 Fe-Mn	 oxide,	 organic	 matter	 and	 pseudo-total	 Mn	 significantly	

contribute	to	PHE	bioaccessibility.	Therefore,	CISED	information	can	be	used	to	determine	

the	underlying	mechanisms	that	change	the	behaviour/mobility	of	PHEs	in	soil	as	a	result	of	

environmental	changes	such	as	flooding	or	drought.	These	are	examined	further	in	Chapters	

4	and	5.		

The	contribution	of	each	cluster	to	the	bioaccessible	content	of	PHEs	is	shown	in	Figure	3.5	

by	cumulative	mass	curves,	also	used	by	Cox	et	al	(2013)	and	Wragg	et	al.,	(2014).	Clusters	

are	ordered	by	ease	of	extraction,	with	the	most	easily	extractable	clusters	on	the	left.	The	

data	for	each	PHE	are	visualised	using	two	plots	(high	and	low)	because	of	the	large	variation	

in	concentration.			

Figure	3.5	suggests	that	the	majority	of	bioaccessible	As	in	soils	1	and	2	originated	from	the	

carbonate	 and	 Mn	 oxide	 clusters.	 The	 Al-Fe	 oxide	 cluster	 partly	 contributed	 to	 the	

bioaccessible	fraction	of	As	in	soil	2	and	not	soil	1,	indicating	a	weaker	association	of	As	with	

these	clusters	and	resulting	 in	greater	dissolution	of	As	 in	gastric	fluid.	The	exchangeable,	

Mn-oxide	and	Zn	mineral	clusters	contributed	to	the	bioaccessible	As	content	of	soils	6-8.	

Lead	 minerals	 provide	 a	 significant	 contribution	 of	 the	 bioaccessible	 content	 for	 soil	 8.	

Arsenic	associated	with	the	Fe-oxide	and	sphalerite	cluster	was	mostly	inaccessible	for	soils	

6-8.		
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Soils	6-8	showed	a	similar	pattern	to	soil	2	as	the	second	Fe	oxide	cluster	did	not	contribute	

towards	the	bioaccessible	fraction	of	As,	indicating	that	As	associated	with	Fe	oxides	tends	

to	remain	inaccessible	if	ingested	in	these	soils.	Arsenic	bioaccessibility	has	been	shown	to	

decrease	with	increased	crystallinity	of	Fe	oxides	(Palumboe-Roe	et	al.,	2015),	therefore	it	is	

hypothesised	that	the	Fe-oxides	in	the	Fe-oxide	cluster	are	more	crystalline	and	therefore	

less	easily	dissolved	in	the	gastric	solution.	This	is	further	corroborated	by	the	results	on	the	

XRD	analysis,	which	showed	the	presence	of	goethite	and	hematite.	Additionally,	the	CISED	

extraction	profile	in	Figure	3.3	showed	this	cluster	was	extracted	over	more	concentrated	

acids	and	therefore	less	available	than	the	amorphous	Al-Fe	oxide	cluster.		

	

Figure	3.5:	Cumulative	mass	extracted	in	the	CISED	components	and	its	relationship	to	bioaccessible	
fractions.	The	thick	solid	line	represents	the	cumulative	mass	extracted	and	the	corresponding	thin	
line	refers	to	the	bioaccessible	amount	extracted	(mg	kg-1).	Values	below	the	thin	line	are	interpreted	
as	contributing	towards	the	bioaccessible	content.		

	

Cadmium	 (Figure	3.5)	 is	 present	within	 all	 the	 clusters	 except	 sphalerite	 and	 galena.	 The	

Mn-oxide,	 exchangeable	 and	 pore	 water	 clusters	 have	 the	 greatest	 contribution	 to	

bioaccessible	Cd.	 In	most	of	 the	soils	used	 in	 this	study,	 the	carbonate	cluster	only	partly	

contributed	 to	bioaccessibility	 as	organic	 and	 clay	bound	Cd	was	much	more	 likely	 to	be	

accessible	(ATSDR,	2012).	Soils	6	and	7	were	different	from	the	others	as	both	the	Mn-oxide	

and	Zn	mineral	clusters	had	the	greatest	contribution	of	bioaccessible	Cd.	Soil	5	appeared	to	
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be	entirely	bioaccessible,	but	this	is	likely	to	be	because	the	Cd	concentrations	in	the	second	

plot	were	close	 to	 the	LOD.	 It	has	been	 reported	 that	Cd	bound	 to	Al-oxides	or	alumina-

silicates	was	found	to	increase	bioaccessibility	(Pelfrêne	et	al.,	2013).	The	Al-Fe	oxide	phase	

was	only	found	to	contribute	to	the	bioaccessible	content	of	Cd	in	only	one	out	of	the	eight	

soils	under	investigation	in	this	work.	This	may	well	be	because	the	Al-oxides	were	impure,	

associated	with	Fe	and	therefore	less	soluble.			

The	results	shown	in	Figure	3.5	suggest	that	bioaccessible	Cu	originated	from	the	pore	water	

cluster	 to	 the	 Zn	 minerals	 clusters	 for	 soils	 1-6,	 with	 the	 Fe-oxide	 bound	 Cu	 remaining	

inaccessible.	Soils	7	and	8,	spoil	tip	material,	had	fewer	contributing	fractions,	as	the	PHEs	

shown	in	Table	3.6	tended	to	be	associated	with	fewer	clusters	than	the	other	soils	in	this	

study.		

Partial	dissolution	of	Al-Fe-oxides	contributed	to	some	of	the	Pb	bioaccessible	fraction,	but	

the	majority	comes	from	the	more	easily	accessible	clusters	e.g.	Mn-oxides	and	Pb	bearing	

minerals.	Carbonate,	Mn-oxide	and	Al-Fe	oxide	clusters	had	the	greatest	contributions	for	

soils	4	and	5	(>50	%).	The	degree	of	Al-Fe	oxide	crystallinity	in	soils	1	and	2	was	considered	

to	be	the	reason	for	the	partial	contribution	from	the	Al-Fe	oxide	phase	in	soil	2	but	not	in	

soil	1	(Palumbo-Roe	and	Klinck,	2007).	However,	Fe-oxides	in	soils	1	and	2	were	present	as	

haematite	 (Table	3.4)	which	 is	 reported	to	be	the	most	stable	Fe-oxide	 (Bonneville	et	al.,	

2004),	therefore	the	contribution	to	Pb	accessibility	was	likely	to	be	through	a	desorption	

process	rather	than	dissolution	of	haematite.		

The	Pb	mineral	cluster	provided	a	significant	source	of	bioaccessible	Pb	(>60	%)	for	the	mine	

spoil	soils	(7	and	8)	through	partial	dissolution.	Lead	bearing	minerals	have	been	reported	to	

dissolve	slowly	and	incompletely	in	the	digestive	tract,	often	resulting	in	a	low	bioaccessible	

fraction	(Ruby	et	al.,	1993).	This	was	seen	in	Table	3.4,	where	the	two	mine	spoil	tip	soils	had	

the	 lowest	gastric	bioaccessible	fraction	for	Pb	and	is	also	 likely	to	account	for	the	partial	

contribution	of	the	Pb	minerals	cluster	to	the	bioaccessible	fraction	of	Pb	seen	in	Figure	3.5.	

The	presence	of	Pb	bearing	minerals	 in	the	sample	was	 linked	to	the	 intensive	Pb	and	Zn	

mining	that	occurred	within	the	Tyne	catchment	(Figure	2.4;	Section	2.4).		

Fewer	 clusters	 contributed	 towards	 the	 bioaccessible	 content	 of	 Zn	 than	 other	 PHEs.	

Contribution	to	the	bioaccessible	Zn	originated	from	the	exchangeable	to	Mn-oxide	clusters,	

which	 were	 extracted	 at	 lower	 acid	 concentrations	 and	 therefore	 deemed	 to	 be	 more	

available	in	gastric	fluid	with	a	pH	of	roughly	1.2.	Soils	3	and	4	were	an	exception	to	this	as	

partial	dissolution	of	the	Pb	minerals	cluster	occurred	(Figure	3.5).	For	all	soils,	except	soil	8,	
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most	of	the	Zn	was	found	in	more	easily	extractable	clusters	and	less	was	associated	with	

the	Al-Fe-oxide	phases.	Soil	8	was	mostly	composed	of	sphalerite	and	approximately	50	%	of	

the	 pseudo-total	 Zn	was	 associated	with	 this	 phase.	 Studies	 looking	 at	 bioaccessibility	 of	

sphalerite	associated	PHEs	using	in	vivo	rat	models	have	shown	bioaccessible	concentrations	

to	be	low	(Bergmann	et	al.,	2000).	Similar	results	were	seen	here	where	the	sphalerite	cluster	

in	soil	did	not	contribute	to	the	bioaccessible	fraction	of	Zn.		

PHEs	such	as	Zn,	Pb	and	Cd	associated	with	carbonates	and	Mn-oxides	are	more	labile	than	

other	clusters	such	as	Fe-oxides,	because	of	their	relative	solubility	(Schaider	et	al.,	2007;	

Roussel	et	al.,	2010).	For	example,	Reis	et	al.,	(2014)	showed	that	Pb	bioaccessibility	could	

be	as	high	as	90	%	when	the	majority	of	Pb	was	associated	with	highly	soluble	carbonate	

phases,	 as	 opposed	 to	 much	 less	 soluble	 Fe-oxide	 phases.	 Therefore,	 soils	 with	 high	

proportions	of	PHEs	associated	with	the	carbonate	fraction	and	other	more	easily	extracted	

phases	 such	as	Mn-oxides	are	 likely	 to	be	more	bioaccessible.	 For	example,	 soil	 5	has	 its	

largest	proportion	of	Zn	associated	with	 the	carbonate	and	Mn-oxide	 fractions	and	has	a	

bioaccessible	 fraction	 of	 50	 %,	 whereas	 soil	 8	 has	 the	 majority	 of	 Zn	 associated	 with	

sphalerite	and	a	corresponding	bioaccessible	fraction	of	16	%.	Knowledge	of	the	main	hosts	

of	bioaccessible	PHEs	can	provide	useful	information	for	the	prediction	of	bioaccessibility	at	

a	catchment	scale.	For	example,	if	the	solid	phases	of	soils	are	known,	then	it	will	be	possible	

to	use	these	in	models	to	predict	bioaccessibility.		

While	 it	has	been	reported	that	the	exchangeable	and	carbonate	fractions	of	soils	can	be	

used	to	predict	PHE	bioaccessibility	(Schaider	et	al.,	2007),	the	results	of	this	study	show	that	

other	fractions	such	as	Zn	minerals	and	Mn-oxides	can	also	be	important	contributors.	It	is	

therefore	 recommended	 that	 they	 should	 be	 included	 when	 predicting	 the	 PHE	

bioaccessibility	 of	 floodplain	 soils	 in	 different	 catchments	 based	 on	 their	 similar	

characteristics	and	underlying	geology.	This	could	a)	reduce	the	need	for	extensive	sampling	

and	costly	extraction	 tests	b)	be	used	 to	produce	maps	of	 the	 spatial	distribution	of	PHE	

bioaccessibility	 in	 catchments	 c)	 allow	 better	 targeting	 of	 remediation	 strategies	 of	 PHE	

enriched	soils	 in	catchments.	Ultimately	using	the	approach	outlined	here	will	provide	an	

input	 into	 decision-making	 on	 how	 best	 to	 manage	 PHE	 enriched	 floodplain	 soils	 and	

potentially	reduce	the	risk	to	humans	from	PHEs.	

3.4	Conclusions		

There	was	considerable	variation	in	the	total	and	bioaccessible	PHE	concentrations	for	a	suite	

of	PHEs	from	eight	soils	within	the	Tyne	catchment,	with	four	out	of	the	eight	sites	exceeding	
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human	health	GACs	for	one	or	more	PHEs.	For	example,	the	mining	waste	soils	may	have	had	

the	 lowest	 bioaccessible	 fractions	 for	 Pb	 and	 Zn,	 but	 their	 bioaccessible	 content	 still	

exceeded	 GACs,	 presenting	 a	 potential	 hazard	 to	 human	 receptors.	 Mine	 spoil	 tips	 are	

variable	in	their	composition,	but	this	work	highlights	the	importance	of	containing	material	

within	these	spoil	 tips	and	preventing	their	mobilisation	 into	the	environment.	Whilst	the	

PHE	bioaccessible	concentrations	of	these	spoil	tips	were	too	low	to	result	in	acute	poisoning	

(Section	3.3.3),	 chronic	poisoning	could	occur	 if	human	receptors	were	 in	 regular	contact	

with	some	of	the	affected	sites.		

The	CISED	identified	components	and	their	subsequent	comparison	to	bioaccessibility	values	

showed	the	potential	relationships	between	the	solid	phase	distribution	of	PHEs	and	their	

availability	to	human	receptors.	This	study	showed	that	not	all	soil	components	contributed	

to	PHE	bioaccessibility	 for	 the	 soils	 under	 investigation,	 as	 the	bioaccessible	 content	was	

related	to	the	solubility	of	the	different	PHE	containing	components	present.	For	example,	

results	 from	 the	determination	of	 the	 solid	phase	distribution	of	PHEs	highlighted	 the	Fe	

oxides	as	hosts	of	PHEs	such	as	As	and	Pb.	The	degree	of	crystallinity	(and	resulting	solubility)	

of	the	Fe	oxide	phases	could	be	a	significant	factor	in	the	release	of	the	bioaccessible	fraction	

of	various	PHEs	assessed	in	this	study.	Knowledge	on	the	solid	phase	distribution	can	indicate	

the	likely	fate	and	behaviour	of	PHEs	during	flooding	conditions.	For	example,	the	majority	

of	 As	 was	 associated	 with	 the	 Fe-Al	 oxides	 and	 the	 literature	 reports	 that	 reductive	

dissolution	of	these	crystalline	structures	can	result	in	the	release	of	associated	PHEs	under	

reducing	conditions	(section	1.5).	Other	PHE	bearing	phases	were	the	Mn-oxide	phase	and	

the	Pb	and	Zn	dominated	phases,	all	of	which	could	undergo	reductive	dissolution	if	reducing	

conditions	occur	and	pH	drops	during	flooding.	The	presence	of	pyrite	in	samples	may	result	

in	the	formation	if	metal	sulphide	complexes	during	the	inundation	periods	used,	potentially	

reducing	PHE	bioaccessibility.		

Bioaccessibility	testing	on	soils	from	the	Tyne	catchment	has	shown	that	available	(via	oral	

ingestion)	 PHE	 concentrations	 were	 lower	 than	 those	 measured	 using	 a	 pseudo-total	

digestion,	thereby	providing	a	more	realistic	estimation	of	the	hazard	present.	Combining	

bioaccessibility	 with	 results	 obtained	 from	 the	 CISED	 extraction	 (and	 associated	 data	

manipulations)	gave	an	insight	into	why	certain	PHEs	were	(more)	bioaccessible	compared	

to	 other	 PHEs	 and	why	 between-soil	 differences	 occurred	 regardless	 of	 the	 pseudo-total	

concentration.	 The	 approach	 also	 provided	 underpinning	 lines	 of	 evidence	 to	 support	

decision-making	processes.	 The	 soils	 in	 this	 study	 showed	variability,	 likely	 from	differing	
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underlying	geology	and	land	uses,	resulting	in	the	variations	in	PHE	bioaccessibility	and	solid	

phase	distribution	seen	between	samples.	The	PHEs	in	the	soils	used	in	this	study	originated	

from	both	geogenic	and	anthropogenic	 inputs,	as	shown	in	the	site	description	 in	Section	

2.2.	 Similar	 results	 were	 also	 seen	 in	 other	 studies	 using	 different	 soil	 types	 and	

contamination	sources	(e.g.	Reis	et	al.,	2014;	Pelfrêne	et	al.,	2012),	highlighting	the	variability	

that	 can	occur	between	soils	within	a	 single	catchment.	Such	knowledge	 is	 important	 for	

conducting	 site-specific	 risk	 assessments	 for	human	 receptors	utilising	PHE	enriched	 soils	

within	a	catchment.	The	approach	used	within	this	study	can	be	applied	to	other	catchments	

to	gain	a	greater	understanding	of	the	effects	of	the	sold	phase	distribution	of	PHEs	on	their	

overall	bioaccessibility.		

Chapter	4	will	examine	the	fate	and	behaviour	of	PHEs	under	wetting	and	drying	regimes	for	

the	eight	soils	used	in	this	chapter	through	laboratory	microcosm	experiments.		
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4.	FLOODING	INDUCED	CHANGES	IN	THE MOBILITY	OF	
POTENTIALLY	HARMFUL	ELEMENTS	(PHES)	IN	SOILS	FROM	A	
HISTORIC	UK	MINING	CATCHMENT	 

4.1	Introduction		

Many	 UK	 catchments	 experience	 continuing	 freshwater	 inputs	 of	 potentially	 harmful	

elements	(PHEs)	from	both	point	and	diffuse	sources	associated	with	past	mining	activities,	

despite	the	cessation	of	metal	mining	(Lynch	et	al.,	2017).	These	materials	can	be	introduced	

into	 river	 systems	by	 processes	 such	 as	 erosion	 and	 surface	 run	 off	 (Dennis	et	 al.,	 2003;	

Foulds	 et	 al.,	 2014),	 or	 through	 point	 sources	 such	 as	 discharge	 from	 adits	 and	 shafts	

(Younger,	2000).	As	discussed	in	Chapter	1,	rivers	are	effective	dispersers	of	eroded	material,	

having	 the	 ability	 to	 move	 significant	 quantities	 of	 potentially	 contaminated	 material	

throughout	a	catchment,	introducing	them	to	floodplain	soils	via	deposition	during	periods	

of	high	flow	(Dennis	et	al.,	2003;	Macklin	et	al.,	2006;	Foulds	et	al.,	2014).	The	presence	of	

PHE	 enriched	 sediment	 onto	 floodplain	 soils	 can	 have	 ecotoxicological	 consequences	 for	

receptors	such	as	crops,	livestock	and	ultimately	humans	through	acute	or	chronic	poisoning	

if	concentrations	are	high	enough	through	floodplain/river	linkages.		

Flooding,	through	fluctuations	in	oxidation	reduction	potential	(ORP),	can	alter	the	physico-

chemical	 properties	 of	 PHE	 enriched	 soils	 and	 sediments	 by	 changing	 their	 mobilisation	

potential	and	availability	(Lynch	et	al.,	2017;	Shaheen	et	al.,	2017;	El-Naggar	et	al.,	2018).	

Processes	such	as	desorption	and	dissolution,	which	can	affect	mobilisation	and	availability	

of	PHEs,	are	complex	and	dependent	on	numerous	factors	such	as	soil	type,	major	element	

composition,	 inundation	 duration,	 mineralogy,	 temperature	 and	 overlying	 water	

composition	(Du	Laing	et	al.,	2009).	For	example,	hydrous	oxides	of	manganese,	aluminium	

and	iron	are	known	to	be	influential	on	the	binding	and	release	of	PHEs	because	of	their	large	

capacity	for	sorption	(Tack	et	al.,	2006).		

The	association	of	PHEs	and	solid	phases	is	shown	in	Table	3.6	and	Figure	3.4	displays	that	

PHEs	were	associated	with	the	Mn,	Al	and	Fe	oxides	in	the	eight	Tyne	soil	samples	used	in	

this	study.	Flooding	 is	known	to	cause	the	reduction	of	these	oxides	through	oxidation	of	

organic	matter,	 resulting	 in	 the	 release	of	associated	PHEs	 (Lynch	et	al.,	2014;	Pan	et	al.,	

2016).	 PHEs	 can	 also	 be	 immobilized	 during	 prolonged	 flooding	 conditions	 following	 the	

formation	of	metal	sulphide	complexes	as	SO4
2	−	is	reduced	to	HS-	(Vink	et	al.,	2010;	Pan	et	

al.,	2016).	Post	flooding	conditions	generally	return	to	an	oxidising	environment	where	Fe	

and	Mn	oxides	precipitate	with	PHEs,	reducing	their	mobility	(Du	Laing	et	al.,	2009;	Ciszewski	
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and	 Grygar,	 2016).	 Over	 time,	 dehydration	 can	 age	 Mn	 and	 Fe	 (hydr)oxides	 to	 a	 more	

crystalline	 state,	 immobilising	 PHEs	 through	 association	 (Figure	 1.1)	 (Zheung	 and	 Zhang,	

2010).		

To	understand	the	significance	of	PHE	mobilisation	and	subsequent	risk	to	receptors	such	as	

humans,	 livestock	and	foodstuffs,	 it	 is	 important	to	first	understand	the	factors	which	are	

most	 important	 for	 controlling	 the	mobilisation	and	availability	of	PHEs	 in	 sediments	and	

floodplain	soils.	Figure	1.4	predicts	that	PHEs	will	be	initially	released	into	porewaters	from	

the	dissolution	of	Mn/Fe	(hydr)oxides	and	association	with	dissolved	organic	carbon	(DOC)	

before	 possible	 association	 with	 other	 solid	 phases	 such	 as	 sulphides	 and	 organic	

compounds.	In	this	chapter,	these	associations	are	tested	by:	

• Examining	PHE	mobilisation	 into	porewater	 during	wetting	 and	drying	 cycles	 in	 a	

laboratory	microcosm.	

Following	on	from	this,	multiple	linear	regression	was	used	to:			

• Identify	the	main	factors	that	influence	PHE	mobilisation	into	the	porewater	of	the	

soils	used	in	this	study.	

Finally,	the	potential	risk	to	ecological	receptors	was	assessed	by		

• Comparing	 porewater	 PHE	 concentrations	 to	 the	 relevant	 Environmental	 Quality	

Standards	(EQSs).	

Potential	risk	to	humans	is	determined	in	Chapter	5	where	flooding	induced	changes	in	PHE	

bioaccessibility	are	investigated.	

4.2	Methods	

A	full	description	of	the	methods	used	is	given	in	Chapter	2.	A	brief	description	of	each	

method	is	reported	below.		

4.2.1	Sample	collection	and	characterisation	

A	full	site	description,	along	with	 justification	for	selection	of	the	sample	site	 locations,	 is	

given	in	Section	2.2.	Table	4.1	provides	a	brief	overview	of	the	soils	used	within	this	study.	

The	colours	show	how	soils	were	grouped	by	their	characteristics,	underlying	geology,	land	

uses	and	concentrations	of	PHEs	present	(shown	in	Table	3.2).	For	example,	soils	1	and	2	are	

both	technosols	from	a	former	Pb	works	which	are	now	used	as	recreational	parkland.	This	

grouping	 was	 used	 in	 regression	 analysis,	 outlined	 in	 section	 4.2.6.	 Soil	 samples	 were	

collected	from	the	Tyne	catchment	using	the	methods	described	in	section	2.3.		
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Table	 4.1:	 Description	 and	 location	 of	 each	 of	 the	 soils	 used	 within	 this	 study.	 Colours	 indicate	
grouping	of	soils	for	multiple	linear	regression.	

Sample	
number	 Location	 Geology	 Description	 Land	use	

Soil	1	
St	Anthony’s	

Head	
Sandstone	

Technosol	from	a	former	Pb	
works	site	

Recreational	parkland	

Soil	2	
St	Anthony’s	

Head	
Sandstone	

Technosol	from	a	former	Pb	
works	site.	Fragments	of	pure	

Pb	present	
Recreational	parkland	

Soil	3	 Nenthead	
Sandstone,	

mudstone	and	
limestone	

Histosol.	Peat	soil	in	upper	
catchment	

Rough	grazing	

Soil	4	 Corbridge	

Sandstone	with	
alluvium	
superficial	
deposits	

Cambisol	soil	from	mid	
catchment	

Agricultural	

Soil	5	 Corbridge	
Sandstone,	

mudstone	and	
limestone	

Cambisol	from	mid	catchment.	
Sourced	from	river	bank	

Rough	grazing	

Soil	6	 Nent	Valley	

Limestone,	
sandstone,	
siltstone	and	
mudstone	with	

alluvium	
superficial	
deposits	

Stagnosol	from	upper	
catchment	

Rough	grazing	

Soil	7	 Nenthead	
Sandstone,	

mudstone	and	
limestone	

Spoil	tip	material	 Rough	grazing	

Soil	8	 Nenthead	 Limestone	 Spoil	tip	material	
Rough	grazing.	Tourist	

attraction	

	

4.2.2	Microcosm	set	up	and	inundation	regime	

Microcosms	were	used	to	simulate	inundation	and	drying	events	in	a	controlled	manner.	The	

setup	 of	 the	 microcosms	 is	 described	 in	 detail	 in	 Section	 2.5.	 Figure	 2.11	 displays	 the	

inundation	regime	used	throughout	the	experiment	and	the	frequency	of	sampling.	

Oxidation	 reduction	 potential	 (ORP)	 was	 measured	 daily,	 using	 the	 method	 outlined	 in	

section	2.9.	Only	6	probes	were	available,	so	these	were	used	in	soils	2-7,	as	soils	2	and	7	

were	similar	to	soils	1	and	8	respectively	(Table	4.1).	Porewater	was	extracted	every	second	

day	using	RhizonsÔ,	as	described	in	Section	2.4.	Extracted	porewater	was	acidified	to	2	%	

HNO3	acid	and	stored	in	a	refrigerator	(~4	°C)	until	analysis	by	ICP-OES.		

4.2.3	Statistical	analysis	

Multiple	linear	regression	(MLR)	was	used	to	establish	the	significant	variables	influencing	

PHE	mobility	into	porewater.	Log	transformations	were	made	where	necessary	to	meet	the	

requirements	 of	MLR,	 using	 the	 log	 command	 in	 R.	 For	 example,	 exploratory	 plots	were	

made	prior	to	MLR	and	log	transformations	made	where	the	relationship	between	predictor	

and	response	variable	were	not	linear.		
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Model	simplification,	for	the	purposes	of	parsimony,	was	carried	out	on	a	step	by	step	basis	

where	the	highest	order	terms	were	removed	until	only	the	significant	variables	remained.	

Soils	 were	 grouped	 by	 their	 characteristics	 shown	 in	 Table	 4.1.	 This	 was	 done	 because	

grouping	the	soils	by	their	characteristics	made	it	easier	to	fit	MLR	models	to	the	elemental	

porewater	data.		

4.2.4	Comparison	of	porewater	concentrations	with	Environmental	Quality	Standards	(EQS)	

for	water	bodies	

Porewater	PHE	concentrations	were	compared	to	EQS	values	to	determine	their	potential	

risk	 to	ground	and	surface	waters.	EQSs	have	been	defined	by	 the	UK	Technical	Advisory	

Group	(UKTAG)	to	meet	the	requirements	of	the	Water	Framework	Directive	(WFD).	Where	

EQSs	 are	 exceeded,	 this	 indicates	 that	 the	 exposure	 to	 a	 particular	 PHE	 could	 cause	 a	

potential	risk	to	receptors.	Some	EQSs	have	a	proposed	total	value	in	µg	l-1	and	others,	such	

as	 Cu	 and	 Zn,	 are	 determined	 based	 on	 a	 bioavailable	 concentration.	 The	 required	

bioavailable	 calculation	 for	 Cu	 and	 Zn	 was	 determined	 using	 the	 UKTAG	 Bioavailability	

Assessment	Tool	(WFD-UKTAG	2012a;	WFD-UKTAG	2013).	The	required	inputs	are	the	pH,	

CaCO3	content	and	DOC	content	of	the	water	to	derive	a	bioavailable	concentration	for	the	

selected	PHEs.	The	calculation	of	a	Zn	value	by	the	tool	also	required	the	natural	background	

concentration	 within	 in	 the	 river,	 defined	 in	 the	 Tyne	 as	 1.30	 µg	 l-1	 of	 Zn	 (WFD-UKTAG,	

2012b).		

4.3	Results	and	discussion	

4.3.1.	Oxidation	Reduction	Potential	during	wetting	and	drying		

Oxidation	reduction	potential	(Figure	4.1)	values	generally	follow	the	pattern	of	the	wetting	

and	drying	sequences,	declining	during	inundation	and	rising	during	dry	periods,	as	might	be	

expected	from	the	literature	(Du	Laing	et	al.,	2007;	Frohne	et	al.,	2016;	Shaheen	et	al.,	2017).	

