Hindawi

Complexity

Volume 2020, Article ID 2871835, 10 pages
https://doi.org/10.1155/2020/2871835

Research Article

WILEY

Hindawi

A Methodology for Classifying Search Operators
as Intensification or Diversification Heuristics

Jorge A. Soria-Alcaraz ,! Gabriela Ochoa,> Andres Espinal )
Marco A. Sotelo-Figueroa ,! Manuel Ornelas—Rodriguez,3

and Horacio Rostro-Gonzalez ©*

'Department of Organizational Studies, University of Guanajuato, Guanajuato, Mexico

2University of Stirling, Stirling, UK

3Tecnolégico Nacional De México, Instituto Tecnolo’gico de Leon, Guanajuato, Mexico
4Department of Electronics Engineering, University de Guanajuato, Guanajuato 36885, Mexico

Correspondence should be addressed to Jorge A. Soria-Alcaraz; jorge.soria@ugto.mx

Received 11 June 2019; Revised 18 October 2019; Accepted 13 December 2019; Published 13 February 2020

Guest Editor: Francisco G. Montoya

Copyright © 2020 Jorge A. Soria-Alcaraz et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Selection hyper-heuristics are generic search tools that dynamically choose, from a given pool, the most promising operator (low-
level heuristic) to apply at each iteration of the search process. The performance of these methods depends on the quality of the
heuristic pool. Two types of heuristics can be part of the pool: diversification heuristics, which help to escape from local optima,
and intensification heuristics, which effectively exploit promising regions in the vicinity of good solutions. An effective search
strategy needs a balance between these two strategies. However, it is not straightforward to categorize an operator as inten-
sification or diversification heuristic on complex domains. Therefore, we propose an automated methodology to do this clas-
sification. This brings methodological rigor to the configuration of an iterated local search hyper-heuristic featuring diversification
and intensification stages. The methodology considers the empirical ranking of the heuristics based on an estimation of their
capacity to either diversify or intensify the search. We incorporate the proposed approach into a state-of-the-art hyper-heuristic
solving two domains: course timetabling and vehicle routing. Our results indicate improved performance, including new best-

known solutions for the course timetabling problem.

1. Introduction

Hyper-heuristics are powerful tools for solving complex op-
timization problems [1-3]. The goal is to reduce the role of the
human expert by means of more generally applicable search
methodologies. Selection hyper-heuristics are high-level
strategies that autonomously choose at run time the best-suited
heuristic to apply at each step of the search process. A pool of
heuristics to select from should be provided. There are,
however, no clear guidelines in the literature about how to
construct a potentially successful pool of heuristics [4]. It is well
known that successful heuristic search methods should have a
dynamic balance between diversification and intensification
[5, 6]. Diversification refers to exploring new promising areas

of the search space, whereas intensification refers to focusing
the search by exploiting the area nearby current good solutions.
Move operators can thus be either predominantly diversifying
or intensifying. However, for complex domains and solution
representations, it is not straightforward to categorize a given
operator as belonging to one of these two categories.

We consider an iterated local search hyper-heuristic for
testing our proposed methodology. Iterated local search
(Section 3.3) is a simple yet powerful search strategy [7]; it
works by iteratively alternating between a diversification stage
and an intensification stage. This algorithmic template makes it
clear where to implement move operators of each category.
Several variants of iterated local search hyper-heuristics have
been proposed with good results [8, 9]. Soria-Alcaraz et al. [10]


mailto:jorge.soria@ugto.mx
https://orcid.org/0000-0002-8602-6150
https://orcid.org/0000-0003-1552-3210
https://orcid.org/0000-0002-9795-0138
https://orcid.org/0000-0001-7530-9027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2871835

proposed a methodology for determining the best subset of
heuristics from a given pool, but they considered that all
operators were intensification heuristics and the diversification
stage contained a single fixed heuristic.

This article proposes an empirical methodology to
classify a given operator as an intensification or diversifi-
cation heuristic. The aim is to produce an effective operator
pool in an iterated local search hyper-heuristic framework.
The idea is to automatically divide the given complete set of
operators into two groups: diversification and intensifica-
tion. Then, these groups will be assigned to the respective
stages of the hyper-heuristic framework. To the best of our
knowledge, this is the first time such task is addressed in the
literature. Our proposal is to have a preprocessing step
where for a given problem domain, each heuristic in the pool
is tested by means of a simple and fast probing technique,
namely, a random walk with the given move operator. Based
on this probing tool and statistical techniques, a set of
measurements are collected indicating the effectiveness of
each operator to either diversify or intensify the search.

The proposed methodology is tested within a state-of-
the-art iterated local search hyper-heuristic [10] on two
problem domains with different representations, namely,
course timetabling and vehicle routing. Our results indicate
improved performance, including new best-known solutions
for the course timetabling problem.

The next section introduces relevant concepts and algo-
rithms. The proposed methodology is described in Section 3,
detailing the distance metrics, ranking criteria, and high-level
search method used. Sections 4 and 5 report the empirical
setup, results and analysis for two selected case studies, course
timetabling, and vehicle routing, respectively. Finally, Section 6
summarizes our findings and gives suggestions for future work.

