
T H E F I G H T A G A I N S T A N T I M I C R O B I A L

R E S I S TA N C E : O P T I M I S I N G A N T I B I O T I C

U S A G E T O T R E AT B A C T E R I A L I N F E C T I O N S

iona k. paterson

Doctor of Philosophy

Division of Computing Science and Mathematics

University of Stirling

July 2019

[ 12th November 2019 at 15:10 ]



D E C L A R AT I O N

I hereby declare that this dissertation is the result of my own work and

includes nothing which is the outcome of work done in collaboration except

where specifically indicated in the text and bibliography.

I also declare that this dissertation (or any significant part of my dissertation)

is not substantially the same as any that I have submitted, or that is being

concurrently submitted, for a degree or diploma or other qualification at the

University of Stirling or similar institution.

This dissertation is a record of the work carried out at the University of Stirling

between 2013 and 2019, under the supervision of Dr Andrew Hoyle, Professor

Gabriela Ochoa, Dr Craig Baker-Austin and Dr Nicholas G.H. Taylor.

Stirling, July 2019

Iona K. Paterson

ii

[ 12th November 2019 at 15:10 ]



A B S T R A C T

Antibiotic resistance is one of the major health concerns of the 21st century.

Antibiotics are essential for the health and well-being of both humans and

animals. However, the increase in antibiotic resistant bacteria poses a threat to

the continued use of antibiotics to successfully treat bacterial infections. Cur-

rent research within hospital settings has focused on the use of multi-antibiotic

approaches in a variety of treatment patterns. Yet there is limited knowledge

on the optimal use of single antibiotic treatments. With the spread of resistance

linked to the overuse and misuse of antibiotics, optimal treatment regimens

aim to maximise the success of eradicating an infection while minimising

the amount of antibiotic required. This thesis therefore aimed to combine

mathematical modelling with a genetic algorithm approach to identify optimal

dosage regimens for the use of a single antibiotic.

A mathematical model was developed to predict the dynamics of bacterial

populations within an infection. A susceptible only infection was initially con-

sidered before being extended to include a resistant population. These models

were incorporated into a genetic algorithm and used to search for dosage

regimens which maximise bacterial eradication and minimise antibiotic use.

Taking a theoretical approach, it was found that administering an antibiotic

with a high initial dose followed by lowering doses is the optimal treatment

regimen. A case study of a Vibrio anguillarum infection within Galleria mel-

lonella larvae was used to parameterise the one strain bacterial model to a

biologically realistic system. The results are consistent with those from the

theoretical parameter sets. A tapered treatment regimen maximises the success
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of eradicating the bacterial infection while minimising the amount of antibiotic

required. Laboratory experiments were performed which provided credibility

to the results found.

Finally, the assumption of fixed time intervals between doses was relaxed

and the genetic algorithm used to identify both the dose and time intervals

of optimal treatment regimens. Varying either the doses or the time intervals

separately produced no significant difference in the success of eradicating

an infection. When combined, the results showed that significantly better

regimens could be identified. These regimens further increased bacterial erad-

ication while using less antibiotic to do so. More work is required to identify a

general treatment pattern when both variables are optimised due to the high

variability in solutions. However, a shift away from conventional constant dose

treatment regimens is required to prolong the future effectiveness of antibiotics.
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Collaborative Studentship (Agreement Number DP227AA), and the Centre for
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1
I N T R O D U C T I O N

Since their formal discovery in 1928 antibiotics have been at the forefront in

the fight against bacterial diseases. However, the increased availability of anti-

biotics has led to the overuse and often misuse of these substances. This has

resulted in a number of diseases such as gonorrhea and tuberculosis becoming

increasingly hard to treat due to the emergence of multi-drug resistant bacteria

[1, 2, 3, 4, 5]. Resistant bacteria pose significant health and economic burdens

and as such have necessitated the research into preventing their spread and

prolonging future antibiotic effectiveness. Unfortunately research indicates

that the fight against antibiotic resistance will not be won by simply reducing

the use of antibiotics [6, 7, 8]. It is estimated that in as little as 20 years we

could be returning to a pre-antibiotic era, with antibiotic resistance accounting

for approximately 10 million deaths per year globally by 2050 [9].

Antibiotic resistance is not only of great concern within the human popu-

lation but also has a significant impact within agriculture and aquaculture.

With the growth of the population and the increased demand for meat, the

use of antibiotics in food animals continues to increase [10]. Antibiotics are

used extensively in these industries to treat infections, prevent diseases and

promote the growth of livestock. With the overuse of antibiotics linked to

increases in resistant bacteria their use in healthy animals to promote growth

is controversial [11]. Due to the importance of antibiotics for human health

some countries have tight legislation surrounding the use of antibiotics within

animal husbandry [12]. However, this is not widespread with antibiotic use in
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some countries completely unregulated.

The ‘prudent’ use of antibiotics has long been recommended [13] as a way

in which to slow the spread of antibiotic resistance. However, for the ‘prudent’

use of antibiotics to be effective in the fight against resistance the treatment

regimens under which they are administered must be optimal. Optimal an-

tibiotic treatment strategies consist primarily of two variables: the dose and

the duration of treatment. For most antibiotics the drug developer identifies a

conventional treatment regimen which is implemented by doctors and veterin-

ary surgeons when prescribing these antibiotics [14]. Conventional treatment

regimens usually consist of a fixed dose administered for a specified duration.

Drug efficiency studies are used to determine the dose and duration for these

treatment regimens. However, one limitation of this approach is that it only

provides information for the regimen being analysed and offers no indication

for other potential regimens [15]. While conventional treatment regimens may

be effective they may not be the optimal duration or dose at which to adminis-

ter antibiotics to prevent the spread of resistance.

Mathematical modelling uses mathematical terms to represent the behaviour

of a real world system. It can be used to develop scientific understanding,

predict the effect of change within a system and even aid in decision making.

Mathematical models are used extensively in engineering, economics and

natural science. Real world systems are very complex and as such a large

element of compromise is required when creating mathematical models. By

only including the pivotal concepts of a system and excluding the rest, math-

ematical models are able to simplify these complex systems. In 2001 three

mathematical models were used to predict the disease dynamics and inform

control measures during the foot-and-mouth outbreak in the UK [16]. As long
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as the assumptions and limitations of the model are understood before inter-

preting the results, mathematical models can be a great asset in comparing

and identifying optimal treatment strategies.

Broadly, this thesis therefore aims to combine mathematical modelling with

a computational optimisation technique to identify optimal antibiotic dosage

regimens which maximise antibiotic treatment success and minimise antibiotic

use. This will primarily be done theoretically, but a biological study was

carried out to show that the results are credible.

1.1 biological background

1.1.1 Bacteria

First discovered by Anton van Leeuwenhoek in the 1670’s bacteria have been

found to live virtually everywhere [17, 18, 19]. Bacteria are referred to as the

simplest form of life as they are prokaryotic, single celled, organisms. This

means that they contain no nucleus or membrane bound organelles and in-

stead their genetic material is contained in a single loop of DNA. (Figure 1.1)

Figure 1.1: A bacterial cell showing the bacterial DNA and the independent plasmids.
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Fewer than 100 species of bacteria are estimated to cause infectious diseases

in humans [20]. With several thousand species of bacteria existing within the

human digestive system alone, the majority of bacteria are harmless. In fact,

bacteria make up a large part of the human microbiome. These bacteria are

beneficial colonisers and are essential for human development, immunity and

nutrition [21, 22, 23]. Many bacteria have been found to not only be harmless

but to actually be beneficial to the environment in which they live [24, 25, 26].

Processes such as nutrient cycling, food production and digestion would not

be possible without bacteria. Even just the presence of non-pathogenic bacteria

can help prevent diseases by occupying places that pathogenic bacteria want

to invade [27]. We would not exist without bacteria.

However a small number of bacteria are pathogens and it is these bacteria

which can cause disease. Pathogenic bacteria cause disease by either directly

destroying tissue cells, becoming so numerous that the host system cannot

function or by producing toxins which kill other cells [28]. As bacterial cells

contain all the genetic material necessary to reproduce they are able to under-

take a simple form of asexual reproduction known as binary fission. During

binary fission a cell replicates its DNA and then elongates and splits itself

in two, ensuring each daughter cell has a copy of the DNA. This process

highlights the ease at which bacterial infections can take hold. With an optimal

generation time of 20 minutes it would take 1 bacterium less than 7 hours to

replicate to over 1 million cells.

Bacterial cells also contain separate, circular pieces of DNA called plas-

mids (Figure 1.1). Plasmids are extra-chromosomal DNA elements which exist

and replicate independently of the host bacterial genome. They consist of a

phosphate backbone typically composed of essential genes which control core
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plasmid functions such as plasmid replication, stability and transfer. They

also contain genes which are non-essential to the plasmid but may encode

selectively advantageous traits to the host cell in certain environments e.g

virulence factors, antibiotic resistance and the ability to degrade environmental

pollutants [29, 30, 31].

Figure 1.2: Diagram showing the horizontal transmission of plasmids to an unrelated

bacterial cell and the vertical transfer of plasmids to both daughter cells

during cell division.

Plasmids are able to pass vertically to each new daughter cell along with the

DNA during bacterial fission. This means that once a bacterial cell possesses a

plasmid its offspring will also possess a copy of that plasmid. An additional

feature of plasmids is their ability to not only transfer vertically but also

horizontally between bacterial cells (Figure 1.2). Horizontal gene transfer

(HGT) is independent of reproduction and means that cells can obtain plasmids

at any point in their life cycle. There are 3 main mechanisms: transformation,

transduction and conjugation. Transformation is where competent bacteria

uptake free DNA from the environment. While in the environment this free

DNA is subject to DNase which can break the DNA down. Transduction is the

transfer of DNA via a virus. Transduction does not require cell-to-cell contact

and, because of the bacteriophage, is protected from DNase. Conjugation is the

5

[ 12th November 2019 at 15:10 ]



transfer of a copy of a plasmid from one cell to another via direct cell-to-cell

contact [32].

1.1.2 Antibiotics

Antimicrobials are substances that kill or inhibit the growth of micro-organisms,

such as bacteria, fungi and viruses. Metals, such as silver and copper, have

long been used in medicine and agriculture for their antimicrobial effects

[33]. Antibiotics are a sub-set of antimicrobials. They are chemical substances

which are used to treat bacterial infections and diseases. Antibiotics can be

natural, semi-synthetic or synthetic in origin. The first antibiotic, Penicillin,

was discovered in 1928 and paved the way in revolutionising the way bacterial

infections were treated. Since then humans have found and synthesised a

number of additional antibiotic compounds. The increase in availability of

antibiotics has contributed to increased survival rates in areas where bacterial

infections are likely complications, such as surgery and cancer chemotherapy

[34].

Antibiotics target bacterial cells in two main ways: they prevent the growth

and reproduction of the bacterial cell (bacteriostatic) or they actively kill the

bacterial cell (bactericidal). The bacteriostatic or bactericidal nature of anti-

biotics can differ depending on the infection they are being used to treat.

Antibiotics can interfere with the cell wall synthesis, inhibit protein synthesis,

interfere with nucleic acid synthesis or inhibit metabolic pathways [35]. Tar-

geting structures present in bacterial cells or bacterium-specific targets within

processes common to both bacterial and human cells means that the antibiotic

will not harm human cells. Some antibiotics can be used to target specific

bacteria. Unfortunately it can be time consuming to correctly identify the
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bacteria causing the infection and often treatment must be started before it

can be identified. Broad spectrum antibiotics target a wide range of bacterial

strains and are ideal for initial antibiotic therapy. They can be effective in

treating bacterial infections but will also kill harmless and even beneficial

bacteria.

While all antibiotics target bacterial cells, it requires a certain concentration

of antibiotic to be present before it will negatively impact the bacteria. The

minimum concentration of antibiotic required to inhibit visible growth of the

bacteria is known as the minimum inhibitory concentration (MIC) point. If the

antibiotic is present in a concentration above the MIC of the bacteria then it

will be killed off. However, concentrations below a bacteria’s MIC threshold

results in bacteria persisting despite the presence of antibiotic. This highlights

the importance of getting antibiotic prescriptions correct.

1.1.3 Resistance

Antibiotic resistance is defined as the ability for bacteria to survive and repro-

duce in the presence of a higher concentration of antibiotic. This is indicated

by an increase in the MIC of the bacteria. Despite the discovery of many

more antibiotics, bacteria have evolved resistance to every antibiotic in clinical

use [36]. Figure 1.3 identifies the year in which an antibiotic was introduced

and the year in which resistance was first observed. Resistant bacteria may

still be controlled by antibiotics but a higher dosage will be required. These

higher concentrations of antibiotic may be harmful to, or not well tolerated by,

humans rendering the antibiotic useless.
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Figure 1.3: Timeline showing the year of introduction of antibiotics on the top and the

year resistance was first observed on the bottom. Obtained from Caltworthy

et al. (2007).

Resistance can either be a natural (intrinsic) trait of the bacteria or acquired

through mutations or gene transfer. Intrinsic resistance, where a cell is natur-

ally resistant, may be due to the bacteria lacking the target site of the antibiotic

molecule or possessing an efflux pump which can pump the antibiotic back out

of the cell. Baker-Austin et al [37] highlights the possibility that these intrinsic

mechanisms may have occurred due to cross-resistance. In the presence of

heavy metals, or other toxins, bacteria develop mechanisms to protect them-

selves but in some cases these mechanisms also work in providing resistance

to antibiotics. Acquired resistance requires either mutations in existing genetic

material or the acquisition of additional genetic material from another source,

such as plasmids. These additional genes can encode for traits that the bacteria

did not originally possess without the need to wait for a suitable mutation on

the chromosome.
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The importance of plasmids and horizontal gene transfer in the develop-

ment and spread of antibiotic resistance was not initially recognised. It has

since become evident that they play a major role [38]. Bacteria which produce

antibiotics are generally resistant to the antibiotics they produce. This indicates

that it is probable that genes conferring resistance to antibiotics have existed

in nature for as long as bacteria have been producing antibiotics. Plasmids

are an ideal vector in the spread of these resistant genes, both vertically and

horizontally, and are particularly important in the acquisition of resistance

to many antibiotics [39, 30]. These traits do come at a disadvantage and it is

widely recognised that there is a fitness cost associated with harbouring these

resistant plasmids. However, the exact fitness cost imposed by these plasmids

is still debated with evidence that this could be close to zero in some cases [40].

Resistant genes do not pose a problem so long as they are contained within

non pathogenic bacteria. However, almost immediate resistance to penicillin

was recognised after the introduction of the drug in 1946 [41]. This highlighted

the ease at which these genes could spread to other bacteria. The extensive use

and misuse of antibiotics in human and animal medicine and agriculture has

proliferated the spread of these resistance genes within pathogenic bacteria

[42, 43, 44].

1.1.4 Impact in Healthcare

After the introduction of antibiotics enormous gains were made in healthcare.

With the new found ability to effectively treat bacterial infections, advances in

transplantation, chemotherapy and more complex surgeries was possible [45].

However, the continued spread of antibiotic resistant bacteria is threatening

to see a return to this pre-antibiotic era [46]. Antibiotic resistance not only
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affects the health of humans but it also imposes a significant economic burden.

Longer hospital stays are associated with antibiotic-resistant infections, in-

creasing hospital costs and limiting resources such as beds [47]. The presence

of multi-drug resistant bacteria often requires the use of second or even third

line antibiotics which are more costly.

Unfortunately, ensuring that antibiotics are taken exactly as prescribed

cannot be guaranteed. Humans will often fail to finish a course of antibiotics

due to the alleviation of symptoms and the inaccurate assumption that the

bacteria have been successfully cleared. Antibiotics are also only effective

against bacteria and as such any use of these substances to treat a viral or

fungal infection further contributes to their misuse. To increase the public

knowledge on appropriate antibiotic use, antibiotic awareness campaigns

(AAC) have been implemented internationally with mixed results [48, 49].

1.1.5 Impact in Agriculture and Aquaculture

Antibiotics are used extensively in agriculture. In the US alone it is estimated

that antibiotic use within agriculture accounts for 80% of the total consump-

tion of antibiotics [50]. The vast majority of antibiotic use is within livestock,

with crops accounting for less than 0.5% of the total amount used. A large

proportion of the antibiotics used within livestock are deemed medically im-

portant for human health [51]. Antibiotics are used within animals for the

same reason they are used within humans: to help fight bacterial diseases and

infections. However, antibiotics have also been used to promote growth within

livestock. Antibiotic use can alter gut bacteria and cause more rapid growth

by allowing feed to be converted to muscle much faster. By improving feed

efficiency, antibiotics allow the same amount of meat to be produced with a
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smaller number of animals. This in turn provides economic benefits to both

the consumer and producer. When used for growth promotion, antibiotics are

given at subtheraputic concentrations. With lower concentrations of antibiotics

being linked to increases in resistant bacteria the use of antibiotics for growth

promotion has been banned in some countries [12].

Aquatic environments are often more supportive to pathogenic bacteria than

terrestrial environments and as such are affected by a large number of bacterial

diseases [52]. Antibiotics are often administered prophylactically to try and

prevent bacterial diseases from arising. This is due to the most common mode

of delivery of antibiotics being within feed. If a bacterial disease is present the

diseased fish are less likely to feed resulting in under-dosing and the persist-

ence of the bacterial disease. Bacterial diseases can wipe out entire stocks of

fish resulting in massive economic losses [53]. In recent years more vaccina-

tions have been developed as a preferred method of disease control. Vaccines

offer a better and long lasting level of protection and allow for a decrease in

the use of antibiotics. However, as there are some diseases for which a vaccine

is not available the need to prolong the effectiveness of antibiotics is important.

The use of antibiotics in both agriculture and aquaculture creates reservoirs

of resistant bacteria. Resistant bacteria can enter aquatic environments due

to sewage, hospital waste and agricultural run-off resulting in high levels

of antibiotic resistant genes present in the environment [54]. These resistant

bacteria can then form biofilms on surfaces creating an environment which

lends itself to high rates of gene transfer between bacteria [55]. Concern exists

over the possibility that genes which confer resistance in bacteria within the

environment and in animals may cross over into bacteria present in the human
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microbiome [56]. However, there is limited knowledge on exactly how much

transfer there is between these systems.

1.2 mathematical background

The use of mathematical modelling within antibiotic resistance research has

grown considerably over the past few decades. With the ever increasing pres-

ence of resistant bacteria and the lack of new antibiotics being manufactured,

the future effectiveness of current antibiotics remains uncertain. The use of

antibiotics increases the likelihood of resistance developing, with resistance

to new antibiotics detected shortly after their introduction into clinical use.

It has been stated time and time again that action must be taken to ensure

antibiotics are being used optimally, to reduce the overuse and misuse of these

substances and ensure their future effectiveness [13, 57, 58].

Previous modelling studies on the emergence and spread of resistance

to antibiotics focus mainly on two settings: within-hospital and within-host.

Compartmental models are used predominately throughout the literature

for modelling in both these settings. Structured compartmental models lend

themselves to this field of research as it is possible to include additional

compartments to address the complexity of the biological system. At a basic

level antibiotic resistance research focuses on the change in population size of

a susceptible and resistant population and the vectors which facilitate these

changes. By using a system of coupled ordinary differential equations analysis

of the system both analytically and numerically is possible. This can provide

qualitative predictions which allow for evaluation of different interventions to

reduce the spread of resistance.
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1.2.1 Mathematical Models of Antibiotic Treatment - Within-hospital

Antibiotic-resistant infections are an increasing threat to society and have

become a menace in hospital settings. The prevalence of infections such as,

methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant

Enterococci (VRE) continue to rise, increasing hospital stays, morbidity and

mortality [59, 60]. By understanding the dynamics of the spread of these infec-

tions it is possible to develop and predict strategies to prevent further spread

of resistant bacteria. Within-hospital models tend to focus on the spread of

antibiotic resistant infections between patients within a single ward setting e.g.

ICU, or in a simplified hospital setting. Despite the focus being on a single

ward or hospital these studies don’t consider them as a closed system. Patients

are often admitted from and discharged into a general community. There is an

entire subset of within-hospital modelling papers which focus on controlling

the spread of resistant infections through different practices. Strategies such as

hand-washing and limiting the number of patients each nurse is responsible

for are undoubtedly an important aspect in controlling hospital infections.

However, this thesis is focused on the impact of differing antibiotic usage

patterns.

Bonhoeffer et al. [61] initially presents a general mathematical model to con-

sider the impact a single antibiotic has under various treatment patterns. This

study considered three sub-populations of individuals: uninfected, infected

with susceptible bacteria and infected with resistant bacteria. They found that

when a single antibiotic is used the total reduction of infected hosts is almost

independent of the pattern in which the antibiotic is administered. With a

slight increase in total reduction of infected hosts only if the antibiotic was

used extensively at the beginning of treatment. The model was then exten-
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ded to examine the effect treatments with multiple antibiotics would have.

The resistant compartment was split into 3 new compartments: resistant to

antibiotic A, resistant to antibiotic B and resistant to both antibiotics. Three

treatment strategies were compared: cycling, where antibiotics are alternated;

50-50 mix, where equal proportions of the infected host population receive

each antibiotic; and combination, where antibiotics are given simultaneously

to each infected host. When comparing the total reduction of infected hosts,

cycling the antibiotics was always less beneficial than using the antibiotics in a

50-50 mix. Whether a 50-50 mix or combination of antibiotics is superior de-

pends on a relationship between the fraction of patients that acquire resistance

in response to single and combination treatment.

Lipsitch et al. [62] considers a model similar to that by Bonhoeffer et al.

However, it varies slightly from that used by Bonhoeffer et al. in that resistance

is only observed to one of the antibiotics given. The bacteria are completely

susceptible to the other antibiotic and remain that way. They consider the

impact the rate at which each antibiotic is used has on the prevalence of

resistance to antibiotic 1. Unsurprisingly, they predicted that an increase in

antibiotic 1 increased the number of individuals colonised with bacteria resist-

ant to that antibiotic. However, increasing the use of antibiotic 2 decreased the

number of individuals colonised with bacteria resistant to antibiotic 1, to the

point of extinction. Suggesting that by switching to an antibiotic to which no

resistance is present can decrease the prevalence of bacteria resistant to another

antibiotic. Despite the use of antibiotic 2 reducing the prevalence of resistance

to antibiotic 1 at a population level, when individuals were tracked according

to the treatment they had received the results differed. At an individual level,

patients treated with antibiotic 2 are more likely to be colonised with bacteria

resistant to antibiotic 1 compared to those who have not been treated with
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antibiotic 2. This suggests that care must be taken when interpreting results of

proposed interventions.

With suggestions that cycling antibiotics may slow the emergence and

spread of resistant bacteria, Bergstrom et al. [63] takes another look at the

potential of this treatment pattern. Patients are considered to either be uncol-

onised by the bacteria in question or colonised with either susceptible bacteria,

bacteria resistant to antibiotic 1 or bacteria resistant to antibiotic 2. The effect

antibiotic cycling has on the emergence and spread of the resistant bacterial

populations is examined. They find that cyclic use of antibiotics results in a

cyclic pattern within the frequency of each bacterial strain. With each change

in antibiotic the frequency of resistance to that antibiotic increases with the

frequency of resistance to the other antibiotic declining. At each change the

new antibiotic is temporarily more effective due to the low rate of resistance

present. This results in the number of uncolonised patients briefly surging. By

comparing the average fraction of patients carrying resistant bacteria under

a cycling treatment protocol to an alternative 50-50 mix protocol, Bergstrom

et al. determines if cycling antibiotics is indeed more effective at reducing

resistance. Bergstrom et al’s findings support the claim from Bonhoeffer et al.

that antibiotic cycling is unlikely to reduce the spread of antibiotic resistance

with mixing predicted to be more effective.

Obolski and Hadany [64] once again examine the effects of the three prom-

inent antibiotic strategies: cycling, mixing and combining. They note that

previous studies assume that patients acquire resistant bacteria at a constant

rate. With evidence suggesting that the frequency of horizontal gene transfer

and mutation increases when bacteria are under stress, they re-evaluate these

treatment protocols under this new assumption. Their findings are in keeping
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with combination therapy being more efficient when comparing the decrease

in the number of patients colonised with an infection resistant to a single

antibiotic. However, they show that stress-induced genetic variation leads to

combination therapy performing poorly in inhibiting the emergence of resist-

ance to both antibiotics. In fact, their findings suggest that cycling antibiotics

is the preferred protocol when resistance is acquired through stress-induced

mutation.

With attempts to compare the different treatment strategies empirically res-

ulting in inconclusive results [65, 66, 67]. The debate over the optimal strategy

continues. Tepekule et al. [68] took a slightly different approach to determ-

ining the optimal treatment strategy. Using a mathematical model similar to

those used by Bonhoeffer et al. and Bergstrom et al., they consider the three

multi-drug strategies and two mono-drug treatments. They determine which

treatment strategy is the best for a large range of parameter sets by using

linear discriminant analysis and particle swarm optimisation. Comparing all

five strategies, combination therapy was found to be the best strategy in over

half the parameter sets. Where mono-drug therapies were not beneficial, com-

bination therapy performed better than both cycling and mixing 70% of the

time. In addition, the results showed that mixing antibiotics tends to perform

better than cycling them. Where combination therapy did not perform as well,

the parameter regions were generally found to be more biologically unrealistic.

Despite the increase in use of mathematical models to study antibiotic res-

istance within a hospital setting, the use of these models to examine antibiotic

usage strategies is limited. The models have largely focused on the use of two

antibiotics used in a cyclic, mixed or combination protocol with the results

proving inconclusive. One limitation of modelling at the hospital level is that
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there is little information on how the antibiotics affect the dynamics of the

bacteria they are targeting. Patients are also assumed to possess only one

strain of bacteria at a time. By focusing on the individual level, it is possible

to examine the effect different antibiotic treatments have on the dynamics

between multiple bacterial strains within the same host. This provides the op-

portunity to look at improving the rate of clearing an infection and minimising

the emergence of resistant strains.

1.2.2 Mathematical Models of Antibiotic Treatment - Within-host

The understanding that plasmids play a major role in the spread of resistance

genes between bacterial species opened the door for modelling the spread of

antibiotic resistance on a bacterial level, inside an individual host [69]. Plas-

mids have been well studied within literature with several modelling studies

examining the conditions under which plasmids can be maintained within a

bacterial cell [70, 71, 72]. The spread of plasmid mediated resistance, where

all plasmids are assumed to be carrying the resistant gene, can be modelled

as a simple SI model (Figure 1.4). The plasmid-free cells are regarded as the

susceptible compartment and the plasmid-bearing cells the infected (resistant)

compartment. Introducing resistance as a selective advantage within an an-

tibiotic environment, it is possible to examine the effectiveness of antibiotic

treatments and the spread of resistance through the population. This simple

SI model represents the basis of most of the following studies and the basis

upon which the models within this thesis were based.

D’Agata et al. [73] examine a series of models building up from an entirely

susceptible bacterial population with an immune response, through a popu-

lation of susceptible and resistant bacteria where resistance is mediated by
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Figure 1.4: Schematic representation of a simple susceptible and infected model of

bacteria. Resistance to antibiotics is contained within a plasmid. The sus-

ceptible compartment is plasmid-free representing a susceptible bacterial

population. The infected compartment is plasmid-bearing representing a

resistant bacterial population.

horizontal gene transfer, to a population of susceptible, resistant and multi-

drug resistant bacterial strains. By applying various treatment strategies of

single and multiple antibiotics they make three main conclusions. Firstly they

conclude that shorter duration of antibiotic therapy or an early interruption in

therapy result in resistant strains progressing. Secondly they compared the

results of using two antibiotics in a sequential regimen to that of a combination

regimen. The combination regimen prevents the emergence of the resistant

strain compared to the sequential treatment. Finally they concluded that one

of the most important factors in preventing the emergence of resistant bacteria

is the early initiation of antibiotic treatment.

One assumption which is present in the above study is that antibiotics, when

present, are present at a constant rate. This assumption means that while the

pattern and length of antibiotic treatment can be altered, there is no informa-

tion regarding different dosage levels or the clearance of the antibiotic by the
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hosts system. Geli et al. [74] incorporate pharmacodynamics into their model

of susceptible and resistant bacteria by considering the antibiotic-induced

death rate to be a function of the concentration of antibiotic present. This

allows for comparison of treatments of different concentrations and durations

of antibiotic exposure. Geli et al. examine four different ecological dynamics

of bacteria, which they refer to as: unregulated, regulated, opportunistic and

self-limiting. They find that all antibiotic use increases the selection of resist-

ance, regardless of the treatment regimen. However, the length of treatment at

which selection of resistance is most intense varies depending on the bacterial

dynamic. Shorter durations of treatment are found to be optimal in preventing

selection of resistant bacteria in most cases but increased concentration and

duration see the time with symptoms decrease. The dosing strategies optimal

for clinical treatment may not be optimal for preventing the spread of resist-

ance. By considering the bacterial populations as four different dynamics Geli

et al. identify that "one-size" does not fit all.

Despite incorporating a concentration function into their model, Geli et

al. only considered a constant concentration of antibiotic. While this may

be a realistic scenario in the case of intravenous antibiotics, the majority of

antibiotic regimens involve taking a set dose at set time intervals. This leads

to the fluctuating concentration of the antibiotic within the hosts system and

has a potential impact on the treatment of infections and the emergence of

resistant bacteria. Ankomah and Levin [75] address the issue of a constant

concentration of antibiotic by assuming that when antibiotics are not being

added to the system the concentration of antibiotic declines exponentially. Fur-

ther reduction in the concentration of antibiotic is due to antibiotics flowing

away from the site of infection. With the concentration of antibiotic varying

throughout treatment, they study the impact different doses and frequencies of
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administration affect the time to clearance of the bacteria and the rate of evol-

ution of resistance. Ankomah and Levin predicted that as the concentration of

dose increases the time to eradication of the infection and the emergence of

resistance decreases. They do highlight that antibiotics can produce unwanted

side-effects at higher concentrations and so increases in concentration may not

always be possible. In addition, the benefits of increasing the concentration of

antibiotic reach a saturation point above which further increases have little to

no effect on the time to eradication or emergence of resistance. When analysing

the effect of different frequencies of administering the antibiotics, provided

the concentration of antibiotic was sufficiently great there was little effect on

the rate of clearance of the infection. Their findings support the ‘hit hard and

hit fast’ approach to antibiotic treatments.