Generally,	 as	 outlined	 in	 Section	 1.5,	 inundation	 resulted	 in	 the	 consumption	 of	 O2	 by	

microbial	respiration,	leading	to	reducing	conditions.	pH	was	observed	to	increase	during	a	

move	to	reducing	conditions	as	reduction	reactions	consumed	H+	(Kashem	and	Singh,	2001).			
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Figure	4.1:	Oxidation	reduction	potential	(ORP)	in	mV	for	soils	2-7	over	the	duration	of	the	experiment.	
Data	 are	 not	 available	 for	 soils	 1	 and	 8	 because	 of	 lack	 of	 probes.	 The	 blue	 depicts	 periods	 of	
inundation	and	yellow	periods	of	drying.	

	

Sample	7	was	the	exception	to	the	general	trend	of	declining	ORP	during	inundation	as	the	

ORP	measurements	 remained	mostly	 constant	 throughout	 the	experiment	at	around	550	

mV.	 This	 is	 likely	 to	 be	 because	 soil	 7	 was	 spoil	 tip	 material	 with	 elevated	 Zn	 and	 Pb	

concentrations	 (17,000	 and	 294,000	 mg	 kg-1	 respectively).	 Given	 these	 Zn	 and	 Pb	

concentrations,	microbial	communities	are	 likely	to	be	 limited	(Aceves	et	al.,	1999)	which	

may	explain	 the	 lack	of	 fluctuation	 in	ORP.	Similar	 results	were	observed	by	Lynch	et	al.,	

(2017)	on	Zn	enriched	mine	impacted	river	bank	sediments	leading	these	authors	to	conclude	

that	desorption	rather	than	microbial	induced	reductive	dissolution	was	the	main	driver	of	

Zn	mobilisation	in	spoil	tip	material	under	short	term	inundation	(weeks).		

Soil	 5,	 a	 sandy	 river	 bank	 soil	 with	 low	 SOM	 content	 (<2	 %),	 initially	 decreased	 from	

approximately	500	mV	to	50	mV	during	inundation	before	rising	again	to	500	mV	during	soil	

drying.	The	initial	drop	in	ORP	suggests	microbial	consumption	of	O2	through	reduction	of	

the	low	amounts	of	SOM	in	soil	5	was	occurring	(Du	Laing	et	al.,	2009).	ORP	then	fluctuated	

around	500	mV	during	the	following	inundation	and	drying	sequence	which	may	be	a	result	

of	reduced	microbial	activity	as	the	available	biological	resources	were	consumed	during	the	

first	inundation	period,	with	no	opportunity	for	these	to	be	replenished.		
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ORP	for	soils	2,	3	and	4	remained	low	(<200	mV)	during	the	second	period	of	inundation	than	

the	 first.	 This	 is	 likely	 to	 be	 a	 result	 of	 continued	microbial	 activity	 from	 favourable	wet	

conditions	in	the	soils	from	the	first	wetting	cycle	(Jenne,	1968).	Soils	2,	3	and	4	have	a	higher	

SOM	content	 than	soil	5	 (Table	3.3),	which	may	explain	 the	difference	 in	ORP	behaviour.	

Additionally,	the	higher	organic	matter	(OM)	content	of	these	soils	(Table	3.3)	retained	water	

so	the	soils	did	not	dry	out	to	the	low	moisture	conditions	seen	prior	to	the	first	inundation.		

The	ORP	for	soil	6	decreased	to	-300	mV	during	inundation	and	rose	to	400	mV	during	drying	

periods.	 The	 observed	 variation	 in	 ORP	 suggests	 that	 the	 drivers	 and	 patterns	 of	 PHE	

mobilisation	were	different	between	the	eight	soils,	highlighting	the	need	to	fully	understand	

the	mechanisms	controlling	PHE	mobilisation.	

4.3.2	Influence	of	wetting	and	drying	periods	on	porewater	PHE	mobilisation	

4.3.2.1	Arsenic	

Measurement	of	porewater	PHE	concentrations	for	soils	1	to	5	showed	an	increasing	trend	

of	As	mobilisation	during	both	wetting	periods,	which	coincided	with	the	decreasing	trends	

observed	 for	 ORP	 (Figures	 4.2	 and	 4.3)	 (Weber	 et	 al.,	 2009).	 Mobilisation	 of	 As	 into	

porewaters	can	occur	when	As(V)	is	reduced	to	the	more	mobile	and	toxic	As(III)	(Roberts	et	

al.,	2010;	Vink	et	al.,	2010;	Frohne	et	al.,	2011;	Simmler	et	al.,	2017).	The	CISED	data	for	soils	

1	 to	 5	 showed	 that	 As	was	mainly	 associated	with	 Fe	 oxides	 (Chapter	 3	 and	 Table	 4.5).	

Reducing	conditions	of	about	300	to	-100	mV	(at	pH	6-7)	are	known	to	result	in	the	release	

of	 co-precipitated	 As	 via	 the	 reductive	 dissolution	 of	 Fe(III)(hydr)oxides	 (Charlatchka	 and	

Cambier,	2000),	which	is	well	documented	in	the	literature	(Joubert	et	al.,	2007;	Burton	et	

al.,	2008;	Cheng	et	al.,	2009;	Xu	et	al.,	2017).		

Suitable	conditions	 for	 the	 reduction	of	Fe(III)(hydr)oxides	were	observed	 for	all	 the	 soils	

used	 in	 this	 study,	 except	 for	 soils	 3	 and	 7.	 This	 was	 further	 supported	 by	 the	 positive	

relationship	between	As	and	Fe	observed	in	porewaters	(Table	4.2),	and	is	consistent	with	

results	from	other	studies	(Roberts	et	al.,	2010;	Weber	et	al.,	2009).	Therefore,	it	is	likely	that	

the	 reductive	 dissolution	of	 Fe-oxides	 can	occur	 over	 short	 term	wetting	 events,	 such	 as	

those	used	in	this	study.	Short	term	flooding	events	may	result	in	mobilisation	of	PHEs	from	

these	sources	into	pore	waters,	as	Fe	oxides	are	known	to	have	an	affinity	for	PHEs	(Palumbo-

Roe	 et	 al.,	 2015).	 The	 environmental	 implications	 of	 PHE	 mobilisation	 from	 short	 term	

flooding	events	are	discussed	in	Section	4.3.2.		

Soils	1	and	2	displayed	the	same	pattern	of	As	mobilisation	into	porewater	which	is	likely	to	

be	a	result	of	their	similar	land	use	and	soil	properties	(Table	4.1).	The	majority	of	As	in	soils	
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7	and	8	was	associated	with	more	crystalline	Fe-oxides	and	sphalerite	(Table	4.5)	and	little	

mobilisation	of	As	was	observed	for	these	soils.	This	was	likely	to	be	a	consequence	of	the	

small	changes	seen	in	ORP	meaning	sufficient	reducing	conditions	were	not	achieved	for	the	

dissolution	of	Fe	(Figure	4.3).	Soils	7	and	8	were	spoil	tip	material	situated	in	the	upper	mining	

area	 of	 the	 catchment	 (Figure	 2.6),	 hence	 the	 presence	 of	 sphalerite.	 The	 low	 rates	 of	

mobilisation	 observed	 for	 these	 soils	 suggest	 that	 As	 associated	 with	 sphalerite	 and	

crystalline	 Fe-oxides,	which	 are	 less	 likely	 to	 be	 released	 via	 reductive	 dissolution	 during	

short	 term	 flooding	 events	 (<14	 days),	 as	 sufficiently	 low	 reducing	 conditions	 were	 not	

reached	for	these	soils	(Figure	4.1).	The	CISED	data	in	Chapter	3	also	highlighted	the	stability	

of	this	soil	component	as	it	was	the	least	easily	extracted	(Figure	3.3).	The	mobilisation	of	As	

from	 soils	 7	 and	 8	 (Figure	 4.3)	 is	 therefore	 more	 likely	 to	 be	 explained	 by	 desorption	

processes.		

Little	to	no	mobilisation	of	As	was	observed	for	soil	3	(Figures	4.2	and	4.3)	which	was	a	highly	

organic	soil	(>90	%	SOM).	Some	studies	have	shown	that	the	addition	of	SOM	to	soils	can	

promote	the	mobilisation	of	As	under	flooding	conditions	through	increased	As	volatilization	

(Huang	et	al.,	2012),	competition	for	binding	sites	or	through	the	formation	of	aqueous	DOC	

complexes	(Wang	and	Mulligan,	2006).	However,	soil	3	contained	a	low	concentration	of	As	

(1.16	mg	kg-1)	that	was	mostly	associated	with	Fe-oxides.	Sufficient	reducing	conditions	were	

not	achieved	in	soil	3	for	the	reductive	dissolution	of	Fe-oxides,	potentially	accounting	for	

the	lack	of	As	mobilisation	seen	in	Figure	4.2.		

Soil	6	also	demonstrated	little	As	mobility	 into	porewaters	(Figure	4.3).	Soil	6	reached	the	

lowest	ORP	(-300	mV)	and	had	the	majority	of	As	associated	with	Fe-oxides.	Therefore	it	was	

expected	 that	As	would	behave	 in	a	 similar	manner	as	 in	 soils	1	 to	5,	being	mobilised	by	

reductive	dissolution	of	Fe(III)(hydr)oxides.	However,	the	mechanisms	resulting	 in	the	low	

mobility	of	As	into	porewaters	in	this	soil	are	unclear	with	the	available	data.		

The	sharp	decline	in	pore	water	concentrations	observed	for	soils	1	and	2	during	the	second	

drying	episode	was	assumed	to	be	from	the	oxidation	of	As(III)	to	the	less	mobile	As(V)	and	

the	subsequent	sorption	of	As(V)	onto	metal	oxides,	as	a	consequence	of	 the	rise	 in	ORP	

(Parsons	et	al.,	2013;	Shaheen	et	al.,	2014).	It	is	well	documented	that	the	mineralogy	and	

oxidation	status	of	Fe	minerals	influences	the	rate	of	As	sorption	(Dixit	and	Hering,	2003).	A	

return	to	oxic	conditions	can	result	in	the	reformation	of	reactive	Fe(III)-oxyhydroxides	such	

as	ferrihydrite	at	the	soil-water	interface,	as	this	has	a	high	sorption	capacity	and	is	known	

to	 become	 enriched	 with	 As	 (Mandaliev	 et	 al.,	 2014;	 Simmler	 et	 al.,	 2017).	 The	 second	
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inundation	period	could	have	resulted	in	the	reduction	of	these	poorly	crystalline	fractions	

and	induced	the	observed	second	release	of	As	into	overlying	waters,	as	seen	also	in	soils	1	

and	2	 (Figure	 4.3).	 This	 result	 highlights	 the	 importance	of	multiple	 inundation	 events	 in	

promoting	 As	 mobility	 in	 comparison	 to	 long	 duration	 events	 where	 As	 can	 become	

immobilised	 by	 sulphates	 if	 sufficient	 reducing	 conditions	 are	 reached	 (<	 -	 100	mV).	 The	

predicted	increases	in	the	frequency	of	winter	precipitation	events	(Section	1.2)	are	likely	to	

result	in	an	increase	in	flooding.	Therefore,	As	mobility	may	increase	through	repeated	flood	

events	as	a	build-up	of	As	associated	with	poorly	crystalline	or	amorphous	Fe	(hydr)oxides	

could	occur.		

No	significant	relationship	was	observed	between	S	and	As	for	all	soils	 in	the	MLR	output	

(and	it	is	therefore	not	included	in	Table	4.2),	suggesting	that	As	immobilisation	did	not	arise	

from	 sulphate	 reduction	 and	 the	 consequent	 formation	 of	 AsS	 complexes.	 Sulphide	

complexes	 are	 relatively	 stable	 compared	 to	 other	 PHE	 enriched	 minerals	 and	 PHE	

concentrations	should	decline	towards	zero	 in	a	sulphide-controlled	environment	(Vink	et	

al.,	2010).	However,	this	was	not	observed	in	Figures	4.2	and	4.3	for	the	eight	soils	analysed	

here.	Little	mobilisation	of	As	was	seen	from	soil	8,	where	the	As	was	mostly	associated	with	

sphalerite	 (ZnS).	 Sufficient	 reducing	 conditions	were	 not	 reached	 in	 soils	 7	 and	 8	 for	 the	

reduction	of	ZnS	and	consequent	release	of	associated	As.	

	

Table	4.2:	output	from	multiple	 linear	regression	models	for	porewater	As	mobilisation.	Soils	were	
split	according	to	their	characteristics	and	geographic	locations	(see	Table	4.1).	NS	=	not	significant.		

Soils	 r2	 Element	 Coefficient	 p-value	

1,	2	 0.81	
Fe	
Si	

0.62	
1.13	

p<0.001	
p<0.001	

3-6	 0.79	
Ca	
Fe	
Si	

-0.40	
0.12	
1.02	

p<0.001	
p<0.001	
p<0.001	

7,	8	 NS	 NS	 NS	 NS	

	

The	results	from	Figures	4.2	and	4.3	show	that	whilst	prolonged	flooding	has	been	reported	

in	 the	 literature	 to	 result	 in	 the	 immobilisation	 of	 As	 through	 the	 formation	 of	 sulphide	

complexes,	repeated	short	term	flooding	events	may	result	in	the	reductive	dissolution	of	

Fe-(hydr)oxides	during	 flooding	and	 re-association	with	more	 reactive	 Fe	minerals	 during	

drying	oxidising	periods.	This	has	the	potential	to	result	in	an	increase	in	the	mobility	of	As	
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during	 soil	 flooding,	 therefore	 potentially	 becoming	more	 available	 to	 receptors	 such	 as	

plants	through	As	mobilisation	into	porewater.		

4.3.2.2	Copper	

Copper	mobility	generally	follows	the	same	pattern	for	all	the	soils	used	within	this	study	

with	 porewater	 concentrations	 decreasing	 during	 inundation	 periods	 (~90	 %)	 and	 then	

increasing	 during	 drying	 episodes	 (Figures	 4.3	 and	 4.4).	 This	 behaviour	 of	 Cu	 has	 been	

reported	in	other	studies	(e.g.	Hofacker	et	al.,	2013;	Shaheen	et	al.,	2017)	and	can	be	a	result	

of	the	re-association	of	Cu	with	sulphides	during	prolonged	reducing	conditions	at	<-100	mV	

(Du	Laing	et	al.,	2007).	Copper	is	known	to	preferentially	bind	to	sulphides	over	other	PHEs,	

therefore,	Cu	will	bind	first	to	any	available	sulphides	present	during	flooding,	forming	stable	

metal-sulphide	complexes	(Vink	et	al.,	2010).	Sulphate	reduction	has	been	shown	to	occur	

after	about	five	days	in	a	laboratory	microcosm	inundation	experiment	by	Hofacker	et	al.,	

(2013)	 and	 therefore	 sulphate	 reduction	 was	 expected	 in	 this	 study	 at	 ORP	 <	 -100	 mV	

(Kashem	and	Singh,	2001).	However,	only	soils	2	and	6	reached	this	condition	(Figure	4.1).	

Consequently,	the	decline	in	Cu	concentrations	seen	in	the	soils	in	this	study	is	hypothesised	

to	be	due	to	the	reduction	of	Cu2+	to	Cu1+	as	seen	in	Shaheen	et	al.,	(2017).	This	mechanism	

could	 result	 in	 low	Cu	mobilisation	 during	 the	 inundation	 periods,	 facilitated	 by	 electron	

donors	such	as	Fe2+	and	bacteria	(Weber	et	al.,	2009b;	Shaheen	et	al.,	2016;	Shaheen	et	al.,	

2017).		

Copper	displayed	a	negative	 relationship	with	Fe,	Mn	and	Ca	 in	 soils	1	and	2	 (Table	4.3),	

suggesting	there	were	other	sources	such	as	SOM	providing	binding	sites	during	reducing	

conditions	 (Balint	et	 al.,	 2015).	 Similar	 results	were	 found	by	 Shaheen	et	 al.,	 (2017)	who	

concluded	that	SOM	was	a	preferential	binding	site	over	Fe/Mn	(hydr)oxides	for	Cu	under	

reducing	 conditions.	 The	 binding	 of	 Cu(II)	 to	 SOM	 during	 inundation	 could	 result	 in	 the	

formation	of	colloidal	particles	in	pore	and	overlying	waters,	thereby	reducing	Cu	mobility	as	

seen	by	Hofacker	et	al.	(2013).		

Mobilisation	of	Cu	into	porewater	was	<LOD	for	soil	3,	which	has	a	SOM	content	of	>90	%,	

suggesting	that	the	Cu	remained	fully	bound	to	SOM	during	inundation	of	this	soil.	Soil	5,	

with	 <2	 %	 SOM	 and	 soil	 8	 with	 <1	 %	 showed	 the	 smallest	 decreases	 in	 porewater	 Cu	

concentrations	(<60	%)	in	comparison	to	other	soils.	Therefore,	soils	with	low	SOM	may	have	

reduced	ability	to	immobilise	Cu	during	flooding	events.		

A	significant	positive	relationship	was	observed	between	Cu	and	Al	for	soils	3-6	(Table	4.3),	

however	 MLR	 outputs	 reported	 that	 this	 relationship	 only	 explains	 about	 20	 %	 of	 the	
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variation	in	Cu.	Consequently,	there	are	likely	to	be	other	factors	influencing	Cu	mobilisation,	

such	as	dissolved	organic	matter	(DOM)	and	S.	It	is	hypothesised	that	the	addition	of	other	

variables	such	as	DOM	and	sulphates	(not	measured)	would	improve	the	model	output	in	

Table	4.3.		

Other	studies	into	Cu	mobility	have	also	shown	increases	in	soluble	and	available	Cu	during	

a	rise	in	ORP,	highlighting	the	ecotoxicological	implications	during	soil	drying	periods	(Frohne	

2011;	Shaheen	et	al.,	2014).	Inundation	after	prolonged	drying	periods	can	result	in	higher	

concentrations	of	Cu	in	solution	originating	from	the	oxidation	of	SOM	(Balint	et	al.,	2015)	

or	the	oxidation	of	sulphates	and	release	of	associated	Cu	(Shaheen	et	al.,	2017;	Naggar	et	

al.,	2018).	This	may	 result	 in	an	 increase	 in	available	Cu	 to	plant	and	animal	 receptors	 in	

porewaters	and	may	be	a	mechanism	driving	the	increase	in	porewater	Cu	concentrations	in	

this	 study	 that	 coincide	 with	 a	 rise	 in	 ORP.	 Section	 1.2	 highlights	 that	 climate	 change	

predictions	 show	 increased	 drought	 periods	 during	 summer,	 which	 may	 promote	 the	

mobility	of	Cu	as	previously	flooded	soils	dry	out.		

	

113	 4.3:	 Multiple	 linear	 regression	 analysis	 for	 porewater	 Cu.	 Response	 variables	 were	 log	
transformed	and	predictors	log	transformed	where	mentioned	below.		

Soils	 r2	 Element	 Coefficient	 p-value	

1,	2	 0.79	

Log(Ca)	
Log(Fe)	
Log(Mn)	
Log(Si)	

-3.44	
-0.77	
-0.24	
6.6	

p<0.001	
p<0.001	
p=0.01	
p<0.001	

3-6	 0.21	 Al	 0.02	 p<0.001	

7-8	 0.43	 Si	 0.05	 p<0.001	

	

4.3.2.3	Zinc		

Porewater	patterns	of	Zn	mobilisation	are	inconsistent	between	the	soils	in	this	study.	This	

is	 similar	 to	 the	 findings	 of	 Indraratne	 and	 Kumaragamage	 (2017),	 who	 looked	 at	 Zn	

mobilisation	from	uncontaminated	agricultural	floodplain	soils.	Porewater	concentrations	of	

Zn	in	soils	1	and	2	showed	little	change	with	wetting	and	drying	(Figure	4.2).	The	pattern	of	

Zn	concentrations	in	porewater	for	soil	3	(Figure	4.2)	is	unclear	because	of	variation	in	the	

replicate	microcosm	results.	In	soil	4,	Zn	porewater	concentrations	showed	a	pulsed	pattern	

of	mobilisation	(Figure	4.3	and	4.4),	which	has	been	reported	in	Lynch	et	al.,	(2017)	where	it	

was	suggested	to	represent	a	shift	in	the	mechanisms	controlling	Zn	release	from	soils	during	
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periods	of	inundation.	These	mechanisms	may	include	the	reductive	dissolution	of	various	

metal	oxides	such	as	Mn	and	Al	in	response	to	changing	ORP	values.	Soils	6	and	7	showed	a	

rise	in	Zn	concentrations	over	the	first	7	days	of	inundation,	followed	by	a	gradual	decline	

over	 the	 second	 inundation	 period.	 Declines	 in	 porewater	 Zn	 concentrations	 were	 also	

observed	 during	 the	 drying	 periods	 for	 soils	 6	 and	 7.	 The	 initial	 rise	 in	 porewater	

concentrations	 may	 come	 from	 disassociation	 of	 Zn	 from	 soil	 particles	 during	 the	 first	

inundation,	followed	by	re-association	over	the	remaining	duration	of	the	experiment.	Soil	8	

showed	little	mobilisation	for	Zn	after	the	first	day	and	porewater	concentrations	declined	

throughout	the	experiment.		

Fe	and	Mn	(hydr)oxides	are	reported	as	influencing	the	mobilisation	dynamics	of	Zn	under	

changing	redox	conditions	(Lynch	et	al.,	2014;	Lynch	et	al.,	2017;	Shaheen	et	al.,	2017).	The	

conventional	 release/retention	pattern	 generally	 reported	 in	 the	 literature	 is	 that	 Fe/Mn	

oxides	are	reduced,	and	any	co-precipitated	Zn	released,	under	reducing	conditions	(Lynch	

et	al.,	2014)	and	a	return	to	oxic	conditions	sees	the	precipitation	of	Fe/Mn	(hydr)oxides	and	

Zn	(Lynch	et	al.,	2017).	However,	soils	3-5	did	not	show	a	significant	relationship	between	Zn	

and	Fe,	but	with	Mn	instead	(Table	4.4).	Similar	results	have	been	reported	in	Shaheen	et	al.,	

(2017),	suggesting	that	the	chemistry	and	form	of	Mn/Fe	is	important	for	the	binding	of	PHEs	

such	 as	 Zn	 and	 that	 Zn	 behaviour	 will	 vary	 depending	 on	 these	 soil	 characteristics.	 Mn	

(hydr)oxides	have	also	been	shown	to	be	preferentially	reduced	during	microbial	respiration	

over	 Fe	 at	 higher	 redox	potentials	which	may	 explain	 the	 lack	 of	 a	 relationship	 between	

porewater	Fe	and	Zn	in	soils	3-5	(Maria-Cervantes	et	al.,	2010).	Additionally,	the	lower	pH	of	

soil	3	may	have	prevented	Zn	from	associating	with	Fe	oxides	(Shaheen	et	al.,	2017).	Soils	6,	

7	and	8	showed	a	continued	decline	in	soluble	Zn	during	oxidising	periods,	which	is	thought	

to	be	a	result	of	the	formation	of	persistent	ZnS	(Hong	et	al.,	2011;	Bunquin	et	al.,	2017).	

A	negative	relationship	between	Zn	and	Fe	in	soils	1-2	(Table	4.4)	suggests	that	Fe	may	not	

be	the	preferential	binding	site	for	Zn	in	these	soils.	Similar	findings	were	reported	by	Frohne	

et	al.,	(2011).	The	negative	relationship	with	Zn	and	Ca	seen	in	soils	1	and	2	may	be	a	result	

of	Ca	buffering	pH	changes	(Nedrich	and	Burton	Jr,	2017).	For	example,	in	calcareous	soils,	

release	of	Ca	may	prevent	acidification	that	can	drive	PHE	release,	(Hudson-Edwards	et	al.,	

2006)	as	 the	presence	of	high	CaCO3	 levels	 in	waters	may	buffer	pH	 levels	and	 therefore	

hinder	the	release	of	Zn	from	secondary	minerals	such	as	Zn	carbonate	minerals.		

Soil	 6	 (Figure	 4.3)	 shows	 a	 declining	 trend	 in	 Zn	 porewater	 concentrations	 over	 the	

inundation	 and	 drying	 periods	 and	 showed	 no	 significant	 trends	 with	 any	 other	 major	
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elements.	 Consequently,	 the	 mechanisms	 driving	 the	 porewater	 Zn	 concentrations	 are	

unclear	from	the	data	available	in	this	thesis.		

Soils	7	and	8	had	a	significant	positive	relationship	between	Zn	and	Si.	This	may	be	a	result	

of	 the	 mobilisation	 of	 Zn	 from	 more	 reactive	 mineral	 forms	 containing	 Si,	 such	 as	

hemimorphite	which	has	been	reported	to	form	quartz	grains	on	mine	spoil	tip	material	in	

the	Tyne	Valley	(Hudson-Edwards	et	al.,	2006).	The	majority	of	Zn	was	mainly	in	the	form	of	

ZnS	(see	Table	4.5)	in	soil	8,	so	it	is	hypothesised	that	this	was	stable	for	the	duration	of	the	

experiment	as	result	of	the	consistent	redox	potential	(Figure	4.1).	

	

Table	 4.4:	 Multiple	 linear	 regression	 analysis	 for	 porewater	 Zn.	 Response	 variables	 were	 log	
transformed	and	predictors	log	transformed	where	mentioned	below.		

Soils	 r2	 Element	 Coefficient	 p-value	

1-2	 0.91	
Log(Ca)	
Log(Fe)	
Log(Si)	

-7.69	
-0.77	
12.24	

p<0.001	
p<0.001	
p<0.001	

3-5	 0.74	
Log(Al)	
Log(Mn)	
Log(Si)	

0.33	
0.15	
-1.72	

p<0.001	
p<0.001	
p<0.001	

6	 NS	 NS	 NS	 NS	

7-8	 0.42	 Log(Si)	 1.78	 p<0.001	
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Figure	4.2:	a)	porewater	concentrations	for	soil	1,	b)	porewater	concentrations	for	soil	2,	c)	porewater	concentrations	for	soil	3,	d)	porewater	concentrations	for	soil	4.	
Error	bars	denote	the	standard	error	(n=3).	Blue	area	depicts	inundation	periods	and	orange	drying	period.	ORP	for	day	37	is	missing.	
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Figure	4.3:	a)	porewater	concentrations	for	soil	5,	b)	porewater	concentrations	for	soil	6,	c)	porewater	concentrations	for	soil	7,	d)	porewater	concentrations	for	soil	8.	
Error	bars	denote	the	standard	error	(n=3).	Blue	area	depicts	inundation	periods	and	orange	drying	periods.	ORP	for	day	37	is	missing.	
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4.4.1	Comparison	of	PHE	porewater	concentrations	to	Environmental	Quality	Standards	

Porewater	PHE	concentrations	were	compared	to	environmental	quality	standards	(EQS)	to	

contextualise	the	results	from	Figures	4.2	and	4.3	and	determine	if	they	pose	a	potential	risk	

to	 environmental	 receptors	 (Table	 4.5).	Arsenic	 EQS	 values	were	exceeded	by	porewater	

concentrations	for	soils	1	and	2,	with	the	highest	concentration	being	1,120	µg	l-1,	suggesting	

a	 potential	 risk	 to	 aquatic	 environments	 from	 inundation	 of	 these	 soils.	 The	 potential	

mobilisation	of	As	from	soils	1	and	2	via	surface	run	off	may	also	provide	a	secondary	source	

of	 As	 into	 receiving	 waters	 under	 a	 changing	 climate.	 This	 is	 because	 increases	 in	

precipitation	are	likely	to	increase	surface	run	off,	leaching	and	flooding	(Wijngaard	et	al.,	

2017).	Soils	1,	2	and	8	had	porewater	bioavailable	Cu	concentrations	which	exceeded	the	

EQS	values.		

