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ABSTRACT 

Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. 

In recent years, it has received increasing attention from both research and practice. However, 

a common understanding of what resilience means in a forestry context, and how to 

operationalise it is lacking. Here, we conducted a systematic review of the recent forest 

science literature on resilience in the forestry context, synthesising how resilience is defined 

and assessed.  

Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of 

engineering resilience, ecological resilience, and social-ecological resilience are used in forest 

sciences. A clear majority of the studies applied the concept of engineering resilience, 

quantifying resilience as the recovery time after a disturbance. The two most used indicators 

for engineering resilience were basal area increment and vegetation cover, whereas ecological 

resilience studies frequently focus on vegetation cover and tree density. In contrast, important 

social-ecological resilience indicators used in the literature are socio-economic diversity and 

stock of natural resources. In the context of global change, we expected an increase in studies 

adopting the more holistic social-ecological resilience concept, but this was not the observed 

trend. 

Summary Our analysis points to the nestedness of these three resilience concepts, suggesting 

that they are complementary rather than contradictory. It also means that the variety of 

resilience approaches does not need to be an obstacle for operationalisation of the concept. 

We provide guidance for choosing the most suitable resilience concept and indicators based 

on the management, disturbance and application context. 

KEYWORDS: forest management, engineering resilience, ecological resilience, 

social-ecological resilience, disturbance, indicators 
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1. Introduction  52 

 53 

Global change causes shifts in forest disturbance regimes [1,2] that can potentially reduce the 54 

capacity of forests to provide ecosystem services [3]. The change may furthermore alter the 55 

distribution of species [4,5] including forest-dependent species that, if not able to migrate as 56 

their habitat shifts, can face extinction [6]. Interacting disturbances can alter forest development 57 

pathways [7], and an increased disturbance frequency can erode the capacity of forests to 58 

recover [8,9]. In addition to environmental changes, societies and societal demands towards 59 

forests are changing, and therefore forest-related policies must change as well to meet these 60 

demands, e.g. in relation to climate change mitigation [10] or the development of a wood-based 61 

bioeconomy [11]. It has been suggested that neither the traditional command-and-control forest 62 

management nor classical risk management in forestry are able to respond adequately to this 63 

multitude of changes and challenges [12,13].  64 

Resilience is one of the current buzzwords in science and policy and fostering resilience has 65 

been proposed as a solution to deal with the uncertainty caused by global change [14–16]. 66 

However, resilience is a difficult concept to define, as demonstrated by the numerous 67 

definitions and approaches available in the literature [17,18]. This ambiguity is partly due to 68 

the widespread use of the term in different disciplines and systems. As a result, the scientific 69 

literature diverges on whether resilience should be considered as a system property, process or 70 

outcome of management [18]. In the literature on social-ecological systems, three broad 71 

conceptualisations of the term resilience have emerged: engineering, ecological and social-72 

ecological resilience [19]. Engineering resilience is often cited as first defined by Pimm [20]. 73 

Following a disturbance in a given system, it is characterised as the time that it takes for 74 

variables to return to their pre-disturbance equilibrium. This definition assumes the existence 75 

of a single equilibrium state. Ecological resilience, defined by Holling [21], is “a measure of 76 

the persistence of systems and of their ability to absorb change and disturbance and still 77 

maintain the same relationships between populations or state variables”. Holling’s theory 78 

includes the proposition that systems can be in multiple equilibria (i.e. have multiple basins of 79 

attraction). A basin of attraction is a concept from systems science describing a portion of the 80 

phase space in which every point will eventually gravitate back to the attractor [22]. A 81 

disturbance can move the system from one basin to another, and cross a threshold during the 82 

process. Finally, the concept of social-ecological resilience considers natural and social systems 83 

to be strongly coupled social-ecological systems [23]. Social-ecological resilience considers the 84 

maintenance of the current regime and the adaptive capacity of a coupled human-natural system 85 

[24]. Several variants of social-ecological resilience exist but all focus on the adaptive capacity 86 

of the social-ecological system as a whole [25]. Among them, the Resilience Alliance, the 87 

school of thought in the footsteps of Holling, defined resilience as “the capacity of a social-88 

ecological system to absorb or withstand perturbations and other stressors such that the system 89 

remains within the same regime, essentially maintaining its structure and functions. It describes 90 

the degree to which the system is capable of self-organisation, learning, and adaptation” 91 

[26,27].  92 



 

