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Abstract

This thesis describes the work carried out and results obtained from an investigation 

into the relationship between the two forms of a-galactosidase found within the 

maturing and germinating Senna occidentalis endosperms. These two enzymes are 

responsible for the final mannose/galactose ratio of galactomannan within the 

maturing senna endosperm and the mobilisation of the galactomannan storage reserve 

during germination.

The methods used to characterise the two a-galactosidase enzymes and the results 

describing the slight but significant dissimilarities are described.

The methods used to isolate RNA from the maturing and germinating endosperms are 

shown along with a description of the RT-PCR and cloning strategies then employed.

The analysis of the relationship between the cDNAs obtained from the maturing and 

germinating endosperms used southern blotting, 5’RACE-PCR, DNA sequencing 

reverse-translation and multiple sequence alignments are described.

Finally the similarities between the cloned senna a-galactosidases and those obtained 

from the swiss-prot database are shown and the commercial uses of the a- 

galactosidase are discussed along with the future chances of producing commercially 

viable transgenic galactomannan yielding crops.
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Introduction.

General seed biology

Seeds have evolved to fulfil a number of roles. The seed must protect the embryo 

from mechanical damage or predation. The seed must also be able to remain viable 

until favourable conditions for germination occur; this can be until the next growing 

season or many years hence. The seed must also be able to provide food reserves to 

support the growth and development of the embryo until the seedling can provide 

these for itself.

A hardened seed coat or testa provides the mechanical protection of the seed. This 

testa also prevents the absorption or loss of water by the seed maintaining a water 

content of between 5 and 10%. The low water levels within the seeds curtails normal 

metabolic activity although potentially active enzymes are present (Bewley and Black 

1978). Most seeds are durable enough to withstand a year or two of “suspended 

animation” although others are more or less fragile as shown in Table 1 (Salisbury and 

Ross 1992)
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Table 1. Representative life spans for seeds.

Species Viabilit (%),

y Final

Initial

Age at 

Test

Storage Conditions

Sugar maple (Acersaccharinum) <1 week

English elm (Ulmus campestris) 6 months

American elm (Ulmus americana) 70 28 10

months

dry storage

Heavea, Boehea, Thea, sugarcane, 85 - <i y buried 20 cm in soil

Wild oats (Avena fatua) 56 9 iy buried 20 cm in soil

Alfalfa (Medicago sativa) 50 1 6y buried 20 cm in soil

Yellow foxtail (Setaria lutescens) 57 4 10y buried 20 cm in soil

Cocklebur (Xanthium strumarium) 91 15 16y buried 20 cm in soil

Canada thistle (Cirsium arvense) 90 1 2iy buried 20 cm in soil

Kentucky bluegrass (Poa pratensis) 89 1 30y buried 20 cm in soil

Red clover (Trifolium pratense) 1 30y buried 20 cm in soil

Tobacco (Nicotiana tabacum) 13 30y buried 20 cm in soil

Button clover (Medicago orbicularis) 78y herbarium

Clover (Trifolium striatum) 90y herbarium

Big trifoil (Lotus uliginosus) 1 lOOy dry storage

Red clover (Trifolium pratense) 1 lOOy dry storage

Locoweed (Astragalus massiliensis) 100-150y herbarium

Sensitive plant (Mimosa glomerate) 221y herbarium

Indian lotus (Nelumbo nucifera) 1040y peat bog

Arctic Lupine (Lupinus arcticus) 10000? frozen silt,
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lem m ing burrows

Note: blank cells are unmeasured

Germination takes place after impaction, scarification or other means causes a breach 

of the testas integrity (unless a dormancy mechanism is in operation). Water can then 

be absorbed and the seed expands, splitting off the testa. As long as certain 

requirements, such as temperature and the availability of O2 are met, metabolic 

activity is initiated; the embryo resumes cellular division and elongation, storage 

reserves are mobilised and eventually the radical (embryonic root) emerges from the 

seed. After radical emergence has occurred, germination is officially over and 

seedling growth takes place, however until the shoot is above ground and 

photosynthesis starts, the young seedling is still dependent on the seed reserves to 

support growth.

The storage material on which almost all seeds depend is usually lipid or carbohydrate 

(with lipid being the most common). Proteins are also stored within the seed but are 

usually not the most abundant storage material present. Table 2 gives some idea of 

the proportions of lipid, carbohydrate and protein commonly found within seeds and 

also in which tissue they located (Bewley and Black 1978)
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Table 2. Storage material composition and localisation.

Species
Average % 

composition dry wt

Storage

Organ

Protein Lipid CHO major type

Com 11 5 75 (Starch) Endosperm

Sweet com 12 9 70 (Starch) Endosperm

Oats 13 8 66 (Starch) Endosperm

Wheat 12 2 75 (Starch) Endosperm

Rye 12 2 76 (Starch) Endosperm

Barley 12 3 76 (Starch) Endosperm

Broad bean 23 1 56 (Starch) Cotyledon

Flax 24 36 24 (Starch) Cotyledon

Field pea 24 6 56 (Starch) Cotyledon

Garden pea 25 6 52 (Starch) Cotyledon

Peanut 31 48 12 (Starch) Cotyledon

Soybean 37 17 26 (Starch) Cotyledon

Cotton 39 33 15 Cotyledon

Rape 21 48 19 (Starch) Cotyledon

Watermelon 38 48 5 Cotyledon

Brazil nut 18 68 6 Radicle/Hypocotyl

Oil palm 9 49 28 Endosperm

Ivory nut 5 1 79 (Mannan) Endosperm

Date 6 9 58 (Mannan) Endosperm

Castor bean 18 64 Trace Endosperm

Pine 35 48 6 Megagametophyte
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The types o f storage carbohydrates.

The most common and commercially important storage carbohydrate is the a -1,4 and 

1,6 linked glucose polymer, starch. Starch is stored as grains located in amyloplasts 

within the cytoplasm of the storage cells of the seed. Less common than starch 

(although more significant in some plants) and located within the cell walls rather than 

within the protoplast are a variety of other storage polysaccharides. These cell wall 

storage carbohydrates can be classified as galactan, xyloglucan and mannan based 

compounds. Galactans, the rarest of the cell wall storage compounds consist of a p- 

1,4 linked galactan with arabinose, xylose and uronic acid residues associated 

(Crawshaw and Reid 1984). In tissues other than storage tissues these compounds are 

classed as belonging to the pectin family. Xyloglucan structure is described as a p-1,4 

linked glucose chain with xylose residues linked a -1,6 to this backbone. The xyloses 

are further substituted by (3-1,2 linked galactosyl units. As with the galactans the 

xyloglucans are not restricted to the role of seed storage reserve but are also found in 

the plants primary cell walls. The mannan family of polysaccharides consists of pure 

mannans, glucomannans and the galactomannans. The pure mannans consist of a 

linear P-1,4 linked mannan chain with less than 2% of the mannan residues being 

linked to via their 6 position to a galactosyl residue (Aspinall et al 1953). The 

structure of the glucomannans is that of a linear p-1,4 linked chain consisting of both 

mannosyl and glucosyl residues in approximately equal amounts. Like the pure 

mannans, glucomannans can have a very low level of galactosyl substitution 

(Goldberg 1969). Galactomannans are described below.
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The source o f galactomannans:

Galactomannans obtained from the seeds of higher plants, come mainly from the 

Leguminosae family. E. Anderson (1949) examined the seeds of 163 legume species 

and found that 119 contained “mucilages”. When investigated further, these 

“mucilages” were identified as galactomannan. In these plants the galactomannans are 

located within the endosperms (the non-endospermic Leguminosae do not contain 

galactomannans).

The primary structure o f galactomannans:

Galactomannans from various sources have been structurally analysed. This has 

usually been carried out by an initial hot or cold water extraction from ground seed or 

endosperm flour. The soluble polysaccharides are isolated from the aqueous mixture 

by centrifugation and recovered by addition of ethanol. Galactomannans are then 

isolated from this polysaccharide mix by the addition of Cu2+ or Ba2+ ions which 

complex to the galactomannans, causing their selective precipitation (Hui and 

Neukom, 1964; Dea and Morrison, 1975). The isolation of galactomannan by these 

means has been shown to maintain its native chemical composition; as shown by the 

ratios of the galactose to mannose in the galactomannan and from the optical rotation 

caused by the galactomannan (Unrau and Choy, 1970), (Rao, Chouldhury, and Bagchi 

1961)

The ratio of mannosyl to galactosyl residues in the isolated galactomannans was 

obtained by total acid hydrolysis. The man:gal ratio varies with the source of the
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endospermic tissue (Reid and Meier, 1970; Dea and Morrison, 1975); the primitive 

Leguminosae-caesalpiniodeae have a high man:gal ratio whereas the more advanced 

Leguminosae-faboideae have a lower man:gal ratio. Examples of the man:gal ratios 

are compiled in Tables 3a and 3b.

Table 3. The composition ofgalactomannan isolated from the Tribe Trifolium (Reid 

and Meier, 1970; Dea and Morrison, 1975).

Species Section %Galactose %Mannose

Trifolium incamatam -C. presl. 46 54

Trifolium dubium Sibth 46 54

Medicago sativa L. 45.5 54.5

Medicago lupulina L 46 54

Medicago radiata (L.) Heyn 46 54

Melilotus alba medicus 47 53

Melilotus offiinalis (L.) pallas 45.5 54.5

Trigonella calliceras Fisch Callicerates Boiss 47 53

Trigonella comiculata L Falcatulae Boiss. 46 54

Trigonella hamosa L. Falcatulae Boiss 46 54

Trigonella caerulea (L.) Ser Capitatae Boiss. 47 53

Trigonella monspeliaca L. Reflexae (Siij) vass. 48 52

Trigonella polytcerata Bieb. Bucerates Boiss 47 53

Trigonella foenum-graecum Foenum-graecum Ser 47 53

Triqonella cretica (L.) Boiss. Samaroideae 39 61

1



Table 3b. The composition ofgalactomannan isolated from the Tribe Genisteae (Reid 

and Meier, 1970; Dea and Morrison, 1975).

Species %Galactose %Mannose

Spartium junceum L. 31 69

Genista ovata W.K. 33 67

Genista tinctoria L. 32 68

Genista monosperma Lam 32 68

Petteria ramentacea (Sieb) Presl. 32 68

Labemum alpinum (Mill) Presl. 32 68

Labemum anagyroides medicus 31 69

Ulex europaeus L. 34 66

Cytisus Hirsutus L. 30 70

Cytisus supinus L. 33 67

Sarothananus scoparius L. 30 70

0  r  ■
■■■■ > ^ \ i
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The linkage types found in the galactomannan have been analysed by methylation 

analysis, peroxidate oxidation and partial hydrolysis (this work being earned out 

initially on the commercially important guar and locust-bean galactomannan (Smith, 

1948) (Ahmed and Whistler 1951) (Whistler and Durso 1951). The mode of linkage 

(a  or p) was elucidated through the use of optical rotation analysis. (Kooiman, 1972) 

(Leschziner and Cerezo,1969)

Bringing together the data from the structural analysis has led to the generally 

accepted proposition that galactomannans are all comprised of a linear 1—>4 p-linked 

D-mannan backbone with single D-galactopyranosyl units attached via 1—>6 a-links 

(fig. l)(Dea and Morrison, 1975).

Figure 1. The primary structure o f galactomannan.



The only ambiguity that remains in the model above is that of where the galactosyl 

residues are attached along the mannan backbone. The possible arrangements of the 

galactosyl units are shown below (Fig2).

t t t t t t  + t t t
G G G G G G G G G G

Figure 2A

t t  t t  t t t t  t  t
G G  G G  G G G G  G G

Figure 2B

t t t t t t  t t t t t t t
G G G G G G  G G G G G G G

Figure 2C

Figure 2A, B and C. Shows the possible arrangements o f the galactosyl residues 

along the mannan backbone.

A shows the arrangement along the backbone i f  substitution was regular. 2B is the 

structure o f galactomannan when galactosyl substitution is random. 3C is the 

product o f non-random yet non-regular galactosyl substitution, giving rise to block 

structures.
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Digestion of galactomannans with endo-p-mannanases gave rise to large segments of 

polysaccharide with almost total galactosyl substitution of the mannan backbone 

(Courtois and Le Dizet, 1968) (Baker and Whistler, 1975) leading to the supposition 

that galactosyl substitution is not random but is also not regular (Dea and Morrison, 

1975). Native galactomannans therefore seem to conform to the block structure shown 

in fig. 2C.
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Galactomannan synthesis.

It was over one hundred years ago that the first investigations into galactomannan 

formation were undertaken. In 1890 Nadelmann documented how “mucilages” were 

seen forming in cytoplasmic vacuoles of four leguminous species. These mucilages 

were then deposited in the cell walls of the endosperm cells. More modem 

investigations using periodate-shiff staining combined with interference microscopy 

and electron-microscopy have confirmed that Nadelmann was correct; 

galactomannans are formed inside the cistemae of the endoplasmic reticulum within 

the cytoplasm. The endoplasmic reticulum becomes so swollen with galactomannan 

that it can be observed through a light microscope. The galactomannan accumulations 

are subsequently discharged into the cell wall. In fenugreek the filling of the cell 

walls of the endosperm begins adjacent to the embryo and continues, filling each cell 

completely occupying the space previously taken up by the cytoplasm (which 

degrades), until only a single outer layer of cells (the aleurone layer) remains unfilled 

(Reid and Meier, 1970. Reid and Meier, 1973. Meier and Reid, 1977.).

The first study into the biochemistry of galactomannan formation was carried out by 

Campbell and Reid in 1982. This investigation showed that during the period of 

galactomannan accumulation, endosperm homogenates contain a membrane bound 

enzyme activity that is able to transfer D-mannosyl residues from GDP-mannose to an 

acceptor molecule. The enzyme activity is associated with the endoplasmic reticulum 

(Campbell, 1978). The acceptor for this mannosyl-transferase was shown, through the
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use of selective precipitations with borate, transition metal ions and the galactosyl 

binding lectin from Ricinus communis, to be galactomannan.

When the enzyme preparation was incubated with GDP-mannose, the acceptor 

molecule and a Mg2+, Ca2+ or Mn2+ co-factor (in the absence of UDP-galactose) a 

1—>4 P linked mannan was produced. If UDP-galactose was also present in the 

reaction mixture, high rates of galactose transfer were also observed. The product 

thus produced was galactomannan. Conversely if the membrane preparation was 

incubated with UDP-(14C)-D-galactose, co-factors and acceptor molecules (in the 

absence of GDP-mannose) no radiolabelled galactose was incorporated into a 

polysaccharide. The mannosyl-transferase activity can therefore operate in the 

absence of UDP-galactose; whereas the galactosyl-transferase is dependent on the 

transfer of mannose from GDP-mannan to a growing mannan backbone, as catalysed 

by the mannosyl-transferase. It was also shown that only simultaneous mannan 

transfer enabled the galactosyl-transferase to add the galactose side chains; pre-formed 

mannan chains would not accept galactosyl substitutions (Reid et al, 1987. Edwards et 

al 1989).

The results of these experiments enabled a model of galactomannan biosynthesis to be 

proposed, this is shown below:-

I. Two membrane bound enzymes are involved: a GDP-mannose-dependent 

mannosyltransferase and a UDP-galactose-dependent galactosyltransferase. 

n. The product of the mannosyltransferase when UDP-galactose is absent is linear 

(1 -»4)-p-D-mannan.

13



III. The glycosylacceptor for the galactosyltransferase is the product of the 

mannosyltransferase. The final product of the two enzymes is a galactomannan of the 

same structural type as that found in the plants (in vivo) from where the enzymes have 

been prepared (fenugreek and guar).

IV. Galactosyl transfer can only occur onto a nascent or newly transferred D-mannosyl 

residue.

The control of the ratio of mannose to galactose was investigated in vitro. The 

man: gal ratio was manipulated by varying the concentrations of the sugar- nucleotide 

precursors. With both substrates set at their saturating concentrations, high man:gal 

galactomannan was produced in both fenugreek and guar (which in vivo produce low 

man:gal galactomannan). By reducing the GDP-mannan concentration whilst 

maintaining the UDP-galactose at a saturating concentration, galactomannans with 

degrees of substitution approaching (but not exceeding) those found in vivo could be 

produced (Edwards et al, 1989).

In 1992 Edwards et al stated that the levels of mannosyl- and galactosyltransferases 

within the developing endosperms of fenugreek, guar and senna correlate closely with 

the deposition of galactomannan in each of these plants, thus confirming the role of 

the two enzymes in galactomannan biosynthesis. The relative in vitro activities of the 

mannosyl- and galactosyltransferases in fenugreek and guar are similar and constant 

throughout the period of galactomannan synthesis, however the ratio of mannosyl to 

galactosyl-transferase was slightly higher in guar than fenugreek, mirroring the final 

mannose:galactose ratio of the galactomannan of these two species.
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Further investigations using enzymatic fingerprinting techniques (Reid et al 1995) 

were needed in order to establish whether the mechanism behind the distribution of 

galactose on the newly formed galactomannan was (A), via the in vivo control of the 

sugar-nucleotide levels (as suggested in Edwards 1989) or (B), via the transfer 

specificities of the transferase enzymes (also suggested by Edwards because of the 

limited effects of in vitro manipulation of the sugar-nucleotide concentrations). 

Mannosyl and galactosyl-transferases were isolated from seed endosperms and used in 

vitro to produce radio-labelled galactomannan. The galactomannan was subjected to 

an exhaustive digestion by endo-(l->4)-(3-D-mannanase from Aspergillus niger. The 

subsite specificities of this enzyme are well known. The Aspergillus niger (1 —>4)-(3- 

D-mannanase has an optimum substrate binding requirement of five (1—»4)-p-linked 

D-mannosyl residues, however unsubstituted mannotetraose is digested; mannotriose 

on the other hand, is only hydrolysed very slowly. Substitutions on the mannan chain 

being hydrolysed affects the activity of the mannanase. Galactosyl substitutions on 

the second and/or forth mannosyl residue prevents hydrolysis; substitutions elsewhere 

have no effect (this is shown in fig 3 McCleary and Matheson 1983, McCleaiy 1979)

Gal Gal Gal Gal
1 2 3 4 5  1 I  4 I

 Man-^Man-^Man-^Man^Man-^Man-^Man-^Man-^Man-^Man^Man-^Man-^Man*
T t T 1 2 3 4 5Gal Gal Gal   J_____

___________ 1_______________  endo-J3-mannanaseendo-fi-mannanase (cuts)
(does not cut)

Fig 3. The action o f the Aspergillus nizer mannanase on galactomannan.
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Galactomannans hydrolysed by this mannanase are therefore split into well-defined 

fragments. These fragments were separated by thin layer chromatography and the 

relative amounts of each of these fragments, as measured by digital autoradiography 

were used to calculate the statistical distribution of the galactosyl residues along the 

mannan backbone (Reid et al 1995). A computer program was then set up to simulate 

the galactomannan biosynthetic process. It modelled the elongation of the mannan 

backbone and the transfer of galactosyl residues onto the newly transferred (terminal) 

mannosyl residue. Whether or not a galactosyl residue would be added to the growing 

terminus of the galactomannan was, in the model, dependent on the terminal 

mannosyPs nearest neighbour and next nearest neighbour. The state of substitution of 

only the two nearest mannosyl residues to the terminal mannosyl residue affected the 

probability of galactosyl transfer occurring onto that terminal mannosyl residue. This 

assumption is known as a second-order Markov chain assumption. After many 

simulated galactomannans were “synthesised” (using different values for the effects of 

the degrees of substitution of the two neighbouring mannosyl residues), a synthetic 

Aspergillus niger (1 —>4)-(3-D-mannanase hydrolysis was carried out. On comparison 

of the simulations with real life, in vitro galactomannan biosynthesis and degradation, 

three points became apparent.

1) The second order Markov chain assumption built into the simulation was correct. 

In vivo the galactosyl-transferase transfers a galactosyl residue onto the terminal 

mannosyl residue depending on the pattern of substitution of the two preceding 

ones.

2) The differing patterns of substitution of the two crucial neighbouring residues 

affect the galactosyl-transferases of fenugreek, guar and senna differently. The
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different specificities of these three enzymes give rise to different statistical pattern 

of galactosyl substitution along the mannan backbone.

3) The statistical substitution rules for all three species used in the investigation gave 

maximum degrees of substitution which are those seen in the primary 

galactomannan products in vivo.

In guar and fenugreek the man: gal ratio of galactomannans synthesised remains 

constant throughout the stages of seed maturation. In senna however, the man:gal 

ratio increases during maturation from approximately 2.3 to about 3.3 at maturity. 

The question then asked was, could this increase in ratio be due to the increase in 

mannosyltransferase activity relative to galactosyl transferase activity? After charting 

the changing man: gal ratio during maturation it was obvious that the change in the 

ratio of man:gal immediately before the desiccation stage of the seeds maturation was 

too abrupt to be explained by the slow linear increase in activity of the 

mannosyltransferase relative to galactosyltransferase. On examination of the activity 

of a-galactosidase (an enzyme that removes galactose from galactomannan) within the 

senna endosperm, a strong correlation between increased a-galactosidase activity and 

the rapid increase in senna man:gal ratio was established. Fig 4 and 5 (Edwards et al 

1992).
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C. Ratio mannose/galactose3.8 -

3.4 -

2 .6 -

2.2
6020 30 40 50

days after anthesis

Figure 4. The rapid change in man:gal ratio during maturation o f the senna 

endosperm.

£ 0.8
B. Alpha Galactosidase

O 0.6-

®  0.4 -CL

®  0.2 -

n. o.o
3020 40 50 60

Figure 5. A senna a-galactosidase activity that appears at the same time as the 

man.gal ratio increases.

In summary one can state that the process of galactomannan biosynthesis is directed 

by two enzymes, the mannosyltransferase and the galactosyltransferase. In some 

plants the primary product of these enzymes can be modified by a third enzyme, the a- 

galactosidase. The biosynthetic process can only be fully modelled when all three 

enzymes working in concert are considered.
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The Catabolism of galactomannans.