	

Table	4.5:	Comparison	of	porewater	concentrations	to	water	quality	standards.	Bioavailable	fractions	
were	calculated	using	the	UKTAG	Bioavailability	Tool	

PHE	 Water	quality	standard	(µg	l-1)	 Exceeded?	
Soils	which	exceed	

standard	
Arsenic	 50	 Yes	 1,2	

Copper	 1	(bioavailable)	 Yes	 1,2,8	

Zinc	 10.9	(bioavailable	+	background	concentration*)	 Yes	 All	
*Background	Zn	concentration	for	the	Tyne	is	1.30	µg	l-1	(WFD-UKTAG,	2012b)	

	

All	porewater	concentrations	from	the	eight	soils	exceeded	the	EQS	value	for	Zn.	Soils	4-8	

were	all	 in	close	proximity	to	river	channels	in	the	Tyne	catchment	so	likely	to	experience	

fluctuations	in	river	stage	resulting	in	periodic	soil	inundation,	therefore	providing	a	pathway	

from	source	to	river	channel	for	the	mobilisation	of	trace	metals.	Soils	6-8	were	collected	

from	 the	 River	 Nent	 floodplain	 of	 the	 upper	 Tyne	 catchment	 and	 were	 found	 to	 have	

porewater	concentrations	reaching	8,820	µg/l.	Poor	ecological	status	has	been	recorded	for	

freshwater	 invertebrates	 in	 the	 river	 Nent	 resulting	 from	 trace	 metal	 concentrations	

(Environment	Agency,	2017)	such	as	those	observed	for	Zn	in	this	study.	Negative	effects	on	

benthic	 organisms	 have	 been	 reported	 from	 exposure	 to	 Zn	 concentrations	 in	 streams	

following	Zn	release	from	sediments	(Nedrich	and	Burton	Jr.,	2017).	The	study	by	Nedrich	

and	 Burton	 Jr	 (2017)	 showed	 that	 individual	 growth	 rates	 of	 the	 freshwater	 amphipod	

Hyalella	azteca	were	negatively	correlated	with	dissolved	pore	water	concentrations	of	Zn.		
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Despite	there	not	being	a	single	identifiable	mechanism	responsible	for	Zn	mobilisation,	all	

soils	displayed	considerable	increases	of	Zn	into	porewaters	immediately	after	inundation.	

The	 results	 in	 Figures	 4.2	 and	 4.3,	 and	 comparison	 of	 pore	water	 concentrations	 to	 EQS	

values	(Table	4.5)	indicate	that	there	may	be	an	increased	risk	from	Zn	exposure.	Generally,	

lower	 concentrations	are	 released	 into	overlying	waters	because	of	 the	dilution	effect	of	

channel	currents	and	freshwater	water	entering	water	channels.	However,	PHE	mobilisation	

into	ground	water	and	porewaters	can	enter	river	channels	via	the	hyporheic	zone	and	has	

been	 shown	 to	 increase	 stream	 concentrations	 in	 the	 absence	 of	 any	 point	 sources,	

highlighting	 the	 importance	 of	 secondary	 diffuse	 sources	 (Palumboe-Roe	 et	 al.,	 2012).	

Therefore,	understanding	 the	characteristics	and	mobilisation	potential	of	PHEs	 in	 soils	 is	

important	for	the	effective	management	of	mining	impacted	catchments	and	achieving	good	

ecological	status.	For	example,	understanding	the	fate	and	behaviour	of	PHEs	in	a	range	of	

soil	types	can	help	identify	areas	within	a	catchment	that	have	the	greatest	propensity	for	

PHE	mobilisation	under	inundation.	Highlighting	such	areas	may	be	useful	in	targeting	areas	

for	site	specific	remediation,	depended	on	soil	type	and	the	PHE	present.			

Studies	in	the	Tyne	have	sources	of	PHEs	listed	as	both	diffuse	and	point	sources,	highlighting	

the	 issues	with	 floodplain	 soils	 and	 sediments	 being	 both	 a	 sink	 (Hudson-Edwards	et	 al.,	

1996)	and	source	(Macklin	et	al.,	1997)	of	PHEs.	For	example,	porewater	concentrations	of	

As	exceeded	its	respective	EQS	values	for	soils	1	and	2,	where	As	was	expected	to	originate	

from	 the	 former	 lead	 arsenate	 works	 where	 the	 soils	 were	 sampled.	 The	 elevated	 Zn	

porewater	 concentrations	 that	exceeded	 the	Zn	EQS	value	were	 likely	 to	have	originated	

from	geogenic	sources	and	diffuse	inputs	from	the	Pb	and	Zn	mine	spoil	tips	 in	the	upper	

reaches	of	the	catchment.	Copper	was	likely	to	have	originated	from	mining	activities	in	soil	

8	and	industrial	processes	for	soils	1	and	2.	

4.5	Conclusions	

The	results	from	this	laboratory	experiment	showed	that	floodplain	soils	can	act	as	a	source	

of	 PHEs	 into	 waterbodies	 in	 the	 Tyne	 catchment	 through	 chemical	 mobilisation	 into	

porewaters.	 This	 potential	 release	 from	 bank	 sediments	 and	 floodplain	 soils	 could	 have	

implications	for	water	quality	targets	in	the	Tyne	such	as	those	of	the	WFD.	For	example,	the	

River	 Nent	 in	 the	 upper	 South	 Tyne	 catchment	 has	 failed	 WFD	 targets	 for	 stream	

concentrations	 of	 Cd,	 Pb	 and	 Zn	 that	 originate	 from	 both	 point	 and	 diffuse	 sources	

(Environment	Agency,	2017).		
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This	 study	 showed	 the	 potential	 for	 PHE	mobilisation	 from	 a	 range	 of	 soils	 in	 the	 Tyne	

catchment	through	mechanisms	such	as	changes	 in	mineralogy,	 reductive	dissolution	and	

desorption.	Mobilisation	of	soil/bank	sediment	PHEs	into	ground	water,	overlying	water	and	

changes	in	PHE	availability	can	result	in	the	exceedance	of	EQS	values	and	consequently	an	

increased	risk	to	human	and	ecological	receptors.	Experimental	inundation	increased	some	

PHEs	close	to	or	above	their	respective	EQS	values,	highlighting	the	need	for	more	detailed	

work	into	understanding	the	effects	of	changes	in	environmental	conditions	such	as	flooding	

on	PHE	bioaccessibility	for	a	wider	range	of	soil	types.	This	will	be	explored	further	in	Chapter	

5	where	determining	changes	in	the	solid	phase	distribution	of	PHEs	can	be	used	to	identify	

the	sources	and	drivers	of	PHE	mobility.		
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5.	FLOODING	INDUCED	CHANGES	IN	THE	SOLID	PHASE	
DISTRIBUTION	AND	BIOACCESSIBILITY	OF	POTENTIALLY	
HARMFUL	ELEMENTS	(PHES)	

5.1	Introduction	

The	solid	phase	distribution	of	a	PHE	can	dictate	 its	availability,	 toxicity	and	potential	 for	

mobilisation	(Lin	et	al.,	2018).	Flooding	of	soil	has	the	potential	to	result	in	changes	in	the	

microbial	 activity,	 pH,	 temperature	 and	 redox	 potential	 of	 soils,	 thereby	 inducing	 the	

redistribution	of	PHEs	amongst	the	solid	phases,	as	outlined	in	Section	1.5	(Antic-Mladenovic	

et	al.,	2017;	Du	Laing	et	al.,	2007).	The	changes	in	the	solid	phase	distribution	of	PHEs	can	

also	potentially	influence	PHE	bioaccessibility.	For	example,	inundation	of	soil	under	anoxic	

conditions	has	shown	increased	bioaccessibility	of	Cu	and	Pb	to	humans	(Florido	et	al.,	2011).	

However,	the	current	state	of	knowledge	on	the	effects	of	inundation	on	PHE	bioaccessibility	

is	still	limited	and	more	research	is	needed	on	how	PHE	behaviour	in	different	soil	types	could	

affect	human	health.	As	bioaccessibility	is	now	considered	a	more	appropriate	method	for	

human	 risk	 assessment	 of	 soils	 and	 sediments	 (Pelfrêne	et	 al.,	 2012),	 understanding	 the	

potential	effects	of	flooding	on	PHE	bioaccessibility	is	important	for	the	assessment	of	risk	

associated	with	exposure	to	PHEs	in	floodplains.	Additionally,	an	understanding	of	how	PHEs	

can	be	redistributed	amongst	the	solid	phase	components	of	soils	can	provide	insights	into	

why	changes	in	bioaccessibility	and	mobility	occur.	 

Sequential	extractions,	such	as	the	Tessier	method	(Tessier	et	al.,	1979),	are	often	conducted	

to	 determine	 the	 changes	 in	 pre-defined	 solid	 phases	 of	 PHEs	 as	 a	 consequence	 of	

inundation.	 An	 alternative	 technique	 is	 the	 non-specific	 Chemometric	 Identification	 of	

Substrates	 and	 Element	 Distributions	 (CISED)	 method	 (Cave,	 2004),	 combined	 with	

chemometric	modelling	 to	determine	 the	 fate	and	behaviour	of	PHEs	 in	 the	 solid	phases	

before,	during	and	after	flood	events.	The	CISED	method	is	a	useful	tool	for	ascertaining	the	

underlying	mechanisms	driving	PHE	mobilisation	and	changes	in	availability	as	it	can	be	used	

to	determine	the	masses	of	PHEs	associated	with	each	soil	component.	Extraction	profiles	

provide	information	on	the	potential	availability	of	a	component	as	solids	that	are	extracted	

over	distilled	water	and	weak	acid	additions	will	be	more	mobile	and	available	than	those	

extracted	at	high	acid	additions.	An	increase	in	extractable	masses,	or	a	shift	in	the	extraction	

profile	(described	in	Section	2.15.1)	where	the	greatest	mass	of	solids	is	extracted	earlier	in	

the	profile	can	show	that	inundation	may	increase	the	potential	availability	and	mobility	of	

a	 component	and	associated	PHEs.	A	decrease	 in	 the	extractable	masses	of	metal	oxides	
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suggests	 that	 reductive	 dissolution	 of	 these	 oxides	may	 be	 occurring	 under	 the	 reducing	

conditions	 experienced	 during	 inundation.	 This	 has	 implications	 for	 metal	 mobility	 as	

associated	 PHEs	 will	 be	 mobilised	 either	 into	 porewaters	 or	 associated	 with	 other	

components	within	the	soil,	therefore	determining	PHE	availability.	For	example,	association	

with	more	labile	components	such	as	carbonates	or	with	porewater	can	result	in	increased	

availability	to	receptors	(Pelfrêne	et	al.,	2013).	

The	aim	of	this	work	is	to	explore	whether	flooding	results	in	detectable	changes	in	the	solid	

phase	distribution	of	PHEs	in	eight	soils	from	the	Tyne	catchment.	Secondly,	changes	in	the	

bioaccessibility	of	PHEs	will	be	determined	using	the	UBM	method.		

5.2	Methods		

A	full	description	of	the	methods	used	is	given	in	Chapter	2.	A	brief	description	is	given	

below.	 

5.2.1	Sample	collection	and	preparation	

A	full	site	description,	along	with	justification	for	selection	of	the	sample	site	locations,	is	

given	in	Section	2.2.	Table	4.1	provides	a	brief	overview	of	the	soils	and	their	characteristics	

used	within	this	study.		

5.2.2	Microcosm	set	up	and	inundation	regime	

Microcosms	were	used	to	simulate	inundation	and	drying	events	in	a	controlled	manner.	The	

setup	 of	 the	microcosms	 is	 described	 in	 detail	 in	 Section	 2.5.	 Samples	were	 collected	 as	

surface	scrapes	for	the	CISED	and	UBM	procedures	at	the	end	of	every	wetting	and	drying	

sequence,	 as	 described	 in	 Section	 2.5.2.	 Chapter	 2	 displays	 the	 inundation	 regime	 used	

throughout	the	experiment.	Time	steps	are	outlined	below:		

• T0	=	Pre	first	inundation	period	

• T1	=	First	inundation	period	(14	days)	

• T2	=	First	drying	period	(7	days)	

• T3	=	Second	inundation	period	(14	days)	

• T4	=	Second	drying	period	(7	days)	

5.2.3	Data	manipulation	

A	chemometric	self-modelling	mixture	algorithm	outlined	in	Cave	et	al.,	2004	and	Section	

2.15	 was	 applied	 to	 the	 chemical	 composition	 data	 and	 used	 to	 identify	 the	 number,	

chemical	 composition	 and	 amount	 of	 each	 component	 in	 each	 sample,	 as	 was	 done	 in	
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Chapter	3.	However,	the	five	time	steps	(pre	flooding,	first	inundation,	first	drying,	second	

inundation	 and	 second	 drying)	 for	 all	 soils	 were	 analysed	 by	 the	 self-modelling	 mixture	

resolution	algorithm	(SMMR)	together,	as	opposed	to	separately	as	occurred	in	Chapter	3.	

This	was	done	to	create	a	uniform	set	of	components	across	the	soils	for	ease	of	comparison	

between	soils	and	time	steps.	Consequently,	the	modelled	components	are	slightly	different	

to	those	presented	in	Chapter	3,	which	only	included	CISED	data	from	the	dry	eight	soils.	The	

CISED	determined	components	(Section	2.15.1)	 in	this	chapter	were	also	not	subjected	to	

hierarchal	cluster	analysis.	However,	the	components	can	be	linked	to	the	clusters	in	Chapter	

3,	as	both	datasets	originate	from	the	same	soils.	

Components	were	defined	by	applying	multivariate	techniques	to	the	chemical	composition	

data	from	the	CISED	extraction	process	for	each	soil.	The	SMMR	process	is	described	fully	in	

Section	2.13.		

Analyses	were	performed	in	R	3.2.4	(R	Core	Team,	2016)	using	the	Lattice	package	(Sarakar,	

2008)	 for	 the	 generation	 of	 the	 extraction	 profiles.	 Microsoft	 excel	 was	 used	 for	 the	

generation	of	stacked	bar	plots.		

5.3.	Results	and	Discussion	

5.3.1	Flooding	induced	changes	in	the	CISED	extraction	profiles	

Generally,	 inundation	either	 increased	the	amount	of	extractable	solids,	or	 resulted	 in	an	

earlier	peak	of	extractable	solids	in	the	soils	used	in	this	study.	However,	these	patterns	were	

variable	depending	on	soil	 type.	This	shows	that	the	variation	 in	component	behaviour	 in	

each	 individual	 soil	 can	have	consequences	 for	 the	mobility	and	availability	of	associated	

PHEs.	 Extraction	 profiles	 display	 the	 mass	 of	 solids	 at	 each	 extraction	 step	 for	 every	

component	and	can	give	an	insight	into	the	potential	availability	and	mobility	of	the	elements	

associated	with	that	component	(Cave	et	al.,	2015).		

Figure	 5.1	 showed	 the	 flooding	 induced	 changes	 in	 the	 extraction	 profiles	 for	 each	

component	 for	 soil	 1.	 The	 remaining	 plots	 for	 soils	 2-8	 are	 in	Appendix	 2.	 The	 effects	 of	

wetting	 and	 drying	 cycles	 on	 the	 CISED	 extraction	 profiles	 for	 each	 component	 are	

summarised	 in	 Table	 5.1,	 providing	 an	 outline	 of	 the	 change	 in	 each	 component’s	

extractogram.		
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Figure	5.1:	Extraction	profiles	showing	CISED	extractable	solids	in	mg/kg	for	soil	1	at	time	steps	0-4.	
T0	=	pre-flooding,	T1=	flooded,	T2=drying,	T3=	flooded,	T4=drying.		

	

Table	5.1:	Summary	of	the	main	changes	in	the	extractograms	for	each	component	for	all	soils.		

Mn-Ca	

• Solids	extracted	earlier	
after	first	flood	for	soils	
1,	5,	6,	7	

• Greatest	solids	extracted	
at	T0	for	soils	2,	3,	4,	8.	

	

Na-K	

• More	extractable	solids	
after	flooding:	soils	1,	2,	
and	4,6,7,8.	

• Soils	3	and	5	have	
greatest	total	extractable	
solids	during	T0.	

Pb-Zn		

• Little	to	no	extractable	
solids	during	T0	for	soils	
1,	2,	5,6,7,8.	

• Greatest	extractable	
solids	during	T0.	Solids	
are	extracted	earlier	post	
flooding.	Soils	3	and	4.	

Zn		

• Greatest	solids	extracted	
after	flooding	for	soils	1,	
2,	6.	

• Lower	extractable	mass	
after	flooding	for	soils	
3,4,5,7	and	8.	

Fe-P	

• Increases	in	extractable	
solids	after	flooding	for	
all	soils.	Peak	extraction	
is	later	in	profile	after	
flooding.		

Fe-Zn	

• Decrease	in	extractable	
solids	during	drying	only.	
Soils	1,	2.	

• Greatest	extracted	solids	
at	T0.	Soils	3,	4.	

• Soils	5,	6,7	show	no	clear	
patterns	or	trends.	

• Little	change.	Soil	8.	

K	

• Increase	in	extractable	
solids	during	wetting	
periods.	Soils	1,	2,6,7,8.	

• Little	change.	Soils	4,	5.	
• Solids	only	really	

extracted	during	T0.	Soil	
3.	

Mg-Ca	

• Earlier	extraction	profile	
of	solids	after	wetting.	
Soils	1,	2,	3,4,5,6.	

• Reduction	is	extractable	
solids	after	flooding.	Soil	
7.	

• Increase	in	extractable	
solids	after	flooding.	Soil	
8.	

Al	

• Earlier	peak	extraction	of	
solids.	Soil	1,	6,7.	

• Greatest	extractable	
mass	at	T0.	Soils	2,3,4,5.	

• Little	change.	Soil	8.	

Al-Ca-Fe	

• Increase	in	extractable	
solids	after	flooding.	Soils	
1,	2,4,6,7.	

• Little	change.	Soil	8.	
• Earlier	peak	extractable	

solids.	Soil	5.	Greatest	
extracted	solids	at	T0.	
Soil	3.	

Ca	

• Earlier	peak	in	
extractable	solids.	Soils	1,	
2,	6.	

• Little	change.	Soils	4,	7.	
• Increase	in	extractable	

solids	after	drying.	Soils	
5.	

• T0	has	greatest	
extractable	solids.	Soils	3,	
8.	

Fe	

• Slightly	later	extraction	
profile	after	flooding.	Soil	
1,	5,6.	

• T0	has	greatest	
extractable	solids.	Soil	3,	
4.	

• Little	change,	Soils	2,	7,8.	
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Wetting/drying	cycles	appeared	to	affect	the	CISED	extraction	profiles	 for	the	manganese	

oxide	component	in	two	ways	(Table	5.1).	Firstly,	a	shift	in	peak	extraction	to	earlier	in	the	

extraction	 profile	 was	 seen	 for	 soils	 1,	 5,	 6	 and	 7	 during	 the	 wetting	 and	 drying	 cycles	

compared	 to	 the	T0	 samples.	 Secondly,	 a	 reduction	 in	 the	peak	extractable	 solids	during	

wetting	and	drying	was	observed	for	the	remaining	soils.	The	reduction	in	extractable	solids	

of	 the	Mn-Ca	 component	 after	 the	 initial	 flooding	 stage	 suggests	 the	 dissolution	 of	Mn-

oxides	 during	 wetting,	 which	 may	 result	 in	 the	 release	 of	 any	 associated	 PHEs.	 This	

interpretation	 is	 corroborated	 by	 the	 porewater	 data	 in	 Chapter	 4	 as	 significant	 positive	

relationships	were	observed	between	porewater	concentrations	of	Mn	and	Zn	(Table	4.4).		

Inundation	appeared	to	affect	the	Pb-Zn	dominated	component	in	two	different	ways	for	the	

soils	 used	 in	 this	 study	 (Table	 5.1).	 Firstly,	 little	 to	 no	 solids	 were	 extracted	 for	 this	

component	 during	 the	 T0	 step,	 with	 an	 increase	 in	 the	 extractable	 mass	 seen	 for	 the	

remainder	 of	 the	 experiment	 after	 the	 first	 inundation.	 This	 suggests	 that	 flooding	 has	

increased	 the	 extractable	 solids	 in	 these	 soils,	 indicating	 the	 formation	 of	more	 reactive	

forms	of	Pb	and	Zn	bearing	minerals	during	the	wetting	and	drying	phases.	Secondly,	for	soils	

3	and	4	only,	 the	greatest	extractable	masses	were	observed	at	T0.	The	peak	extractable	

solids	 were	 less	 after	 inundation	 and	 extracted	 earlier	 in	 the	 profile,	 again	 suggesting	 a	

change	in	the	reactivity	of	Pb	and	Zn	minerals.		

The	extraction	profiles	for	the	Zn	component	showed	two	main	patterns	after	 inundation	

(Table	 5.1).	 Soils	 1,	 2	 and	 6	 displayed	 an	 increase	 in	 extractable	 solids	 after	 the	 first	

inundation	step.	The	remaining	soils	showed	the	opposite	pattern,	with	extractable	solids	

being	highest	during	the	T0	period.	No	change	in	the	ease	of	extraction	was	observed.	For	

example,	no	time	step	was	extracted	under	less	or	more	acidic	conditions.			

The	extraction	profile	pattern	for	the	Fe	and	P	dominated	cluster	was	similar	for	all	soils.	The	

T0	extraction	profile	had	an	early	peak	around	0.05	M	aqua	regia	addition.	The	wetting	and	

drying	samples	all	demonstrated	peak	solids	being	extracted	later	than	the	T0	stage,	at	0.05-

5	M	aqua	regia.	It	is	hypothesised	for	these	soils	that	Fe	was	changed	into	more	soluble	forms	

at	the	first	wetting	stage,	making	it	more	easily	dissolved	and	therefore	increasing	the	CISED	

extractable	mass	of	 the	Fe-P	 component.	 This	 result	 suggests	 that	 Fe	and	any	associated	

PHEs	may	be	becoming	more	available	and	mobile	after	wetting	and	drying	cycles,	increasing	

the	potential	for	PHE	mobilisation.	Phosphorus	may	be	turned	into	an	insoluble	form	after	

the	 first	 flooding	 period,	 hence	 the	 shift	 in	 extraction	 profile	 patterns	 to	 one	 that	 is	

characteristic	of	Fe	oxides	in	other	studies	(Wragg	and	Cave,	2012;	Cox	et	al.,	2013).		
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The	extraction	profiles	 for	 the	Fe-Zn	component	showed	mixed	responses	to	wetting	and	

drying	for	the	soils	in	this	chapter	(Table	5.1).	A	decrease	in	extractable	solids	was	served	for	

soils	1	and	2	during	soil	drying.	Soils	3	and	4	demonstrated	a	greater	extractable	mass	for	T0	

compared	 to	 the	 wetting	 and	 drying	 stages,	 indicating	 that	 flooding	 may	 reduce	 the	

extractability	of	this	component	for	soils	3	and	4.	Little	change	in	the	extraction	profiles	or	

no	clear	patterns	were	observed	in	soils	5,	6,	7	and	8.		

The	extraction	profiles	for	the	K	(exchangeable)	component	remained	the	same	shape	for	all	

the	 soils	 except	 soil	 3.	 For	 soil	 3	 there	 was	 a	 peak	 extraction	 at	 around	 0.01	M	 for	 T0.	

However,	 this	 profile	 was	 weakly	 defined,	 so	 could	 be	 an	 outlier	 in	 the	 dataset.	 The	

extractable	masses	were	higher	for	the	wetting	and	drying	stages	for	the	majority	of	soils,	

compared	to	the	T0	samples	(Table	5.1).		

An	earlier	extraction	profile	was	seen	for	the	wetting	and	drying	cycles	than	the	T0	samples	

for	the	Mg	and	Ca	dominated	component	for	soils	1-6,	suggesting	wetting	and	drying	has	

increased	the	reactivity	and	extractability	of	this	component.	Soil	7	showed	a	reduction	in	

the	extractable	solids	of	this	component	after	wetting	and	drying	whilst	soil	8	showed	an	

increase.		

Wetting	and	drying	cycles	resulted	in	earlier	extraction	profiles	for	soils	1,	2,	6	and	7	for	the	

Al	 component.	 Lower	 extractable	masses	were	 observed	 for	 soils	 3,	 4,	 and	 5,	 suggesting	

reductive	dissolution	of	Al	oxides	after	the	inundation	periods.	This	result	 is	supported	by	

the	porewater	data	in	Chapter	4	for	soils	3,	4	and	5,	where	Al	displayed	positive	relationships	

with	PHEs	 in	porewater	during	soil	 flooding	(Table	4.3).	Little	change	was	observed	in	the	

extraction	profiles	for	soil	8,	suggesting	that	the	mineral	forms	in	this	component	are	likely	

to	be	less	reactive	than	those	found	in	the	other	soils	used	in	this	study.			

Soils	1,	2,	4,	6	and	7	all	had	higher	extractable	solids	for	the	Al-Fe	component	for	the	wetting	

and	drying	samples,	as	opposed	to	those	collected	at	 the	T0	period.	This	component	was	

weakly	defined	for	soil	3	as	solids	were	<8	mg	kg-1	but	the	extraction	profile	suggests	the	

greatest	extractable	masses	occurred	at	the	T0	period.	Extraction	profiles	were	similar	for	

soil	5	except	for	a	second	extraction	peak	for	the	second	drying	period.	This	component	was	

also	weakly	defined	with	extractable	peak	solids	being	<5	mg	kg-1.	Little	change	was	seen	in	

the	extraction	profile	for	soil	8.		

Wetting	and	drying	cycles	affected	the	carbonate	component	in	several	ways.	Firstly,	soils	1	

and	2	showed	similar	extraction	patterns	where	the	peak	amount	of	extractable	component	
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occurred	slightly	earlier	 in	the	profile	 (about	0.01	M	as	opposed	to	0.05	M)	and	the	peak	

amount	of	extractable	solids	was	higher	for	the	wetting	and	drying	cycles,	compared	to	the	

T0	step.	Extraction	profile	shape	remained	the	same	for	soil	6	but	greater	masses	of	solids	

were	extracted	during	wetting	and	drying	cycles.	Soil	3	showed	the	opposite	pattern	to	soil	

6,	suggesting	the	amount	of	carbonate	phase	was	reduced	 in	 this	soil	during	wetting	and	

drying.	Extraction	profiles	for	4,	5	and	8	were	similar.	Soil	7	extraction	profiles	indicated	a	

reduction	in	the	mass	of	extractable	solids	during	inundation.			

The	Fe	component	was	the	most	difficult	component	to	extract.	Little	change	was	seen	in	

the	profile	shapes	for	soils	2,	7	and	8.	In	soils,	1,	5	and	6	the	Fe	component	was	extracted	

later	in	the	CISED	method	after	wetting	and	drying.	The	extraction	profiles	for	soils	3	and	4	

showed	reduced	extractable	solids	after	wetting	and	drying.		

The	effects	of	wetting	and	drying	on	the	solid	phase	components	of	the	eight	soils	 in	this	

study	was	complex,	highlighting	that	changes	in	redox	potential	affects	soil	components	in	

different	ways,	having	varied	consequences	for	the	mobility	and	availability	of	PHEs.	Studying	

the	 changes	 in	 the	 solid	 phase	 distribution	 of	 PHEs	 can	 provide	 more	 insight	 into	 the	

potential	drivers	of	changes	in	PHE	mobilisation	and	availability.		

5.3.2	Flooding	induced	changes	in	the	solid	phase	distribution	of	PHEs	

The	wetting	and	drying	of	soils,	through	changes	in	ORP	and	pH,	can	change	the	solid	phase	

distribution	of	PHEs,	thereby	affecting	their	mobility	and	availability	(Lin	et	al.,	2018).	The	

following	 section	 discusses	 these	 changes	 but	 does	 not	 discuss	 the	 original	 solid	 phase	

distribution	of	PHEs	in	the	soils	used	in	this	study,	as	this	is	outlined	in	detail	in	Chapter	3.	

Broad	patterns	of	change	observed	in	the	solid	phase	distribution	of	PHEs	are	reported	and	

discussed	below,	 rather	 than	deterministic	changes.	This	 is	because	the	use	of	sequential	

extractions	 and	 subsequent	 chemometric	modelling	 can	 result	 in	 uncertainty	 around	 the	

data.	This	uncertainty	is	shown	in	the	distribution	plots	when	error	bars	go	through	the	y-axis	

(e.g.	Figure	5.7).		