3 
 

While resilience is widely considered in forest ecology, the resilience concept has not been 93 

implemented widely in the daily practice of forest management [28]. However, elements of 94 

resilience thinking, e.g. the necessity to learn and adapt, are a necessity for forest managers who 95 

are confronted with the frequent challenge of unexpected disturbance patterns interfering with 96 

well-planned management procedures. A primary limitation to implementing resilience in 97 

forest management is that, despite the growing body of research, forest resilience continues to 98 

be a vague concept for decision makers. Reviews of existing resilience concepts and their 99 

relevance to natural resource management in general [29,30] and forest management in 100 

particular [31] have been conducted previously, yet there is no common agreement to date on 101 

how resilience in the context of forestry should be defined or applied. Different resilience 102 

concepts are used in seemingly similar situations without much effort paid to the justification 103 

of the selected concept. Guidance for developing and implementing measurement, monitoring, 104 

and evaluation schemes of resilience is widely lacking [18,32]. These challenges in 105 

operationalising resilience prevent a widespread implementation of resilience thinking in forest 106 

management. In order to answer a core question of forest managers today, namely, how to 107 

manage forests to increase their resilience to global change, a clearer understanding of the use 108 

of the resilience concepts in forest science is needed to provide a way forward for both 109 

researchers and forest managers.  110 

This paper aims at facilitating the application of resilience in the context of forestry by 111 

clarifying its meaning and purpose through performance of a systematic review of the resilience 112 

concepts and their assessment approaches used in forest science. We had three objectives: 113 

1. To evaluate the adoption of the three mentioned concepts in resilience research in forest 114 

sciences. We were particularly interested in the current use and geographical spread of 115 

the concepts, the trend in their use, as well as the methods and indicators applied to 116 

assess resilience.  117 

2. To analyse similarities and differences between the applied resilience concepts, and to 118 

examine how conflicting they are with each other. 119 

3.  To develop guidance for the use of the resilience concepts in forest management and 120 

policy. 121 

We hypothesised that:  122 

• In the context of facing global change, the use of more holistic resilience concepts, such 123 

as social-ecological resilience, is increasing. 124 

• Forest resilience is a widely adopted concept in forest science, but its large variety of 125 

approaches prevents its mainstreaming into forestry practice.  126 

2. Materials and methods 127 

 128 

We reviewed how forest resilience is currently assessed in the scientific literature. We searched 129 

the literature using the Scopus database (Relx Group, 2018) using the search string TITLE-130 

ABS-KEY (“resilience” AND “forest”) ALL (“measur*” OR “manag*”) PUBYEAR > 1999. 131 

Applying the search string in the Scopus database guaranteed that results were published in 132 

scientific journals. As resilience related research started to increase dramatically after 1999 133 

[24], the focal time period was 2000-2018. The cut-off date for including new publications was 134 

August 19th, 2018. We screened all identified abstracts. All abstracts that 1) were published in 135 
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a peer-reviewed scientific journal in English, and 2) had the word “resilience” in relation to an 136 

active verb (e.g. manage, calculate, enhance, improve, assess) and 3) focused on forest-related 137 

systems (e.g. tree species or forest-dependent communities), natural resource management or 138 

landscape management, were further screened. We also accepted studies that proposed a way 139 

to assess resilience for non-specified ecosystems as these could also apply to forests. Further 140 

screening of the full papers checked if they 4) have definition of resilience; and 5) propose a 141 

method to assess resilience either in qualitative or quantitative terms. Only the studies that 142 

fulfilled all five criteria were selected for further analysis. 143 

To examine how widely the three different resilience concepts were adopted in the literature, 144 

the studies were classified into three groups based on their concept of resilience: engineering, 145 

ecological, and social-ecological resilience. The classification was done by recording the 146 

resilience concept used and comparing them with the foundational studies for the respective 147 

concept, see higher. If studies mentioned several concepts, we focused on the method used to 148 

evaluate resilience, and derived the adopted concept from there. We also evaluated the trend in 149 

the number of studies published per year, and in the share of the three concepts among studies. 150 

In addition, we assessed the biome where the study was conducted. For biome delineation, we 151 

used the definitions of Olson et al. [33]. The distribution across biomes was calculated in 152 

relation to the number of studies in the three resilience concept classes separately. Biomes that 153 

represented less than 5 % of the studies in any of the resilience concept categories were grouped 154 

in “Other”.  155 

To explore if the three resilience concepts conflicted with each other and in what situations they 156 

were applied, we assessed the response system/variable (resilience of what?) and the 157 

disturbance of concern (resilience to what?) of each study. The categories for the response 158 

system/variable were: Tree populations, Non-tree vegetation, Forest animal and fungal 159 

communities, Soil, Forest ecosystem, Not specified ecosystem, Forest-related social-ecological 160 

system, Forest industry, and Other. The categories for the disturbance of concern were: 161 

Drought, Fire, Wind, Climate change, Other abiotic disturbance, Biotic disturbance, Forest 162 

management operation, Land-use, Global change, Societal, economic and policy shocks, 163 

Multiple disturbances, and Other. In addition, we assessed whether the proposed evaluation 164 

method in the studies was qualitative or quantitative. Furthermore, we recorded the main 165 

method used to assess resilience. The distinguished categories for the method used were: Tree-166 

level sampling, Vegetation sampling, Animal population sampling, Soil sampling, Multiple 167 

agent (animal population, vegetation and soil) sampling, Forest site inventory, Conceptual 168 

modelling, Empirical modelling, Process-based modelling, Geographical Information 169 

System/Remote sensing approach, Historical records, Meta-analysis, Surveys, and Multi-tool 170 