In addition to his pioneering work on galactomannan anabolism, Nadelmann was the 

first person to describe the disappearance of galactomannan (which he describes as 

“mucilages”) after germination.

The next work carried out on galactomannan catabolism was eighty years later. In 

fenugreek, germination is complete in 10 hours (Reid and Bewley, 1979), however the 

amount of galactomannan is stable until 14 hours after the onset of germination at 

which time there is a rapid decrease in its amount until there is none left. When the 

degradation of galactomannan is compared to the breakdown of storage proteins and 

lipids (found in the cotyledons) (Leung et al., 1981) it is obvious that the 

galactomannan breakdown is very rapid. As the galactomannan is broken down in the 

endosperm, sucrose (and transitory starch) levels in the embryo increase in amount 

proportionally (Reid, 1971). Galactose and mannose are not detected within the 

embryo (Reid, 1971; Uebelmann, 1978) which suggests that they must be 

phosphorylated quickly and converted into sucrose and starch. Within the endosperm 

however, there is a low level of galactose, mannose and manno-oligosaccharides. If 

uptake into the embryo and conversion into sucrose and starch is prevented these 

levels quantitatively mirror the amount of galactomannan that is broken down (Reid 

and Meier, 1972).

19



The breakdown of galactomannan into galactose and mannose is accomplished 

through the employment of three enzymes; e^do-p-mannanase, p-mannosidase and an 

a-galactosidase (which in senna may or not be the same a-galactosidase observed in 

the biosynthesis of the galactomannan). The pathway of galactomannan mobilisation, 

derived from fenugreek data but applicable to all endosperm galactomannan utilisation 

is shown in fig 6 .

ENDOSPERM

Aleurone layer Storage "tissue"

Galactomannan

a-galactosidase
/

8-mannanase.

0-mannosidase

Galactose
+

MannOBe —

EMBRYO

transitory
starch

 ► phosphorylated \
 ► derivatives ------- - sucrose

Fig 6. A systematic diagram o f galactomannan mobilisation in the fenugreek seed.

The only differences between the fenugreek, guar and carob seeds galactomannan 

mobilisation are the result of the seeds morphology. The fenugreek and guar seeds 

have an endosperm totally filled with galactomannan; the only living part of which is 

the alurone layer. It is from this that the three catabolic enzymes are produced, the 

result of which is a zone immediately within the alurone layer of galactomannan 

depolymerisation. This zone moves inwards towards the embryo until all the 

galactomannan has been broken down (Reid, 1971; Reid and Meier, 1972). In carob

20



the cells of the endosperm are not entirely filled with galactomannan and so retain a 

living protoplast. On germination the all the cells of the endosperm produce the 

galactomannan hydrolysis enzymes, leading to a small level of galactomannan 

breakdown throughout the endosperm. This however rapidly stops and the majority of 

galactomannan mobilisation occurs from the embryo outwards (Seiler, 1977). This is 

probably the result of the breakdown products inhibiting the hydrolytic enzymes, it is 

only through the embryo that these products are removed from the endosperm.
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The biological importance of galactomannans

De Vries in 1877 came to the conclusion that the “mucilages” found within red clover 

endosperms were used to store water during germination. Nadelmann (1890) however 

disputed this and concluded that the “mucilages” are reserves. Following Nadelmann 

it was taken for granted that the galactomannan “mucilages” are carbohydrate 

reserves, however almost one hundred years later the multifunctionality of the 

endospermic galactomannan was demonstrated.

On comparison of whole fenugreek seeds and those stripped of their endosperms it 

was concluded that there is no reason that 30% of the seeds storage material should 

take the form of the complex hydrophilic galactomannan rather than any other storage 

material such as protein, lipid or starch (Reid and Bewley, 1979). The benefit of 

investing the seeds reserves in galactomannan seemed to be that being hydrophilic it 

absorbs large amounts of water which it then distributes through the endosperm, 

entirely surrounding and buffering the embryo against water loss. The buffering is 

due to the galactomannan giving the endosperm the ability to lose (or gain) water 

without its water potential changing; therefore an embryo is only in contact with the 

water potential of the endosperm and will not lose water in a desiccating environment 

until the endosperm has first lost all of its water content. It is only after germination 

that the galactomannan is mobilised and used as a source of carbohydrate for the 

growing seedling.
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The galactomannan therefore clearly has two functions,

1. The galactomannan maintains the water potential around the embryo, buffering it 

against desiccation.

2. The galactomannan acts as a carbohydrate reserve, utilised by the growing seedling 

after germination.

Role 1 above is particularly important for these plants as they are thought to have 

originated in the semi-arid region of the Eastern Mediterranean (Hegi, 1935)



The commercial importance of galactomannans

Galactomannans are exploited commercially mainly because of three properties they

have;

1. At very low concentrations (1%) galactomannans form highly viscous aqueous 

solutions that are stable within the pH range of 1-10.5 (due to its non-ionic make

up). The viscous galactomannan solutions are also stable to heating and cooling 

and also the effects of the ionic properties of the solution. This property makes 

galactomannans ideal for use in the food industry as a thickener for soups, desserts, 

sauces, mayonnaise, et cetera.

2. Purified galactomannans are able to imbibe water (as they do in germinating seeds), 

forming a thick paste that is impervious to further wetting. This makes 

galactomannans an ideal coating for waterproofing explosives as a plugging agent 

in leaking oil wells and as an additive to increase the wet strength of paper.

3. Small amounts of galactomannan will interact with certain polysaccharides, 

promoting their gel forming abilities. This means that a small amount of 

inexpensive galactomannan can replace a large proportion of expensive agarose or 

carrageenan in a gel mixture, thus producing a cost saving. The addition of 

galactomannan to gels also results in gels with different properties to the standard 

gels; galactomannan mixed with xanthan from Xanthomonas campestris (which on 

its own does not gel at any concentration) produces a gel when the galactomannan 

and xanthan concentrations are as low as 0.5%. This gel has a distinctive mouth- 

feel that is useful in the food industry (Dea et al, 1977; Rocks, 1973).
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The ability of a polysaccharide to promote the formation of a gel (or a highly viscous 

solution) depends on its ability to behave like an intimately packed, structurally 

regular, closely interacting polysaccharide, such as cellulose whilst at the same time 

displaying properties of random coil polysaccharides, where chain-chain interactions 

do not occur. This demands that a gel-forming molecule should have:

1. Inter-chain association areas formed by long structurally- and conformationally- 

regular regions.

2. Conformationally-irregular non-associating regions where chain-solvent 

interactions predominate.

In galactomannans the inter-chain association areas equate with the “smooth” regions 

of unsubstituted mannan which aggregate in a regular, ribbon like conformation. The 

highly substituted “hairy” regions of the galactomannan chains interact with water 

making the network soluble (fig 7) (Dea et al, 1977).

Hairy
chain-solvent 
interaction regionSmooth 

inter-chain 
attraction region

Figure 7. The structure o f a galactomannan gel.
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Investigations were carried out to discover the importance of different degrees of 

block type substitutions of the galactomannan on its ability to form inter-chain self 

associations. Galactomannans from three sources were used:

1. Locust bean gum (from Ceratonia siliqua) with a Man:Gal ratio of 3.5:1 and a 

block structure;

2. Tara gum (from Caesalpinia spinosa) with a Man:Gal ratio of 3:1 and a semi block 

structure;

3. Guar gum (from Cyamopsis tetragonoloba) with a Man Gal ratio of 1.6:1 and little 

if any block-like pattern of substitution.

The results showed that guar gum galactomannan chains were not self-associating, the 

tara gum at 0.75% formed some associations that produced a weak gel that broke 

down on heating to 30°C, the locust bean gum produced a cohesive (though weak) gel 

at concentrations as low as 0.5%. The degree of block structure possessed by a 

galactomannan was therefore proved to determine its ability to form viscous solutions 

and gels through inter-chain self interactions.

The ability of galactomannan to promote the gelling of other polysaccharides is also 

dependent on its ability to present unsubstituted mannan backbone to the 

polysaccharide it is mixed with. McCleary in 1979 showed this by comparing the 

effects of the addition of galactomannan from either Leucaena leucocephala or 

Cyamopsis tetragonoloba to xanthan. Leucaena leucocephala galactomannan-xanthan 

mixtures formed cohesive gels down to concentrations of 0 .1% galactomannan plus

0.1% xanthan. Cyamopsis tetragonoloba galactomannan-xanthan mixtures would not 

gel at any concentration (the only effect that could be obtained was a raising of the 

solutions viscosity). This difference in action of the two galactomannans was not
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caused through different amounts of galactosyl substitution (both were 40% 

substituted) but by the different pattern of substitution. Leucaena leucocephala 

galactomannan has galactosyl residues arrayed only down one side of the mannan 

backbone (assuming an alternating conformation), making galactomannan-xanthan 

interactions possible, whereas Cyamopsis tetragonolobus galactomannan has its 

galactosyl residues randomly distributed around the mannan backbone, thus 

preventing galactomannan-xanthan interactions occurring (fig 8 ).

■Gal

■Gal

■Gal

■Gal

■Gal

■Gal

X GM 
A

Figure 8. The interaction (dotted lines) o f galactomannans (GM) from (A) Leucaena 

leucocephala and (B) Cyamopsis tetragonolobus with xanthan (X).
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The commercial importance of galactomannans with low levels of galactosyl- 

substitution in blocky arrangements makes a working knowledge of the a- 

galactosidase that strips the locust bean and senna nacent galactomannan of many of 

its galactosyl stubs very important. In the future it may be possible to engineer an 

easily grown species, such as guar, to contain the a-galactosidase enzyme found in the 

maturing senna endosperm so that it will express a more valuable, low galactose 

galactomannan.
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Aims

The initial aim of this project was to compare the a-galactosidase involved in the 

biosynthesis of Senna galactomannan with that found in the germination of the Senna 

seeds. The project was designed to answer the question of whether in vivo these two 

enzymes are,

A, Identical,

B, From the same gene but different due to post-translational modifications,

Or C, Different enzymes produced from different genes.

Following on from the initial aim was the intention to obtain a full clone of the 

maturing a-galactosidase gene as this would be important in future attempts to 

engineer a transgenic guar which would then produce the commercially valuable low 

galactose galactomannan.
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Materials and Methods.

Growing conditions of the Senna occidentalis.

The Senna occidentalis were obtained as seeds from the Royal Botanic Gardens, Kew, 

England and were used to build up a plant population from which seeds for the next 

generation were collected. The plants were grown under the conditions: day/night = 

1 lh at 22°C / 13h at 20°C; photon flux rate at table level = 200 jomol m' 2 s'1; mineral 

nutrition was with Phostrogen fertiliser from Phostrogen, Corwen, Clwyd, UK. The 

concentration used was 0.5g I 1 applied continually through capillary matting. Hand 

pollination was required for fertilisation. Anthers were removed from the open 

flowers, cut open and the pollen removed. The pollen was transferred to stamen by 

paintbrush.

Isolation o f a-galactosidase from senna seeds.

a-galactosidase was isolated from maturing senna seeds (35 days after pollination) 

and germinating senna seeds (3 days after imbibition). The endosperms were hand 

dissected from the seeds and 50 were added to 2.5ml of ice cold Vio th strength 

Mcllvaines buffer pH 5.0 (Dawson et al, 1982). The endosperms were ground with 2g 

acid washed sand and incubated with 12.5jil of stock Aspergillus niger endo-(l-4)-|3- 

mannanase at 30°C for 30 minutes. The homogenate was centrifuged at 5,000g for 5 

minutes to remove the sand. A further centrifugation at 20,000g for 20 minutes 

removed cellular debris and the supernatant was stored in 500jnl aliquots at -20°C.
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a-Galactosidase assay.

25(01 of enzyme sample was added to 375jol of lx Mcllvains buffer (pH 5.0) and 

incubated at 30°C for 2 minutes. lOOpl of 50mM p-nitrophenyl-a-D- 

galactosylpyranose (PNP-oc-D-Gal) was added to this mixture and incubated at 30°C 

for a further 15 minutes. The reaction was then stopped by the addition of 0.1M 

Na2CC>3. The absorbance of the released p-nitrophenol was measured at 400nm.

Polyacrylamide Gel Electrophoresis (SDS - PAGE)

SDS-polyacrylamide electrophoresis was carried out using the Neuhoff et. al (1986) 

modifications of the original Laemmli (1970) method.

The following solutions were prepared:

Separating gel buffer: 1.5 M Tris, 0.4% SDS, pH adjusted to 8.7 with conc. HC1. 

Stacking gel buffer: 0.5 M Tris, 0.4% SDS, pH adjusted to 6 .8  with conc. HC1.

Sample buffer: 0.27 M Tris, 10.7% SDS, 27% glycerol, bromophenol blue, pH 

adjusted to 6 .8  with phosphoric acid

Reservoir buffer: 0.125 M Tris, 0.960 M Glycine, 0.5% SDS pH 8.3 when diluted. 

Acrylamide stock solution : 30% Acrylamide, 0.8% Methylenebis-acrylamide. 

Polymerising agent: 15jil TEMED, 21 Ojol 10% freshly made Ammonium persulphate 

Coomassie blue stain: 0.1% Brilliant Blue in acetic acid, methanol and distilled water 

in a ratio of 2:5:5.

31



The gels were prepared by mixing- 

5ml of separating gel buffer,

6.65ml of Acrylamide stock solution

8.35ml dH20

The mix was deaerated.

1 5jll1 of TEMED and 210jll1 10% fresh Ammonium persulphate were added and....

1mm thick separating acrylamide gels ( 1 0  x 1 2  cm) were cast using the gel pouring 

equipment. The gels were rinsed with distilled water and stored in cling film at 4°C 

for no more than 14 days. When required stacking gels (6.1ml dH20 , 1.34ml 

aciylamide stock, 2.5ml stacking buffer, lOjul TEMED and lOOjul ammonium 

persulphate) were poured onto the separating gels and run in reservoir buffer using 

Hoefer Mighty Tall gel apparatus.

Samples were prepared by adding sample buffer/DTT mix (containing 3 parts sample 

buffer to 1 part 1M DTT) in a ratio of 3:1 followed by boiling for 3 min. The boiled 

samples were then injected using a Hamilton syringe into the gel wells and each gel 

ran at a constant current of 25mA. The gel was stopped and the apparatus 

disassembled when the dye front reached the bottom of the gel (this took 

approximately lhour and 30 minutes.

Gels for staining were agitated in Coomassie stain for 30 min then destained with 10% 

acetic acid.
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Western Blotting.

The following solutions were prepared:

CAPS buffer: lOOmM 3 -cyclohexylamino-l-propanesulphonic acid solution pHl 1 

Blocking buffer: 4g Marvel powdered milk in 200ml Phosphate buffered saline 

(lOmM Potassium phosphate, 150mM Sodium chloride, pH 7.4) + 200pl Triton X- 

100.

A SDS-PAGE gel was run as described above. The gel was then blotted onto nitro

cellulose membrane in CAPS buffer for 2 hours at 50V in a Hoefer Transphor 

electrophoresis unit. The blot was then incubated over night at room temperature 

gently shaking in 100ml of blocking buffer. A second incubation was prepared. The 

blotting membrane was placed in 20ml of blocking buffer containing 7.5fil of rabbit 

anti a-galactosidase antibody raised by Unilever against guar germinating a- 

galactosidase (Overbeek et al 1989). An incubation for 2 hours shaking in the dark 

was then carried out. After the second incubation the membrane was washed three 

times (for 10 minutes per wash) with 10ml blocking buffer. The membrane was then 

incubated in 10ml of blocking buffer containing IOjllI of goat anti-rabbit antibody 

(which was coupled to horse-radish peroxidase), in the dark, shaking for one hour. 

The membrane was then washed five times (for ten minutes per time) with 10ml of 

blocking buffer. The bound peroxidase was localised by the addition of a lOmg 

diaminobenzamide (DAB) tablet in 20ml of 0.1M Tris pH 8 with 25j l x 1 3% hydrogen 

peroxide. The reaction was stopped by rinsing the membrane thoroughly with
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distilled water. All DAB-containing solutions and washes were collected for safe 

disposal. The immunoblots were photographed and stored in the dark.

Isoelectric Focusing (IEF)

Isoelectric focusing was carried out using the Hoefer ‘Tall Mighty Small” equipment. 

The following solutions were made up.

Gel Mixture (12ml: 1% agarose, 0.66M sorbitol, 0.5% ampholyte, 0.5% detergent)

IEF grade Agarose (GibcoBrl) 0.12g

Sorbitol (Sigma) 1.44g

Double distilled water 10.36ml

Ampholytes pH 5-8 (Sigma) 0.60ml

Triton X I00 (Sigma) 0.60ml

Cathode Solution: 0.02 M NaOH (Sigma).

Anode Solution: 0.02M Phosphoric Acid (Sigma).

Fixative: 48% ethanol, 10% trichloroacetic acid (Sigma).

Stain Solution: 0.025% Coomassie R250,40% methanol (Sigma).

Destain Solution: 40% methanol, 7% acetic acid (Sigma).

Sample buffer

glycerol (BDH) 0.3ml

ampholytes (Sigma) 0.1ml

bromophenol blue (Sigma) 10|il
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For a single gel 750jj,1 of sample is normally mixed with 250pl of sample buffer. An 

overlay buffer is also prepared, 400|il distilled water, lOOpl sample buffer.

A sheet of Gelbond film (Flowgen instruments), premarked into 1cm vertical strips 

each with subdivided into 30 2mm horizontal rows was adhered by its hydrophobic 

side to a glass gel plate by applying a small amount of water. The apparatus was 

assembled as for SDS-PAGE with in this case an alumina plate replacing the rear 

glass plate. The apparatus was then placed in a 60°C oven to preheat. The gel mixture 

was boiled (without ampholytes) then cooled to 65°C. Ampholytes were prepared by 

mixing pH 3-10 and 5-8 ampholytes from sigma in a ratio of 1:4. The ampholytes 

were then added to the gel mixture, the mixture was injected into the preheated 

apparatus using a 10ml syringe and once filled a comb was added and the gel left to 

solidify in a horizontal position for 1 hour. Once set, the comb was removed and the 

gel was inserted into the cooled running apparatus. The samples were prepared for 

running by the addition of sample buffer (600jil of glycerol, 150^1 of the prepared 

ampholytes and 15|il bromophenol blue). The samples were injected into their wells 

and overlain with a 1:4 dilution of the sample buffer. The upper cathode reservoir 

was then filled with sodium hydroxide solution and the lower anode reservoir was 

filled with phosphoric acid. The gel was run for 30 minutes at 200V and a further 

hour at 600V.

Once the gel had completed its run it was removed (still bound to the gel bond) from 

all the apparatus and cut into the marked strips. The strips were then treated in several 

ways.
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To stain the strips they were soaked for 15min in the fixative solution then washed in 

methanol. The strips of gel on their backing gelbond were then covered in pre

methanol soaked filter paper which was then covered with paper towel and finally a 

weighted glass plate. After 15 minutes the gel/gelbond was removed and dried with a 

hairdryer. The gel/gelbond was then stained in 0.05% Coomassie blue/ 40% 

methanol/ 10% acetic acid for 15 minutes. The stained gel was rinsed in 40% 

methanol/ 1 0 % acetic acid until the background staining had faded and the stained 

bands were obvious. The gel/gelbond was then air-dried.

To measure the pH gradient produced across the gel during the run, the strips of gel 

were separated into thirty 2mm horizontal sections. Each section was then soaked in 

200pl of 1M potassium chloride. After 2 hours incubation at room temperature the 

pH was measured using a pH electrode.

To localise the a-galactosidase activity on the IEF gel the strips of gel were washed 

with Mcllvaines buffer and then separated into thirty 2mm horizontal sections. Each 

section was soaked in 300jnl Mcllvaines buffo*. After soaking the buffer was diluted 

ten times and then used in a PNP-a-D-Gal assay.
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Peptide mapping

In gel peptide digests were carried out to compare the primary structures of the 

maturing and germinating a-galactosidases (Rosenfeld et al 1992, Cleaveland et al 

1977) To perform peptide mapping two stacking gels were poured on to 10% SDS 

gels and Preparative combs (one small well and one very large well) were inserted. 

400pl of total sample buffer was prepared per gel (see the SDS PAGE section). 500jll1 

of each crude protein preparation was added to a total sample buffer aliquot and then 

boiled for 3 minutes. Each 10% gel was loaded with a boiled sample in the large well 

and a 5 pi aliquot of Dalton 7 (molecular weight markers) in the small well. The 

preparative SDS Page’s gels were run at 25mA until the dye fronts had reached the 

bottom of the gels. The gels were removed from their supporting gels plates and 

lightly stained in 0.2% Coomasie brilliant blue, 20% methanol and 0.5% acetic acid 

for 20 minutes. After staining the gels were destained in 30% methanol for 30 

minutes. Once destained the bands on the gels that corresponded to the a- 

galactosidases were excised.

Meanwhile a stacker was poured on an 18% SDS gel and a five well comb inserted. 

While the stacker was polymerising the stock protease was hydrated with deionised 

H2O (according to the manufacturers instructions). The dilution gave a lpg pi"1 

solution in the case of GluC (cuts C-terminally at glutamic acid) and trypsin (cuts C- 

terminally at lysine and arginine) and a 0.1 pg pi' 1 solution in the case of LysC (cuts C- 

terminally at lysine). The working solution of the protease to be used was prepared by 

adding 8 pl of stock protease to 144pl of Cleaveland/EDTA (V4 X stacking gel buffer,
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ImM ethlyenediaminetetraacetic acid (EDTA), Bromophenol blue to colour) and 

144(xl of Cleaveland/EDTA/20%Glycerol.