The	aim	of	the	following	work	was	not	to	be	able	to	quantify	the	changes	in	the	association	

of	each	PHE	with	each	soil	component	during	the	wetting	and	drying	regime,	but	to	examine	

the	trends	and	changes	therein	with	regard	to	availability	to	human	and	ecological	receptors.		

5.3.2.1	Arsenic		

The	 majority	 of	 As	 was	 associated	 with	 the	 Al-Fe	 oxides	 component	 (Figure	 5.2).	

Approximately	<2	%	of	As	was	associated	with	the	more	crystalline	Fe	oxides	in	soils	1	and	2,	
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compared	 to	 >20	 %	 for	 the	 remaining	 soils.	 Little	 change	 was	 seen	 in	 the	 solid	 phase	

distribution	of	As	in	soils	1	and	2	during	wetting	and	drying	(Figure	5.3).	Prolonged	reducing	

conditions	greater	than	14	days	may	result	in	reductions	of	As	concentrations	in	the	Al-Fe	

oxide	components	as	a	result	of	reductive	dissolution	and	more	observable	changes	in	the	

solid	phase	distribution	of	As	 in	 soils	1	and	2	 through	potential	 re-association	with	other	

components	such	as	porewaters.		

The	bioaccessible	fraction	(BAF)	of	As	(Figure	5.4)	for	soils	1	and	2	was	about	10	-	15	%	higher	

in	the	wetting	periods	than	the	drying	periods.	The	sources	of	this	change	are	assumed	to	be	

partial	dissolution	of	the	Al-Fe	oxides,	as	this	component	was	shown	to	partially	contribute	

to	 bioaccessibility	 in	 Chapter	 3,	 Figure	 3.4.	 Changes	 in	 the	 As	 associated	 with	 the	 Al-Fe	

component	were	not	reflected	in	the	solid	phase	distribution	of	As	(Figure	5.3)	because	As	

was	reported	as	a	%	of	the	total	CISED	extractable	As	for	each	time	step.	An	increase	in	CISED	

extractable	 As	 during	 wetting	 (approximately	 200	 mg	 kg-1)	 may	 explain	 the	 increases	 in	

bioaccessibility	that	are	not	reflected	in	the	solid	phase	distribution	in	Figure	5.3,	suggesting	

desorption	of	As	from	soil	particles	during	soil	flooding.		

		

Figure	5.2:	Distribution	of	As	in	CISED	extractable	components.	
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Figure	5.3:	CISED	stacked	bar	chart	shows	the	solid	phase	distribution	of	Arsenic	as	a	%	of	the	total	
CISED	extractable	Arsenic	for	each	soil	at	each	time	step.		

	

Arsenic	concentrations	in	the	Fe	component	varied	between	approximately	20-70	%	for	soils	

3-8	(Figure	5.3).	Concentrations	in	this	component	were	generally	higher	in	the	drying	phases	

than	the	wetting	phases,	indicating	that	As	concentrations	may	associate	with	less	crystalline	

Fe-Al	oxides	during	flooding,	rather	than	the	more	crystalline	Fe	oxides.	These	results	are	

similar	 to	 those	 found	by	Martin	et	al.,	 (2007).	 Increases	were	 seen	 in	As	 concentrations	

associated	with	the	Na-K	(porewater/organics)	component	and	Ca	(carbonate)	component	

in	soil	3	during	the	wetting	and	drying	periods.	The	reduction	in	Fe-oxide	associated	As	and	

increase	 in	 carbonate	 and	 porewater/organics	 associated	 As	 suggests	 potential	

redistribution	of	As	to	these	components.	The	results	of	Chapter	4	show	little	mobility	for	As	

into	 porewater	 suggesting	 As	 remained	 associated	 with	 Fe-oxides	 as	 a	 result	 of	 ORP	

remaining	too	high	for	reductive	dissolution	of	Fe	oxides	(Section	4.3.2.1).	Figure	5.3	suggests	

As	may	 remain	 associated	 in	 the	 solid	phases	of	 the	 soils	 by	being	 redistributed	 to	Al-Fe	

component.	

The	solid	phase	distribution	of	As	was	different	in	soils	1	and	2,	compared	to	the	other	soils	

(Figure	5.3).	This	is	likely	to	be	because	As	originated	from	anthropogenic	sources	in	this	soil,	
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as	opposed	to	being	of	geogenic	origin	like	soils	3-8.	PHEs	of	geogenic	origin	are	generally	

more	 associated	 with	 more	 stable	 crystalline	 fractions	 of	 the	 soil	 compared	 to	 ‘fresher’	

anthropogenically	introduced	PHEs	(Jenne,	1977;	Martin	et	al.,	1987).		

	

	

Figure	5.4:	The	bioaccessible	fraction	of	As	(%)	at	each	time	step.	Error	bars	represent	the	standard	
error	(n=3).	No	values	are	given	for	soils	3	and	5	as	bioaccessible	As	was	<LOD.	T0	=	pre-inundation,	
W1	=	first	inundation,	D1	=	first	dying	period,	W2	=	second	inundation	period	and	D2	=	second	drying	
period		

	

Bioaccessibility	(Figure	5.4)	for	soils	3	and	5	is	not	shown	as	As	concentrations	were	around	

the	 LOD	 which	 resulted	 in	 a	 BAF	 of	 100	 %.	 Soils	 4	 and	 6	 showed	 an	 increase	 in	 As	

bioaccessibility	during	wetting,	which	suggests	partial	dissolution	of	the	Al-Fe	oxides	(Figure	

3.4)	as	the	majority	of	the	As	was	associated	with	this	component	(Figure	5.2).	Arsenic	is	well	

known	to	associate	with	Al-Fe	oxides	(Bissen	and	Frimmel,	2003;	Palumbo-Roe	et	al.,	2015),	

as	shown	in	Figure	3.3a.	Increases	in	As	bioaccessibility	may	also	arise	from	desorption	of	As	

from	the	more	labile	components	such	as	carbonates.		

Bioaccessible	arsenic	concentrations	for	the	drying	periods	were	higher	than	the	initial	T0	

phase	(Figure	5.4).	This	was	likely	to	be	because	the	soils	were	still	moist	and	at	field	capacity	

between	inundation	periods	and	therefore	hydrous	oxides	would	be	unlikely	to	return	to	a	

dehydrated	and	more	crystalline	state	(Jenne,	1969).	This	suggests	that	the	As	associated	

with	the	Al-Fe	oxides	during	and	after	inundation	was	more	reactive	than	in	a	dried	soil.	This	

pattern	was	 also	 reflected	 in	 the	 increasing	 porewater	 concentrations	 seen	 in	 Chapter	 4	

(Figures	4.3	and	4.4)	where	increasing	As	was	released	into	porewaters	during	inundation.		
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The	results	from	this	chapter	showed	that	the	bioaccessible	fractions	for	As	were	broadly	

comparable	across	the	8	soils,	with	soil	4	having	the	highest	BAF,	as	opposed	to	soils	1	and	2	

(Figure	 5.4).	 Generally,	 the	 BAF	 of	 the	 remaining	 PHEs	 for	 soils	 1	 and	 2	 were	 either	

comparable	to,	or	lower	than	those	of	the	remaining	soils.	Therefore,	in	terms	of	potential	

flooding	 induced	 increases	 in	 bioaccessibility,	 the	 brownfield	 sites	 were	 not	 of	 high	

importance	for	human	receptor	exposure.	However,	there	may	be	an	argument	that	these	

soils	could	have	higher	rates	of	human	interaction	than	rural	soils,	therefore	increasing	the	

chance	of	human	exposure	to	PHEs	in	soil.	

5.3.2.2	Cadmium	

Figure	5.5	 showed	 that	Cd	was	mainly	associated	with	 the	Zn,	Ca	and	Al-Fe	components.	

Changes	in	the	solid	phase	distribution	of	Cd	were	observed	in	the	more	labile	components	

such	as	the	Na-K	(porewater/organics)	component	(soil	3)	or	the	Ca	(carbonate)	component	

(Figure	5.6).	Cadmium	associated	with	the	Ca	component	increased	for	time	steps	T1	to	T4,	

compared	to	T0	for	all	the	soils,	with	the	exception	of	soil	7.	Increases	of	Cd	associated	with	

the	Mg-Ca	component	were	observed	in	soils	3,	4	and	8,	highlighting	the	potential	increases	

in	Cd	availability	after	wetting	of	dried	soils.	The	 results	here	are	 similar	 to	other	 studies	

where	Cd	was	shown	to	associate	with	carbonates	after	one	week	of	flooding	(Khaokaew	et	

al.,	2011).	It	is	suggested	that	this	occurs	as	Cd2+	and	Ca2+	can	compete	for	binding	sites	on	

calcite,	 and	 calcite	 was	 present	 in	 the	 soils	 used	 in	 this	 study	 (Chapter	 3).	 Carbonate	

associated	Cd	has	been	shown	to	contribute	to	Cd	bioaccessibility	 in	this	study	and	in	the	

literature	through	dissolution	 in	the	 low	pH	environment	on	the	stomach	(Pelfrêne	et	al.,	

2011).	 Therefore,	 an	 increase	 in	 carbonate	 associated	 Cd	 may	 increase	 Cd	 exposure	 to	

humans	from	direct	exposure	to	soils.	
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Figure	5.5:	Distribution	of	Cd	in	CISED	extractable	components.	

	

	

Figure	5.6:	CISED	stacked	bar	chart	shows	the	solid	phase	distribution	of	cadmium	as	a	%	of	the	total	
CISED	extractable	cadmium	for	each	soil	at	each	time	step.		

	

5.3.2.3	Copper	

Figure	5.7	displays	the	association	of	Cu	with	each	component,	showing	 large	uncertainty	

between	 the	 Fe-Zn	 and	 Al	 components.	 The	 uncertainty	 associated	 with	 these	 two	
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components	is	probably	due	to	the	similar	extraction	profiles	of	the	two	components	(Figure	

5.7).	Both	the	Zn-Fe	and	Al	components	are	likely	to	originate	from	the	Al-Fe	oxide	cluster	in	

Chapter	 3.	 Therefore,	 the	 majority	 of	 Cu	 could	 be	 associated	 with	 either	 of	 the	 two	

components.	Other	major	hosts	of	CISED	extractable	Cu	were	the	Al-Fe	oxide	component	in	

soils	1	and	2,	and	the	Mg-Ca	component	in	soils	3-6,	which	is	in	agreement	with	the	data	in	

Table	3.6.			

	

Figure	5.7:	Distribution	of	Cu	in	CISED	extractable	components	for	all	soils.	

	

Soils	 1	 and	 2	 display	 similar	 patterns	 of	 flooding	 induced	 change	within	 the	 components	

(Figure	5.8).	There	was	a	small	reduction	in	the	mass	of	extractable	Cu	associated	with	the	

Fe-Zn	 component,	 and	 a	 concomitant	 increase	 of	 Cu	 in	 the	 Mg-Ca,	 Pb-Zn	 and	 Al-Ca-Fe	

components.	The	Mg-Ca	and	Fe-Zn	components	were	the	more	easily	extractable,	suggesting	

a	small	increase	in	Cu	associated	with	the	more	labile	components.		

CISED	extractable	Cu	concentrations	increased	in	the	K	(porewater/organic)	component	for	

soils	 3	 and	 6,	which	were	 the	most	 organic	 rich	 soils	 (Figure	 5.8).	 This	 possibly	 suggests	

association	with	organic	components	during	inundation	as	Cu	may	become	desorbed	from	

other	phases	during	flooding	and	(re-)associate	with	organic	components	(Du	Laing	et	al.,	

2009).	Association	with	organic	components	can	result	in	PHEs	such	as	Cu	being	retained	in	

an	exchangeable	 form,	where	 they	are	available	 for	uptake	by	plants	 (Zeng	et	al.,	 2011).	

Increased	uptake	by	plants	 in	 agricultural	 areas	 can	 result	 in	 an	 indirect	 pathway	of	 PHE	

exposure	to	humans	through	ingestion	of	PHE	enriched	plant	material.	Soil	6	displayed	an	
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increase	with	the	Al-Fe	component	after	flooding,	however	this	component	was	considered	

the	most	inaccessible	to	humans	in	the	eight	soils	used	in	this	thesis	(Chapter	3).		

	

	

Figure	5.8:	CISED	stacked	bar	chart	shows	the	solid	phase	distribution	of	copper	as	a	%	of	the	total	
CISED	extractable	copper	for	each	soil	at	each	time	step.		

	

Soil	 4	 displayed	 increases	 in	 the	 Mg-Ca	 component	 and	 the	 Fe-P	 component.	 The	 Fe-P	

component	was	considered	to	have	originated	from	fertiliser	application.	Soil	5	displayed	an	

increase	 in	 Cu	 associated	with	 the	 Fe-P	 component;	 little	 change	was	 observed	with	 the	

other	components.		

Soil	 8	 was	 dominated	 by	 Pb	 and	 Zn	 bearing	 components	 (Figure	 5.8).	 Little	 change	 was	

observed	 in	 the	 association	 of	 Cu,	 with	 Cu	 being	 retained	 in	 the	 Pb	 and	 Zn	 dominated	

components.	 Little	 mobilisation	 of	 Cu	 was	 seen	 into	 porewaters	 in	 Chapter	 4,	 so	 Cu	

associated	with	the	mine	spoil	tips	of	similar	composition	to	soil	8	in	the	upper	region	of	the	

Tyne	catchment	were	considered	 to	be	mostly	unreactive	and	of	 little	concern	 to	human	

receptors.	In	contrast,	soil	7	had	a	higher	concentration	of	organic	matter	and	therefore	soil	

7	Cu	behaved	differently	to	that	in	soil	8	after	the	wetting	and	drying	cycles.	Cu	was	observed	

to	be	associated	with	a	wider	range	of	components	and	increases	were	observed	in	the	Pb-

Zn	and	Mn-Ca	components	after	wetting	and	drying.	
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Figure	5.9:	The	bioaccessible	fraction	of	Cu	(%)	at	each	time	step.	Error	bars	represent	the	standard	
error	(n=3).	T0	=	pre-inundation,	W1	=	first	inundation,	D1	=	first	dying	period,	W2	=	second	inundation	
period	and	D2	=	second	drying	period.	

	

Flooding	induced	changes	in	bioaccessibility	of	Cu	varied	between	the	sampled	soils	(Figure	

5.9).	 For	 example,	 soils	 1	 and	 2	 generally	 displayed	 little	 change	 or	 a	 decrease	 in	 Cu	

bioaccessibility	 during	 the	wetting	 and	 drying	 periods,	 with	 the	 highest	 bioaccessible	 Cu	

concentrations	found	during	the	T0	phase.	This	suggests	that	dried	airborne	soils	may	have	

higher	BAF	than	those	at	 field	capacity.	Exposure	from	airborne	particulate	fractions	(<20	

µm)	has	been	reported	to	be	higher	 than	that	of	bulk	samples	 (<255	µm)	because	of	 the	

smaller	 particle	 size	 and	 larger	 surface	 to	 volume	 ratio	 (Guney	 et	 al.,	 2017).	 This	 has	

implications	 for	human	exposure	 through	 inhalation	should	drying	and	wind	erosion	 take	

place	during	periods	of	drought.	

Soil	3	demonstrated	a	similar	pattern	to	soils	1	and	2.	The	floodplain	soil	samples,	(4,	5	and	

6)	all	showed	flooding	induced	increases	in	Cu	bioaccessibility.	Soil	7,	a	spoil	tip	material	‘soil’	

displayed	 a	 slight	 increase	 in	 Cu	 and	 bioaccessibility	 whilst	 Cu	 remains	 almost	 entirely	

unavailable	in	soil	8.		

5.3.2.4	Lead	

The	majority	 of	 Pb	 was	 associated	 with	 the	 Pb-Zn	 component	 for	 all	 soils	 (Figure	 5.10).	

Increases	of	Pb	associated	with	the	Pb-Zn	component	were	observed	for	all	soils	during	the	

wetting	 and	 drying	 cycles,	 except	 soils	 3	 and	 4,	where	 Pb	 also	 increased	 in	 the	 Al-oxide	

component	(Figure	5.11).		
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Figure	5.10:	Distribution	of	Pb	in	CISED	extractable	components.	

	

	

Figure	5.11:	CISED	stacked	bar	chart	shows	the	solid	phase	distribution	of	lead	as	a	%	of	the	total	CISED	
extractable	lead	for	each	soil	at	each	time	step.		

	

Soils	 1	 and	 2	 had	 approximately	 40-80	%	 of	 Pb	 associated	with	 the	 Al-Ca-Fe	 component	

during	the	T0	stages	but	this	was	reduced	after	flooding	to	<20	%.	The	remaining	soils	had	

<5	%	associated	with	this	component,	which	was	also	reduced	during	wetting	and	drying.	
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The	Mn-Ca	component	and	Al-Fe	component	appeared	to	be	reduced	during	wetting	and	

drying,	resulting	in	the	possible	association	of	Pb	with	the	Pb-Zn	component	for	all	soils.		

The	data	suggest	a	reduction	in	the	Pb	associated	with	the	Fe	oxides,	potentially	through	the	

process	of	dissolution	and	desorption	during	wetting	periods.	Similar	results	were	seen	by	

Lynch	 et	 al.,	 (2017)	 during	 flooded	microcosm	 studies	 of	 Pb	 and	 Zn	 rich	mine	 spoil.	 The	

potential	environmental	 implications	of	 this	are	 increased	stream	 loading	of	Pb	 in	mining	

impacted	catchments	(Lynch	et	al.,	2017).	

Additionally,	an	increase	in	the	bioaccessibility	of	Pb	was	observed	after	wetting	and	drying	

suggesting	that	the	Mn	oxide	was	a	source	of	bioaccessible	Pb	(Figure	5.12).	This	was	further	

corroborated	by	the	results	from	Chapter	3	where	Mn-oxides	were	shown	to	contribute	to	

Pb	 bioaccessibility.	 Bioaccessible	 Pb	 concentrations	 also	 exceeded	GACs	 for	 soil	 2,	which	

experienced	flooding	induced	increases	in	bioaccessibility	of	approximately	10-30	%,	again	

potentially	resulting	in	increased	Pb	exposure	to	human	receptors	at	this	particular	sampling	

location.		

	

	

Figure	5.12:	The	bioaccessible	fraction	of	Pb	(%)	at	each	time	step.	Error	bars	represent	the	standard	
error	(n=3).	T0	=	pre-inundation,	W1	=	first	inundation,	D1	=	first	dying	period,	W2	=	second	inundation	
period	and	D2	=	second	drying	period.	

	

Lead	bioaccessibility	was	shown	in	Figure	5.12	to	increase	during	flooding	for	all	soils	except	

7	and	8,	where	Pb	bioaccessibility	was	higher	during	the	drying	period.	This	may	result	from	
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the	oxidation	of	Pb	sulphides	during	dry	periods	(Lynch	et	al.,	2014).	Pb	sulphides	(galena)	

were	shown	to	be	present	in	the	mine	spoil	material	(Table	3.4)	

5.3.2.5	Zinc	

The	 solid	phase	distribution	of	 Zn	 is	 reported	 in	 Figure	5.13	 for	 the	Zn,	Pb-Zn,	 Fe	and	Ca	

components	as	four	components	in	Figure	5.13	that	contain	the	majority	of	extractable	Zn.	

The	Fe-Zn	and	Al	component	were	not	considered	as	their	error	bars	go	through	0	(Figure	

5.13).		

	 	

Figure	5.13:	Distribution	of	Zn	in	CISED	extractable	components.	
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Figure	5.14:	CISED	stacked	bar	chart	shows	the	solid	phase	distribution	of	zinc	as	a	%	of	the	total	CISED	
extractable	zinc	for	each	soil	at	each	time	step.		

	

Soils	 1,	 2,	 3,	 6,	 7	 and	 8	 (Figure	 5.14)	 showed	 an	 increase	 in	 extractable	 Zn	 in	 the	 Pb-Zn	

components	after	inundation	which	may	be	from	the	increased	extractability	of	the	Pb-Zn	

component,	outlined	in	Table	5.1.	An	increase	in	extractable	solids	associated	with	the	Pb-

Zn	component	can	potentially	result	in	an	increase	in	the	extractable	Zn	associated	with	the	

Pb-Zn	component.	The	majority	of	soils	also	displayed	a	reduction	in	the	Zn	associated	with	

the	Zn	component	and	a	concomitant	increase	in	the	Pb-Zn	component.	Both	the	Pb-Zn	and	

Zn	 components	 had	 similar	 extraction	 profiles	 so	 it	 may	 be	 difficult	 to	 distinguish	 the	

association	of	Zn	between	them.	However,	because	of	the	similarity	of	ease	of	extraction	in	

the	 Pb-Zn	 and	 Zn	 components,	 the	 (re-)distribution	 of	 Zn	 between	 them	 had	 little	

significance	on	the	overall	availability	of	Zn	to	human	receptors.		

	

	

Figure	5.15:	The	bioaccessible	fraction	of	Zn	(%)	at	each	time	step.	Error	bars	represent	the	standard	
error	(n=3).	No	data	are	available	for	soil	3	as	bioaccessible	Zn	was	<LOD.	T0	=	pre-inundation,	W1	=	
first	inundation,	D1	=	first	dying	period,	W2	=	second	inundation	period	and	D2	=	second	drying	period.	

	

Increases	in	Zn	associated	with	the	Ca	component	after	wetting	was	observed	in	soils	1,	3,	4	

and	5.	A	study	by	Weber	et	al.,	(2009)	showed	an	increase	in	absorbed	Zn	to	the	carbonates	

after	 15	 days	 of	 inundation.	 The	 soils	 in	 this	 study	 all	 experienced	 increases	 in	 Zn	

bioaccessibility	after	 flooding	and	carbonates	have	been	shown	 to	contribute	 towards	Zn	

bioaccessibility	in	this	study	(Chapter	3).		
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The	flooding	induced	change	in	the	BAF	of	Zn	was	broadly	similar	for	all	the	soils	used	in	this	

chapter	 (Figure	 5.15).	 The	 BAF	 of	 Zn	 was	 higher	 during	 the	 wetting	 and	 drying	 cycles	

compared	 to	 the	 T0	 step	 for	 all	 soils.	 The	 highest	 BAF	 values	were	 observed	 during	 the	

wetting	periods,	where	increases	of	5	–	10	%	were	observed	over	the	drying	periods.	

5.4	Conclusions	

The	results	show	that	bioaccessibility	can	be	influenced	by	flooding	and	drying	periods,	with	

an	increase	being	seen	for	most	PHEs	during	flooding.	For	example,	inundation	increased	As	

bioaccessibility	in	some	soils	such	as	4	and	6	in	Figure	5.4	by	20	%,	resulting	in	potentially	

increased	 exposure	 to	 human	 receptors.	 However,	 changes	 in	 PHE	 bioaccessibility	 were	

variable	and	dependent	on	soil	types	and	characteristics,	which	are	likely	to	be	caused	by	

differing	underlying	geology,	PHE	inputs	and	the	behaviour	of	individual	PHEs.	The	study	has	

shown	that	inundation	can	increase	the	bioaccessibility	for	As	for	the	majority	of	soils	used	

in	this	study	by	5	to	10	%.	However,	 the	changes	 in	bioaccessibility	witnessed	 in	the	soils	

used	in	this	study	were	small	and	the	risk	to	human	receptors	may	be	low.		

Wetting	and	dying	cycles	were	shown	to	result	in	the	redistribution	of	PHEs	between	solid	

phases	 of	 the	 soils,	with	 some	PHEs	 being	 associated	with	more	 labile	 components.	 This	

re-association	 can	 increase	 the	 potential	 for	 uptake,	 therefore	 increasing	 possible	 PHE	

exposure.	The	findings	of	this	chapter	are	summarised	in	Table	5.2	below.		

Table	5.2:	Summary	of	flooding	induced	changes	in	the	solid	phase	distribution	and	bioaccessibility	of	
PHEs	in	this	chapter		

PHE	
Flooding	induced	change	in	the	

bioaccessibility	of	PHEs	
Flooding	induced	change	in	solid	phase	

distribution	of	PHEs	

As	
Generally	increased	during	flooding.	

Sulphide	rich	mining	material	displayed	
bioaccessibility	increases	during	drying.	

Possible	redistribution	to	more	labile	
components,	e.g.	from	Fe	to	Al-Fe	

components.	

Cd	 Not	recorded.	
Possible	redistribution	to	more	labile	
components,	e.g.	porewater/organics	

components	and	carbonates.	

Cu	
Reductions	in	bioaccessibility	for	the	
majority	of	soils,	except	for	5	and	6.	Cu	

unavailable	in	soil	8.		

Increased	with	the	organic	component	
for	soils	with	higher	SOM	(3	and	6).	

Increased	with	less	reactive	
components,	e.g	Fe	during	flooding.	
Little	change	in	solid	phases	of	Cu	for	

soil	8.		

Pb	

Generally	increased	during	flooding	for	
soils	1	to	6.	Sulphide	rich	mining	
material	displayed	bioaccessibility	

increases	during	drying.	

Possible	redistribution	to	more	labile	
components,	e.g.	from	Fe	Al-Fe	to	Pb-

Zn	components.	

Zn	 Generally	increased	during	flooding	for	
all	soils.	

Increases	in	Zn	associated	with	the	Ca	
component.	Disassociation	and	re	
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association	between	Zn	and	Pb-Zn	
components		

	

Sequential	 extractions,	 especially	 those	 used	 in	 the	 CISED	 method,	 are	 useful	 tools	 for	

assessing	the	solid	phase	distributions	of	PHEs,	providing	their	limitations	are	understood.	

For	 example,	 sequential	 extractions	 may	 not	 be	 sensitive	 enough	 to	 quantify	 absolute	

temporal	changes	in	the	concentrations	of	PHEs	in	each	of	the	solid	phases	over	short	term	

events	(weeks),	but	they	are	suitable	for	highlighting	broad	patterns	of	change	within	soil	

components	 and	 associated	 PHEs.	 Such	 broad	 patterns	 can	 give	 an	 indication	 of	 the	

underlying	sources	of	PHE	mobilisation	into	pore	and	overlying	waters,	as	well	as	changes	in	

bioaccessibility	which	can	be	useful	when	determining	areas	within	a	catchment	that	have	

greater	chemical	mobilisation	potential.	Datasets	such	as	those	in	chapters	3,	4	and	5	can	

complement	 catchment	 scale	maps	 of	 PHE	mobility	 and	 bioaccessibility	 in	 providing	 the	

underpinning	data	and	knowledge	into	why	certain	areas	in	a	catchment	may	have	a	greater	

risk	of	flooding	induced	mobility	or	bioaccessibility	than	other	areas.		 	
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6.	PREDICTING	THE	SPATIAL	DISTRIBUTION	OF	FLOODING	
INDUCED	CHANGES	IN	THE	BIOACCESSIBILITY	OF	PHES 

6.1	Introduction	

Floodplain	soils	 in	 the	UK	can	become	enriched	with	potentially	harmful	elements	 (PHEs)	

originating	 from	 the	 underlying	 geology	 or	 anthropogenic	 activities	 such	 as	 mining.	 The	

toxicity	of	PHEs,	such	as	those	used	in	this	study,	means	there	is	a	need	to	understand	their	

potential	to	cause	harm	to	human	and	ecological	receptors.	A	primary	key	human	pathway	

for	exposure	to	PHEs	in	soil	is	through	accidental	ingestion	via	hand	to	mouth	action.		Whilst	

adults	typically	ingest	50-200	mg	a	day	(US	EPA,	2002),	children	can	ingest	up	to	20	g	(Van	

der	Wiele,	2007),	making	them	more	vulnerable	to	the	effects	of	soil	contaminants.	Only	a	

proportion	 of	 a	 PHE	 is	 dissolved	 within	 the	 gastrointestinal	 tract	 and	 available	 to	 be	

potentially	transported	across	the	gastro	intestinal	wall	(Wragg,	2005).	This	proportion,	the	

bioaccessible	fraction,	has	received	international	interest	with	regards	to	human	health	and	

PHE	exposure	(Broadway	et	al.,	2010;	Wragg	et	al.,	2011;	Florido	et	al.,	2011;	Pelfrêne,	et	al.,	

2012;	Cave,	et	al.,	2013;	Xia	et	al.,	2016).	