2. Background

2.1. Low-Level Heuristics. Heuristics are simple problem-
solving techniques or “rules-of-thumb” that aim to produce
good enough solutions in a reasonable time. This study
considers perturbative heuristics also called move operators.
Within a hyper-heuristic framework, these perturbative
heuristics are called low-level, as they operate directly on the
candidate solutions of the underlying optimization problem,
leaving the higher-level decisions, such as which heuristic to
apply next, to another mechanism. In this context, the low-
level heuristics are below a domain barrier allowing a higher-
level strategy to operate on a wide range of problems. Low-
level heuristics are thus simpler procedures that perform
changes in the incumbent solution and inform a higher-level
mechanism about their performance. Within a hyper-heu-
ristic framework, not all move operators have the same role,
some operators are aimed at intensifying the search around
the incumbent solution, while others at exploring new re-
gions of the search space with potential better solutions.

2.2. Fitness Landscape Probing. Fitness landscapes constitute
a widely used metaphor to describe the dynamics of search
and optimization algorithms. Formally, a fitness landscape

Complexity

[11] is a triplet (S, N, f), where S is a set of potential so-
lutions, i.e., a search space, N: § — 25, a neighborhood
structure, is a function that assigns to every s € S a set of
neighbors N (s), and f: S — Ris a fitness function that can
be pictured as the height of the corresponding solutions.
When several move operators are considered (as is the case
of hyper-heuristics), each of them will induce a different
fitness landscape. A common technique to gather fitness
landscape’s data is to conduct random walks. Formally, a
random walk is a sequence of solutions (x,x,, ...,x,,)
where x;,, € N (x;) with equiprobability on N (x;).

Algorithm 1 outlines the random-walk probing tech-
nique we used to quantify the behavior of operators. The
stopping condition is based on a fixed number of objective
function calls. In line 3, a given low-level heuristic (move
operator) is used to modify the incumbent solution, and
after the stopping condition is reached, a function named
metric is applied to compute a distance metric between the
initial solution and the final solution. The random-walk
algorithm (Algorithm 1) is used to estimate the extent to
which an operator changes the state of a solution. Several
distance metrics (described in Section 3.1) are computed
between the initial and the final solution of the walk and
aggregated across several walks. The intuition is that the
larger these measurements are, the more an operator is
diversifying. These metrics are used both to rank the heu-
ristics from the less to more diversifying and to identify, by
means of post hoc statistical tests, if it is possible to separate
the heuristics into two sets.

2.3. Hyper-Heuristics. Hyper-heuristics, initially conceptu-
alized as heuristics to choose heuristics in [1], can be seen as
methodologies that reduce the need for a human expert in
designing effective solution schemes and, consequently, raise
the level of generality at which search methodologies can
operate. A recent definition considers a hyper-heuristic as
“automated methodologies for selecting or generating heu-
ristics to solve computational search problems” [3]. Two types
of hyper-heuristics have been studied in the literature:

(i) Heuristic selection: methodologies for choosing or
selecting existing heuristics

(ii) Heuristic generation: methodologies for generating
new heuristics from given components

This study focuses on the first type, i.e., selection hyper-
heuristics. Figure 1 illustrates the traditional framework for
selective hyper-heuristics, with the domain barrier insulating
the high-level search strategy from the underlying problem
domain. The framework requires a pool of low-level heu-
ristics from which the high-level strategy selects and applies
to the incumbent solution. It is worth mentioning, however,
that low-level heuristics usually encapsulate domain-specific
information.

When a hyper-heuristic uses feedback from the search
process to rank the performance of the pool of heuristics, it
can be considered as a learning algorithm. According to the
source of the feedback during learning, we can distinguish
between online and offline learning hyper-heuristics [2].



Complexity

(1) s« InitialSolution

(2)  while !StopCriteria() do

(3) s——apply(h;, s)

(4) end while

(5) return metric (intialSolution, s)

Require: metric: Solution x Solution — R, InitialSolution: a given solution to work with, h;: Heuristic or operator.

ALGORITHM 1: Random-walk algorithm.

O\

H |
8
. 5
H1gh—.le\./el K] Problem
heuristic k= H, instance
chooser g ]
o
=)
< F(H) |
]

N i N

FIGURE 1: General framework of a selection hyper-heuristic based
on [1].

Online learning or adaptation takes place on-the-fly when
the algorithm is solving a problem instance, while offline
learning requires a training process a priori of the execution
of the hyper-heuristic. In this work, we use online learning
through adaptive operator selection.

3. Methodology

Once a pool of low-level heuristics is selected for the problem
domain under consideration, our approach studies the be-
havior of each heuristic separately. This is done by conducting
several runs of the random-walk algorithm (Algorithm 1)
with each operator from a fixed set of initial solutions gen-
erated uniformly at random. These runs produce a set of
measurements that are used to rank operators from the less
perturbative to most perturbative. The operators producing
low distance measurements will be ranked top, while those
producing high distance measurement will be ranked at the
bottom. The top-ranked operators are categorized as inten-
sification operators as they are the less perturbative.

Section 3.1 describes the distance metrics used to
measure the behavior of heuristics. We considered two
genotype-based metrics and one fitness-based metric. The
genotype-based metrics measure the solution differences in
representation space, while the fitness-based metric mea-
sures the solution difference in fitness value.

Once the measurements are taken, the operators are
ranked using nonparametric ranking techniques. We use

three ranking statistical methods: Friedman, aligned
Friedman, and Quade, detailed in Section 3.2, following the
guidelines in [12]. Thereafter, we apply post hoc procedures
in order to check for statistical significant differences be-
tween pairs of operator rankings. We identify those heu-
ristics that do not show a statistical difference in their
ranking. Thereafter, we separate heuristics into two groups:
intensification heuristics and diversification heuristics. Fi-
nally, we execute the high-level iterated local search hyper-
heuristic using the two groups of heuristics identified.