(when there was no single prevalent method).  171 

We examined the indicators used to assess resilience (see Online Resource 3). As most of the 172 

studies assessed more than one indicator, we recorded the total number of indicators used to 173 

assess resilience in each study. For example, if a study assessed resilience with regard to species 174 

richness, species composition, functional diversity, number of seedlings, and drought index, we 175 

counted five indicators in total. We documented the ten most widely used indicators for each 176 

resilience concept by calculating the relative number of studies using them. In the case of the 177 

tenth most used indicator, we recorded all the indicators that were used with the same frequency. 178 

In addition, we classified the indicators according the Organization for Economic Co-operation 179 

and Development’s (OECD) Pressure-State-Response (PSR) framework [34]. We further 180 

organised the indicators into larger groups (see Online Resource 4). Grouping the individual 181 
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indicators together gives a better overview of which compartments of a system are used to study 182 

resilience and how the compartments vary according to the resilience concept used. A 183 

compartment here describes the part of the system under study, e.g. forest structure, soil 184 

properties, and socio-economic structure. The indicator groups were: Climate indicators, Soil 185 

properties, Disturbance effects, Forest structure, Forest regeneration, Tree and ecosystem 186 

production and transpiration, Biodiversity, Land-use, Ecosystem management objective, Socio-187 

economic capacity, Socio-economic diversity, Finance and technological infrastructure, 188 

Governance, Time, and Other. In the previously described example of the study reporting five 189 

resilience indicators, we would have counted three indicators describing Biodiversity, one for 190 

Forest regeneration and one for Climate. We analysed the trend of the average number of 191 

indicators used to evaluate resilience over time by fitting a linear regression to the time series 192 

of the average number of indicators in R [35]. To buffer extreme values, we used a three-year 193 

moving average of the indicators used. In addition, we performed a non-metric 194 

multidimensional scaling (NMDS) to describe how studies were ordered based on the recorded 195 

indicator groups, and how this was related to the resilience concept they used. We used the 196 

metaMDS function with Gower distance and seed 123 from the package “vegan” [36] in R [35]. 197 

Figures were created with the package “ggplot2” [37]. 198 

 199 

3. Results 200 

 201 

The initial search resulted in 2,629 peer-reviewed studies that were all screened (see Online 202 

Resource 1). The abstracts that fulfilled the first three selection criteria were chosen for further 203 

analysis, narrowing the set down to 625 studies (see Online Resource 2). Of these a final set of 204 

255 studies also fulfilled the selection criteria 4 and 5 [8,9,13,16,31,38–287]. One of the 205 

reviewed studies was in press during the review process and was published in 2019 but we 206 

included it in the studies published in 2018.  207 

 208 

3.1. Trends in forest resilience research 209 

 210 

The 255 studies identified as relevant for our review were classified according to the resilience 211 

concept they used. The majority of the studies employed the engineering resilience concept (54 212 

%), while ecological and socio-ecological resilience concepts were applied in 31 % and 15 % 213 

of studies respectively.  214 

The publication rate of studies assessing resilience had steadily increased over the investigated 215 

period (Fig. 1). The use of the engineering resilience concept appeared to have increased 216 

strongly after 2012. The use of ecological resilience had also increased but at a slower rate than 217 

engineering resilience. Social-ecological resilience was the least used concept and its 218 

application appeared to have increased only moderately.  219 
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 220 

Fig. 1 The development of the use of the three resilience concepts in forest resilience studies from 2000 to 2018. 221 
The figure shows the number of studies using engineering, ecological or social-ecological resilience concepts and 222 
the total number of forest resilience studies published per year. The cut-off date for the review was in mid-August 223 
2018, and therefore not all studies published in 2018 were included in the review. 224 

 225 

3.2. Geographical spread of resilience concept applications 226 

 227 

Our review contained studies from 11 different biomes (Fig. 2). Engineering resilience was 228 

mostly used in studies of temperate broadleaved and mixed forests, and in Mediterranean 229 

forests, woodlands and scrubs (24 % and 19 % of the studies using engineering resilience 230 

concept, respectively). Ecological resilience was often used in studies that concerned either 231 

several biomes (20 %) or temperate conifer forests (18 %). Social-ecological resilience was 232 

used the most in tropical broadleaved forests (23 %) as well as in temperate conifer forests (21 233 

%).  234 

 235 



 

7 
 

 236 

Fig. 2 The use of the resilience concepts by forest biome. The figure shows the share of the biomes studied for 237 
each of the three resilience concepts. N/A means that no biome was mentioned in a study.  238 

 239 

3.3. Resilience of what and to what 240 

 241 

Forest ecosystems were the most studied system (34 % of all studies). Engineering resilience 242 

was most used for studying either tree populations or forest ecosystems (35 % of studies using 243 

the engineering resilience concept), whereas ecological resilience was the most used in forest 244 

ecosystems and non-specified ecosystem studies (49 % and 24 % of studies using the ecological 245 

resilience concept, respectively). Social-ecological resilience was used in forest-related social-246 

ecological systems and studies on the forest industry (73 % and 20 % of the studies using the 247 

social-ecological resilience concept, respectively) (Table 1). 248 

Table 1 The percentages of the studied systems (“resilience of what”) in relation to the three resilience concepts 249 
and all of the reviewed studies. 250 