The spread of antibiotic resistance continues to threaten the use of antibiotics

to treat bacterial diseases. By modelling the dynamics of different bacterial

populations, the above studies were able to consider the impact varying the

dose, duration or frequency of antibiotic doses had on the eradication of

the infection and potential emergence of resistance. While these studies may

identify treatments which are more effective, they all limit their search to

treatments with a constant concentration of antibiotic in each dose. Treatments

of this pattern are the conventional way to administer antibiotics but there is

no reason, other than convenience, that this pattern is used. By limiting the

pattern of treatment there are potentially better treatment regimens which are

not being considered.
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1.2.3 Mathematical Models and Optimising Antibiotic Treatment

The use of optimisation techniques alongside mathematical modelling al-

low for treatment regimens to be considered that may otherwise have been

overlooked. These techniques have been useful for identifying potential treat-

ment strategies in areas such as cancer chemotherapy and HIV treatment

[76, 77, 78, 79]. The following studies use an optimisation technique to identify

optimal antibiotic treatment regimens.

Pena-Miller et al. [80] consider a set up where a ‘commensal’ bacterial strain

are forced to compete against a fitter ‘pathogenic’ bacterial strain. In the ab-

sence of antibiotic or the over-deployment of antibiotic, the pathogen would

out compete the commensal bacteria. Resistance can only be acquired through

mutations at the point of cell division and not via any other mechanisms such

as gene transfer. Constructing a mathematical model of this system they find

that all fixed-dose antibiotic treatment regimens lead to the eventual loss of

the commensal bacteria. However, by using optimal control theory they show,

theoretically, that there exists antibiotic pulsing treatment strategies which

select against the pathogen while supporting the commensal bacteria. In this

paper they do not consider the eradication of pathogens but do propose that

single-drug treatments could be successful in eradicating the pathogen. They

suggest that such treatments would be dynamic in time and may well consist

of pulses of antibiotic.

Imran and Smith [81] use optimal control theory to identify antibiotic

treatment regimens which ensure eradication of bacteria in a biofilm and

surrounding fluid while minimising the amount of antibiotic applied. Using

a numerical example they first examine periodic discrete dosing regimens.
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They identify that there exist solutions to their model but these are sensitive

to changes in initial bacterial populations. Higher initial populations will

result in the bacteria not being entirely eradicated. However, they identify that

increasing the concentration of antibiotic or reducing the period between doses

can turn some of these failures into successes. Using optimal control theory

they identify that cycling between applying and withdrawing the antibiotic in

decreasing dosages is the optimal treatment course. Varying initial conditions

and parameter values they explore a range of optimal dosing strategies. The

optimal dosing strategy is shown to effectively eradicate the bacteria in cases

where the periodic discrete dosing was unsuccessful.

The following study was published after the paper by the author of this

thesis [82], which showed similar results. Khan and Imran [83] take a similar

approach to Imran and Smith but Khan and Imran consider the presence of

resistant bacteria. By modelling the dynamics of a susceptible and resistant

bacterial population they use this model to identify treatment regimens which

eradicate the bacteria while minimising the amount of antibiotic used. Ad-

ministering antibiotics at periodic intervals with reducing dosage strengths

(tapering) is one way to reduce the amount of antibiotic being used com-

pared to discrete constant dosing intervals. However, if the dose strength is

reduced too much the bacteria are able to re-emerge and the treatment fails.

Using optimal control theory they found that a high initial dose followed by

a gradual withdrawal of the antibiotic not only keeps treatment costs down

but eliminated both the susceptible and resistant bacteria for a wide range of

initial conditions. The concentration profile for the optimal strategy is sim-

ilar to that obtained from the tapering strategy but ensures the correct dose

strength is used. Care must be taken when assigning costs to the terms within

the control function. If too high a cost is placed on minimising the amount
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of antibiotic used it was found that it may result in the bacteria not being

eradicated in favour of reducing the amount of antibiotic used. A finding from

their model was that resistant bacteria could not persist without susceptible

bacteria, therefore eliminating the susceptible bacteria was sufficient to eradic-

ate both bacterial populations.

The above studies indicate that more effective antibiotic treatment regimens

exist but it requires a move away from discrete constant dose treatments.

Optimal control theory allows for these alternative treatments to be identified.

However, these studies assume that it is possible to control the concentration

of antibiotic within the host system at all times. By controlling the concentra-

tion of antibiotic Khan and Imran found that a sufficiently high initial dose

followed by a decrease in concentration would eradicate an infection while

minimising the amount of antibiotic used. With most antibiotic treatments con-

sisting of a discrete dose followed by a period of withdrawal of the antibiotic,

the question of how these optimal treatments would be achieved remains to

be answered.

The following study was again published after the paper by the author of

this thesis but is included as the only other known use of a genetic algorithm

(GA) within antibiotic treatment regimen optimisation. Cicchese et al. [84]

explore the use of two other optimisation techniques, genetic algorithms and

surrogate-assisted optimisation through radial basis function (RBF) networks.

Using a model of granulomas in a Mycobacterium tuberculosis infection, they

optimise a treatment regimen using a single antibiotic (this is repeated for

two different antibiotics). The optimisation techniques are used to identify

the dose size and the dosing frequency which eradicates the bacteria quickly

while keeping antibiotic dosages low. The search space is constrained to five
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different dose sizes and seven dose frequencies giving 35 different treatment

regimens for each antibiotic. The solutions are known for both antibiotics so

comparison between the two optimisation techniques can be made. They find

that the GA accurately identifies the optimal treatment regimen every time

it is run for one of the antibiotics and in almost all the runs for the second

antibiotic. In contrast, the RBF network is unable to accurately predict the

optimal solution for either antibiotic but most of the solutions are within the

same region as the optimal solution. Cicchese et al. then go on to optimise

the treatment regimen when both antibiotics are given simultaneously. For

this they only consider the use of the RBF networks. This is due to the GA

being more computationally expensive and their overall goal being to identify

regions of space rather than unique locations where the treatment design

is optimal. They show the potential for RBF networks to be used to guide

experimental testing of new antibiotic regimens.

Cicchese et al. highlighted the ability for optimisation techniques to be used

to identify realistic dosing regimens which eradicate bacteria while minimising

the concentration of antibiotic being used. The genetic algorithm was shown

to be effective at identifying the optimal treatment regimen from a range of

possible solutions. However, these solutions were constrained to the standard

constant dose treatments typically used for antibiotic treatment. The previous

studies using optimal control theory highlighted that better dosing regimens

can be found by moving away from these constant dose regimens. By allowing

a genetic algorithm to search through all possible treatment regimens it may

be possible to identify realistic non-constant dosing regimens which optimise

the use of antibiotics.
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1.2.4 Genetic Algorithms

The Genetic algorithm (GA) was first invented by John Holland in the early

1970’s. GA’s belong to the larger class of evolutionary algorithms which

generate solutions to optimisation problems using techniques inspired by

natural evolution, such as inheritance, mutation, selection and crossover [85].

Despite being a randomised search GA’s are by no means random, instead

they use historical information to direct the search into the region of better

performance within the search space.
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Figure 1.5: Schematic outline of one generation within a genetic algorithm.

Genetic algorithms work by firstly generating a random initial population

(or set) of possible solutions. In this thesis, the solutions will be a vector of real

numbers or integers. Each solution is put into the (mathematical) model and

a fitness score is given based on a defined objective function. The algorithm

performs a process of fitness-based selection and recombination to create a

successor population [86] (Figure 1.5). To create the next generation of solu-
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tions, the algorithm uses a defined fitness value to rate the members of the

current population. ‘Parents’ are selected from the current population to create

the next generation. The probability of a solution being chosen as a parent

is given by (1.1). Therefore the fitter the solution, the more likely it is to be

selected as a parent.

pi =
Fit(i)∑
i Fit(i)

(1.1)

Children are produced from the parents in one of three ways: by taking

the best solutions from the current population (elite child), by combining the

vector entries of a pair of parents (crossover child) or by making random

changes to a single parent (mutation child). Elite children are produced first.

A pre-determined number of the fittest parents are taken forward as children.

These solutions will remain unchanged. Next the crossover children are pro-

duced. A crossover fraction determines the fraction of the new population,

excluding elite children, which will be made from combining the entries of two

parent solutions using a random binary vector of length equal to the length

of the solution vectors. The crossover child is created by taking the element,

‘gene’, from parent 1 if the entry in the binary vector is a 1, otherwise the

gene from parent 2 is taken. The remaining children are made up of mutation

children. To produce a mutation child the GA adds a random number to each

element of the parent vector. This random number is chosen from a Normal

distribution with mean 0. The standard deviation is not fixed and is reduced

linearly in every generation until it reaches 0 in the final generation. This ends

the first generation within the GA. This new population of solutions is then

rated using the defined objective function and the process repeats to form the

next generation of solutions. This process is repeated until a stopping criteria

is met, either a set number of generations have been reached or the fitness of
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the dominant solution cannot be improved.

Genetic algorithms are a stochastic search algorithm so the GA is run mul-

tiple times. Each run takes a randomly chosen initial population of solutions.

This ensures that the search space is adequately searched and that it does not

get stuck at a single local optimum.

1.3 aim of thesis and chapter plan

One solution to the problem of antibiotic resistance is sought in the discovery

of new antibiotics. With resistance to previous antibiotics emerging within

a few years of their introduction, new antibiotics would also be destined

to failure eventually. However, if a new antibiotic was introduced and used

optimally the effectiveness of this antibiotic could be prolonged. Optimal

treatment strategies could also halt further emergence of resistance to current

antibiotics and prolong their effectiveness.

The use of mathematical models to identify antibiotic treatment regimens

is growing. However, one major assumption made within these studies is

that antibiotic treatments follow a conventional pattern of X units for N days.

When searching for better treatment regimens the constant dose pattern is not

challenged.

Previous studies have shown the potential in combining the use of mathem-

atical models with a genetic algorithm to identify optimal treatment regimens

in areas such cancer chemotherapy [76, 78]. However, their use within anti-

biotic research is very limited. Other than the work published by the author

of this thesis, the only other known use of a genetic algorithm to optimise
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antibiotic treatment strategies constrained the GA to conventional constant

dose treatment regimens [84]. So the question remains: what are the optimal

doses and duration of antibiotic treatments to minimise the emergence of

resistant bacteria?

This thesis therefore aims to use a genetic algorithm approach to identify

antibiotic treatment regimens which maximise the success of eradicating infec-

tions while minimising the total quantity of antibiotic used.

Chapter 2 develops a mathematical model of the dynamics of a single

bacterial strain in the presence of an antibiotic environment. This model is

incorporated into a GA to provide a systematic approach to identify optimal

treatment regimens which maximise the success of eradicating a bacterial

population.

Chapter 3 expands the single strain bacterial model to include the presence

of a resistant population. The GA is once again used to optimise antibiotic

treatment regimens which maximise the success of eradicating an infection

while minimising the amount of antibiotic required. The effect the presence of

resistant bacteria has on the optimal treatment pattern identified by the GA is

examined.

Chapter 4 takes the work from Chapter 2 and parameterises it to a biological

system. A case study consisting of a Vibrio anguillarum infection within the

larvae of the greater wax moth (Galleria mellonella) treated using Tetracycline is

studied. The model is parameterised to this system using data from laboratory

experiments. The GA is used to identify the optimal treatment regimen to

maximise the survival rate of the larvae. Further laboratory experiments are
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conducted to test whether the optimal treatment regimen increases larval

survival as predicted.

Chapter 5 relaxes the assumption from the previous chapters that antibiotics

are given at daily time intervals. Using the model developed in Chapter 3,

this chapter explores the effect changing the interval between doses has on

the treatment regimens identified by the GA. The GA will initially be used

to optimise the time interval between a constant dose treatment regimen to

examine whether optimising the dose or the time interval is more effective at

eradicating the bacterial infection. The GA will then be extended to identify

both the dose and corresponding time vector of the optimal treatment strategy.

The results will be analysed to examine whether optimising the time interval

between optimal doses can further increase the success of treating a bacterial

infection using less antibiotic.

Chapter 6 summarises the results from this thesis and discusses the global

context of these results. The limitations of the modelling work carried out and

the predictions made are also discussed along with any potential further work.
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2
O P T I M I S I N G A N T I B I O T I C T R E AT M E N T R E G I M E N S T O

T R E AT B A C T E R I A L I N F E C T I O N S : A G E N E T I C

A L G O R I T H M A P P R O A C H

2.1 introduction

Bacteria are essential for sustaining both plant and animal life. They are able

to thrive in a diverse range of environments, from up in the stratosphere to

the depths of the ocean. The human body is colonized with approximately

the same number of bacterial cells as it has human cells [87]. Bacteria play

an important role in a number of processes, such as, recycling nutrients in

the soil, digestion of food and even cleaning oil from aquatic environments

[88, 89, 25, 26]. Humans have also managed to harness the properties of bac-

teria and use them to their advantage. Production of products such as insulin

can be genetically engineered by incorporating the human genes into bacteria

[90]. However, not all bacteria are beneficial or even harmless. Pathogenic

bacteria can invade host cells using them for nutrients, produce toxins which

kill cells or even trigger an inappropriate immune response. Either directly,

or indirectly, pathogenic bacteria damage the host cells. If an infection of

pathogenic bacteria is allowed to multiply the host will begin showing signs

of disease. If left untreated the damage done by pathogenic bacteria can result

in the death of the host.
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Neisseria meningitidis and Yersinia ruckeri are just two examples of pathogenic

bacteria which not only cause significant health burdens but can also cause

economic burdens. Neisseria meningitidis is responsible for meningococcus

meningitis among other meningococcus diseases in humans. Without treat-

ment the chance of surviving meningococcus meningitis is only 50%, with

10% to 20% of those survivors being left with brain damage, hearing loss or

disability [91, 92]. Yersinia ruckeri is the causative agent of enteric redmouth

disease (ERM) in various species of salmonids worldwide. Despite the use of

vaccines, outbreaks of ERM have been identified in vaccinated fish [93, 94, 95].

If left untreated, later stages of the disease see erosion of the jaw and palate,

haemorrhaging of internal organs and death. This can lead to the loss of entire

stocks of fish. Antibiotics help minimise the impact of pathogenic bacteria by

treating the infection, killing the bacteria and saving the host.

When treating bacterial infections guidelines identify which antibiotic is

effective against which bacteria. They also indicate the dose and duration

of treatment that should be prescribed. However, treatment protocols vary

globally and are not routinely updated [96, 97]. Most prescriptions for anti-

biotics follow the same pattern: X units for N days. The amount of antibiotic

taken each day is constant and this is continued for a set number of days.

These conventional constant dose regimens are convenient for both patients

and manufacturers as all tablets are identical. While these conventional treat-

ment strategies may be effective, the narrow range of possible regimens being

considered means that more efficient regimens could be overlooked. The down-

side to this lack of comparison is that current treatments may be using more

antibiotic than necessary, achieving higher concentrations of antibiotic than

required or even not achieving adaquate concentrations. While development of

resistance to antibiotics may be inevitable, both increased use and sub-optimal
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concentrations of antibiotics have been identified as promoters of resistance

[98, 99, 42]. Identifying optimal treatments before resistance emerges could

help delay this process.

Using conventional treatment regimens as a baseline, this chapter aims to

optimise the usage of antibiotics by identifying alternative treatment regimens

which are more effective at successfully treating a bacterial infection. A math-

ematical model of the dynamics of a single bacterial strain in the presence of

an antibiotic environment will be developed. Incorporating this mathematical

model into a genetic algorithm provides a systematic approach for identify-

ing more effective treatment strategies. Comparison between conventional

treatment regimens and these alternative regimens will highlight if more ef-

fective treatment strategies can be found by moving away from the current

fixed (daily) dose, fixed duration approach. The presence of resistance is not

considered until Chapter 3.

2.2 model development

Ordinary differential equations (ODE’s) have been used extensively within

the literature to describe bacteria dynamics [100, 101, 102, 103, 74, 80, 81, 83].

This section starts by building a simple model to describe the behaviour of

a population of bacterial cells. The model is then extended to include the

presence of an antibiotic, indicated by the addition of an antibiotic-induced

death term. In keeping with much of the literature it is initially assumed

that the concentration of antibiotic within the system is fixed. The antibiotic-

induced death rate is therefore constant and analytical analysis of the system is

possible. The model is finally extended to include an additional compartment

to model the change in antibiotic concentration over time. This allows for
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the antibiotic-induced death rate to vary depending on the concentration of

antibiotic present. This section finishes by creating a stochastic framework of

the model.

2.2.1 Bacterial Growth

Bacteria are known to undergo a process of reproduction known as bacterial

fission. Bacterial fission is an asexual process during which a single bacteria

cell divides into two identical daughter cells. As asexual reproduction requires

energy, it is assumed that the growth of the bacteria is limited by an environ-

mental carrying capacity. When grown in a closed system bacterial growth can

be split into 4 distinct stages: lag phase, exponential phase, stationary phase

and, eventually, a death phase (Figure 2.1). During the lag phase the bacteria

are active and establishing themselves but there is no growth. Once established

the bacteria enter the exponential phase where they are dividing by binary

fission. As the available resources begin to deplete and waste products begin

to accumulate the rate of growth declines. Bacteria then enter the stationary

phase where the number of dividing cells equal the number of dying cells.

Eventually the lack of resources and increase in waste results in the bacterial

cells dying. This shows in the sharp decline in population growth seen in the

death phase.

Figure 2.1: Phases of a typical bacteria growth curve.
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In a host, it is assumed that the resources present would not deplete to a

level that would result in the bacteria reaching the death phase before the

death of the host (or treatment begins). Therefore only the first three stages are

considered when modelling the growth of the bacteria. The logistic equation

has been used in previous modelling studies to model the bacterial growth

curve [104, 101, 105, 103]. This study therefore modelled the growth in bacteria

number, B, using the standard logistic growth equation, with a growth rate

r, environmental carrying capacity K and a density-independent death term

(θ). A simple model (2.1) represents the dynamics of a single strain bacterial

population.

dB

dt
= rB

(
1−

B

K

)
− θB (2.1)

2.2.2 Introducing Antibiotic-Induced Death

In keeping with experimental data [106, 107, 108, 109] the relationship between

the rate of bacterial death due to the concentration of antibiotic present fol-

lows a sigmoid curve (Figure 2.2). For all bacteria the minimum inhibitory

concentration (MIC) point is the minimum concentration of antibiotic required

to inhibit the growth of the bacteria. The MIC is identified as the concentration

of antibiotic where the antibiotic induced death rate is equal to the maximum

net growth rate of bacteria, Bmax = r− θ. Above the MIC point the bacteria

are actively killed by the presence of the antibiotic until eradication. The anti-

biotic induced death rate increases as the concentration of antibiotic increases.

However, as it follows a sigmoid curve the antibiotic induced death rate will

eventually reach a saturation rate (Amax) despite the continued increase in

antibiotic concentration.
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Figure 2.2: Graph showing varying sigmoidal relationships between antibiotic-

induced death rate and concentration of antibiotic. Amax represents the

maximum antibiotic-induced death rate and Bmax indicates where the

antibiotic-induced death rate is equal to the net growth rate of bacteria,

this occurs when the concentration is equal to the MIC.

The antibiotic induced death rate for the bacteria, A(C), is therefore a

function of the concentration of antibiotic present. To model the relationship

between antibiotic concentration and antibiotic induced death rate an exten-

sion of the Emax model of antibiotic treatment by Regoes et al [110] was used

(2.2).

A (C) =
Amax

(
C
mic

)k(
C
mic

)k
+
(
Amax
Bmax

− 1
) (2.2)

As C→∞, A(C)→ Amax and if C = mic, A(C) = Bmax. Using (2.2) allows

for pharmocodynamic information to be used in parameterising the antibiotic-

induced death function. The MIC of the bacteria (mic), net growth rate of

the bacteria (Bmax) and maximum antibiotic induced death rate (Amax) are all

utilised. These are all parameters which could be obtained from experimental

results. The hill coefficient, k, is a measure of the steepness of the sigmoid

relationship between A and C. This allows for a wide range of concentration

death profiles to be modelled. As k varies, the steepness of the curve changes
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but the curve still passes through the MIC point at Bmax and heads towards

Amax.

2.2.2.1 Assuming a Fixed Concentration of Antibiotic

Initially the concentration of antibiotic within the system is assumed to be

a fixed rate. Equation (2.1) can then be extended to include the antibiotic-

induced death term to give (2.3). With the value of A(C) constant, analytical

analysis of the system was carried out.

dB

dt
= rB

(
1−

B

K

)
− θB︸ ︷︷ ︸

Natural Growth

− A(C)B︸ ︷︷ ︸
AB Death

(2.3)

The steady states of the system can be identified using stability analysis. At

equilibrium, dBdt = f(B) = 0, there are two stability points:

B

[
r

(
1−

B

K

)
− θ−A (C)

]
= 0

=⇒ B = 0 or

B = B∗ where B∗ = K

(
1−

θ+A (C)

r

)
Stability of the equilibrium points is found by calculating the derivative of

f(B) (2.4) at each of the equilibria.

f
′
(B) = r−

2rB

K
− θ−A (C) (2.4)

1. At the extinction equilibrium, B = 0, (2.4) is reduced to (2.5).

f
′
(B) = r− θ−A (C) (2.5)

The extinction equilibrium is stable when f
′
(B) < 0, so when r− θ <

A (C). When the death induced by the presence of antibiotics is greater

than the natural net growth of the bacteria the system will tend to ex-

tinction. This is achieved when the concentration of antibiotic is greater
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than the MIC of the bacteria, i.e. C > mic.

2. When evaluated at B = B∗, (2.4) is reduced to (2.6)

f
′
(B) = r− 2r

(
1−

θ+A (C)

r

)
− θ−A (C)

f
′
(B) = θ+A (C) − r (2.6)

For B∗ to be a stable equilibrium point, f
′
(B) < 0 so r− θ > A (C). This

condition will be satisfied if the concentration of antibiotic is less than

the MIC of the bacteria, i.e. C < mic. If the concentration of antibiotic

is not sufficient that the antibiotic induced death rate is greater than

the natural net growth of the bacteria then the bacteria will establish a

population even in the presence of an antibiotic.

0

Concentration of Antibiotic

0B
ac

te
ria

B*
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Figure 2.3: Bifurcation diagram for the single bacterial strain model with a fixed

concentration of antibiotic. The blue dashed lines represent stable equilibria

and the red solid lines the unstable equilibria. At C∗ a bifurcation point

exists.

Figure 2.3 shows the equilibria as a function of the concentration of antibiotic

C. The blue dashed lines represent the stable equilibria and the red solid lines

represent the unstable equilibria. At C∗ a bifurcation point exists. Below C∗

the equilibria at B = 0 is unstable, while the equilibria at B = B∗ is stable.
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Above C∗ the equilibria at B = 0 is stable, while the equilibria at B = B∗ is

unstable. C∗ represents the concentration of antibitoic at which A (C) = r− θ,

also known as the MIC point. For this system to be biologically feasible r > θ

and r, θ,A (C) > 0. Therefore, below the MIC point the bacteria are able to

persist even in the presence of antibiotics but above the MIC the bacteria will

be eradicated.

2.2.2.2 Assuming a Varying Concentration of Antibiotic

Maintaining a constant concentration of antibiotic within a system is only

possible in very limited circumstances. Antibiotics are more commonly admin-

istered in set doses at certain time intervals. This method of delivery means

that the concentration of antibiotic varies throughout the treatment. Figure

2.3 shows the impact different concentrations can have on the outcome of the

system. Equation (2.3) is extended to include an additional compartment to

model the concentration of antibiotic within the system. Antibiotics are added

in set dosages, Dn, at t̂ time intervals and degrade according to first order

kinetics with a degradation rate g. The half-life of an antibiotic is the length

of time it takes for the concentration of the antibiotic to half. Half-lives of

antibiotics are well-documented and can be used to obtain the degradation

rate, g =
ln(2)
t1/2

. Combining the bacteria dynamics and antibiotic concentration

compartment, the full model can be found in (2.7).

dB

dt
= rB

(
1−

B

K

)
− θB︸ ︷︷ ︸

Natural Growth

− A(C)B︸ ︷︷ ︸
AB Death

dC

dt
= − gC︸︷︷︸

Degredation

(2.7)
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Antibiotics are added to the system in daily doses. When t = t̂n the con-

centration of antibiotic C(t) = C(t) +Dn where t̂ = (1, 2, 3, ...,n) and D is a

vector of doses D = (D1,D2, ...,Dn).

2.2.3 Parameterising the Model

When the concentration of antibiotic is allowed to vary according to (2.2), there

is limited analytical analysis that can be carried out. A numerical approach

was taken using a “toy set" of parameter values. Where possible parameter

values were based on those found in the literature. (Use of a real-life parameter

set can be found in Chapter 4 where the work is used in an experimental

set-up.)

The growth rate, r, can be calculated using the doubling time of the bac-

teria. Doubling times are calculated during the exponential phase of bacterial

growth and can range from 12 minutes to 24 hours depending on the bacteria

and the medium. In keeping with work by D’Agata et al. [73] the doubling

time of the bacteria was assumed to be 6 hours. The degradation rate, g, can

be calculated from the half-life of the antibiotic. The half-life of an antibiotic

is the time it takes for the concentration of antibiotic within the system to

decrease by half. The half-life of antibiotics varies widely, from 68 hours for

Azithromycin to 30 minutes for Cloxacillin. It is assumed that antibiotics are

delivered in daily doses where t̂ = (1, 2, 3, ...d). Due to the assumption of

daily dosing the half-life of the antibiotic was assumed to be 35 hours. The

MIC point of bacteria can change due to environmental factors or the pres-

ence of antibiotics selecting for advantageous mutations. An increase in MIC

point is the definition of a resistant bacteria. For the duration of this chapter

bacteria are assumed to be susceptible to antibiotics and remain so for the dura-
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tion of their lives. A full list of parameters and values can be found in Table 2.1.

Parameter Description Value

r Replication Rate 2.7726

K Carrying Capacity 1000

θ Natural Death Rate 0.2

g Degradation rate of antibiotic 0.48

Amax Max Antibiotic Induced Death Rate 4.67

Bmax Max net growth in absence of AB r− θ

mic Min inhibitory concentration (MIC) 16

k Hill coefficient 4

Table 2.1: Full list of parameters and values used within the model.

2.2.4 Deterministic versus Stochastic Modelling

Results from deterministic models are determined by parameter values and

initial conditions with the impact of stochastic effects not considered. These

results will not change unless the initial input is altered. At large population

densities these stochastic effects tend to have little impact on the overall sys-

tem and deterministic models predict the behaviour of the system well. In

addition, deterministic models are often cheap to simulate (in terms of run

time) and they offer the possibility of some analytical analysis. However, at

small population densities the lack of stochastic effects may not be negligible

with deterministic models unable to capture typically stochastic phenomena
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such as extinction.

At small population sizes stochastic phenomena result in slightly differ-

ent outcomes from the same system under the exact same conditions. If one

hundred people are treated with the same treatment regimen we may not

expect all one hundred infections to behave in the same way. Results from

a deterministic model would see all one hundred infections behave in an

identical manner, for example, all one hundred infections being eradicated or

zero infections being eradicated. Stochastic modelling offers a solution to this

problem by introducing random noise into the model. Each time the model is

simulated, with the same initial conditions, a slightly different result will be

produced. Each of the one hundred people being treated will now respond to

the treatment in a slightly different way, as would be expected in real-life.

Figure 2.4 highlights the difference in outcome when using a deterministic

model compared to a stochastic model. The result from the deterministic

model suggests that the treatment regimen implemented is never effective at

eradicating the infection. As deterministic models do not reach zero an arbit-

rary eradication level must be created, e.g. B < 5. Below this level it is assumed

that the population of bacteria are low enough such that the infection would

be eradicated. Despite the population size of bacteria reaching a low number,

this treatment regimen would still be dismissed. Using a stochastic model

provides a different outcome. In 14% of cases the stochastic model reaches

the same conclusion as the deterministic model. However, the remaining 86%

of cases would result in the treatment regimen successfully eradicating the

infection. With a small population size the random events within the stochastic

model have significant impacts on the results.
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Figure 2.4: Example of the dynamics of the bacterial model using a deterministic

(light blue) model and a stochastic (dark blue) model when antibiotics are

administered in daily doses. The bacteria persist with the deterministic

model but are eradicated 86% of the time with the stochastic model. The

red line indicates the concentration profile of the treatment regimen.

There exist different ways in which to include stochasticity in to modelling.

One way is to create a stochastic differential equation (SDE). SDE’s work by

taking a system of ODE’s such as (2.7) and including randomness. This can

be achieved by using a stochastic process to determine the parameter values

e.g. the growth rate of bacteria, or by adding a noise term on to the ODE e.g.

Brownian noise. Another well studied way is to use a stochastic simulation

algorithm such as Gillespie’s algorithm, a form of Markov chain. For the

remainder of this thesis the Gillespie algorithm will be used for all stochastic

simulation results.

2.2.4.1 Gillespie Algorithm

Introduced by Dan Gillespie in 1977 [111], the Gillespie Stochastic Simulation

Algorithm (SSA) is a Monte Carlo simulation method. Originally designed

to solve an issue regarding chemical reactions where the system size is very

small, it is now widely used in areas such as population dynamics and ecology.

At large system sizes it is reasonable to use approximations of event outcomes
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(such as law of mass action) as it will all balance out in the end. However,

with much smaller system sizes the order in which events occur can have

significant impact on the outcome (i.e. the death of a single individual might

make a large impact on the population).

Gillespie’s algorithm uses weighted chance to decide what event happens

based on the previous state of the model. Instead of testing in every discrete

time-step, the Gillespie algorithm calculates the instant of time at which a

new event will take place given the number of possible events and the rate

at which these events happen. This reduces the cost of simulating the data as

it avoids the need to simulate the time-steps where no events happen. Once

an event is selected the model is updated. With only one event happening

at each update the problem of events affecting each other within a time-step

is avoided. A certain integer value will be added or subtracted from some

substance of the model at each update. This new state provides slightly altered

chances for each event and the process repeats to calculate the next event to

take place. This is repeated until an equilibrium or time limit has been reached.

Event Outcome Transition Rate

Birth of Bacteria (B→ B+ 1) : rB(1− B
K) = R(1)

Death of Bacteria (B→ B− 1) : θB+A(C)B = R(2)

Table 2.2: Table showing the different events which can occur in the stochastic model,

the effect these events have on the population and the rate at which they

happen.

Creating the Gillespie algorithm for (2.7) requires the model to be split into

the individual events. For this model there are two different events that can
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occur (Table 2.2).

Each transition rate is converted into a probability that that event will

happen (2.8) by dividing the individual transition rates by the total sum of all

transition rates.

prob of event i : P(i) =
R(i)∑2
i=1 R(i)

(2.8)

Using a random number generator, a random number (x) is chosen between

0 and 1. If x ∈ [0 : p(1)) then event 1 occurs and the bacteria population is

increased by 1, if x ∈ [p(1) : p(1) + p(2)) then event 2 occurs and the bacteria

population is decreased by 1. Using a second random number (z) the time

delay (τ) until the next event takes place is calculated from the exponential

distribution (2.9) with a rate
∑2
i=1 R(i). The time is updated and the steps

are repeated to identify the next event and time delay. This process can be

extended for any number of events and repeated for any length of time. The

Gillespie algorithm was coded in MATLAB, example code can be found in

Appendix A Section A.1.1.