The sections below describe in more detail the com-
ponents and steps of our proposed methodology.

3.1. Distance Metrics. We consider three distance metrics;
the first two operate at the solution (genotype) level, while
the last metric simply calculates the fitness (objective
function) difference.

Hamming distance: it measures the number of sub-
stitutions required to change one string into the other
[13]. Formally, it is a metric on R" on two strings

X1, Xy . X, and ¥y, ¥,, ..., ¥, of length n over a g —
ary alphabet 0,1, ...,q — 1 described in the following
equation:

[{i: 1<i<nx; #y}|. (1)

Lee distance: given two strings x;,x,, ...,X, and

V> Vs ---» ¥, of length n over a g—ary alphabet
0,1,...,9—1 of size g>2 [14, 15]; this distance is
defined as

Zmin(lxi—yii,q—|xi_)’i|)' (2)
i=1

Fitness distance: it measures the difference in the fitness
value between two given solutions using the absolute
value operator. In our study, this metric evaluates how
much the fitness of an initial solution is affected by a
given heuristic. Equation (3) defines this metric. Given
two strings x = (x;,%,, ..., x,) and y = (¥, ¥, - - -,
y,) of length n over a g — ary alphabet 0,1, ...,q -1,

[Fit (x) — Fit ()], (3)



where Fit: String — R. This function is domain-depen-
dent and corresponds to a quality measurement of solutions,
the objective of the optimization process.

We selected the two distance metrics at the solution level
as they are well known in the study of meta-heuristics and
offer a simple yet descriptive approach to measure the
variation induced by the different operators. The Hamming
distance measures the number of raw differences between
two given solutions. For example, let us consider two in-
teger-based strings, namely, “5623” and “5827”; the Ham-
ming distance between these strings is 2 since they differ in
two locations. The Lee distance is more sophisticated since it
reports not only how many differences are there between
two given strings but also how large these differences are.
Consider the same two strings, “5623” and “58277; the Lee
distance between them is 6 because [6-8|+|3—-7|=
2+4 =6. For binary strings, the Hamming and Lee dis-
tances produce the same values. In our study, solutions are
represented as integer-based strings. The third metric gauges
the solution differences in terms of quality or fitness, this is
complementary to two genotype-based metrics.

The stopping condition in this phase is fixed to 200
function calls. On each test instance, the random-walk al-
gorithm is run 500 times from different initial randomly
generated solutions. This produces 500 distance values for
each metric, and the average distance values are calculated.
Finally, these average values are used to rank the heuristics
from less to more perturbative in the next phase.

3.2. Ranking Heuristics with Nonparametric Statistics.
Once the distance metrics are gathered, we apply statistical
tests in order to rank the heuristics. Parametric tests are
sometimes used when contrasting the performance of sto-
chastic algorithms. However, they assume independence,
normality, and homoscedasticity of the data, which are not
guaranteed in the case of low-level heuristics. In such cases,
nonparametric statistics overcome this limitation. We used
CONTROLTEST and MULTITEST [12] which are specially
designed for nonparametric comparison among heuristic
algorithms and considered the three tests proposed:
Friedman, aligned Friedman, and Quade. The Friedman test
uses mainly arithmetic mean, alignment Friedman uses a
value of location computed as the average performance
achieved by all heuristics in each problem, and Quade
considers that some instances might be more difficult than
others. All these tests consider ranks; therefore, the lower
distance value will produce a higher rank. In our context,
this means that heuristics with less perturbative behavior
(i.e., intensification heuristics) will be ranking top.

We applied post hoc tests in order to determine if two
operators are similar in terms of their perturbative behavior.
A p value under 0.05 (0.95 confidence level) rejects this null
hypothesis, indicating that the given pair of operators are
significantly different in their perturbative behavior.
Therefore, those operators are not grouped together. Op-
erator pairs for which the p value is greater than 0.05 are
classified in the same group. We applied the Holm procedure
to adjust the p values. In our experiments, only two

Complexity

well-defined groups were detected by the post hoc tests. We
defined the group including the top-ranking heuristics as the
intensification group and the other group as the diversifi-
cation group.

3.3. Iterated Local Search Hyper-Heuristic. In order to test
the performance of the previously defined intensification
and diversification groups of heuristics, we follow the ex-
perimental setup in [10] with some adjustments detailed in
this section. We also provide a description of the high-level
strategy and adaptive operator selection mechanism used.
The pool of heuristics is problem specific, and they will be
described in the respective case study section.

3.3.1. High-Level Strategy. We utilize iterated local search
(ILS) as the high-level strategy [8, 10, 16]. Iterated local
search is a simple yet effective strategy, which works by
iteratively alternating between an exploration move (di-
versification) and an exploitation move (intensification)
from the perturbed solution [7]. With this search strategy, it
is straightforward to identify where to apply the intensifi-
cation and diversification heuristics groups.

Our implementation is outlined in Algorithm 2. Two
independent adaptive operator selection steps are used: one
in the local search phase (lines 2 and 5) using the intensi-
fication group of heuristics and another in the perturbation
phase (line 4) using the diversification group. This imple-
mentation differs from our previous ILS hyper-heuristic
[9, 10] in which adaptive operator selection is used on the
two algorithm stages instead of only on the intensification
stage. Line 6 must be set for maximization (>) or mini-
mization ( <) problems.