System of interest Engineering 

resilience 

(%) 

Ecological 

resilience 

(%)  

Social-

ecological 

resilience 

(%) 

All 

studies 

(%) 

Trees (individual or populations) 35 15 0 23 

Forest animal population 6 5 0 5 

Forest ecosystem 35 49 0 34 

Non-tree vegetation 12 4 0 7 

General ecosystem 5 24 0 10 

Soils 5 1 0 3 

Forest industry 0 0 20 3 

Forest related social-ecological 

system 

0 1 73 12 

Other 3 0 8 3 

 251 
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Drought was the most studied disturbance (22 % of all the studies) and 32 % of the studies 252 

applying the concept of engineering resilience focused on drought. Fire was the second most 253 

studied disturbance (13 % of all the studies), and 17 % of the studies of engineering resilience 254 

focused on fire. Ecological resilience was used equally for studying the effects of drought, 255 

climate change or other disturbances (15 % of the studies using the ecological resilience 256 

concept, each). Finally, social-ecological resilience was most used in studies concerned with 257 

global change and more specifically climate change (28 % and 21 % of the studies using the 258 

social-ecological resilience concept, respectively).  259 

For studies using an engineering resilience concept, the most common method was to either 260 

collect tree-level samples (26 %) or other vegetation samples (24 %). Studies assessing 261 

ecological resilience mostly relied on conceptual modelling (28 %) or vegetation samples (19 262 

%). Studies using a social-ecological resilience concept also made use of conceptual modelling 263 

(45 %) or socio-economic surveys (25 %). The majority of the studies assessing engineering 264 

and ecological resilience were quantitative (78 % and 65 % respectively), whereas the majority 265 

of the studies focusing on the social-ecological resilience concept were qualitative (83 %). 266 

 267 

3.4. Indicators used to assess resilience 268 

 269 

The most used indicators for each resilience concept are shown in Table 2. Engineering and 270 

ecological resilience shared six of their respective top-ten indicators, whereas the top indicators 271 

used to assess social-ecological resilience were completely different from the other two 272 

concepts. The ecological indicators used in the social-ecological resilience concept were less 273 

specific, compared to the ones used in the engineering and ecological resilience concept. The 274 

State-type indicators dominated the most used indicators list (52.5 %) whereas Response- and 275 

Pressure-type indicators were less common (32.5 % and 15.0 % respectively). 276 

Table 2 The most frequently used indicators for each resilience concept. Numbers in parentheses indicate the 277 
percentage of studies applying a given resilience concept using the indicator. The colour of the cell expresses the 278 
type of indicator according to the classification of OECD’s environmental indicators [34]. Blue cells are Pressure-279 
type indicators, green cells are State-type indicators and yellow cells are Response-type indicators.  280 

Indicator 

rank of 

occurrence 

Engineering resilience 

 

Ecological 

resilience 

 

Social-

ecological 

resilience 

 

All reviewed 

studies 

1 Basal area increment 

(27.5 %) 

Vegetation cover 

(13.9 %) 

Socio-economic 

diversity  

(30.0 %) 

Basal area 

increment  

(17.6 %) 

2 Vegetation cover  

(15.4 %) 

Density or number 

of trees  

(13.9 %) 

Biodiversity  

(22.5 %) 

Vegetation cover 

(12.5 %) 

3 Species richness  

(10.3 %) 

Basal area 

increment  

(11.4 %) 

Stock of natural 

resources  

(20.0 %)  

Species 

composition  

(9.0 %) 
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4 Species composition  

(10.3 %) 

Biomass  

(11.4 %) 

Networks  

(20.0 %) 

Species richness 

(8.2 %) 

5 Precipitation  

(10.3 %) 

Species 

composition  

(11.4 %) 

Knowledge  

(17.5 %) 

Biomass  

(7.5 %) 

6 Standardised Precipitation 

Evapotranspiration Index 

(9.6 %) 

Species diversity 

(10.1 %) 

Income  

(17.5 %) 

Regeneration  

(7.1 %) 

7 Density or number of 

surviving trees  

(9.6 %) 

Basal area  

(10.1 %) 

Access to 

resources  

(15.0 %)  

Precipitation  

(7.1 %) 

8 Regeneration  

(8.1 %) 

Regeneration  

(8.1 %) 

Participation in 

community 

organisations  

(15.0 %) 

Standardised 

Precipitation 

Evapotranspiration 

Index  

(6.3 %) 

9 Biomass  

(7.4 %) 

Species richness 

(8.9 %) 

Education  

(12.5 %) 

Density/number of 

surviving trees 

(5.1 %) 

10 

 

 

 

 

 

 

 

 

 

Density or number of 

seedlings  

(7.4 %) 

 

 

 

 

 

 

 

 

 

Mortality  

(8.9 %) 

 

 

Agricultural 

practices (10.0 %) 

 

Socio-economic 

diversity  

(4.7 %) 

 

 

 

 

 

 

 

 

 

Disturbance 

severity  

(8.9 %) 

 

 

 

 

 

 

 

 