τ = −
log(z)∑2
i=1 R(i)

(2.9)

Due to the use of a random number generator each simulation using the

Gillespie algorithm will be slightly different. Each treatment regimen is there-

fore run 5000 times to allow for the variability within the results. A success rate

for each treatment regimen is obtained by calculating the percentage of runs

which result in eradication of the infection. The 95% confidence interval was

calculated in MATLAB using the Clopper-Pearson exact confidence interval.

The Clopper-Pearson confidence interval is a common method for calculating

binomial confidence intervals [112] where only the number of successful runs

and the number of trials are known. It is based on the binomial distribution

rather than any approximation to the binomial distribution and can be written

as (infimum S>, supremum S6) with
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S> =
{
θ|P[Bin(n; θ) > x] >

α

2

}
S6 =

{
θ|P[Bin(n; θ) 6 x] >

α

2

}
where 0 6 x 6 n is the number of successes observed in the sample and

Bin(n; θ) is a binomial random variable with n trials and probability of success

θ.

The Clopper-Pearson exact confidence interval was chosen due to the pos-

sibility of success rates close to 0% and 100%. At these values the normal

approximation is unreliable. Additionally the Clopper-Pearson confidence

interval ensures that the nominal confidence width is covered whereas other

confidence methods, such as the normal approximation, may be narrower than

the 95% confidence width. The success rate is used throughout this thesis to

compare the effectiveness of different treatment regimens.

2.3 conventional treatment regimens

Conventional treatment regimens consist of administering the same dose at

set intervals for a set duration of time. With the assumption of daily dosing,

the pattern for conventional treatment regimens is X units once a day for N

days. Using the parameter values from Table 2.1, the success rate for a range

of conventional constant dose treatment regimens was identified. The total

amount of antibiotic, X, across the entire regimen was fixed at either 100, 90,

80, 70, 60 or 50 µg/ml with the duration of treatment, N, varied from 1 to 10

days. Table 2.3 shows the success rate of the different conventional treatment

regimens.

The dose and duration of antibiotic treatment have been identified as import-

ant factors in optimising antibiotic use [113, 15]. When considered individually,
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Total Dose Days

1 2 3 4 5 6 7 8 9 10

100 90.1 98.2 99.1 99.3 99.4 99.5 9.6 99.0 98.1 94.4

90 85.7 95.4 97.6 98.6 98.1 97.9 97.4 94.7 84.2 45.5

80 76.1 91.8 94.3 95.4 94.9 92.7 82.8 60.8 11.0 0.3

70 60.7 79.9 83.9 84.2 78.0 58.9 22.5 1.3 0 0

60 40.1 59.8 59.7 47.6 21.6 3.6 0 0 0 0

50 13.1 18.5 7.7 1.1 0 0 0 0 0 0

Table 2.3: Success rate of eradicating an infection under various conventional treat-

ment regimens. The total dose is spread evenly across the number of days

e.g. if total dose = 90 and days = 5 then the antibiotic is administered in 5

doses of 18.

changing the dose or duration of treatment can result in superior success rates

but more effective treatments may be missed. Results from Table 2.3 show that

it is possible to increase the success rate by 14% if the amount of antibiotic

used is increased from 80 µg/ml over 1 day to 100 µg/ml over 1 day. However,

by splitting the 80 µg/ml over 2 days the success rate increases by 15.7%

with the added bonus that the environment has been exposed to a lower total

antibiotic concentration. Both the dose and duration must be considered when

looking for optimal treatments.

By plotting the results from Table 2.3 the presence of a trade-off between

dose and duration can be visualised (Figure 2.5). A high dose but over a short

duration does not expose the bacteria to the antibiotic for long enough. A

long duration means the antibiotic is being spread too thinly resulting in

the concentration of antibiotic not remaining above the bacteria’s MIC point
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Figure 2.5: Graph representing the data from Table 2.3. Success rate is plotted against

number of days of treatment for each of the total doses where T100

represent a total dose of 100.

for long enough. The most effective constant dose regimen lies somewhere

between these two extremes.

2.4 optimising treatment regimens

While Table 2.3 showed that conventional treatment regimens can be very

effective in eradicating an infection it gives no indication of the efficiency of

other alternative treatment regimens. The overuse of antibiotics is contributing

to the increase in antibiotic resistant bacteria. Identifying more effective ways

of using less antibiotic is paramount to extending their shelf-life.

This thesis takes the approach of using a Genetic Algorithm (GA) to optimise

treatment regimens by maximising the success of eradicating an infection while

using the least amount of antibiotic required to do so. The mathematical model

of bacterial dynamics (2.7) is incorporated into the GA and used to calculate
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the fitness function of varying treatment regimens. The GA searches through

possible dosage vectors and identifies the most effective way to distribute the

antibiotic across the duration of treatment. Relaxing the assumption of constant

dose treatments, the GA identifies the dosage vectorD = (D1,D2, ...,Dd) where

Di ∈N0, such that the given fitness function, F, is minimised. The advantage

to this approach is that if the conventional constant dose regimen is in fact the

optimal treatment strategy the GA would identify this. The GA was coded in

MATLAB, example code can be found in Appendix A Section A.1.2.

2.4.1 Setting the Constraints for the Genetic Algorithm

A conventional treatment regimen is used as a baseline and to set some con-

straints within the GA to ensure all the treatment vectors are comparable.

Conventional treatments using 100, 90 and 80 µg/ml of antibiotic in total

all contained treatment durations which resulted in success rates above 95%

(Table 2.3). While these regimens show that some conventional constant dose

treatments can be effective, the high success rates provide little room for im-

provement. The treatments using a total of 70 µg/ml of antibiotic reached a

maximum success rate of 84.2% over a 4 day duration. This lower success rate

provides a better opportunity to determine if moving away from conventional

constant dose treatments may provide more effective treatments. The dosage

vector D = (17.5, 17.5, 17.5, 17.5) is therefore taken as the baseline treatment to

which all alternative treatments will be compared.

The total amount of antibiotic used by the baseline treatment (D = (17.5, 17.5,

17.5, 17.5)) is 70 µg/ml. Therefore all alternative treatment regimens identified

by the GA must use no more than 70 µg/ml of antibiotic in total. It has

already been shown that it is possible to find greater success rates by using
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more antibiotic. Due to the trade-off that exists between the dose and duration,

the GA was allowed to explore treatments of longer duration within its search.

Treatment lengths of up to 6 days were considered allowing the potential for

an increase in duration of up to 50% compared to the baseline treatment. While

antibiotics are known to help treat infections the concentration at which they

are present is important. Antibiotics can be toxic if the concentration within a

hosts system reaches certain levels. The maximum concentration of antibiotic

within the system of the baseline treatment was used as an upper bound for

any alternative treatments. The maximum concentration within the system

must therefore not exceed 40 µg/ml, in keeping with the baseline treatment.

This ensures there are no potential issues with alternative treatment regimens

exceeding therapeutic levels. To code this maximum concentration level any

treatments exceeding 40 µg/ml are penalised with a fitness value of F = 105.

2.4.2 Genetic Algorithm with the Deterministic Model

Due to being less computationally expensive, as each solution only requires

one run of the model, the GA was initially run using the deterministic model

to simulate the outcomes from the different dosage vectors and inform the

fitness function. Using the deterministic model meant that success rates from

the various dosage vectors could not be compared within the GA. The fitness

function would have to measure and compare some other form of success. The

presence of a large population of bacteria within a host worsens the outcome

for the host the longer that population is allowed to thrive. The fitness function

was therefore designed to minimise the total bacterial load over the duration

of the infection. The increase in likelihood of mutations occurring with high

bacterial loads also strengthens the need for effective treatment regimens to

minimise the total bacterial load. If bacterial load is the only term within
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the fitness function the GA would automatically use the maximum amount

of antibiotic available. As the overuse of antibiotics is also of major concern,

the fitness function was altered to include a term which would minimise the

amount of antibiotic being used. Equation (2.10) shows the fitness function

used within the GA when using the deterministic model.

F = w1

d∑
i=1

Di︸ ︷︷ ︸
Total Antibiotic

+ w2

∫T
0
B(t)dt︸ ︷︷ ︸

Bacterial Load

(2.10)

where, T is the end of the simulation and wi > 0.

Due to the difference in magnitude of the values for total antibiotic and

bacterial load, weights w1 and w2 were used. The weights allow for more

emphasis to be placed on minimising one term over the other, to ensure

a trade-off exists between the two terms w1 > 0.001 and w2 > 0.001. The

eradication threshold is set to B < 5.

2.4.2.1 Results

The GA was run with a population size of 100 for 1000 generations. As it is a

stochastic method the GA was run 50 times with the most successful dosage

vector recorded for each run. The successful dosage vectors were then run

through the Gillespie algorithm to generate a success rate of eradicating the

infection (i.e. % of runs where the bacteria population dies out). Table 2.4

shows the top 3 results from the GA using the deterministic model when

minimising the fitness function (2.10). Each run of the GA produced the same

dosage vector. As there is no noise within the deterministic model the results

all converge to a single optimum dosage vector very quickly.
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Success Rate (%)

Dosage Vector Total Antibiotic [95% CI, n = 5000]

D1 (39, 12, 3, 0, 0, 0) 54 µg/ml 42.7 [41.32, 44.08]

(39, 12, 3, 0, 0, 0) 54 µg/ml

(39, 12, 3, 0, 0, 0) 54 µg/ml

Table 2.4: Table comparing the success rates of the dosage vectors produced by the GA

with deterministic modelling. The extinction threshold was set to B < 5. A

success rate was obtained by running the dosage vector using the Gillespie

algorithm for 5000 simulations.

The GA identifies a high initial dose followed by a tapering of lower doses

to be the most effective way of administering the antibiotics. The regimen

identified by the GA does indeed have a smaller fitness function when com-

pared to that obtained from the conventional regimen. The tapered regimen

uses less antibiotic and has a lower bacterial burden over the duration of

the infection than the conventional regimen. However, the tapered regimen

performs considerably worse, 42.7% (95% CI: 41.32, 44.08), when the success

rate is compared to that of the conventional regimen, 84.2% (95% CI: 83.16,

85.20). This is due in part to the ‘all or nothing’ results from the deterministic

model. The GA is able to refine the treatment regimen to the exact point

where the deterministic result changes from not eradicating the infection to

successfully eradicating it. Being so close to this point results in a lot of runs

not being successfully eradicated when the regimen is simulated using the

Gillespie algorithm.

In addition, population densities in deterministic models never reach zero.

An arbitrary point is chosen where the population is assumed to be extinct. In

Table 2.4 the extinction point was taken as B < 5. To determine if decreasing
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the extinction threshold would result in treatment regimens with better success

rates the GA was run again. This time the GA was run using the deterministic

model but with the extinction point being B < 2 (Table 2.5).

Success Rate (%)

Dosage Vector Total Antibiotic [95% CI, n = 5000]

D2 (33, 12, 12, 4, 0, 0) 61 µg/ml 72.9 [71.64, 74.13]

(33, 12, 12, 4, 0, 0) 61 µg/ml

(33, 12, 12, 4, 0, 0) 61 µg/ml

Table 2.5: Table comparing the success rates of the dosage vectors produced by the GA

with deterministic modelling. The extinction threshold was set to B < 2. A

success rate was obtained by running the dosage vector using the Gillespie

algorithm for 5000 simulations.

Once again the GA produces the same pattern of a high initial dose fol-

lowed by tapering doses. Lowering the extinction threshold has resulted in

the treatment duration being extended by a day. This duration matches that

of the conventional regimen. When compared to the conventional treatment

regimen the fitness function value of the new tapered regimen is once again

lower. This new tapered regimen still uses less antibiotic than the constant

dose regimen and has a lower total bacterial load over the duration of the

infection. By lowering the extinction threshold the results obtained from the

GA using the deterministic model have increased the success rate from 42.7%

(95% CI: 41.32, 44.08) to 72.9% (95% CI: 71.64, 74.13). Despite this increase the

success rate of the tapered regimen identified by the GA is still lower than the

conventional regimen, 84.2% (95% CI: 83.16, 85.20). The GA is not identifying

regimens which are more effective than the baseline conventional treatment.

However, if you compare the success rates of the tapered regimens with the
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conventional regimens that use a similar amount of antibiotic, the success rate

for the tapered regimen is better. This suggests that alternative dosage vectors

which increase success rate do exist.

The deterministic model provides no way of evaluating the success rate

within the GA. The success or failure of a dosage vector is a binary result

and this is causing a problem. To determine whether the GA could indeed

identify better treatment regimens the stochastic model was used within the

GA instead of the deterministic model. This removes the problem of the

success rate of a treatment regimen being obtained only after the GA has

finished. Despite knowing this may cause a problem beforehand, the extensive

run-time of using the stochastic model within the GA made the deterministic

model a reasonable place to start. The extensive run time using the stochastic

model is due to each solution being run 1000 times to gain a fitness score.

2.4.3 Genetic Algorithm with the Stochastic Model

Despite changing from using the deterministic model to the stochastic model

the GA remains largely unchanged. The aim of the GA is still to identify the

dosage vector D = (D1,D2, ...Dd) where Di ∈ N0, such that the fitness func-

tion is minimised. The terms used to calculate the fitness function have been

altered but the dose vector format and obvious constraints used previously

remain the same.

When using the deterministic model to simulate the effectiveness of a dosage

vector there are only two possible outcomes, either it works and eradicates the

infection or it does not. Minimising the bacterial load was therefore used as

an approximation for the success rate when the deterministic model was used.
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By using the stochastic model to calculate the fitness function it is possible

to directly identify dosage vectors which have a better success rate than the

baseline treatment. If the fitness function is only concerned with maximising

the success rate the maximum amount of antibiotic will be used even if it is

not required as there is no penalty in doing so. The fitness function for the

GA using the stochastic model is therefore a trade-off between maximising

success rate while minimising antibiotic use (2.11). As the GA is set to min-

imise the fitness function,
∑
B̂ is the sum of the runs where the number of

bacteria present at the end of the simulation (T ) was greater than zero. By

minimising the number of runs which result in bacteria present at the end of

the simulation, the number of runs which successfully eradicate the infection

is maximised.

F = w α1

d∑
i=1

Di︸ ︷︷ ︸
Total Antibiotic

+ (1−w) α2

N∑
i=1

B̂i︸ ︷︷ ︸
Unsuccessful runs

(2.11)

where

B̂ =


1, if B(T) > 0.

0, if B(T) = 0.

Coefficients α1 and α2 are used to keep the terms in the range [0, 1]. As

the maximum amount of antibiotic that can be used is 70 /mug/ml, α1 = 1
70 .

Similarly, the maximum number of unsuccessful runs is 1000 and so α2 = 1
1000 .

A weight is also used on each term to vary the trade-off between them. As the

value of w increases more emphasis is placed on minimising the amount of

antibiotic used. Values of w were chosen such that a set decrease in antibiotic

must account for no more than a 1% decrease in success rate to be considered

a better treatment regimen. This ensures that minimising the amount of
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antibiotic does not cause a considerable decrease in the success rate. Varying

the weights on the terms in the fitness function had no qualitative effect on

the overall results. A weight of w = 0 was therefore chosen.

2.4.3.1 Results

Due to the extensive run-time associated with using the stochastic model

within the GA, the population size was reduced to 50 and the generations

reduced to 100. The GA was repeated 50 times with the identified dosage

vector and its success rate recorded for each run. The Gillespie algorithm

was run 1000 times for each individual solution to produce the success rate

within the GA. Due to the stochastic nature of the GA and the stochasticity of

the Gillespie algorithm some noise exists within the dosage vectors. Varying

the weights on the terms in the fitness function had no qualitative effect on

the overall results. The top 10 dosage vectors identified by the GA using the

stochastic model when minimising (5.4) with a weight of w = 0 are shown in

Table 2.6.

Once again the GA identifies a tapered pattern as the most effective way of

administering the antibiotic. By using the stochastic model the GA is able to

compare the success rates within the algorithm. This ensures that the dosage

vectors identified are indeed more successful than the baseline regimen. By

taking the same amount of antibiotic but applying it with a high initial dose

followed by lowering doses, the GA increases the success of eradicating the

infection from 84.2% (95% CI: 83.16, 85.20) to 91.04% (95% CI: 90.21, 91.82).

Figure 2.6 compares the concentration profile of the conventional baseline

regimen with regimen S1, Table 2.6. The concentration of antibiotic from the

conventional treatment takes time to build up. By administering a high initial

dose the concentration of antibiotic from the tapered regimen is increased
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Success Rate (%)

Dosage Vector Total Antibiotic [95% CI, n = 5000]

S1 (28, 18, 13, 11, 0, 0) 70 µg/ml 91.04 [90.21, 91.82]

S2 (31, 14, 15, 8, 2, 0) 70 µg/ml 91.04 [90.21, 91.82]

S3 (32, 14, 14, 10, 0, 0) 70 µg/ml 90.76 [89.92, 91.55]

S4 (29, 15, 14, 11, 1, 0) 70 µg/ml 90.66 [89.82, 91.45]

S5 (33, 14, 12, 10, 0, 0) 69 µg/ml 90.64 [89.80, 91.43]

S6 (35, 13, 10, 12, 0, 0) 70 µg/ml 90.54 [89.69, 91.34]

S7 (33, 16, 12, 9, 0, 0) 70 µg/ml 90.48 [89.63, 91.28]

S8 (32, 9, 15, 14, 0, 0) 70 µg/ml 90.10 [89.24, 90.91]

S9 (29, 19, 13, 9, 0, 0) 70 µg/ml 89.84 [88.97, 90.66]

S10 (34, 13, 13, 7, 2, 0) 69 µg/ml 89.16 [88.27, 90.01]

Table 2.6: Table comparing the success rates of the dosage vectors produced by the

GA with stochastic modelling where w = 0. The top 10 dosage vectors are

shown.

above the MIC on the first dose and maintained with smaller doses. By relaxing

the constant dose constraint the total concentration of antibiotic within the

system can be maintained at a lower level while spending an adequate duration

above the MIC.

2.5 sensitivity analysis

To identify if the pattern of a high initial dose followed by a tapering of

lower doses was a consequence of the parameter values chosen, two further

parameter sets were analysed (Table 2.7). Parameter Set 1 creates a worse case

scenario: the bacteria reproduce quicker, the MIC is higher and the antibiotics
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Figure 2.6: Concentration profiles for the baseline conventional treatment regimen,

(17.5, 17.5, 17.5, 17.5), and regimen S1 from Table 2.6. (a) The baseline treat-

ment regimen briefly increases the concentration above the MIC after the

first dose but quickly drops below again. Future doses increase and main-

tain the concentration above the MIC reaching a maximum concentration

of 40 µg/ml. (b) S1 increases the concentration above the MIC of the bac-

teria with further, smaller, doses used to maintain it above the MIC. The

maximum concentration reached is 35 µg/ml.

degrade quicker than the original parameter set. Parameter Set 2 is the oppos-

ite with parameters benefiting treatment: the bacteria reproduce slower, the

MIC remains the same and the antibiotics degrade slower than the original

parameter set.
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Parameter Set 1 Set 2

r 4.176 1.386

K 1000 1000

θ 0.2 0.2

g 0.693 0.347

Amax 5.25 2.75

Bmax 3.976 1.186

mic 24 16

k 3 4

Table 2.7: Full list of parameters and values for both parameter sets used within the

sensitivity analysis.

Parameter Set 1

A baseline conventional treatment regimen was identified for this new para-

meter set. The dosage vector D = (34, 34, 34, 34, 34, 0) successfully eradicated

the infection in 78.10% (95% CI: 76.93, 79.24) of cases. It used a total of 170

µg/ml of antibiotic to obtain this and reached a maximum concentration of 65

µg/ml. Using the GA with the stochastic model constraints were set to ensure

alternative treatment regimens did not exceed the maximum amount of anti-

biotic used or the maximum concentration observed within the conventional

regimen.

Results from the GA (Table 2.8) identified treatment regimens which signi-

ficantly increased the success of eradicating the infection up to 81.6% (95% CI:

80.50, 82.67). The same high initial dose followed by tapering of lower doses is
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Success Rate (%)

Dosage Vector Total Antibiotic [95% CI, n = 5000]

T1 (34, 34, 34, 34, 34, 0, 0) 170 µg/ml 78.1 [76.93, 79.24]

S1 (55, 33, 29, 27, 24, 0, 0) 168 µg/ml 81.6 [80.50, 82.67]

S2 (54, 34, 32, 24, 20, 0, 0) 164 µg/ml 78.5 [77.33, 79.63]

Table 2.8: Table comparing the success rate of the baseline dosage vector (T1) and

the top two dosage vectors (S1,S2) produced by the GA with stochastic

modelling using parameter set 1.

seen once again in these results. By administering the antibiotics in a tapered

pattern it is also possible to identify treatments which use less antibiotic while

maintaining a similar success rate to that of the conventional treatment.

Parameter Set 2

Repeating for the second parameter set, a baseline treatment was identified

as D = (14, 14, 14, 14, 14, 0). Using a total of 70 µg/ml of antibiotics with a

maximum concentration of 40 µg/ml, this treatment regimen has a success

rate of 78.3% (95% CI: 77.13, 79.44). Using the GA with the stochastic model it

was possible to increase the success of treating an infection up to 87.40% (95%

CI: 86.45, 88.31) (Table 2.9). This was achieved by employing the same tapered

pattern with a high initial dose.

Under both parameter sets the GA identifies a high initial dose followed by

tapering lower doses as the most effective way to administer antibiotics. Simil-

arly to the original parameter set, dosage vectors identified by the GA have

a higher success rate then that of the baseline treatment. In cases where the
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Success Rate (%)

Dosage Vector Total Antibiotic [95% CI, n = 5000]

T2 (14, 14, 14, 14, 14, 0 0 ) 70 µg/ml 78.3 [77.13, 79.44]

S3 (30, 14, 8, 9, 9, 0, 0) 70 µg/ml 87.4 [86.45, 88.31]

S4 (31, 12, 11, 9, 7, 0, 0) 70 µg/ml 86.6 [85.62, 87.53]

Table 2.9: Table comparing the success rate of the baseline dosage vector (T2) and

the top two dosage vectors (S3,S4) produced by the GA with stochastic

modelling using parameter set 2.

success rate is not significantly different less antibiotic was required to achieve

the same success. Administering antibiotics in a tapered regimen increases

the effectiveness of the treatment compared to a conventional constant dose

regimen. However, while the tapered pattern appears to be optimal, the exact

doses required are individual to each infection being treated.

2.6 discussion

Constant dose treatment regimens are the conventional pattern for administer-

ing antibiotics to treat bacterial infections. Constant dose regimens have many

advantages: it is cost effective to only manufacture tablets in a given strength,

there is little room for human error and simpler treatment regimens lead to

more reliable compliance. While this pattern of treatment may be effective,

different treatment patterns may provide a more efficient use of the antibiotic.

With the sub-optimal use of antibiotics contributing to the emergence of anti-

biotic resistant bacteria [114, 115, 44], standard treatment protocols need to be

optimised.
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Unfortunately, updates to standard treatment protocols are not timely. Until

2014 the dose of amoxicillin administered to children was based on specific

age bands. Due to the increase in average weight of children more than 50%

of those receiving the antibiotic were being under-dosed [116]. Many clinical

studies have proposed that shorter treatment durations are just as effective

as the standard treatment duration for treating a range of bacterial infections

[117, 118, 119, 120, 121]. As a result, the duration of treatment for community

acquired pneumonia has now been amended to a minimum of 5 days, after

which patients should be re-examined. Despite these changes, these may still

not be the most effective way of using the antibiotic. There is little consensus

on the optimal treatment regimen for antibiotic therapy with many potential

regimens not even being considered.

A mathematical model of a susceptible bacterial population was developed.

Using a theoretical parameter set, a conventional constant dose treatment

regimen was identified which successfully eradicated the infection in 84.2% of

cases. This conventional treatment regimen was used as a baseline to compare

alternative treatments. A GA was chosen as a method for optimising alternat-

ive treatment regimens. By adding constraints to the GA it is possible to ensure

that a fair comparison can be made with the baseline regimen. Alternative

treatment regimens could use, at most, the same amount of antibiotic as the

baseline treatment while not exceeding the maximum concentration within

the system at any given time. The GA was run using both a deterministic and

a stochastic model to inform the fitness function. Despite being less computa-

tionally expensive and providing a similar dosage pattern, the deterministic

model did not produce dosage vectors which were significantly better than

the baseline treatment. Results were therefore generated using the stochastic
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model within the GA.

The GA continually identified a high initial dose followed by a tapering of

smaller doses to be the optimal way of administering the antibiotics to increase

the success rate. Administering the antibiotic in this tapered pattern increased

the success of eradicating the infection from 84.2% to 91.04%, despite using

the same amount of antibiotic as the conventional treatment. By administering

a high initial dose the concentration of antibiotic is established well above

the MIC of the bacteria. The tapered doses maintain the concentration above

the MIC for the shortest duration possible. In contrast, the concentration

within the conventional regimen has to build up to such a level that it can

be maintained above the MIC. This results in the system being exposed to a

higher concentration of antibiotic compared to the tapered regimen. Despite

increasing the weight placed on minimising the amount of antibiotic being

used, the GA was unable to find regimens which used less antibiotic without

causing a considerable decrease in success.

Two further parameter sets were analysed and for both systems a tapered

treatment regimen was identified as the optimal way to apply the antibiotics.

In addition to the tapered pattern increasing the success rate when using an

equal amount of antibiotic, the tapered pattern allows for less antibiotic to be

used to obtain results significantly similar to that of the conventional treat-

ment. In the case of Parameter Set 1, the GA identified a treatment regimen

using 4% less antibiotic than the constant dose treatment. Tapered treatment

patterns are not new and have been established in the treatment of Clostridium

difficile with Vancomycin [122, 123]. However, previous modelling studies

have suggested that tapering treatment regimens may result in sub-optimal

performance [80, 81]. Despite being qualitatively similar, these treatments are

62

[ 12th November 2019 at 15:10 ]



all quantitatively different. Using the GA identifies tapered regimens which

will maximise success rate but there may be tapered regimens which are less

effective than the baseline. Care must be taken when generalising alternative

treatment patterns.

Despite the conventional treatment regimen being simple to implement and

potentially effective at eradicating the infection, there is a push for antibiotics

to be used optimally. Antibiotic resistance is an increasing concern with the

overuse and misuse of antibiotics a driving factor in increasing resistance.

By moving away from constant dose treatments to more tailored treatments

it might be possible to prolong the use of the antibiotics we currently have.

The work carried out in this chapter suggests that tapered regimens may

optimise the use of antibiotics resulting in better success rates and the use

of less antibiotic. However, a major limitation to this work was the absence

of any resistant bacteria. In cases where infections are not cleared, resistant

bacteria have been seen to lead the path in re-colonising an infection [124]. To

investigate whether tapered regimens would further facilitate the spread of

resistant bacteria the model could be extended to include a sub-population of

resistant bacteria.

2.7 summary

This Chapter aimed to use a genetic algorithm to identify more effective treat-

ment strategies for administering antibiotics. The use of genetic algorithms

to optimise treatment regimens enables an extensive number of possibilities

to be considered. Previous regimens direct the search for further regimens

into regions of better performance. A mathematical model was developed to

describe the dynamics of a population of susceptible bacteria in the presence
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of an antibiotic. This model was used to calculate the fitness function within

the GA by predicting the success of various treatment regimens.

Despite its preferable run-time and similar pattern of results, the determ-

inistic model was found to have limited use in identifying better treatment

regimens. Incorporating the stochastic model into the GA produced signific-

antly better results. By redistributing the antibiotic into a tapered pattern with

a high initial dose, the GA identified regimens which increased the success

of eradicating the infection compared to the conventional baseline treatment.

This pattern of treatment was again identified by the GA when two additional

parameter sets were examined. Tapered regimens have the potential to in-

crease the success of eradicating an infection, reduce the amount of antibiotic

required and expose the system to a lower concentration of antibiotic than

conventional treatments.

With antibiotic resistance continuing to pose a threat to future healthcare,

the ability to successfully treat a bacterial infection while using the minimum

amount of antibiotic required is of global importance. This Chapter highlights

the need to consider treatments which vary from the conventional constant

dose regimens and the potential for GA’s to be a useful tool in exploring

alternative treatment strategies. Tapered regimens have already been found

to be successful in the treatment of Clostridium difficile where they are the

standard dosing protocol. However, the majority of treatment regimens for

bacterial infections are prescribed in a constant dose pattern.

The impact alternative treatment regimens have on the presence and spread

of resistant bacteria was not considered in this Chapter. However, the work
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contained in this Chapter creates a framework which can be extended to

include the presence of resistance (Chapter 3).

65

[ 12th November 2019 at 15:10 ]



3
O P T I M I S I N G A N T I B O T I C T R E AT M E N T R E G I M E N S I N

T H E P R E S E N C E O F R E S I S TA N T B A C T E R I A

3.1 introduction

In Chapter 2, a mathematical model was developed to predict the behaviour

of a single strain bacterial population in the presence of antibiotics. The model

was incorporated into a genetic algorithm (GA) which was used to identify

optimal antibiotic treatment strategies. A treatment regimen with a high initial

dose followed by tapering lower doses was repeatedly identified as the optimal

pattern to increase success rates while minimising the amount of antibiotic

required. This approach highlighted the practicality of using a GA to identify

alternative antibiotic treatment regimens when used in combination with a

mathematical model.

An increase in antibiotic resistant bacteria poses a threat to the contin-

ued use of antibiotics to treat bacterial infections [125, 126]. The presence

of resistant bacteria is already making it extremely difficult to successfully

treat certain strains of pneumonia, tuberculosis and gonorrhoea [2, 3, 4, 5].

A significant driver in the emergence of resistant strains is the overuse and

misuse of antibitoics [127, 43, 128]. Finding optimal treatment regimens, in the

presence of resistant bacteria, is critical in ensuring the prolonged effectiveness

of antibiotics.

66

[ 12th November 2019 at 15:10 ]



The aim of this chapter is therefore to extend the work carried out in Chapter

2 by considering the presence of resistant bacteria. The single strain bacterial

model will be replaced by a two strain model describing the dynamics of both

a susceptible and resistant bacterial population in the presence of antibiotics.

The effect the presence of the resistant population has on the outcome of anti-

biotic treatment patterns will be investigated. Using a conventional constant

dose treatment regimen as a baseline, the GA will be used to identify optimal

treatment regimens. These regimens will maximise the success of eradicating

an infection, where resistant bacteria are present, while minimising the amount

of antibiotic required to do so.