The 18% SDS gel was loaded. Three strips of each of the a-galactosidases excised 

from the 10% were loaded into wells. The wells were filled with Cleaveland/EDTA 

solution and IOjllI of the working protease solution was layered under this and on top 

of the gel strips in the bottom of the wells. 5pi of Dalton 7 marker were layered into 

the standards lane and the running buffer poured very carefully into the equipment so 

as not to disturb the layerings. The gel was run at 25mA until the dye front was 1- 

2mm into the separating gel. The power was then turned off and the gel incubated for 

1 hour. After the incubation the running was resumed until the dye front was 1 cm 

from the bottom of the gel. The gel was removed from the glass supports and either 

coomasie stained (as previously described) or blotted onto Problot membrane for 

peptide sequencing.

Blotting was carried out by initially wetting the Problot membrane with HPLC grade 

methanol for 5 seconds, then both the membrane and gel was soaked in CAPS buffer 

for 1 0  seconds before the blotting apparatus was assembled and run in the same 

manner as the previously described western blots.

After blotting the membrane was removed from the apparatus and stained by swirling 

it in in 0.1% Coomasie Brilliant Blue, 40% HPLC methanol and 1% acetic acid for 1 

minute. Excess stain was removed by washing the membrane in 50% HPLC methanol 

which was it’s self removed by washing in deionised H2O. The membrane was



allowed to air dry, during which time the protein bands became visible and was then 

packaged and sent to Unilever for N-terminus amino acid sequencing.
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mRNA Purification methods.

All solutions other than Sigma molecular biology chemicals were diethyl 

pyrocarbonate (DEPC) treated to remove any potentially contaminating RNAses.

The senna seeds (maturing or germinating) were dissected and the endosperms (or 

endosperms + testas) were frozen in liquid nitrogen. The frozen tissue was then 

ground to a flour in a ice cold mortar and pestle. The flour was used immediately in 

RNA purification methods.

Method 1.

unmodified from Lopez-Gomez and Gomez-Lim (1992)

Solutions:

Lysis buffer: 150mM Tris Borate pH 7.5, 2% SDS, 50mM EDTA, 1% freshly added 

Mercaptoethanol. Sigma Molecular Biology

Molecular biology grade ethanol. Sigma Molecular Biology

5M potassium acetate. Sigma Molecular Biology

Chloroform/isoamyl alcohol (IAA) (ratio 24:1) Sigma Molecular Biology 

12M lithium chloride Sigma Molecular Biology

To 40 endosperms worth of frozen tissue flour, 5ml of lysis buffer, 1.25ml of ethanol 

and 0.55ml of potassium acetate were added. The mix was then vortexed for 1 

minute. 6 .8ml of chloroform/IAA was added and then vortexed for a further minute. 

The tube was then centrifuged at 4000rpm for 10 minutes at 4°C. To the upper phase
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of the tube an equal volume of phenol/chloroform/IAA was added (ratio 25:24:1) and 

the tube was vortexed for 1 minute then spun at 4000rpm, 4°C for 10 minutes. To the 

resulting upper phase an equal volume of chloroform/IAA was added, vortexed again 

for 1 minute and spun again as before. To the final upper phase V3 rd of a volume of 

lithium chloride was added, mixed and incubated at -20°C overnight.

The next day the mixture was decanted into microcentrifuge tubes and centrifuged at 

20,000g, 4°C for 90 minutes. The pellets formed were washed with ice cold 70% 

ethanol and respun at the top speed in a bench centrifuge for 20 minutes. The pellets 

in the microcentrifuge tubes were pooled in one tube and respun as before. The 

supernatant was removed and the pellet dried for one hour. The RNA pellet was 

resuspended in DEPC H2O; the concentration measured spectrophotometrically and 

then stored at -70°C

Qiagen kit preparation of RNA

All solutions used were provided in the Qiagen kit.

60mg of endosperm flour was added to the Qiagen provided lysis buffer (either buffer 

RLT or RLC). The mixes were vortexed for 2 minutes. The lysed solutions were 

centrifuged (for 2 minutes) through Qiagen shredder columns. 225pl of ethanol was 

added and mixed. The samples were spun through Qiagen RNeasy spin column. The 

liquid flow through was discarded and the RNeasy spin columns were washed with 

700jlx1 of RW1 solution. The flow through was again discarded and the columns 

washed twice with 500jal RPE solution, (with the flow through being discarded). The 

RNeasy spin columns were placed in fresh collection tubes and 30pl aliquots of depc 

H2O were added to the tops of the columns. The columns were spun for one minute.
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The RNA flow through was collected and its concentration measured 

spectrophotometrically. The RNA solution was stored at -70°C.

In an attempt to solve to problem of the lysed sample gelling and blocking the spin 

columns two modifications were made to the standard Qiagen preparation:

1. A. After the addition of the 225pl of Ethanol to the RLC and RLT shredded 

samples, the viscous gel was spun through a glass fibre filter to remove the 

precipitate. The liquid and gelatinous flow-through was then taken through the 

rest of the standard Qiagen method until the elution stage at which point the spin 

column was allowed to air dry to remove any traces of remaining ethanol. The 

elution was then carried out in accordance with the Qiagen method.

2. Ethanol was added to the RLC and RLT lysis buffers (to give a 20% solution) in 

the hope of keeping carbohydrates in solution. Again flow-through after the 

addition of the 225pl of ethanol was then taken through the rest of the standard 

Qiagen method until the elution stage at which point the spin column was allowed 

to air dry to remove any traces of remaining ethanol. The elution was again 

carried out in accordance with the Qiagen method.

In order to solve the problem of the Qiagen samples floating out of the wells of 

agarose gels two approaches were taken:

1. Two drops of glycerol were added to each lOpl of RNA solution and 2pi of 

sample buffer. The mix was vortexed, spun down and loaded onto a gel.

2. 100% Ethanol was added to the RNA solutions to give a final concentration of 

70%. The mixes were then incubated at -70°C for 2 hour to allow the RNA to
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precipitate. The RNA was then pelleted by spinning for 20 minutes at top speed in 

a bench-top centrifuge. The supernatant was removed and the pellet was washed 

with ice cold 70% ethanol. After a brief 5 minute spin the wash was removed and 

the pellet was air dried for 1 hour. The pellet was then resuspended in depc H20 , 

mixed with sample buffer and loaded into an agarose gel.

Dynabead extraction o f mRNA from lysed tissue.

The solutions used were those provided by the Dynabead kit and also those of the 

Lopez-Gomez method.

O.lg of tissue flour was added to 1ml of lysis buffer (150mM Tris borate pH 7.5, 2% 

SDS, 50mM EDTA, 1% freshly added mercaptoethanol). 0.25ml of ethanol and 

0.1ml of 5M potassium acetate was then added. The tissue was then homogenised, 

transferred to microcentrifuge tubes and spun for 30 seconds to remove cellular 

debris. 0.25ml of Dynabeads was prepared by removing the buffer in which the beads 

were stored and washing with 1 X lysis/ binding buffer. The washed beads were then 

added to the lysed tissue, mixed and incubated at room temperature for 5 minutes for 

hybridisation to take place. The supernatant was removed and the beads washed with 

3 X 500pi of the kits washing buffer (+LIDS) and then 3 X washing buffer (-LIDS). 

20pl of elution solution was then added to the beads and incubated for 65°C for 2 

minutes. The supernatant containing RNA was frozen and stored.
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Synthesis o f a solid phase Dynabead cDNA library.

The storage supernatant was removed from lOOpl of Dynabeads and they were washed 

once with 50jli1 of 2X binding buffer. Low concentration RNA previously prepared by 

the Lopez-Gomez method was added to an equal volume (120pl) of 2X binding 

buffer, heated to 65°C for 2 minutes and then placed on ice. The RNA/binding buffer 

mix was then added to the prepared Dynabeads and incubated at room temperature for 

5 minutes. After the incubation the supernatant was removed. The Dynabeads were 

washed twice with lOOjul washing buffer (no LIDS) and then washed three times in 

125|xl of IX RT buffer. A reverse transcription mix was made up as follows: 

lOjil 5X 1st strand buffer.

2.5|il 0.1MDTT.

lOjul NTP’s (2.5pl of each)

0.625|il RNAsin 

26.25pl DEPC H20

The RT mix was added to the Dynabeads, mixed and then split into two. One aliquot 

was incubated at 65°C for 3 minutes and then placed on ice and the other aliquot was 

placed directly on ice without the heating step. 1.25{il Molonie murine leukaemia 

virus reverse transcriptase (MMLVRT) was added to each aliquot and they were both 

incubated on ice for 2 hours. After the incubation the RT mixes were removed and 

50(il of elution solution was added to each aliquot before incubating at 95°C for 60 

seconds. The elution solution was discarded and the Dynabeads were washed and 

then stored in TE solution.



Guanadine HC1 method o f RNA preparation

Unmodified from Logemann et al (1987).

0.25g of endosperms were ground in liquid Nitrogen and added to a 15ml falcon tube. 

Guanadine HC1 buffer was added to the tissue flour to give a 15% w/v mixture. The 

mix was vortexed, split into 2  microcentrifuge tubes and centrifuged at top speed in a 

bench-top centrifuge in a cold room (4°C). The supernatant was removed and added 

to an equal volume of phenol/chloroform (1:1 ratio) and vortexed. This mix was spun 

at top speed at 4°C for 45 minutes and the upper phase was placed into fresh 

microcentrifuge tubes. A 0.7 volume aliquot of cold ethanol and a 0.2 volume aliquot 

of 1M acetic acid were added followed by mixing and incubating at -70°C for 1 hour. 

After the incubation the microcentrifuge tubes were spun at top speed at 4°C for 10 

minutes and the supernatant was discarded. 1ml of 3M sodium acetate pH5.3 was 

added and each microcentrifuge tube was vortexed until the pellets were fragmented. 

The tubes were spun at top speed for 10 minutes and the supernatant was discarded. 

The pellets were then washed three times in 0.5ml of 3M NaAc pH5.3 and then once 

in 70% cold ethanol. The ethanol and the soft white polysaccharide pellets were 

removed leaving the hard RNA pellets in the microcentrifuge tubes, which were 

allowed to air dry. The pellets were then resuspended in 20pl of DEPC H2O.
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DNAse Treatment o f RNA

To ensure the RNA prepared was free from contaminating DNA, the RNA was treated 

with DNAsel, an enzyme which degrades DNA.

Solutions:

500mM Tris pH 7.5 Sigma Molecular Biology

1M Magnesium chloride Sigma Molecular Biology

DNAse 1 (232u/|il) Gibco BRL

Phenol/chloroform/IAA (25:24:1) Sigma Molecular Biology

3M Sodium acetate pH 4.8 Sigma Molecular Biology

70% ethanol Sigma HPLC grade

To 5jLLg of RNA, 10pl of Tris pH7.5, 1ml MgCl, and ljil DNAsel were added, the 

volume made up to 100ml with DEPC H2O and incubated at 37°C for 15 minutes. 

One volume of phenol/chloroform/IAA pH 4.5 was added, the tube vortexed for 1 

minute and spun for 2 minutes in a bench centrifuge. The upper aqueous phase was 

isolated and one volume of chloroform/ IAA was added, vortexed and spun. The top 

phase was then ethanol-precipitated on ice for 5 minutes with 0.1 volumes 3M sodium 

acetate pH4.8 and 2.5 volumes ethanol then spun for 10 minutes. The resulting very 

small pellet was washed with cold 70% ethanol, dried in air under pierced parafilm for 

30 minutes then dissolved in 10pl DEPC H2O ready for use in the RT-PCR reaction.
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Preparation o f first Strand cDNA for use in 3 ’ RACE RT-PCR

The first strand of cDNA for use in 3’ Rapid amplification of cDNA ends PCR 

(RACE-PCR Frohman et al 1988) was produced by annealing the oligo-dT-RiRoT7 

primer to the polyA tails of the mRNA present (primer sequences are shown in the 

appendix). Reverse transcription was then carried out using MMLV reverse 

transcriptase as described below. Figure 9 shows this procedure graphically.

Figure 9. The arrangement o f RNA and Primer and the direction o f DNA 

polymerisation during reverse transcription for 3 ’RACE.

Solutions:

mRNA

'AAAAAAA
TTTTnT7RlR0

T7R1R0 primer
/

MMLVRT. Gibco BRL

5X 1st strand buffer Gibco BRL

Sterile 1 X TE buffer Sigma molecular biology.

0.1MDTT Sigma

dNTP’s (at lOmM concentration) Sigma molecular biology

RNasin Gibco BRL

DTn RiRo primer (5pmol/fil)
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The lOjul RNA sample was incubated at 65°C for 3 minutes then placed on ice. Mean 

while the reverse transcription reaction mixture was prepared ( 4 jll1 5X 1st strand 

buffer, lfil 0.1M DTT, 4pl dNTP’s (4X lpl of each dNTP), 0 .2 5 jli1 RNasin, 0 .5 jll1 

R1R0 primer). The RT mix was then added to the RNA and l(il (200 units) of MMLV 

reverse transcriptase was added. After mixing, the reaction was incubated at 41°C for 

2 hours. The volume was then made up to 5 0 0 jli1 with IX TE buffer and stored at - 

20°C.

Clean up o f the first strand o f cDNA.

Promega wizard method.

The Promega kit was used for this proceedure provided the solutions and equipment 

used.

A syringe barrel was attached to a mini-column. 1ml of the promega resin was added 

to the 500|il of first strand cDNA and mixed by inverting. The resin/first strand mix 

was added to the syringe barrel and pushed through using the plunger. The syringe 

was detached from the column, the plunger was removed and the barrel reattaced to 

the column before 2ml of 80% isopropanol was added to it. The isopropanol was 

pushed through the column using the plunger. The column was detached from the 

syringe, placed in an microcentrifuge tube and spun for 20 seconds to dry. To make 

sure the column was dry it was then placed under pierced parafilm for 15 minutes. 

When dry the column was placed in a new ependorf and 50jnl of 70°C dt^O was 

added. After a 1 minute wait the column was centrifuged for 20 seconds and the flow 

through collected and used in PCR or stored at -20°C.
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RNA Degradation method.

V25 th of a volume of 0.5M EDTA was added to the cDNA in TE buffer and then V2 a 

volume of 150mM NaOH was added. The reaction was mixed and incubated at 65°C 

for 1 hour to allow the RNA degradation to reach completion. The reaction was 

neutralised by the addition of a V3 rd of a volume of 1M Tris HC1 pH8  and a V3 rd of a 

volume of 1M HC1. The final cDNA solution was diluted 10 times by the addition of 

9 volumes of IX TE solution.

Polymerase chain reactions (PCR).

Standard PCR (Saiki et al 1985) and RACE-PCR was performed to isolate the a- 

galactosidase cDNA. The materials used were provided by Sigma (PCR buffer, 

dNTP’s,) and Gibco (Taq polymerase, T7 primer). Gene specific primers were custom 

synthesised by Unilever and are described in the appendix.

The PCR’s carried out utilised either a gene specific primer (obtained from a “back 

translation” of the obtained amino acid sequences) and the T7 primer (which would 

hybridise to a site on the oligo-dT-RiRoT? that had been incorporated into the first 

stand cDNA) or two gene specific primers. The arrangements of primers and cDNA 

are shown in figure 10
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1st strand cDNA
dT17-RlR0 primer 

/  51 
<TTTTT)-T7-R1RD

PI primer 3' gpne specific antisense 7 7

for 5 end o f gene 3 « gene-specific sense

Figure 10. The arrangement o f gene specific primers (PI, 3 ’GSP antisense and 

3 ’GSP sense) and T7 in standard or 3 ’ RACE PCRs.

A PCR cocktail was made up:

10X PCR buffer 5 jli1

dNTPs (ljil of each at lOmM) 4pl

T7 primer (5pmol/|ul) 5jul

Gene specific primer (5pmol/|il) 5jul

Template (from RT reaction) lOpl

MilliQ 20.5|il

Total = 49.5pl

The template was denatured by incubating the cocktail (in the PCR Block) at 95 °C for 

7 minutes then cooling to 75°C. 2.5 units of Taq (0.5jnl) was then added to the 

reaction mixture, mixed and spun down. 5 0 jll1 of mineral oil was layered on the 

reaction mix to prevent evaporation and the reaction was thermocycled:-
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1 cycle of:-

50°C (annealing) 2 minutes

72°C (cDNA extension) 10 minutes

then 30 cycles of:-

94°C (melting of strands) 1 minute

50°C 1 minute

72°C 1.5 minutes

then 1 cycle of:- 

72°C 15 minutes

After the reaction was complete the PCR product was stored frozen (-20°C) after a 5pi 

aliquot was removed for running on an agarose gel.

Agarose gels.

1% Agarose gels were prepared to run samples of the PCR products. 200mg of 

agarose was added to 20ml lxTBE buffer (to give 1% w/v) and melted in the 

microwave for 2 minutes on medium high setting then poured into a 50ml Falcon 

tube, ljil ethidium bromide was added into the Falcon tube and gently inverted. The 

2 0 ml was then poured into the casting/running apparatus (assembled with a comb in 

place) and the gels left to set in the fume cupboard before being wrapped in cling film 

and stored in the fridge. If the gel was to be run for screening purposes then 5pl of the 

PCR products (with 1 |il sample buffer) were run on the gel, if the purpose of the gel
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was to enable bands to be cut out to used further then 35(xl samples were loaded. The 

standards used in the gels were lkb ladder and Hindlll standard. Gels were run at a 

constant voltage of 100V each for approximately 35 minutes in a running buffer of IX 

TBE with 0.5% v/v ethidium bromide. After the run the gel was photographed on a 

transillumiator and any bands to be kept were excised using a scalpel.

Production o f competent cells.

Solutions:

L-Broth (5g Luria broth base (Gibco) in 200ml of deionised H2O, then autoclaved). 

L-broth with supplements (5g Luria broth base (Gibco), 0.4g Maltose, 0.5g 

MgS0 4 .7 H2 0  (Sigma) in 200ml of deionised H2O, then autoclaved).

L-Agar (7.4g Luria agar (Gibco) in 200ml of deionised H2O, then autoclaved).

0.1M MgCb (Sigma molecular biology grade).

0.1M CaCl2 (Sigma molecular biology grade).

L-Agar plates were streaked with stock cells and were incubated at 37°C overnight. 

After the cells have grown into colonies, one was picked and grown up in 5ml of L- 

broth + supplements overnight at 37°C shaking at 200rpm in an orbital incubator. 

50ml of L-broth was inoculated with 0.5ml of the overnight culture and incubated at 

37°C at 200rpm until the OD550 = 0.5. The cells were then spun down at 4,000 rpm 

for 5 minutes and the resuspended in 50ml of ice cold 0.1M MgCl2. The cells were 

again spun down at 4,000rpm for 5 minutes and then resuspended in ice cold 0.1M 

CaCl2 and incubated on ice for 30 minutes. The cells were spun for a final time at 

4,000rpm for 5 minutes and resuspended in 5ml 0.1M CaCL 15% glycerol before 

being split into 50jil aliquots and frozen at -70°C.
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Ligations and transformations.

The bands on agarose gels corresponding to the PCR products to be cloned were 

excised and stored at -20°C. When required the bands were thawed and spun down. 

Novogen Cloning.

A, ligation.

A reaction mix was prepared:- 

T vector ljLil

T4 DNAligase 3pl

Ligation buffer 2|il

PCR product from gel 4|il

The reaction mixture was incubated at room temperature overnight.

B, transformation.

2 pl of the ligation mixture from the previous day was added to 2 0 pl of freshly thawed

Novablue competent cells, mixed and incubated on ice for 30 minutes. The cells were

heat-shocked at 42°C for 40 seconds and then returned to ice for 2 minutes. 80pl of

SOC buffer was added to the competent cells and they were then incubated at 37°C

for 1 hour in an orbital shaker. 50|a,l aliquots of cells were spread on L. agar plates

containing:-

per 200ml L. Agar

IPTG (0.5M) 200|il

X-gal (80fig/ml) 40jnl
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Ampicillin (50pg/ml) 250jil 

Tetracycline (50jig/ml)240jil

The plates were allowed to dry and were incubated at 37°C overnight. 

pBluescript Blunt ended Cloning.

Blunt ended cloning was based on the Stratagene pCR-script SK(+) cloning method. 

pBluescript vector was prepared for blunt-ended ligations by an initial restriction 

digest

ion Stock pBluescript

2pi One-Phor-All buffer or React-4 buffer Gibco BRL

2pl SMA1 Gibco BRL

6 jnl MilliQ

The reaction mixture was incubated over-night at 37°C. The product of the digestion 

was run on an agarose gel and excised. The gel slice was cleaned up using the hybaid 

PCR clean up kit (as described below) as used in the ligation reactions.

PCR products were also excised from gels then immediately cleaned-up using the 

Hybaid PCR clean-up kit.

A, Hybaid PCR clean-up.

The bands of gel were placed in a spin column (no more than 300mg/column) and 

400pl of resuspended binding buffer was added. The column was incubated at 55°C 

for 5 minutes and flicked to mix. The column was spun for 30 seconds and the flow

through discarded. 2X washes of 500pl wash solution were added to the spin column
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and each spun for 50 seconds, the flow-through again being discarded. The column 

was spun for 1 minute to dry it and then placed in a new collection microcentrifuge 

tube. 25|il of elution solution was added to the column, it was flicked to mix and then 

spun down for 30 seconds. The PCR product was collected in the flow-through.

B, Ligation.

The ligation was set up using the following mix:- 

4 jll1 PCR product from hybaid clean-up. 

ljLil one-phor-all buffer. 

lplrATP.

3pl ligase.

lpl SMA1 (to open up self-ligated pBluescript). 

l|il pBluescript from clean-up.

Also set up were a positive control (with no SMA1 to give self ligated bluescripts) and 

a negative control (with no PCR product).

The ligations were incubated at room temperature overnight.

C, Transformations.