The	production	and	use	of	PHE	bioaccessibility	maps	has	been	recently	explored	by	Wragg	

et	al.,	 (2018)	and	could	provide	more	 realistic	estimates	of	potential	exposure	 compared	

with	the	use	of	total	element	maps.	It	has	been	shown	that	the	bioaccessibility	of	PHEs	varies	

between	different	soil	types	and	characteristics	in	studies	(Caboche	et	al.,	2010;	Denys	et	al.,	

2007;	Ruby	et	al.,	2004,	Pelfrêne	et	al.,	2012)	and	Chapter	3	of	this	thesis.	It	has	also	been	

shown	 that	 flooding	 can	 influence	 the	 bioaccessibility	 of	 PHEs	 (Chapter	 5;	 Florido	 et	 al.,	

2011).	Such	information	can	be	useful	for	targeting	areas	for	remediation	or	the	selection	of	

areas	within	 a	 catchment	 suitable	 for	 flood	prevention	 schemes.	 For	 example,	 if	 an	 area	

within	a	catchment	has	a	high	risk	of	bioaccessibility	increase	after	flooding,	then	this	area	

may	require	further	investigative	work.	This	chapter	aims	to	identify	these	areas	using	the	

Tyne	catchment	as	an	example.			

In	this	study	traditional	geospatial	tools	such	as	the	Inverse	Distance	Weight	(IDW)	method	

have	been	used	and	 combined	with	novel	machine	 learning	methods	 such	as	 the	Boruta	

algorithm	(Kursa	and	Rudnicki,	2010),	which	is	a	wrapper	function	for	Random	Forest	(RF)	

regression	models	that	ranks	predictor	variable	in	terms	of	their	importance.	This	is	the	first	

use	of	this	approach	to	spatially	predict	the	distribution	of	PHE	bioaccessibility	in	floodplain	

soils.	The	aim	of	this	chapter	is	to	firstly	geochemically	characterise	the	48	floodplain	soils,	
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as	 this	 information	 is	 important	 in	 determining	 the	 underlying	 drivers	 and	 sources	 of	

mobilisation.	 Secondly,	 bioaccessibility	 is	 predicted	 from	 pseudototal	 datasets	 prior	 to	

spatially	mapping	 the	 flooding	 induced	 changes	 in	 PHE	 bioaccessibility.	 This	 is	 done	 at	 a	

catchment	 scale	 using	 the	 machine	 learning	 and	 GIS	 based	 approaches.	 Therefore,	 the	

specific	aims	on	this	chapter	are	to:	

• Characterise	the	 intrinsic	soil	constituents	(ISCs)	 in	the	Tyne	catchment	floodplain	

soils		

• Determine	the	mobility	of	PHEs	in	the	Tyne	catchment	floodplain	soils	

• Explore	 the	 relationships	 between	 soil	 element	 concentrations	 and	 PHE	

bioaccessibility	in	soils,	using	machine	learning	methods	such	as	RF	models.		

• Predict	bioaccessibility	in	the	Tyne	catchment	using	RF	models		

• Map	PHE	bioaccessibility	in	the	Tyne	catchment	

• Predict	flooding	induced	change	in	PHE	bioaccessibility	in	the	Tyne	catchment	

6.2	Methods		

A	full	description	of	the	analytical	methods	is	in	Chapter	2.	An	outline	of	the	approach	used	

in	this	chapter	is	given	below:	

6.2.1	Sample	locations,	sample	collection	and	preparation	

Soils	were	collected	from	the	Tyne	catchment	(n	=	48)	from	the	locations	shown	in	Figure	2.4	

and	as	described	in	Section	2.4		

Soils	 were	 processed	 (Section	 2.4.2)	 and	 characterised	 for	 their	 metal	 content	 using	 a	

pseudo-total	 element	 digestion	 process	 using	 concentrated	 nitric	 acid	 (HNO3),	 loss	 on	

ignition	(LOI)	as	a	measure	of	organic	carbon,	particle	size	analysis	and	pH	as	described	in	

Chapter	2.	Understanding	these	soil	characteristics	aided	the	understanding	of	the	controls	

on	element	distributions	and	allowed	the	generation	of	a	method/protocol	to	predict	PHE	

concentrations	within	the	South	Tyne	floodplains	and	for	the	determination	of	intrinsic	soil	

constituents	(ISCs),	which	are	described	in	Section	2.16.	

6.2.2	Soil	flooding		

Microcosms	were	used	to	 inundate	24	of	 the	48	soils	collected	 from	the	Tyne	catchment	

flood	plains.	The	microcosms	consisted	of	10	g	milled	soil	weighed	into	100	ml	plastic	bottles.	

The	soils	were	inundated	with	30	ml	of	Tyne	river	water	(pH	7.7),	and	left	on	the	bench	top	

of	the	laboratory	for	1	week.	After	1	week,	the	volume	of	overlying	water	was	measured,	
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and	10	ml	was	sampled	for	analysis	by	ICP-OES	to	determine	the	concentrations	of	PHEs	for	

mass	balance	calculations.	Mass	balance	calculations	were	used	to	quantify	the	mass	of	PHE	

mobilised	 into	 the	 overlying	 water	 and	 what	 remained	 in	 the	 soil.	 Soils	 samples	 were	

collected	 from	 the	 bottles	 once	 the	 overlying	 water	 had	 been	 removed.	 A	 0.3	g	 surface	

scrape	 from	 the	 centre	 of	 the	 bottle	 was	 taken	 and	 immediately	 subjected	 to	 the	 UBM	

process,	(Section	2.12).	The	remaining	soils	were	weighed,	dried	at	1.5	°C	for	four	days	and	

then	 reweighed	 to	 determine	 the	 moisture	 content	 of	 the	 soils.	 This	 was	 necessary	 to	

transform	the	UBM	results	into	a	dry	weight	measure	to	allow	for	comparison	between	the	

soils	as	outlined	in	Section	2.6.		

6.2.3	Total	element	concentration	mapping		

Pseudo-total	 concentrations	 in	 the	 48	 samples	 sites	were	 plotted	 in	 the	 Tyne	 catchment	

using	ESRI	ArcMap	10.	Additional	spatial	soil	elemental	concentration	data	were	also	sourced	

from	the	National	Soil	Index	(NSI)	which	was	carried	out	on	a	5	km	grid	for	England	and	Wales	

and	 imported	 into	ArcMap	 in	 ascii	 format.	 The	NSI	 data	were	plotted	 spatially	 as	 a	 layer	

underneath	the	sample	site	data	collected	during	this	study	(e.g.	Figure	6.3)	and	simple	linear	

regression	was	carried	out	to	determine	if	there	was	relationship	between	the	two	datasets	

and	the	strength	of	that	relationship	if	it	existed.		

The	NSI	dataset	is	comprised	of	soil	samples	collected	in	the	UK	in	the	1980s	and	1990s	on	a	

5	km	orthogonal	grid.	The	upper	15	cm	of	mineral	soils	was	collected	and	element	content	

determined	by	XRFS	for	approximately	50	elements.	The	data	were	interpolated	using	the	

IDW	function.	Further	information	is	provided	in	Rawlins	et	al.	(2012).		

6.2.4	Intrinsic	Soil	Constituents	(ISCs)		

6.2.4.1	Background	

Soils	are	made	up	of	components	such	as	carbonates,	Fe-oxides,	humic	material,	which	 is	

dictated	by	the	inputs	that	led	to	their	formation.	PHEs	can	often	be	associated	with	these	

chemical	components	and	their	distribution	can	affect	availability	and	mobilisation	potential.	

ISCs	 are	 defined	 in	 this	 work	 as	 a	 combination	 of	 soil	 particles	 with	 similar	 chemical	

composition	 of	 varying	 concentrations	 that	 have	 originated	 from	 similar	 geogenic	 or	

anthropogenic	sources	(Wragg,	2005).		

ISCs	were	first	modelled	to	gain	an	insight	into	solid	phase	distribution	of	PHEs	within	the	48	

soils,	 compared	 to	 the	 eight	 soils	 that	 underwent	 the	 same	modelling	 procedure	 for	 the	

CISED	 data	 in	 Chapter	 3	 (Section	 2.15).	 ISCs	 provide	 a	 broader	 look	 into	 the	 solid	 phase	
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distribution	 of	 PHEs	 and	 the	method	 is	 more	 suitable	 that	 the	 CISED	method	 for	 larger	

datasets	where	it	may	not	be	practical	to	conduct	sequential	extractions	on	a	large	number	

of	samples.	The	identified	ISCs	were	used	as	predictor	variables	for	PHE	bioaccessibility	in	

random	forest	models	used	to	predict	PHE	bioaccessibility.	

The	data	entered	into	the	algorithm	were	a	matrix	containing	the	total	element	data	for	each	

of	 the	 48	 sample	 sites	 shown	 in	 Figure	 2.2.	 The	 data	 for	 all	 sample	 sites	were	modelled	

together	on	 the	assumption	 that	 they	are	composed	of	a	 common	set	of	 ISCs	as	 they	all	

originate	 from	 similar	 underlying	 geologies	 and	 from	 floodplain	 soils	 in	 the	 South	 Tyne	

catchment.	Where	>75	%	of	the	data	for	a	single	element	were	below	the	LOD,	the	element	

was	removed	from	the	data	matrix.		

The	outputs	from	the	total	element	data	are	the	same	as	the	CISED	data,	outlined	in	Section	

2.15.	 However,	 instead	 of	 the	 profile	 plot	 showing	 the	 extractable	 solids	 over	 the	 14	

extraction	steps	(Figure	2.16),	it	instead	shows	the	total	solids	for	that	ISC	associated	with	

each	individual	sample.	The	composition	plots	display	the	elemental	composition	of	each	ISC	

and	the	distribution	plots	show	the	elemental	distribution	between	ISCs.	ISCs	were	identified	

in	the	same	manner	as	the	CISED	extractable	components	as	outlined	in	Section	2.15.		

6.2.4.2	Difference	between	ISCs	and	CISED	extractable	components	

The	CISED	method	 and	 subsequent	 data	 analysis	 using	 the	 SMMR	 identifies	 the	 physico-

chemical	components	of	the	soil	that	are	reactive	and	therefore	extractable	and	does	not	

include	the	residual	fraction	of	the	soil	that	is	unreactive.	As	the	CISED	method	identifies	the	

reactive	 components,	 it	 is	 useful	 for	 identifying	 the	 components	 that	would	be	dissolved	

within	 the	 gastrointestinal	 tract	 and	 therefore	 contribute	 to	 bioaccessibility.	 The	

identification	of	 ISCs	and	PHEs	associated	with	them	is	a	broader	examination	of	the	soils	

and	solid	phase	distribution	of	PHEs	and	encompasses	all	fractions	of	the	soil,	regardless	of	

their	solubility.	

6.2.5	Spatially	mapping	bioaccessibility	at	a	catchment	scale	

Spatial	 mapping	 of	 bioaccessible	 PHE	 concentrations	 and	 subsequent	 flooding	 induced	

changes	 in	 bioaccessibility	was	 conducted	using	 ESRI	ArcMap	10.	 Spatial	 datasets	 of	 PHE	

bioaccessibility	were	imported	into	ArcMap,	in	the	form	of	X	Y	data,	using	the	‘import	data’	

function.	 Data	were	 then	 converted	 to	 a	 raster	 format	 and	 clipped	 to	 the	 historic	 flood	

outline	layer,	which	was	sourced	from	the	Environment	Agency	(2019).	Spatial	data	for	each	
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PHE	was	extracted	to	generate	a	data	matrix	of	predictor	parameters	for	use	in	the	Random	

Forest	models.		

The	 bioaccessibility	 data	 from	 the	 samples	 collected	 during	 this	 study	were	 interpolated	

using	the	Inverse	Distance	Weight	(IDW)	tool.	Values	were	assigned	using	a	linearly	weighted	

combination	of	pre-defined	sample	points,	with	the	weighting	being	a	function	of	the	inverse	

distance	between	points.	It	was	assumed	that	variable	importance	decreased	as	the	distance	

between	sample	points	increased.	The	input	data	are	presented	below	in	Table	6.1.		

	

Table	6.1:	Input	parameters	for	IDW	tool.	

Sampling	extent	 Search	Radius	 Number	of	points	 Cell	size	
Historic	Flood	Outline	

Layer	 Fixed	search	radius	 6	 50	m	

	

Flooding	 induced	 change	 in	 bioaccessibility	 was	 also	 mapped	 using	 the	 IDW	 tool.	 The	

percentage	 change	 between	 pre-	 and	 post-	 flooding	 bioaccessibility	 concentrations	were	

imported	into	ESRI	ArcMap	10	as	above.		

6.2.6	Modelling	bioaccessibility	using	random	forest	models	

6.2.6.1	Introduction	

Random	 forest	 models	 are	 non-parametric	 machine	 learning	 methods,	 based	 on	

classification	 and	 regression	 trees.	 They	 can	 be	 used	 in	 similar	 ways	 to	 multiple	 linear	

regression	(MLR)	to	determine	the	predictors	for	the	behaviour	of	a	response	variable	and	

have	been	applied	to	soil	 studies	 for	 the	prediction	of	properties/behaviours	 (Cave	et	al.,	

2013).	Random	forest	models	were	selected	over	more	conventional	MLR	methods	for	the	

following	reasons:		

• There	was	a	high	level	of	collinearity	in	the	dataset.	The	assumptions	of	MLR	would	

require	some	of	the	collinear	variables	to	be	removed.		

• Random	forest	can	deal	well	with	noisy	and	non-linear	relationships	within	datasets.		

• The	 risks	 of	 overfitting	 are	 reduced	 as	 multiple	 decision	 trees	 are	 averaged	 and	

therefore	variance	is	reduced.	

• They	are	robust	on	small	datasets.	The	dataset	used	here	has	48	samples.		

Test	 set	 error	was	determined	using	out	of	 bag	error,	 rather	 than	 cross	 validation.	Cross	

validation	 is	 not	 necessary	 in	 random	 forest	 models	 as	 each	 tree	 is	 constructed	 by	

bootstrapping	the	original	data.		
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Both	 ISCs	and	pseudo-total	element	data	were	modelled	separately	as	predictors	 for	PHE	

bioaccessibility,	 with	 the	 model	 with	 the	 highest	 percentage	 variance	 explained	 being	

selected	as	the	better	performing	model.	Intrinsic	Soil	Constituents	were	modelled	from	total	

element	 data	 so	 it	 was	 expected	 the	 outcomes	 from	 using	 total	 element	 and	 ISCs	 as	

predictors	would	be	similar.	The	RF	models	that	used	pseudo-total	element	data	had	a	higher	

percentage	of	variance	explained	than	those	using	ICs	as	predictor	variables.	Therefore,	the	

RF	models	in	this	chapter	were	produced	using	pseudo-total	element	data	as	predictors	of	

PHE	bioaccessibility.	Five	RF	models	were	constructed;	one	for	each	of	the	five	PHEs	used	in	

this	thesis.		

The	small	data	set	used	however	meant	that	it	was	computationally	possible	to	use	a	model	

with	1000	decision	trees.	Figure	6.38	shows	the	effect	of	adding	more	trees	to	the	model	on	

the	out	of	bag	(OOB)	data.			

	

Figure	6.1:	The	effect	of	increasing	the	number	of	decision	trees	on	the	out	of	bag	error.	

	

The	decision	 to	predict	 bioaccessible	 PHE	 content	 in	 terms	of	mg	 kg-1	 as	 opposed	 to	 the	

bioaccessible	fraction	%	was	made	because	a	map	showing	a	concentration	would	be	more	

useful	for	risk	assessment	purposes	than	one	showing	a	bioaccessible	fraction	as	a	%.	This	is	

because	 it	 is	 then	possible	 to	 compare	 bioaccessible	 concentrations	 to	GACs	 to	 highlight	

areas	within	a	catchment	that	might	warrant	further	investigation.	Using	the	bioaccessible	

fraction	data	to	produce	spatial	maps	may	give	an	unrealistic	idea	of	where	the	areas	with	

the	greatest	hazard	exist.	For	example,	an	area	with	a	high	bioaccessible	fraction	may	come	
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from	a	 low	bioaccessible	content	 (mg	kg-1)	and	 therefore	 the	potential	hazard	of	 this	 soil	

would	actually	be	low.		

2.6.6.2	Variable	selection	using	the	Boruta	package		

Selection	of	variables	was	conducted	using	the	Boruta	package	in	R.	This	is	an	algorithm	that	

works	 with	 classification	 methods	 such	 as	 RF	 models.	 The	 algorithm	 compares	 variable	

importance	 with	 those	 of	 shadow	 attributes,	 which	 are	 variables	 created	 by	 randomly	

shuffling	the	original	variables.	Predictor	variables	that	have	been	classed	by	the	algorithm	

as	 less	 important	 than	 shadow	attributes	 are	 assigned	as	 ‘not	 important’	 and	 those	with	

higher	importance	than	the	shadow	attributes	are	assigned	as	‘important’.	The	user	selects	

the	 number	 of	 iterations	 to	 run	 and	 each	 iteration	 sees	 the	 creation	 of	 new	 shadow	

attributes.	 The	 model	 will	 run	 until	 only	 the	 important	 variables	 are	 left,	 or	 when	 the	

maximum	number	of	iterations	assigned	has	been	reached.	Variables	assigned	as	‘tentative’	

are	those	that	are	left	over	when	the	maximum	number	of	runs	has	been	met.	Increasing	the	

number	 of	 runs	 can	 result	 in	 the	 classification	 of	 these	 variables	 as	 either	 important	 or	

unimportant.		

	

Figure	 6.2:	 Example	 output	 from	 the	 Boruta	 algorithm,	 showing	 variables	 assigned	 as	 either	
‘important’	in	green,	‘tentative’	in	yellow	or	‘unimportant’	in	red.	Shadow	variables	are	shown	in	blue.		
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A	second	RF	model	was	run	 for	each	PHE	using	 the	 important	variables	expressed	by	 the	

Boruta	algorithm.	This	produced	a	simpler	model	and	improved	overall	model	performance,	

shown	by	a	higher	percentage	of	variance	explained	value.		

Partial	independence	plots	were	used	to	examine	the	influence	of	the	predictor	variables	on	

PHE	bioaccessibility	once	 the	 five	RF	models	had	been	constructed.	This	was	done	as	 the	

‘black	box’	nature	of	machine	learning	algorithms	can	make	interpreting	the	results	of	a	RF	

model	 difficult,	 and	 is	 often	 a	 criticism	 of	 such	 analytical	 methods.	 However,	 partial	

dependence	plots	can	be	used	to	gain	an	insight	 into	the	relationship	between	predictors	

and	response	variables	within	a	RF	model,	by	showing	the	marginal	effect	of	a	predictor	on	

the	predicted	outcome	of	a	model.	Partial	dependence	plots	were	therefore	generated	for	

each	PHE	in	this	study.		

6.2.7	The	prediction	and	mapping	of	flooding	induced	changes	in	bioaccessibility		

The	outputs	 of	 the	RF	models	were	plotted	 spatially	 in	ArcMap	 to	provide	 a	 comparison	

between	 the	 interpolation	of	data	points	 collected	during	 this	work,	and	 those	predicted	

from	the	NSI	dataset.		

A	 combination	 of	 RF	 models	 and	 multiple	 linear	 regression	 (MLR)	 were	 used	 to	 model	

flooding	induced	change	in	Pb.	The	dependent	variable	was	the	flooding	induced	change	in	

Pb	 bioaccessibility	 from	 the	microcosm	 inundation	 work	 outlined	 in	 Section	 6.2.2.	 Input	

variables	were	pseudo-total	element	data,	Pb	BAF,	pH,	SOM,	clay	content,	sand	content	and	

silt	content	(n=23).		

The	Boruta	package	was	used	for	variable	selection	as	the	sample	size	was	small	(flooded	

sample	n	=	24)	and	the	number	of	potential	variables	compared	to	the	sample	size	was	high	

(n	 =	 23).	 This	would	 result	 in	 over	 fitting	 if	MLR	models	were	 used	 prior	 to	 any	 variable	

selection.	A	combination	of	models	was	used	as	the	model	performance	of	MLR	after	variable	

selection	was	better	than	that	of	the	RF	on	a	sample	size	of	24.	

Of	the	five	PHEs	available,	Pb	was	selected	because	the	total	concentrations	were	close	to	

GAC	values	and	therefore	was	likely	to	be	of	most	concern	with	regards	to	human	health.	

Seven	variables	(P,	Li,	Fe,	Cr,	V,	Mn	and	Si)	were	selected	as	important	by	the	Boruta	package,	

and	these	were	subjected	to	modelling	by	MLR.	Further	simplification	of	the	MLR	models	

was	conducted	by	removing	insignificant	variables	until	only	significant	predictors	remained,	

resulting	in	the	final	model.	Significance	was	determined	if	the	p-value	of	a	predictor	was	

<0.05.		
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The	NSI	dataset	was	used	to	predict	bioaccessible	change	in	Pb.	This	was	carried	out	using	

the	‘predict’	function	in	R.	The	MLR	model	used	to	determine	flooding	induced	change	on	Pb	

bioaccessibility	was	used	on	data	from	the	NSI	dataset.	A	separate	dataset	was	needed	as	

the	model	had	been	built	using	the	data	collected	in	this	Chapter.		

The	predicted	output	values	were	 then	entered	 into	ArcMap	 in	 the	 form	of	X	Y	data	and	

plotted	 to	 produce	 the	 final	 maps.	 These	 maps	 spatially	 displayed	 the	 flooding	 induced	

change	in	the	BAF	of	Pb.	The	aim	of	this	was	to	show	the	potential	for	combining	geochemical	

characterisation	 methods,	 statistical	 modelling	 and	 spatial	 modelling	 tools	 to	 predict	

flooding	induced	changes	in	PHE	bioaccessibility	at	a	catchment	scale.		
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6.3	Results	and	Discussion	

6.3.1	Tyne	catchment	floodplain	soil	characteristics	

The	concentrations	of	As,	Cd	and	Pb	displayed	low	variation	across	the	48	soil	samples	taken	

in	the	Tyne	catchment	(Figure	6.3).	Cadmium,	Pb	and	Zn	had	outlier	values,	associated	with	

sampling	 locations	36	and	37,	collected	from	the	Nent	catchment,	 this	 is	 likely	 to	be	as	a	

result	of	the	sampling	area	being	close	to,	and	influenced	by,	mine	spoil	material.	All	soils	

were	predominantly	composed	of	silty	material	with	approximately	10	–	15	%	sand	and	clays	

(Figure	6.3).		

	

	

Figure	6.3:	Boxplots	showing	soil	characteristics	of	the	Tyne	catchment	floodplain	soil	samples	(n=48).	
The	full	dataset	is	presented	in	Table	A2.2.	

	

The	pH	of	the	soils	within	the	Tyne	catchment	are	mainly	between	pH	7	and	pH	8,	likely	as	a	

result	of	the	underlying	limestones	(Figure	6.3).	Some	soils	are	more	acidic	in	nature	(pH	5.5-

6.5),	lower	pH	soils	such	as	36	and	37	are	located	in	the	upper	Tyne	catchment	so	pH	may	be	

influenced	 by	 acid	 mine	 drainage	 from	 nearby	 adits	 and	 spoil	 tips	 (Figure	 2.4).	 The	 soil	

organic	matter	content	of	the	Tyne	catchment	floodplain	soils	is	high	(5-10	%),	likely	to	be	a	
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result	 of	 the	 fine-grained	 alluvial	 sediment	 with	 high	 organic	 matter	 content	 that	 gets	

deposited	by	floodwaters	(Rinklebe	et	al.,	2007)	as	well	as	the	high	production	of	living	plant	

matter	(Du	Laing	et	al.,	2007).	

6.3.2	Total	concentrations	of	PHEs	within	the	catchment		

Pseudo-total	PHE	concentrations	were	determined	by	a	microwave	assisted	HNO3	digestion	

of	the	48	soils.	The	total	element	concentrations	of	the	48	soil	samples	in	this	study	were	

compared	to	the	total	concentration	data	from	the	NSI,	analysed	by	wavelength	dispersive	

X-ray	fluorescence	spectrometry	(XRFS).			

A	comparison	between	the	NSI	dataset	and	the	48	samples	in	this	chapter	was	conducted	to	

determine	the	suitability	of	using	the	NSI	data	sets	for	predicting	bioaccessibility	within	the	

Tyne	catchment.	If	the	NSI	data	were	suitable,	this	would	have	allowed	an	increase	in	the	

number	of	 sample	points	used	 for	predictive	modelling	of	bioaccessibility	on	 the	premise	

that	larger	datasets	can	result	in	more	robust	models.	Secondly,	two	datasets	were	needed:	

one	to	train	and	build	the	RF	models,	and	a	second	one	to	spatially	predict	bioaccessibility.		

	

	

Figure	 6.4:	 IDW	 interpolation	 of	 NSI	 data	 and	 individual	 points	 for	 As	 measured	 by	 pseudo-total	
digestion.	
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Figure	6.5:	Linear	regression	of	spatial	samples	and	NSI	data	for	As.	R2	value	shows	model	fit		
(p	=	<	0.001)	
	

Concentrations	 of	 As	 were	 higher	 in	 the	 NSI	 dataset	 than	 the	 sample	 site	 dataset,	 by	

approximately	 1-3	 mg	 kg-1	 (Figure	 6.4),	 suggesting	 the	 HNO3	 digestion	 may	 not	 be	 as	

successful	in	dissolving	100	%	of	As.	This	may	be	because	not	all	As	is	fully	dissolved	during	

the	process.	An	R2	value	of	0.53	shows	a	reasonable	agreement	between	the	two	datasets	

(Figure	6.5).			

	

Figure	6.6:	IDW	interpolation	of	NSI	data	and	individual	points	for	Cd	measured	by	pseudo-total	
digestion.	

R²	=	0.53303 
y	=	0.4755x	+	6.2756

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

NS
I	d

at
a	
(m

g	
kg

-1
)

Measured	data	(mg	kg-1)



	 	 	
	

	
150	

	

Figure	6.7:	Linear	regression	of	spatial	samples	and	NSI	data	for	Cd.	R2	value	shows	model	fit		
(p	=	0.004)	
	
Concentrations	of	Cd	were	lower	in	the	NSI	dataset	than	the	sample	site	dataset,	by	up	to	an	

order	of	magnitude	(Figure	6.6).	An	R2	value	of	0.23	shows	a	poor	agreement	between	the	

two	datasets	(Figure	6.7).	This	is	likely	to	be	because	the	samples	in	this	study	were	collected	

close	to	the	River	Tyne	and	 likely	to	 include	elevated	concentrations	of	Cd,	shown	by	the	

outliers	in	the	dataset.		

	

Figure	 6.8:	 IDW	 interpolation	 of	 NSI	 data	 and	 individual	 points	 for	 Cu	measured	 by	 pseudo-total	
digestion.	
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Figure	6.9:	Linear	regression	of	spatial	samples	and	NSI	data	for	Cu.	R2	value	shows	model	fit		
(p	=	0.706)	
	

Both	datasets	were	in	the	same	order	of	magnitude	for	Cu	(Figure	6.8	and	6.9),	however,	an	

R2	value	of	0.003	shows	a	very	weak	relationship	between	the	two	datasets	(Figure	6.9).	It	is	

likely	that	sampling	locations	rather	than	the	analytical	method	are	responsible	for	the	weak	

relationship	shown.	For	example,	the	48	soil	samples	collected	for	this	chapter	in	the	historic	

flood	areas	of	the	Tyne	are	point	samples	and	pick	up	elevated	PHE	concentrations	that	have	

been	distributed	by	the	river	water.	In	contrast,	the	NSI	dataset	is	an	interpolated	dataset	

over	 a	 5	 km	 grid	 and	 therefore	 spatial	 heterogeneity	 of	 PHE	 concentrations	 could	 be	

smoothed	out.	
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Figure	6.10:	 IDW	 interpolation	of	NSI	 data	 and	 individual	 points	 for	 Pb	measured	by	pseudo-total	
digestion.	