This work was published in Nature Scientific Reports in the paper by Paterson

et al. [82] of which the author of this thesis is the lead author. The paper was

written by the author of this thesis who also designed the genetic algorithm

and performed the mathematical analysis with some guidance from the co-

authors. An edited version of the paper is presented in Section 3.2 with

Section 3.3 providing the supporting supplementary information referenced

throughout the paper.

3.1.1 Changes in Notation

There have been some changes made to the notation used within the function

for the antibiotic-induced death term since the work in this chapter was

published. As such, there are some discrepancies between the notation used

throughout this thesis and that used within the paper. The function for the

antibiotic-induced death rate from the paper is:

A(C) =
(max−min)

(
C
mic

)k(
C
mic

)k
− min
max
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Taking this work forward experimentally, the parameter value for min

would be difficult to measure independently. However, max−min represents

the maximum antibiotic-mediated death rate and therefore was replaced by

Amax. The notation for the maximum net growth rate of bacteria in the

absence of antibiotics was changed from max to Bmax but still represents the

value (r− θ). Substituting in Amax = max−min and Bmax = max gives:

A(C) =
Amax

(
C
mic

)k(
C
mic

)k
− min
Bmax

Replacing min with Bmax−Amax and simplifying gives the notation used

throughout this thesis:

A(C) =
Amax

(
C
mic

)k(
C
mic

)k
+ Amax
Bmax − 1

Despite both functions being equivalent, the change in parameters allows

for values to be taken straight from a concentration versus death rate graph

such as that in Figure 2.2.

A minor change was also made to the naming of constant dose, set duration

treatment regimens. Throughout the paper constant dose treatment regimens

were referred to as traditional treatment regimens. However, throughout this

thesis these are referred to as conventional treatment regimens.
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3.2 optimising antibiotic usage to treat bacterial infections

(paterson et al. 2016)

Paterson, I.K., Hoyle, A., Ochoa, G., Baker-Austin, C., Taylor, N.G.H., (2016). Op-

timising Antibiotic Usage to Treat Bacterial Infections. Sci. Rep. 6, 37853

3.2.1 Introduction

The discovery of penicillin in 1928 dramatically changed human and animal

health and well being. Since then, the discovery of additional antibiotics has

further increased survival rates in areas such as surgery and during cancer

chemotherapy. However, a lack of new antibiotics and an increase in resistance

means these advances are under threat [129]. Resistance to all antibiotics in

clinical use has now been observed [36], with the extensive use and misuse of

antibiotics being attributed to the spread of these resistant genes [127, 43, 128].

This has caused considerable debate over the future effectiveness in treating

bacterial diseases [57, 58]. As such, the World Health Organisation (WHO) has

identified antibiotic resistance as one of the major health concerns of the 21st

Century.

The apparent ease at which antibiotic resistance spreads is due to the ability

of bacteria to acquire additional genes. Genes can be acquired via either muta-

tions or horizontal gene transfer (HGT). While mutations are undoubtedly a

source of resistance, HGT is responsible for increased propagation of resistance

through bacterial populations [130]. If bacteria acquire resistant genes in an

environment where they are beneficial, HGT will facilitate the spread of these

genes within the population [69]. Sub-Minimum Inhibitory Concentrations

(MIC) of antibiotics and the persistence of high levels of antibiotics within the
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environment have been linked to the emergence of resistant genes [131, 54].

Antibiotic treatments must therefore be effective to minimise the influence of

an environment which selects for resistance.

Effective antibiotic treatment regimens consist primarily of two variables:

the dose and the duration of treatment. For most antibiotics, the manufac-

turer identifies a conventional treatment regimen which is implemented by

doctors and veterinary surgeons when prescribing these antibiotics. These

conventional treatment regimens usually consist of a fixed dose administered

for a specified duration. Drug efficiency studies are used to determine the

dose and duration for these treatment regimens. However, one limitation

of this approach is that it only provides information for the regimen being

analysed and offers no indication for other potential regimens. AliAbadi and

Lees [132] highlighted the importance of rational use of antibiotics and the

need to incorporate population pharmacokinetic (PK) and pharmacodynamic

(PD) data into dosage scheduling. While conventional treatment regimens

may be effective they may not be the optimal duration or dose at which to

administer antibiotics.

As the threat of antibiotic resistance spreads the need to optimise antibiotic

dosage regimens becomes essential. Mathematical modelling is increasingly

being used to investigate optimal treatment regimens for antibiotic therapy

[61, 63, 73, 74, 133]. However, these studies either omit pharmacodynamic

data, by assuming that the antibiotic induced death rate is constant; or only

analyse a very limited number of alternative treatment regimens. With no

verification that the duration or doses chosen are optimal, these studies look

for an ‘optimal’ solution from a selection of sub-optimal treatments. This study

therefore aims to address these assumptions by considering antibiotic induced
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death as a function of the concentration of antibiotic present and by using

a genetic algorithm (GA) to identify optimal treatment regimens. The use

of a GA allows for the automatic exploration of the vast space of potential

treatment regimens, in order to locate the most efficient ones. The effectiveness

of conventional treatment regimens in eradicating bacterial infections will be

analysed and compared to the alternative treatment regimens identified using

the GA. This will be the first study examining the use of a genetic algorithm

to optimise antibiotic treatment regimens.

3.2.2 Methods

3.2.2.1 Deterministic Model

In keeping with previous studies [69, 63, 134, 104] a system of coupled ordin-

ary differential equations are used to describe the dynamics of a population

of susceptible (S) and resistant (R) bacteria. As asexual reproduction requires

energy it is assumed that the growth rate of bacteria is limited and therefore

modelled using the standard logistic growth equation. A cost, a, is associated

with carrying the genes which confer resistance to antibiotics [8] and results

in a reduced growth rate for the resistant strain. Genes can pass from resistant

to previously susceptible bacteria through HGT, β, resulting in the loss of

susceptible bacteria and the addition of resistant bacteria. There are 3 main

mechanisms of HGT: transformation, transduction and conjugation. This study

does not distinguish between the differing modes of HGT. Both susceptible

and resistant bacteria die at a natural death rate, θ, and through exposure to

antibiotics, Ai(C).

Antibiotics are added to the system in daily doses. When t = t̂n the con-

centration of antibiotic C(t) = C(t) +Dn, where t̂ = (1, 2, 3, ..., 10) and D
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is a vector of doses D = (D1,D2, ...,D10). Conventional treatment regimens

assume that D1=D2=...=D10, however this study relaxes this constraint. Treat-

ment regimens within this study are limited to a maximum of 10 doses but

this could be increased indefinitely. Experimental data [110, 109] suggests that

as the concentration of antibiotic increases the death rate increases until it

reaches a saturation point. In addition, the concentration of antibiotic naturally

decays within a host. The concentration of antibiotic is therefore modelled

according to first order kinetics with an elimination constant g. The half-life of

the antibiotic is therefore given by t1/2 =
ln(2)
g

To model the relationship between antibiotic concentration and antibiotic

induced death rate the extension of the Emax model of antibiotic treatment by

Regoes et al [110] was used (Eq. 3.1).

Ai(C) =
Amaxi

(
C
mici

)ki
(

C
mici

)ki
+ Amaxi
Bmaxi

− 1

, i ∈ {S,R} (3.1)

The full model can therefore be written as (3.2).

dS

dt
= rS

(
1−

S+ R

K

)
− θS︸ ︷︷ ︸

Natural Growth

−βSR︸︷︷︸
HGT

−AS(C)S︸ ︷︷ ︸
AB Death

dR

dt
= rR

(
1−

S+ R

K

)
(1− a) − θR︸ ︷︷ ︸

Natural Growth

+βSR︸︷︷︸
HGT

−AR(C)R︸ ︷︷ ︸
AB Death

dC

dt
= − gC︸︷︷︸

Degredation

(3.2)

The parameter values were chosen such that in the absence of antibiotics

the resistant strain would not out-compete the susceptible strain. Analytical

analysis of the model was performed to identify the conditions which meet

this criteria (see Supplementary Equations). This ensures that if resistance

72

[ 12th November 2019 at 15:10 ]



invades it is due to the treatment regimen and not a result of the dynamics of

the system. A full list of parameters and values can be found in Table 3.1.

Parameter Description Value

r Replication Rate 2.7726

K Carrying Capacity 1000

β Rate of Transmission of Resistant Plasmid 0.00001

θ Natural Death Rate 0.2

a Cost of Resistance 0.2

g Degradation Rate of Antibiotic 0.48

AmaxS Max Antibiotic-induced Death Rate 4.873

BmaxS Max Net Growth in Absence of Antibiotic r− θ

micS Min Inhibitory Concentration (MIC) 16

kS Hill Coefficient 4

AmaxR Max Antibiotic-induced Death Rate 4.12

BmaxR Max Net Growth in Absence of Antibiotic r(1− a) − θ

micR Min Inhibitory Concentration (MIC) 32

kR Hill Coefficient 4

Table 3.1: Full list of parameters and values used within the model.

3.2.2.2 Stochastic Model

Deterministic modelling contains no randomness and as a result produces the

same outcome each time it is run. Provided the population densities are not

too small, deterministic models produce good approximations of the system

dynamics. However hosts treated with the same treatment regimen will not all
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respond in exactly the same way. The small population size of resistant bac-

teria mean that stochastic events may lead to the emergence or extinction of a

resistant strain. A stochastic framework was therefore produced for (3.2). This

study uses the well-established Gillespie algorithm [111] to obtain stochastic

simulations for the different treatment regimens. By calculating the probability

of the individual events occurring, based on rates and parameter values from

the deterministic model, the Gillespie algorithm randomly chooses the next

event to happen and the time at which it will happen. The population of each

bacteria is adjusted accordingly and the process is repeated. As the events are

chosen randomly each simulation will be slightly different.

Simulations are run for 30 days to allow for infection to return if treat-

ment regimens are unsuccessful. Each treatment regimen was run 5000 times

with the infection either being eradicated or still present at the end of the 30

days. The success rate for each treatment regimen was obtained by calculating

the total number of simulations which resulted in the eradication of both

susceptible and resistant bacteria. After exposure to an antibiotic treatment

regimen, infections which were not eradicated were found to be composed

entirely of resistant bacteria. Therefore increasing the success rate decreases

the emergence and potential spread of resistant bacteria.

Due to the ability to simulate the model thousands of times the variability

within the results is small. However, the 95% confidence interval for each treat-

ment was calculated in MATLAB using the Clopper-Pearson exact confidence

interval [135]. This method was chosen due the occurrence of success rates

close to 100%. The median time to eradication for all successfully eradicated

infections was also calculated. (This data was not normally distributed and

therefore the median was used instead of the mean).
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3.2.2.3 Genetic Algorithms

Genetic algorithms (GA) were proposed by John Holland in the early 1970’s

[85]. They belong to the larger class of evolutionary algorithms, which gener-

ate solutions to optimisation problems using techniques inspired by natural

evolution, such as inheritance, mutation, selection and crossover [136]. GAs

have previously been used to generate treatment schedules for chemotherapy

treatment [76, 78]. Despite being a randomised search GAs are by no means

random, instead they use historical information to direct the search into the

region of better performance within the search space.

In this study the genetic algorithm was used to identify effective dosage

vectors, D = (D1,D2, ...,D10), which would maximise the success rate of erad-

icating the infection by minimising the fitness (objective) function (3.3).

F = w1α1

10∑
i=1

Di︸ ︷︷ ︸
Total Antibiotic

+w2α2

∫30
0
N(t)dt︸ ︷︷ ︸

Bacterial Load

(3.3)

Minimising the total amount of antibiotic used,
∑
iDi, exposes the envir-

onment to less antibiotic reducing the likelihood of resistance developing.

However, using less antibiotic increases the total bacterial burden on the host

over the length of the infection,
∫30
0 N(t)dt, where N=S+R. The increased bac-

terial load not only compromises the health of the host but also offers more

opportunity for mutations to arise increasing the risk of further resistance

developing. A trade-off exists between the total amount of antibiotic used

and the total bacterial load over the course of the infection. Weights w1 and

w2 allow for more emphasis to be placed on minimising one term over the

other. To ensure a trade-off exists, w1 > 0.001 and w2 > 0.001 (However, this

study later considers the case where w1 = 0, hence the objective is solely to

maximise treatment success.) Due to the difference in the magnitude of the
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values of each term, correcting factors α1 and α2 were used to transform the

terms between 0 and 1.

The GA uses the deterministic model to run simulations using the generated

dosage vectors. Values from these simulations are then used to compute the

fitness function for that dosage vector. The fitness function of each generated

dosage vector are compared with the search space moving towards the vector

with the smallest fitness function. (The GA was implemented using MATLAB

with a population size of 100, for 1000 generations and repeated 50 times

with values of 0.01 and 0.99 for Eq. 3.3, w1 and w2, respectively). Solutions

were then run through the Gillespie algorithm to produce a success rate of

eradication for each vector.

An alternative approach is to use the stochastic model as part of the fitness

function evaluation within the GA. Limited results were obtained using this

approach due to the computational time increasing substantially (in the order

of 103) compared to using the deterministic model.

3.2.3 Results

Numerical simulations were run to analyse the effect different treatment

regimens have on the population size of bacteria within an infection. The

success rate and time to eradication of the infection were analysed. Treatment

regimens are obtained from conventional regimens and from solutions derived

using a GA. The results presented were performed with an initial resistant

population of 10% of the total bacterial population. When analysed with an

initial resistant population of 1% of the total bacterial population the results

follow a similar pattern (see Supplementary Table S1).
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3.2.3.1 Conventional Treatment Regimens

Using conventional treatment strategies of a constant dose administered for 10

days the minimum daily dose required to successfully treat the infection is 23

µg/ml (Fig. 3.1). Under this regimen the infection is successfully eradicated in

99.8% (95% CI: 99.6, 99.9) of cases (n=5000 for all simulations). Administering

23 µg/ml of antibiotics per day increases the concentration of antibiotic within

the system over the 10 days, reaching a peak of 60 µg/ml on day 10 (Fig. 3.1b).
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Figure 3.1: Dynamics of the model over 30 days with antibiotic therapy administered

at a daily dose of 23 µg/ml for the first 10 days. (a) Stochastic simulations

of the population dynamics of both susceptible (blue) and resistant (green)

bacteria with the deterministic dynamics (bold) overlaid. 5000 simulations

were run producing a success rate of eradicating the infection of 99.8%

(95% CI: 99.6, 99.9). (b) Simulation of the concentration profile of antibi-

otic present within the system over the 30 day duration. The MIC lines

indicate the concentration of antibiotic required to inhibit the growth of

the respective bacterial strain, 16 µg/ml for susceptible bacteria and 32

µg/ml for resistant bacteria. A maximum antibiotic concentration of 60

µg/ml is observed on Day 10.

From Fig. 3.1b it is noted that it takes 3 days before the concentration of

antibiotic is maintained above the MIC of the resistant strain. During these first
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3 days the population of resistant bacteria increases (Fig. 3.1a). Once above the

MIC of the resistant strain the population begins to decrease. If the infection

is not eradicated under the conventional treatment regimen then a resistant

infection will emerge.

Until now the study assumed that conventional treatment regimens are ad-

ministered over 10 days. This assumption was relaxed and the success rate of

eradicating the infection over a shorter duration examined (Table 3.2). Shorter

treatment duration results in a decrease in the success rate of eradicating

the infection. Treatment duration fewer than 8 days experiences a substantial

decrease in success rate, to below 90%.

Dosage Vector Total Success Rate (%) Time to Eradication

Antibiotic [95% CI, n=5000] (days) [95% CI]

T1 (23, 23, 23, 23, 23, 23, 23, 23, 23, 23) 230 99.8 [99.6, 99.9] 7.31 [7.23, 7.39]

T2 (23, 23, 23, 23, 23, 23, 23, 23, 23, 0 ) 207 99.0 [98.7, 99.3] 7.29 [7.19, 7.35]

T3 (23, 23, 23, 23, 23, 23, 23, 23, 0, 0 ) 184 96.4 [95.8, 96.9] 7.13 [7.04, 7.19]

T4 (23, 23, 23, 23, 23, 23, 23, 0, 0, 0 ) 161 87.4 [86.4, 88.3] 7.12 [7.04, 7.20]

Table 3.2: Comparison of success rate and time to eradication for conventional treat-

ment dosage vectors of varying duration. For time to eradication of regimens

T1, T2, T3 and T4; n = 4990, 4950, 4820 and 4370 respectively.

The time taken to eradicate the bacterial population was also measured.

This time was only recorded in the cases where the treatment was successful

and the bacterial population completely eradicated. There is a small decrease

in the time to eradication as the treatment duration decreases from 10 days

to 7 days. However, this is due to the shorter regimen leading to a lower

success rate. The 7 day conventional treatment is unable to eradicate infections
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which persist beyond 8 days due to the antibiotic continuously degrading

beyond the last day of treatment. Due to these persistent infections not being

eradicated the median time to eradication lowers in comparison to the longer

conventional treatment regimens. As the treatment length increases above 7

days the success rate also increases. The median increase in success rate from

8 days to 10 days is 3.4% but requires 18.7% more antibiotic to achieve this. To

maintain a success rate of over 90%, under a conventional treatment regimen,

this infection can be treated by administering a minimum of 184 µg/ml of

antibiotic over 8 days. This regimen results in a success rate of 96.4% and is

used as the baseline to look for improved treatments.

3.2.3.2 Genetic Algorithm with the Deterministic Model

Due to the toxic nature of antibiotics the total antibiotic concentration within

the system at any point in time was constrained to a maximum of 60 µg/ml

within the GA. This is in keeping with the maximum concentration from the

conventional treatment regimen (although this could be relaxed if needed).

The GA was run for varying maximum daily dosages of 60, 50 and 40 µg/ml

per day. The successful dosage vectors were then run through a stochastic

model to generate a success rate of eradicating the infection.

The dosage vectors from the GA begin with an increased dose which tapers

off as the treatment progresses (Table 3.3). Results from the GA suggests that

the duration of therapy could be as little as 4 days (Table 3.3, regimens D1 and

D3). However, these treatment regimens have a lower success rate, 91.2% (95%

CI: 91.0, 92.5) and 92.3% (95% CI: 91.5, 93.0), than the conventional regimen,

96.4% (95% CI: 95.8, 96.9). For all three maximum daily doses, the longer

duration regimens (Table 3.3, regimens D2, D5 and D8) are more efficient at

treating the infection than the shorter durations with success rates of 94.3%

(95% CI: 93.6, 94.9), 94.4% (95% CI: 93.7, 95.0) and 95% (95% CI: 94.4, 95.6)
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Dosage Vector Total Success Rate (%) Time to Eradication

Antibiotic [95% CI, n=5000] (days) [95% CI]

D1 (60, 21, 22, 15, 0, 0, 0, 0, 0, 0) 118 91.2 [91.0, 92.5] 3.93[3.88, 3.99]

D2 (60, 22, 18, 17, 11, 0, 0, 0, 0, 0) 128 94.3 93.6, 94.9] 3.98 [3.94, 4.04]

D3 (50, 29, 22, 21, 0, 0, 0, 0, 0, 0) 122 92.3[91.5, 93.0] 4.12[4.06, 4.17]

D4 (50, 28, 20, 20, 10, 0, 0, 0, 0, 0) 128 93.2[92.5, 93.9] 4.17 [4.11, 4.23]

D5 (50, 19, 21, 23, 18, 10, 0, 0, 0, 0) 141 94.4[93.7, 95.0] 4.56[4.50, 4.64]

D6 (40, 35, 23, 21, 13, 0, 0, 0, 0, 0) 132 92.5 [91.7, 93.2] 4.46[4.41, 4.51]

D7 (40, 26, 26, 23, 17, 11, 0, 0, 0, 0) 143 94.0 [93.2, 94.5] 4.77 [4.71, 4.86]

D8 (40, 21, 27, 18, 26, 13, 11, 0, 0, 0) 156 95.0 [94.4, 95.6] 5.33 [5.26, 5.41]

Table 3.3: Table comparing the success rates and time to eradication of dosage vectors

produced by the GA with deterministic modelling. Regimens D1, D3 and

D6 represent the best dosage vectors with maximum daily doses of 60, 50

and 40 µg/ml respectively. All other runs represent the best dosage vector

of increased treatment duration. For Regimens D1 - D8; n = 4560, 4715, 4615,

4660, 4720, 4625, 4700 and 4750 respectively.

respectively. The lack of noise within the deterministic model allows the GA

to be very effective in minimising the total antibiotic used. When the shorter

dosage vectors from the GA using the deterministic model are analysed using

the stochastic model there is too little antibiotic administered over too short a

duration leading to the emergence of resistant bacteria. Varying the weights

had no significant effect on the results (Table 3.4).

The total concentration of antibiotic in the conventional regimen (Fig. 3.1b)

increases slowly over the 8 days. The regimens from the GA start with an

initial high dose followed by tapering smaller doses which maintain the total

concentration of antibiotic above the MIC of the resistant bacteria for the
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w1 w2 Dosage Vector Total Antibiotic Success Rate (%) [95% CI]

0.5 0.5 (60, 22, 23, 13, 0, 0, 0, 0, 0, 0) 118 91.9 [91.1, 92.6]

(60, 22, 22, 14, 11, 0, 0, 0, 0, 0) 129 95.0 [94.4, 95.6]

0.99 0.01 (60, 22, 21, 15, 0, 0, 0, 0, 0, 0) 118 92.3 [91.5, 93.0]

(60, 22, 18, 17, 11, 0, 0, 0, 0, 0) 128 93.9 [93.2, 94.6]

Table 3.4: Comparison of dosage vectors produced by the GA with deterministic

modelling, for varying values of w1 and w2.

majority of the duration of treatment (Fig. 3.2). All three regimens D2, D5

and D8 use less antibiotic in total over a shorter duration than the conven-

tional regimen. Regimen D2 uses 30% less antibiotic over 5 days instead of

8. Regimen D5 produces a dosage vector which uses 23% less antibiotic than

the conventional regimen and delivers it over 6 days instead of 8. The dosage

vector from D8 uses 15% less antibiotic and is shorter by 1 day in duration.

All the regimens identified by the GA see a reduction in the time to eradica-

tion for the infection. The median time to eradication for the 8 day conventional

treatment was 7.13 days (95% CI: 7.04, 7.20). By distributing the antibiotic in a

high initial dose with tapering smaller doses the median time to eradication

for all the the regimens identified by the GA is between 4 and 5.5 days.

3.2.3.3 Genetic Algorithm with the Stochastic Model

The GA was run using a stochastic model to maximise the probability of erad-

ication and explore the effectiveness of a longer treatment duration. For the

GA using the stochastic model the second term, minimising the bacterial load,

in F (3.3) was replaced with a term minimising the number of unsuccessful

runs out of the 5000. Due to the increased run time, only a few results could
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Figure 3.2: Concentration profiles for regimens D2, D5 and D8 from the dosage vectors

identified by the GA with deterministic modelling. (a) Treatment regimen

D2 maintains an antibiotic concentration above the MIC of the resistant

strain throughout the 6 day treatment. The maximum total concentration

of antibiotic is 60 µg/ml. (b) D5 also maintains a concentration above the

MIC for the resistant bacteria throughout the 6 day treatment reaching

a maximum total concentration of 54 µg/ml on day 4. (c) The concentra-

tion of antibiotic throughout D8 increases above the MIC of the resistant

bacteria initially but drops back below for the first two days. The concen-

tration is then maintained above the resistant MIC for the remainder of

the treatment, reaching a maximum concentration of 58 µg/ml on day 5.

be given (Table 3.5).

The dosage vectors from the stochastic model are noisy due to the ran-

domness in the model. Despite this, the dosage vectors begin to converge to

a similar pattern identified using the GA with the deterministic model. A

large initial dose followed by an extended period of tapering lower doses is

observed. The median time to eradication for the stochastic results are compar-

able to the deterministic results. However, by using more antibiotic over the

longer treatment duration the stochastic regimens have a greater success rate.

Despite the increase in total antibiotic these dosage vectors use between 11 and

19% less antibiotic than the conventional regimen with a similar or increased
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Dosage Vector Total Success Rate (%) Time to Eradication

Antibiotic [95% CI, n=5000] (days) [95% CI]

S1 (60, 19, 17, 16, 19, 18, 0, 0, 0, 0) 149 µg/ml 96.9 [96.2, 97.2] 4.14 [4.09, 4.20]

S2 (50, 25, 24, 20, 20, 12, 0, 0, 0, 0) 151 µg/ml 98.4 [97.7, 98.5] 4.23 [4.18, 4.31]

S3 (40, 27, 21, 22, 23, 12, 18, 0, 0, 0) 163 µg/ml 97.1 [96.6, 97.5] 5.03 [4.96, 5.11]

S4 (60, 22, 22, 22, 18, 15, 14, 11, 0, 0) 184 µg/ml 99.7 [99.5, 99.8] 3.94 [3.89, 3.99]

Table 3.5: Table comparing the success rates and time to eradication of dosage vectors

produced by the GA with stochastic modelling for maximum daily doses of

60, 50 and 40 µg/ml and the case where all 184 µg/ml of antibiotic is used.

n = 4845, 4920, 4855 and 4985 for time to eradication of S1, S2, S3 and S4

respectively.

success rate. Dosage regimen S2 has the greatest success rate, 98.4% (95% CI:

97.7, 98.5), an increase on the conventional 8 day treatment, 96.4% (95% CI:

95.8, 96.9). The GA was able to identify alternative treatment regimens using

less antibiotic with a success rate of eradication equal to or better than the

conventional treatment. The alternative regimens also successfully treat the

infection over a shorter duration than the conventional regimen, around 4 to 5

days, vs. 7 to 7.5 days respectively.

If the priority is not to reduce the total antibiotic used, the GA can be

implemented to maximise the effectiveness of current regimens. In this case,

how can the 184 µg/ml of antibiotics be distributed to maximise the probability

of eradication? (i.e. set w1 = 0 in Eq. 3.3) The GA identifies a high initial

dose followed by a tapering of doses (Table 3.5, regimen S4) as the optimal

distribution of the antibiotics. This regimen resulted in a success rate of 99.7%

(95% CI: 99.5, 99.8) compared to 96.4% (95% CI: 95.8, 96.9) obtained from the

conventional treatment (Table 3.2). This regimen also eradicates the infection
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quicker than the conventional regimen with a median time to eradication of

3.94 days (95% CI: 3.89, 3.99) compared to 7.13 days (95% CI: 7.04, 7.19) for

the conventional regimen.

3.2.4 Sensitivity Analysis

Due to the difficulty in obtaining exact parameter values for an infection,

the effect changes in parameter values have on the success rate of different

treatment regimens was analysed. Parameter values relating to the virulence

of the bacteria; replication rate (r), transmission rate (β) and cost of resistance

(a) were examined. Further sensitivity analysis was performed for parameters

concerning the effectiveness of the antibioitcs: degradation rate (g), MIC of

susceptible (micS) and resistant bacteria (micR) and the shape of the anti-

biotic death function (k). Changes in parameters r, a, g and micR show the

greatest change and can be found in Figure 3.3. Other results can be found

in Supplementary Figure S1. Analysis was performed on the conventional 8

day treatment regimen (Table 3.2, regimen T3) and GA generated treatment

regimens (Table 3.5, regimens S2 and S4).

As r, g and micR decrease, the success rate for all three treatment regimens

converge towards 100%. At these lower parameter values the tapered regimens

have no benefit over the conventional regimen. However, as r, g and micR

increase the success rates for all 3 treatments decrease. As the parameter values

continue to increase the benefit of the new tapered regimens increase signific-

antly over the conventional regimen. The cost of resistance follows a similar

pattern. As a increases the three treatment regimens are equally as effective

with all success rates converging to 100%. However, when a is decreased the

success rates for all three treatments also decrease. Despite the decrease in
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Figure 3.3: Success rates for regimens S2 (pink), T3 (red) and S4 (blue) at varying

values for parameters (a) a, (b) r, (c) g and (d) micR. Black dashed line

shows original parameter values. As parameter values are altered to benefit

the infection success rates for all three treatment regimens decrease. With

the tapered regimens performing better than the conventional regimen.

If parameter values are altered to disadvantage the infection the three

regimens converge to a similar success rate.

success rates the tapered regimens obtained from the GA perform better than

the conventional regimen. When there is no cost of resistance the success

rate of the conventional regimen dropped to below 50% at 45.7% (95% CI:

44.3, 47.1) whereas the tapered regimens remain significantly higher at 79.3%

(95% CI: 78.2, 80.4) and 92.4%(95% CI: 91.6, 93.1). Across all the parameter

values analysed regimen S4 consistently maintains a success rate above 90%.

Whereas when the same amount of antibiotic is distributed in a conventional

manner the success rate can drop to below 50%. Despite regimen S2 using less

antibiotic it also consistently performs better than the conventional regimen.
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While the previous tapered regimens perform well when the parameter

values are altered, they are not necessarily the optimal dosage vectors for these

new parameter sets. To examine whether the tapered effect was a consequence

of the parameter values chosen the GA was used to generate optimal dosage

vectors for the varied parameter values found in Fig. 3.3. In every run of the

GA the optimal solution was an initial high dose followed by tapering doses.

Although the optimal solutions do not change qualitatively, i.e. high dose with

tapering, the exact doses do vary substantially. An example is shown in Table

3.6 where the growth rate was varied by 10%. Here the same pattern holds

qualitatively but there was variation in the exact doses. Tapered regimens may

be optimal, however the exact doses need to be personalised across infections.

Parameter Value Dosage Vector Total Antibiotic

r 2.5 (60, 21, 16, 16, 17, 13, 0, 0, 0, 0) 143 µg/ml

2.7 (50, 19, 21, 23, 18, 10, 0, 0, 0, 0) 141 µg/ml

3 (44, 32, 23, 14, 18, 0, 0, 0, 0, 0) 131 µg/ml

Table 3.6: Optimal dosage vectors achieved when growth rate is altered by ±10%

3.2.5 Discussion

Current antibiotic treatment regimens consist of a fixed daily dose admin-

istered for a set duration. While these conventional regimens may be easier

to administer due to the constant dose, there is little evidence that this is the

optimal way of administering antibiotics. Despite the continued increase in

antibiotic resistance these conventional treatment regimens remain largely

unchanged. More research must be dedicated to ensuring we are using antibi-
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otics in an optimal way.

This study considered a conventional treatment regimen of 23 µg/ml of

antibiotic per day for 10 days. While this regimen successfully eradicated the

infection in 99.8% of cases, the daily dose of antibiotic falls between the MIC

of the susceptible and resistant bacteria initially facilitating the emergence

of resistance. This is due to the time it takes for the total concentration of

antibiotic to increase above the MIC of the resistant strain. While between the

two MIC points the susceptible bacteria are eradicated allowing the resistant

population to increase with little competition. Provided treatment is continued,

the concentration of antibiotic will eventually increase above the MIC of the

resistant strain.