Each transformation mix consisted of 20jul of competent XL 1-Blue and 2jil ligation 

mix from the previous day. The mix was incubated on ice for 30 minutes, heat 

shocked at 42°C for 50 seconds and returned to ice for 2 minutes. 80 pi SOC medium 

(2.0% tryptone, 0.5% yeast extract, lO.OmM NaCl, 2.5mM KC1, lO.OmM MgCk, 

20.0mM glucose) was added and the transformation mix was incubated shaking at 

37°C for 1 hour. The transformation mix was spread on Ampicillin plates and grown 

up at 37°C overnight.

55

Gibco BRL 

Gibco BRL 

Gibco BRL 

Gibco BRL



Invitrogen Cloning. 

A, Ligation.

As before the PCR products were excised from gels and were immediately cleaned-up 

using the Hybaid PCR clean-up kit.

The PCR product was immediately used in the ligation reaction after adjusting its 

concentration so that 1 jllI contained X ng of PCR calculated using the formula:

y  _ size of product in bps x 50 (the mass of 1 base pair in ng) /
/V ector size in bps

The ligation mix was set up as follows:

1 OX ligation buffer 1 pi

PCR II vector 2 pi

Ligase lpl

MilliQ 5pl

PCR product lpl

The ligation was incubated at 14°C overnight.

If the PCR product was more than two days old before the T/A ligation and 

transformation reaction was carried out then it was important to ensure that the 

Adenosine overhangs were in place. This was carried out by mixing the original PCR 

reaction mix with 0.5pl fresh Taq and lpl lOmM dATP. The reaction was incubated 

at 72°C for 10 minutes and then loaded onto an agarose gel and run and cleaned up as 

before.
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B, Transformation.

5 0 jul1 aliquots Invitrogen “one shot cells” (INVotF’) were thawed on ice. 2 jj1 of 0.5M 

P-mercaptoethanol was added and stirred using a pipette tip (INVcxF’ cells should not 

be vortexed). The ligation mix from the previous day was pulsed down (briefly 

centrifuged) and 2|Lil added to the one shot cells. After stirring the cells were 

incubated on ice for 30 minutes. The cells were then heat-shocked for 30 seconds at 

42°C and then placed on ice for 2 minutes. 450jul of SOC medium was added to the 

cells and they were incubated horizontally at 37°C for 1 hour at 200rpm in an orbital 

shaker. After the incubation aliquots of 50jil and 200pl of cells were spread on AMP- 

XGAL plates (200ml of L-Agar had 250pl Ampicillin (40pg/|il) and 64jul XGAL 

(250|ig/pl) added). Once the plates had dried they were incubated at 37°C overnight.
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Promega Wizard Miniprep o f plasmid DNA.

For each miniprep a colony was picked from the transformation plates. The colony 

was grown up shaking in 5ml of LB media containing 6 .2 5 jli1 of Ampicillin (at 

40jLig/jLil) at 37°C overnight. 5ml of the bacterial culture was spun down at 5,000g for 

5 minutes, the supernatant was poured off and the tubes were blotted upside-down on 

a paper towel. The bacterial cells were resuspended by vortexing the pellet in 250jil 

of Wizard Plus-SV cell resuspension solution and then transferred into an 

microcentrifuge tube. 250(0,1 of Wizard Plus-SV cell lysis solution was added to each 

miniprep and the microcentrifuge tubes were mixed by inverting four times (to 

prevent shearing of chromosomal DNA). The cells were left to lyse for no more than 

5 minutes before 10|ol of alkaline protease solution was added. The cells were then 

incubated for 5 minutes. 350|il of Wizard Plus-SV neutralisation solution was added 

to each microcentrifuge tube and mixed by four inversions. The lysed cells were then 

spun at top speed in a bench-top centrifuge for 10 minutes. The cleared lysate was 

transferred to the Wizard Plus-SV miniprep spin column by decanting (avoiding 

transfering any of the white genomic precipitate). The spin column was then 

centrifuged at top speed for 1 minute. The flow through was discarded. 750pl of 

Wizard Plus-SV column wash solution was added and spun through the spin column 

as before. The flow through was discarded and a second wash of 2 5 0 jjl1 of column 

wash solution was performed. The spin column was transferred to a new, sterile 

microcentrifuge tube and the plasmid DNA was eluted from the column by the
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addition of lOOjal of nuclease-free water and a 1 minute, top speed centrifugation. The 

DNA was stored at -20°C.

Hybaid Miniprep o f plasmid DNA.

For each miniprep a colony was picked from the transformation plates. The colony 

was grown up shaking in 3ml of LB media containing 3.75jil of ampicillin (at 

40jLtg/jnl) at 37°C overnight. 1.5ml of the bacterial culture was then spun down for 30 

seconds and the media was poured off. The pellet of bacterial cells was resuspended 

in 50pl of Hybaid pre-lysis buffer. Lysis was carried out by the addition of 100|il of 

the supplied lysis solution followed by pipetting up and down until the cell suspension 

became clear and viscous. 75|il of neutralising solution was then added and the mix 

was mixed by vortexing. The resulting precipitate was removed by centrifuging for 2 

minutes and transferring the supernatant to a Hybaid spin filter. The supplied binding 

buffer was shaken to resuspend the silica gel matrix and 2 5 0 jll1 was added to the spin 

filter. This was mixed with the product of the cell lysis (already in the filter) by 

pipetting up and down. The spin filter was spun for 1 minute to collect the liquid in 

the bottom of the vial. 3 5 0 jll1 of wash solution was added to the spin filter and spun 

for 1 minute. The collection vial was emptied and the spin filter spun again for 1 

minute to dry it. The spin filter was then transferred into a new collection vial, 5 0 jli1 

of sterile MilliQ was added and the spinfilter vortexed briefly. The filter was spun for 

30 seconds. An aliquot of the DNA collected in the collection vial was restriction 

digested and run on an agarose gel; the rest was stored at -20°C.
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Restriction Digests.

Restriction digests were used to excise the inserts from the isolated ligated plasmids 

before running the ligations on agarose gels. The digests were set up as follows:

3jnl minipreped plamid.

IjlxI one-phor-all buffer

lpl of each restriction enzyme required for insert excision (consultation of the plasmid 

map was required at this point).

Xpl of sterile MilliQ to give lOpl total volume.

The reactions were incubated for 2 hours at 37°C.

Manual Sequencing using the Pharmacia kit.

Preparation of the apparatus.

The sequencing gel pouring apparatus (anachem) was cooled at 4°C for 30 minutes. 

100ml of Easigel (Scotlab), 500jxl of 10% freshly made ammonium persulphate and 

100 pi of TEMED were mixed and quickly poured into the gel apparatus. After the 

gel had been allowed to polymerise for 1 hour excess gel material was removed from 

its ends, combs were positioned and it was placed in the running apparatus with 

exposed gel temporarily covered with Clingfilm.
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Preparation of the template.

The template to be sequenced was prepared next, lpl of it was diluted in 99|il of 

deionised H2O and its absorbance at 260nm was measured. From this information the 

concentration of the template can be calculated (A260 X 50 = pg ml'1). The template 

was then diluted with deionised H2O to produce a 32pl solution containing 2pg of 

template.

Annealing of the primer to the double stranded template.

The 32pl of template was denatured by incubating with 8p! of 2M NaOH at room 

temperature for 20 minutes. After the incubation 7pl of 3M sodium acetate (pH4.8), 

4pl of distilled water and 120pl 100% ethanol were added. The mix was precipitated 

at -70°C for 1 hour. The precipitated denatured template was spun down by 

centrifuging at top speed on a bench-top centrifuge for 30 minutes. The supernatant 

was removed and the pellet washed gently with ice-cold 70% ethanol. After a further 

spin of 1 0  minutes the ethanol wash was removed, the pellet dried in a desicator under 

vacuum for 1 0  minutes and then resuspended in lOpl of distilled water. 2 pl of the 

desired primer (at a concentration of 5pmol pi"1) and 2 pi of annealing buffer was 

added to the lOpl of template and the mix was incubated at 65°C for 5 minutes. The 

mix was then incubated at 37°C for 10 minutes and then placed at room temperature 

for 5 minutes. The annealed primer-template was then used immediately in the 

sequencing reactions.
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Sequencing reactions.

Into each of four microcentrifuge tubes (marked A,C,G and T) 2.5pl of the 

corresponding “Read Short” mixes were pipetted. The supplied T7 DNA polymerase 

was diluted with it’s dilution buffer. Each template to be sequenced required 0.5jjI of 

polymerase to be diluted with 2pl of buffer. The labelling reactions were then 

performed. The labelling mix was prepared by adding, 3|nl of supplied labelling mix, 

IjliI a-35S dATP and 2jul diluted T7 DNA polymerase To the 14jul of annealed primer- 

template. The reaction was mixed by gentle pipetting and briefly spun down before 

incubating at room temperature for 5 minutes. Meanwhile the four marked microfiige 

tubes were warmed to 37°C in a water bath. After the 5 minute labelling incubation 

was complete 4.5pl of the mix was transferred to each of the warmed “Read 

Short”microfuge tubes, mixed by pipetting and incubated at 37°C for 5 minutes. The 

reaction was stopped by the addition of 5pi of stop solution into each microfuge tube 

followed by a gentle mixing and a quick centrifugation.

Running the gel.

The sequencing reaction were prepared for running on the gel by taking 3 pi aliquots 

from each of the four microfuge tubes (A, C, G and T), heating them to 80°C for 2 

minutes and the immediately loading them onto the sequencing gel. The sequencing 

gel was run at 2000V for 2 to 4 hours. After running the gel was removed from the 

glass plates and dried onto 3M paper. The gel was placed into contact with x-ray film 

and stored in an x-ray cassette whilst the film was exposed (which could take from 

overnight to a week depending on the “freshness” of the a-35S dATP). After exposure 

the x-ray film was developed and the sequence read.
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Genomic DNA preparation.

5.34g of young senna leaves were harvested and placed in an autoclaved foil packet 

which was then plunged into liquid nitrogen. The frozen leaves were ground in a pre

cooled mortar and pestle to a fine powder. The leaf flour was added to 20ml of 

extraction buffer into which 1.2ml of 20% SDS was added, after mixing this was 

incubated at 65°C for 10 minutes. After the incubation 5ml potassium acetate was 

added, the tube was shaken gently and placed on ice for 20 minutes. The tube was 

spun at 5,000 rpm for 20 minutes. The supernatant was poured through an autoclaved 

glass-wool filter. 10ml of isopropanol was added to the supernatant and gently mixed. 

Using a flamed pasteur pipette the precipitated DNA was spooled out and placed into 

a clean tube. 3ml of TE buffer (lOmM TrisHCl pH8 , ImM EDTA)was used to 

dissolve the DNA and 20|il RNase (1 7 2 3 U /jll1 Gibco BRL) was added and incubated 

at 37°C for 30 minutes. After the incubation 0.5ml of phenol and 0.5ml of chloroform 

was added mixed and centrifuged at 5,000rpm for 15 minutes. The upper aqueous 

phase was collected and 3ml chloroform was added mixed and spun as before. The 

upper phase was again collected and 0 .8  volumes of isopropanol and 0 .2  volumes of 

3M sodium acetate were added and gently mixed. The DNA was again spooled out 

with a flamed pasteur pipette. The DNA was washed on the pipette with 1ml 70% 

ethanol. The residual ethanol was squeezed out and air dried. The DNA was then 

dissolved in TE buffer (1ml per 5g of tissue). The DNA was stored frozen at -20°C.
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Southern Blotting.

Southern blotting was carried out to attempt to discover if there was one or more than 

one a-galactosidase gene present in the senna genome. This was performed by 

probing the genome with a highly conserved PCR product (PCR product P1GA1) 

which would localise any a-galactosidase like genes and then probing with a less 

conserved PCR product (PCR product GS1T7) which would only highlight the 

germinating a-galactosidase gene. If only one gene was localised in both probes then 

it would be possible to state that there is only one a-galactosidase like gene in the 

senna genome.

A, Genomic DNA Digest.

Three genomic digestion mix was set up:-

Genomic DNA 20jnl (8 |ig)

One-phor-all buffer 3 pi

High concentration Restriction enzyme (EcoRI, Hindin, BamHI) 3jnl

MilliQ 4pl

The digest was incubated at 37°C for 24 hours.

B, Agarose gel.

A 0.8% Agarose midi size gel was prepared and loaded with all three digests. The gel 

was then run at 20V for 18 hours. After running the gel was photographed on a 

transilluminator.
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C, Blotting

The run agarose gel was placed face down in a tray with 500ml 0.25M HC1 and 

incubated shaking for 15 minutes. The blotting trays and glass support was 

assembled. 3 sheets of Whatman’s 3M paper was placed on the support and wetted 

with freshly made-up 0.4M NaOH (any bubbles were removed). The blotting tray was 

filled with 600ml of the 0.4M NaOH and the agarose was then placed face down on 

the 3M paper (and again any air bubbles were removed). Hybaid nylon N+ membrane 

pre-wetted in sterile deionised H2O was then placed on top of the gel and bubbles 

were removed. The wicks of 3M paper were covered with clingfilm. One sheet of 

3M paper soaked in 0.4M NaOH was placed on the N+ membrane and 2 dry sheets 

were placed on this. A wad of tissues were placed on the 3M paper, a glass plate on 

the wad and a 1kg weight on the glass plate. The southern blotting equipment is 

shown in figure 1 1 .

/
Glass plate 0.4M NaOH solution
Agarose gel
Hybaid N+ filter
Weight
3M paper

Wad of tissues

Figure 11. The arrangement o f equipment in a southern blot.

After assembling the apparatus it was left overnight at room temperature to allow 

transfer to take place.
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The next day a photograph of the gel was taken under U.V. irradiation and compared 

to the gel before blotting so as to assess the efficiency of transfer. The N+ membrane 

was washed in 2X SSC for 2-3 minutes, blotted on 3M paper and stored at -20°C in a 

plastic bag.

Probe preparation.

The probes used in the southern blotting were PCR products previously cloned. 

2 0 0 ng of oligonucleotide was required for the preparation of each probe and so the 

amount of plasmid required to give this amount after restriction digest was calculated 

and then doubled to take into account losses. Standard restriction digests were then 

carried out. When complete the digests were run on an agarose gel, the fragments to 

be used for probing were excised and cleaned up using the Hybaid clean up kit. The

concentration of the probes were measured and adjusted to 2 0 0 ng/1 0 jLil with sterile

deionised H2O.

The probes were labelled using the Ready-To-Go kit (Pharmacia biotec). 20pl of 

deionised H2O was added to each Ready-To-Go tube and left for 5 minutes for the 

Ready-To-Go reactants to dissolve. lOpl of each probe was added to 15jul of 

deionised H2O, boiled for 3 minutes then placed on ice. The probe labelling reactions 

were set up:-

2 0 jli1 of the Ready-To Go solution, (Pharmacia)

25jul boiled DNA solutions, (Sigma)
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5|il 32P-ATP (3000|xCi/mol). (NEN)

The reactions were then incubated at 37°C for 30 minutes. After the incubation IOjliI 

of 0.1 M EDTA was added to each reaction and the labelled probes were cleaned up 

using the hybaid clean-up kit.

Prehybridisation

Prehybridisation buffer was prepared from stock solutions

Stock Solution Amount used Final Concentration

20X SSC Buffer 12ml 6 X

10X SDS 2 ml 0.5%

lMNaH2P04 0 .8ml 0.02M

50X Denhardt’s solution 4ml 5X

Deionised H20 2 0 .8ml

The prehybridisation buffer was heated to 60°C and 0.4ml of boiled sonicated salmon 

sperm DNA was added. Two hybridisation tubes were heated to 55°C and 20ml of 

the hybridisation added to each tube and they were kept at 55°C for 30 minutes. The 

blotted membranes were then warmed and placed, one in each tube (with the blotted 

face pointed inwards). The membranes were then incubated at 55°C for 4 hours.
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Hybridisation.

The prepared probes were boiled for 3 minutes in order to denature them. The probes 

were then placed on ice. The hybridisation tubes were opened and the probe solutions 

were added directly to the prehybridisation buffers (avoiding direct contact with the 

membranes). The hybridisations were incubated at 55°C overnight.

Washing and Imaging.

400ml of wash solution was prepared (2X SSC, 0.1% SDS) and heated to 55°C.

The radioactive hybridisation solution was poured off and 100ml of wash solution was 

added to each tube. The tubes were placed back into the hybridisation oven and 

incubated for 10 minutes. The first wash was poured off and a second wash 

performed. The final wash solution was poured off and the membranes dried on 3M 

paper. The membranes were then placed in saranwrap and placed in an intensifier 

cassette with x-ray film and stored at -70°C until the film had been exposed. The x- 

ray film was developed and imaged.

68



Inverse PCR.

Inverse PCR was carried out using a method based on the work of Ochman et al 1988 

and Ochman et al 1990. Senna genomic DNA was prepared using the previous 

method. The DNA was then digested as described below:- 

25jLil (1 jug) Senna DNA

3jxl IP A buffer

ljil restriction enzyme (TaqI, Mbol or EcoRI)

IjliI deionised H2O

The digest was incubated at 37°C overnight.

After the incubation the digest was heated to 65°C (to inactivate the restriction

enzymes) and then vortexed with an equal volume of phenol/chloroform (1:1). After

centrifugation the DNA containing aqueous phase was removed and vortexed with an 

equal volume of chloroform. After another centrifugation the aqueous phase was 

mixed with 0.8 volumes of isopropanol and 0.2 volumes of 3M NaAc pH5.2 and 

incubated at -20°C for 1 hour. The sample was centrifuged for 15 minutes at top 

speed in a bench top centrifuge, the supernatant was removed and the pellet washed in 

ice cold 70% ethanol. The wash was removed and the pellet dried. The DNA was 

resuspended in 20pl of deionised H2O.

The digested Genomic DNA was self ligated at 14°C overnight using the mix below.

1 OjliI Senna genomic DNA.

20jj1 5X ligation buffer.

5fi! Ligase.

65jjI Deionised H2O.
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After the ligation reaction the resulting self ligated (circularised) genomic DNA 

fragments were used in standard PCR reactions. The primers used in these reactions 

(GA2 and GS3) were designed to be close to the 5’ UTR by the use of the known 

sequence of the senna a-galactosidase. The primers were designed to point in 

opposite directions, meaning that they would only produce a PCR product from the a- 

galactosidase gene if self ligation had taken place; this is shown in figure 1 2 .

Primers
GS3GA2

Unknown
Genomic
DNA

Self-ligation site

Figure 12 Inverse PCR. The diagram shows the previously obtained a-galactosidase 

sequence (in red), the GA2 and GS3 primer sites and directions and the unsequenced 

genomic DNA (incorporating the 5' UTR upstream from the previously sequenced 

region).
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Single sided PCR.

Single sided PCR was carried out by initially isolating senna genomic DNA as before. 

The DNA was digested using EcoRI, Hindlll and BamHI. pBluescript was digested 

using the same restriction enzymes as the genomic DNA and then all the digests were 

heated to 65°C for 15 minutes to inactivate the restriction enzymes and purified using 

the Hybaid purification kit.

The digested senna genomic DNA was ligated to the pBluescript in a ratio of l|ig 

genomic DNA to l/5|Ug plasmid DNA. The reaction mix used is shown below:- 

0.5|ig Digested genomic DNA.

0.1 pg Digested pBluescript.

6 jul 5X ligation buffer.

1.5pl Ligase.

Deionised H2O purified to bring the final volume to 30pl.

The ligation reactions were carried out at 14°C overnight.

After the ligation standard PCRs were carried out using the plasmid/genomic DNA 

constructs as templates. The primers used in these reactions (T7 and KS on the vector 

and GA1 and GA3 on the a-galactosidase gene) were designed to be close to the 5’ 

UTR and to be used in nested PCRs (thus increasing the stringency). A diagrammatic 

representation of the single sided PCR is shown in figurel3.
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Gene specific primers 

GA3 GA1
Unknown genomic Previously sequenced
DNA sequence \ /  \ /  alpha-galactosidase

^41 pBluescript KS 
p B l u e s c r i p t \  P1*8™*1 DNA

T 7 ^ s .  Jprimers

Figure 13. Single sided PCR. The diagram shows the previously obtained a- 

galactosidase sequence (in red), the unsequenced genomic DNA (incorporating the 5' 

UTR upstream region) and the pBluescript plasmid. Primers GA1 and T7 were used 

for the first round o f  PCR and the products o f  this reaction were used in a second 

round o f  PCR with the primers GA3 and KS.
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5’ Rapid Amplification of cDNA Ends - Polymerase Chain 

Reactions.

5’ RACE-PCR was carried based on the methods Frohman et al 1988.

RNA was isolated from maturing endosperms as before. The RNA was split into two 

aliquots, one was DNase treated and the other was not. The two RNA samples were 

used to produce 1st strand cDNA using either random hexamer primers or an a- 

galactosidase gene specific primer (GA1) using the reaction mix:-

4|il first strand buffer (Gibco BRL)

ljil DTT (Gibco BRL)

4jli1 dNTPs (2.5mM o f  each) (Sigma)

0.25|ui RNasin (Gibco BRL)

0.5j j l1 Primer (hexamer or gene specific) (Gibco BRL or Unilever)

5ng in IOjjI Prepared RNA

The RNA was heated at 65°C for 3 minutes before being added to the rest of the 

reaction mix which was then incubated at 42°C for 2 hours.

The 1st strands were cleaned up using the Hybaid clean-up kit and then poly-A tailed 

using the TdT enzyme using the reaction:-

2 0 pl cDNA first strand.

8 |al Tailing buffer (Gibco BRL)

4|ul ATP (Sigma)

2  pi TdT enzyme (Gibco BRL)

6 pl Deionised H2O.
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J
A 2 strand of cDNA was produced using the oligo-dT-RiRoT7 primer as before. 

PCRs were then carried out using primers Ro and GA1 for the random primed cDNA 

and primers Ro and GA3 for the gene specific primed cDNA the result of this PCR is 

shown in figure 58.
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Results.

The identification o f  the Mr o f  sena-galactosidases.