	

	

Figure	6.11:	Linear	regression	of	spatial	samples	and	NSI	data	for	Pb.	R2	value	shows	model	fit	
(p	=	<0.001)	
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Concentrations	of	Pb	were	lower	in	the	NSI	dataset	than	the	sample	site	dataset,	by	up	to	an	

order	of	magnitude	(Figure	6.10).	An	R2	value	of	0.35	shows	a	poor	agreement	between	the	

two	datasets	(Figure	6.11).	Again,	this	is	likely	to	be	a	result	of	the	resolution	and	location	of	

the	sampling	positions	for	the	two	datasets.		

	

	

Figure	 6.12:	 IDW	 interpolation	of	NSI	 data	 and	 individual	 points	 for	 Zn	measured	by	 pseudo-total	
digestion.	
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Figure	6.13:	Linear	regression	of	spatial	samples	and	NSI	data	for	Zn.	R2	value	shows	model	fit		
(p	=	0.01)	
	
Concentrations	of	Zn	were	lower	in	the	NSI	dataset	than	the	sample	site	dataset,	by	up	to	an	

order	of	magnitude	(Figure	6.12).	An	R2	value	of	0.12	shows	a	poor	agreement	between	the	

two	datasets	(Figure	6.13).	Again,	this	is	likely	to	be	a	result	of	the	resolution	and	location	of	

the	sampling	positions	for	the	two	datasets.	

Apart	from	As	(Figure	6.4),	the	NSI	values	tended	to	be	lower	than	those	measured	in	this	

work	(Figures	6.6,	6.8,	6.10	and	6.12),	often	by	an	order	of	magnitude.	The	two	datasets	were	

determined	using	different	analytical	methods	–	the	NSI	data	were	analysed	by	XRFS	whereas	

this	work	used	a	microwave	digestion	in	concentrated	HNO3	method.	This	is	likely	to	be	one	

reason	for	the	discrepancies	between	the	datasets.	Different	analytical	methods	can	provide	

different	results,	dependent	on	the	analyte	of	interest.	For	example,	XRFS	has	been	known	

to	report	higher	concentrations	of	Pb	and	Zn	than	acid	digestion	techniques	(Paveley	et	al.,	

1988).	However,	both	methods	are	accepted	in	the	literature	for	determining	pseudo-total	

concentrations	in	soils.		

Additionally,	the	samples	analysed	in	this	work	were	collected	within	historic	flood	areas	of	

the	 River	 Tyne.	 The	 documented	 transport	 of	 PHE	 enriched	 material	 down	 through	 the	

catchment	may	therefore	have	resulted	in	the	higher	concentrations	observed	(Macklin	et	

al.,	1997).	The	distribution	of	PHEs	in	the	Tyne	catchment	has	been	described	as	complex	

with	both	chemical	and	physical	processes	involved	in	PHE	transport	and	deposition	(Macklin	

et	al.,	1997).	The	NSI	dataset	was	collected	on	a	5	km	square	grid	and	therefore	samples	may	

have	been	taken	away	 from	localised	hotspots	close	to	 the	river	banks.	Furthermore,	 the	

y	=	0.0167x	+	75.168
R²	=	0.12472

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000

NS
I	d

at
a	
(m

g	
kg

-1
)

Measured	data	(mg	kg-1)



	 	 	
	

	
155	

subsequent	 interpolation	of	the	NSI	datasets	could	then	result	 in	 lower	values	being	seen	

than	 in	 the	 samples	 used	 for	 this	work.	 This	 study	 did	 not	 target	 potential	 hotspots	 but	

sampling	locations	were	randomly	generated	from	the	recorded	flood	outlines	of	the	Tyne,	

so	are	generally	in	closer	proximity	to	the	river	and	hence	subject	to	flooding,	than	the	data	

from	 the	 NSI	 datasets.	 Hence,	 the	 soils	 sampled	 for	 this	 thesis	 may	 have	 elevated	

concentrations	of	PHEs	which	can	be	transported	by	the	river	and	deposited	on	floodplain	

soils.		

Simple	 linear	 regression	was	 conducted	 to	 determine	whether	 the	NSI	 dataset	would	 be	

suitable	for	the	prediction	of	bioaccessibility	of	PHEs	within	the	catchment,	or	whether	the	

sample	site	data	set	should	be	interpolated	to	provide	additional	data	for	mapping.	The	best	

model	was	seen	for	As	(R2	=	0.5).	The	remaining	models	had	R2	values	of	<0.3	and	therefore	

it	was	decided	that	the	sample	site	data	collected	during	this	study	should	be	interpolated	

for	all	the	PHEs,	rather	than	using	the	NSI	data.	

These	findings	indicate	that	there	is	a	need	for	collection	of	floodplain	specific	PHE	data	when	

modelling	PHE	distribution	in	catchments	as	larger,	national	spatial	datasets	are	unlikely	to	

have	the	resolution	to	capture	small	scale	hotspots	that	may	occur	in	flood	prone	areas	near	

the	river	channel.	PHEs	that	have	low	mobility	in	soil,	such	as	Pb,	can	often	accumulate	in	

discrete	hotspots	as	a	result	of	their	high	residence	time	(Bower	et	al.,	2017).		

6.3.3	Spatially	modelling	PHE	bioaccessibility		

Bioaccessibility	 at	 a	 catchment	 scale	 was	 predicted	 by	 interpolating	 the	 spatial	

bioaccessibility	data	collected	for	this	thesis.	Only	the	soils	within	the	historic	flood	outlines	

were	modelled	as	these	were	similar	in	characteristics	to	the	soils	used	to	build	and	train	the	

RF	models,	as	described	in	Section	6.2.5.	IDW	models	were	used	as	these	are	more	suitable	

for	soils	with	PHE	hotspots	than	other	models	such	as	kriging	methods	(Bower	et	al.,	2017).		

GAC	 values	 were	 not	 exceeded	 by	 any	 floodplain	 PHE	 concentrations	 within	 the	 Tyne	

catchment	 for	 the	 more	 conservative	 parkland	 open	 space	 values.	 Bioaccessible	 As	

concentrations	ranging	from	0.8	to	4.2	mg	kg-1,	were	an	order	of	magnitude	below	GACs.	The	

highest	 values	 were	 south	 of	 Haydon	 Bridge,	 which	 was	 upstream	 of	 the	 South	 Tyne	

confluence.	Values	below	 this	 confluence	were	generally	 the	 lowest,	 indicating	a	dilution	

effect	from	‘clean’	sediment	from	the	North	Tyne.	Similar	examples	of	dilution	with	clean	

sediment	were	observed	by	Macklin	et	al.,	(1997).	This	pattern	was	observed	for	all	PHEs	at	

this	location	within	the	catchment.		
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The	 spatial	 distribution	 of	 bioaccessible	 Cd	 was	 highest	 downstream	 of	 Haltwhistle	 and	

values	ranged	from	0.4	mg	kg-1	to	10.8	mg	kg-1,	likely	to	originate	from	the	mining	areas	in	

the	 upper	 catchment.	 Macklin	 et	 al.	 (1997)	 observed	 ‘pulsed’	 concentrations	 of	 Cd	

downstream	of	the	mining	areas,	suggesting	that	Cd	was	transported	downstream	in	a	series	

of	sediment	pulses,	possibly	from	flood	events.		

Bioaccessible	Cu	concentrations	followed	a	similar	pattern	of	spatial	distribution	to	As,	with	

higher	concentrations	 (15	mg	kg-1)	observed	downstream	of	Haydon	Bridge	 (Figure	6.15).	

Like	 Cd,	 the	 highest	 bioaccessible	 Pb	 concentrations	 were	 located	 downstream	 of	

Haltwhistle,	with	concentrations	ranging	from	79	mg	kg-1	to	1,347	mg	kg-1	(Figure	6.16).	Lead	

concentrations	were	borderline	with	its	respective	GAC	value	(1,400	mg	kg-1)	in	several	areas	

within	 the	Tyne	 floodplain.	Bioaccessible	 concentrations	of	 Zn	 ranged	 from	44	mg	kg-1	to	

2,922	mg	kg-1	and	followed	the	same	spatial	distribution	as	Pb.		

The	spatial	distribution	of	the	bioaccessible	PHE	content	in	Figures	6.14	to	6.18	followed	a	

similar	distribution	to	pseudo-total	PHE	concentrations	in	Figures	6.4	to	6.12,	suggesting	a	

link	between	pseudo-total	PHE	concentrations	and	bioaccessibility.	These	relationships	are	

explored	in	Section	6.3.8	using	predictive	models	of	PHE	bioaccessibility.		

Arsenic		

	

Fig	6.14:	Bioaccessible	As	in	soils	of	the	Tyne	catchment	historic	flood	outlines.	Arsenic	allotment	GAC	
=	43	mg	kg-1.	Arsenic	parkland	open	space	GAC	=	170	mg	kg-1.		
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Cadmium	

	

Fig	6.15:	Bioaccessible	Cd	in	soils	of	the	Tyne	catchment	historic	flood	outlines.	Cadmium	allotment	
GAC	=	1.9	mg	kg-1.	Cadmium	parkland	open	space	GAC	=	560	mg	kg-1.	

Copper		

	

Fig	6.16:	Bioaccessible	Cu	in	soils	of	the	Tyne	catchment	historic	flood	outlines.	Copper	allotment	GAC	
=	520	mg	kg-1.	Copper	parkland	open	space	GAC	=	44000	mg	kg-1.	
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Lead	

	

Fig	6.17:	Bioaccessible	Pb	in	soils	of	the	Tyne	catchment	historic	flood	outlines.	Lead	allotment	GAC	=	
84	mg	kg-1.	Lead	parkland	open	space	GAC	=	1400	mg	kg-1.	

Zinc	

	

Fig	6.18:	Bioaccessible	Zn	in	soils	of	the	Tyne	catchment	historic	flood	outlines.	Zinc	allotment	GAC	=	
620	mg	kg-1.	Lead	parkland	open	space	GAC	=	170,000	mg	kg-1.	
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6.3.4	Flooding	Induced	Mobilisation	of	PHEs	in	the	Tyne	Catchment	Floodplain	Soils	

In	addition	to	spatially	mapping	the	PHE	bioaccessibility	of	soils	in	the	Tyne	catchment,	their	

mobility	during	 flooding	was	also	determined.	Mobility	of	PHEs	 into	overlying	water	after	

one	week	 of	 inundation	was	 low	 for	 the	 PHEs	 investigated	 in	 this	 chapter,	 ranging	 from	

approximately	0.01-2	%	(Figure	6.19).	Generally,	As	(0.05	%	to	2	%)	and	Cu	(0.19	%	to	1.3	%)	

showed	the	greatest	mobility	into	overlying	waters,	with	Pb	(0.02	%	to	0.6	%)	and	Zn	(0.02	%	

to	1.17	%)	being	less	mobile.	This	is	likely	to	be	a	result	of	the	redox	sensitivity	of	As,	as	shown	

in	Chapter	4,	resulting	in	higher	mobility	of	As	over	other	PHEs.	Generally,	the	variation	in	

PHE	mobility	between	the	soils	was	low,	and	therefore	likely	to	be	a	result	of	the	similarity	

of	floodplain	soil	characteristics	(Figure	6.3).		

	

Figure	 6.19:	 Percentage	 of	 pseudo-total	 PHE	 mobilised	 into	 overlying	 water	 after	 1	 week	 of	
inundation.	
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Figure	6.20:	Linear	regression	between	the	percentage	of	As	released	into	overlying	water	and	the	
bioaccessible	fraction	of	As	(BAF	%)	in	the	sample	soils.	n=22.	

	

Figure	6.21:	Linear	regression	between	the	percentage	of	Cu	released	into	overlying	water	and	the	
bioaccessible	fraction	of	Cu	(BAF	%)	in	the	sample	soils.	n=22.	

	

The	relationship	between	the	%	of	PHE	released	into	overlying	waters	and	the	bioaccessible	

fraction	of	PHE	in	soil	was	modelled	to	determine	if	soils	with	a	higher	bioaccessible	fraction	

of	 PHEs	 also	 had	 higher	 PHE	 mobility	 into	 porewater	 (Figures	 6.20	 and	 6.21).	 Both	 are	

measures	of	mobilisation,	but	mobility	into	the	gastrointestinal	tract	is	expected	to	be	higher	

than	mobility	into	overlying	water	as	the	reagents	used	in	the	UBM	are	of	a	lower	pH	(pH	

1.2)	 and	 therefore	 more	 aggressive	 than	 river	 water	 (pH	 7.7).	 The	 UBM	 reagents	 are	

aggressive	enough	to	result	in	mobilisation	of	PHEs	from	soil	components	such	as	carbonates	

and	 metal	 oxides,	 as	 shown	 in	 Chapter	 3.	 Changes	 in	 redox	 potential	 can	 result	 in	
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mobilisation	of	PHEs	 from	similar	 components	 through	processes	 such	as	desorption	and	

reductive	dissolution	(Chapter	4),	but	these	processes	occur	over	a	greater	timescale	(usually	

weeks)	 with	 a	 weaker	 reagent	 (water),	 therefore	 resulting	 in	 lower	 PHE	 mobilisation.	

However,	it	is	hypothesised	that	soils	with	a	larger	proportion	of	PHE	content	in	more	labile	

components	 will	 likely	 have	 a	 higher	 mobility	 potential	 into	 porewater,	 as	 well	 as	 the	

gastrointestinal	tract.		

Relationships	 between	 As	 and	 Cu	 mobility	 and	 bioaccessibility	 showed	 a	 positive	 trend,	

suggesting	that	soils	with	higher	bioaccessible	PHEs	are	more	likely	to	have	a	higher	potential	

for	 PHE	 mobilisation	 during	 flooding.	 Linear	 regression	 models	 for	 Pb	 and	 Zn	 were	 not	

significant	so	are	not	displayed	(p	>0.05).	Larger	sample	sizes	may	improve	Pb	and	Zn	models.	

If	such	relationships	are	also	present	for	Pb	and	Zn	(in	larger	datasets),	then	this	information	

could	be	of	use	for	remediation	purposes	in	the	Tyne	catchment.	For	example,	there	may	

not	be	a	need	to	predict	the	risk	of	PHE	mobilisation	into	overlying	water	if	spatial	predictions	

of	bioaccessible	PHEs	exist	if	areas	with	a	greater	potential	for	flooding	induced	change	in	

bioaccessibility	are	also	likely	to	have	a	greater	risk	of	PHE	mobility	into	overlying	water.		

The	mobilisation	of	the	PHEs	investigated	in	this	chapter	into	overlying	water	was	low	(<2	%),	

however	it	does	highlight	the	potential	for	PHE	enriched	soils	and	sediments	to	be	diffuse	

sources	 of	 pollution	 in	 PHE	 enriched	 areas.	 Potentially,	 such	 mobilisation	 could	 have	

implications	for	water	quality	status	such	as	those	by	the	WFD	as	was	shown	in	Chapter	4	

when	porewater	concentrations	were	compared	to	EQS	values.	Studies	have	shown	elevated	

concentrations	 of	 PHEs	 in	 rivers	 downstream	 of	 past	 mining/industrial	 areas,	 with	 no	

apparent	point	sources	of	PHEs,	such	as	mine	adits	(Palumbo-Roe	et	al.,	2012),	suggesting	

input	from	diffuse	sources.	For	example,	concentrations	of	Zn	in	streambed	sediments	were	

predicted	to	contribute	15-25	%	of	the	Zn	load	into	river	waters	in	the	Rookhope	catchment	

in	NE	England	(Banks	and	Palumbo-Roe,	2010).	The	Rookhope	catchment	is	geographically	

close	to	the	Tyne	catchment	and	shares	similar	underlying	geology	and	soil	types,	suggesting	

that	the	Tyne	could	see	similar	loading	values	from	diffuse	sources.		

6.3.5	Intrinsic	Soil	Constituents	within	the	Tyne	Catchment	Floodplain	Soils	

ISCs	can	be	used	as	input	variables	into	various	models	such	as	MLR	and	RF	models,	to	predict	

PHE	bioaccessibility	in	soils.	The	purposes	of	generating	ISCs	in	this	chapter	was	to	firstly	look	

at	the	composition	of	soils	within	the	Tyne	catchment,	and	secondly	to	generate	predictor	

variables	for	RF	models.		
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Nine	ISCs	were	identified,	although	three	were	grouped	into	one	constituent	(Fe-Al	Oxides)	

resulting	 in	 seven	 different	 ISCs	 being	 reported	 for	 the	 Tyne	 catchment	 floodplain	 soils.	

These	 are	 displayed	 in	 Figures	 6.22	 to	 6.30.	 The	 error	 bars	 represent	 the	 uncertainty	

associated	with	each	ISC	from	the	algorithm	for	each	sample.		

Fe-Al	oxide	ISCs	

This	constituent	has	been	identified	as	a	Fe	(~60	%)	and	Aluminium	(~30	%)	rich	constituent	

and	 therefore	 likely	 to	be	Fe-Al	oxides.	 This	 ISC	 is	present	within	all	 soil	 types,	 and	Fe-Al	

oxides	were	 identified	by	 the	CISED	extractions	 in	Chapter	3	as	expected,	as	 ISCs	are	 the	

source	of	the	CISED	identified	components	(Wragg,	2005).	Such	oxides	have	a	high	affinity	

for	PHEs,	although	only	often	partly	contribute	to	bioaccessibility	because	of	their	relative	

insolubility	(Palumbo-Roe	et	al.,	2015).	Figures	6.22	to	6.24	represent	the	masses	of	each	SC	

associated	with	each	soil	sample.	The	first	and	third	Fe-Al	oxide	ISCs	(Figures	6.22	and	6.24)	

are	 similar	 in	 composition,	with	 greater	 concentrations	 of	 Fe	 (60	%)	 over	 Al	 (20	%).	 The	

uncertainty	 on	 the	 Fe-Al	 ISC	 2	 (Figure	 6.23)	 is	 considerably	 greater	 as	 the	 error	 bars	 go	

through	 zero	 for	 Fe,	 and	 there	 are	 greater	 concentrations	 of	 Al	 associated	with	 this	 ISC	

(40	%).	Fe-Al	ISCs	are	present	in	all	of	the	soils	under	investigation.	Some	soil	samples	with	

higher	Fe-Al	content	are	located	over	areas	of	theolitic	basalt	in	the	Tyne	catchment,	which	

may	account	for	higher	Fe	concentrations	in	soils	(Figure	2.2).		

	

Figure	6.22:	Fe-Al	ISC	1.	

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

IS
C	
co
nc
en
tr
at
io
n	
(m

g	
kg

-1
)

Sample	sites



	 	 	
	

	
163	

	

Figure	6.23:	Fe-Al	ISC	2.	

	

Figure	6.24:	Fe-Al	ISC	3.	

	

Carbonate	ISC	

This	 ISC	 (Figure	 6.25)	 was	 identified	 as	 a	 carbonate	 constituent	 because	 of	 its	 high	 Ca	

percentage	 (>50	 %).	 Carbonate	 minerals	 such	 as	 calcite	 are	 common	 in	 soils	 and	 the	

carbonate	ISC	is	present	in	all	soils	with	the	exception	of	sample	site	4	(Allaby	and	Allaby,	

1999).	Carbonates	are	easily	dissolved	and	therefore	they	are	expected	to	contribute	to	PHE	

bioaccessibility	 if	carbonate	associated	PHEs	are	present.	Zn	(10	%)	and	Al	(10	%)	are	also	

both	associated	with	this	ISC.	Zn	is	known	to	form	with	carbonates	to	form	smithsonite	in	

the	Tyne	catchment	(Hudson-Edwards	et	al.,	1996).	The	composition	of	this	ISC	is	similar	to	

the	composition	of	the	carbonate	component	identified	by	the	CISED	method	in	Chapter	3.		
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Figure	6.25:	Ca	dominated	ISC.	

	

Ca-Al	ISC	

The	association	of	Ca	and	Al	has	 led	to	 the	 identification	of	 this	 ISC	as	an	aluminium	rich	

calcite	(Figure	6.26),	as	calcite	was	identified	in	the	floodplain	soils	(soils	4	and	5)	in	Chapter	

3	by	XRD.	It	is	composed	of	50	%	Ca,	20	%	Al	and	10	%	Zn	and	was	present	in	all	soils.	Sample	

47	 was	 sampled	 from	 an	 agricultural	 field	 used	 to	 grow	 trees	 and	 had	 the	 highest	

concentrations	of	 this	 ISC.	 It	 is	hypothesised	this	may	have	arisen	from	the	application	of	

lime	or	fertiliser.		

	

Figure	6.26:	Ca-Al	ISC.	

	

Al-P	ISC	

This	ISC	was	mainly	composed	of	Al	(60	%)	and	P	(15	%)	and	trace	amounts	of	K	(5	%)	with	

the	masses	of	this	ISC	varying	between	sampling	locations	(Figure	6.27).	The	presence	of	P	

and	K	suggests	that	there	could	be	the	influence	of	fertiliser	products	within	this	 ISC.	The	
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locations	from	which	the	samples	were	collected	that	contain	this	ISC	were	all	from	arable	

or	improved	grassland	locations.		

	

Figure	6.27:	Al-P	ISC.	

Pb-Al-Zn	ISC	

This	ISC	was	dominated	by	Pb	(50	%),	Al	(20	%),	Zn	(15	%)	and	S	(10	%)	and	was	therefore	

assumed	 to	 be	 Pb	 dominated	 minerals,	 because	 of	 the	 high	 Pb	 %	 (Figure	 6.28).	 These	

minerals	likely	originated	from	mining	activities	and	geogenic	sources	in	the	upper	reaches	

of	the	South	Tyne	catchment.	The	presence	of	sulphur	suggests	sulphide	minerals	such	as	

galena	(PbS)	and	sphalerite	ZnS).	Both	of	which	have	been	confirmed	by	XRD	as	present	in	

the	spoil	tip	material	(Chapter	3).	The	highest	concentrations	were	found	in	site	36,	which	

was	situated	near	the	River	Nent	confluence,	which	exits	a	catchment	with	numerous	mine	

spoil	tips.	

	

Figure	6.28:	Pb-Al-Zn	ISC.	
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Zn-Ca-Pb	ISC	

This	ISC	(Figure	6.29)	was	dominated	by	Zn	(40	%),	Ca	(25	%),	Mn	(10	%)	and	Pb	(10	%)	and	is	

therefore	assumed	to	be	Zn	dominated	minerals	because	of	the	high	percentage	of	Zn	and	

likely	or	originate	from	mining	activities	in	the	upper	reaches	of	the	South	Tyne	catchment.	

The	 highest	 concentrations	were	 found	 in	 site	 37,	which	 is	 situated	 near	 the	 River	 Nent	

confluence,	which	exits	a	catchment	with	numerous	mine	spoil	tips.	

	

Figure	6.29:	Zn-Ca-Pb	ISC.	

	

	

Al-Ca-Mn	ISC	

This	ISC	(Figure	6.30)	was	identified	as	a	mixed	metal	assemblage	ISC	because	of	the	presence	

of	Al	 (50	%)	and	Mn	 (15	%).	Calcium	was	also	present	 (20	%).	Aluminium	oxides	and	Mn	

oxides	were	 identified	by	 the	CISED	extractions	 in	Chapter	3	and	therefore	may	originate	

from	this	ISC.	This	ISC	was	not	present	in	all	samples,	and	was	mostly	found	in	samples	38-

48,	 which	 are	 mainly	 agricultural	 soils	 and	 found	 within	 the	 mid	 reaches	 of	 the	 Tyne	

catchment.		
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Figure	6.30:	Al-Ca-Mn	ISC.	

	

6.3.6	PHE	distribution	within	ISCs	

Arsenic	 was	 found	 to	 be	mainly	 associated	 with	 the	 Al-Fe	 ISCs	 (Figure	 6.31),	 which	 was	

expected	 because	 As	 was	 found	 to	 associated	 with	 the	 Al-Fe	 cluster	 in	 Chapter	 3.	 This	

relationship	is	also	well	documented	within	the	literature	(Dixit	and	Herring,	2003;	Burton	et	

al.,	2008;	Xu	et	al.,	2017).	It	is	therefore	assumed	that	Fe-Al	oxides	will	be	a	good	predictor	

of	 pseudo-total	 As	 concentrations	 in	 catchment	 soils.	 As	 is	 also	 known	 to	 associate	with	

carbonates	(Alloway,	2013),	as	shown	in	Figure	6.31.		

Cadmium	was	mainly	associated	with	the	Fe-Al	ISC	(Figure	6.31),	the	carbonate	ISC	and	the	

Pb	and	Zn	minerals	ISC.	Cadmium	is	known	to	be	associated	with	Zn	bearing	minerals	(Anju	

and	Banerjee,	2010).	High	concentrations	of	Cd	found	were	observed	in	the	Fe	dominated	

ISCs,	which	was	expected,	as	metal	oxides	are	known	to	be	the	most	common	adsorbents	of	

Cd	(Alloway,	2013).	The	association	between	Cd	and	carbonates	can	occur	in	higher,	more	

neutral	 soils	 such	 as	 those	 found	 in	 the	 Tyne	 catchment	 (Chapter	 3).	 This	 is	 because	

precipitates	 of	 Cd	 and	 carbonates	 can	 occur	 under	 these	 conditions	 (Miller	 and	McFee,	

1983).	This	was	corroborated	by	the	positive	relationship	observed	between	the	Cd	content	

of	the	Ca	ISC	and	pH,	as	shown	in	Figure	6.32	below,	suggesting	soils	with	a	higher	pH	have	

a	higher	content	of	Cd	associated	with	the	Ca	ISC.	
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Figure	6.31:	Pseudo-total	PHE	distribution	between	ISCs	in	the	Tyne	catchment	soils.	

	

	

Figure	6.32.	Cadmium	content	of	the	Ca	ISC	and	pH	for	the	Tyne	catchment	floodplain	soils	(n	=	48).	
R2	is	0.33.	
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explains	why	Cu	is	seen	in	the	Pb	and	Zn	dominated	ISCs.		
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Lead	was	distributed	between	the	two	Pb	and	Zn	mineral	ISCs	and	the	Fe-Al	ISC	(Figure	6.31).	

The	presence	of	S	in	the	Pb-Al-Zn	ISC	suggests	the	presence	of	Galena,	confirmed	by	XRD	in	

Chapter	3	and	documented	in	the	literature	to	be	present	in	soils	and	sediments	in	the	Tyne	

catchment	(Hudson-Edwards	et	al.,	1996).	Lead	also	associates	with	Fe	oxides	(Du	Laing	et	

al.,	2007)	and	again	as	seen	in	the	Tyne	catchment	(Hudson-Edwards	et	al.,	1996).		

6.3.7	Flooding	induced	changes	in	PHE	bioaccessibility	at	a	catchment	scale	

Bioaccessibility	 increased	 for	 the	majority	 of	 PHEs	 after	 the	 flooding	 of	 soils	 for	 1	 week	

(Figure	 6.33).	 Paired	 t	 tests	 determined	 if	 changes	 were	 significant,	 and	 all	 PHEs	

demonstrated	a	p	value	of	<	0.05,	highlighting	the	potential	of	flooding	events	to	cause	an	

increase	 in	 the	bioaccessibility	of	PHEs.	The	greatest	change	 in	 the	median	concentration	

occurred	for	Cu,	with	Zn	showing	the	smallest	change	post	flooding.	Considering	individual	

soils,	the	changes	in	the	BAF	of	PHEs	ranged	from	-40	%	to	100	%	(Figures	6.34	to	6.38).	The	

range	in	percentage	change	values	highlights	the	heterogeneity	of	catchment	soils	and	PHE	

behaviour.	Such	variation	means	suitable	tools	are	needed	that	can	predict	the	catchment	

areas	 that	 express	 the	 greatest	 potential	 for	 PHE	 mobilisation	 and	 increase	 in	

bioaccessibility.		

	

Figure	6.33:	Bioaccessible	PHE	concentrations	after	wetting	and	drying	for	the	Tyne	floodplain	soils	
(n	=	48).	
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Arsenic	was	the	only	PHE	studied	that	showed	a	reduction	in	bioaccessibility	for	some	soils	

after	flooding.	All	other	PHEs	showed	an	increase.	Arsenic	concentrations	were	low	in	the	

sampled	soils;	 therefore,	 the	 reduction	 in	bioaccessibility	may	be	a	 result	of	values	being	

close	to	the	LOD.		