The GA, using the deterministic and stochastic models, identified that op-

timal dosage vectors contain an initial high dose followed by tapering lower

doses. Initially increasing the concentration of antibiotic above the MIC of the

resistant bacteria eradicates the selective advantage observed in the conven-

tional treatment regimen. Smaller doses of antibiotic are then administered

to maintain the concentration above the MIC of the resistant strain. In the ex-

ample shown the tapered regimens reduce the amount of antibiotic required to

successfully treat the infection by as much as 23%. In some regimens produced

by the GA, the maximum concentration of antibiotic within the system was

lower than that observed with the conventional treatment regimen (Fig. 3.2)

despite prescribing higher doses. With increased levels of antibiotic selecting

for increased resistance, the ability to successfully treat an infection while

maintaining a lower total antibiotic concentration over a shorter duration

minimises the risk of higher resistance being selected for.
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If conventional treatment regimens are adapted to deliver doses above the

MIC of the resistant strain then the initial facilitation of resistant bacteria will

disappear. However, the total antibiotic concentration within the system will

considerably increase. In this scenario increasing the daily dose to above that of

the MIC of the resistant strain would increase the total antibiotic concentration

to beyond the level determined as toxic, 60 µg/ml, after 3 days.

The set duration of treatment is often subjective with increased length being

used as a precaution. Studies have looked to find the optimal length of ther-

apy [137, 138, 139] but potential treatment durations are based on empirical

evidence. This study used a mathematical model as a way to determine the

time to eradication of the infection and therefore the minimum duration of

treatment required. The 10 day conventional treatment has a median time

to eradication of 7.31 days. Additional antibiotic treatment beyond 8 days

resulted in a small increase in success rate despite a larger increase in total

antibiotic required. Whereas treatment length fewer than 8 days (shorter than

the time to eradication) resulted in a much lower success rate. A conventional

treatment regimen of 23 µg/ml of antibiotic per day for 8 days was therefore

taken as a baseline treatment.

The GA can be used to redistribute the antibiotic within the conventional

regimen to produce a more efficient treatment regimen. The 8 day conventional

treatment used 184 µg/ml of antibiotics and achieved a success rate of 96.9%

with a time to eradication of 7.13 days. The alternative treatment regimen

identified by the GA applied the 184 µg/ml of antibiotic in a high dose tapered

regimen to achieve a success rate of 99.7% with a time to eradication of 3.94

days. This success rate is comparable with the success rate for the 10 day

conventional treatment but the GA generated regimen uses 20% less antibiotic

88

[ 12th November 2019 at 15:10 ]



over fewer days to achieve it. By redistributing the antibiotic in a high dose,

tapered pattern the time to eradication of the infection reduces considerably,

allowing shorter treatment regimens to be just as effective.

Studies have shown that shorter treatment regimens can be effective in treat-

ing bacterial infections [140, 141] with initial loading dose treatments being

beneficial in treating patients in critical care medicine [142]. Tapered regimens

have been found to be effective when treating Clostridium difficile [143, 144].

However, the use of tapered regimens resulted in sub-optimal performance in

previous studies using optimal control strategies [80, 81]. From the sensitivity

analysis it is shown that as the parameters are altered it is possible for the

success rate of a tapered regimen to drop significantly. In the case of reducing

the cost of resistance the success rate for the tapered regimen dropped to below

80%. However, when the GA is used to identify an optimal solution for the new

parameter set it produces the same tapered pattern but with different dose val-

ues. Generic tapering regimens will not always be the most efficient regimen.

The sensitivity in the doses required for a successful tapering regimen indicates

that personalisation of individual treatments is required. Such personalisation

can be achieved with the use of a GA. Despite the need for personalisation

the tapered regimens consistently performed better than the conventional re-

gimen when the infection was more virulent or the antibiotic was less effective.

Using a GA to search for an effective treatment regimen allowed for a con-

strained search of all possible dosage vectors. The lack of noise within the

deterministic model allows the GA to converge to a specific minimum antibi-

otic concentration. However, when this is analysed using the stochastic model,

random events mean these treatments are not as efficient. The stochastic model

therefore identifies slightly longer treatments with more antibiotic than the
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deterministic model, increasing the success rate. The increased computation

time of the GA using the stochastic model makes it inefficient. The GA using

the deterministic model is much less computationally expensive and produces

the same loading dose but with a shorter tapered duration than the results

using the stochastic model. The results from the deterministic model still have

value and provide a suitable starting point from which to base potential future

treatment regimens.

The use of the GA suggests that, in order to optimise antibiotic treatment

regimens, the idea of constant doses needs to be addressed. Research indicates

that the use of combination or sequential treatments are more effective in

preventing resistance [61, 73, 145]. However, these studies use sub-optimal

conventional treatments as comparisons and therefore single antibiotic treat-

ments should not be ruled out. Genetic algorithms provide an efficient way

of identifying and investigating the potential use of alternative single, and

multiple, antibiotic treatment regimens to prolong the effectiveness of current

antibiotics.

3.3 supplementary information

This section contains all the supplementary information referred to throughout

the paper.

3.3.1 Supplementary Equations - Analytical Analysis of Antibiotic Free System

Using stability analysis the steady states of the system, in the absence of

antibiotic, can be determined. At equilibrium, dS/dt = dR/dt = 0, there are

four equilibrium points:
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1. Extinction: (S,R) = (0, 0)

2. Susceptible Only: (S,R) = (K(1− θ
r ), 0)

3. Resistant Only: (S,R) = (0,K(1− θ
r(1−a))

4. Co-existence: (S,R) = (S∗,R∗) where

S∗ =
arθ+Kβ (ar− r+ θ)

β (ar+Kβ)
(3.4)

R∗ =
Kβ (r− θ) − arθ

β (ar+Kβ)
(3.5)

Stability of the equilibrium points are found by calculating the Jacobian (Eq.

3.6) at each of the equilibria and calculating the corresponding eigenvalues.

J =

 r(1− R+2S
K ) −βR− θ) − rS

K −βS

−
rR(1−a)
K +βR r(1− S+2R

K )(1− a) +βS− θ

 (3.6)

1. At the extinction equilibrium, (0, 0), the Jacobian is reduced to Eq. 3.7.

J =

 r− θ 0

0 r(1− a) − θ

 (3.7)

The Jacobian matrix (Eq. 3.7) is a diagonal matrix and therefore the

eigenvalues can be found on the diagonal. The extinction equilibrium is

stable when Eq. 3.8 and 3.9 are satisfied.

r < θ (3.8)

r(1− a) < θ (3.9)

When the natural death rate is higher than the replication rate, for both

the susceptible and resistant strains, the system will tend to extinction.
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2. When evaluated at the resistant free equilibrium (K(1− θ
r ), 0), the Jac-

obian is reduced to Eq. 3.10.

J =

 θ− r θ−βK− r− βKθ
r

0 βK
(
1− θ

r

)
− θa

 (3.10)

Eq. 3.10 is upper triangular and therefore the eigenvalues can be found

on the diagonal. For the resistant free equilibrium to be stable it must

satisfy Eq. 3.11 and 3.12.

θ < r (3.11)

βK

(
1−

θ

r

)
< θa (3.12)

The replication rate must be greater than the death rate otherwise the

susceptible population would die out, therefore Eq. 3.11 must hold

true. A lower transmission rate or a higher cost benefits the susceptible

population.

3. Evaluating the stability at the susceptible free equilibrium (0,K(1 −

θ
r(1−a)), the Jacobian is reduced to Eq. 3.13.

J =

 θ
(1−a) −βK

(
1− θ

r(1−a)

)
− θ 0

θ− r(1− a) +βK
(
1− θ

r(1−a)

)
θ− r(1− a)

 (3.13)

Eq. 3.13 is lower triangular and the eigenvalues can be found on the

diagonal. Therefore for the susceptible free equilibrium to be stable it

must satisfy Eq. 3.14 and 3.15

θ

(1− a)
−βK

(
1−

θ

r(1− a)

)
− θ < 0 (3.14)

θ < r(1− a) (3.15)
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The net replication rate must be greater than the death rate otherwise the

resistant population would die out, therefore Eq. 3.14 must hold true. A

higher transmission rate or a lower cost benefits the resistant population

making it possible for the resistance bacteria to invade and out-compete

an entirely susceptible population.

4. Analysis of the stability of the co-existence equilibrium is not possible

due to the eigenvalues being analytically intractable. If it is hypothesised

that stable co-existence is possible then from the previous equilibrium

points it can be concluded that co-existence will occur, assuming a

positive net growth rate for both bacteria, if:

βK

(
1−

θ

r

)
− θa > 0

and

θ

(1− a)
−βK

(
1−

θ

r(1− a)

)
− θ > 0

Using the analytical analysis parameter values were chosen such that they

satisfy Eq. 3.11 and 3.12. Therefore the resistant strain would not out-compete

the susceptible strain in the absence of antibiotics.
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3.3.2 Supplementary Table S1 - Results from 1% initial resistant population

Run Dosage Vector Total Success Rate (%)

Antibiotic [95% CI, n=5000]

A (21, 21, 21, 21, 21, 21, 21, 21, 21, 21) 210 99.5 [99.3, 99.7]

B (21, 21, 21, 21, 21, 21, 21, 21, 21, 0 ) 189 98.4 [98.0, 98.7]

C (21, 21, 21, 21, 21, 21, 21, 21, 0, 0 ) 168 96.7 [96.2, 97.2]

D (21, 21, 21, 21, 21, 21, 21, 0, 0, 0 ) 168 85.4 [84.4, 86.4]

E (60, 22, 4, 0, 0, 0, 0, 0, 0, 0 ) 86 86.9 [85.9, 87.8]

F (50, 23, 13, 0, 0, 0, 0, 0, 0, 0 ) 86 87.2 [86.2, 88.1]

G (40, 30, 20, 10, 0, 0, 0, 0, 0, 0 ) 100 91.8 [91.0, 92.5]

H (60, 21, 10, 10, 2, 0, 0, 0, 0, 0 ) 103 96.2 [95.6, 96.7]

I (50, 27, 19, 4, 0, 0, 0, 0, 0, 0 ) 100 96.4 [95.8, 96.9]

J (40, 32, 18, 19, 0, 0, 0, 0, 0, 0 ) 109 96.2 [95.6, 96.7]

K (60, 22, 22, 21, 15, 14, 10, 4, 0, 0 ) 168 99.9 [99.8, 100.0]

Table S1: Comparison of conventional dosage vectors (runs A, B, C and D), dosage

vectors produced by the GA with deterministic modelling (runs E, F, G and

K) and dosage vectors produced by the GA with stochastic modelling (runs

H, I and J) for an infection with a resistant population of 1% of the total

bacterial population.
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3.3.3 Supplementary Figure S1 - Results from varied parameter values on success

rate of regimens T3, S2 and S4
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Figure S1: Success rates for regimens S2 (pink), T3 (red) and S4 (blue) at varying

values for parameters (a) k, (b) micS and (c) β. Black dashed line shows

original parameter values. (a) Increasing k results in an increase in success

rate for all 3 regimens. The difference in success rate between the 3 regimens

remains consistent. (b) Altering the MIC of the susceptible bacteria has little

effect on the success rate of the 3 treatment regimens. (c) Increasing the

transmission rate of the resistant bacteria begins to decrease the success rate.

The difference in success rate between the 3 regimens remains consistent.

3.4 summary

The aim of this Chapter was to build upon the work of the previous Chapter

by introducing a population of resistant bacteria. A two strain model was de-

veloped to describe the dynamics of both a susceptible and resistant bacterial

population in the presence of antibiotics. Analysis of the two strain model

95

[ 12th November 2019 at 15:10 ]



indicated that the presence of a resistant strain could result in a previously

susceptible infection becoming resistant after exposure to antibiotics.

Using a conventional constant dose treatment as a comparison, the GA was

combined with the two strain model to identify treatment regimens which

reduced the likelihood of resistant infections developing. Although exact treat-

ments are highly dependent on parameter values and initial bacterial load, a

significant common trend was identified throughout the results. A treatment

regimen consisting of a high initial dose followed by an extended tapering of

doses increased the success of eradicating the infection while also minimising

the amount of antibiotic used. Antibiotic resistance continues to be a signific-

ant global health concern and these results suggest that consideration should

be given to revising current antibiotic treatment regimens.

The introduction of a population of resistant bacteria had no effect on the

optimal pattern of antibiotic treatment, with the tapered pattern being identi-

fied when using both the one and two strain model. Section 3.2.4 highlights a

further benefit of a tapered dosage pattern. When compared to the conven-

tional constant dose treatment pattern the tapered pattern is less sensitive

to changes in parameter values. Despite being a common pattern the exact

doses required varied extensively between the two different models. Therefore

a general rule for administering antibiotics in this tapered pattern could not

be generated. However, personalisation of the tapered regimens could be

achieved by incorporating the GA into the treatment decision making process.

Chapters 2 and 3 both identified tapered treatment regimens as the optimal

way to administer the antibiotic. Over a range of parameter values and initial

conditions it proved difficult to ‘break’ this pattern. This leads to a simple
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question: is this pattern indeed the best, or is the model fundamentally flawed

in a way which favours this result? Chapter 4 aims to address this question.

97

[ 12th November 2019 at 15:10 ]



4
A C A S E S T U D Y: O P T I M I S I N G T E T R A C Y C L I N E D O S I N G

S T R AT E G I E S I N T H E T R E AT M E N T O F V I B R I O

A N G U I L L A R U M I N G A L L E R I A M E L L O N E L L A L A RVA E

4.1 introduction

Results from Chapters 2 and 3 identified that conventional constant dose

treatment regimens are not always the optimal way to prescribe antibiotics.

Using a genetic algorithm (GA), a personalised regimen consisting of a high

initial dose followed by tapering doses was found to be more effective at

eradicating the infection. Sensitivity analysis (Section 3.2.4) showed that the

tapered regimen was more efficient than the conventional regimen over a wide

range of parameter values. However, these results were based on theoretical

parameter values and contained no experimental validation. This raises the

question of whether these results are biologically realistic or a product of

the approach and parameters chosen. Would a tapered treatment regimen

still be identified by a GA as the optimal pattern to administer antibiotics

when parameterised with real-life data? Is the GA able to identify alternative

treatment regimens which result in significantly better success rates when

used to inform a biological experiment?

This chapter therefore aims to repeat the work carried out in Chapter 2

by using data obtained from a real-life system. A case study consisting of a

susceptible Vibrio anguillarum infection within larvae of the greater wax moth
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(Galleria mellonella) treated using Tetracycline was studied. Experimental data

was obtained for this system under various control and conventional antibiotic

treatment regimens. Combining this data with previous work, a mathematical

model was parameterised to this system.

The parameterised model was incorporated into the GA and used to identify

alternative treatment regimens which optimised the success of eradicating the

infection. The results from the GA were then used to inform further laboratory

experiments. The G. mellonella larvae were treated according to the treatment

regimen identified by the GA. The results from the experiment were compared

with those from the GA to see if the GA was indeed able to identify a better

treatment regimen and successfully predict the outcome of the real-life system.

4.2 the case study

4.2.1 Vibrio Anguillarum

Gram-negative bacteria present an ever growing problem in the face of antibi-

otic resistance. Due to the presence of a unique outer membrane, gram-negative

bacteria are naturally resistant to many classes of antibiotics. Many species

of gram-negative bacteria cause infections such as pneumonia, gonorrhea,

cholera and even the plague. If left untreated, gram-negative bacteria can enter

the bloodstream causing sepsis and septic shock, a highly fatal condition. With

many strains resistant to multiple previously susceptible antibiotics [146, 147],

gram-negative bacteria pose a significant threat to human health [148].

V. anguillarum is a well-studied Gram-negative bacterium: it is the causative

agent of vibriosis, one of the most prevalent and devastating diseases in marine
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aquaculture [149]. Vibriosis is a highly fatal haemorrhagic septicaemia which

causes significant economic losses worldwide [150]. Due to the potential losses

in species of economic importance, such as salmon, turbot, rainbow trout and

cod, a vaccine exists against vibriosis. This vaccine has been widely successful

in grown fish [151]. However, these vaccines are not effective in the larval

stage due to their immature immune system. Antibiotics are therefore used

to treat vibriosis in aquaculture with tetracycline and quinolones being the

first drugs of choice. Resistance to V. anguillarum has been reported within

aquaculture environments [152]. With limited antibiotics licensed for use in

aquaculture, optimal treatment regimens are essential to ensure the prolonged

effectiveness of these antibiotics and reduce the spread of further resistance.

4.2.2 Greater wax moth - Galleria mellonella

Due to the strict legislation surrounding whole-animal studies [153], exper-

imentation with V. anguillarum in animals such as Atlantic salmon (Salmo

salar) was infeasible for this study. The larvae of the greater wax moth (G.

mellonella) was considered as an alternative host due to their low maintenance

and being inexpensive to purchase. G. mellonella larvae are increasingly being

used as a host to study infectious diseases [154, 155]. Further to this, a study by

McMillan et al [156] examined the virulence of V. anguillarum in G. mellonella

larvae. This provided existing data to parameterise part of the model.

4.2.3 Tetracycline

Antibiotics are not specific to either human or animal treatment. As resistance

to antibiotics continues to increase, the use of antibiotics within animal sec-

tors has come under greater scrutiny [157, 158]. Aquatic environments can
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act as reservoirs for antibiotics and resistance genes [54]. This has led some

countries to prohibit the use of certain antibiotics in aquaculture due to their

importance in human healthcare [128]. However, legislation and guidelines

around antibiotic use vary widely between countries.

The use of tetracycline in aquaculture has been linked to the increase in

tetracycline resistant genes within the environment [159]. Tetracycline is a

broad spectrum antibiotic produced by the Streptomyces genus of Anctin-

obacteria. It is widely used in both human and animal medicine. Tetracycline

is a predominately bacteriostatic antibiotic and works by inhibiting protein

synthesis. It may also alter the cytoplasmic membrane of bacteria causing

leakage of intracellular contents, such as nucleotides from the cell. It is a fast

acting antibiotic with a half life between 6 and 12 hours.

4.3 experiments using conventional treatment regimens

This section presents an overview of biological experiments led by Dr Andrew

Desbois within the Institute of Aquaculture at the University of Stirling. The

author of this thesis was involved in the design of these experiments but did

not carry them out. The experiments were designed to examine the effect

conventional antibiotic treatment regimens have on the survival rate of the

hosts. The data from these experiments would be used to parameterise a

model of the dynamics of a V. anguillarum infection within G. mellonella larvae

in the presence of tetracycline. This model will then be used to identify more

effective treatment regimens using a genetic algorithm.

G. mellonella larvae were injected with 1× 107 total colony forming units

(CFU) of V. anguillarum. The bacteria were left to establish within the host for
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2 hours. At 2, 24 and 48 hours the larvae were injected with the antibiotic

tetracycline. The antibiotic treatment consisted of a total of 0.5 µg/g of tetra-

cycline across the duration of treatment. Conventional treatment regimens

consist of constant doses given in set time intervals. Three different constant

dose treatments were administered and the effect on the survival of the larvae

recorded.

The 0.5 µg/g of tetracycline was split equally over one, two or three days giv-

ing dosage vectors (0.5, 0, 0), (0.25, 0.25, 0) and (0.166, 0.166, 0.166) respectively.

At 2, 24, 48, 72, 96, 120, 144 and 168 hours the larvae were checked for signs

of life. Any larvae that didn’t respond were removed from the experiment

and their death noted. Four control groups were also run: unmanipulated,

phosphate-buffered saline (PBS)-only, antibiotic-only and V. anguillarum-only.

The four control groups are used to ensure the results are due to the treatment

regimens only. Unmanipulated larvae ensure the larvae survive the duration

of treatment with no other interventions. Larvae injected with PBS-only ensure

that injecting substances into the larvae does not account for their death. The

antibiotic-only controls for toxicity of the treatment regimens. Finally, the

larvae injected with V. anguillarum ensures that the bacteria do die due to

the bacterial infection and therefore any survivors are due to the antibiotic.

Results from the control groups and conventional treatment regimens can be

found in Table 4.1.

Injecting the larvae with V. anguillarum at 0 hours and administering no

antibiotic resulted in the bacterial infection killing all larvae by 72 hours. Only

3% of the larvae died within the first 24 hours with the majority of larvae

(77%) dying between 24 and 48 hours after being injected with the bacteria.

These results, along with additional data, will be used to parameterise the
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model of bacterial growth within the larvae in Section 4.4.3.

Administering 0.5 µg/g of tetracycline, in a conventional constant dose,

resulted in a survival rate of 55.6% (95% CI: 38.1, 72.1) at 168 hours when

administered over 1 or 2 days (Table 4.1, T1 and T2). When administered in

one dose all larvae survive for the initial 72 hours. After 72 hours there is

a 22% decrease in the number of larvae still alive. When the tetracycline is

spread out over two equal doses the larvae begin to die after only 24 hours.

Spreading the antibiotic further, over 3 days, also shows that no larvae died

within the first 24 hours. However, a considerable decrease in success rate to

22% (95% CI: 10.1, 39.2) is observed at 168 hours. These results are used in

Section 4.4.4 to parameterise a model in the presence of tetracycline.

4.4 model development

This section begins by outlining the mathematical model of the growth of

V. anguillarum bacteria within a G. mellonella larvae host. Data was obtained

which is used to calculate the net growth rate of the bacteria within the larvae.

The remainder of this model is parameterised using data collected in Table 4.1.

The model is then extended to include the presence of antibitoics within the

system. The results from the conventional treatment regimens in Table 4.1 are

used to perform a least squares approach to fully parameterise the model.

4.4.1 Modelling the Growth of V. anguillarum in G. mellonella Larvae

The growth curve of V. anguillarum within the larvae is assumed to follow

a logistic growth equation due to limiting resources within the host. The

presence of a sub-population of resistant bacteria was not considered due
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to the use of a single strain of the V. anguillarum bacteria. The short dura-

tion of the experiments make it unlikely that resistance would evolve. The

bacteria replicate at a rate r with a carrying capacity K. A simple term, θ,

is used to describe the effect of the host’s immune response. The bacterial

burden within the wax moth larvae (B) is therefore modelled according to (4.1).

dB

dt
= rB

(
1−

B

K

)
− θB (4.1)

A study by McMillan et al [156] recorded the bacterial burden within wax

moth larvae at various time points after being injected with 1× 107 CFU of

V. anguillarum. Data beyond 48 hours could not be obtained due to the death

of the larvae. The time series data from this study (Table 4.2) was used to

calculate the net growth rate of the bacteria within the larvae.

Hour log10 CFU/ml Standard Error

0 6.849726 0

2 5.914942 0.121248

4 6.286829 0.10486

8 6.678288 0.148285

24 7.819691 0.142387

48 8.97435 0.258376

Table 4.2: Time series data from McMillan et al. (2015) showing the bacterial burden

of V. anguillarum within G. mellonella larvae at 2, 4, 8, 24 and 48 hours after

inoculation.

When the bacteria are injected into the larvae there is an initial drop in the

total bacterial load. This is due to the bacteria establishing within the host
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(see lag phase in Section 2.2.1). After a couple of hours the bacteria become

established and begin to multiply. The data from 0-2 hours is therefore omitted

from the calculation of the net growth rate of the bacteria. In the absence of

limiting resources bacteria grow exponentially. Assuming an initial exponen-

tial growth, the net growth rate can be calculated by solving the exponential

equation (4.2). Calculating the growth rate early in the infection discounts

any influence from limited resources. The net growth rate, a, was calculated

between hour 2 and hour 4 (4.3).

x(t) = x(t0)e
a(t−t0) (4.2)

106.287 = 105.915e2a

a =
0.372
2

ln(10) ≈ 0.43 (4.3)

Larvae injected with 1× 107 CFU of V. anguillarum were observed to have

died after 48 hours. The maximum bacterial burden (z) the larvae are cap-

able of harbouring before they die was identified by McMillan et al as 109

CFU. With a net growth rate of 0.43 the bacteria multiply rapidly and the

bacterial burden in the larvae reached 109 too quickly. The net growth rate

was re-calculated between hour 2 and hour 8 (4.4)

106.678 = 105.915e6a

a =
0.736
6

ln(10) ≈ 0.29 (4.4)

After discussion with Dr Andrew Desbois, it was deemed that a = 0.43 was

indeed too high and that a = 0.29 was more biologically realistic. To allow

the use of an event based stochastic framework to simulate the model the net

growth rate a was replaced with the growth term r and death term θ. With

a net growth rate of 0.29, i.e. a = r− θ = 0.29, the replication rate was taken
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to be r = 0.35 and the death rate θ = 0.06 based on stochastic simulations in

Figures 4.1 - 4.3.

4.4.2 Stochastic Modelling Framework

Previously in this thesis, Gillespie’s stochastic simulation algorithm (SSA) was

used to introduce randomness into results produced by a mathematical model.

Due to the number of bacteria being in the range of 109 the SSA method

proves to be too computationally expensive for use within this chapter. It is a

well documented problem that as a population size increases the number of

events increase and, as a result, the time to the next event gets smaller. This

slows the algorithm down and requires extensive computational resources to

complete the simulation. A solution to this problem exists in the use of an

approximation method called τ-leaping [160].

4.4.2.1 Tau Leaping

τ-leaping reduces the computation time by calculating all the events which oc-

cur within a time interval of length τ before updating the propensity functions.

There are two events which can occur from (4.1), (Table 4.3). The number of

each event which occur within the time interval τ, is a Poisson distributed ran-

dom variable where the mean is dependent on the event rate Ri and τ interval.

The variable B is therefore updated by (4.5). The propensity functions (Ri) are

updated and the process repeats until an end time is reached. The tau-leap

method was coded in MATLAB, example code can be found in Appendix A

Section A.1.3.
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Event Outcome Transition Rate

Birth of Bacteria (B→ B+ 1) : rB(1− B
K) = R1

Death of Bacteria (B→ B− 1) : θB = R2

Table 4.3: Table showing the different events which can occur, the effect these events

have on the population of V. anguillarum and the rate at which they happen.

B(t+ τ) = B(t) + (P(τR1) − P(τR2)) (4.5)

Each treatment regimen is run 3600 times to allow for variability within

the results from the stochastic nature of the tau-leap algorithm. A survival

rate is calculated for each treatment regimen by taking the percentage of runs

which result in the eradication of the infection. The 95% confidence interval is

calculated in MATLAB using the Clopper-Pearson exact confidence interval.

4.4.3 Parameterising the Model of V. anguillarum Growth in G. mellonella Larvae

Using the data obtained from McMillan et al. parameter values were estab-

lished for the replication rate (r), immune-induced death rate (θ) and the death

load of bacteria (z). Due to the rapid death of the larvae, a realistic carrying

capacity (K) could not be identified from the data in Table 4.2. By comparing

the results from the experiments carried out with V. anguillarum-only (Table

4.1) to model simulations, a parameter value for K can be established.
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Figure 4.1: Simulation of the dynamics of the V. anguillarum bacterial load when no

treatment is given (left). A comparison of the fraction of larvae still alive

at each 24 hour time point (right).

For all values of K the model predicted the larvae would die much quicker

than was observed in the experiments. Despite using a stochastic framework to

simulate the growth of the bacteria in the larvae the high population numbers

mean behaviour of individual bacteria have little effect on the overall system.

All larvae are predicted to die at the same time (Figure 4.1).

To add some variation to the model the replication rate for each run of the

simulation was taken from a normal distribution with mean of 0.35 and a

standard deviation of 0.07. It is reasonable to assume that the growth rate

of bacteria within different larvae may replicate at slightly different rates.

Incorporating this variation into the model produces more realistic results

due to variations in time of death for hosts. Despite this, the larvae are still

predicted to die too quickly (Figure 4.2).
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Figure 4.2: Simulation of the dynamics of the V. anguillarum bacterial load when no

treatment is given. The replication rate of the bacteria is taken from a

normal distribution with µ = 0.35 and σ = 0.07 (left). A comparison of the

fraction of larvae still alive at each 24 hour time point (right).

In the data from McMillan et al. the larvae were checked at 48 hours and

then again at 72 hours. With no larvae alive at the 72 hour mark the bacterial

load at 48 hours (109CFU) was deemed to be the maximum that could be

sustained. This may have been an underestimate. Increasing the maximum

bacterial load the larvae can sustain to 1011.5 with a carrying capacity of 1013

produced a much better fit for the data (Figure 4.3).
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Figure 4.3: Simulation of the dynamics of the V. anguillarum bacterial load when no

treatment is given. The replication rate of the bacteria is taken from a

normal distribution with µ = 0.35 and σ = 0.07, z = 1011.5 and K = 1013

(left). A comparison of the fraction of larvae still alive at each 24 hour time

point (right).

4.4.4 Introducing Antibiotic-Induced Death

The model of a V. anguillarum infection in greater wax moth larvae (4.1) was

extended to include the presence of antibiotics. Table 4.3 is updated to include

the addition of an antibiotic induced death term (A(C)) (Table 4.4).
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Event Outcome Transition Rate

Birth of Bacteria (B→ B+ 1) : rB(1− B
K) = R1

Death of Bacteria (B→ B− 1) : θB+A(C)B = R2

Table 4.4: Table showing the different events which can occur in the presence of

antibiotic, the effect these have on the population of V. anguillarum and the

rate at which they happen.

Antibiotic presence within the system is modelled in keeping with the

function outlined in previous chapters (4.6). An additional compartment for

concentration of antibiotic (C) is also added to the model. Antibiotics are

added, C(t) = C(t) +Dn, at time t = t̂ hours, where t̂ = (2, 24, 48) and D is a

vector of doses D = (D1,D2,D3). Degradation of the antibiotics following first

order kinetics with an elimination constant g (4.7).

A (C) =
Amax

(
C
mic

)k(
C
mic

)k
+
(
Amax
Bmax

− 1
) (4.6)

dC

dt
= − gC︸︷︷︸

Degredation

(4.7)

The parameter values from the previously parameterised model (4.1), r, θ

and K, remain the same for the extended model. The values for the remaining

parameters, Amax, mic, k and g, are identified using a non-linear least squares

approach. A genetic algorithm (GA) was used to search through the possible

combinations of parameter values. Each combination of potential parameter

values is simulated using the stochastic model for each of the three conven-

tional treatment regimens. The stochastic model was run 3600 times for each

regimen. The percentage of runs where the bacterial burden has not reached

the death threshold is recorded every 24 hours. The aim of the GA was to
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identify the vector of unknown parameters, (Amax,mic,k,g), which minimises

the difference between the simulated data (Mi) and the experimental data (Ei)

at each time point (4.8).

F =

6∑
i=1

(Ei −Mi)
2 +w(E7 −M7)

2 (4.8)

Modelling of pharmacokinetics is outwith the scope of this thesis. Due to

the lack of pharmacokinetics, the minimal pharmacodynamic data and the

simplified immune response more weight was placed on the data at the final

time point. A full list of parameters and values can be found in Table 4.5.