Human Population 

density (10.0 %) 

Ecosystem 

services (10.0 %) 

Employment  

(10.0 %) 

Housing (10.0 %) 

Health services 

(10.0 %) 

Individual health 

(10.0 %) 

 

Water and 

sanitation (10.0 %) 

 

Transport (10.0 %) 

Skills (10.0 %) 

 281 
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The most used indicator groups for engineering and ecological resilience were related to forest 282 

structure (20% and 24% respectively) and forest biodiversity (19% and 15% respectively). For 283 

studies focusing on social-ecological resilience, the most used indicators were related to the 284 

socio-economic capacities (41%) and the second most used indicator group was related to 285 

finances and technical infrastructure (14%). The NMDS analysis of studies based on the 286 

indicator groups used showed a clear separation between engineering/ecological resilience and 287 

social-ecological resilience (Fig. 3). Based on the similarity with regard to the indicator groups 288 

used, engineering and ecological resilience concepts have a strong overlap. In contrast, studies 289 

that used social-ecological resilience employed very different groups of indicators.  290 

 291 

Fig. 3 The indicator groups used to assess resilience, ordinated in two dimensions based on the NMDS analysis. 292 
The NMDS gives a representation of the relationship between objects (studies) and descriptors (indicator groups) 293 
in a reduced number of dimensions. The x- and y-axes are the first two axes with the highest explicative values in 294 
ordination space. The location of different indicator groups are shown in letters. The indicator groups are Forest 295 
structure (F1), Biodiversity (F2), Climate indicators (CI), Forest regeneration (F3), Tree and ecosystem production 296 
and transpiration (F4), Disturbance effects (DE), Soil properties (S), Land use (LU), Ecosystem management 297 
objective (EMO), Socio-economic capacities (SEC), Socio-economic diversity (SED), Finances and technological 298 
infrastructure (FTI), Governance (G), Time, and Other. 299 

The average number of indicators used per study did increase over time (p-value 0.01). 300 

However, the number of indicators used did not increase for all of the resilience concepts. For 301 

ecological resilience and social-ecological resilience the average amount of indicators per study 302 

significantly increased (p-values <0.001 and 0.004, respectively), whereas it did not increase 303 

for engineering resilience (p-value 0.5) (Fig. 4). Assessments of social-ecological resilience use 304 

on average more indicators than assessments of ecological or engineering resilience (7 305 

indicators vs. 4 and 3, respectively). 306 
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 307 

Fig. 4 The moving average of number of indicators per study. The averages are calculated for three-year periods 308 
except for 2000 and 2018, which were calculated for two-year periods.  309 

 310 

4. Discussion 311 

 312 

4.1. Adoption of the three resilience concepts in the forest 313 

literature 314 

 315 

Our results for the first objective show that forest resilience is globally studied and that each of 316 

the alternative resilience concepts is widely applied in the scientific literature. Of the three 317 

concepts, engineering resilience is clearly the most frequently used in forest science, with 318 

ecological resilience the second most frequently applied and social-ecological resilience being 319 

the least used concept.  320 

The frequent and increasing use of engineering resilience in forest resilience literature was 321 

surprising, as we hypothesised that the more holistic concept of social-ecological resilience 322 

would get more commonly used in response to the serious problems caused by global change 323 

[288]. Other studies proposed several reasons for the widespread use of engineering resilience. 324 

First, the concept is very versatile and can be adapted to different systems, as recovery can be 325 

measured based on a variety of indicators [289]. Engineering resilience was the only concept 326 

where the average number of indicators used per study has not increased significantly during 327 

the last 18 years. One explanation might be that the key indicators for engineering resilience 328 



 

12 
 

have been identified in previous research already, and that there is no need to broaden the 329 

indicator set. For example, 31 out of the 136 reviewed studies using the engineering resilience 330 

concept adopted the approach presented by Lloret et al. [8] to examine the resilience of trees to 331 

drought by measuring the basal area increment before, during and after the drought. Second, 332 

the concept is clearly defined and intuitive to understand. This is in contrast to ecological and 333 

social-ecological resilience which are both debated concepts in terms of their exact definitions 334 

[290].  335 

However, our search terms could also have caused a bias towards engineering resilience. It is 336 

conceivable that studies applying the social-ecological resilience concept would focus less on 337 

measuring or quantifying resilience, thus lacking an active verb connected with resilience. As 338 

such studies come from more diverse scientific backgrounds, perhaps they place less emphasis 339 

on how resilience is quantified or assessed. The strong presence of the reviewed articles 340 

belonging to the ecological literature, in which resilience is studied as a system property and 341 

the focus is on the capacity of systems to resist change and recover from a disturbance [18], 342 

supports this interpretation. Furthermore, resilience receives considerable criticism from the 343 

social sciences [291–293] and it is therefore conceivable that some social science studies on 344 

resilience related research questions may not actually use the term, as they reject its conceptual 345 

approach [294]. Therefore, the scarcity of studies adopting the concept of social-ecological 346 

resilience in our review might be due to the recommendation to use social-ecological resilience 347 

as an analytical approach for social-ecological systems, rather than a descriptive concept of a 348 

system property [290]. Such an analytical approach does not necessarily aim to quantify 349 

resilience but rather to deal with uncertainty. Nevertheless, our results show that social-350 

ecological resilience can be assessed in both qualitative [161,167] and quantitative [174] ways.  351 