	

Figure	6.34:	Percentage	change	in	As	bioaccessibility	after	flooding.	

	
Figure	6.35:	Percentage	change	in	Cd	bioaccessibility	after	flooding.	

	

	
Figure	6.36:	Percentage	change	in	Cu	bioaccessibility	after	flooding.	
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Figure	6.37:	Percentage	change	in	Pb	bioaccessibility	after	flooding.	

	

	
Figure	6.38:	Percentage	change	in	Zn	bioaccessibility	after	flooding.	

	

6.3.8	Predicting	the	bioaccessibility	of	PHEs	within	the	Tyne	catchment	using	random	forest	

models	

Random	 forest	 models	 were	 used	 to	 predict	 bioaccessible	 PHE	 content	 from	 total	 PHE	

concentrations	within	the	Tyne	catchment.	The	purpose	of	this	was	to	test	the	ability	of	these	

models	 to	 predict	 bioaccessibility	 over	 large	 spatial	 scales	 using	 datasets	 of	 pseudo-total	

major	 and	 trace	 elements,	 such	 as	 those	 found	 in	 the	 G-Base	 datasets.	 No	 such	 high-

resolution	 datasets	 are	 currently	 available	 for	 the	 Tyne	 catchment,	 other	 than	 the	 NSI	

dataset	(Figures	6.4,	6.7,	6.9,	6.11	and	6.13)	which	were	shown	to	have	a	poor	comparison	

to	the	sample	site	data	(Section	6.3.2)	collected	for	this	study	(R2	0.03	to	0.5).	Consequently,	

the	RF	models	were	produced	using	the	data	generated	by	this	study	alone,	and	therefore	

are	a	proof	of	concept	that	bioaccessibility	can	be	predicted	in	floodplain	soils	from	pseudo-
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total	datasets.	Acquisition	of	larger	spatial	datasets	in	the	Tyne	catchment	floodplain	soils	

would	allow	for	the	validation	of	these	models.	The	use	of	historic	flood	outlines	could	be	

used	as	a	basis	in	which	to	collect	more	detailed	spatial	datasets.		

6.3.8.1Selection	of	the	most	important	predictors	for	each	model	

Selection	of	predicators	was	done	using	the	Boruta	package	as	outlined	in	section	2.18.	The	

most	important	parameters	for	predicting	PHE	bioaccessibility	for	each	PHE	are	shown	below	

in	Figures	6.39	to	6.43.	Values	in	green	are	depicted	to	be	the	most	‘important’	variables	in	

the	model.	Values	 in	yellow	are	assigned	by	the	model	as	 ‘tentative’	and	those	 in	red	are	

deemed	as	‘unimportant’.	The	shadow	variables	are	depicted	by	the	blue	boxes.			
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Arsenic	

	

Figure	6.39:	Values	in	green	are	‘important’,	yellow	are	‘tentative’	and	those	in	red	are	deemed	as	
‘unimportant’.	Blue	boxes	represent	the	shadow	variables.	The	y-axis	displays	predictor	importance.		

	

Cadmium	

	

Figure	6.40:	Predictor	importance	for	Cd	bioaccessibility.	Values	in	green	are	‘important’,	yellow	are	
‘tentative’	and	those	in	red	are	deemed	as	‘unimportant’.	Blue	boxes	represent	the	shadow	variables.	
The	y-axis	displays	predictor	importance.	
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Copper	

	

Figure	6.41:	Predictor	importance	for	Cu	bioaccessibility.	Values	in	green	are	‘important’,	yellow	are	
‘tentative’	and	those	in	red	are	deemed	as	‘unimportant’.	Blue	boxes	represent	the	shadow	variables.	
The	y-axis	displays	predictor	importance.	

	

Lead	

	

Figure	6.42:	Predictor	importance	for	Pb	bioaccessibility.	Values	in	green	are	‘important’,	yellow	are	
‘tentative’	and	those	in	red	are	deemed	as	‘unimportant’.	Blue	boxes	represent	the	shadow	variables.	
The	y-axis	displays	predictor	importance.	
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Zinc	

	

Figure	6.43:	Predictor	importance	for	Zn	bioaccessibility.	Values	in	green	are	‘important’,	yellow	are	
‘tentative’	and	those	in	red	are	deemed	as	‘unimportant’.	Blue	boxes	represent	the	shadow	variables.	
The	y-axis	displays	predictor	importance.	

	

The	predictor	variables	for	each	PHE	varied	in	this	study	and	there	was	no	common	set	of	

variables	 for	 modelling	 PHE	 bioaccessibility.	 Common	 patterns	 between	 the	 five	models	

above	were	 that	 the	host	PHE	 (e.g.	pseudo-total	Pb	 for	Pb	bioaccessibility)	was	 the	most	

important	predictor,	with	the	exception	of	arsenic.	This	suggests	that,	generally,	the	higher	

PHE	 content	 results	 in	 a	 more	 PHE	 bioaccessible	 concentration,	 which	 has	 been	 seen	

elsewhere	 (e.g.	 Appleton	 et	 al.,	 2012).	 PHEs	 other	 than	 the	 host	 PHE	 were	 also	 often	

important	predictor	variables,	with	increased	bioaccessibility	of	one	PHE	often	linked	to	the	

increased	 bioaccessibility	 of	 another.	 This	 suggests	 possible	 interaction	 effects	 between	

PHEs	occur	 resulting	 in	 the	need	 to	examine	PHE	behaviour	and	bioaccessibility	 in	mixed	

chemicals,	rather	than	in	isolation.		

The	most	important	variables	generated	by	the	Boruta	package,	as	shown	in	Figures	6.39	to	

6.43	by	 the	green	boxes,	were	selected	and	used	as	an	 input	 into	a	 second	RF	model,	as	

opposed	to	the	first	RF	model	that	contained	all	 the	predictor	variables.	The	predicted	vs	

actual	values	for	each	PHE	are	shown	in	Figure	6.44.	Most	of	the	points	conformed	to	the	

line	 of	 equivalence	 for	 each	 PHE,	 suggesting	 a	 good	model	 fit.	 There	was	 a	 slight	 under	

prediction	at	the	top	end	of	the	dataset,	shown	by	the	deviation	of	data	points	from	the	line	
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of	equivalence,	likely	to	have	arisen	from	fewer	samples	at	the	higher	end	of	the	range	of	

bioaccessible	PHE	concentrations.		

	

	

Figure	6.44:	Relationship	between	bioaccessible	PHE	content	 (mg	kg-1)	and	predicted	bioaccessible	
PHE	content	(mg	kg-1)	from	random	forest	models.	Diagonal	line	represents	line	of	equivalence.			

	

Table	6.2:	Percentage	of	variance	explained	by	each	random	forest	model.	

PHE	 %	of	variance	explained	

As	 48	

Cd	 54	

Cu	 48	

Pb	 60	

Zn	 64	

	

The	percentage	of	 variance	explained	by	each	model	 given	 is	 an	 insight	 into	 the	model’s	

ability	to	explain	the	response	variable	variability.	Unexplained	variance	is	likely	to	be	a	result	

of	true	randomness	or	lack	of	fit.		
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6.3.8.2	Partial	dependence	plots		

Arsenic		

The	 partial	 dependence	 plot	 (Figure	 6.45)	 demonstrated	 the	 partial	 effect	 of	 the	 x-axis	

variable	on	the	y-axis	variable	(PHE	bioaccessibility).	Positive	relationships	were	seen	with	

the	other	PHEs	used	in	this	study	(Figure	6.45),	suggesting	that	bioaccessible	As	content	was	

greater	where	there	were	greater	PHE	concentrations	in	soils.	This	could	result	from	PHEs	

being	hosted	in	similar	ISCs,	however	no	PHEs	shared	a	common	set	of	predictor	variables	so	

this	 is	unlikely.	Additionally,	 the	boxplots	 in	 Figure	6.31	 show	 the	PHEs	generally	 tend	 to	

associate	with	different	ISCs.	Another	explanation	could	be	the	PHEs	shared	similar	inputs,	

arising	from	the	land	use	at	each	site.	For	example,	an	input	of	mine	soil	could	result	in	the	

input	of	multiple	PHEs	to	the	soil,	therefore	resulting	in	elevated	concentrations	of	all	PHEs.	

This	may	explain	the	positive	associations	seen	between	PHEs	and	As	bioaccessibility.	The	

positive	relationship	between	bioaccessible	As	and	pseudo-total	content	of	Cu,	Cd,	Zn	and	

Pb	may	also	indicate	potential	 interaction	effects	between	PHEs	and	their	bioaccessibility,	

which	is	not	described	well	in	the	literature	and	therefore	a	knowledge	gap.	

A	positive	relationship	was	seen	with	Al,	suggesting	higher	concentrations	of	Al	oxides	may	

result	 in	 higher	 As	 bioaccessibility.	 Al-Fe	 oxides	 were	 shown	 to	 contribute	 to	 As	

bioaccessibility	in	some	soils	in	Chapter	3.	Concentrations	of	Fe	displayed	a	negative	trend	

with	As	bioaccessibility	up	to	about	16,000	mg	kg-1,	after	which	the	trend	becomes	positive.	

This	may	be	because	Fe	oxides	only	contribute	partially	to	As	bioaccessibility	(Palumbo-Roe	

and	Klinck,	2007;	Meunier	et	al.,	2010),	resulting	in	the	variability	observed	in	Figure	6.38.	

Generally,	Fe-oxides	are	not	as	soluble	as	other	soil	constituents	are,	because	they	are	less	

easily	extractable,	depending	on	their	crystallinity	(Palumbo-Roe	et	al.,	2015).	For	example,	

pseudo-total	Fe	content	will	include	both	crystalline	and	more	newly	formed	Fe	oxides.	Cave	

et	 al.	 (2013)	 observed,	 when	 predicting	 As	 bioaccessibility	 from	 soil	 properties,	 that	

crystalline	Fe	oxides	display	a	negative	trend	with	As	bioaccessibility,	and	less	crystalline	Fe	

oxides	display	a	positive	trend.	Therefore,	the	presence	of	both	crystalline	and	newly	formed	

Fe	oxides	may	result	in	the	negative	trend	at	lower	Fe	values	and	the	positive	trend	higher	

Fe	concentrations	seen	here.		

The	main	 predictors	 of	 As	 identified	 in	 Chapter	 3	 showed	 some	 differences	 to	 the	 data	

presented	here.	 For	example,	Mn-oxides	were	 shown	 to	be	hosts	of	As	 in	 the	eight	 soils	

samples	in	the	Tyne	catchment	in	Chapter	3,	but	Mn	was	not	an	important	predictor	of	the	

48	Tyne	catchment	flood	plain	soils	sampled	for	this	chapter.	This	may	be	because	the	Tyne	
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floodplains	soils	do	not	contain	 ISC	 identifiable	quantities	of	Mn	oxides	 in	all	 the	 soils,	as	

shown	in	Figure	6.30.	The	Tyne	catchment	floodplain	soils	analysed	in	this	chapter	are	much	

more	 similar	 in	 their	 characteristics	 than	 the	 eight	 soils	 used	 in	 Chapter	 3,	 which	 were	

purposefully	selected	to	be	different	form	each	other	with	regards	to	their	soil	characteristics	

and	components.		

Carbonates	 were	 also	 identified	 in	 Chapter	 3	 to	 be	 hosts	 of	 bioaccessible	 As	 and	 were	

deemed	as	 ‘unimportant’	 predictors	 for	bioaccessibility	 in	 the	Tyne	 catchment	 floodplain	

soils	here.	Carbonates	were	identified	as	an	ISC	in	these	soils,	and	therefore	it	is	assumed	

that	they	are	not	hosts	of	bioaccessible	As.	This	result	highlights	the	change	 in	predictors	

that	can	occur	at	differing	spatial	scales.		
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Figure	6.45:	Partial	dependence	plots	for	As	bioaccessibility.	Plots	are	ordered	by	importance.	Units	
are	mg	kg-1	for	all	elements	and	%	for	LOI.		

	

Cadmium	

Pelfrêne	 et	 al.,	 (2013)	 reported	 that	 the	 most	 influential	 factors	 for	 predicting	 Cd	

bioaccessibility	were	 carbonates,	 SOM,	 P,	 Fe-oxides,	 Al,	 Cd	 and	 Pb.	 This	 differs	 from	 the	

results	 here	 and	 highlights	 the	 importance	 of	 catchment	 specific	modelling,	 as	 no	 single	

model	will	be	able	to	predict	PHE	bioaccessibility	in	every	catchment.	Pseudo-total	Cd	and	

Zn	both	have	positive	partial	effects	on	Cd	bioaccessibility.	This	is	likely	because	Cd	and	Zn	

are	often	both	 associated	with	 similar	 soil	 constituents	 and	minerals;	 increases	of	 Cd	 are	

therefore	 likely	 to	 result	 in	 increases	 in	 the	 bioaccessible	 concentration	 of	 Cd	 as	 seen	 in	

Figure	6.46.	The	relationships	between	Cd	and	its	predictor	variables	were	all	positive.	Like	
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As,	there	are	positive	relationships	between	the	other	PHEs	of	interest	in	this	study,	as	well	

as	the	major	elements.	Ca	was	shown	to	be	an	important	predictor	(a	similar	finding	to	that	

of	 Pelfrêne	 et	 al.,	 (2013)).	 Manganese	 was	 shown	 to	 be	 a	 significant	 predictor	 of	 Cd	

bioaccessibility,	 similar	 to	 the	 results	 seen	 in	 Chapter	 3,	 where	manganese	 oxides	 were	

shown	to	be	hosts	of	bioaccessible	Cd	for	the	eight	selected	soils	studied.		

	

	

	

Figure	6.46:	Partial	dependence	plots	for	Cd	bioaccessibility.	Plots	are	ordered	by	importance.	Units	
are	mg	kg-1	for	all	elements	and	%	for	LOI.	

	

Copper		
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Positive	 relationships	 were	 observed	 for	 Cu	 and	 the	 remaining	 PHEs	 (Figure	 6.47).	 The	

positive	relationship	with	soil	organic	matter	(LOI)	suggests	that	Cu	bound	to	organic	matter	

contributes	to	Cu	bioaccessibility	(Figure	6.47).	This	result	is	contradictory	to	the	literature	

as	studies	have	reported	mobility	of	Cu	into	mobility	to	be	negatively	affected	by	soil	organic	

matter	 content	 (Pouschat	 and	 Zagury,	 2008;	 Cui	et	 al.,	 2016),	 and	 such	 relationships	 are	

mentioned	 in	 Chapter	 4.	 Other	 studies	 have	 reported	 that	 Cu	 bioaccessibility	 can	 be	

positively	 correlated	 with	 SOM	 in	 the	 gastrointestinal	 tract	 and	 a	 near	 neutral	 pH	

environment.	 This	 is	 because	 organic	 compounds	 in	 the	 gastrointestinal	 fluids	 such	 as	

pancreatin	and	pepsin	can	bind	with	Cu	at	near	neutral	pH	bringing	it	in	to	solution	(Cai	et	

al.,	2016).	However,	this	chapter	presents	data	from	the	gastric	extract,	which	uses	reagents	

with	a	pH	of	approximately	1.2.	Therefore,	 it	 is	hypothesised	that	some	desorption	of	Cu	

from	SOM	may	take	place	in	the	gastric	fluid.	Higher	concentrations	of	Cu	are	likely	to	be	

associated	 with	 soils	 with	 greater	 masses	 of	 SOM,	 therefore	 resulting	 in	 the	 positive	

relationship	observed	between	SOM	and	bioaccessible	Cu.		

A	negative	relationship	was	observed	with	Al	though,	suggesting	that	Cu	bound	to	Al-oxides	

does	not	contribute	to	Cu	bioaccessibility.	Similar	results	were	observed	in	chapter	3,	where	

Al	 bearing	 components	 did	 not	 contribute	 to	 Cu	 bioaccessibility.	 Chapter	 3	 results	 also	

showed	Mn-oxides	to	be	hosts	of	bioaccessible	Cu,	and	similar	conclusions	can	be	made	here	

from	a	positive	relationship	between	Mn	and	Cu.		
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Figure	6.47:	Partial	dependence	plots	for	Cu	bioaccessibility.	Plots	are	ordered	by	importance.	Units	
are	mg	kg-1	for	all	elements	and	%	for	LOI.	

	

Lead	

Figure	6.48	displays	the	partial	dependence	plots	for	Pb	bioaccessibility.	A	linear	increasing	

trend	was	observed	between	Pb	and	Pb	bioaccessibility	(Figure	6.40),	indicating	that	higher	

pseudo-total	Pb	concentrations	in	soil	may	contribute	to	higher	bioaccessible	concentrations	

of	Pb.	Similar	results	were	seen	by	Appleton	et	al.,	 (2012).	Positive	 linear	trends	with	the	

PHEs	Zn,	Cd	and	As	were	also	observed.	This	is	likely	to	be	a	result	of	the	association	of	these	

elements	in	mine	spoil	material.	A	negative	relationship	was	seen	with	K.	Potassium	is	known	

to	 be	 generally	 present	 in	 organic	 compounds	 within	 the	 soil,	 which	 could	 explain	 the	

negative	 trend	seen	as	PHEs	can	be	 immobilised	by	organic	material	and	 therefore	could	

reduce	bioaccessibility	of	Pb	(Tang	et	al.,	2008).		

The	 positive	 association	 with	 Mn	 (Figure	 6.48)	 suggests	 that	 Mn	 oxides	 are	 hosts	 of	

bioaccessible	Pb,	as	shown	 in	Chapter	3	and	 in	the	 literature	(e.g.	Courtin-Nomade	et	al.,	

2016;	 Rinklebe	 et	 al.,	 2016).	 A	 non-linear,	 parabolic	 trend	 was	 seen	 between	 Pb	

bioaccessibility	 and	 Ca,	 suggesting	 that	 lower	 concentrations	 of	 Ca	 result	 in	 a	 negative	

relationship	with	Pb	bioaccessibility	up	to	about	4,000	mg	kg-1	where	the	trend	relationship	

changes	to	a	positive	one.	This	could	be	an	effect	of	Ca	concentrations	on	the	pH	of	soil	as	

pH	is	known	to	be	an	important	factor	in	Pb	availability.	For	example,	Pelfrêne	et	al.,	(2013)	

reported	 higher	 Pb	 bioaccessibility	 in	 carbonate	 soils,	 suggesting	 that	 Pb	 bound	 to	

carbonates	was	released	in	the	acidic	environment	of	the	stomach.	Carbonates	were	shown	

to	contribute	 to	bioaccessibility	 in	 the	soils	 studied	 in	Chapter	3.	Both	P	and	V	showed	a	

negative	non-linear	trend	with	Pb	bioaccessibility.	The	formation	of	insoluble	lead	phosphate	

minerals	may	explain	the	negative	relationship	between	P	and	Pb,	suggesting	that	soils	in	the	
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Tyne	with	higher	P	content,	such	as	agricultural	fields,	have	reduced	Pb	bioaccessibility	(Ruby	

et	al.,	1999;	Pelfrêne	et	al.,	2013).		
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Figure	6.48:	Partial	dependence	plots	for	Pb	bioaccessibility.	Plots	are	ordered	by	importance.	Units	
are	mg	kg-1	for	all	elements	and	%	for	LOI.	

	

Zinc	

Positive	trends	were	observed	between	Zn	and	the	PHEs	under	 investigation	 in	this	study	

(Figure	 6.49),	 which	 was	 likely	 to	 be	 a	 result	 of	 soils	 with	 higher	 concentrations	 of	

bioaccessible	Zn	having	higher	concentrations	of	other	PHEs	in	general.	Calcium	content	was	

also	 shown	 to	 be	 potentially	 related	 to	 Zn	 concentrations	 (Figure	 6.49),	 suggesting	 that	

higher	Ca	concentrations	could	result	in	higher	bioaccessible	Zn.	Positive	relationships	were	

also	observed	with	Mn.	Mn	oxides	were	shown	to	contribute	to	the	bioaccessible	content	of	

Zn	(Chapter	3)	and	therefore	soils	 in	the	Tyne	with	higher	Mn	content	may	have	a	higher	

affinity	for	accessible	Zn	(Brümmer	et	al.,	1983).	
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Figure	6.49:	Partial	dependence	plots	for	Zn	bioaccessibility.	Plots	are	ordered	by	importance.	Units	
are	mg	kg-1	for	all	elements	and	%	for	LOI.	
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Broad	comparisons	can	be	made	to	the	clusters	identified	in	Chapter	3,	which	showed	the	

bioaccessible	hosts	of	the	PHEs	studied	in	this	work.	Chapter	3	and	this	chapter	used	different	

techniques	to	determine	the	potential	relationships	between	the	solid	phases	of	soils	and	

PHE	bioaccessibility.	This	was	done	because	the	determination	of	ISCs	was	much	less	time	

consuming	on	 the	Tyne	 floodplain	soil	 sample	size	 (n	=	48).	Only	eight	soils	were	used	 in	

Chapters	3,	4	and	5,	so	it	was	possible	to	conduct	the	CISED	method	on	the	smaller	sample	

size.		

Similarities	were	observed	between	 the	components	 that	contribute	 to	bioaccessibility	 in	

Chapter	3	and	the	relationships	between	PHEs	and	major	elements	in	this	chapter,	showing	

the	potential	of	both	methods	for	identifying	soil	characteristics	that	are	influential	on	PHE	

bioaccessibility.	However,	the	differences	between	the	ISCs	in	this	chapter	and	the	clusters	

in	Chapter	3	are	likely	to	be	a	result	of	the	spatial	scales	over	which	the	samples	for	each	

chapter	were	collected.	For	example,	the	soils	in	Chapter	3	were	not	linked	spatially	(Figure	

2.6)	and	were	purposefully	selected	to	be	different	 from	each	other	 in	terms	of	 their	soil	

characteristics	and	solid	phase	components.	Therefore,	they	do	not	always	match	with	the	

ISCs	generated	from	the	48	samples	used	 in	this	chapter.	The	soil	samples	 in	this	chapter	

were	collected	from	the	Tyne	catchment	floodplains	in	the	upper	and	mid	catchment	(Figure	

2.7)	and	are	more	likely	to	have	similar	characteristics	than	with	the	soils	in	Chapter	3.	The	

differences	in	the	components	that	contribute	to	bioaccessibility	are	to	be	expected	between	

the	 soils	 analysed	 in	 the	 two	 chapters.	 However,	 both	 ISCs	 and	 clustering	 are	 useful	 for	

examining	 the	 underlying	 contributors	 towards	 PHE	 bioaccessibility,	 and	 both	 have	 their	

advantages.		

The	components	identified	by	the	CISED	method	are	derived	from	ISCs	and	provide	a	more	

detailed	 snapshot	 of	 the	 solid	 phase	 distribution	 of	 PHEs.	 For	 example,	 several	 Fe-oxide	

components	 come	 from	one	Fe	dominated	 ISC.	The	 ISCs	generated	 in	 this	 chapter	give	a	

broader	look	at	the	distribution	of	PHEs	using	a	less	time-consuming	digestion	process	than	

the	CISED	extraction	method.	Consequently,	the	results	in	this	thesis	support	the	use	of	ISCs	

to	predict	PHE	bioaccessibility	on	a	catchment	scale	dataset	to	geochemically	characterise	

the	soils	in	more	detail	than	just	the	pseudo-total	element	content.	This	has	been	shown	to	

identify	 the	main	 influential	components	of	PHEs	 through	machine	 learning	methods	and	

successfully	predict	bioaccessibility	in	floodplain	soils,	providing	a	better	estimation	of	the	

risk	of	PHE	exposure	to	humans.	The	CISED	method	is	useful	for	looking	at	soils	of	interest	in	

more	detail.	For	example,	any	particular	areas	in	a	catchment	that	may	have	elevated	levels	
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of	 bioaccessible	 PHEs.	 The	CISED	method	may	provide	more	detailed	 information	on	 the	

geochemical	characterisation	of	these	soils	that	can	be	used	to	unpick	why	bioaccessibility	

concentrations	are	elevated.		

6.3.9	Predicting	flooding	induced	change	in	PHE	bioaccessibility		

A	combination	of	RF	 and	 linear	 regression	models	were	used	 to	determine	 the	predictor	

variables	needed	for	the	prediction	of	flooding	induced	change	in	bioaccessibility.	Lead	was	

used	as	a	model	PHE	as	Pb	is	known	to	be	a	pollutant	of	interest	in	the	Tyne	catchment	and	

bioaccessible	 Pb	 concentrations	 did	 exceed	 parkland	 S4UL	 values	 in	 certain	 locations.	

Significant	predictors	(p	<	0.01,	R2	=	0.65)	were	Si,	Li	and	P.	Their	partial	effects	are	shown	in	

Figure	6.50.	

Both	 Si	 and	 Li	 are	 suggested	 to	 positively	 influence	 flooding	 induced	 change	 in	 Pb	

bioaccessibility,	indicating	that	areas	with	a	higher	Si	and	Li	content	will	experience	greater	

change	 in	 Pb	 bioaccessibility	 (Figure	 6.50).	 Phosphorus	 displayed	 a	 negative	 linear	

relationship	with	Pb	bioaccessibility	 change,	 suggesting	higher	 concentrations	of	P	 retard	

change	in	Pb	bioaccessibility.	This	result	agrees	with	the	literature	as	phosphates	have	been	

shown	 to	 reduce	 Pb	 bioaccessibility	 through	 the	 formation	 of	 insoluble	 lead	 phosphates	

(Ruby	et	al.,	2004;	Hettiarachchi	and	Pierzynski,	2002).	Therefore,	it	is	plausible	to	assume	

that	the	higher	mass	of	lead	phosphates	in	soil,	the	smaller	the	change	in	Pb	bioaccessibility	

as	a	result	of	flooding.		
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Figure	6.50:	Partial	dependence	plots	for	the	three	predictor	variables.	Partial	dependence	plots	can	
show	whether	the	effect	of	a	predictor	to	a	response	variable	is	linear	or	not,	when	all	other	predictor	
variables	are	held	constant	around	their	mean.	The	grey	shaded	areas	represent	the	95	%	confidence	
intervals.		

	

The	NSI	dataset	was	used	as	a	different	set	of	input	variables	for	the	RF	models	to	be	able	to	

predict	bioaccessibility	at	a	larger	and	finer	scale	than	the	IDW	tool	utilised	in	Section	6.3.3,	

as	there	were	more	sample	points	(n=103)	The	relationship	between	the	data	from	the	48	

soils	sample	in	this	study	and	the	NSI	dataset	was	shown	to	be	poor	(section	6.3.2).	However,	

the	NSI	dataset	was	used	to	provide	a	proof	of	concept	for	the	ability	of	RF	models	to	predict	

bioaccessibility	 and	 consequent	 flooding	 induced	 change	 at	 a	 catchment	 scale.	 The	 NSI	

dataset	is	an	interpolated	dataset	and	therefore	there	is	likely	to	be	uncertainty	associated	

with	 these	 data.	 Information	 on	 these	 errors	 were	 not	 accessible	 and	 therefore	

consideration	of	uncertainty	has	not	been	incorporated	into	the	prediction	of	bioaccessibility	

using	RF	models.	

Li	is	not	included	in	the	NSI	dataset.	To	overcome	this	issue,	Li	data	were	interpolated	from	

the	48	samples	collected	within	the	Tyne	catchment.	This	was	done	because	Li	is	a	predictor	

variable	for	determining	flooding	 induced	change	 in	Pb	bioaccessibility	and	was	therefore	

needed	as	a	model	input.		
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Figure	6.51:	Map	of	the	Tyne	catchment	showing	the	modelled	percentage	change	in	bioaccessibility	
after	flooding.		