Parameter Description Value

r Replication Rate 0.35

K Carrying Capacity 1013

θ Natural Death Rate 0.06

g Degradation rate of antibiotic 0.05

Amax Max antibiotic-induced death rate 0.83

Bmax Max growth in absence of AB r− θ

mic Min inhibitory concentration (MIC) 0.1

k Hill coefficient 3.25

z Death Load of Bacteria 1011.5

c Eradication Threshold 102

Table 4.5: Full list of parameters and values used within the model.

Using the fully parameterised stochastic model the predicted survival rate

at 168 hours for each of the conventional treatment regimens was calculated

(Table 4.6). The 95% confidence interval for each survival rate was calculated

using the Clopper-Pearson exact confidence interval. This method was chosen
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to avoid any problems should success rates close to 0% or 100% occur. The

variability within the results from the model is small due the ability to run

thousands of simulations.

Group Dosage Vector Model Survival Rate (%) Exp Survival Rate (%)

[95% CI, n=3600] [95% CI, n=36]

T1 (0.5, 0, 0) 57.7 [56.1, 59.3] 55.6 [38.1, 72.1]

T2 (0.25, 0.25, 0) 61.0 [59.4, 62.6] 55.6 [38.1, 72.1]

T3 (0.166, 0.166, 0.166) 26.3 [24.9, 27.8] 22.2 [10.1, 39.2]

Table 4.6: Comparison of the results obtained from the model and the laboratory

experiments for different constant dose treatment regimens.

A two-tailed Fisher’s exact test was performed to determine if the results

from the model were statistically different to the results from the conventional

experiments for Table 4.6 T1, T2 and T3. Fisher’s exact test was used in place

of a chi-squared test due to the sample size being small for the experimental

results. The assumptions of random sampling and independent observations

are met. The null and alternative hypothesis are as follows:

πm = survival rate of hosts from model results

πe = survival rate of larvae from experimental results

H0 : πm = πe

H1 : πm 6= πe

Fisher’s exact test doesn’t use a mathematical function to estimates the

probability of a value of a test statistic; instead, you calculate the probability
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of getting the observed data, and all data sets with more extreme deviations,

under the null hypothesis that the proportions are the same. The p-value

is calculated by adding together the probabilities of all combinations that

have lower probabilities than that of the observed data. The cut-off p-value is

calculated using (4.9).

pcutoff =
((a+ b)! (c+ d)! (a+ c)! (b+ d)!)

a!b!c!d!N!
(4.9)

where, a,b, c and d are the individual frequencies of a 2x2 contingency

table, and N is the total frequency. Minitab was used to obtain the p-values

at the 95% confidence level throughout this chapter. At the 0.05 significance

level comparisons between the experimental and model results for T1, T2

and T3 have p-values 0.866, 0.498 and 0.705 respectively. The success rates

from the experiments and the model are not significantly different at the 5%

significance level. This was expected as the model was parameterised using

the experimental data.

4.5 optimising antibiotic treatment regimens

With the stochastic model parameterised to the V. anguillarum infection within

the G. mellonella larvae it was used to inform the fitness function of a GA.

The aim of the GA was to identify the dosage vector, D = (D1,D2,D3), when

administered at hours, t̂ = (2, 24, 48) that would maximise the success of

eradicating the bacterial infection within the wax moth larvae. The assumption

that antibiotics are prescribed in constant doses was relaxed. It is assumed that

below 102 bacteria the host’s immune system is able to clear the remaining

infection. An eradication threshold was therefore set at c = 102, below this

point the number of bacteria is assumed to be zero. The GA minimises the

fitness function (4.10). Minimising the number of runs which result in bac-
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teria remaining at the end of the simulation (B(T)) maximises the survival rate.

F = w

d∑
i=1

Di︸ ︷︷ ︸
Total Antibiotic

+ (1−w)

N∑
i=1

B̂i︸ ︷︷ ︸
Unsuccessful runs

(4.10)

where

B̂ =


1, if B(T) > 0.

0, otherwise.

To ensure a comparison can be made between the dosage vector identified

by the GA and the conventional treatment regimens from the experiments,

some constraints were imposed on the GA. The dosage vector could use a

maximum of 0.5 µg/g of tetracycline over a maximum of 3 days. A weight,

w = 0, was used to place the emphasis on maximising the success of eradicat-

ing the infection. Ensuring the GA used the maximum amount of antibiotic

made it easier to directly compare if the GA was able to identify significantly

better treatment regimens.

The dosage vectors identified by the GA (Table 4.7) begin with a high ini-

tial dose followed by tapering lower doses. Minitab was used to perform a

one-tailed Fisher’s exact test to determine if at the 0.05 significance level the

model success rate for the dosage vector GA1 was significantly greater than

the model success rate of the conventional dosage vector T1 or T2. The tapered

dosage vector was found to have a significantly greater success rate than both

traditional regimens with p<0.0001 for both comparisons.

The third dose of antibiotic was considered to not be significant due to being

a very small dose and was attributed to noise within the GA. This suggests

that a tapered two day treatment regimen is more effective at eradicating
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Dosage Vector Model Survival Rate (%)

[95% CI, n=3600]

GA1 (0.322, 0.169, 0.009) 69.3 [67.8, 70.8]

GA2 (0.340, 0.135, 0.025) 63.3 [61.7, 64.9]

Table 4.7: Comparison of dosage vectors produced by the GA with a weight w = 0.

the V. anguillarum bacteria than the conventional constant dose approach. A

biological experiment was conducted to investigate this claim.

4.5.1 Optimal Treatment Regimen Experiments

A further experiment was led by Dr Andrew Desbois to examine whether the

tapered regimen would perform better than the conventional regimens, as

predicted by the GA, in a real-life system. G. mellonella larvae were injected

with 1× 107 CFU of V. anguillarum and treated with tetracycline at 2, 24 and

48 hours. With the assumption that the third dose is noise within the model

and for lab simplicity, the dosage vector was cleaned to D = (0.333, 0.167, 0).

Results from the experiment (Table 4.8) obtained a survival rate of 70.6%

(95% CI: 53.0, 84.1) when using the tapered regimen. The survival rate for the

tapered regimen from the model and the experiment are similar at the 0.05

level, p-value 1.000.

Comparisons between the model results for regimens T1 and E1, and T2

and E1 show that the success rate of the tapered regimen is significantly

greater than both conventional regimens with p-value < 0.001 at the 0.05 level

when using a one-tailed Fisher’s exact test for both comparisons. However,
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Dosage Vector Model Survival Rate (%) Experiment Survival Rate (%)

[95% CI, n=3600] [95% CI, n=37]

E1 (0.333, 0.167, 0.000) 69.5 [68.0, 71.0] 70.6 [53.0, 84.1]

Table 4.8: Comparison of the results obtained from the model and the laboratory

experiments when using the tapered treatment regimen identified by the

GA.

comparisons between the experiment results for regimens T1 and E1, and T2

and E1 show that the survival rate of the tapered regimen is not significantly

greater than both conventional regimens with p-value 0.145 at the 0.05 level.

While not statistically better, due to the small sample size of larvae a p-value

of 0.145 is encouraging.

4.5.2 Exploring Two Day Treatment Regimens

The results from the genetic algorithm suggest that a two day treatment regi-

men is more effective. The general treatment regimen follows the following

pattern: (x, 0.5− x, 0). Figure 4.4 shows the survival rate for a range of two day

treatments.
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Figure 4.4: Graph showing the relationship between the survival rate of the larvae

(obtained using the mathemtaical model) when treated using a two day

treatment regimen and the concentration of the initial dose in the regimen.

The circles represent the data obtained from laboratory experiments.

Comparing the range of possible two day treatments it can be shown that

the GA was able to correctly identify the global maximum. The importance in

starting antibiotic therapy early is seen with the low survival rate when the

initial antibiotic dose is small. As the initial dose increases the survival rate

also increases, to a point. The optimal treatment is found when the initial dose

is higher than the subsequent dose. However, some trade-off exists between a

high initial dose and maintaining the duration of antibiotic treatment as the

survival rate begins to decrease as the initial dose increases further.

4.6 discussion

Results from the previous chapters repeatedly suggested that tapered treat-

ment regimens are more effective than conventional constant dose treatment

regimens at eradicating bacterial infections. However, the doses within these

tapered patterns needed to be personalised to the system being treated. In-
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corporating a mathematical model into a genetic algorithm allowed for these

personalised treatment regimens to be identified. It is recognised that the ‘one-

size fits all’ approach can result in the under-dosing or over-dosing of patients

[116]. With a continued increase in multi-drug resistant bacteria, personalised

treatment regimens may be a step forward.

A mathematical model of a V. anguillarum infection within G. mellonella lar-

vae treated with tetracycline was developed. Experimental data was obtained

and used to parameterise the model to the case study. The model was then

used within a GA to simulate the behaviour of the biological system under

various treatment regimens. A tapered treatment regimen was once again

identified as the optimal way to administer the antibiotics to maximise the

success of eradicating the infection. The dosage vector D = (0.333, 0.167, 0)

resulted in a survival rate of 69.5% when simulated using the model. Further

biological experiments were carried out to obtain the survival rate for the

tapered treatment regimen within the wax moth larvae. A survival rate of

70.6% was achieved, a similar result to that predicted by the model.

Using the GA to identify the personalised tapered regimen produced a

statistically significant increase in the survival rate of eradicating the infection

over the conventional constant dose regimens when analysed using the model.

This is in keeping with the results from previous chapters. The results from

the experiments confirmed these findings with an increase in survival rate

for the tapered regimen over the conventional regimens from 55.6% to 70.6%.

However, these results are not significantly different with a p-value of 0.145.

Due to the small sample size of larvae, the confidence intervals are wide. With

a p-value of 0.145 and a low sample size, evidence suggests that there would
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be merit in repeating this experiment with a larger sample size.

The case study presented here was a very simple set-up in the absence

of any resistance. However, when parameterised to the system, the GA was

effective at identifying a personalised treatment regimen which increased the

success of eradicating the infection.

4.7 summary

With the optimal use of antibiotics being important for their future effect-

iveness: Chapters 2 and 3 challenged the idea of conventional constant dose

regimens in a theoretical approach. This chapter aimed to examine whether

these findings held when applied to a real-life case study. By parameterising a

mathematical model to a V. anguillarum infection within G. mellonella larvae,

a GA was used to identify treatment regimens which would maximise the

success of eradicating the infection when using tetracycline.

In keeping with the previous results, a tapered pattern was identified as

the optimal way to administer the tetracycline. Laboratory experiments were

carried out implementing the dosage vector identified by the GA. These results

validated the findings of the GA. The tapered pattern did indeed increase the

success of eradicating the infection. Due to the small sample size this increase

was not statistically significant. However, the p-value was encouraging and

warrants more experiments to further investigate these results.

GA’s appear to be a useful tool in the search for optimal antibiotic treatment

regimens with results accurately predicting the outcome of a real-life system.

GA’s are useful in their ability to identify regimens which may not have been
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considered otherwise. Up to this point the GA has only been used to optimise

the dose and duration of treatment given. These are not the only variables

that exist within treatment regimens. Chapter 5 therefore explores the effect of

changing the time interval between antibiotic doses.
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5
I N V E S T I G AT I N G T H E I M PA C T O F VA RY I N G T I M E

I N T E RVA L S B E T W E E N A N T I B I O T I C D O S E S

5.1 introduction

Due to the continued increase in antibiotic resistant bacteria, antimicrobial

stewardship continues to be a subject of international importance [161]. In

2015 the WHO Global action plan on antimicrobial resistance outlined five

main objectives. Optimising the use of antimicrobial medicines in human

and animal health being one of those objectives [162]. In addition the UK

Government recently published its 5 year (2019-2024) national action plan for

tackling antimicrobial resistance. Once again optimising the use of antimicro-

bials is highlighted as one of three areas that needs to be focussed on [163].

Strategies to quickly determine if antibiotics are required [164, 165, 166] and

which antibiotic is the most appropriate for the bacteria present [167, 168, 169]

are important in optimising antibiotic usage. However, this will only go so far

if the treatment regimens of antibiotics are not identifying the correct time,

quantity and duration of treatment.

Unfortunately, optimising antibiotic treatment regimens is neither straight-

forward nor simple. With most guidelines for antibiotic therapy based on

either expert opinions or anecdotal data. In Chapters 2 and 3, the use of a

genetic algorithm (GA) was shown to be effective at identifying alternative

dosage vectors for the optimal treatment of a susceptible only and susceptible
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and resistant bacterial population respectively. Using a theoretical parameter

set, with the interval between doses of antibiotic fixed at 1 day, the GA re-

distributed the antibiotic in a high initial dose with tapering lower doses.

This pattern of dosage distribution allowed for higher success rates to be

achieved while using less antibiotic over a shorter duration when compared

to a conventional constant-dose treatment. Chapter 4 further strengthened

these results by applying the same method to a simple real-life case study.

Parameters obtained from experiments where the larvae of the greater wax

moth (Galleria mellonella) was injected with Vibrio anguillarum were used to

inform the model within the GA. Once again a tapered pattern was identified

as the optimal way to administer the antibiotics in daily doses. When these

results were tested experimentally the outcome was encouraging.

Different antibiotics have different degradation rates and as such the interval

between the doses of antibiotics differs depending on which antibiotic is being

used. However, studies have shown that longer intervals between doses of

amoxicillin and aminoglycosides are just as effective as the standard dosing

protocol [170, 171]. Daily dosing with aminoglycosides can result in reduced

toxicity and enhanced clinical efficiency. Longer intervals between doses of

amoxicillin results in less antibiotic being used. A study of the antibiotic ce-

fazolin found that a single-dose treatment was not as effective as a multi-dose

treatment in preventing surgical site infections [172]. These studies suggest

that when designing optimal treatment regimens the interval between doses

of antibiotics should be considered in addition to the dose and duration. This

chapter will therefore relax the assumption present in the previous chapters

that antibiotics are given in daily intervals.
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By considering a system of susceptible and resistant bacteria, such as that in

Chapter 3, this chapter will explore the effect changing the interval between

doses has on the treatment regimens identified by the GA. Initially the GA

will be used to optimise the time intervals between the doses in a conventional

constant-dose treatment regimen to maximise the success of eradicating an

infection. These results will be used to examine whether optimising the interval

between doses of antibiotics is more effective at successfully eradicating an

infection when compared to treatments where the daily doses have been

optimised. The GA will then be extended to identify both the dosage vector

and corresponding time vector of the optimal treatment strategy. The results

will be analysed to examine whether altering the time interval has any effect

on the overall success of treatments and the effect this has on the treatment

strategies identified by the GA. Will the tapered pattern that has been identified

previously still hold as the optimal treatment strategy?

5.2 model overview

This chapter uses the two strain model originally developed in Chapter 3

to describe the dynamics of a susceptible and resistant population within a

bacterial infection. A brief overview of the model is presented in this section

(for full details and equations see Chapter 3, Section 3.2.2).

As highlighted in previous chapters, using a deterministic model within the

GA is computationally less expensive but the results can produce low success

rates when simulated stochastically. For this chapter the use of a deterministic

model within the GA was omitted.
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5.2.1 Stochastic Model

A stochastic framework was developed for (3.2). All the growth, death and

transmission rates are converted into an event. The deterministic rate, such

as the growth rate of susceptible bacteria, is replaced by a transition rate for

each event. When an event occurs the number of individuals in any particular

compartment changes. There are 5 different events that can occur in this model

(Table 5.1).

Event Outcome Transition Rate

Birth of Susceptible Bacteria (S→ S+ 1) : rS(1− N
K ) = R1

Death of Susceptible Bacteria (S→ S− 1) : θS+AS(C)S = R2

Transmission of Resistant Gene (S→ S− 1) and : βSR = R3

(R→ R+ 1)

Birth of Resistant Bacteria (R→ R+ 1) : rR(1− N
K )(1− c) = R4

Death of Resistant Bacteria (R→ R− 1) : θR+AR(C)R = R5

Table 5.1: Table showing the different events which can occur in the model, the effect

these have on the population of susceptible (S) and resistant (R) bacteria

and the rate at which they happen.

The antibiotic-induced death rate for both the susceptible and resistant

bacteria is a function of the concentration of antibiotic (C) present within the

system (5.1). Antibiotics are added to the system, C(t) = C(t) +Dn, when

t = t̂n where t̂ is a vector of times, t̂ = (t̂1, t̂2, ..., t̂d), and D is a vector of doses

D = (D1,D2, ...,Dd). The concentration of antibiotics within the system decays
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at a rate g and can be modelled according to (5.2).

A (C) =
Amax

(
C
mic

)k(
C
mic

)k
+
(
Amax
Bmax − 1

) (5.1)

dC

dt
= − gC︸︷︷︸

Degredation

(5.2)

The Gillespie algorithm was used to simulate the stochastic model. By in-

cluding the events in Table 5.1, the probability of an event being the next event

to happen is now (5.3).

prob of event i : P(i) =
R(i)∑5
i=1 R(i)

(5.3)

The Gillespie algorithm gives a slightly different result each time it is run.

Each treatment regimen is therefore run 5000 times to show the variability

within the result. A success rate for each treatment regimen is obtained by

calculating the percentage of runs which resulted in eradication of the infection.

This success rate is used to compare the effectiveness of different treatment

regimens.

5.2.2 Parameterising the Model

Using the parameter values in Chapter 3 the GA was able to identify a treat-

ment regimen which resulted in the eradication of the infection in 99.7% of

cases. The 184 µg/ml of antibiotic was redistributed into a high initial dose

followed by tapering lower daily doses. Due to the high success rate it would

be near impossible to identify if non-daily treatment regimens resulted in a

significant improvement without running a very large number of repetitions

of the model.
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The parameter set from Chapter 3 was therefore amended with the MIC of

the susceptible and resistant bacteria increasing from 16 and 32 to 20 and 36

respectively. With higher MIC points but the same amount of antibiotic, the

success rate of the treatment regimens decreases. With a lower success rate it

becomes possible to identify a significant difference between two treatment

regimens.

In keeping with Chapter 3 the parameter values ensure that invasion of

a resistant infection is the result of the treatment regimen and not due to

the dynamics of the system. In the absence of antibiotics the susceptible

population will out-compete the resistant strain. A full list of parameters and

corresponding values are in Table 5.2.

5.3 optimising treatment regimens

To identify alternative treatment regimens the GA searches for regimens which

produce the smallest value for the given fitness function. Using the stochastic

model within the GA allows for the fitness function to be a trade-off between

the amount of antibiotic used and the number of infections which are suc-

cessfully eradicated (5.4). As the GA aims to minimise the value of the fitness

function, the second term in (5.4) minimises the number of runs where the

infection persists. For the two strain model the number of bacteria present is

the sum of susceptible and resistant bacteria, B(T) = S(T) + R(T), where (T ) is

the time at the end of the simulation. Minimising the number of runs which

result in bacteria present at the end of the simulation maximises the success

rate of that treatment regimen.
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Parameter Description Value

r Replication Rate 2.7726

K Carrying Capacity 1000

β Transmission Rate 0.00001

θ Natural Death Rate 0.2

a Cost of Resistance 0.2

g Degradation rate of antibiotic 0.48

AmaxS Max Antibiotic Induced Death Rate 4.873

BmaxS Max net growth in absence of AB 2.57

micS Min inhibitory concentration (MIC) 20

kS Hill coefficient 4

AmaxR Max Antibiotic Induced Death Rate 4.12

BmaxR Max net growth in absence of AB 2.02

micR Min inhibitory concentration (MIC) 36

kR Hill coefficient 4

Table 5.2: Full list of parameters and values used within the model.

F = w

d∑
i=1

Di︸ ︷︷ ︸
Total Antibiotic

+ (1−w)

N∑
i=1

B̂i︸ ︷︷ ︸
Unsuccessful runs

(5.4)

where

B̂ =


1, if B(T) > 0.

0, if B(T) = 0.

As (5.4) is a trade-off between minimising total antibiotic used and maxim-

ising success, a weight w ∈ (0 : 1] is used such that the emphasis placed on

each term can be altered. If w = 0 the GA will focus only on maximising the

success rate, as w→ 1 more emphasis is placed on minimising the amount of
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antibiotic used.

While minimising the amount of antibiotic being used is preferable, the success

rate of eradicating the infection must be prioritised. A value of w = 0 ensures

treatments are identified that maximise the success rate with no pressure on

trying to limit the amount of antibiotic used. To investigate whether the GA

could identify alternative treatments which would lower the use of antibiotics

but maintain high success rates two further values of w were examined. Values

of w were found by equating the two terms within the fitness function and

solving (5.5) for varying values of x, where x is the amount of antibiotic.

w
( x

184

)
= (1−w)(0.01) (5.5)

Weights were chosen based on the trade-off between the reduction in an-

tibiotic x versus the success rate. A value of w = 0.109 and w = 0.269 were

chosen. A value of x = 15 means that a reduction in antibiotic use of 15 µg/ml

must account for less than a 1% decrease in success to be considered a better

treatment regimen. Solving to find w gives a value of 0.109. To increase the

emphasis on minimising the antibiotic a value of x = 5 was chosen i.e. a re-

duction in antibiotic use of 5 µg/ml must account for less than a 1% decrease

in success to be considered a better treatment regimen. Solving to find w gives

a value of 0.269.

5.3.1 Setting Constraints for the Genetic Algorithm

A conventional constant dose treatment regimen is used as a baseline for

comparison with the optimal treatments identified by the GA. This regimen

is also used to set some constraints within the GA. These constraints ensure

that the treatments identified are comparable in terms of antibiotic usage and

maximum concentration. The baseline conventional treatment regimen from
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Chapter 3, 23 µg/ml per day for 8 days, is maintained. Due to the changes in

the parameter values the success rate is reduced to 69% (67.7, 70.28) with a

median time to eradication of the infection of 8.32 days (8.29, 8.35), Table 5.3.

Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI, n = 3450]

(23, 23, 23, 23, 23, 23, 23, 23) 184 69 [67.7, 70.28] 8.32 [8.29, 8.35]

Table 5.3: Success rate of the baseline conventional treatment regimen and median

time to eradication of the infection.

Constraints from the conventional treatment regimen are therefore as fol-

lows: The maximum amount of antibiotic used within the alternative treatment

regimens must not exceed the amount used within the baseline treatment. The

maximum amount of antibiotic that can be used across the entire duration of

treatment is therefore 184 µg/ml. Antibiotics are toxic and can be lethal in

high enough concentrations. To ensure that any regimen identified by the GA

does not contain concentrations of antibiotic which might be lethal, regimens

identified by the GA do not exceed the maximum concentration of antibiotic

present within the conventional regimen. A cap of 60 µg/ml is set as the

maximum concentration that can be present within the system at any given

time (this constraint is later relaxed).

5.4 results

5.4.1 Optimising Time Intervals between Constant Antibiotic Doses

Up to this point the assumption has been that doses of antibiotics are admin-

istered in daily time intervals with the GA identifying the optimum daily
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dose. Administering varying doses of antibiotic on a daily interval has the

potential to increase success rates and even reduce the amount of antibiotic

required to do so when compared to a constant dose regimen (see Chapter

3). However, unless administered in a liquid solution, the practicalities of

manufacturing tablets which would allow for varying doses is complex. This

raises the question: Is it possible to improve the success rate of constant dose

treatments by varying the interval between the doses?

By fixing the dosage vector to that of the conventional treatment regimen

D = (23, 23, 23, 23, 23, 23, 23, 23), the GA was adapted to identify the vector of

times at which each dose should be administered t̂ = (t1, t2, ..., t8) to minimise

(5.4). As the amount of antibiotic is fixed only a weight of w = 0 was used. The

GA will identify the times at which the constant doses should be administered

to maximise the success rate of eradicating the infection. The minimum time

between doses was set to one hour and the time interval is measured in hourly

increments.

The results from the GA (Table 5.4) show a similar pattern in all identified

time vectors: the first two doses are given close together, the third is given

about half a day later with the remainder of the doses being given in just over

daily intervals. Examining the concentration profile of the antibiotic under

these treatment regimens (Figure 5.1) it can be seen that the first three doses

are given such that the concentration of antibiotic reaches the maximum as

quickly as possible. The later doses increase the duration at which the bacteria

are exposed to the antibiotic. By taking the constant doses but administering

them at different times the success of eradicating the infection increases from

69% (95% CI: 67.7, 70.28) for the conventional treatment up to 97.78% (95% CI:
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Total Success Rate (%) Time to Eradication

Time Vector (hours) Antibiotic [95% CI, n = 5000] (days) [95% CI]

T1 (0, 1, 13, 38, 64, 87, 111, 142) 184 97.78 [97.33, 98.17] 4.67 [4.63, 4.71]

T2 (0, 1, 15, 39, 65, 90, 115, 138) 184 97.66 [97.20, 98.06] 4.79 [4.74, 4.83]

T3 (0, 1, 12, 38, 64, 90, 118, 140) 184 97.50 [97.03, 97.91] 4.63 [4.58, 4.67]

T4 (0, 1, 14, 43, 64, 89, 114, 139) 184 97.32 [96.83, 97.75] 4.82 [4.78, 4.86]

T5 (0, 7, 15, 40, 64, 90, 113, 138) 184 97.28 [96.81, 97.73] 4.87 [4.83, 4.91]

T6 (0, 6, 18, 41, 68, 94, 120, 142) 184 96.38 [95.82, 96.88] 5.16 [5.11, 5.20]

T7 (0, 3, 15, 38, 64, 91, 117, 146) 184 96.22 [95.65, 96.73] 4.74 [4.69, 4.79]

T8 (0, 3, 17, 42, 66, 90, 116, 145) 184 96.20 [95.63, 96.71] 4.99 [4.95, 5.02]

T9 (0, 5, 15, 43, 67, 93, 120, 146) 184 96.18 [95.61, 96.69] 5.09 [5.05, 5.13]

T10 (0, 5, 16, 41, 65, 90, 118, 145) 184 96.18 [95.61, 96.69] 4.91 [4.87, 4.95]

Table 5.4: Table comparing the success rates and time to eradication of time vectors

produced by the GA which optimise the baseline conventional dosage

vector when w = 0. The top 10 time vectors are shown. n = 4889, 4883, 4875,

4866, 4864, 4819, 4811, 4810, 4809, 4809 for time to eradication of T1 - T10

respectively.

97.33, 98.17).
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Figure 5.1: Concentration profiles of the top 10 time vectors identified by the GA

which optimise the baseline conventional dosage vector with a weight,

w=0.
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By altering the intervals between the doses, the GA is able to take the

constant dose regimen and amend it to create a concentration profile with a

high initial dose. This allows the concentration of antibiotic to get above the

MIC of the bacteria quickly. In addition to changes in success rates the median

time to eradication of the infection reduces for all the regimens identified by

the GA when compared to the conventional regimen. The median time to

eradication for the base-line constant-dose treatment was 8.32 days (95% CI:

8.29, 8.35). This is reduced to 4.67 days (95% CI: 4.63, 4.71) when the interval

between the doses is altered to produce a high initial dose of antibiotic.

5.4.2 Optimising Antibiotic Doses when administered in Daily Time Intervals

Returning to the assumption that antibiotics are administered every 24 hours,

the GA was used to identify the dosage vector D = (D1,D2, ...,Dd) which

minimises (5.4) under the new parameter values. Due to the ability to alter the

total amount of antibiotic used within these regimens, results were obtained

for weights ofw = 0, 0.109 and 0.269. These results are used as a comparison to

identify if there is any benefit in changing the time intervals between constant

doses over changing the doses administered in daily intervals.

The results from Table 5.5 where w = 0 and Table 5.6 where w = 0.109

are similar. Both use almost all the 184 µg/ml of antibiotic and achieve a

success rate up to 98%. By administering a high initial dose the success rate of

eradicating the infection increases from 69% (95% CI: 67.7, 70.28) seen with

the conventional constant dose regimen to 98% (95% CI: 97.57, 98.37). Due

to the stochastic nature of the GA, noise within the results will always be

expected. Dosage vector D10 Table 5.6 has a lower initial dose than all the

other identified regimens and results in a lower success rate at 95.36% (95%
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (58, 23, 23, 23, 23, 20, 11, 3) 184 98.00 [97.57, 98.37] 4.35 [4.32, 4.39]

D2 (58, 24, 20, 22, 21, 19, 18, 2) 184 97.72 [97.27, 98.12] 4.40 [4.37, 4.42]

D3 (59, 21, 22, 23, 22, 22, 13, 2) 184 97.66 [97.20, 98.06] 4.46 [4.42, 4.49]

D4 (55, 22, 23, 23, 22, 21, 15, 2) 183 97.24 [96.75, 97.68] 4.64 [4.61, 4.69]

D5 (60, 20, 20, 25, 20, 21, 14, 4) 184 97.06 [96.55, 97.51] 4.48 [4.45, 4.51]

D6 (55, 22, 25, 20, 21, 23, 11, 0) 177 96.82 [96.30, 97.29] 4.56 [4.53, 4.60]

D7 (56, 24, 20, 18, 27, 23, 10, 4) 182 96.82 [96.30, 97.29] 4.61 [4.57, 4.66]

D8 (56, 25, 23, 19, 22, 11, 26, 1) 183 96.40 [95.85, 96.90] 4.43 [4.40, 4.46]

D9 (58, 16, 27, 21, 22, 23, 11, 4) 182 96.30 [95.74, 96.81] 4.65 [4.30, 5.25]

D10 (55, 24, 24, 22, 17, 25, 4, 8) 179 96.20 [95.63, 96.71] 4.46 [4.43, 4.49]

Table 5.5: Table comparing the success rates and time to eradication of dosage vectors

produced by the GA with a weight w = 0. The top 10 dosage vectors are

shown. n = 4900, 4886, 4883, 4862, 4853, 4841, 4841, 4820, 4815, 4810 for time

to eradication of D1 - D10 respectively.

CI: 94.74, 95.93). If D10 was omitted then the remaining dosage vectors are all

fairly similar. The median time to eradication of the infections reduces for all

the regimens identified by the GA when compared to the conventional treat-

ment regimen. The median time to eradication for the baseline conventional

treatment was 8.32 days (95% CI: 8.29, 8.35). This is reduced by 4 days to 4.37

days (95% CI: 4.34, 4.41) when a high initial dose of antibiotic is given.

Increasing the value of w allowed the GA to identify regimens which min-

imise the total amount of antibiotic without lowering the success rate too far.