The use of engineering resilience also has clear limitations. As the concept assumes the 352 

existence of only one stable state [20] and measures performance against the pre-disturbance 353 

state, it is thus mainly applied in studies over a short timeframe and for situations where the 354 

environmental conditions are variable but where a regime shift is unlikely. Yet, such a situation 355 

can rarely be assumed under global change [295]. In such a setting of continuous change, 356 

maintaining high engineering resilience might require a high level of anthropogenic inputs, e.g. 357 

fertilisers or intensive re-planting of selected tree species, which in turn would lead to so called 358 

“coerced resilience” that mimics the response of a resilient ecosystem but is only possible with 359 

continuous human intervention and risks being highly maladaptive [296]. Furthermore, 360 

assessing resilience in a deterministic (as opposed to considering stochasticity) and short-term 361 

manner could lead to missing important system pathways and long-term trajectories. These 362 

shortcomings of the concept for the analysis of forest systems increase with the impact of global 363 

change, and the concept should hence be used only with a clear acknowledgement of its 364 

limitations. 365 

 366 

4.2. The differences and complementarity among the resilience 367 

concepts 368 

 369 

As to the second objective, there is an apparent difference in the use of engineering and 370 

ecological resilience on the one hand and social-ecological resilience on the other hand with 371 

regard to the systems and disturbances studied and the indicators used (Fig. 3). Previous 372 



 

13 
 

literature reviewing the concept of resilience has identified several disparities in the 373 

conceptualisation of the resilience definitions and the underlying assumptions, which are in line 374 

with our findings. Resilience has been perceived differently depending on the disciplinary 375 

background [18]. Ecological literature, where engineering and ecological resilience are 376 

commonly used, regards resilience as a system property whereas the study of social-ecological 377 

systems looks at resilience as a strategy for managing complexity and uncertainty [18]. 378 

Furthermore, the ecological literature focuses on the capacity of a system to resist change and 379 

recover from it, whereas the social-ecological systems literature has a strong focus on 380 

transformation and self-evolvement of the system as a crucial part of management [18,297].  381 

On a conceptual level, the difference between the concepts lies in how they view the existence 382 

and shape of basins of attractions. For engineering resilience, resilience is measured by the 383 

steepness of the slope of the basin, indicating how quickly the system can return to the bottom 384 

after a disturbance [298]. For ecological resilience, the existence of multiple basins of attraction 385 

is assumed, and resilience is a measure for how much pressure is required for the system to 386 

move from one basin to another [298]. Social-ecological resilience assumes the existence of 387 

multiple basins of attractions as well [297], but the focus of this concept is on shaping the basin 388 

of attraction to keep the system contained in its current attractor via changing the social part of 389 

the system. This disciplinary disparity can explain why engineering and ecological resilience 390 

concepts use a very similar set of indicators whereas social-ecological resilience uses 391 

distinctively different types of indicators (see Table 2 and Figure 3). 392 

Our results reflect this conceptual background. For example, drought resilience of trees was the 393 

most commonly studied topic and engineering resilience was the most adopted concept for that 394 

topic. While much of this popularity can be attributed to a key paper published by Lloret et al. 395 

[8], tree growth is also a system that is unlikely to have multiple stable states, making the use 396 

of ecological or social-ecological resilience concepts unnecessary. Similarly, the prominent use 397 

of engineering resilience to assess forest ecosystems in our results could be explained by the 398 

authors’ perception of the existence of multiple basins of attractions for the studied system. 399 

While many scientists support the notion of forest ecosystems having multiple basins of 400 

attraction [299–301], some scientists see the evidence as limited [31] and therefore prefer to 401 

use the engineering resilience instead of the two other concepts. The aim and scope of the 402 

research clearly determined the researchers’ choice of the resilience concept in the reviewed 403 

studies. For this reason, some authors adopt a different concept of resilience in different studies 404 

[9,144,198], underlining the importance of precisely defining the term in each instance of its 405 

use [302], as well as reflections on the applicability of the chosen definition. Attention should 406 

furthermore be paid to whether or not resilience is used as a descriptive or normative concept 407 

as striving for enhanced resilience might lead to debates on the trade-offs of achieving a resilient 408 

system [18].  409 

The definitions of the three concepts further illustrate a difference in complexity: engineering 410 

resilience is purely defined as recovery of the system, ecological resilience includes aspects of 411 

both resistance and recovery of the system, whereas social-ecological resilience includes 412 

resistance, recovery, adaptive capacity and the ability to transform [297]. It should be noted that 413 

studies using engineering resilience do not necessarily ignore the resistance or adaptive capacity 414 

of the system, but they consider them as independent concepts besides resilience, rather than as 415 

integral parts of resilience [39,94,208]. Some scientists argue for separating resistance, 416 

resilience and adaptive capacity into their own concepts for conceptual clarity and better 417 