After the preparation o f a crude extract of enzymes from germinating senna 

endosperms was serially diluted, two SDS PAGE gels were run. The first gel was 

coomassie stained to give an estimate of the amount and relative proportions of  

soluble proteins present in germinating senna seeds.
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Figure 14. The proteins present in germinating senna seeds. As with all photographs 

lanes are numbered from left to right. Lanes 1 and 9 contained Dalton 7 markers, 

lanes 2 and 10 High Dalton markers (Appendix B). Lanes 3-8 contained a series o f  

dilutions (5jul to 30p i per well) o f a crude protein preparation from germinating 

senna seeds.
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Figure 14 shows that there are few soluble proteins present during germination with 

three similarly sized ones being prominent.

The second SDS gel was western blotted as described in the methods section. After 

blotting, the lanes containing the high and low Dalton molecular weight markers were 

cut from the blot. The marker lanes were amido black stained to visualise all the 

protein bands present and the rest of the blot was probed with the anti Guar a- 

galactosidase antibody to locate the a-galactosidase present. The result is shown in 

figure 15
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Figure 15 The localisation o f a-galactosidase on a western blot. Lane 1 contained 

Dalton 7 markers, lane 2 High Dalton markers. Lanes 3-8 contained a series o f  

dilutions (5p i to 30p i per well) o f a crude protein preparation from germinating 

senna seeds. Some o f lane 8 and Lanes 9 and 10 were amido black stained. Lane 9 

contained Dalton 7 and lane 10 contained high Dalton markers.

Figure 15 shows that germinating senna a-galactosidase has an approximate mass of  

40 kDa and is the smallest of the three most prominent proteins found in the 

germinating senna seeds.
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In order to identify which protein in the crude preparation of maturing senna seeds 

corresponded to the a-galactosidase activity found there, a further western blot was 

carried out. An SDS PAGE gel was run containing dilutions o f both the crude 

maturing and germinating a-galactosidase. This gel was blotted and probed with anti- 

Guar a-galactosidase as before. The result of this blot is shown in figure 16

Figure 16 A western blot showing the distinction in size o f  the two forms o f  a- 

galactosidase. Lane 1 contains 20fd o f maturing a-galactosidase, lane 2 lOjLd o f  

germinating a-galactosidase, lane 3 30fll o f maturing a-galactosidase and lane 4 

contains 30fjl o f  germinating a-galactosidase.

1 2  3 4
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The maturing a-galactosidase is obviously less mobile through the gel than the 

germinating enzyme indicating that it has a greater Mr, however an accurate 

estimation of both Mr’s can not be achieved on a western blot because molecular 

weight markers cannot be observed on the blot. For the final accurate measurement of 

both Mr’s an SDS gel containing both enzyme preparations along with molecular 

weight markers was run and then coomassie blue stained as shown in figure 17

2 0 5 k D a

. . .  . .

.& £av
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6 6 k D a

4 5 k D a  

3  6 k D a

2  9 k D a  
2 4 k D a .

2 0 k D a

Figure 17. A coomassie blue stained SDS PAGE gel that enables an accurate 

estimation o f  the sizes o f the maturing and germinating a-galactosidases to be made. 

Lanes 1 and 2 contain Dalton 7 markers and High Dalton markers respectively. Lanes 

3 and 4 both contain 25/Jl o f different crude maturing preparations. Lanes 5 and 6 

contain 25p i o f  different crude germinating preparations. Lanes 9 and 10 contain 

Dalton 7 markers and High Dalton markers respectively.
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In figure 17 the bands corresponding to the maturing and germinating a- 

galactosidases can clearly be seen in lanes 2 to 6 . By plotting the mobility of the 

molecular weight markers through the gel against the logarithm of their Mr it is 

possible to create the graph showing the linear relationship in figure 18. It is then a 

simple matter of comparing the mobilities of the maturing and germinating a- 

galactosidases to figure 18 to obtain their Mr’s (as shown in Table 4)

♦  Seriesl 
— Linear (Seriesl)

70 -

■g 60 - 
■o
£ 5 0 -

c  40 -

30 -a.
20 - y = -67.331 x + 352.82 

R2 = 0.9924!5 10 -

4.6 4.8 5 5.24.44.24
log Mr of standards

Figure 18. The Relative mobilities o f Dalton 7 and High Dalton Markers plotted 

against the logarithm o f their M r’s.
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Table 4 A table showing the known molecular weights o f the protein standards used to 

construct figure 16 and the molecular weights o f the maturing and germinating Ot- 

galactosidases calculated using figure 18.

PROTEIN
RELATIVE MOBILITY 

(mm)

KNOWN Mr 

(Da)

CALCULATED MR 

(Da)

a-lactalbumin 74 14,000

Trypsin 61 2 0 ,0 0 0

Carbonic Anhydrase 58 29,000

Glyceraldehyde-PDH 46 36,000

Ovalbumin 39 45,000

BSA 25 6 6 ,0 0 0

Phosphorylase B 17 97,000

p-Galactosidase 13 116,000

Germinating a-gal 41 43,000

Maturing a-gal 40 44,000
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The identification of the pi of senna a-galactosidases.

In order to identify the pi’s of both the maturing and the germinating senna a- 

galactosidases isoelectric focusing gels were run. The isoelectric focusing gels were 

run as described in the methods section. The isoelectric focusing gels contained in 

different wells both the maturing and the germinating preparations. After running, the 

IEFs were cut into columns of gel containing the focused proteins of either the 

maturing or germinating preparations. Two of these columns (one maturing and one 

germinating) were cut into 2mm slices and assayed for a-galactosidase activity. A 

second pair of columns were measured for pH. The final gel columns were stained to 

show the locations of all the proteins present. Figure 19 shows the relationship 

produced between the pH of the slices along the gel and the localisation of a- 

galactosidase activity when the maturing protein preparation is run on the IEF.
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Figure 19. The relationship between pH and the localisation o f the maturing a- 

galactosidase activity on an IEF.



Figure 20 shows the pH of gel slices and the localisation of a-galactosidase activity

produced when the germinating a-galactosidase is run on the IEF gel.
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Figure 20. The relationship between pH  and the localisation o f the germinating a- 

galactosidase activity on an IEF.

Using Figures 19 and 20 it is possible to estimate the pi of both the maturing and 

germinating enzymes. These are pH 5.1 for the maturing a-galactosidase and pH 4.9 

for the germinating a-galactosidase.
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Figure 21 shows the stained sections of an IEF gel.

Figure 21. The localisation o f a-galactosidase activity on stained IEF. Lane 1 

contains sigma IEF standards. Lane 2 contains the focused proteins from a maturing 

senna seed preparation. Lanes 3 to 6 have been removedfor pH  and activity analysis. 

Lane 7 contains the focused proteins from a germinating senna seed preparation. 

Using information from the activity assays the bands corresponding to the a- 

galactosidases have been indicated. The maturing a-galactosidase is labelled M  and 

the germinating a-galactosidase is labelled G.
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A  comparison o f  the two a-galactosidases primary peptide 

structure.

In order to compare the maturing and germinating a-galactosidases further, peptide 

mapping was carried out using two different peptidases. In gel digestions were 

performed as described in the methods section and the products were visualised by 

coomassie blue staining. Figure 22 shows a peptide map of both the a-galactosidases 

produced by the GluC peptidase.

6 6 k D a
4 5 k D a  
3  6 k D a  
2  9 k D a  
2 4 k D a -
2  O k D a -

Figure 22. A coomassie stained 18% SDS PAGE showing; in lane 1 Dalton7 markers 

+ 1 strip o f  undigested maturing oc-galactosidase (to act as a reference), in lane 2 a 

GluC peptide digest o f the maturing ct-galactosidase and in lane 3 a GluC peptide 

digest o f  the germinating a-galactosidase.
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Apart from the heavier loading of the germinating a-galactosidase both digests look 

identical. All the bands produced in the GluC digestion of the maturing a- 

galactosidase have corresponding bands produced in the GluC digestion of the 

germinating a-galactosidase. When a different peptidase, LysC was used the same 

result was found. This is shown in figure 23.

6 6 k D a

4 5 k D c L
3  6 k D a -

2  9 k D a  
2 4 k D a ~

2  0 k D a .

■ ■w #  %
i  i ,

1 4 k D a

Figure 23. A coomassie stained 18% SDS PAGE showing; in lane 1 Dalton7 markers 

+ 1 strip o f  undigested maturing a-galactosidase (to act as a reference), in lane 2 a 

LysC peptide digest o f the maturing a-galactosidase and in lane 3 a LysC peptide 

digest o f  the germinating a-galactosidase.

As with the GluC digestion, the LysC digestion of the two a-galactosidases produce 

identical banding patterns.
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To further investigate the similarities of the primary sequence of both the maturing 

and germinating a-galactosidases, peptide sequencing was carried out. As described 

in the methods, peptide digests were prepared and run on SDS PAGE gels. They were 

then blotted onto Problot membranes, stained and sent to Unilever for N terminal 

amino acid sequencing. Unfortunately it was only possible to obtain internal peptide 

sequence from the germinating a-galactosidase, the maturing peptides were in too low 

a concentration to obtain a sequence. Figure 24 shows the peptide sequences obtained 

from the Senna a-galactosidases compared to Guar and Coffee sequences obtained 

from the Swissprot database.
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Maturing senna a-galactosidase N terminus= 

Germinating senna a-galactosidase N terminus= 

Coffee a-galactosidase=

Guar a-galactosidase=

N-Terminalpeptide sequences

LGNGLGNTPPMG*N

NGLGNTPPMG*N

LA. NGLGLTPPMGWN

LAENGLGQTPPMGWN

Maturing senna a-galactosidase= 

Coffee a-galactosidase=

Guar a-galactosidase=

Internal Peptide sequence A

GNGGMTTE * YR * HF

GNGGMTTTEYRSHF

GNGGMTTEEYRSHF

Maturing senna a-galactosidase= 

Coffee a-galactosidase=

Guar a-galactosidase=

Internal peptide sequence B

VIAVNQDSLGVQGKKV* SDA
1111111 ■ 11111 • 11 ■ 

VIAVNQDKLGVQGNKVKTYGI II I I I I I I I I I I ■ I I I • ■
VIAWQDKLGVQGKKVKSTN

Figure 24 A comparison o f peptide sequences from senna, guar and coffee 06- 

galactosidases.

The locations of the sequenced senna peptides can be mapped against the sequences of 

the coffee and guar a-galactosidases to give the estimated locations of the peptides 

along the a-galactosidase primary structure. This map is shown in figure 25
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Senna alpha-gal peptides mapped against the Coffee and Guar sequences

-Coffee alpha-gal amino acid sequence. 
-Guar alpha-gal amino acid sequence.

Figure 25. The locations o f the regions o f coffee and guar homologous to the 

sequenced senna peptides.

It is evident from the N terminal amino acid sequences that the maturing and 

germinating a-galactosidases are very similar, the only difference being an extra 2 

amino acids on the N terminus of the maturing enzyme. The fact that the germinating 

a-galactosidase lacks a residue could be simply due to differential signal sequence 

excision taking place during protein translation.
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The isolation o f  RNA from maturing senna endosperms and 

Polymerase chain reactions.

The initial method used to isolate RNA was that of Lopez-Gomez (1992). 100 34 day 

old maturing endosperms were used along with a positive control of 2.5g of young 

leaf tissue. The endosperm preparation became very viscous and had to be

abandoned. However, the positive leaf control was successful producing large 

amounts of total RNA. as shown in figure 26.

Figure 26. The RNA prepared from young senna leaves using the Lopez-Gomez 

method. Lanes 1 and 8 contain Hindlll standards. Lanes 2, 4 and 6 contain 2pi, 5p i  

and 10p i respectively o f young leaf RNA.
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Further RNA preparations were carried out using four times the amount of lysis buffer 

to endosperms. These preparations, although they became viscous, were not so 

viscous as to prevent RNA being prepared. Figure 27 shows a comparison between 

preparations of 40 maturing endosperms and 1.87g of young leaf tissue.

1 3 5 7 8

Figure 27. The result o f the preparation o f RNA from 40 maturing endosperms 

resuspended in 2 5p i o f depc H20  and the preparation o f RNA from 1.87g  o f  young 

leaves resuspended in 50p i o f depc H20. Lanes land 8 contain Hindlll markers. 

Lane 3 contains 10p i o f endosperm prepared RNA lanes 5 and 7 contains 5p i and 

10p i o f  the leaf prepared RNA

This method was repeated 3 times. However the amount of total RNA prepared was 

always very low, this is shown in Table 5 below.

92



Table 5. The amounts o f total RNA prepared from maturing endosperms using the 

Lopez-Gomez method.

Modified prep 
number.

A260/280 ratio Concentration 
of total RNA

msuT1

Volume of 
RNA prep 

Ul

Yield of RNA 
inpg

1 1.6 0.038 25 0.95
2 1.9 0.055 70 3.9
3 1.7 0.013 25 0.33
4 1.5 0.013 50 0.66

Due to the fact that mRNA constitutes only 5% of the total RNA and the amount of 

RNA needed for RT-RACE-PCR was 6pg it was necessary to use a different method 

to obtain larger quantities of endosperm RNA.

The Qiagen plant RNA preparation kit was the next method used (as described in the 

methods). As in the previous method, difficulties were encountered with this kit 

because the lysed 34 day old maturing endosperm tissue became very viscous. The 

preparation that used the RLC lysis buffer produced a final flow-through of only 3 pi 

rather than 30pl due to the viscosity of the sample in the spin column. The RLT lysed 

sample did however produce a useful amount of flow-through. The amount of RNA 

was measured spectroscopically and is shown in Table 6

Table 6 The volume., concentration and yield o f RNA produced from the Qiagen (RLT) 

preparation o f maturing senna endosperm.

Concentration of 
total RNA jug pi"1

Volume of RNA 
prep

Yield of RNA in

0.06 27 1.62
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The attempt to run a gel containing the Qiagen prepared RNA failed because the 

sample refused to remain in the well, possibly due to the presence of residual ethanol 

in i t

The Qiagen method was repeated with the modifications outlined in the methods 

section. The RNA content was again measured spectroscopically and the result of this 

is shown in Table 7.

Table 7. The A260/280 ratio, volume, concentration and yield o f RNA producedfrom 

the modified Qiagen preparations o f maturing senna endosperm.

Preparation A260/280 ratio Concentration 
of total RNA 

irg p l1

Volume of 
RNA prep

Yield of RNA 
in pg

Ethanol+RLC 1.86 0.025 10.5 0.26
Filtered RLC 1.47 0.045 7.5 0.34
Ethanol+RLT 1.00 0.0050 10.5 0.050
Filtered RLT 1.60 0.0075 4.5 0.034

The attempt to load a gel was again prevented because the samples floated out of the 

wells. Finally, to one set of samples glycerol was added, and to a second set of 

samples ethanol precipitation was carried out, followed by a thorough air drying and 

resuspension. Both methods prevented the samples from floating out of the wells and 

so allowed gels to be run. The gels however showed that there was no RNA present, 

the spectrometer had been measuring a small amount of contaminating DNA.
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Dynabead extractions of messenger-RNA from maturing endosperms and a positive 

control of young senna leaves were performed.

Two preparations of mRNA were made from O.lg of the ground tissue flour of 

maturing endosperms and young leaves. The preparations resulted in the production 

of 15jol of elution from the endosperm preparation and 1 7 jll1 of elution from the 

leaves. 2jnl of the leaf prep, was spectroscopically measured, the result of which it 

shown in Table 8.

Table 8. The A260/280 ratio, volume, concentration and yield o f mRNA producedfrom 

the modified Dynabead preparations o f young senna leaves.

A260/280 ratio Concentration of 
total RNA |ig Jill'1

Volume of RNA 
prep, Hi

Yield of RNA in jug

1.083 0.015 17 0.255

The remaining 15pl of the leaf preparation was mixed with sample buffer and run on 

an agarose gel. The gel is shown below in figure 28.
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6557bps
4361bps
2322bps
2027bps

Figure 28. The product o f the mRNA preparation positive leaf control run on an 

agarose gel. Lane 1 contains 5fll o f Hindlll. Lane 2 contains 15juJ o f leaf mRNA 

preparation.

Figure 28 shows that the mRNA preparation contains a light smear that could be 

mRNA. This being the case RT-3’ RACE PCR was carried out using T7 and primers 

1, 2, 3 and a mix of 2 and 3 (produced from the amino acid sequence of the N- 

Terminus of the a-galactosidase) with an annealing temperature of 50°C as described 

in the methods section.

The PCR products were loaded onto an Agarose gel and run. The results of this PCR 

is shown in figure 29.

23130bps
9416bps
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1 2 3 4 5 6 7

Figure 29. The results o f  the RT-3 ’ RACE PCR . Lane 1 contains H indlll markers. 

Lane 2 contains lkb markers. Lanes 3 to 6 contain the PCR products o f  the reactions 

using prim er T7 with: in lane 3 PI, in lane 4 P2, in lane 5 P3 and in lane 6 P2 and 

P3.

Figure 29 shows that no definite PCR product was produced using any of the primers 

(no bands are visible, only a smear is evident in the PCR products). The same result 

was obtained using an annealing temperature of 55°C with the Dynabead produced 

first strand cDNA.

A further attempt to use Dynabeads to prepare mRNA was made when a solid state 

cDNA library was made using dilute total RNA prepared by the Lopez -Gomez 

method. After the production of the library, four 3’ RACE PCR reactions were 

carried out using either primer 1 and T7 or Primer mix 2+3 and T7 on the heat 

incubated or non-heat incubated Dynabead libraries (see the methods section for 

details). The results of these PCR’s can be seen in figure 30.
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1 2  3 4 5 6 7
Figure 30. The PCR products o f reactions 1-heated (lane 3), 2+3-heated (lane 4), 1- 

nonheated (lane 5) and 2+3-nonheated. The markers shown here are Hindlll (lane 

1), lkb (lane 2) and 0X174 (lane7)

Figure 30 shows that no definite PCR product bands are visible in either of the heated 

cDNA library PCRs, however, smears are present from very high to very low 

molecular weights. The lanes containing the PCR products of the non-heated cDNA 

library are totally empty. The PCR product from the heated cDNA library produced 

with primers 2+3 was “Promega Wizard” cleaned up (as per the methods section) and 

a further round of PCR was carried out on it in an attempt to amplify any faint bands 

that may be contained within the smear. Negative controls (no primers, no Taq and no 

template) were also set up. The result of these reactions are shown in figure 31.

98



1 2 3 4 5 6 7 8

Figure 31. The PCR re-amplification o f the heated cDNA-Dynabead library. Lane 1 

contains Hindlll markers and lane 2 contains lkb markers. Lane 4 contains the re- 

amplified PCR product. Lanes 6, 7 and 8 are negative controls (no primers, no Taq 

and no template respectively).

Figure 31 shows that no distinct PCR product bands were produced in the re

amplification and that the smear is an artefact produced by incorrect priming. This 

result was repeated at higher annealing temperatures.
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The isolation o f RNA from germinating senna endosperms and 

Polymerase chain reactions.

Due to the fact that it had been impossible to obtain useful amounts of RNA from 

maturing endosperms, standard Qiagen preparations using 10 mg of endosperms from 

senna seeds that had germinated for three days were carried out. The preparations 

were not hampered by excessive gelling of the samples and both the RLC and RLT 

lysis buffers produced flow through. The amount of RNA was estimated by 

comparing the fluorescence of an aliquot of the sample with a serial dilution of known 

nucleic acid concentration. The result of the Qiagen preparation is shown in Table 9

Table 9. The volume, concentration and yield o f RNA produced from the standard 

Qiagen preparations o f germinating senna endosperms.

Preparation Concentration of 
total RNA tig til' 1

Volume of RNA 
prep til

Yield of RNA in 
Hg

RLC 0 .0 1 15.5 0.155
RLT 0 .0 1 15 0.15

Although the amount of RNA prepared was again very low, a RT-PCR was attempted 

as before. No PCR product was produced, as can be seen in figure 32.
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1 2 3 4 5 6 7 8

Figure 32. The products o f the PCR using RNA from the Qiagen extraction o f  

germinating senna endosperms. Lanes 1 and 8 contain Hindlll. Lane 2 contains lkb. 

Lane 3 contains the PCR product produced from the RLT produced RNA, lane4 the 

product o f  the RLC produced RNA. Lanes 5, 6 and 7 contains negative controls (no 

Taq, no primers and no template respectively).

Final Qiagen preparations of germinating endosperms were carried out in an attempt 

to isolate the maximum RNA possible. Two preparations were performed, A, with 

15mg of ground senna endosperm flour and B, with 30mg of tissue. The standard 

Qiagen method was used with the exception that the final elution of the RNA solution 

from the spin column was repeated four times with:-l, 30|il DEPC H2O, 2, 30jil 

DEPC H20, 3, 15 |ll DEPC H20, 4, 15 pi DEPC H20. The results of the preparations 

are shown in Table 10.
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Table 10. The, volume, concentration and yield o f RNA produced from the four

elutions o f the Qiagen preparations A and B o f maturing senna endosperm.

Preparation number Concentration of 
total RNA tig jul"1

Volume of RNA 
preparation jil

Yield of RNA in pg

A1 0.015 7 0 .1 1

A2 0 .0 1 0 27 0.27
A3 0.005 16 0.08
A4 0.0025 16 0.04
B1 0.025 7.5 0.19
B2 0.015 25 0.38
B3 0 .0 1 0 2 2 0 .2 2

B4 0.005 17 0.09

Although the concentration of RNA again seems very low, the total yield of RNA was 

2.5jig. The RNA was therefore ethanol precipitated, dried, rehydrated and used in 

RT-PCR as described in the methods section. The result of this PCR is shown in 

figure 33.
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Figure 33. The products o f the PCR using RNA concentrated from the Qiagen 

extraction o f  germinating senna endosperms. Lane 1 contains Hindlll markers. Lane 

2 contains the PCR product produced using primers P 1 and T7, lane 3 contains the 

product o f  P2+3 and T7, lane 4, GS1 and T7 and lane 5 the product o f primers P2+3 

and GAL Lanes 6, 7 and 8 contains negative controls (no Taq, no primers and no 

template respectively).