3.3.2. Adaptive Operator Selection. Adaptive operator se-
lection [17, 18] allows high-level algorithms to autono-
mously select the next heuristic to apply to the incumbent
solution. Two cooperating mechanisms are required: selec-
tion rule, which defines how to select the next operator or
low-level heuristic from the pool according to their esti-
mated qualities, and credit assignment, which defines how to
estimate the operators” quality based on the impact brought
by their recent application. The mechanisms we imple-
mented are described in detail:

Selection rule: we use dynamic multiarmed bandits
(DMAB) [19] as the selection rule, where each operator
is viewed as an arm. Let /;; denote the number of times
the i arm (heuristic) has been played and 7;, the
average reward it has received up to time ¢. At each time
step t, from K alternative arms (heuristics), the algo-
rithm selects the arm maximizing the quantity com-
puted by the following expression:

it

(4)



Complexity

(1) s, = GeneratelnitialSolution
(2) s* = LocalSearch (s,)
(3) while !StopCriteria() do
(4) s’ = perturbation(s*)
(5) s*' = LocalSearch(s")
(6) if f(s*')betterthan f (s*) then
(7) st =s*
(8) end if
(9) end while
(10) return s*

ALGORITHM 2: High-level strategy: iterated local search.

Factor C is used to balance the inner exploration and
exploitation phases. The DMAB algorithm uses a Page-
Hinkley statistical test, where two parameters are in-
troduced: y ,;,, which controls the trade-off between false
alarms and unnoticed changes, and §, which enforces the
robustness when dealing with slowly varying environ-
ments. Parameters C and y,,;, need to be tuned for every
problem. We found in preliminary experiments that the
values C=10 and y,;, = 100 obtain encouraging results
consistently. For the parameter §, we used the value
suggested in [18] (§=0.15) for all our experiments.

Credit assignment: we use extreme value criteria for
determining the operator’s credit [17, 18]. When a
heuristic op is selected and applied to the current so-
lution by the selection rule, it is necessary to calculate
an update in the reward value with the most recent
behavior information of the last applied heuristic.
Rewards are updated as follows depending on the ILS
phase (diversification and intensification). For the in-
tensification phase, the fitness of the new solution is
computed and the change in fitness A, is added to a
FIFO list of size W. For the diversification phase, the
Hamming distance between the new solution and the
initial one is calculated and added to a FIFO list of size
W. A separate list is kept for each operator for both
phases. FIFO data structure is used to guarantee that
only the latest observations in fitness improvement or
Hamming distance are considered in operator selection
computations for the last W iterations before being
erased of credit assignment memory. We kept a list for
each operator in order to identify which operator has
achieved the best performance in the last W iterations.

Thereafter, the specific operator reward is updated to the
maximal value in the list. Formally, let ¢ be the current step and
metric (t) be the metric value (A g or Hamming) estimated at
time ¢ for a given heuristic op and the expected reward 7, for
heuristic op is computed using the following equation:

7, = argmax [metric(t;),i = 1, ..., W]. (5)

4. Course Timetabling Case Study

We first apply the proposed methodology to the course
timetabling problem. This problem requires the assignment

of a fixed number of subjects into a number of time slots. The
objective is to obtain a timetable minimizing the number of
conflicts. Our formulation uses a generic modeling approach
where solutions are represented as vectors of integer
numbers of length equal to the number of events (courses)
[9]. As test instances, we use the 24 instances from the
International timetabling competition (ITC) 2007 track 2
(postenrollment course timetabling) [20]. Many meta-
heuristic [21, 22] and hyper-heuristic [9, 10] approaches
have been proposed for solving variants of educational
timetabling. Recent surveys have also been published [4, 23].
Here, we improve the performance of hyper-heuristics by
incorporating our automated approach for categorizing low-
level heuristics into intensification and diversification
groups.

4.1. Low-Level Heuristics. Our implementation considers the
following set of five low-level heuristics [10]. They range
from a simple randomized exchange or swap neighborhoods
to greedy and more informed procedures:

MLC (move to less conflict): it locates the variable
producing the most conflicts and changes its value to
that causing the minimum possible conflict

BSP (best single perturbation): it chooses a variable
following a sequential order and changes its value to
that producing the minimum conflict

WMLC (worst move to less conflict): it locates the
variable and value that once modified cause the less
conflict

MLS (move to less size): it changes the value of a given
variable to that causing the event to move to the less
occupied time slot

Two points: it selects uniformly at random two indexes
in the integer string representation and modifies all
variables between the indexes randomly

4.2. Ranking and Grouping of the Low-Level Heuristics.
Table 1 shows the nonparametric ranking of the heuristics
according to the genotypic and fitness distance metrics. The
ranking indicates that closeness in genotypic space correlates
with closeness in fitness space, a desirable property for
heuristic search methods. Table 2 shows the adjusted p
values of each pair of heuristics. The null hypothesis in this
test establishes that between two heuristics (row and column),
there is no significant difference in terms of perturbative
behavior. A p value less than 0.05 (0.95 confidence level)
means the null hypothesis is rejected. According to this
criterion groups, {WMLC, MLC, BSP} and {MLS, TwoPoints}
have a statistical difference. The top-ranking three heuristics
{WMLC, MLC, BSP} are assigned to the intensification group,
while the bottom two heuristics {MLS, TwoPoints} to the
diversification group.