operationalisation of resilience [94,289]. However, others argue that reducing resilience to such 418 
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a simple dimension is focusing on maintaining the status quo of the system and this could 419 

actually lead to losing the resilience of social-ecological system [297].  420 

We argue that instead of striving towards one single resilience definition, resilience could be 421 

understood as an overarching concept of nested hierarchies as described also by the theory of 422 

basins of attraction [26]. According to this hierarchy, engineering resilience is nested inside 423 

ecological resilience, which in turn is nested inside social-ecological resilience (Fig. 6). Moving 424 

from one concept to another either adds or removes different dimensions from the system under 425 

study and changes the system boundaries. The interest in a certain property together with the 426 

disturbance of concern therefore indicate the resilience concept that is most applicable for the 427 

respective question or system to be analysed. The increasing complexity with increasing 428 

hierarchical levels of resilience also suggests that a broader suite of indicators is required to 429 

assess higher levels of resilience, which was supported by the results of our review.  430 

 431 

 432 

Fig. 6 The hierarchy of resilience concepts and assumptions behind each concept. The circles on the right show 433 
how resilience concepts are related to one another. The boxes on the left indicate increasing complexity in the 434 
systems that are studied by the respective resilience concepts. Variable environmental conditions mean conditions 435 
where the conditions vary but remain in the historical range of variation. Changing environmental conditions mean 436 
that the conditions are no longer within the range of historical variation of the environment. 437 

 438 

4.3. Guidance on navigating the world of resilience 439 

 440 

Regarding our third objective on how to implement resilience in forestry practice, our review 441 

underlines that forest resilience is a flexible concept and can be adapted to many situations and 442 

questions. That is one reason for the popularity of the concept [17], as well as the widespread 443 
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use in various biomes and research designs. For example, the engineering resilience concept 444 

was mainly used for studying pulse-type disturbances, such as drought and fire in the temperate 445 

and Mediterranean forest, ecological and social-ecological resilience were also used for press-446 

type of disturbances, such as climate and global change, with more geographical spread.  447 

Regardless of the resilience concept the authors use, variable study scopes, combined with 448 

either simplification tendency (engineering resilience) or complexity (social-ecological 449 

analysis) of the concepts may hinder the wider implementation of resilience thinking in forest 450 

management practice. The results of the review support our first hypothesis on how forest 451 

resilience lacks the consistent operational use that would be needed for implementation in 452 

practice. The lack of clarity in applying the concepts is a clear shortcoming. Some of the studies 453 

reviewed provide guidance and pathways for managing forests for resilience [31,88,94,198], 454 

proving that the concept can be operationalised with sufficient effort invested. Nevertheless, 455 

the resilience concepts lack established indicator frameworks that could be adopted by forest 456 

managers. The classification of the indicators according the OECD’s PSR-framework showed 457 

that a majority of the indicators currently used in the forest resilience literature are state-type 458 

indicators. For a holistic indicator-based assessment, more focus should be placed on 459 

developing further indicators to assess both pressures and system responses to disturbances 460 

[303]. Guidance is needed to help forest managers to both choose which resilience concept 461 

could be the most suitable for their situation as well as identify proper indicators for assessing 462 

the selected concept. In the next sections we will address how managing for resilience is 463 

different from the risk management in forestry, and how to choose a suitable resilience concept. 464 

Some might consider resilience thinking to be redundant with current forest management 465 

practices. Dealing with uncertainty via risk assessments is a well-established practice in forestry 466 

[304]. Risk is by definition the effect of uncertainty on objectives [305], frequently expressed 467 

quantitatively in probabilistic terms [306], and risk-based management strategies are most 468 

effective when hazard probabilities are known [307]. However, the impacts of changes in 469 

disturbance regimes as well as of shocks caused by political and societal changes are currently 470 

unknown [308], which can cause risk management approaches to fail [307]. In contrast, 471 

resilience prepares for minimizing the damage caused by unknown, novel risks [307], making 472 

it a suitable management approach also for situations where the character and the magnitude of 473 

the risks are hard to identify. 474 

Based on our review of the literature on forest resilience, we provide some suggestions to guide 475 

practitioners and scientists in choosing the most suitable concept for them and which possible 476 

ways exist to assess these concepts.  477 

1. Identify the managed system 478 

To choose the appropriate resilience concept, it is important to define the managed 479 

system [302]. Is the main interest to assess the resilience of one important tree species, 480 

ecosystem services provided, or a regional supply chain of forest enterprise? Does this 481 

system have alternative basins of attractions? Are the environmental and social changes 482 

likely to push the system to another stable state? Engineering resilience is a powerful 483 

concept for relatively simple systems (e.g. tree species growth, plant or animal 484 

population) that are not likely to change in the near future. Therefore, it could be 485 

appropriately used in assessing short-term resilience [289]. If alternative states for the 486 

system are known, e.g. forests transforming into savannah [301], or the system is rather 487 

complex (e.g. forest ecosystem), ecological resilience should be used instead of 488 
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engineering resilience. If the system also includes social parts, as for example in a 489 

community forest and forest enterprise, social-ecological resilience should be used to 490 