Again large smears are present in all the experimental lanes and the no primers 

negative control. Something in the RT-PCR must be acting as a non-specific primer. 

Therefore the Qiagen preparation and concentration of RNA was repeated. The 

reverse transcription was repeated and half of this was Promega Wizard cleaned up 

and the other half was run on a gel with the intention of cutting out and cleaning up 

first strand cDNA above 200 bps. The gel run is shown in figure 34.
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Figure 34. The RNA and cDNA produced by a Quiagen preparation using 

germinating endosperms. Lane 1 contains Hindlll and lane 4 contains lkb markers. 

Lane 2 should contain the Qiagen prepared RNA and lane 3 should contain cDNA 

produced from it.

Figure 34 clearly shows that the nucleic acid that had been prepared (and measured) 

by the Qiagen plant RNA preparation kit was not in fact RNA but high molecular 

weight genomic DNA. The Qiagen method was therefore abandoned.

Due to the failure of the Qiagen method a Guanidine HC1 RNA preparation method 

was used with 0.25g of liquid nitrogen ground germinating endosperm tissue flour. 

The procedure was carried out and the resulting pellet was dissolved and the nucleic 

acids present were measured. The result of the Guanidine HC1 preparation was that

no RNA was isolated.
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The Lopez-Gomez method of RNA isolation was returned to, with 150 3 day old 

germinating senna endosperms being ground in liquid Nitrogen and used in the 

modified method. The nucleic acids produced were measured and shown in Table 11.

Table 11. The volume, concentration and yield o f RNA producedfrom the modified 

Lopez-Gomez preparations o f 150 germinating senna endosperms.

Concentration of total 
R N A usul ' 1

Volume of RNA 
preparation pi

Yield of RNA in pg

0.05 2 0 .0 1 .0 0

Table 11 shows that this method has isolated the most RNA so far. The RNA was run 

out on a gel and this is shown in figure 35.
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2322bps
2027bps
4361bps—

564bps—

—2000bps 
— 1500bps
—1000bps

{—500bps

Figure 35. The RNA prepared from germinating senna endosperms using the 

modified Lopez-Gomez method. Lane 1 contains Hindlll markers, lane 2 contains 3/jl 

o f the prepared RNA and lane 3 contains lkb markers.

Figure 35 shows that the RNA preparation did indeed isolate RNA, ribosomal RNA 

bands are visible and so is a smear that may be mRNA. Within the RNA preparation 

is also high molecular weight DNA and polysaccharide can be seen remaining in the 

well of the gel.

First strand cDNA was made using this RNA (as previously described) which was 

then “Promega Wizard” cleaned up. PCR reactions were then set up using primers 

P1+T7, GS1+T7, P1+GA1, no enzyme control (with primers GS1+T7 present), no 

primer control and a no template control (with primers GS1+T7 present). The PCR 

was performed with the annealing temperature set to 50°C. The products of the PCR 

were run out on an agarose gel, this is shown in figure 36.
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4361bps—
2322bps__
2027bps—

564bps—

Figure 36. The products o f the PCR using RNA from the Lopez-Gomez extraction o f  

germinating senna endosperms. Lane 1 contains Hindlll. Lane 2 contains the 

product o f  primer P1+T7, lane 3 the product o f  GS1+T7 and lane 4 the product o f  

P1+GA1. Lane 5 contains a repeat o f GS1+T7.

Figure 36 shows that PCR products were produced in all the experimental reactions 

(and none were produced in the controls). The lanes were analysed to give the sizes of 

the bands present. This analysis is shown in figure 37.
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Figure 37C

m.m

403.0
Figure 37D

Figures 37A, B, C and D show the analysis o f the sizes o f the bands present in the 4 

PCR products. The analysis is based on the mobility o f the PCR products through the 

agarose gel compared to the Hindlll standards.

The largest product of the P1+T7 PCR corresponded to the estimated size of the 

cDNA that would produce the 43kDa a-galactosidase. The products of the GS1 and 

the GA1 primers were also approximately the size expected when a comparison of the 

Senna, Guar and Coffee amino acid sequences was made (figure 25).
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The ligation and transformation of E. coli with germinating oc- 

galactosidase PCR products using Novogen Tvector.

The PCR products were heavily loaded onto an agarose gel, run and the PCR bands 

were excised (at this point it seemed that the GSlT7-repeat PCR product seemed to 

consist of two very similarly sized bands which can be seen in figure 36). The gel 

slices were then cleaned up and ligated into the Novogen T vector as described in the 

methods section. After the overnight incubation of the ligation, transformations were 

set-up and incubated overnight. The results of the ligation/transformation are shown 

below in Table 12.

Table 12. The result o f the transformation ofNovablue colonies with ligated Novogen 

T vectors.

Ligation and transformation. Blue
colonies.

White
colonies.

PCR product P1T7 1 0 0  + 4
PCR product GS1T7 1 0 0  + 2

PCR product P1GA1 1 0 0  + 3
PCR product GS1T7 repeat upper band 1 0 0  + 3
PCR product GS1T7 repeat lower band 1 0 0  + 4
Novogen +ve control. 1 0 0  + 2 0

Novogen -ve control. 1 0 0  + 1

No vector control. 0 0

Ligated vector control. 0 1 0 0  +
The white colonies of the ligated PCR products were picked and incubated in L. Broth 

at 37°C overnight. The cultures were then minipreped (subjected to plasmid isolation) 

using the “Promega Wizard” kit and the resulting plasmids were digested with EcoRl 

and Hindm restriction enzymes (as described in the methods). The resulting 

fragments were run on an agarose gel which is shown in figure 38.
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Figure 38. The digestion o f  the ligated PCR products with EcoRl and Hindlll. Gel A 

shows in lanes 1 and 12 Hindlll markers and in lane 2 lkb markers. Lanes 3-6 

contains the 4 clones produced from the P1T7 PCR product. Lanes 7 and 8 contain 

the products ofGSlT7. Lanes 9-11 contains the products o f P1GA1. Gel B shows in 

lane 1 and 14 Hindlll markers and in lane 2 lkb markers. Lanes 3-5 contain the 

product o f  the clones produced from the GS1T7(repeat)-lower band and lanes 6-9 

contain the product o f  the clones producedfrom the GS1T7(repeat)-upper band. Lane 

10 contains a positive restriction digest control. Lane 11 contains a no digest 

negative control. Lane 12 contains a EcoRl only digestion (a linearisation). Lane 13 

contains a H indlll only digestion (a linearisation).
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Figure 38 shows that apart from gel A lane 3 (P1T7 clone A) none of the digestions of 

the plasmids gave rise to a band of the size of the PCR product that was ligated into 

them. The EcoRl digest gave the same banding pattern as no digest at all.

In an attempt to isolate colonies of the PCR products other than P1T7 three more 

transformation reactions were carried out. The further transformations resulted in the 

production of 44 white colonies. The whites were again picked, grown up in culture, 

minipreped and restriction digested. On running the digests on agarose gels it was 

found that no white colonies contained inserts.
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PCR confirmation o f  the success o f the ligation and the 

transformation o f  novogen T vector with the PCR product o f  

primers PI and T7.

To check that P1T7 clone A did contain the PCR product resulting from the use of 

primers PI and T7 a PCR was carried out using the P1T7-A clone as a template with, 

initially, the primers PI and GA1. The products of this PCR were run on an agarose 

gel and this is shown in figure 39.

2000bps
1500bps
1000bps

500bps

4361bps
2322bps
2027bps

564bps

Figure 39. The result o f the confirmation PCR using primers PI and GAL Lanes 1 

and 4 contain Hindlll markers. Lane 2 contains Ikb. Lane 3 shows the products o f  

the confirmation PCR.
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Figure 39 shows that the confirmation PCR produced many products (probably due to 

non-specific primer binding). However, the brightest PCR product was of the size 

that would be expected if P1T7-A did contain the correct product of the P1T7 PCR. 

A further confirmation was carried out by PCRing the clone using the primers R20 

and U19 which bind to the Novogen T vector adjacent to the multiple cloning site as 

shown diagrammatically in figure 40.

PCR Product 
insert

Primer
R2 0 \

Primer
'V'TJ19

Novogen I  
vector

Figure 40 The binding sites ofR20 and U19 on the Novogen T vector.

The result of the R20 + U19 PCR is shown in figure 41.
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2322bps__
2027bps—

564bps—

Figure 41. .  The result o f  the confirmation PCR using primers R20 and U19. Lanes 1 

and 4 contain H indlll markers. Lane 3 contains lkb. Lane 2 shows the products o f  

the confirmation PCR.

Figure 41 shows that the PCR has produced a range of products. However the 

sharpest and brightest band again corresponds to the size expected from a vector 

containing the P1T7 PCR product



The manual sequencing of PIT7 in the Novogen T vector.

The Novogen vector containing the PCR product was re-transformed into fresh 

Novablue competent cells. The resulting colonies were picked, grown up in culture, 

plasmid prepared and checked by restriction digest to make sure that the new vectors 

gave the same pattern as the original PlT7-Novogen T vector construct.

The new plasmids were prepared for sequencing (as described in the methods section) 

and then sequenced using the primers R20 and U19, located either side of the multiple 

cloning site. The sequencing reactions were run on a polyacrylamide sequencing gel. 

The gel was transferred to 3M paper and placed in a cassette in contact with x-ray 

film. After exposure the film was developed.
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It was discovered that primer U19 gave no sequence data. The sequence obtained 

from the R20 primer was read and was compared to the novogen T vector in order to 

find the multiple cloning site. The comparison showed that the clone P1T7-A did not 

contain a PCR product insert and was missing approximately 800 bases upstream 

from the cloning site. This is shown in figure 42.

Figure 42. The resulting picture o f the PlT7-clone-A after sequencing. The 

sequencing showed that there was no PCR insert and that 800 bases o f the T vector 

was missing.

Area missing 
from clone

insert site
Primer
R20"V

/  Primer
V ^ U 1 9

Novogen T 
vector

PCR Product P1T7-A
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The ligation and transformation of E. coli with germinating a- 

galactosidase PCR products using blunt-ended ligation into 

pBluescript.

XLl Blue cells were removed from the glycerol stock and used in the preparation of 

competent cells. After the production of the cells a test transformation was carried out 

with pBluescript. The result of the test transformation was that many colonies were 

produced confirming that the XLl blue were competent.

pBluescript plasmids were grown up and then digested with Smal using either IPA or 

React-4 buffers as described in the methods section. The linearised pBluescript was 

cleaned up using the Hybaid kit and then ligated with P1GA1 PCR product that had 

been gel purified. Control reactions were also set up. The ligations were then 

transformed into the competent XLl blue cells.

The result of the ligation/transformation was that the transformation reaction worked, 

as shown by the fact that the uncut pBluescript control produced many blue colonies. 

However, the ligation reaction did not work, this was shown that no other reactions 

produced colonies including the positive, self ligation control.
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The ligation and transformation o f invitrogen INVaF’ cells with 

germinating a-galactosidase PCR products using T/A ligation 

into PCR2 vector.

This method initially required the Adenosine overhangs of the PCR products in 

storage to be added back. This was carried out by the method described in the 

methods section. The PCR products were run out on an agarose gel and the bands 

excised and cleaned up using the Hybaid purification kit. The amount of DNA in the 

cleaned samples were measured and adjusted according to Invitrogen ligation method. 

The ligation reactions were set up and incubated overnight. The transformation 

reactions were performed and plated out. The 5 transformations produced 40 white 

colonies. The whites were picked, grown up, minipreped and restriction digested with 

EcoRl. The results of the ligation/transformations are shown in figure 43

4361bps_
2322bps
2027bps

1 2 3 4 3 6 7 8 9 10  11  12 13 14  15  16
Figure 43-A

4361 bps- 
2322bps- 
2027bps

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Figure 43-B
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564bps

Figure 43-C

Figure 43-D

Figure 43. The result o f the Invitrogen cloning method.. Figure 43-A shows in lane 1 

Hindlll markers. In lanes 2 to 10 are the digested plasmids o f the ligated PCR 

product P1T7 and in lanes 11 to 16 are products o f the GS1T7. Figure 43-B shows in 

lane 1 Hindlll markers. In lanes 2 to 8 are further products o f the GS1T7. In lanes 9 

to 16 o f  figure 43-B and in lanes 2 to 5 o f figure 43-C and in lanes 2 to 7 offigure 

43-D are the the digested plasmids o f the ligated PCR product PI GA1.

564bps
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Figures 43 A to D shows that only the clones run in Figure 43-D lanes 2 and 4 contain 

an insert of the same size as the PCR products ligated into them (PCR product 

P1GA1).

Further PCRs were carried out in an attempt to clone the second half of the a- 

galactosidase cDNA (using GS1T7). The products of the PCR were invitrogen 

cloned, picked, grown up, plasmid prepared and digested as before. Figure 44 shows 

the result of this cloning.

Figure 44. The result o f the Invitrogen cloning o f GS1T7. Lane 1 contains Hindlll 

markers. In lanes 2 to 8 are the digested plasmids o f the ligated GS1T7 PCR product.

Figure 44 shows that two clones (in lanes 6 and 7) contain inserts of the expected size.

The clones containing PCR products were used as templates in further to confirm that 

they did contain the correct insert. The result of this suggested that they did.

M i l
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The manual sequencing of the Invitrogen prepared clones.

The plasmids were prepared for sequencing (as described in the methods section) and 

then sequenced using the primers T7 and PI for the P1GA1 clone and primer GS1 for 

the GS1T7 clones. The sequencing reactions were run on a polyacrylamide 

sequencing gel. The gel was transferred to 3M paper and placed in a cassette in 

contact with x-ray film. After exposure the film was developed and the sequences 

read.

P lG A l.

g g g a ac ac g c  c g c c g a tg g g  a tg g a a ta g c  tg g a a c c a c t  t t c a g t g t g a

c a t t a a t g a g  g a g a tg g t tc  g agaaacagc tg a tg c a a tg  g tg tc a a c g g

g t c t t g c a t c  t t t g g g g t a c  g a a ta c g tc a  a t t t a g a t g a  t t g c tg g g c t

g a a c t t a a c c  g a g a c tc ta a  g g g a a a ta tg  g t t c c t a g t g  c t t c a a a a t t

t c c t t c a g g a  a t t a a g g c tc  t g g c tg a t t a  t g t t c a t a g c  a a a g g a t tg a

a g t t t g g g g t  t t a t t c t g a t  g c tg g aa a cc  a a a c a tg c a g  t a a a g c t a tg

c c tg g ta c a c  ta g g a c a tg a  ggaccaa

GS1T7

g c t g g t t t g g  a g g t t tg g g c  a g g tc c tc tg  a g tg a ta a c a  g a g tg g c a g t 

g g tg t t g t g g  a a t a g a a g t t  c a tc a a a a g c  t a c t g t g a c t  g c a t c t t g g t  

c tg a c a ta g g  g c t tg a a a a a  ggaaagg tgg  tc a c tg c a a a  a g a t t t a t g g  

g a g c a c a c ta  c a a a a g c a tc  a g t t tc a g g a  c a a a a t t t c t  g c a g a ta ta g  

a t t c a c a t g c  t t g t a a g a t g  t a t g t t c t g a  c t c c c a a t t a  agg cag acag  

g a a g g tg a tg
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The DNA sequences of the clones were translated into the corresponding amino acid

sequences and then compared to the known sequences of coffee and guar.

The P1GA1 clones amino acid sequence compared to those of Guar and Coffee.

G u ar

C o f f e e  H s H U j E j l
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The GS1T7 clones amino acid sequence compared to those of Guar and Coffee.

S e n n a

G u a r

C o f f e e  G: 

TA,krvjNi^R©IiW

QQ

S g ke« a»  H 4 I  I W I p s

S e n n a

G u a r

C o f f e e iv | a| d  sj

1R

fQ

The amino acid translations of the clones P1GA1 and GS1T7 were compared with the 

sequences of guar and coffee a-galactosidases. The percentage identities were 

calculated and this is shown in Table 13.

Table 13. The percentage identity o f the clones P1GA1 and GS1T7 compared to guar 

and coffee amino acid sequences.

Clone P1GA1 Clone GA1T7

Guar a-galactosidase. 86.5% 77.2%

Coffee a-galactosidase. 79.5% 65.8%
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In order to ascertain the whether clone GA1T7 contained the full 3’ untranslated 

region in was initially necessary to work out the direction of insertion of the GS1T7 

PCR product. The was carried out by PCRing the clone using primers GS1, that 

anneals to the insert and either M l3 or M13(rev) which anneal to the vector adjacent 

to the multiple cloning site. The possible arrangements of the GS1T7 insert and 

primers are shown in figure 45.

GS1T7PCR  
product inserted in 

Primer a. sense direction.

Primer GS1 Primer

Ml 3 M 13

Invitrogen T/A 
vector

i

GS1T7PCR
product inserted in
an antisense direction.

Primer

Prima- i ^ GS1 Primer

M'Sfra ) ' y / * Z  V

Invitrogen T/A 
vector

i

Figure 45A Figure 45B

Figure 45. The arrangements o f vector, PCR insert and primers that would produce a 

product after a PCR reaction. Figure 42A shows that GS1T7 inserted in a sense 

direction will produce a PCR product with primers GS1 and M l 3. Figure 42B shows 

that i f  the GS1T7 was inserted in an antisense direction, primers GS1T7 and M13(rev) 

would produce a PCR product.

The PCR reaction was carried out and the results are shown in figure 46.
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1500bps

1000bps

500bps

Figure 46. The orientation o f clone GS1T7. Lane 1 contains lkb markers. Lane 2 is 

a positive control using GS1T7. Lane 3 shows the results o f the PCR using primers 

GS1 and M l 3. Lane 4 shows the result o f GS1 and M l 3 (rev).

Figure 46 shows that a PCR product is not produced with GS1 and M13(rev) but is 

with GS1 and M l3 therefore by referring to figure 45 it is possible to deduce that the 

GS1T7 clone was inserted in the sense direction. The clones were grown up in shaken 

culture and midipreped using the Invitrogen kit. The success of the midipreps was 

confirmed using restriction digests and running the digested fragments on an agarose 

gel as before. The success of the midipreps in producing more of the GS1T7 clone 

allowed further sequencing reactions (using M l3 primer) to ascertain whether clone 

GS1T7 contained the full 3’ untranslated region. The sequencing of the GS1T7 clone 

produced the sequence shown below.
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G S 1 T 7  s e q u e n c e d  w i t h  M13 p r i m e r :

t a a t t a a a t a a  g a t a g a a a t t  g c c t g a g a t t  t c t a t c a t t a  t t t g t a t t a t  

t g g a g c a t t g  a g a t t t g a g a c  c t t t t g a t t t  c a a t t c a a t a  a t t a t a c c g c  

a a a t g t t t c t  c t - p o l y - a - t a i l . . . . . .

The clone GS1T7 therefore does contain the entire 3’ untranslated region and poly-A- 

tail.
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Southern Blotting.

Southern blotting was carried out to discover whether the Senna genome contains only 

the germinating a-galactosidase gene already isolated or whether a number of a- 

galactosidase like genes are present. Two probes were used in the Southern blotting, 

the GS1T7 probe which is the least conserved and should indicate only the 

germinating a-galactosidase and the P1GS1 probe which is the more conserved and 

should pick out any a-galactosidase like gene.

Genomic Senna DNA was isolated according to methods section and the resulting 

preparation was measured spectrophotometrically. The amount of DNA isolated is 

shown in Table 14.

Table 14. The volume, concentration and yield o f DNA produced from the genomic 

DNA preparations o f 5.34g o f young senna leaves.

Concentration of 
DNA Ug Ml'1

Volume of DNA 
prep jllI

Yield of DNA in 
lig

0.43 1000 430

The DNA was digested and run on two 0.8% agarose gels. These gels are shown in 

figure 47.
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Figure 47. The digested genomic DNA. Gel 1 shows in the first and last lanes 

Hindlll markers, in lane 2 the EcoRI digest, in lane 3 the Hindlll digest and in lane 4 

the BamHI digest. Lane 5 contains a undigested genomic DNA standard. Gel 2 is 

identical apart from containing no standard undigested genomic DNA.

The agarose gels were blotted onto Hybaid N+ membranes. After the blotting the 

agarose gels were re-imaged and it was shown that all the DNA had transferred.

The probes for blotting (the PCR products of P1GA1 and GS1T7) were prepared and 

labelled with 32P as described in the methods section. Both of the blots were probed 

(at the same stringency level) and used to expose film in a x-ray cassette equipped 

with Phosphor intensifying screens. The films were developed and the blot probed 

with the less conserved GS1T7 probe is shown in figure 48. The blot probed with the 

more conserved P1GA1 probe is shown in figure 49.
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Figure 48. The blot o f  the senna genome probed with the GS1T7 probe. Lane 1, 

senna genomic DNA cut with EcoRl; lane 2, senna DNA cut with Hindlll; lane 3, 

senna DNA cut with BamHI, lane 4, senna DNA not cut with restriction enzymes. The 

blot shows only one strongly labelled band in each lane, corresponding presumably to 

the germinating a-galactosidase.
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Figure 49. The blot o f  the senna genome probed with the P1GA1 probe. Lane 1, 

senna genomic DNA cut with EcoRl; lane 2, senna DNA cut with Hindlll; lane 3, 

senna DNA cut with BamHI. A number o f bands in each lane have been labelled.

The results of the blotting therefore shows that there is probably more than one a- 

galactosidase gene in the Senna genome.



Further preparation o f RNA from maturing senna endosperms 

and PCR reactions.

RNA was prepared from 140 endosperms using the modified Lopez-Gomez method as 

before. The resulting RNA preparation was measured spectroscopically. The amount 

of RNA produced is shown in Table 15.