4.3. Hyper-Heuristic Performance Comparison. The selected
groups of heuristics are then deployed within the iterated
local search hyper-heuristic framework described in Section



6
TaBLE 1: Ranking of the course timetabling heuristics.
Heuristic Friedman Aligned Friedman Quade
Hamming distance
WMLC 3.18 14.76 1.77
MLC 1.83 12.34 2.30
BSP 2.14 25.76 2.77
MLS 59 42.43 3.60
TwoPoints 7.95 51.9 4.2
Lee distance
WMLC 2.15 11.38 1.47
BSP 1.25 12.724 2.17
MLC 3.37 28.12 2.47
MLS 6.31 47.21 3.12
TwoPoints 7.47 41.6 4.45
Fitness distance
WMLC 1.56 11.76 1.12
MLC 2.95 15.33 1.77
BSP 3.66 27.92 2.14
MLS 6.72 36.42 2.77
TwoPoints 8.24 46.9 4.10

TaBLE 2: Adjusted P values for every pair of heuristics in course
timetabling domain.

TwoPoints MLS BSP MLC

Hamming distance

WMLC 0.005 0.007 0.052 0.055

MLC 0.005 0.008 0.05 —

BSP 0.006 0.01 — —

MLS 0.051 — — —
Lee distance

WMLC 0.003 0.032 0.046 0.051

MLC 0.002 0.041 0.003 —

BSP 0.016 0.014 — —

MLS 0.051 — — —
Fitness distance

WMLC 0.001 0.017 0.048 0.045

MLC 0.002 0.035 0.05 —

BSP 0.003 0.035 — —

MLS 0.051 — — —

3.3. Following the ITC-2007 competition rules, each hyper-
heuristic variant is run 10 times and the stopping condition
corresponds to a time limit of about 10 minutes following
the benchmark algorithm provided in the competition
website (http://www.cs.qub.ac.uk/itc2007/). We compare
our approach against the following methods:

Cambazard: the winner of the ICT-2007 competition
[24], a multistage local search algorithm considering
several neighborhoods

Ceschia: a single-step meta-heuristic approach based
on simulated annealing, with a neighborhood com-
posed of moves that reschedule one event or swap two
events [21]

AdapExAP: an adaptive iterated local search hyper-
heuristics coupled with an adaptive mechanism based
on the adaptive pursuit selection rule [9]

Goh: Iterative two-stage algorithm that uses tabu search
and simulated annealing [25]

Complexity

Nagata: a local search-based algorithm with a mechanism
for adapting the size of search neighborhood [26]

HHADL: an iterated local search hyper-heuristic with
Add-Delete list, which generates heuristics based on a
fixed number of add and delete operations [27]

HHDMAB: an iterated local search with dynamic
multiarm bandits, which selects from a pool of heu-
ristics using an autonomous strategy [10]

The main difference between our proposal and other
recent methodologies is the application of a categorization
process to a predefined set of low-level heuristics. This
categorization, detailed in Section 3, leads us to empirical
construction of a reasonable good group of heuristics to use
as intensification and diversification operators in a selection
hyper-heuristic approach. Our selection hyper-heuristic has
an empirically effective group of operators determined a
priori of any exhaustive experimentation; this characteristic
enhances the performance of our approach against other
methodologies whose setting was made by the mere human
expertise.

Table 3 shows comparative results of our proposed
approach HH2DMAB against state-of-the-art solvers. The
evaluation of the best-found solutions is shown, with the
average and standard deviation results reported in brackets
in the form (5,), when available. The best solutions are given
in bold font.

Configurations designed by human experts are repre-
sented by the other entries in Table 3. Our approach offers an
automated operator grouping and selection of the heuristics
with no expert knowledge required. Results for instances 3
and 23 are new best-known solutions found by our ap-
proach. Consistently, our iterated local search hyper-heu-
ristic with automatic selection of heuristic groups,
HH2DMAB, presents lower average and standard deviation
values than previous approaches. We argue that this im-
proved performance is because of having additional heu-
ristics at the diversification stage, which gives the algorithm
more alternatives to escape from local optima. Figures 2 and
3 show the dynamic of selection probabilities for the in-
tensification group (a) and diversification group (b) of
heuristics during a HH2DMAB run on a selected instance
(instance 2).

Figures 2 and 3 shows in X-axis the iterations of each
run (1000x) and Y-axis shows the probability of selection
of each heuristic (color line); the sum of selection
probabilities for all heuristics is 1 at each iteration. In the
intensification group, Figure 2, the heuristics WMLC and
MLC are most frequently selected across the run than the
third BSP heuristicand WMLC and MLC take dominance
at different stages of the run. The diversification group
dynamic, Figure 3, shows that the two heuristics are
useful during the search, with heuristic MLS having
prominence.

5. Vehicle Routing Case Sudy

In order to illustrate the generality of the proposed meth-
odology, we considered a second case study, the vehicle


http://www.cs.qub.ac.uk/itc2007/

Complexity

TaBLE 3: Course timetabling problem. Comparison of our proposed approach HH2DMAB against state-of-the-art solvers. The evaluation of
the best-found solutions are shown, with the average and standard deviation results reported in brackets in the form (5,), when available.
The best solutions are given in bold font.