capture the interactions between social and ecological systems. 491 

 492 

2. Identify the stressors or disturbances affecting the system. In addition to defining the 493 

system, the disturbances affecting the system should be identified [302]. Is the scope to 494 

assess the resilience to one single disturbance event e.g. storm, an interaction of several 495 

disturbances, e.g. drought, storm and bark beetles, or an ongoing change, e.g. climate 496 

or societal change? As engineering resilience measures the recovery to a pre-disturbance 497 

state, it should be used only in cases where the pre-disturbance state is still achievable, 498 

meaning the system is not strongly affected by press type disturbance as, for example, 499 

climate change. Ecological resilience is suitable for both pulse and press type 500 

disturbances as well as changes in disturbance frequency, if the system of interest is an 501 

ecological system. Finally, managers and researchers facing changes in forest policies, 502 

market demands, or social use of the forest should use the concept of social-ecological 503 

resilience. While this concept is perhaps the most difficult to adopt, it emphasises the 504 

need to reflect on the resilience of the social system as an interdependent counterpart of 505 

the natural system [297].  506 

 507 

3. Identify the temporal scale of interest. Engineering resilience can be appropriately used 508 

for assessing resilience on a short temporal scale [289]. However, many scientists 509 

caution against using engineering resilience over longer time scales as social and 510 

environmental conditions change and focusing on short term recovery might lead to 511 

ignoring the slow variables ensuring resilience [289,309,310]. For longer management 512 

time scales, we recommend using either ecological or social-ecological resilience.  513 

 514 

4. Consider the trade-off between accuracy and cost-efficiency in indicator selection. Our 515 

study revealed increasing requirements for indicator measurement, evaluation, and/or 516 

assessment in going from engineering to ecological and social-ecological resilience 517 

approaches. While the selection of indicators depends on the studied system, the 518 

presented indicators (Table 2) show a selection of the most used ones that have been 519 

applied in different systems and variable disturbance assessments. However, the use of 520 

indicators should always be carefully considered as one indicator might declare a system 521 

resilient and another one vulnerable. Therefore, using a holistic set of indicators that 522 

describe both structures as well as functions of the system is recommended [289]. This 523 

might require considerably more work from the researchers and managers but it reduces 524 

the risk of falsely assessing resilience.  525 

Several other ways of defining and assessing resilience exist outside the social-ecological 526 

systems literature [18,311,312]. However, the concepts of engineering, ecological and social-527 

ecological resilience are very prominent in the forest science literature and we believe that our 528 

review contributes to clarifying the use of these concepts. More focus should be paid on how 529 

resilience concepts are implemented in practice. One further research direction should therefore 530 

look at how resilience is operationalised in forest management practice, e.g. by reviewing forest 531 

management plans and conducting social- empirical research with forest managers about how 532 

they deal with resilience related forest management decisions in practice. This work could result 533 

in recommendations on how scientific findings and concepts related to forest resilience can 534 

support forest management practice, such as a sophisticated decision support framework for the 535 
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selection of the applicable resilience concept and indicators. More work will also be needed on 536 

how to interpret specific indicators and how to balance impacts on diverse management 537 

objectives across the proposed indicators.  538 

 539 

5. Conclusions 540 

 541 

In our rapidly changing world, resilience has gained wide popularity in forest management, but 542 

operationalising the concept still lags behind. We show how three major resilience concepts for 543 

studying social-ecological systems are used in the forest science literature, and how their 544 

assessment methods and interpretations differ. The variety of used resilience indicators is broad, 545 

with several popular ones emerging, such as basal area increment and the extent of vegetation 546 

cover.  547 

Our first hypothesis was that in a context of global change the use of broader resilience 548 

concepts, such as social-ecological resilience, would be increasing over time in comparison to 549 

more specific concepts, such as ecological and engineering resilience. This was not supported 550 

by the data, as the use of engineering resilience has clearly increased in comparison to 551 

ecological and social-ecological resilience. The context of the investigated studies appeared to 552 

be the main driver behind their choice for a resilience concept. However, we showed here that 553 

these resilience concepts are not exclusive but rather form a hierarchy with engineering 554 

resilience being an aspect of ecological resilience, and ecological resilience being part of the 555 

overarching social-ecological resilience. In this context, we provide guidance to forest 556 

managers and policy makers on how to consider context specific information on management 557 

type, disturbance regime, temporal scale of interest, and indicator needs that will help making 558 

forest resilience operational. 559 

Our second hypothesis was that forest resilience is a widely adopted concept in forest sciences, 560 

but it shows a large variety of assessment approaches, which may prevent its mainstreaming 561 

into forestry practice. The ordination of the studies based on the indicators they used confirms 562 

the large variety of approaches forest scientists use to assess resilience. However, we also 563 

showed that these approaches can be clearly attributed to one of three nested resilience 564 

concepts, that may be a useful basis for further improved operationalisation. Consequently, we 565 

reject this hypothesis, and give guidance for a context specific selection of a suitable resilience 566 

concept and a related set of indicators, as a first step to future operationalisation.  567 

 568 
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