Table 15. The volume, concentration and yield o f RNA producedfrom the modified 

Lopez-Gomez preparations o f 140 maturing Senna endosperms

Concentration of 
total RNA pg pi'1

Volume of RNA 
prep pi

Yield of RNA in 
Hg

0.02 25 0.48

The 1st strand of cDNA was produced as before. The RNA remaining in the cDNA 

was then entirely removed using the alkali degradation method described in the 

methods section. PCRs were then set up as before and the products of these reactions 

were run on an agarose gel. The gel is shown in figure 50.
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2027bps

564bps

1 2 3 4 5 6

Figure 50. The result o f  the PCR o f Alkali cleaned maturing 1st strand cDNA. Lanes 

1 and 6 contain Hindlll markers. Lane 2 contains the product o f  primers PI and T7. 

Lane 3 the products o f  PI + GA1. Lane 4 the products o f  GS1 + 77. Lane 5 contains 

a no primer negative control.

Figure 50 shows that PCR products were produced with primers P1+T7 and P1+GA1. 

However, the P1T7 product has a size that is too low to correspond with the known 

size of the a-galactosidase. The P1GA1 product was the size expected and was 

therefore cloned using the Invitrogen T/A kit.

133



The manual sequencing o f M(aturing)-P 1GA1.

The clone M-P1GA1 was prepared and sequenced using the M13(rev) primer. The 

sequencing reactions were run on a polyacrylamide sequencing gel. The gel was 

transferred to 3M paper and placed in a cassette in contact with x-ray film. After 

exposure the film was developed and the sequences read. The sequence obtained is 

shown below.

S e q u e n c e  o f  c l o n e  M ( a tu r in g ) - P 1 G A 1

g g g a a c a c g c  c g c c c a t g g g  a t g g a a t a g c  t g g a a c c a c t  t t c a g t g t g a

c a t t a a t g a g  g a g a t g g t t c  g a g a a a c a g c  t g a t g c a a t g  g t g t c a a c g g

g t c t t g c a t c  t t t g g g g t a c  g a a t a c g t c a  a t t t a g a t g a  t t g c t g g g c t

g a a c t t a a c c  g a g a c t c t a a  g g g a a a t a t g  g t t c c t a g t g  c t t c a a a a t t

t c c t t c a

The sequence of the M(aturing)-P1GA1 clone was compared to the sequence of 

P1GA1 and the percentage identity was calculated. This is shown in Table 16

Table 16. The percentage identity o f the clone M(aturing)-P1GA1 from maturing 

senna endosperms compared to the clone P1GA1 from germinating senna 

endosperms.

Clone M-P1GA1

Clone PIGA1. 100%
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To isolate more of the maturing a-galactosidase cDNA further RNA preparations 

were earned out. Figure 51 shows the RNA prepared from 160 maturing endosperms 

complete with testa (it was intended that the testa RNA would co-precipitate the 

endosperm RNA).

4361bps
2322bps
2027bps

564bps

Figure 51. The RNA isolated from maturing endosperms (complete with testas). 

Lanes 1 and 4 contain Hindlll markers. Lanes 2 and 3 contain the isolated maturing 

RNA; lane 2 shows the RNA post DNase treatment and lane 3 shows the RNA pre  

DNase treatment.

The concentration of the RNA preparation was measured spectrophotometrically as 

before, the concentration and yield is shown in Table 17.
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Table 17. The volume, concentration and yield o f  RNA produced from the modified 

Lopez-Gomez preparations o f  160 maturing senna endosperms with testas.

Concentration of 
total RNA pg pi'1

Volume of RNA 
_ prep ill

Yield of RNA in 
Hg

0.68 30 20.4

Table 17 shows that by including the testas with the endosperms the greatest yield of

RNA was produced

Also isolated was RNA from the testas only. This RNA is shown in figure 52.

23130bps
4361bps
2322bps
2027bps

Figure 52. The RNA isolated from maturing testas only. Lanes 1 and 7 contain 

Hindlll markers. Lanes 3 and 4 contain the isolated testa RNA; lane 3 shows the

RNA pre DNase treatment and lane 4 shows the RNA post DNase treatment.
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The maturing endosperm+testa and testa only cDNAs were split into 2 aliquots. 

Aliquots were then either alkali treated or not before being used as templates in PCRs. 

The results of the PCRs are shown in figures 53, 54 and 55.

2322bps.
2027bps

564bps

’ ‘ i" i

m

Figure 53. The products produced by PCR using alkali treated cDNA isolated from  

maturing endosperms + testas. Lane 1 contains Hindlll markers. Lane 2 contains 

the product o f  the primers PI and T7. Lane 3 contains the product o f  the PI and GA1 

primers. Lane 4 contains the product o f the primers GS1 and T7. Lane 5 contains the 

product o f  a negative control that used no primers.
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Figure 54. The products produced by PCR using non-alkali treated cDNA isolated 

from maturing endosperms + testas. Lane 1 contains the product o f  the primers PI 

and T7. Lane 2 contains the product o f the PI and GA1 primers. Lane 3 contains the 

product o f  the primers GS1 and T7. Lane 4 contains the product o f  a negative control 

that used no primers. Lane 6 contains Hindlll markers
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564bps

Figure 55. The products produced by PCR using alkali treated and non-treated 

cDNA isolated from maturing testas only. Lanes 1 and 12 contain H indlll markers. 

Lanes 3 to 6 contain the PCR products o f  the alkali treated cDNA template. Lane 3 

contains the product o f the primers PI and T7. Lane 4 contains the product o f  the PI 

and GA1 primers. Lane 5 contains the product o f the primers GS1 and T7. Lane 6, a 

no primers negative control. Lanes 7 to 10 contain the PCR products o f  the non

alkali treated cDNA template. Lane 7 contains the product o f the primers PI and T7. 

Lane 8 contains the product o f the PI and GA1 primers. Lane 9 contains the product 

o f  the primers GS1 and T7. Lane 10 contains the product o f  a negative control that 

used no primers.

1 2 3 4 5 6 7 8  9 1 0 1 1 1 2

139



Figures 53 and 54 both show a P1T7 band that was too faint for cloning. Again the 

P1GA1 PCR product was produced in large quantities. The PCR of non-alkali treated 

cDNA with primers GS1 and T7 produced only very faint products. However the use 

of the alkali removal of RNA techniques have produced GS1T7 PCR products in 

quantities large enough to be cloned. Of note is that the product of the GS1T7 PCR of 

the size expected to be the 3’ end of the a-galactosidase seems to be a double band. 

Both the upper and lower GS1T7 products were therefore excised for cloning. Figure 

55 showed that the testa only RNA did not produce the PCR products produced by the 

endosperm and testa prep.



Cloning and sequencing o f the M(aturing)-GS1T7 T(op) and 

B(ottom) PCR products.

The M-GS1T7-T and M-GS1T7-B PCR products were Invitrogen T/A cloned in 

accordance with the methods section. Colonies of the INVaF’ were picked and 

cultured for plasmid preparations and restriction digests. Two clones (one each of M- 

GS1T7-T and M-GS1T7-B) were chosen and sequenced in both directions using the 

M l3 and M13(rev) primers. The sequencing reactions were carried out by Unilever 

using an automatic sequencing machine. The sequences obtained are shown below. 

M -GS1T7-T ( 5 '  s e q u e n c e )

t t g c g g t g a a  c c a a g a t a g t  c t a g g a g t c c  a a g g a a a g a a  g g t g a a a a g t  

g a t g c t g g t t  t g g a g g t t t g  g g c a g g t c c t  c t g a g t g a t a  a c a g a g t g g c  

a g t g g t g t t g  t g g a a t a n a a  g t t c a t c a a a  a g c t a c t g t g  a c t g c a t c t t  

g g t c t g a c a t  a g g g c t t g a a  a a a g g a a a g g  t g g t c a c t g c  a a a a g a t t t a  

t g g g a g c a c a  c t a c a a a a g c  a t c a g t t t c a  g g a c a a a t t t  c t g c a g a t a t  

a g a t t c a c a t  g c t t g t a a g a  t g t a t g t t c t  g a c t c c c a a t  t a a g g c a g a c  

a g g a a g g t g a  t g a a a g c c c  

M -GS1T7-B (5" s e q u e n c e )

t t g c g g t g a a  c c a a g a t a g t  c t a g g a g t c c  a a g g a a a g a a  g g t g a a a a g t  

g a t g c t g g t t  t g g a g g t t t g  g g c a g g t c c t  c t g a g t g a t a  a c a g a g t g g c  

a g t g g t g t t g  t g g a a t a n a a  g t t c a t c a a a  a g c t a c t g t g  a c t g c a t c t t  

g g t c t g a c a t  a g g g c t t g a a  a a a g g a a a g g  t g g t c a c t g c  a a a a g a t t t a  

t g g g a g c a c a  c t a c a a a a g c  a t c a g t t t c a  g g a c a a a t t t  c t g c a g a t a t  

a g a t t c a c a t  g c t t g t a a g a  t g t a t g t t c t  g a c t c c c a a t  t a a g g c a g a c  

a g g a a g g t g a  t g a a a g c c c
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M - G S 1 T 7 - B  ( 3 '  s e q u e n c e )

t c t t g t t t g a  c a t a g g g c t g  g a a a a a g g a a  a g t g g t t c a c  t N c a a a a g a t  

t t a t g g g a g c  a c a c t a c a a a  a g c a t c a g t t  t c a g g a c a a a  t t t c t g c a g a  

t a t a g a t t c a  c a t g c t t g t a  a g a t g t a t g t  t c t g a c t c c c  a a t t a a g g c a  

g a c a g g a a g g  t g a t g a a a g c  c a a g g t t t t a  a g g a a g a g a a  a t a c a a t c c a  

a g g a t t c a a a  g a a g g a t g g a  g a a a a t a a a c  a t g g a g t t t a  t t t t t c a a t a  

a g a a a t a t a t  a g a a a t a a t t  a a a t a a g a t a  g a a a t t g c c t  g a g a t t t c t a  

t c a t t a t t t g  t a t t a t t g g a  g c a t t g a g a t  t t g a g a c c t t  t t g a t t t c a a  

t t c a a t a a t t  a t a c c g c a a a  t g t t t c t c t - p o l y - a - t a i l .

A comparison of the maturing GS1T7 top and maturing GS1T7 bottom 5’ sequences 

shows 100% similarity. A comparison of the 3’ ends of the clones could not be made 

because the M-GS1T7-T 3’ sequence was disrupted due to the fact that the 1st strand 

cDNA synthesis had included a very long stretch of poly A tail the sequencing of 

which used up all the Stop-A nucleotide.

The sequence of the clone M-GS1T7-B shows that it contains a full V  untranslated 

region. The sequence of the M-GS1T7-B clone was compared to the sequence of 

(germinating) GS1T7 and the percentage identity was calculated. This is shown in 

Table 18.
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Table 18. The percentage identity o f  the clone M(aturing)-P1GA1 from maturing 

senna endosperms compared to the clone P1GA1 from germinating senna 

endosperms.

Clone M-GS 1T7

Clone GS1T7. 100%

TEhe sequences of the clones obtained from the maturing and geimiqating a- 

3 *alactosidase cDNAs were therefore identical.

in  an attempt to discover the reason for the difference in size of M-GS1T7-T ,and M- 

GS1T7-B further PCRs were carried out and a further maturing clone (number 14) 

was produced using the primers PI and T7. This clone was sequenced from both ends 

jand the data obtained are shown below 

14-forward-seq

ig g g aacacg c c g c c g a tg g g a tg g a a ta g c tg g a a c c a c t t t c a g t g t g a

:e a t t a a tg a g g a g a tg g t tc g ag aaacag c tg a tg c a a tg g tg tc a a c g g

^ g t c t t g c a t c t t t g g g g t a c g g a ta c g tc a a t t t a g a t g a t t g c t g g g c t

j j a a c t t a a c c g a g a c tc ta a g g g a a a ta tg g t t c c t a g t g c t t c a a a a t t

i^ c c t tc a g g a a t t a a g g c tc t g g c t g a t t a t g t t c a t a g c a a a g g a t tg a

s& _gtttggggt t t a t t c t g a t g c tg g a a a c c a a a c a tg c a g ta a a g c t a t g

..e c tg g a tc a c ta g g a c a tg a g g a c c a a g a t g c a a a a a c a t t t g c t t c c t g

3 @ g g g g ttg a t t t c t t g a a g t a tg a c a a t tg ta a c c a c n a t g a tn ta a g c c

'^ e a ag aa a tag g ta tn c a a a a a tg tc tg a a g c tc ta n c a a a tc tg g a a g g c

-g fg a tc tn t tc t c t a t g t g t a a tg g g a tc a a a a a c c tg c c tn tg g c c a a a n t

•g tg g a n t
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1 4 - r e v e r s e - s e q

c a tc a a g c a a  a t t t a a c a t t  t a t t a t a a t c  n c c a t a a t t a  n g g a a a a ta t

sa g a g a a n c a t tn g c g g n a ta  a t t a t n g a a t  n g a a a tc a a a  n g g n c tc a a a

z tc t-c a a n g c t c c a a ta a tn c  a a a ta a n g a t_  a g a a a t c t c a  g g c a a t t n c t

z a t z c t t a t t t a  a t t a t t t c t a  t a t a t t n c t t  a tn g a a a a a t  a an cn cc a n g

z t t n a t t t n c t  c c a t c c t t c t  t t g a a t c c t n  g g a tg g g a t t  t c t c t t c c t t

E aaaacc tn g g  c t t t c a t c a c  c t t c c n g tc n  g c c t t a a t t g  g g a g tc a g a a

m a t n c a t c t t  a c a a g c a tg n  g a a t c t a t a t  c tg c a g a a a t  t t g g c c tg a a

r a c t g a t g c t t  t tg n a g g g g g  c n c c c a ta a a  t c t t t t g c a g  g g a c c a c c t t

r t c c t t t t t c a  a g c c c ta tg n  c a g a c c a g a t g cagnccngn  a g c t t tg g g g

: a a c t t t n t t c  n c a a c a c c n t  g g c c t tg g a t  c c ta a g g a c n  g c c a a c c c t

By aligning the sequence of the 3’ ends of M-GA1T7-B and PIT7-clone-14 it is 

^possible to see that P1T7-14 is identical to M-GA1T7-B except that it contains an 

-extra 48 bases. This is the reason that a difference in the size of the relatively small 

-GS1T7 clones could be observed.

Although the sequences corresponding to the region of the Senna a-galactosidases

Jjptween the N terminal amino acid and the end of the poly-A tail had been isolated for

jboth germinating and maturing isolated cDNAs, the 55 untranslated region of cDNAs

jrom either maturing or germinating endosperms had not been isolated. To obtain

.these sequences a number of techniques were used.IKr’A—-
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Inverse polymerase chain reaction of senna genomic DNA.

Figure 56. The result o f the inverse PCR. Lanes 1 and 8 contain Hindlll markers. 

Lane 3, 5 and 7 contain the inverse PCR products (using high, medium and low DNA 

concentrations respectively).

Figure 56 shows that the high-DNA inverse PCR produced a number of possible a- 

galactosidase upstream cDNAs. In order to discover which PCR product corresponds 

to the primers most closely further PCRs were earned out with increased stringency.

Genomic Senna DNA was isolated and restriction digested (as described in the 

methods). The digested DNA was then aliquoted into 0.5, 0.05 and 0.005pg amounts. 

The DNA aliquots were then mixed with a ligation mix and incubated at 14°C 

overnight. Inverse PCR was then carried out using primers (GA2 and GS3) designed 

using the sequences previously obtained from the P1GA1 and M-P1GA1 clones. The 

result of the PCR is shown in figure 56.

23130bps
9416bps
6557bps
4361bps
2322bps
2027bps

564bps
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The inverse PCRs were performed with annealing temperatures of 55°C and 60°C. 

The results of these PCRs are shown in figure 57.

Figure 57. The inverse PCR o f high concentration DNA at two annealing 

temperatures. Lanes 1 and 4 contain Hindlll markers. Lane 2 contains the products 

o f the 55 °C annealing PCR. Lane 3 contains the products o f  the 60 °C annealing 

PCR. The PCR product produced in the greatest amount at the higher stringency is 

indicated.

The higher stringency inverse PCR picked out one particular PCR product, to confirm 

that this was the 5’ end of the a-galactosidase DNA a further PCR was carried out 

using the nested primers GA3 and GS2. If the previous PCR product was the 5’ end 

of the a-galactosidase then the result of this PCR should be a slightly smaller PCR 

band. Figure 58 shows the result of the PCR

23130bps
9416bps
6557bps
4361bps
2322bps
2027bps 

564bps
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564bps

23130bps
9416bps
6557bps
4361bps
2322bps 
2027b p

Figure 58. The confirmation inverse PCR using the nested primers GA3 and GS2. 

Lanes 1 and 3 contain H indlll markers. Lane 2 contains the PCR products.

Figure 58 shows that a faint band was produced using primers GA3 and GS2. 

However this band represents a molecule of too low a weight to be the product of the 

same gene that the band in figure 55 is a product of. Due to the fact that the primers 

GA2 + GS3 and GA3 + GS2 are amplifying different genes it is impossible to state if 

either is the a-galactosidase.

Final inverse PCRs were attempted using other restriction enzymes to cut the genomic 

DNA (these were Taql, Mbol and EcoRl). The reactions produced no PCR products.
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Single sided polymerase chain reaction of senna genomic DNA.

Genomic senna DNA was again isolated and restriction digested with EcoRl, Hindlll 

and BamHI. The digested DNA was then added to EcoRl, Hindlll and BamHI 

linearised pBluescript-KS plasmid. The 3 mixes were split into two aliquots, the first 

aliquot had DNA-ligase added and the second aliquot was used as a no ligation 

control (and therefore had no DNA-ligase added). The ligation reactions were carried 

out at 14°C overnight. Single sided PCR was then carried out using primers T7 and 

GA3. The result of the PCR is shown in figure 59.



2 * 3  1 Q n irM -s^

4361bps

y^ioops
6557bos

zjzzbps
2027bps 

564bps

Figure 59. The result o f  the single sided PCR. Lanes 1 and 8 contain H indlll 

markers. Lane 2 contains the PCR product o f  the ligated EcoRl digest. Lane 3 

contains the PCR product o f the non- ligated EcoRl digest control. . Lane 4 contains 

the PCR product o f  the ligated Hindlll digest. Lane 5 contains the PCR product o f  the 

non- ligated H indlll digest control. Lane 6 contains the PCR product o f  the ligated 

BamHI digest. Lane 7 contains the PCR product o f the non- ligated BamHI digest 

control.

Figure 59 shows that three faint and one bright PCR products were produced using the 

EcoRl ligated template. This PCR was repeated using a greater amount of template 

and the bright PCR product was isolated and cloned using the Invitrogen T/A cloning 

kit.

The clone was sequenced in both directions providing the nucleic acid sequences 

shown overleaf:-
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G u p j - f o r - c o t . s e q

a a g g a t c c g t

a a c a g t c g g a

c c c g g g g a a g

c a c g c g g c g a

a g c c g a c g g g

c c t t t t c c c g

g t t c c a t c g a

t a c c a c c g g g

c c g g g g c g c a

c t t a c t n c g g

a c t t t t c c a a

c t t c c g t t a a

c g a c a t c c g c

t t c c c c t t g t

g g a c c c c g a a

c c c g c t c t c g

t t c g g g g c t g

a g g t t a c g g a

c c a g a g g c t g

c c t t g g g a a g

c c g g a a a c a c

c t g a a c c g t t

g g c c c c g c c a

g a a t t a a c c a

a g g g a c c a t c

c c g t a c c a g t

g g g c c c g t t c

c c g c g g g a g c

g g a c c c c c g t

t c c a t t t t g c

t t c a c c t t g g

c a c t t c g g t c

g c g a c t g c g g

c n a g g t g g c a

n t t t t c g g a t

g c a a t g c t t t

t c t g a g t c g a

c c a g t c c g t c

a g c t c g a g c a

g c c c a g t c c t

c g a c t t c c c t

a g a c c t g a t g

c t t c c g g a t t

t g c t n t t t c a

a g c t t t t a a a

c c t a a n t t t c

g t t t t a a t t a

c t g t t c g a c g

c c c c g g c c g g

g t c c a c c g a c

c a g a g c c a a t

t g c c t a c a t t

c g g t t a t g a g

t n a a g g g c c g

g c c g n t g g a c

c a g a a a a n a a

c g t a a c c n c n



G u p j - r e v - c u t . s e q

a g g g t c c a t g  n g a a c n g n n c  t t g c n c a t g g  g t t a n t c g a t  c c t a a a a a a c  

g g g g g a a n c c  c n t n t g a n a n  c g n g c a n c a c  n c n t n c t t n n  a a a g g g a a n c  

g g g t t a a a a t  t c c t g a a c c g  g g a c g t g g c g  g c t g a c n g g a  a c g t t a g g g a  

g t c c n g a a a c  c t n g g c g g g g  g c c n n g g g a a  a a n t t c t n t t  t t n t g g t t a a  

n a a c c t g c c c  n c c c t g g a a a  c n g g t t a a c c  n g n g g t a g g g  n c c n a c n g g t  

n g a a a a a c n c  c c c a c g t t n c  g t g g n g n c c g  g t g c c c c c c c  g g n g g c c c t t  

t a a a a t n c c g  a g g a c c n a n t  g c c t t n c a c c  c c c g g n n g t n  c t n a n a a c c n  

c a t a a g g t t t  n c a a n g g g a a  n n a c c c t n t g  g n c n a n g g a a  c a a n t t n n c c  

c n g g g a a a t t  c c n c c a a a n g  g a t c c n t a c c  n t g g g a a a a g  a t t n g c t t t t  

a a a n t g g c c c  c g g g g n t c c n  c c c n n a a c c c  c t g t t n c g n g  g n c t t t c a a c  

t t t n c c n g

The sequence was compared to the known sequence of the region of the a- 

galactosidase adjacent to the primer sites. No similarities were found.