When run using a value of 0.269 for w (Table 5.7) dosage vectors identified

by the GA can obtain success rates above 95% despite using up to 11% less

antibiotic. The success rates are slightly lower than those achieved with w = 0
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (58, 24, 22, 21, 24, 20, 13, 0) 182 98.00 [97.57, 98.37] 4.37 [4.34, 4.41]

D2 (58, 24, 20, 23, 23, 22, 9, 4) 183 97.70 [97.25, 98.10] 4.38 [4.35, 4.41]

D3 (57, 22, 22, 24, 22, 20, 10, 4) 181 97.54 [97.07, 97.95] 4.51 [4.48, 4.53]

D4 (57, 22, 24, 22, 19, 25, 11, 0) 180 97.52 [97.05, 97.93] 4.44 [4.42, 4.47]

D5 (56, 19, 26, 22, 23, 22, 13, 2) 183 97.44 [96.96, 97.86] 4.65 [4.62, 4.69]

D6 (59, 22, 23, 22, 23, 9, 23, 2) 183 97.24 [96.75, 97.68] 4.36 [4.33, 4.39]

D7 (57, 24, 21, 23, 21, 21, 4, 11) 182 97.04 [96.53, 97.49] 4.40 [4.37, 4.43]

D8 (57, 24, 21, 23, 22, 22, 0, 0) 169 96.54 [96.00, 97.03] 4.41 [4.38, 4.44]

D9 (60, 22, 22, 23, 15, 25, 7, 5) 179 96.30 [95.74, 96.81] 4.32 [4.29, 4.35]

D10 (48, 30, 18, 22, 23, 20, 15, 6) 182 95.36 [94.74, 95.93] 5.06 [5.01, 5.11]

Table 5.6: Table comparing the success rates and time to eradication of dosage vectors

produced by the GA with a weight w = 0.109. The top 10 dosage vectors

are shown. n = 4900, 4885, 4877, 4876, 4872, 4862, 4852, 4827, 4815, 4768 for

time to eradication of D1 - D10 respectively.

and w = 0.109, but most are still above 95%.

Comparing the concentration profiles for w = 0 and w = 0.269 (Figure

5.2) it can be seen that the dosage vectors identified by the GA all have a

similar pattern. A high initial dose followed by daily doses which maintain the

concentration at its maximum. This creates a similar concentration profile to

Figure 5.4. The high initial dose allows the concentration to increase above the

MIC of both the susceptible and resistant bacteria immediately with the daily

doses maintaining it there for as long as possible. The treatment regimens

using less antibiotic maintain the same pattern but over a shorter duration.

Due to the decrease in median time to eradication achieved by the pattern of a

high initial dose it is possible to reduce the treatment duration by a day with
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (60, 22, 20, 22, 21, 23, 0, 0) 168 96.26 [95.70, 96.77] 4.37 [4.34, 4.40]

D2 (54, 26, 22, 21, 22, 21, 4, 1) 171 96.24 [95.68, 96.75] 4.49 [4.46, 4.53]

D3 (60, 21, 21, 23, 23, 14, 10, 0) 172 96.14 [95.57, 96.66] 4.37 [4.33, 4.40]

D4 (59, 23, 22, 21, 21, 18, 2, 2) 168 95.92 [95.33, 96.45] 4.31 [4.28, 4.34]

D5 (57, 20, 23, 24, 21, 16, 11, 2) 174 95.84 [95.25, 96.38] 4.57 [4.54, 4.60]

D6 (55, 25, 21, 22, 22, 20, 2, 2) 169 95.80 [95.21, 96.34] 4.54 [4.49, 4.57]

D7 (60, 22, 22, 21, 24, 12, 0, 2) 163 95.54 [94.93, 96.10] 4.29 [4.26, 4.32]

D8 (60, 21, 18, 26, 23, 10, 2, 0) 160 94.26 [93.58, 94.89] 4.46 [4.44, 4.50]

D9 (58, 23, 22, 21, 15, 23, 0, 0) 162 93.82 [93.12, 94.47] 4.33 [4.30, 4.36]

D10 (59, 22, 18, 26, 23, 2, 3, 4) 157 91.96 [91.17, 92.70] 4.47 [4.44, 4.50]

Table 5.7: Table comparing the success rate and time to eradication of dosage vectors

produced by the GA with a weight w = 0.269. The top 10 dosage vectors

are shown. n = 4813, 4812, 4807, 4796, 4792, 4790, 4777, 4713, 4691, 4598 for

time to eradication of D1 - D10 respectively.

only a small decrease in success.

When using all 184µg/ml of antibiotic there is no significant difference in

success rate if you change the doses given daily (Table 5.5) versus changing

the time interval between the constant doses (Table 5.4). However, when the

time interval between the constant doses is altered the duration of treatment

drops from 8 days to just over 6 days.

5.4.3 Optimising Antibiotic Doses and Corresponding Time Intervals

It can be seen that while changing the time interval resulted in shorter treat-

ment duration, changing the dosage vector allowed for high success rates
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Figure 5.2: Concentration profiles of the top 10 dosage vectors identified by the GA

with a weight of w=0 (a) and w=0.269 (b)

while using less antibiotic. Previously the GA has only been programmed to

identify either the dosage or time vector and given the other vector. Here the

GA is amended to allow it to identify both the doses and the corresponding

time at which those doses should be administered.

The aim of the GA is now to identify both the dosage vector and corres-

ponding time vector which minimises (5.4). As both vectors are being searched

for the constraints from the previous sections must all be included: the max-

imum amount of antibiotic used must not exceed 184 µg/ml, the maximum

concentration of antibiotic within the system must not exceed 60 µg/ml, the

minimum time between doses is one hour and the time interval is measured

in hourly increments.
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (60, 14, 22, 20, 19, 15, 15, 18) 183 99.26 [98.98, 99.48] 4.15 [4.11, 4.17]

T1 (0, 16, 38, 58, 78, 94, 108, 126)

D2 (58, 16, 10, 17, 20, 21, 22, 18) 182 98.98 [98.66, 99.24] 4.04 [4.01, 4.07]

T2 (0, 15, 30, 42, 62, 87, 109, 131)

D3 (58, 17, 19, 15, 19, 21, 15, 10) 184 98.78 [98.44, 99.07] 4.11 [4.08, 4.14]

T3 (0, 18, 37, 51, 73, 93, 123, 141)

D4 (58, 12, 12, 22, 18, 16, 22, 19) 179 98.76 [98.41, 99.05] 4.07 [4.05, 4.09]

T4 (0, 10, 26, 45, 64, 84, 104, 127)

D5 (41, 27, 23, 17, 19, 15, 19, 21) 182 98.68 [98.32, 98.98] 4.42 [4.39, 4.44]

T5 (0, 11, 36, 53, 73, 90, 111, 130)

D6 (31, 30, 21, 18, 25, 19, 19, 19) 182 98.66 [98.30, 98.96] 4.34 [4.31, 4.37]

T6 (0, 3, 24, 42, 70, 89, 108, 133)

D7 (58, 15, 23, 20, 22, 16, 10, 10) 174 98.60 [98.23, 98.91] 4.18 [4.15, 4.21]

T7 (0, 13, 38, 60, 84, 100, 112, 122)

D8 (40, 24, 21, 20, 19, 22, 17, 17) 180 98.56 [98.19, 98.87] 4.40 [4.37, 4.43]

T8 (0, 6, 30, 51, 71, 93, 112, 129)

D9 (59, 25, 22, 13, 14, 17, 16, 12) 178 98.50 [98.12, 98.82] 4.30 [4.27, 4.33]

T9 (0, 28, 50, 64, 83, 95, 110, 137)

D10 (29, 32, 17, 24, 20, 21, 21, 20) 184 98.44 [98.06, 98.76] 5.54 [4.50, 4.57]

T10 (0, 5, 23, 47, 71, 90, 114, 137)

Table 5.8: Table comparing the success rate and time to eradication of dosage vectors

and corresponding time vectors produced by the GA with a weight w = 0.

The top 10 dosage vectors and corresponding time vector are shown. n

= 4963, 4949, 4939, 4938, 4934, 4933, 4930, 4928, 4925, 4922 for time to

eradication of D1 - D10 respectively.
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (58, 24, 21, 16, 21, 24, 17) 181 98.54 [98.17, 98.85] 4.43 [4.39, 4.46]

T1 (0, 27, 50, 67, 89, 113, 131, 144)

D2 (30, 27, 19, 19, 24, 20, 19, 20) 178 98.24 [97.84, 98.59] 4.47 [4.43, 4.51]

T2 (0, 1, 20, 44, 65, 90, 107, 127)

D3 (48, 19, 16, 20, 16, 16, 24, 13) 172 98.24 [97.84, 98.59] 4.13 [4.11, 4.16]

T3 (0, 8, 25, 47, 63, 81, 106, 123)

D4 (59, 18, 16, 16, 19, 12, 20, 14) 174 98.02 [97.59, 98.39] 4.17 [4.13, 4.22]

T4 (0, 19, 36, 55, 79, 91, 108, 121)

D5 (60, 14, 15, 15, 20, 17, 13, 17) 171 97.96 [97.53, 98.33] 4.21 [4.18, 4.25]

T5 (0, 15, 35, 48, 69, 84, 105, 119)

D6 (54, 18, 14, 22, 23, 16, 14, 17) 178 97.96 [97.53, 98.33] 4.38 [4.32, 4.42]

T6 (0, 17, 29, 53, 81, 96, 112, 130)

D7 (29, 19, 16, 21, 24, 25, 24, 22) 180 97.28 [96.79, 97.71] 4.71 [4.67, 4.74]

T7 (0, 2, 6, 30, 58, 84, 109, 132)

D8 (51, 17, 21, 20, 20, 21, 15, 9) 174 97.28 [96.79, 97.71] 4.43 [4.39, 4.46]

T8 (0, 12, 34, 57, 78, 99, 121, 130)

D9 (31, 19, 23, 22, 17, 21, 24, 20) 177 97.24 [96.75, 97.68] 4.65 [4.62, 4.68]

T9 (0, 7, 20, 43, 59, 81, 108, 129)

D10 (53, 24, 18, 19, 19, 12, 14, 5) 164 96.38 [95.82, 96.88] 4.48 [4.45, 4.52]

T10 (0, 21, 43, 64, 82, 92, 113, 125)

Table 5.9: Table comparing the success rate and time to eradication of dosage vectors

and corresponding time vectors produced by the GA with a weight w =

0.109. The top 10 dosage vectors and corresponding time vector are shown.

n = 4927, 4912, 4912, 4901, 4898, 4898, 4864, 4864, 4862, 4819 for time to

eradication of D1 - D10 respectively.
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (58, 13, 17, 21, 15, 13, 15, 9) 161 97.16 [96.66, 97.60] 4.14 [4.11, 4.17]

T1 (0, 11, 31, 51, 71, 85, 99, 105)

D2 (60, 12, 11, 14, 9, 24, 11, 13) 154 96.96 [96.45, 97.42] 4.02 [3.98, 4.05]

T2 (0, 12, 30, 37, 48, 72, 84, 97)

D3 (54, 21, 17, 15, 18, 13, 12, 7) 157 96.94 [97.01, 97.90] 4.13 [4.11, 4.16]

T3 (0, 17, 37, 51, 68, 82, 93, 107)

D4 (58, 21, 17, 17, 8, 9, 19, 9) 158 96.58 [96.04, 97.07] 4.06 [4.03, 4.09]

T4 (0, 21, 38, 55, 69, 73, 91, 124)

D5 (60, 16, 11, 13, 16, 21, 1, 12) 150 96.28 [95.72, 96.79] 3.98 [3.96, 4.01]

T5 (0, 21, 29, 42, 58, 78, 82, 95)

D6 (54, 12, 15, 13, 9, 6, 20, 15) 144 95.52 [94.91, 96.08] 3.96 [3.92, 3.98]

T6 (0, 9, 22, 36, 43, 53, 71, 86)

D7 (56, 19, 1, 20, 17, 12, 13, 13) 151 95.26 [94.63, 95.83] 4.21 [4.18, 4.23]

T7 (0, 18, 22, 41, 60, 73, 86, 103)

D8 (45, 15, 16, 19, 16, 19, 19, 3) 152 95.12 [94.49, 95.70] 4.07 [4.04, 4.10]

T8 (0, 1, 17, 37, 53, 75, 95, 120)

D9 (44, 17, 17, 18, 17, 9, 14, 7) 143 94.60 [93.94, 95.21] 4.11 [4.08, 4.13]

T9 (0, 3, 22, 39, 57, 68, 78, 89)

D10 (58, 14, 12, 12, 16, 15, 9, 3) 139 93.74 [93.03, 94.40] 4.00 [3.89, 4.03]

T10 (0, 19, 25, 38, 56, 71, 82, 91)

Table 5.10: Table comparing the success rate and time to eradication of dosage vectors

and corresponding time vectors produced by the GA with a weight w =

0.269. The top 10 dosage vectors and corresponding time vector are shown.

n = 4858, 4848, 4847, 4829, 4814, 4776, 4763, 4756, 4730, 4687 for time to

eradication of D1 - D10 respectively.

With a weight of w = 0 the GA redistributes the 184 µg/ml of antibiotic into

treatment regimens (Table 5.8) which increase the success rate of eradicating
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an infection up to 99.26% (95% CI: 98.98, 99.48). The duration of treatment is

reduced to 5.25 days with a median time to eradication of 4.15 days (95% CI:

4.11, 4.17). Allowing the GA to optimise both the doses and the time interval

between the doses identifies treatment regimens which are significantly better

at eradicating the infection than either altering the dose (Table 5.5) or time

interval (Table 5.4) separately.

As the value of w is increased more emphasis is placed on minimising

the amount of antibiotic required to eradicate the infection. The confidence

intervals for the majority of treatments in Table 5.8 overlap with treatment

regimen D1 in Table 5.9. Meaning the results from w = 0.109 (Table 5.9)

identify treatment regimens which use up to 6% less antibiotic while achieving

success rates similar to the majority of treatments where w = 0 (Table 5.8).

Further increasing the weight on minimising the amount of antibiotic used,

w = 0.269 (Table 5.10), the GA was able to identify treatment regimens which

used almost 22% less antibiotic than the conventional regimen while achieving

a success rate of over 95% at 95.52% (95% CI: 94.91, 96.08).

Due to the high variability in doses and time intervals the concentration

profiles (Figure 5.3) of the treatment regimens do not appear to converge to

a single pattern. However, when the concentration profiles for w = 0 and

w = 0.269 are compared it is possible to see some form of pattern. The high

initial dose that was observed in the previous treatment regimens is once again

seen in both of these profiles. Later doses are then administered to maintain the

concentration at the maximum allowed. When w = 0 the GA is not concerned

with minimising the antibiotic and so there are many different combinations

of times and doses that achieve a high success rate. With w = 0.269 the GA

tries to minimise the amount of antibiotic being required. Once again there
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Figure 5.3: Concentration profiles of the top 10 dosage vectors and corresponding

time vectors identified by the GA with a weight of w=0 (a) and w=0.269

(b)

is a high initial dose but the interval between the following doses is shorter.

This can be seen by the reduction in duration of treatment between the two

profiles. By minimising the time between the doses the GA maintains a higher

concentration of antibiotic within the system for longer.

5.5 mini-summary and next steps

Results obtained from optimising the time interval between constant doses

produced similar results to optimising the doses with constant time intervals.

By taking current conventional treatment regimens and altering the times at

which doses are administered increases the success rate of the conventional

treatment regimen from 69% (95% CI: 67.7, 70.28) to 97.78% (95% CI: 97.33,

98.17). The implications for manufacturers are removed if the time between

constant doses is altered compared to changing the doses given daily. How-

ever, either scenario produces more chance of human error from the patient.

Patients either have to remember to take the antibiotic at varying time intervals

143

[ 12th November 2019 at 15:10 ]



or remember to take the correct dose of antibiotic on the correct day.

Despite producing far more complex dosing regimens, the impact altering

both the dose and time interval had on the success of eradicating an infection

was examined. Significantly better results were obtained when both vectors

were optimised. When using all 184 µg/ml the success rate increased from

98% (95% CI: 97.57, 98.37) to 99.26% (95% CI: 98.98, 99.48). In addition, incor-

porating both the time and dose vector into the GA identifies more effective

treatment regimens when using less antibiotic. When optimising the doses

only, a reduction of 13% of the total antibiotic resulted in a success rate of

94.26% (95% CI: 93.58, 94.89). Optimising the dose and time interval produced

similar results of 93.74% (95% CI: 93.03, 94.40) but using 24.5% less of the total

antibiotic.

Interestingly, the tapered pattern of treatment no longer holds as the optimal

way to administer the antibiotics under the new parameter set. In all results the

regimens were converging to maintaining the concentration of antibiotic at the

maximum allowed for as long as possible. By increasing the MIC points from

those used in Chapter 3 the area between the MIC of the resistant bacteria and

the maximum concentration is decreased. In order to be successful a treatment

regimen needs to be able to maintain the concentration of antibiotic above the

MIC of the bacteria for a suitable duration. If the area between the MIC of the

resistant bacteria and the maximum concentration of antibiotic is small then

the GA will maximise the antibiotic induced death rate by maintaining the

concentration at the maximum allowed for as long as possible. To investigate

whether the maximum concentration cap of 60 µg/ml of antibiotic was causing

the results the cap was increased to 100 µg/ml and the results repeated.
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5.6 results with increased antibiotic concentration cap

With the maximum concentration of antibiotic being increased to 100 µg/ml

the baseline conventional treatment regimen was amended. The 184 µg/ml of

antibiotic was split into 4, 5 and 6 equal doses and a success rate calculated

for each. The regimen with the maximum success rate was taken as the

new baseline conventional treatment. The four day treatment regimen was

therefore chosen as the new baseline with a success rate of 98.9% (95% CI:

98.57, 99.17) and a median time to eradication of 4.11 days (95% CI: 4.09, 4.14).

The maximum concentration of antibiotic within the four day treatment is

slightly higher than the 100 µg/ml cap at ∼102 µg/ml but this was considered

to be admissible.

5.6.1 Optimising Time Intervals between Constant Antibiotic Doses

The GA is implemented to identify the time vector, t̂ = (t1, t2, ..., t4), such

that the conventional treatment regimen D = (46, 46, 46, 46) minimises (5.4).

Due to the fixed amount of antibiotic, the GA will minimise the number of

unsuccessful runs only, w = 0.

The treatment regimens identified by the GA in Table 5.11 give the first two

doses of antibiotic close together. This creates a high initial dose with the last

two doses being given in roughly 36 hour intervals. Extending the interval

for the last two doses increases the duration that the antibiotic is maintained

within the system. Varying the time interval between doses makes it possible

to increase the success rate of the constant dose regimen from 98.9% (95% CI:

98.57, 99.17) up to 99.54% (95% CI: 99.31, 99.71). The treatment duration is

reduced from 4 days to 3.21 days and the median time to eradication of the

145

[ 12th November 2019 at 15:10 ]



Success Rate (%) Time to Eradication

Time Vector Total Antibiotic [95% CI, n = 5000] (days) [95% CI]

T1 (0, 6, 39, 77) 184 99.54 [99.31, 99.71] 3.69 [3.67, 3.72]

T2 (0, 8, 42, 75) 184 99.52 [99.29, 99.69] 3.73 [3.72, 3.76]

T3 (0, 6, 46, 75) 184 99.48 [99.24, 99.66] 3.77 [3.75, 3.79]

T4 (0, 4, 46, 73) 184 99.44 [99.19, 99.63] 3.77 [3.75, 3.80]

T5 (0, 13, 50, 83) 184 99.42 [99.17, 99.61] 3.91 [3.89, 3.93]

T6 (0, 8, 45, 87) 184 99.42 [99.17, 99.61] 3.76 [3.74, 3.78]

T7 (0, 8, 37, 72) 184 99.40 [99.14, 99.59] 3.70 [3.68, 3.72]

T8 (0, 17, 50, 84) 184 99.28 [99.00, 99.50] 3.97 [3.95, 3.99]

T9 (0, 3, 39, 86) 184 99.28 [99.00, 99.50] 3.66 [3.64, 3.98]

T10 (0, 7, 51, 92) 184 99.18 [98.89, 99.41] 3.87 [3.85, 3.89]

Table 5.11: Table comparing the success rate and time to eradication of time vectors

which optimise the baseline conventional dosage vector with a weight

w = 0. The top 10 time vectors are shown. n = 4977, 4976, 4974, 4972, 4971,

4971, 4970, 4964, 4964, 4959 for time to eradication of T1 - T10 respectively.

infection is significantly shorter at 3.69 days (95% CI: 3.67, 3.72).

The concentration profile of the treatment regimens, Figure 5.4, show the

high initial dose created by administering the first two doses close together.

Extending the interval for the last two doses means that the concentration

of antibiotic within the system at any given time is also lower than in the

conventional treatment. Increasing the concentration cap has allowed the GA

to identify alternative treatment regimens which are not trying to maintain

the concentration at the maximum allowed for as long as possible as seen in

Section 5.4.1.
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Figure 5.4: Concentration profiles of the top 10 time vectors identified by the GA

which optimise the baseline conventional dosage vector with a weight,

w=0.

5.6.2 Optimising Antibiotic Doses when Administered in Daily Time Intervals

Although the new baseline conventional treatment regimen consists of four

doses, the GA was permitted to distribute the antibiotic over a maximum of 8

doses. In a conventional regimen increasing the number of doses beyond four

resulted in lower success rates. Various weights were examined with Tables

5.12, 5.13 and 5.14 displaying the results from weights w = 0, 0.109 and 0.269

respectively.

Despite some noise within the results, the dosage vectors from Table 5.12

show treatment regimens which consist of four doses with a high initial dose.

Increasing the initial dose increases the success of eradicating an infection

up to 99.44% (95% CI: 99.31, 99.71), significantly better than the conventional

treatment at 98.9% (95% CI: 98.57, 99.17). However, once again there is no

significant difference in success rate or median time to eradication when

optimising the dosage vector versus optimising the time vector.
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (78, 31, 47, 26, 0, 0, 0, 0) 182 99.44 [99.19, 99.63] 3.65 [3.63, 3.67]

D2 (76, 50, 27, 17, 7, 0, 0, 0) 177 99.40 [99.14, 99.59] 3.61 [3.59, 3.63]

D3 (70, 41, 29, 32, 8, 0, 0, 2) 182 99.40 [99.14, 99.59] 3.70 [3.68, 3.72]

D4 (69, 41, 38, 35, 0, 0, 0, 0) 183 99.38 [99.12, 99.58] 3.67 [3.65, 3.69]

D5 (79, 22, 25, 56, 1, 0, 0, 0) 183 99.38 [99.12, 99.58] 3.75 [3.72, 3.77]

D6 (72, 41, 36, 30, 0, 0, 0, 4) 183 99.36 [99.10, 99.56] 3.65 [3.63, 3.67]

D7 (60, 48, 32, 33, 1, 0, 0, 0) 174 99.26 [98.98, 99.48] 3.79 [3.76, 3.80]

D8 (76, 32, 15, 51, 0, 0, 0, 0) 174 99.10 [98.80, 99.34] 3.71 [3.69, 3.73]

D9 (56, 47, 41, 31, 0, 6, 0, 0) 181 98.92 [98.59, 99.19] 3.84 [3.82, 3.85]

D10 (61, 44, 24, 34, 0, 5, 0, 0) 168 98.56 [98.19, 98.87] 3.81 [3.79, 3.83]

Table 5.12: Table comparing success rates and time to eradication of dosage vectors

produced by the GA with a weight w = 0. The top 10 dosage vectors are

shown. n = 4972, 4970, 4970, 4969, 4969, 4968, 4963, 4955, 4946, 4928 for

time to eradication of D1 - D10 respectively.

Increasing the value of w, Table 5.13, the GA is able to refine the treatment

regimens to use less antibiotic while maintaining high success rates. By using

a high initial dose followed by a tapering of later doses the GA identifies

treatments using 15% less antibiotic while maintaining similar success rates as

the baseline.
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (76, 27, 34, 21, 0, 0, 0, 0) 158 98.62 [98.26, 98.92] 3.67 [3.65, 3.68]

D2 (77, 43, 16, 23, 0, 0, 0, 0) 159 98.54 [98.17, 98.85] 3.63 [3.61, 3.65]

D3 (72, 37, 28, 19, 0, 0, 0, 0) 156 98.52 [98.15, 98.84] 3.69 [3.67, 3.71]

D4 (89, 33, 36, 3, 0, 3, 1, 1) 166 98.02 [97.59, 98.39] 3.60 [3.58, 3.62]

D5 (59, 40, 32, 11, 18, 0, 0, 0) 160 97.82 [97.38, 98.21] 3.85 [3.83, 3.87]

D6 (87, 28, 23, 15, 0, 0, 0, 0) 153 97.72 [97.27, 98.12] 3.62 [3.60, 3.64]

D7 (69, 38, 26, 12, 6, 0, 0, 0) 151 97.64 [97.18, 98.04] 3.71 [3.69, 3.73]

D8 (89, 16, 30, 17, 0, 0, 0, 0) 152 97.58 [97.12, 97.99] 3.66 [3.64, 3.68]

D9 (76, 28, 27, 19, 0, 3, 0, 0) 153 97.58 [97.12, 97.99] 3.68 [3.66, 3.69]

D10 (89, 23, 27, 0, 0, 0, 0, 0) 139 95.24 [94.61, 95.81] 3.60 [3.59, 3.62]

Table 5.13: Table comparing the success rate and time to eradication of dosage vectors

produced by the GA with a weight w = 0.109. The top 10 dosage vectors

are shown. n = 4931, 4927, 4926, 4901, 4891, 4886, 4882, 4879, 4879, 4762 for

time to eradication of D1 - D10 respectively.

Comparison of the concentration profiles for all three values ofw (Figure 5.5)

show that as w increases the GA identifies dosage vectors which have a high

initial dose followed by tapering lower doses. This is the same pattern that was

observed in previous chapters. By using a tapering pattern an infection can

be successfully treated using less antibiotic while exposing the environment

to a lower concentration of antibiotic when compared with the conventional

treatment.
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (79, 19, 33, 19, 0, 0, 0, 0) 150 97.62 [97.16, 98.02] 3.73 [3.72, 3.75]

D2 (87, 22, 32, 9, 0, 0, 0, 0) 150 97.22 [96.73, 97.66] 3.64 [3.62, 3.65]

D3 (85, 27, 31, 4, 0, 0, 0, 0) 147 96.58 [96.04, 97.07] 3.62 [3.60, 3.64]

D4 (80, 23, 29, 13, 0, 0, 0, 0) 145 96.26 [95.70, 96.77] 3.67 [3.65, 3.68]

D5 (77, 20, 30, 16, 0, 0, 0, 0) 143 95.96 [95.38, 96.49] 3.74 [3.72, 3.76]

D6 (79, 32, 22, 7, 0, 0, 1, 0) 141 95.68 [95.08, 96.23] 3.64 [3.62, 3.65]

D7 (77, 23, 30, 10, 0, 0, 0, 0) 140 95.50 [94.89, 96.06] 3.70 [3.69, 3.72]

D8 (66, 35, 30, 10, 0, 0, 2, 1) 144 95.46 [94.85, 96.02] 3.73 [3.70, 3.75]

D9 (80, 19, 35, 6, 0, 0, 0, 0) 140 95.20 [94.57, 95.78] 3.70 [3.68, 3.72]

D10 (68, 38, 24, 2, 0, 0, 0, 0) 132 92.54 [91.78, 93.25] 3.67 [3.65, 3.69]

Table 5.14: Table comparing the success rate and time to eradication of dosage vectors

produced by the GA with a weight w = 0.269. The top 10 dosage vectors

are shown. n = 4881, 4861, 4829, 4813, 4798, 4784, 4775, 4773, 4760, 4627 for

time to eradication of D1 - D10 respectively.

With w = 0.269 the results from the GA reduce the total amount of antibiotic

by 24% while still maintaining success rates above 95%. Despite these high

success rates the conventional treatment regimen performs better at eradicating

the infection for all regimens identified in Table 5.14. Tapering the doses of

antibiotic does have its benefits with treatment regimens identified that use

18.5% less antibiotic than the conventional regimen with only a 1.28% reduction

in success rate.
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Figure 5.5: Concentration profiles of the top 10 dosage vectors identified by the GA

with a weight of w=0 (a), w=0.109 (b) and w=0.269 (c)

5.6.3 Optimising Antibiotic Doses and Corresponding Time Intervals

With the promising results seen in Section 5.4.3, the GA was used to identify

both the dosage vector and corresponding time vector which minimises (5.4)

with the maximum concentration set at 100 µg/ml.

With the maximum concentration cap increased to 100 µg/ml and all em-

phasis on maximising the success rate (Table 5.15), the GA identified various

treatment patterns which have a success of eradicating the infection of up to

99.58% (95% CI: 99.36, 99.74). Incorporating the varied time interval does not

improve the success of the treatment regimens when compared to optimising

doses only at the higher concentration cap.
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Total Success Rate (%) Time to Eradication

Dosage Vector Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (65, 24, 28, 12, 25, 3, 24) 181 99.58 [99.36, 99.74] 3.75 [3.73, 3.77]

T1 (0, 23, 27, 54, 77, 80, 88)

D2 (77, 27, 21, 38, 13, 1) 177 99.54 [99.31, 99.71] 3.65 [3.63, 3.67]

T2 (0, 20, 25, 60, 68, 126)

D3 (60, 46, 28, 48) 182 99.52 [99.29, 99.69] 3.65 [3.63, 3.67]

T3 (0, 14, 39, 71)

D4 (65, 34, 54, 25, 3, 3) 184 99.50 [99.26, 99.68] 3.72 [3.71, 3.74]

T4 (0, 19, 48, 79, 100, 123)

D5 (39, 37, 23, 25, 19, 14, 13, 14) 184 99.44 [99.19, 99.63] 3.75 [3.73, 3.77]

T5 (0, 7, 25, 38, 54, 67, 74, 86)

D6 (76, 31, 40, 32) 179 99.42 [99.17, 99.61] 3.80 [3.78, 3.82]

T6 (0, 26, 60, 91)

D7 (69, 40, 53, 22) 184 99.42 [99.17, 99.61] 3.66 [3.65, 3.68]

T7 (0, 14, 51, 65)

D8 (58, 44, 38, 37) 177 99.30 [99.03, 99.51] 3.69 [3.67, 3.71]

T8 (0, 15, 47, 74)

D9 (75, 35, 38, 30) 178 99.24 [98.96, 99.46] 3.82 [3.79, 3.84]

T9 (0, 31, 61, 90)

D10 (60, 53, 25, 31) 169 98.48 [98.10, 98.80] 3.70 [3.68, 3.71]

T10 (0, 22, 41, 58)

Table 5.15: Table comparing the success rate and time to eradication of dosage vectors

and corresponding time vectors produced by the GA with a weight w = 0.

The top 10 dosage vectors and corresponding time vector are shown. n

= 4979, 4977, 4976, 4975, 4972, 4971, 4971, 4965, 4962, 4924 for time to

eradication of D1 - D10 respectively.