Instance Cambazard Ceschia AdapExAP HHADL HHDMAB Goh Nagata HH2DMAB
1 571 59 650 (780.45, 44 5) 630 630 (860.12,,,,)  307.6 81.7 630 (850.064 45)
2 993 0 470(960.7,7 4) 450 380 (530.154594) 63.4 48.0 365 (505.740g.¢4)
3 164 148 290(337447) 300 137 (315.125,,5)  199.4 155 135(304.105, ;)
4 310 25 600(815,, ) 602 475 (559.12554,)  328.8 254 452 (480.615,,,)
5 5 0 35(39.16, 5) 6 0(0,) 2.7 0 0(0,)
6 0 0 20(29.4,5) 0 0(4.6,,) 33.2 0 0(0,)
7 6 0 30(33.74,,) 0 0(5.2,,) 18.0 36 0(0,)
8 0 0 0(0,) 0 0(0,) 0.0 0.0 0(0,)
9 1560 0 630(861.1,,74) 640 602 (854.3,55) 100.7 58.9 595(630.2655,)
10 2163 3 2349 (2458.2 45 ,) 663 482(615.125,,,) 653 6.4 469 (630.57,9 46)
11 178 142 350(405.75, 5) 344 159(355.12,9,,) 2443 1404 159 (303.825,55)
12 146 267 480 (506.4,,,) 198 140 (278.4355,4) 3182 33 135 (230.63,, 46)
13 0 1 46(77.37,495) 0 0(15.24,,) 99.5 0 0(3.27,,)
14 1 0 80(108.3555) 35 20(25.125,) 0.2 0 16(23.58,,55)
15 0 0 0 (5.75¢,) 0 12 (44.164¢,) 192.0 0 0 (2.04,,)
16 2 0 0(2.22,,) 140 0(73.7635,4) 105.8 1.5 0 (50.14,4 )
17 0 0 0(0,) 0 0(3,5) 0.8 0 0 (0,)
18 0 0 20(25.16,) 0 0(5.3,,) 12.5 0 0 (0,)
19 1824 0 360(404.515 ) 400 133(214.655) 516.7 0 104 (188.2,5,,)
20 445 543 150 (177.125; ) 150 106(311.075,5)  650.7 438 106 (230.11,5,,)
21 0 5 0 (3.785) 0 0(2.5,3) 12.5 0 0(1.87,4;)
22 29 5 33(45.71,,7) 32 25 (54.45) 136.0 0 21 (37.2255)
23 238 1292 1007 (1378.453.,,4) 238 267.4(515.234,) 5044 777 233 (404.5745 )
24 21 0 0(45.880) 640 76(337.345,.0) 192.6 0 77(199.62,49,,)
1.00 1.00
0.75 0.75
3 . B
i—g f S:; 0.50
20 Jt £
& : =y
025 0.25
0.00 0.00
0 50 100 150 0 >0 X 150
Iterations Iterations
Variables Variables
e WMLC oo MLS
- MLC —— Two points
a BSP FiGURE 3: Diversification heuristics.

FiGure 2: Intensification heuristics.

routing problem with time windows (VRPTW). In this
problem, a set of customer demands must be addressed
using as a few vehicles as possible. The time window con-
straint indicates that customer demands can only be served
in a time window. The formulation and experimental setting
follows the rules of the Cross-Domain Heuristic Search
Competition (CHeSC) 2011 [28]. CHeSC instances were
taken from [29] and include 5 from the Solomon data set and

5 from the Gehring and Homberger data set.

5.1. Low-Level Heuristics. Our implementation uses the
following four heuristics:

TimeRR: it removes a number of locations based on time
window proximity, reinserting into the best route possible

TwoOptStar: it takes the end sections of two routes and

swaps them to create two new routes

locRR: it removes a number of locations based on lo-
cation proximity, reinserting into the best route possible

ShiftMutate: it moves a single location from one route

to another



5.2. Ranking and Grouping of the Low-Level Heuristics.
The experimental design resembles that of the previous case
study. Each sampling procedure is executed 500 times,
using 200 function calls for every instance-heuristic pair.
The time expended in this phase was about 37 minutes
using an i7 Intel Core, 8 Gb in Ram, Linux Operating
System and JAVA Language. Table 4 shows the collected
metric rankings.

As Table 4 indicates, heuristics locRR and TimeRR are
the top two according to all metrics. This suggests they are
more suitable as intensification heuristics. Heuristics
TwoOpts* and Shift are the bottom two in the rank for all
metrics. Table 5 shows the post hoc tests for heuristic pairs as
the null hypothesis establishes that between two heuristics
(row and column), there is no significant difference in terms of
perturbative behavior. A p value less than 0.05 means the null
hypothesis is rejected. According to this evidence, the groups
{locRR, TimeRR} (intensification) and {TwoOptx, Shift} (di-
versification) are defined.

5.3. Hyper-Heuristic Performance Comparison. The selected
groups of heuristics are deployed within the iterated local
search hyper-heuristic framework. In order to compare its
performance, we consider the contestants in the Cross-
Domain Heuristic Search Competition (CHeSC) 2011
(http://www.asap.cs.nott.ac.uk/external/chesc2011/results.
html). Following the competition rules, 31 runs are con-
ducted, each lasting 600 CPU seconds according to the
benchmark tool provided by the competition webpage. The
algorithms are ranked according to their median perfor-
mance and receive points according to a system inspired by
formula (1) in [28]. The top eight performing algorithms
receive 10, 8, 6, 5, 4, 3, 2, and 1 point, respectively. In case of
ties, the points of the concerned positions are summed and
equally shared.

According to this scoring system, our method
HH2DMAB achieves 28 points (Table 6), which represents a
tie in the 2" position when compared against CHeSC
contestants [30]. Moreover, HH2DMAB achieves better
performance when compared with or previous state-of-the-
art HHDMAB [10] hyper-heuristic, which obtained the 3™
position. Again, the evidence suggests that our current
approach with more heuristics at the diversification stage
allows the hyper-heuristic to achieve better results.