	

Figure	6.51	shows	that	the	majority	of	historic	flood	areas	within	the	Tyne	catchment	showed	

an	increase	of	bioaccessibility	of	between	44	%	and	52	%.	A	few	areas	around	the	towns	of	

Hexham	and	Haltwhistle	predicted	lower	increases	in	bioaccessibility,	ranging	from	32	%	to	

44	%.	 Lead	 concentrations	 around	Haltwhistle	 and	Hexham	 range	 from	79	 to	 547	mg/kg	

(Figure	6.16).	GACs	for	Pb	vary	from	84	mg	kg-1	for	allotments	to	330	mg	kg-1	for	residential	

areas	with	no	home	grown	produce.	The	predicted	change	in	bioaccessibility	results	in	soil	

lead	 concentrations	 around	 the	 towns	 of	 Hexham	 and	 Haltwhistle	 potentially	 exceeding	

these	 GACs;	 increasing	 the	 risk	 of	 PHE	 exposure	 to	 humans	 utilising	 these	 areas.	 The	

percentage	change	seen	in	the	lower	agricultural	areas	of	the	catchment	are	also	likely	to	

exceed	the	more	conservative	GACs	for	Pb.	Even	though	this	work	did	not	assess	changes	in	

the	phytoavailability	of	PHEs,	it	can	be	hypothesised	that	plant	uptake	would	likely	increase	

after	flooding	events.	This	is	supported	by	the	evidence	in	Chapter	5,	where	Pb	was	shown	

to	re-associate	with	more	labile	components	of	some	soils	within	the	Tyne	catchment.		

6.3.10	Implications	for	Risk	Assessment	

The	use	of	random	forest	models	for	the	spatial	prediction	of	PHE	bioaccessibility	over	large	

geographic	areas,	such	as	at	a	catchment	scale,	has	been	shown.	Predicting	bioaccessibility	
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spatially	using	modelling	approaches	such	as	those	outlined	here	is	advantageous	because	it	

reduces	 the	need	 for	 costly	 and	 time-consuming	bioaccessibility	extraction	 tests	on	 large	

datasets,	allowing	for	an	estimation	of	PHE	exposure	over	large	spatial	areas.	Spatial	datasets	

are	also	becoming	more	common,	such	as	those	by	the	BGS	Geochemical	Baseline	Survey	of	

the	England	(GBASE)	and	the	UK	Soil	and	Herbage	Survey	(UKSHS).	The	ability	to	predict	and	

therefore	 use	 bioaccessibility	 data	 in	 risk	 assessment	 is	 likely	 to	 result	 in	 less	 costly	

remediation,	compared	with	basing	such	assessments	on	pseudo-total	data.	For	example,	

over	conservative	risk	assessments	in	England	have	been	suggested	to	have	cost	£200	million	

(DEFRA,	2012).		

The	spatial	prediction	of	bioaccessibility	can	use	pseudo-total	element	concentrations	that	

are	 commonly	 used	 in	 human	 health	 risk	 assessment	 and	 provide	 a	 more	 realistic	 and	

potentially	 less	 conservative	estimation	of	potential	 risk	of	PHE	exposure	 to	humans.	 For	

example,	 the	 ability	 to	 determine	 the	 soils	 within	 a	 catchment	 with	 the	 greatest	 risk	 of	

mobilisation	 can	 allow	 for	 targeted	 remediation	 strategies	 or	 highlight	 areas	 that	 need	

further	 investigation,	 such	 as	 geochemical	 characterisation.	 Additionally,	 the	 spatial	

prediction	of	flooding	induced	change	in	bioaccessibility	may	be	used	to	highlight	suitable	

areas	within	a	catchment	that	require	flood	alleviation	measures.	For	example,	areas	with	a	

lower	risk	of	PHE	mobility	may	be	more	suitable	for	natural	flood	water	retention	methods.	

Sensitive	areas	within	a	catchment	may	benefit	from	flood	alleviation	measures	to	reduce	

the	risk	of	flooding	and	potential	PHE	mobilisation.	However,	it	is	suggested	that	the	spatial	

prediction	 of	 flooding	 induced	 change	 in	 bioaccessibility	 should	 be	 used	 to	 compliment	

existing	datasets	such	as	land	use,	topography	and	flood	modelling	outputs.		

Catchment	 soils	 that	 are	 under	 agriculture	 are	 particularly	 susceptible	 to	 anthropogenic	

pressures	 though	 food	production,	 recreation	and	redevelopment	 for	housing.	Therefore,	

the	 ability	 to	 model	 bioaccessibility	 and	 flooding	 induced	 change	 in	 bioaccessibility	 is	

important	for	human	health	risk	assessment	purposes	for	sites	undergoing	a	change	in	land	

use.	Additionally,	changes	in	land	use	can	alter	the	physico-chemical	properties	of	soil	and	

therefore	potentially	change	PHE	bioaccessibility.		

It	 should	be	noted	 that	 such	models	are	catchment	 specific	and	 therefore	 random	forest	

models	need	to	be	trained	on	individual	catchment	data	sets;	a	finding	also	reported	by	Zhu	

et	al.	(2016).		
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6.4	Conclusions		

The	 combination	 of	 the	 modelling	 approaches	 utilised	 within	 this	 chapter,	 and	 regional	

spatial	data	 sets	on	soil	elements	 to	characterise	 the	behaviour	and	mobility	potential	of	

PHEs	 in	 floodplain	 soils	 at	 a	 catchment	 level	 has	 been	 demonstrated.	 For	 example,	 the	

modelling	of	ISCs	can	determine	the	geochemical	sources	of	PHEs	and	such	information	is	

useful	 for	 understanding	 the	 drivers	 of	 PHE	mobility	 and	 availability,	 as	 demonstrated	 in	

Chapters	3	and	4.		

Inundation	 of	 the	 Tyne	 catchment	 floodplain	 soils	 displayed	 low	 mobility	 into	 overlying	

waters	 (<2	%),	 however,	 it	was	determined	 that	 continuous	 inputs	 from	elevated	diffuse	

sources	of	PHE	could	lead	to	poor	water	quality	status.	The	predicted	frequency	and	size	of	

flooding	 events	 in	 the	UK	 suggest	 that	 the	 Tyne	 catchment	will	 see	 an	 increased	 stream	

loading	of	PHEs	 (particularly	Pb	and	Zn).	Bioaccessibility	 increased	after	 inundation	 for	all	

PHEs	in	most	of	the	soils,	again	suggesting	that	the	predicted	increase	in	flood	events	may	

result	 in	greater	PHE	exposure	from	soils	to	humans	in	the	Tyne	catchment.	These	results	

were	further	corroborated	by	the	production	of	a	map	(Figure	6.51)	showing	the	predicted	

flooding	 induced	change	 in	Pb	bioaccessibility	 in	the	Tyne	catchment.	This	 illustrated	that	

inundation	of	soils	was	likely	to	increase	Pb	bioaccessibility	in	soils	by	approximately	30	%	to	

50	%.	The	 implications	 for	 this	are	that	bioaccessible	Pb	values	may	be	raised	above	GAC	

values	after	periods	of	 inundation.	Pb	values	 that	are	above	GAC	values	may	 result	 in	an	

increased	risk	of	adverse	health	effects	from	Pb	exposure	in	the	Tyne	catchment.		

The	partial	dependence	plots	from	the	random	forest	models	for	each	PHE	showed	different	

sets	of	predictor	variables,	emphasising	the	need	to	build	independent	PHE	and	catchment	

specific	models.	The	fact	that	other	PHEs	are	significant	predictors	suggests	that	there	may	

be	potential	interaction	effects	occurring.	For	example,	the	increase	of	one	PHE	may	result	

in	 the	 consequent	 increase	 in	 the	 bioaccessibility	 of	 another,	 through	 competition	 for	

binding	 sites	 and	 studies	 have	 shown	 that	 Pb	 can	 be	 preferentially	 absorbed	 over	 Cd,	

increasing	Cd	solubility	(Xia	et	al.,	2017).	Lead	concentrations	were	shown	to	be	positively	

related	 with	 Cd	 bioaccessible	 concentration;	 therefore,	 a	 possible	 interaction	 may	 be	

present.	There	 is	currently	a	knowledge	gap	 in	the	 literature	regarding	 interaction	effects	

between	PHEs	and	how	this	can	affect	their	overall	bioaccessibility	and	toxicity	to	humans.	

The	work	in	this	chapter	emphasises	the	need	for	further	research	into	this	area.		
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7.	CONCLUSIONS	
	

This	project	aimed	to	gain	an	understanding	of	the	fate	and	behaviour	of	PHEs	in	a	selection	

of	soils	from	the	Tyne	catchment	in	North	East	England	during	wetting	and	drying	events.	

The	work	is	driven	by	the	need	for	a	better	understanding	of	the	influences	of	flooding	on	

PHE	 behaviour,	 stemming	 from	 an	 increasing	 reliance	 by	 humans	 on	 floodplains	 and	 a	

predicted	increase	in	the	frequency	and	magnitude	of	flood	events	in	the	UK.	Floodplain	soils	

and	sediments	are	known	to	be	potential	sinks	and	sources	of	PHEs	(Macklin	et	al.,	1997;	

Overesch	 et	 al.,2007;	 Schulz-Zunkel,	 2009),	 therefore	 any	 changes	 in	 the	 availability	 and	

mobility	 of	 PHEs	 in	 these	 soils	 could	 result	 in	 new	 exposure	 pathways	 to	 human	 and	

ecological	receptors.	The	research	here	is	specific	to	the	soils	of	the	Tyne	catchment	and	has	

shown	that:		

• Flooding	 can	 mobilise	 PHEs	 (As,	 Cd,	 Cu,	 Pb	 and	 Zn)	 into	 overlying	 water	 and	

porewaters,	even	over	short-term	events		

• Bioaccessibility	of	PHEs	increases	for	some	PHEs	post	flooding	

• Wetting	and	drying	events	can	change	the	solid	phase	distribution	of	PHEs	

• It	is	possible	to	predict	and	consequently	map	PHEs	and	flooding	induced	change	in	

PHE	bioaccessibility	in	soils	at	a	catchment	scale	

The	following	sections	outline	these	findings	in	more	detail.	

7.1	Flooding	induced	mobility	of	PHEs	

Flooding	has	been	shown	to	result	in	the	mobilisation	of	the	PHEs	investigated	in	this	work	

to	 porewaters	 and	 overlying	 waters.	 Redox	 potential	 was	 shown	 to	 mainly	 follow	 the	

patterns	of	wetting	and	drying	for	the	Tyne	catchment	soils:	declining	during	wetting	and	

increasing	during	drying.	Flooding	was	shown	to	have	little	influence	on	the	redox	potential	

of	mine	 spoil	material.	 The	patterns	of	porewater	mobilisation	varied	between	PHEs	and	

soils,	however	some	general	patterns	and	trends	can	be	outlined.	Arsenic	tended	to	follow	

the	trend	of	redox	potential,	increasing	in	porewaters	during	declines	in	redox	potential	and	

decreasing	 in	 porewater	 during	 increasing	 redox	 potential.	 Copper	 generally	 showed	 the	

opposite	 pattern	 to	 As,	 decreasing	 during	 inundation	 and	 increasing	 post	 flooding.	 Zinc	

patterns	were	varied	and	inconsistent	between	soils.		

7.2	Flooding	induced	change	in	PHE	bioaccessibility	
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Flooding	was	shown	to	have	the	potential	to	increase	PHE	exposure	to	humans,	but	the	risk	

from	increased	PHE	exposure	from	the	PHEs	in	this	study	is	deemed	to	be	low	for	the	majority	

of	soils.	However,	GACs	were	exceeded	for	bioaccessible	concentrations	of	As	for	soil	1	and	

Pb	by	soils	2,	6,	7	and	8.	Therefore,	 these	soils	present	a	greater	 risk	of	 increases	of	PHE	

exposure	to	humans.		

7.3	Flooding	induced	change	in	the	solid	phase	distribution	of	PHEs	

The	 results	of	 this	 study	 suggest	 redox	 induced	 change	occurs	during	wetting	 and	drying	

events,	even	during	short	term	wetting	and	drying	events	such	as	those	in	this	study.	Broad	

scale	 changes	 in	 the	 solid	 phase	 distribution	 of	 PHEs	 varied	 between	 soils.	 For	 arsenic,	

generally	 the	 greatest	 change	 was	 observed	 in	 the	 iron	 oxide	 components.	 Other	 PHEs	

exhibited	redistribution	between	soil	components,	often	to	those	that	were	more	labile.	A	

re-association	of	PHEs	with	more	labile	soil	components	can	result	in	increased	availability	

to	human,	wildlife	or	plant	receptors	and	an	greater	mobilisation	potential.	The	main	findings	

of	Chapters	3,	4	and	5	are	summarised	below	in	Table	7.1.		

Table	7.1	Summary	of	the	behaviour	of	PHEs	in	the	eight	soils	used	in	chapters	3,	4	and	5.	

PHE	
Associated	

with:	
Main	drivers	of	
mobilisation:		

Flooding	induced	change	
in	the	bioaccessibility	of	

PHEs	

Flooding	induced	change	
in	solid	phase	

distribution	of	PHEs	

As	 Al-Fe	oxides.	 Reductive	dissolution	
of	Fe(III)(hydr)oxides.	

Generally	increased	during	
flooding.	Sulphide	rich	

mining	material	displayed	
bioaccessibility	increases	

during	drying.	

Possible	redistribution	to	
more	labile	components.	
E.g.	From	Fe	to	Al-Fe	

components.	

Cd	
Zn	bearing	
minerals.	 Not	recorded.	 Not	recorded.	

Possible	redistribution	to	
more	labile	components.	
E.g.	porewater/organics	

components	and	
carbonates.	

Cu	

Organics,	
exchangeable,	
Al-Fe	oxides,	Pb	
and	Zn	minerals.	

Oxidation	of	Cu	
sulphide	complexes	
and	SOM	complexes	
during	soil	drying.	

Reductions	in	
bioaccessibility	for	the	

majority	of	soils,	except	for	
5	and	6.	Cu	inaccessible	in	
soil	8.	Increases	observed	

during	soil	drying	

Increase	with	the	organic	
component	for	soils	with	
higher	SOM	(3	and	6).	
Increases	with	less	

reactive	components.	
E.g.	Fe	during	flooding.	
Little	change	in	solid	
phases	of	Cu	for	soil	8.		

Pb	

Pb	bearing	
minerals,	Mn	
oxides,	Al-Fe	

oxides.	

Not	recorded.	

Generally	increased	during	
flooding	for	soils	1	to	6.	
Sulphide	rich	mining	
material	displayed	

bioaccessibility	increases	
during	drying.	

Possible	redistribution	to	
more	labile	components.	
E.g.	From	Fe	Al-Fe	to	Pb-

Zn	components.	

Zn	
Zn	and	Pb	
bearing	
minerals.	

Variable	but	likely	to	
include	the	reductive	
dissolution	of	Mn,	Al	

and	Fe	oxides.	

Generally	increased	during	
flooding	for	all	soils.	

Increases	in	Zn	
associated	with	the	Ca	

component.	
Disassociation	and	re	
association	between	Zn	
and	Pb-Zn	components		
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7.4	Spatial	predictions	of	PHE	bioaccessibility	and	flooding	induced	change	in	

bioaccessibility		

PHEs	were	shown	to	be	distributed	between	all	ISCs,	especially	the	Fe	oxide,	carbonate	and	

lead	and	zinc	bearing	ISCs.	Spatial	modelling	of	bioaccessibility	showed	broad	spatial	patterns	

between	 the	 PHEs	 and	 the	 effect	 of	 sediment	 dilution	 below	 the	 North	 and	 South	 Tyne	

confluence,	resulting	in	an	area	of	lower	PHE	bioaccessibility.	Broad	spatial	patterns	of	PHE	

bioaccessibility	 showed	 higher	 bioaccessible	 concentrations	 in	 the	 upper	 reaches	 of	 the	

South	Tyne,	and	lower	concentrations	in	the	lower	reaches,	with	various	local	hotspots	 in	

between.	Mobilisation	into	overlying	waters	was	generally	low	for	the	soils,	and	As	and	Cu	

had	 a	 positive	 relationship	with	 bioaccessibility,	 suggesting	 that	more	 bioaccessible	 soils	

have	greater	As	and	Cu	mobility.		

Random	forest	models	were	constructed	to	predict	PHE	bioaccessibility	from	pseudo-total	

element	concentrations	and	ISCs.	The	pseudo-total	metals	were	shown	to	produce	a	better	

performing	model	for	predicting	PHE	bioaccessibility	in	the	Tyne	catchment	floodplain	soils	

than	ISCs,	although	this	outcome	may	change	using	a	dataset	from	a	different	catchment.	A	

similar	 approach	 was	 used	 by	 Wragg	 et	 al.,	 (2018)	 using	 ISCs	 as	 predictors	 for	 As	

bioaccessibility	as	opposed	to	pseudo-total	element	concentrations.	 It	would	be	expected	

that	the	outcomes	from	model	using	ISCs	and	pseudo-total	concentrations	would	be	similar,	

as	 ISCS	 are	 modelled	 from	 pseudo-total	 concentrations.	 Therefore,	 it	 is	 suggested	 that	

models	are	built	using	both	ISCs	and	pseudo-total	concentrations,	and	the	better	performing	

model	selected	for	the	work	required.		

This	work	has	 shown	 that	using	a	 selection	of	geochemical	 characterisation	 tools	 such	as	

bioaccessibility	testing,	the	CISED	methodology	and	the	determination	of	ISCs	can	provide	

enough	 data	 to	 help	 understand	 the	 drivers	 of	 flooding	 induced	 change	 in	mobility	 and	

bioaccessibility	of	PHEs,	as	well	as	being	able	to	map	these	changes.	Whilst	verification	of	

the	final	models	was	not	possible	because	of	time	constraints,	the	methods	employed	here	

demonstrate	the	ability	of	random	forest	and	multiple	linear	regression	models	to	spatially	

predict	bioaccessibility	and	subsequent	flooding	induced	change	in	PHE	bioaccessibility	at	a	

catchment	scale.		

With	 additional	 time,	 validation	 of	 the	 final	model	may	 be	 conducted	 using	 soil	 samples	

collected	from	neighbouring	catchments	of	similar	soil	types	and	underlying	geologies.	The	



	 	 	
	

	
197	

model	 outline	 in	 Chapter	 6	 could	 be	 used	 to	 determine	 the	 areas	 within	 the	 second	

catchment	that	undergo	the	greatest	change	in	flooding	induced	change	in	bioaccessibility.	

The	 required	 spatial	 elemental	 data	 would	 either	 need	 to	 be	 acquired	 through	 spatial	

sampling	and	physicochemical	characterisation	or	by	using	a	pre-existing	dataset	such	as	the	

NSI	 spatial	 datasets.	 Once	 the	 most	 vulnerable	 areas	 within	 the	 catchment	 had	 been	

highlighted	by	the	model,	repetition	of	the	inundation	and	bioaccessibility	work	in	Chapter	

6	may	be	used	to	verify	the	model	output.			

7.5	Limitations	of	this	work	

The	main	limitations	of	this	study	are	that	the	predictions	made	are	based	on	soils	within	the	

Tyne	 catchment	 and	 cannot	 be	 extrapolated	 to	 other	 soils	 or	 geographical	 areas.	 This	 is	

because	the	models	used	in	Chapter	6	of	this	work	were	built	on	the	properties	of	the	soils	

within	the	Tyne	catchment.	Other	soils	may	result	in	different	model	outcomes,	for	example,	

studies	on	different	soils	by	Pelfrêne	et	al.,	(2013)	and	Wragg	et	al.,	(2018)	reported	different	

significant	predictor	variables	than	those	in	this	thesis.	Additionally,	different	datasets	may	

not	meet	 the	assumptions	of	all	 the	models	used	within	this	work.	For	example,	multiple	

linear	 regression	 requires	 that	 the	 response	 variable	 has	 a	 linear	 relationship	 with	 the	

predictor	variables.		

Secondly,	the	ability	of	the	CISED	method	to	detect	redox	induced	changes	in	the	solid	phase	

distribution	of	PHEs	can	only	really	be	used	to	determine	overall	patterns,	rather	than	actual	

values.	 This	 is	 because	 of	 the	 propagation	 of	 error	 throughout	 the	 sequential	 extraction	

procedure	and	subsequent	chemometric	modelling.		

Interaction	effects	between	the	differing	PHEs	were	not	accounted	for	in	this	study,	as	this	

was	 outside	 of	 the	 scope	 of	 work	 undertaken.	 However,	 interaction	 effects	 can	 occur	

through	competition	for	binding	sites,	so	the	presence	of	one	PHE	may	affect	the	availability	

and	mobility	of	another.	Interaction	effects	were	suggested	in	this	thesis	(Section	6.3.8.2).		

Finally,	the	models	and	methods	used	to	spatially	predict	the	bioaccessibility	and	flooding	

induced	change	in	PHE	bioaccessibility	are	in	need	of	verification	and	application	to	other	

catchments	 to	 further	 test	 their	 suitability,	 as	 suggested	 in	 section	 7.4.	 This	 work	

demonstrates	the	first	steps	in	using	such	methods	to	build	tools	and	models	that	may	be	of	

benefit	to	risk	assessment	processes	in	the	future,	especially	in	light	of	recent	climate	change	

predictions	that	forecast	a	greater	change	of	flood	events.		
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7.6	Future	recommendations		

There	is	scope	for	further	research	into	the	fate	and	behaviour	of	PHEs	during	wetting	and	

drying	events.	The	main	recommendations	arising	from	this	work	are	to:		

• Better	understand	redox	induced	change	in	PHE	behaviour	through	the	investigation	

of	changes	in	PHE	speciation.	This	will	allow	for	a	more	detailed	understanding	of	

the	change	of	PHE	toxicity	to	receptors.	

• Apply	this	work	to	different	PHEs	e.g	other	metals	or	organic	contaminants	such	as	

polychlorinated	biphenyls	(PCBs)	or	polyaromatic	hydrocarbons	(PAHs).	

• Conduct	similar	experiments	on	soils	of	differing	characteristics	and	land	uses	to	gain	

a	broader	understanding	of	the	effect	of	these	parameters	on	PHE	behaviour	during	

wetting	and	drying	events.	

• Undertake	field	experiments	to	upscale	the	results	from	laboratory	scale	studies	to	

those	of	the	field.	

• Investigate	 the	 effects	 of	 interaction	 effects	 between	 PHEs	 on	 mobility	 and	

bioaccessibility	 as	 evidence	 has	 been	 shown	 in	 this	 work	 to	 suggest	 possible	

interaction	effects	between	PHEs	on	their	bioaccessibility.		

• Validation	of	the	final	models	of	this	thesis	using	neighbouring	catchments	with	a	

similar	underlying	geology	and	soil	type,	as	outlined	in	section	7.4	
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APPENDICES	

Appendix	1	

Outputs	from	the	SMMR	for	the	eight	soils	in	Chapter	3	
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Appendix	2	

Lattice	plots	showing	the	changes	in	CISED	extraction	profiles	over	wetting	and	drying	
events.		

	

Figure	A2.1	Soil	2	

	

Figure	A2.2:	Soil	3	
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Figure	A2.3:	Soil	4	

	

Figure	A2.4:	Soil	5	
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Figure	A2.5:	Soil	6	

	

Figure	A2.6:	Soil	7	
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Figure	A2.7:	Soil	8	

Table	A2.1	Element	concentrations	of	Tyne	river	water		

Analyte	 Concentration	(µg	L-1)	
Al	 103	
As	 0.50	
Ca	 28000	
Cd	 0.14	
Cu	 0.95	
Fe	 1.02	
Mn	 1.03	
Pb	 7.00	
Zn	 1.10	
DOC	 10100	
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Table	A2.2	Pseudototal	concentrations	of	major	and	trace	elements	for	the	48	Tyne	catchment	soils		

Al	 As	 Ca	 Cd	 Co	 Cr	 Cu	 Fe	 K	 Li	 Mn	 Na	 Ni	 P	 Pb	 S	 Si	 V	 Zn	

7494	 3.56	 6159	 1.84	 3.43	 14.09	 20.00	 9521	 825	 82.0	 360	 67.4	 1.98	 1270	 249	 963	 0.09	 18.1	 277	
6485	 6.06	 1941	 2.82	 8.94	 15.39	 15.69	 23234	 430	 165	 1237	 73.1	 3.54	 766	 259	 434	 0.61	 20.0	 218	
8390	 12.8	 9321	 7.11	 9.98	 13.84	 34.01	 20216	 1297	 158	 1111	 85.0	 5.34	 668	 1369	 861	 5.12	 21.5	 1711	
7328	 9.97	 6837	 6.69	 8.20	 12.13	 27.42	 17452	 688	 131	 939	 60.4	 5.53	 638	 888	 715	 4.40	 16.9	 1404	
6010	 8.08	 8346	 4.94	 8.69	 10.32	 30.31	 17350	 828	 130	 895	 76.4	 6.35	 254	 749	 667	 3.97	 11.9	 1214	
9443	 8.54	 4491	 2.31	 10.4	 18.51	 38.79	 20385	 663	 164	 1070	 89.1	 6.79	 1084	 102	 762	 0.16	 30.0	 144	
7819	 13.8	 9414	 13.1	 9.85	 12.40	 53.61	 19571	 1225	 150	 1213	 59.8	 5.95	 332	 1547	 1133	 8.81	 14.8	 3558	
8442	 7.04	 10595	 5.31	 9.05	 14.12	 30.17	 18791	 1083	 146	 861	 74.7	 5.77	 524	 768	 873	 7.07	 19.8	 1261	

11130	 6.76	 4106	 2.59	 7.86	 19.84	 34.51	 20182	 640	 156	 387	 67.9	 4.84	 669	 205	 589	 0.88	 32.5	 221	
8121	 5.35	 5325	 3.03	 7.12	 13.76	 27.41	 12031	 663	 104	 362	 79.9	 8.22	 368	 446	 580	 1.02	 19.0	 656	
5348	 5.36	 6950	 3.72	 7.72	 9.59	 16.35	 17011	 661	 127	 693	 57.9	 4.72	 254	 440	 722	 5.41	 11.7	 785	
4179	 3.24	 7292	 2.57	 7.21	 9.04	 15.25	 14386	 561	 105	 507	 82.3	 5.03	 270	 231	 1290	 1.11	 10.2	 427	
6613	 6.00	 7952	 4.74	 9.47	 11.58	 22.05	 16931	 860	 134	 906	 69.1	 6.71	 389	 565	 998	 3.61	 13.6	 1020	
6305	 4.53	 6084	 4.09	 8.16	 11.24	 20.03	 16326	 849	 121	 697	 63.7	 5.83	 394	 634	 631	 3.03	 13.9	 810	
6890	 4.81	 4115	 1.88	 7.79	 12.59	 28.58	 14964	 533	 110	 552	 125	 4.75	 569	 129	 572	 0.10	 19.7	 124	
7087	 5.20	 6211	 4.68	 10.4	 13.37	 20.68	 18554	 852	 141	 917	 50.7	 8.02	 389	 488	 853	 2.25	 15.5	 908	
3771	 2.66	 4267	 2.16	 5.79	 8.35	 13.5	 12986	 464	 88.4	 519	 66.3	 4.39	 309	 176	 510	 0.36	 9.75	 306	
2061	 2.79	 2666	 2.00	 5.33	 5.96	 11.08	 2629	 178	 29.4	 620	 46.2	 4.00	 40.1	 1986	 508	 58.2	 1.82	 563	
3601	 2.78	 8932	 23.4	 14.2	 4.50	 37.8	 2368	 264	 38.6	 1756	 66.7	 18.1	 9.57	 1956	 987	 34.7	 2.18	 7281	
3821	 3.01	 2268	 2.87	 6.67	 5.94	 13.31	 3210	 345	 43.7	 704	 89.9	 9.64	 84.4	 1003	 323	 105	 2.55	 718	
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3940	 2.83	 6198	 2.76	 7.21	 4.58	 11.2	 2594	 298	 37.0	 770	 59.1	 10.6	 26.3	 511	 454	 92.7	 2.45	 980	
3620	 0.60	 2575	 0.87	 0.25	 6.10	 6.4	 2776	 313	 31.7	 553	 56.5	 5.65	 79.4	 104	 282	 134	 2.77	 159	
3855	 3.01	 2505	 1.02	 6.02	 8.09	 12.4	 2549	 371	 32.3	 736	 72.3	 8.19	 53.9	 167	 426	 79.3	 3.12	 280	
3609	 2.53	 4399	 0.58	 6.14	 5.32	 11.2	 2482	 432	 37.1	 555	 62.2	 8.10	 88.4	 85.4	 310	 60.0	 3.41	 64.2	

	

	