Increasing the value of w, Tables 5.16 and 5.17, decreases the amount of

antibiotic used within the treatment regimens. The success rate of all these
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Dosage Vector Success Rate (%) Time to Eradication

Time Vector (hours) Total Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (74, 18, 37, 35) 164 98.74 [98.39, 99.03] 3.61 [3.58, 3.62]

T1 (0, 7, 27, 61)

D2 (54, 34, 43, 35) 166 98.38 [97.99, 98.71] 3.67 [3.65, 3.68]

T2 (0, 10, 36, 53)

D3 (91, 23, 21, 23) 158 98.28 [97.88, 98.62] 3.61 [3.59, 3.63]

T3 (0, 18, 43, 71)

D4 (90, 18, 39, 12) 159 98.24 [97.84, 98.59] 3.64 [3.62, 3.65]

T4 (0, 20, 50, 61)

D5 (83, 28, 21, 30) 162 97.98 [97.55, 98.35] 3.60 [3.59, 3.63]

T5 (0, 10, 41, 78)

D6 (92, 25, 23, 11, 5) 156 97.84 [97.40, 98.22] 3.65 [3.62, 3.66]

T6 (0, 31, 52, 76, 100)

D7 (65, 32, 27, 30) 154 97.80 [97.35, 98.19] 3.70 [3.68, 3.72]

T7 (0, 14, 41, 71)

D8 (71, 18, 26, 36) 151 97.74 [97.29, 98.13] 3.70 [3.68, 3.73]

T8 (0, 12, 33, 60)

D9 (88, 21, 12, 29) 150 97.06 [96.55, 97.51] 3.69 [3.67, 3.72]

T9 (0, 27, 49, 63)

D10 (97, 7, 40, 7) 151 96.60 [96.06, 97.08] 3.62 [3.60, 3.64]

T10 (0, 8, 44, 64)

Table 5.16: Table comparing the success rate and time to eradication of dosage vectors

and corresponding time vectors produced by the GA with a weight w =

0.109. The top 10 dosage vectors and corresponding time vector are shown.

n = 4937, 4919, 4914, 4912, 4899, 4892, 4890, 4887, 4853, 4830 for time to

eradication of D1 - D10 respectively.
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Success Rate (%) Time to Eradication

Dosage Vector Total Antibiotic [95% CI, n = 5000] (days) [95% CI]

D1 (60 27 32 25) 144 96.92 [96.40, 97.38] 3.64 [3.62, 3.66]

T1 (0 9 32 53)

D2 (54 38 21 22 6 4) 145 96.38 [95.82, 96.88] 3.75 [3.73, 3.76]

T2 (0 9 41 57 66 68)

D3 (81 19 17 25) 142 96.36 [95.80, 96.86] 3.64 [3.62, 3.66]

T3 (0 22 37 53)

D4 (72 28 30 13) 143 96.36 [95.80, 96.86] 3.67 [3.65, 3.69]

T4 (0 20 44 73)

D5 (65 25 26 25) 141 96.08 [95.50, 96.60] 3.70 [3.67, 3.72]

T5 (0 12 35 61)

D6 (75 17 26 24) 142 95.92 [95.33, 96.45] 3.62 [3.60, 3.63]

T6 (0 15 30 55)

D7 (77 24 12 26 1) 140 95.82 [95.23, 96.36] 3.65 [3.63, 3.66]

T7 (0 21 41 54 65)

D8 (64 17 26 36) 143 95.64 [95.04, 96.19] 3.64 [3.62, 3.66]

T8 (0 1 22 48)

D9 (78 10 34 19) 141 95.56 [94.95, 96.11] 3.73 [3.71, 3.75]

T9 (0 9 42 60)

D10 (59 22 18 21 1 17) 138 95.38 [94.76, 95.95] 3.74 [3.72, 3.76]

T10 (0 13 30 42 47 65)

Table 5.17: Table comparing the success rate and time to eradication of dosage vec-

tors and corresponding time vectors produced by the GA with a weight

w = 0.269. The top 10 dosage vectors and corresponding time vector are

shown. n = 4846, 4819, 4818, 4804, 4796, 4791, 4782, 4778, 4769 for time to

eradication of D1 - D10 respectively.
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treatment regimens was maintained above 95% while using up to 25% less

antibiotic than the maximum 184 µg/ml.
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Figure 5.6: Concentration profiles of the top 10 dosage vectors and corresponding

time vectors identified by the GA with a weight of w=0 (a) and w=0.269

(b)

Plotting the concentration profiles for the treatment regimens for w = 0 and

w = 0.269 (Figure 5.6) shows the large variability in patterns identified by

the GA. However, when comparing the two sets of results it can be seen that

the treatments which result in less antibiotic being used lower the maximum

antibiotic concentration within the system to ∼80 µg/ml. While there is a

large amount of variability, these results have moved away from the pattern of

increasing the concentration to the maximum permitted and maintaining it

there.

5.7 discussion

Optimising the use of antibiotics remains at the forefront in the targeted

approach to minimising the spread of antibiotic resistance. Ensuring antibi-
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otics are only given when necessary and that the appropriate antibiotics are

used for the bacterial strain present are important steps. However, if optimal

treatment regimens are not identified then the use of antibiotics will continue

to propagate resistant bacteria. Bacterial infections which are not completely

eradicated by antibiotic therapy increase the likelihood of resistant infections

re-establishing [124]. Increasing the success rate of antibiotic treatments helps

to minimise the further emergence of resistant bacteria.

Increasing the MIC of the bacterial strains but maintaining the same max-

imum concentration cap as Chapter 3, 60 µg/ml, the GA did not identify the

tapered pattern to be the optimal way to administer the antibiotics. The GA

identified a pattern of increasing the concentration to the maximum allowed

for as long as possible. To successfully eradicate an infection the concentration

of antibiotic needs to be maintained above the MIC of the resistant strain for a

suitable duration. When the area between the MIC of the resistant strain and

the maximum concentration is reduced, there are fewer ways in which the

duration above the MIC can be obtained. The concentration of antibiotic being

administered to a host cannot be infinitely increased. A threshold exists above

which the antibiotic becomes toxic to the host. This example highlights the

importance of identifying and implementing optimal treatment regimens as

early as possible. If antibiotics continue to be used in a way which promotes

the increase in resistance, eventually a situation will arise where optimising

their use will no longer be possible. The only way to maximise the success of

eradicating the infection becomes using as much antibiotic as possible, at the

highest concentration possible, for as long as possible.

The maximum concentration cap was increased to 100 µg/ml, this ensured

the concentration cap was not forcing the GA to only maximise the antibiotic-
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induced death function. By taking the conventional treatment regimen and

relaxing the assumption that doses are delivered in daily time intervals, it was

possible to increase the success of eradicating the infection. The GA identified

treatment regimens which all followed a similar pattern. Administering the

first two doses close together and then extending the interval to 36 hours for

the last two doses increased the success rate from 98.9% to 99.54%. However,

there was no difference in success when compared to treatment regimens

where the daily dose had been optimised, 99.54% versus 99.44%. The duration

under which an environment is exposed to antibiotics increases the likelihood

of resistance developing [173]. Current treatment durations are arbitrarily

chosen with studies indicating that shorter treatment regimens can be just as

effective [117, 118, 121]. By altering the interval between the constant doses

the GA produced treatment regimens which were shorter.

Optimising the time intervals provides no opportunity to minimise the

amount of antibiotic being used. Exposing the environment to larger quantit-

ies of antibiotic has also been shown to attribute to the increase in resistant

bacteria [98, 42]. When using the GA to identify dosage vectors it is possible

to increase the weight on the amount of antibiotic being used. This allows for

regimens to be identified which minimise the use of antibiotic while maintain-

ing high success rates. By administering the antibiotic in a tapered pattern, as

seen in previous chapters, the GA reduced the total amount of antibiotic by

24% while maintaining success rates above 95%.

The conventional treatment regimen of a constant dose taken at a set time

interval is appealing to both manufacturers and patients. However, to increase

the effectiveness of antibiotics a move away from this conventional regimen

is required. Changing the interval between doses of antibiotics would be
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preferable for manufacturers as the doses of antibiotic remain constant. An

added advantage for patients is that the treatment duration would be shorter.

Although a study by Kardas [174] highlighted that patient compliance with

short-term antibiotic therapy for respiratory tract infections is generally quite

poor. Altering the doses has the potential to reduce the amount of antibiotic

a patient requires. The constant time interval also makes it simpler for the

patient to administer. In the case of once daily dosing, compliance rates have

been shown to be almost 100% [175, 176]. The downside to this approach is

the practicality of manufacturing varying doses would be complex when not

in a liquid form.

With both the change in doses and the change in time intervals providing

improvements separately, the GA was used to investigate if combining the

two would result in even better success rates. Allowing the GA to optimise the

dosage vector and corresponding time intervals did not result in significantly

better regimens when using all 184 µg/ml of antibiotic. The highly variable

results also make it difficult to identify a general pattern to the dosing regimen.

Incorporating the time interval does produce significantly better results than

optimising daily doses alone when using less antibiotic. Optimising both the

dose and the time interval results in treatment regimens which are a lot more

complex than the conventional treatment. These treatment regimens may be

more suited to clinical settings where varying doses and time intervals can be

better controlled.

With the increase in antibiotic resistant bacteria, research has begun to ex-

amine the effectiveness of using multiple antibiotics in various dosing patterns

[177, 178]. The work in this chapter highlights the potential amendments that

can be made to single antibiotic treatment regimens to increase their efficiency.
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There is a need to ensure single antibiotic are being used in an optimal manner

before resorting to multiple antibiotics and using them both in an suboptimal

regimen. However, more sensitivity analysis needs to be carried out before

more general conclusions can be made on the optimal use of single antibiotics.

5.8 summary

Mathematical models can be a useful tool in predicting the dynamics of

bacterial populations under varying treatment regimens. Previous chapters

explored the effectiveness of incorporating a mathematical model into a GA to

identify optimal dosage vectors to treat bacterial infections. Extending the GA

to allow it to identify the time vector for treatments, this chapter investigated

whether optimising the time interval between doses of antibiotic provides any

additional improvements in the success of eradicating bacterial infections.

Changing the time intervals between constant doses of antibiotics did not

result in a significant difference in success rate when compared to changing

the daily doses. However, a shorter duration of treatment was achieved when

the time intervals were optimised. In addition, the continued use of constant

doses of antibiotic in these regimens remove any difficulties arising from

manufacturing and administering the correct dose of antibiotic. A desirable

benefit of changing the dose in the conventional treatment regimens is the

ability to reduce the amount of antibiotic being used while maintaining high

success rates. Whereas changing the time interval between constant doses

restricts the GA to using the maximum amount of antibiotic available.

If combined, the benefit from optimising both the dose and time interval

differed depending on the parameter values. At the lower concentration cap
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a significant improvement in success rate was found when both the doses

and the time intervals were optimised when using all 184 µg/ml of antibiotic.

At the higher concentration cap the addition of optimising the time intervals

had no effect. However, optimising the time intervals in addition to the doses

produced significantly better treatment regimens for both concentration caps

when the amount of antibiotic being used was reduced.

The benefit of optimising the time interval between doses of antibiotics is

not clear cut. The increased variability in identified treatment regimens makes

identifying a single treatment pattern difficult. Despite this, the potential to

increase success rates using less antibiotic warrants additional research.
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6
D I S C U S S I O N

Antibiotics are essential for the health and well-being of both humans and

animals. However, the continued increase in antibiotic resistant bacteria poses

a significant health threat. Genes which confer resistance to antibiotics are not

new, but the overuse and misuse of antibiotics is proliferating their spread

through bacterial populations [179, 180, 181]. With antibiotic resistance pre-

dicted to account for approximately 10 million deaths per year by 2050 [9],

there is a continued emphasis on ensuring antibiotics are being used in an

optimal manner. Shorter treatment durations have been identified as being

as effective as longer durations in treating a number of bacterial diseases

[141, 118, 120]. Indicating that current treatment guidelines, while effective,

may not be the optimal way in which to administer current antibiotics. ‘Op-

timising’ treatment regimens by way of clinical trials only allows comparisons

to be made between the finite number of treatments being compared. Clinical

trials are also costly and limited by resources. This thesis therefore aimed

to combine mathematical modelling with a genetic algorithm approach to

identify optimal antibiotic treatment regimens. These alternative regimens

maximise the success of eradicating an infection while minimising the amount

of antibiotic used. Using a genetic algorithm to optimise treatment regimens

allows for a search through potential regimens which may otherwise not have

been considered.
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This Chapter summarises the results obtained from the work in this thesis

and discusses how these results relate to the global context. The limitations of

the work and any further work will also be discussed.

6.1 summary of results

It is reasonable to assume that the implementation of new antibiotics would

initially produce a scenario where they are being used in the absence of res-

istance. Chapter 2 began by creating a mathematical model to describe the

behaviour of a single bacterial population in the presence of an antibiotic

environment. A high initial dose followed by a tapering of lower doses was

identified as the optimal way of administering the antibiotic. This optimal

treatment used the same amount of antibiotic as the baseline treatment but

exposed the bacteria to a lower total antibiotic concentration.

Chapter 3 extended this work by including a resistant population of bac-

teria. Once again the GA identified a tapered treatment pattern to be the

optimal way of administering the antibiotic. The high initial dose increases

the concentration above the MIC of the resistant bacteria with decreasing

doses maintaining it above this point. The tapered treatment regimen uses

less antibiotic than the conventional baseline treatment and decreases the

duration of treatment from 8 days to 6 days. Despite using less antibiotic than

the conventional constant dose treatment, the tapered regimen increased the

success rate. For all treatments which failed to eradicate the infection it was

found that the resistant bacteria had re-colonised. Therefore increasing the

success rate minimises the emergence of resistant bacteria.
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With the GA providing results with a consistent pattern, Chapter 4 aimed

to address whether these tapered treatment regimens were indeed a more

effective way of administering antibiotics in a real-life system. A case study

consisting of a susceptible Vibrio anguillarum infection within the larvae of the

greater wax moth (Galleria mellonella) treated using tetracycline was studied.

Using the results from laboratory experiments, the model from Chapter 2 was

parameterised to this system. Incorporating this model into the GA, a tapered

treatment regimen was once again identified as the optimal way to admin-

ister the antibiotic to increase the success of eradicating the infection. Based

on model predictions, the tapered treatment regimen showed a significant

increase in survival rate from 61% for the constant dose regimen to 69.5% for

the tapered regimen. Further experiments confirmed this prediction with a

70% survival rate. The small sample size of larvae meant that the increase was

not statistically significant. However, with a p-value of 0.145 and such a small

sample size these results are encouraging.

Chapter 5 aimed to investigate whether optimising the time interval between

doses could result in further improvements in treatment success or antibiotic

usage. When the maximum amount of antibiotic was used it was found

that there was no significant difference in success rate if the doses given

at daily intervals were optimised or the time intervals between constant

doses were optimised. However, when the amount of antibiotic being used

is minimised, significantly better results were obtained when both the dose

and time interval were optimised compared to optimising the dose only.

Optimising the time interval between doses has the potential to increase the

success rate of eradicating an infection with less antibiotic when combined

with optimal doses. An interesting finding from this chapter showed that

when the distance between the MIC of the resistant bacteria and the maximum
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concentration cap is sufficiently small, the optimum pattern of administering

the antibiotic is always to maintain the concentration at the maximum allowed

for as long as possible. Highlighting the need to ensure optimal treatment

regimens are identified before resistance increases further.

6.2 global context

Conventional antibiotic treatment regimens follow a typical pattern of X units

of antibiotic for N days. The work from this thesis suggests that these treat-

ment regimes, while effective, may not be the optimal treatment pattern to

maximise bacterial eradication while minimising antibiotic usage. The longer a

bacterial population exist in the presence of antibiotics the higher the chances

are of resistance to the antibiotic developing. Attempts have been made to limit

the overuse of antibiotics by identifying treatment protocols where treatment

duration could be minimised [121] or where altering the constant dose could

result in less antibiotic being administered [170, 171]. Despite being a more

efficient use of antibiotic these alternative treatment regimens may still not be

the optimal use of current antibiotics.

By administering antibiotics in a tapered pattern it was possible to increase

the success rate of eradicating an infection, reduce the treatment duration,

reduce the maximum concentration within the system and reduce the amount

of antibiotic required to do so when compared to a conventional constant dose

treatment regimen. Longer treatment durations and higher concentrations of

antibiotics are more likely to select for resistance. Exposing an environment

to antibiotics for the shortest time necessary at the lowest dose possible is

preferable. Shorter durations of therapy were accompanied by a reduced time

to eradication of the infection. With a shorter time to eradication patients
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requiring hospitalisation would require shorter stays decreasing the cost asso-

ciated with these infections. Shorter durations of therapy are also indicated in

better patient compliance in an outpatient setting [182].

Further studies indicate the persistence of bacteria, after an infection has

been treated, promotes the emergence of resistant strains [183, 184]. By re-

ducing the number of infections which persist, despite antibiotic treatment,

it may be possible to prolong the future effectiveness of these antibiotics.

Tapered treatment regimens were shown to be less sensitive to changes in

parameter values than a conventional treatment regimen (Chapter 3). Tapered

treatment regimens remained more effective at eradicating an infection than

the conventional treatment regimen when the MIC of the resistant bacteria

was increased. Suggesting that even in the presence of resistance, tapered

regimens would remain effective for longer and reduce the selection pressure

for resistant bacteria.

Despite limited use, tapered regimens are currently used in the treatment

of some infections, namely Clostridium difficile. Highlighting the feasibility of

implementing such treatment regimens into a real-world scenario. Subsequent

work by [83], using optimal control theory, supports the findings within this

thesis. This study identified that the optimal way to administer antibiotics,

in the presence of both susceptible and resistant bacteria, would be with a

tapering of the concentration. However, their assumption that the concentration

of antibiotic could be controlled at all times makes their findings difficult to

implement as a treatment regimen.
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6.3 limitations and further work

The results from this thesis indicate that tapered treatment regimens have

the potential to increase treatment success while decreasing the amount of

antibiotic used. However, further considerations are needed before these

results could be translated into clinical use. This section highlights some of the

limitations to this work and discusses further work required to address these.

6.3.1 Modelling Assumptions

The models presented in Chapters 2 and 3 contain limited in-host dynamics.

The eradication of a bacterial infection is the combined effort of both the

antibiotic and the host’s immune system. The host immune response is a

complex system consisting of various chemical and cellular interactions. The

parameter θ was taken as a simplification of the host immune response to

a bacterial infection. The effect of the host immune response in antibiotic

treatment is not well studied. However, a few papers have considered the im-

pact a patient’s immune defences have on the outcome of antibiotic treatment

[185, 186, 73, 74, 75]. Depending on whether the host immune response is

density dependent or density independent affects the improvements predicted

by increasing the dose of antibiotic [186]. The models within this thesis could

be extended to include a more detailed immune response. However, further

experimental studies are required to examine if a correlation exists between

the intensity of the host immune response and the bacterial burden.

Pharmacodynamic (PD) and pharmacokinetic (PK) parameters were in-

cluded within the model with the decay of the antibiotic from the host’s

system and the rate of antibiotic-induced bacterial death. These parameters
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appear to have been sufficient to model the dynamics within the greater wax

moth larvae. However, with more complex hosts more PK/PD parameters

may be required to accurately predict the dynamics between the antibiotic,

the bacteria and the host system. One assumption made within this model

was that the concentration of the antibiotic administered reached the bacteria

at the same concentration. Antibiotics are often not absorbed 100% by the

host’s system, with some antibiotic being excreted unchanged. Further work is

required to understand the PK/PD parameters which need to be included to

accurately predict the dynamics of the antibiotic within a more complex host.

6.3.2 Patient Compliance

The results obtained in this thesis assume that the antibiotic treatments are

taken exactly as prescribed. Unfortunately, lack of patience compliance in

medical treatments is a still a common problem [182, 174]. Conventional

treatment regimens require the patient to take the same dose at set intervals.

This means they take the same number of tablets for each dose. Tapered

treatment regimens require a variation in the dose taken after each time

interval. In a hospital setting patient compliance is more reliable with medical

professionals ensuring the correct dose is administered at the correct time.

While at home, patients would be required to correctly administer the correct

dose for the corresponding time period. Further work on the effect of missed

doses or early cessation of treatment in tapered regimens is therefore worth

considering.
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6.3.3 Parameterisation and Sensitivity Analysis

Despite identifying a tapered pattern as the optimal way to administer anti-

biotics, a general rule for designing a tapered treatment regimen could not

be generated. Sensitivity analysis on one of the parameter sets showed that

tapered treatment regimens are less sensitive to changes in parameter val-

ues than conventional treatment regimens. However, results from different

parameter sets indicated that the optimal tapered regimen is host specific.

Despite maintaining the same pattern, the exact doses changed considerably.

This would require prior knowledge about the host, antibiotic and bacterial

infection before a suitable tapered regimen could be identified. With some

bacterial infections being time critical this may not always be possible. A

variety of parameter sets were considered throughout the thesis. However,

only one of these was based on biologically realistic values. Further work

could be done on identifying the optimal treatment for a range of biologically

realistic parameter sets. It may be possible to identify a more general tapered

treatment, albeit sub-optimal, when parameters within a biologically realistic

range are considered.

6.4 concluding remarks

Antibiotic resistance continues to spread with little hope that new antibiotics

will be available soon. It is therefore essential that the antibiotics we currently

have are used in an optimal manner that reduces the selection pressure for

resistant bacteria. A genetic algorithm provided a systematic approach in

the search for alternative treatment regimens. A tapered treatment regimen

was identified as the optimal pattern for maximising treatment success while

minimising antibiotic usage. The work from this thesis suggests that moving
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away from conventional constant dose treatment regimens is required to

ensure the future effectiveness of antibiotics.
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A
A P P E N D I X A

a.1 matlab code

This appendix provides the code executed in ‘MATLAB’ which has been

referenced throughout the main body of this thesis.

a.1.1 Gillespie Algorithm

clear all;

runs=5000; %Number of runs

tf=20; %End Time

TimetoDeath=[];

Cured=0; %Initial co-exist

EndPop=[];

%parameter values

r = 2.7726; %Reproduction rate of Susceptible

K = 1000; %Carrying Capacity

ms = 0.2; %Mortality Rate of Susceptibles

Bmax= r-ms; %Max net growth rate in absence of AB for susceptibles

Amax= 4.67; %Min net growth rate at high AB concentrations for susceptibles

MICS= 16; %Pharmocodynamic MIC for Suceptible

kS= 4; %Hill Coefficient
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a = 0.48; %Degradation rate of AB

tint=[0,1,2,3,4,5,6,tf]; %Time AB applied (vector)

cint=[0 29 14 17 10 7 0]; %Concentration of AB applied (vector)

for n=1:runs %For each run do the following...

%Initial Conditions

S1 = 1000; %Strain 1 least resistant

C = 0; %Concentration of AB

time=0; %Start Time

for i=1:(length(tint)-1)

if S1<1

break

end

C=C+cint(i);

C0=C;

timeAB=time;

while time<=tint(i+1)

rate = zeros(3,1);

rate(1,:) = r*S1*(1-((S1)/K)); %Strain 1 reproduction rate

rate(2,:) = ms*S1+((Amax)*((C/MICS)kS))/(((C/MICS)kS)+((Amax/Bmax)-

1))*S1; %Strain 1 death rate incl AB death

rate(3,:) = rate(1,:)+rate(2,:); %Total rates

x1=rand; %Generate random number between 0 and 1
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%Events

if x1<= rate(1,:)/rate(3,:)

S1=S1+1; %Strain 1 reproduces

elseif x1<= (rate(1,:)+rate(2,:))/rate(3,:)

S1=S1-1; %Strain 1 dies naturally and AB

end

time=time-log(rand)/rate(3); %Generate time step for event

C = C0*exp(-a*(time-timeAB)); %Concentration of AB

if S1<1

TimetoDeath=[TimetoDeath;time];

Cured=Cured+1;

break

end

end

end

if S1>0

EndPop=[EndPop;S1];

end

end

disp(Cured/runs);

a.1.2 Genetic Algorithm

%% GA for Integer representation.

% Use of the Genetic Algorithm Function ’ga’ from the Matlab Global Optim-

ization toolbox.
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% The ga function allows us to constrain values to be integers

OptDosage=[];

ObjFunVal=[];

for i=200:4:400

disp(i); %indicates iteration number

%% Number of Variables

nvars = 6;

%% Bounds for the treatment cycles

LB = [ 0 0 0 0 0 0 ]; % Setting the bounds. They can be different

UB = [ 70 70 70 70 70 70 ]; % for every variable

%% Constrain All Variables to be Integers

intCon = 1:nvars;

%% Set GA parameters

options = gaoptimset(’CrossoverFrac’,0.7,’PopulationSize’,50,’Generations’,100,

’InitialPopulation’,[17.5 17.5 17.5 17.5 0 0 ],’PlotFcns’,@gaplotbestfalt);

rng(i,’twister’) % for reproducibility. Fist parameter is the random seed

[xOpt,fVal] = ga(@(x)FitnessFunction(x),nvars,[],[],[],[],LB,UB,[],intCon,options);

disp(’Integer Solution Returned by GA:’)

disp(xOpt)

disp(’Value of Objective Function:’)

disp(fVal)

OptDosage=[OptDosage; xOpt];
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ObjFunVal=[ObjFunVal; fVal];

end

a.1.2.1 Genetic Algorithm Fitness Function

function F = FitnessFunction(x)

if sum(x)>70

F=105;

else

maxconc = 40;

runs=300; %Number of runs

tf=20; %End Time

vtot=sum(x);

maxAB=70;

%parameter values

rs = 2.7726; %Reproduction rate of Susceptible

K = 1000; %Carrying Capacity

ms = 0.2; %Mortality Rate of Susceptibles

Bmax= rs-ms; %Max net growth rate in absence of AB for susceptibles

Amax= 4.6; %Min net growth rate at high AB concentrations for susceptibles

MICS= 16; %Pharmocodynamic MIC for Suceptible

kS= 4; %Hill Coefficient

a = 0.48; %Degradation rate of AB

tint=[0,1,2,3,4,5,6,tf]; %Time AB applied (vector)

cint=[0,x(1),x(2),x(3),x(4),x(5),x(6)]; %Concentration of AB applied (vector)
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%%%Deterministic for Concentration

P=6;

y0(1)=0;

Conc=[]; TimeFull=[];

for j=1:P,

[t,y] = ode45( ′ode ′, [j− 1j],y0, []);

Conc=[Conc;y(:,1)];

TimeFull=[TimeFull;t(:)];

tlen=length(y(:,1));

y0(1)=y(tlen,1)+x(j);

end

[t,y]=ode45(’ode’,[P tf],y0,[]);

Conc=[Conc;y(:,1)];%Conc

TimeFull=[TimeFull;t(:)];

if any(Conc>maxconc)

F=105;

else

%%%Stochastic

Cured=0; %Initial co-exist

for n=1:runs %For each run do the following...
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%Initial Conditions

S = 1000; %Susceptible

C = 0; %Concentration of AB

time=0; %Start Time

for j=1:(length(tint)-1)

if S<1

break

end

C=C+cint(j);

C0=C;

timeAB=time;

while time<=tint(j+1)

%Rates

rate = zeros(3,1);

rate(1,:) = rs*S*(1-((S)/K)); %Susceptible reproduction rate

rate(2,:) = ms*S + ((Amax)*((C/MICS)kS))/(((C/MICS)kS)+((Amax/Bmax)-

1))*S; %Susceptible death rate incl AB

rate(3,:) = rate(1,:)+rate(2,:); %Total rates

x1=rand; %Generate random number between 0 and 1

%Events

if x1<= rate(1,:)/rate(3,:)

S=S+1; %Susceptible reproduces

elseif x1<= (rate(1,:)+rate(2,:))/rate(3,:)

S=S-1; %Susceptible dies
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end

time=time-log(rand)/rate(3); %Generate time step for event

C = C0*exp(-a*(time-timeAB)); %Concentration of AB

if S<1

Cured=Cured+1;

break

end

end

end

end

CuredPen=runs-Cured;

%%%Fitness Functions

w = 0.269;

F = w*(vtot/maxAB) + (1-w)*(CuredPen/runs);

end

end

a.1.2.2 Ordinary Differential Equation for Calculating Concentration

function yd=ode(t,y,flag,a);

%parameter values

a = 0.48;
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yd = zeros(1,1);

yd(1)=-a*y(1);

a.1.3 Tau Leaping Method

clear all;

runs=5000; %Number of runs

tf=168; %End Time

TimetoCure=[];

TimetoDeath=[];

Cured=0; %Initial co-exist

Dead=0;

EndPop=[];

step = 0.25; %Length of tau leap

deathload = 1011.5;

immunity = 102;

tint = [0 2 24 48 tf]; %Time AB applied

cint = [0 0.340 0.135 0.025];

for n=1:runs %For each run do the following...

S = 1.28 ∗ 107; C = 0; time=0; %Initial Conditions

%parameter values rr = 0.35;

r = 0.35+0.07*randn(1); %Reproduction rate

m = 0.06; %Mortality Rate

K = 1013; %Carrying Capacity
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a = 0.05; %Degradation rate of AB

max= (rr-m)+0.05*randn(1); %Max net growth rate in absence of AB for sus-

ceptibles

min= -0.54; %Min net growth rate at high AB concentrations for susceptibles

mic= 0.1; %Pharmocodynamic MIC for Suceptible

k= 3.25; %Hill Coefficient

for j=1:(length(tint)-1)

if S<immunity || S>deathload

break

end

C=C+cint(j);

C0=C;

timeAB=time;

while time<=tint(j+1)

%Rates

rate = zeros(3,1);

rate(1,:) = r*S*(1-((S)/K))*step; %Reproduction rate

rate(2,:) = m*S*step; %Death rate

rate(3,:) = (max-min)*Ck/(Ck-min*mick/max)*S*step; %Susceptible AB death

rate

if rate(1,:)<0

rate(1,:)=0;

end

11

[ 12th November 2019 at 15:10 ]



% calculate the number of events that have occured over the time step:

randomly chosen from Poisson Distribution

numSbirths = poissrnd(rate(1,:)); %susceptible births

numSdeaths = poissrnd(rate(2,:)); %susceptible natural deaths

numABSdeaths = poissrnd(rate(3,:)); %susceptible AB deaths

S = S + numSbirths - numSdeaths - numABSdeaths;

C = C0*exp(-a*(time-timeAB)); %Concentration of AB

time = time+step;

if S<immunity || S>deathload

break

end

end

end

if S<immunity

Cured=Cured+1; %Extinction probabiltiy for Infection

TimetoCure=[TimetoCure;time];

elseif S>deathload

Dead=Dead+1; %Extinction probabiltiy for Host

TimetoDeath=[TimetoDeath;time];

%%StoreD(n,1)=time; %Time to death

end

end

disp(Cured/runs);
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