Our selection hyper-heuristic was enhanced by the ap-
plication of a priori phase were the diversification and in-
tensification operators were selected using the methodology
detailed in Section 3. This allowed our approach to work with
an empirically good-selected group of operators. Table 7
contrasts the best results obtained by HH2DMAB against
the previous HHDMAB hyper-heuristic [10] and the best-
known results for each instance. Consistently, HH2DMAB
outperforms the previous HHDMAB and produces results
that are close to the best-known solutions. This is a good result
since the best-known solutions are achieved by problem-
specific algorithms. Our approach, instead, is a more general
methodology that usually requires only changing the set of
low-level heuristics to address other problem domains. This

Complexity

TaBLE 4: Ranking of the vehicle routing heuristics.

Heuristic Friedman Aligned Friedman Quade
Hamming distance
locRR 2.33 13.12 2.10
TimeRR 1.62 16.24 2.40
TwoOpt* 2.74 22.14 3.66
Shift 3.14 29.89 4.50
Lee distance
locRR 2.37 12.33 1.91
TimeRR 1.61 15.44 2.10
TwoOpt* 3.02 11.16 2.60
Shift 5.01 27.94 3.47
Fitness distance
TimeRR 1.36 13.19 1.01
locRR 2.65 11.95 2.37
Shift 2.42 20.42 3.15
TwoOpt* 5.22 27.14 4.18

TaBLE 5: Adjusted P values for every pair of heuristics in vehicle
routing domain.

Shift TwoOpt=* TimeRR

Hamming distance

locRR 0.0027 0.022 0.052

TimeRR 0.028 0.025 —

TwoOpt* 0.63 — —
Lee distance

locRR 0.017 0.020 0.061

TimeRR 0.021 0.007 —

TwoOpt* 0.077 — —
Fitness distance

locRR 0.031 0.016 0.057

TimeRR 0.024 0.020 —

TwoOpt* 0.075 — —

TaBLE 6: Comparison with CHeSC 2011 contestants.

Rank Algorithm Score
1 PHUNTER 33
2 HAEA 28
2 HH2DMAB 28
3 HHDMAB 25
4 KSATS-HH 23
5 ML 22
6 AdapHH 16
6 HAHA 16
8 EPH 12
9 AVEG-Nep 10
10 GISS 6
10 GenHive 6
10 VNS-TW 6
13 ISEA 5
13 XCJ 5
15 SA-ILS 5
16 ACO-HH 2
17 DynILS 1
18 NA-SLS 0
18 SelfSearch 0
18 Ant-Q 0
18 MCHH-S 0



http://www.asap.cs.nott.ac.uk/external/chesc2011/results.html
http://www.asap.cs.nott.ac.uk/external/chesc2011/results.html

Complexity

TaBLE 7: Comparison with best-known solutions as reported in
SINTEF website.

Instance HHDMAB HH2DMAB Best known
RC207 4 1094.14 3 1075.67 3 1061.14
R101 19  1655.98 19 1650.95 19 1650.80
RC103 12 1395.01 11 1305.48 11 1261.67
R201 4 1275.30 4 1255.46 4 1252.37
R106 13 1296.86 12 1467.28 11 1424.73
C1-10-1 107  43956.7 102 4268434 100 424478.9
RC2-10-1 22 31163.6 21 30291.5 20 30278.5
R1-10-1 101  55345.7 100 540754 100  53501.3
C1-10-8 113 49366.4 103  46133.9 92 44092.7
RCI1-10-5 98 491545 94 46327.2 90 45564.8

evidence suggests that our algorithm setting was more effi-
cient, producing competitive results against other method-
ologies configured only by human expertise.

6. Conclusions

We have proposed an empirical methodology to classify a
set of operators into intensification and diversification
heuristics, to be used within hyper-heuristic methods.
Starting from a suitable set of low-level heuristics or search
operators for a given domain, the proposed methodology
probes their performance using fitness landscape and
distance metrics and ranks the heuristics through non-
parametric statistics instead of human expertise. This
contributes to increasing the methodological rigor and
automation for deploying hyper-heuristic approaches. Our
methodology was tested within a state-of-the-art hyper-
heuristic framework over two complex combinatorial
optimization problems, namely, course timetabling and
vehicle routing problem with time windows achieving new
best-known solutions for ITC 2007 track 2 course time-
tabling instances and better results against previous studies
in the case of CHeSC vehicle routing instances. Our results
indicate improved hyper-heuristic performance on both
domains when our methodology is used to empirically
identify a group of intensification and diversification op-
erators. This suggests that well-designed hyper-heuristic
methods are not only more general but can also be more
effective than problem-specific meta-heuristics. In the
future, we will investigate additional ranking methods and
methodologies to automatically tune hyper-heuristic pa-
rameters. Finally, it is necessary to test this approach to
other problem domains and heuristic pools.

Data Availability

The result data used to support the findings of this study are
available from the corresponding author upon request.
Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors wish to thank the Consejo Nacional de Ciencia y
Tecnologia (CONACyT) for the support in the project
Neurociencia Computacional: de la teoria al desarrollo de
sistemas neuromorficos, N. 1961 and the University of
Guanajuato. Special thanks to University of Stirling.

References

[1] P. Cowling, G. Kendall, and E. Soubeiga, A Hyperheuristic
Approach to Scheduling a Sales Summit, Springer, Berlin,
Germany, 2001.

[2] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, A Classification of Hyper-Heuristic Ap-
proaches, Springer, Boston, MA, USA, 2010.

[3] E.K. Burke, M. Gendreau, M. Hyde et al., “Hyper-heuristics: a
survey of the state of the art,” Journal of the Operational
Research Society, vol. 64, no. 12, pp. 1695-1724, 2013.

[4] N. Pillay, “A review of hyper-heuristics for educational
timetabling,” Annals of Operations Research, vol. 239, no. 1,
pp. 3-38, 2016.

[5] C. Blum and A. Roli, “Metaheuristics in combinatorial op-
timization,” ACM Computing Surveys, vol. 35, no. 3,
pp. 268-308, 2003.

[6] X. S. Yang, S. Deb, and S. Fong, “Metaheuristic algorithms:
optimal balance of intensification and diversification,” Ap-
plied Mathematics & Information Sciences, vol. 8, no. 3,
pp. 977-983, 2014.

[7] H. R. Lourenco, O. C. Martin, and T. Stiitzle, Iterated Local
Search, Springer, Boston, MA, USA, 2003.

[8] G. Ochoa, J. Walker, M. Hyde, and T. Curtois, Adaptive
Evolutionary Algorithms and Extensions to the HyFlex Hyper-
Heuristic Framework, Springer, Berlin, Germany, 2012.

[9] J. A. Soria-Alcaraz, G. Ochoa, J. Swan, M. Carpio, H. Puga,
and E. K. Burke, “Effective learning hyper-heuristics for the
course timetabling problem,” European Journal of Opera-
tional Research, vol. 238, no. 1, pp. 77-86, 2014.

[10] J. A. Soria-Alcaraz, G. Ochoa, M. A. Sotelo-Figeroa, and
E. K. Burke, “A methodology for determining an effective
subset of heuristics in selection hyper-heuristics,” European
Journal of Operational Research, vol. 260, no. 3, pp. 972-983,
2017.

[11] P. F. Stadler, Fitness Landscapes, Springer, Berlin, Germany,
2002.

[12] J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intel-
ligence algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 3-18, 2011.

[13] R. W. Hamming, “Error detecting and error correcting
codes,” Bell System Technical Journal, vol. 29, no. 2,
pp. 147-160, 1950.

[14] C. Lee, “Some properties of nonbinary error-correcting
codes,” IEEE Transactions on Information Theory, vol. 4, no. 2,
pp. 77-82, 1958.

[15] M. M. Deza and E. Deza, Encyclopedia of Distances, Springer,
Berlin, Germany, 2009.

[16] J. A. Soria Alcaraz, G. Ochoa, M. Carpio, and H. Puga,
“Evolvability metrics in adaptive operator selection,” in
Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation (GECCO), pp. 1327-1334, ACM,
New York, NY, USA, 2014.



10

(17]

(18

(19]

(20]

(21]

[22

(23]

(24]

[25

[26

(27]

(28]

[29

(30]

A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag, “An-
alyzing bandit-based adaptive operator selection mecha-
nisms,” Annals of Mathematics and Artificial Intelligence,
vol. 60, no. 1-2, pp. 25-64, 2010.

A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag, “Dy-
namic multi-armed bandits and extreme value-based rewards
for adaptive operator selection in evolutionary algorithms,”
Lecture Notes in Computer Science, vol. 3, pp. 176-190, 2009.
L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag,
“Adaptive operator selection with dynamic multi-armed
bandits,” in Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation, pp. 913-920, ACM,
New York, NY, USA, 2008.

R. Lewis, B. Paechter, and B. McCollum, Post Enrolment Based
Course Timetabling: A Description of the Problem Model Used
for Track Two of the Second International Timetabling Com-
petition, Cardiff Business School, Cardiff, Wales, 2007.

S. Ceschia, L. Di Gaspero, and A. Schaerf, “Design, engi-
neering, and experimental analysis of a simulated annealing
approach to the post-enrolment course timetabling problem,”
Computers & Operations Research, vol. 39, no. 7, pp. 1615-
1624, 2012.

R. Lewis and J. Thompson, “Analysing the effects of solution
space connectivity with an effective metaheuristic for the
course timetabling problem,” European Journal of Opera-
tional Research, vol. 240, no. 3, pp. 637-648, 2015.

H. Babaei, J. Karimpour, and A. Hadidi, “A survey of ap-
proaches for university course timetabling problem,” Com-
puters & Industrial Engineering, vol. 86, pp. 43-59, 2015.
H. Cambazard, E. Hebrard, B. O’Sullivan, and
A. Papadopoulos, “Local search and constraint programming
for the post enrolment-based course timetabling problem,”
Annals of Operations Research, vol. 194, no. 1, pp. 111-135,
2012.

S. L. Goh, G. Kendall, and N. R. Sabar, “Improved local search
approaches to solve the post enrolment course timetabling
problem,” European Journal of Operational Research, vol. 261,
no. 1, pp. 17-29, 2017.

Y. Nagata, “Random partial neighborhood search for the post-
enrollment course timetabling problem,” Computers ¢ Op-
erations Research, vol. 90, pp. 84-96, 2018.

J. A. Soria-Alcaraz, E. Ozcan, J. Swan, G. Kendall, and
M. Carpio, “Iterated local search using an add and delete
hyper-heuristic for university course timetabling,” Applied
Soft Computing, vol. 40, pp. 581-593, 2016.

G. Ochoa, M. Hyde, T. Curtois et al., HyFlex: A Benchmark
Framework for Cross-Domain Heuristic Search, Springer,
Berlin, Germany, 2012.

SINTEF, Transportation Optimization Portal—Vehicle Rout-
ing Problem with Time Windows, SINTEF, Trondheim,
Norway, 2008.

F. Mascia and T. Stitzle, A Non-adaptive Stochastic Local
Search Algorithm for the CHeSC 2011 Competition, Springer,
Berlin, Germany, 2012.

Complexity