Further PCRs were carried out using,the ligated EcoRl DNA digest with nested 

primers. The first reaction used primers T7 and GA1. The results of this PCR along 

with the T7 only, GA1 only and non-ligated template controls are shown in figure 60.
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23130bpsx 
9416bpsV  
6557bps ̂  
4361bps 
2322bps 
2027bps 9 Sapp '

564bps—
i f  v - : * ■\, mm • • ■ - - f-

Figure 60. The initial PCR. Lanes 1 and 8 contain H indlll markers. Lane 3 contains 

the PCR products o f  T7 and GA1. Lane 4 contains the T7 only control. Lane 5 

contains the non-ligated control. Lane 6 contains the GA1 only primer control.

Figure 60 shows that the T7 + GA1 reaction has produced many products however 

many of these are also produced with the single primer controls. The T7 + GA1 PCR 

product was then used as a template in a second PCR using the primers KS and GA3 

(found adjacent to the T7 and GA1 sites on the a-galactosidase and pBluescript). The 

result of this PCR along with the KS only, GA3 only and non-ligated template 

controls are shown in figure 61
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3 4 5 6

/23130bps 
9416bps 
6557bps 
4361bps
2322bps 
2027bps

564bps

Figure 61. The second PCR. Lanes 1 and 8 contain H indlll markers. Lane 3 

contains the PCR products ofK S and GA3. Lane 4 contains the KS only control. Lane 

5 contains the GA3 only primer control. Lane 6 contains the non-ligated control. The 

bands labelled 1, 2 and 3 are present in the KS + GA3 PCR product and not in the 

single primer controls.

Figure 61 shows that the sequential PCRs of the EcoRl digested and ligated DNA has 

produced three PCR bands that are not produced using single primer controls. These 

three bands were isolated and cloned using the Invitrogen T/A kit.

The clones were sequenced in both directions providing the nucleic sequences shown 

below
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s s u p l f o r

g c g g c c g c c a

g g t a t c g a t a

t t a a a t t t c g

g a a a a t t a a a

a a a a a a a t a t

a a a g g c t c c c

t a a t c t t c c t

g g c c c t g t c c

g t t c t a a c c t

t g t a t c c n g g

t t c c t a a c t c

a t t t t t c c t c

s s u p 1 r e v

g a a t t c g g c t

a c c c a t t c c e

c a a a a c a t c g

g a g a a a c g a g

g a t c c c t c g a

a a c t a t g t c a

t g a g a g g t n c

t a n c a g c t c t

g g a a a a t t t g

g t g t g a t g g a

a g c t t g a t a t

t t t t a g c a a t

c t t c t t a a t t

a a a c a a c c a a

t a c a c c t c a c

c t g a g g a a g a

t t g a a a g t g t

a n a t t g g n g t

a a g a t t c t t g

c n a t c t a c g g

c

t a g c a a t c a t

c a a g c a a t a c

c a a c t g e a g t

accctggtca

g a t g a c t a t t

atgaacactt

atcctagaca

gggaaccgct

aacaacag

t a t c t g c a g a

c g a a t t c a g a

a g t g g t t c t g

g c a t a a t a g g

a a g c a a g c a a

t a t t g a c c g t

c g g a t c c t g c

a n a c a c a t c t

c g c a c g a t c t

g t g t c c t g g g

a g t a t g t g c g

ctaaattgac

atcaaggaga

cctgaccctc

g a g a g t a c t a

agaggggtga

c c a g c tc c c c

g a t c a g a n g a  

a g g g c g g c t g

a t t c g g c t t t

t a a a c g t g t a

c g t t c a a a a a

t t c a t g g g t t

t c c t a c a a a g

c c t g g t c c t c

t g c t g c c c c g

g c t c a t g c g g

c c c c t g t c c t

c a g t t c t g a t

g a t g a g g t c c

gtccatggta

a a a a a g a c c c

ctgacacacc

catcgccgcc

gggtnccagc

g ttc tacctg

giuccctagc

g g a a g g t c t g

c g a g g t c g a c  

g g t a t g c t g t

t t t g a t t g c t

a c a t a a g t t a

c t a a a a c c t a

g t t c t c t g a g

t g a t g g t g t a  

g c c t g t c t c c  

g g a a a a a t c t  

g g g c c c a n t c

c a a a g n c g g t

aatcgtcatc

g ttc ttc c a t

gacatggcaa

aagatggcag

c c t a g a t g c a

tatgcgacta

gacoagatca

gaaatcccca
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s s u p 2 f o r

g c g g c c g c c a

a a a t t g a c g t

c c a a t g t a g t

g a t g a a t g c g

cttgggcagt

tg a ccg tg tt

ctgacttgga

a ta ta ta t t t

gaacatggta

mtccagaagc
a g ttccn tta

aa-t-cc.il

gtgtgatgga

a c t t tg t t tc

c ttta g g c tt

tgttgatgaa

acattgtaat

taaggggaaa

tcaagtatac

g tg tttc ta n

gttgtccac-c

aaaacccctt

tgagaatntc

tatetgcaga  

cactttaatg  

tctggtatga  

gaatgatgga 

a tgaaaa tga 

atatanaatt 

ataacagata 

gaagtaggaa

g g g c t g t c t t

atgaaggtac

t n a t c a n t c a

g t tcgcagct 

agctg tg ttg  

atggaatgga 

gtgcagatca

atactatttg
g tg ta ttta c

tagcaataat

tgaacGctga
cctactatga
cttcancccc

gcaatgeLitgit 

Gttggt.if##  

t g c a c  t t , a t , a  

a g a c a g g . t g a

a a a tg g a ^ a #

aaaggaaaca

atccttctgt
a c c n t t g g g g

accccaaaGc

c c a p g rp v

t t c g a g g t c g a  t g g t a t c g a t  a a g c t t g a t a  t c g a a t t c a t  g t a t a c t t p a  

t c a c t a a a ' C t  g t a a a c t t c c  c c a a a t t g c t  t c a c t a g t a a  g g g t a p p e t t  

t s a a t a a a g a g  g t t t c t g o c t  c c t g g a t a c a  g a a a c g a c t - c  a a g c g t t c a a  

S t f j a c a g c c c g  g t g g a c a a c t  a c c a t g t t c t  g t t t c c t t t a  t t a t t g c t a t  

t 'C c t a c 1 1 c c  t a g a a a c a c a  a a t a t a t a t t  a t c c a a a t a g  t a a a t a c a c t  

^ C t g t t a t - g  t a t a c t t g a t  - o c a a g tc a g a  a c t g c a g a t c  p a a t a g t a t a  

^ t t p t a t a t t  t t - c o c c t t a a  . a c a c g g t c a t  t t t c c a t t t t  g a t c t g c a p t  

t ^ c t c t p a t a  t t a c a a t g t a  c t g c c c a a g t  c a c c t g t c t t  G e a t t g c a t c  

- - ^ t t r p t t c a t c  c a c g c a t t c t  c t a t a a a a
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s s u p 3 r e v

c g c c a a g c t t

c t g g a a t t c g

t c a t g t a t a c

g t a a g g g t a a

a c t c a a g c a t

t t t a t t a t t g

a t a g t a a a t a

g a t c a a a t a g

t t t t g a t c t g

t c t t c c a t t c

g c a c a a c a c a

c n g g a a c n t t

g

s s u p 3 f o r

C a t t a c g a c t

g c g g c c g c c a

a a a t t g a c g t

c c a a t g t a g t

g a t g a a t g c g

c t t g g g c a g t

t g a c c g t g t t

c t g a c t t g g a

a t a t a t a t t t

g a a c

g g t a c c g a g c

g c t t t c g a g g

t t c a t c a c t a

c c t t c a a t a a

t c a a a g a c a g

c t a t t c c t a c

c a c t a t t t g t

t a t a a t t c t a

c a c t c a t t t t

c a t t c c a t c a

g c t t c a t a c c

a a g t g g a a c a

c a c t a t c g g g

g t g t g a t g g a

a c t t t g t t t c

c t t t a g g c t t

t g t t g a t g a a

a c a t t g t a a t

t g a g g g g a a a

t c a a g t a t a c

g t g t t t c t a g

t c g g a t c c a c

t c g a c g g t a t

a a c t g t a a a c

a g a g g t t t c t

c c c g g t g g a c

t t c c t a g a a a

t a t g t a t a c t

t a t t t t c c c c

c a t a t t a c a a

t t c t t c a t c a

a g a a a g c c t a

a t n c t c a t t a

g c g a a t t g g g

t a t c t g c a g a

c a c t t t a a t g

t c t g g t a t g a

g a a t g a t g g a

a t g a a a a t g a

a t a t a g a a t t

a t a a c a a a t a

g a a g t a g g a a

t a g t a a c g g c

c g a t a a g c t t

t t c c c c a a a t

g c g t c c t g g a

a a c t a c c a t g

c a c a a a t a t a

t g a t c c a a g t

t c a a a c a c g g

t g t a c t g c c c

a c a c g c a t t c

a a a a t a c t t g

a a g a t g n n a g

c c c t c t a g a t

a t t c g g c t t a

g t t c g c a g c t

a g c t g t g t t g

a t g g a a t g g a

g t g c a g a t c a

a t a c t a t t t g

g t g t a t t t a c

t a g c a a t a a t

c g c c a g t g t g

g a t a t c g a a t

t g c t t c a c t a

t a c a g a a a c g

t t c t g t t t c c

t a t t a t c c a a

c a g a a c t g c a

t c a t t t t c c a

a a g t c a c c t g

a t c t a t a a g t

g t c t n c a g a a

c c a a t c n g c n

g c a t g c t c g a

g c a a t c a t c t

c t t g g t a g a a

t g c a c t t a t a

a g a c a g g t g a

a a a t g g a a a a

a t c t g c a g t t

t a t t t g g a t a

a a a g g a a a c a
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The single sided sequences (above) were compared to the previously isolated 

sequence of the Senna a-galactosidase gene and also to each other. The UP2 and UP3 

sequences can be seen to be very similar however neither UP1, 2 or 3 is related to 

senna a-galactosidase. These results can be seen in Table 19.

Table 19. The percentage similarity o f the clones UP1, UP2 and UPS compared to 

each other and the previously sequenced a-galactosidase.

UP1 UP2 UP3

UP1 23.6 19.1

UP2 23.6 91.9

UP3 19.1 91.9

a-galactosidase. 2 0 .8 19.1 2 0 .1  1

a-galactosidase

20.8

19.1

20.1



5’ Rapid Amplification of cDNA Ends - Polymerase Chain 

Reactions.

5’ RACE-PCR was carried out in accordance with the methods of sections, RNA was 

isolated from maturing endosperms as before. The RNA was split into two aliquots^ 

one was DNase treated and the other was not. The two RNA samples were used to 

produce 1st strand cDNA using either random hexamer primers or an a-galactosidase 

gene specific primer (GA1). The 1st strands were cleaned up using the Hybaid clean

up kit and then poly-A tailed using the TdT enzyme. A 2nd strand of cDNA was 

produced using the oligo-dT-RiRoT7 primer. PCRs were then earned out using 

primers Ro and GA1 for the random primed cDNA and primers Ro and GA3 for the 

gene specific primed cDNA the result of this PCR is sho wn in figure 62,



23130bps
9416bps
6557bps
4361bps

564bps

2000bps
1500bps
1000bps

500bps

Figure 62. The PCR products o f the 5 ’ RACE-PCR. Lanes 1 and 8 contain lkb  

markers. Lanes 2 and 7 contain Hindlll markers. Lane 3 contains the products o f  the 

DNased random primed 1st strand. . Lane 4 contains the products o f  the non-DNased 

random primed 1st strand. Lane 5 contains the products o f the DNased gene specific 

primed 1st strand. . Lane64 contains the products o f the non-DNased gene specific 

primed 1st strand.

Figure 62 shows that the PCRs on random hexamer cDNA and on gene specific 

cDNA have produced a number of products of the same size. However, two bright 

bands, labelled A and B in figure 62 are of slightly different sizes. This is what would 

be expected, as the primers Ro and GA1 used on the hexamer produced 2 strand 

PCR are located further apart on the oc-galactosidase gene than the Ro and GA3 used 

on the gene specific produced 2nd strand oc-galactosidase-oligo-dT-RiRoT7.
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Two sets of confirmation PCRs were carried out using:-

1. The PCR products of the gene-specific primed cDNA as a template with the 

nested primers Ri + GA2 and PI + GA2.

2. The PCR products of the random primed cDNA as a template with the nested 

primers Ri + GA3 and a negative control deionised H2O + GA2.

The products of these PCRs were run on an agarose gel and are shown in figure 63.

2000bps
1500bps

-1000bps

-500bps

1 2 3 4 5 6 7 8
Figure 63. The confirmation PCRs o f the 5 ’ RACE PCRs. Lanes 1 and 8 contain lkb  

markers. Lanes 2 and 7 contain Hindlll markers. Lane 3 contains the products o f  Ri 

+ GA2. Lane 4 contains the products o f PI + GA2. Lane 5 contains the products o f  

Ri + GA3. Lane 6 contains the products o f the deionised H20  + GA2 negative 

control.

23130bps
9416bps
6557bps
4361bps
2322bps
2027bps

564bps
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Figure 63 shows that the confirmation PCRs have all produced products of the size 

calculated using the known locations of the primer sites along the sequenced cx- 

galactosidase. The negative control has produced a faint PCR band, probably due to 

the transfer of primers from the previous PCR that was used as the template.

The band B from the PCR products of the gene specific primed cDNA was isolated 

and cloned using the invitrogen T/A kit. The PCR product was sequenced in a 

forward and reverse direction and the two sequences joined to form the sequence 

shown below.

M a t u r i n g  !5 '  c o n t i g .

n g c c c t a a a t c c t t t a a a a n c c n c c g c c c a a g c t a c t t t t a t t t c

t c t t c t t t c t t t c t t n g g t t c t t a a c c t a t t a t c a g c t t g g g g c g

t t g g c c t a t a t c c a t a t a t a t c c a t a t n c a t a c a a a a g a t c a t t a

t a t a a g t a g c a t c t t c c a c t t c a t c t a t a t a t c a t a t a a c a c t c a

c a c g t a t a c a c t a c a c a c a c a c t c a t a t a t a t a t a t a g a g a g a g a

g a g a g a g a g a g a g a t t t a t a t a g a a a g a a a t g g a g a a a a t g a t g a

t g t g g g c a a a g g t t g t g t t g n g c t t g t t t t g g g t c t t g a a n g c t t

c t a a t t g t t c a g g n c g c t t g t t g a a c a c a a t t g g c a a t g a t c a c a

a c a a c a t c c a t g g a a g a c t a c t t c t t g g a a a t g g a c t t g g a a a c a

c t c c t c c c a t g g g a t g g a a t a g c t g g a a c c a c t t t c a g t g t g a c a

t t a a t g a g g a g a t g g t t c g a g a a a c a g c t g a t g c a a t g g t g t c a a

e g g g t c t t g c a t c t t t g g g g t a c g a a t a c g t c a a t t t a g a t g a t t

g e t
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The 5’ RACE PCR procedure was repeated using RNA isolated from germinating 

endosperms. The PCRs again produced products which were cloned and sequenced. 

The obtained sequence corresponding to the a-galactosidase germinating 5’ 

untranslated region is shown below.

g e r m i n a t i n g  5 '  c o n t i g

a c c c t a a a n c c t t t a a a a g c c n c c g c c c a a g c t a c t t t t a t t t c t c t t c t

t t c t t t c t t t g g t t c t t a a c t a t t a t c a g c t t g g g g c g t t g g c c t a t a t a

c a t a t a t a t c c a t a t c c a t a c c a a a g a t c a t t a t a t a a g g n g c a t c t t c c

a c t t c a t c t a t a t a t c a t a t a a c a c t c a c a c g t a t a c a c t a c a c a c a c a c

t c a t a t a t a t a t a t a t a g a g a g a g a g a g a g a g a g a g g a g a t t t a t a t a g a

a a g a a a t g g g g a a a a t g a t g a t g t g g g c a a a g g t t g t g t t g n g c t t g t t t

t g g g t c t t g a a n g c t t c t a a t t g t t c a g g n c g c t t g t t g a a c a c a a t t g g

c a a t g a t c a c a a c a a c a t c c a t g g a a g a c t a c t t c t t g g a a a t g g a c t t g

g a a a c a c t c c t c c c a t g g g a t g g a a t a g c t g g a a c c a c t t t c a g t g t g a c

a t t a a t g a g g a g a t g g t t c g a g a a a c a g c t g a t g c a a t g g t g t t c a a c g g

g t c t g c a t c t t t g g g g t a c g a a t a c g t c a a t t t a g a t g a t t g c t

The 5’ untranslated region clones of the maturing and germinating a-galactosidases 

were compared to each other. The region where the 5’ clones overlapped the P1T7 

clones were also compared. The resulting percentage identities are shown in Table 

20.
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Table 20. The percentage identity o f  the maturing and germinating 5' compared to

each other and the previously sequenced P1T7 a-galactosidase clone.

P1T7 cloneMaturing 5’ clone Germinating 5’ clone

Maturing 5’ clone

Germinating 5’ clone

As can be seen from table 20 the maturing and germinating 5’ UTR clones are 

essentially identical. The overlap between the 5’ clones and P1T7 is identical apart 

from missmatches incorporated into the P1T7 clone through the use of the PI primers 

that was of a degenerate nature.



The isolation o f Pfu proof-read long and short clones of 

maturing and germinating a-galactosidases.

Due to the fact that the extreme 5’ and 3’ ends of the long and short a-galactosidases 

from both maturing and germinating a-galactosidases were now known it was decided 

that a final proof reading PCR would be carried out to isolate full 5’ to 3’ clones for 

full sequencing.

Primers were designed to anneal to the extreme 5’ end of the otrgalactosidase (SI) and 

also to the 3’ ends of the previously sequenced short and long versions of the cDNA 

(A1 and A3).

Maturing endosperm RNA was isolated as before and Dnase treated. 1st strand cDNA 

was produced using the oligo-dT-RiRo-T7 primer. PCRs were then set up using 

Sl+Al primers, S1+A3 primers or SI, A1 and A3 single primer controls. The PCRs 

were carried out in duplicate using Pfu and Taq. The results of the reactions can be 

seen in figure 64.
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1130bps

(361bps
2322bps 
2027bps

564bps

GelB

Figure 64. Full length a-galactosidase PCRs. Gel A shows the results o f the Pfu 

reactions and gel B shows the results o f  the Taq controls. Both gels contain in lane 1 

H indlll markers and in lane 7 Ikb markers. Lane 2 contains the results o f the S l+ A l 

PCR. Lane 3 contains the results o f  the S1+A3 PCR. Lane 4 contains the SI only 

single primer control, lane 5 contains the A1 only control and lane 6 the A3 only 

control.

Figure 64 shows that the Taq polymerase produced PCR products of the size expected 

of the short and long versions of the maturing a-galactosidase. However, the Pfu has 

produced no PCR produsts at all.

The Pfu PCRs were repeated using highly extended chain elongation times as shown 

below

2000bp 
1500bp
lOOObp
750bps
500bps
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Standard Taq PCR 

1 cycle of:- 

50°C (annealing)

72°C (cDNA extension) 

then 30 cycles of:- 

94°C (melting of strands) 

50°C 

72°C

then 1 cycle of:- 

72°C

Pfu PCR 

1 cycle of:- 

2 minutes 50°C (annealing)

10 minutes 72°C (cDNA extension)

then 30 cycles of:- 

1 minute 94°C (melting of strands)

1 minute 50°C

1V2 minutes 72°C

then 1 cycle of:- 

15 minutes 72°C

The results of the extended PCR are shown in figure 65.

1 0  minutes 

2 0  minutes

1 minutes 

1 minutes 

5 minutes

15 minutes
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6557bps— 
4361 bps—
2322bps— 
2027bps-

564bps

I  1 2 3
Figure 65. Full length a-galactosidase Pfu PCRs. Lane 1 contains Hindlll markers. 

Lane 2 contains the results o f the S l+ A l PCR and lane 3 contains the results o f  the 

S1+A3 PCR.

Figure 65 shows that the extended Pfu PCR has produced products of the size 

expected of the long and short a-galactosidases. The bands were excised and used in 

invitrogen T/A cloning. The resultant white colonies were checked using PCR 

screening. Midi-sized plasmid preparations were carried out using the positive 

colonies and these preparations were used for sequencing.

The Pfu PCRs were repeated to isolate full length clones from germinating 

endosperms. Germinating endosperm RNA was isolated as before and DNased. 1st 

strand cDNA was produced using the oligo-dT-RiRo-T7 primer. PCRs were then set 

up using Sl+Al primers, S1+A3 primers or SI, A1 and A3 single primer controls and 

the PCRs were carried out using Pfu with extended elongation times. The results of 

the reactions can be seen in figure 66
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23130bps
9416bps
6557bps
4361bps

2322bps
2027bps 2000bps

1500bps
1000bps

564bps 500bps

Figure 66. Full length a-galactosidase PCRs. The gel contains in lane 1 Hindlll 

markers and in lane 8 lkb markers. Lane 2 contains the results o f  the S l+ A l PCR. 

Lane 3 contains the results o f the S1+A3 PCR. Lane 4 contains the SI only single 

primer control, lane 5 contains the A1 only control and lane 6 the A3 only control.

Figure 64 shows that the Pfu PCR has produced products of the size expected of the 

long and short a-galactosidases. The bands were excised and used in invitrogen T/A 

cloning. The resultant white colonies were checked using PCR screening and 

positives were used in plasmid preparations which were then feed into automatic 

sequencing reactions.
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The full sequences o f the Pfu proof-red long and short clones o f  

maturing and germinating a-galactosidases.

The DNA sequences obtained by Unilever from the automatic sequencing of each of 

the Pfu produced oc-galactosidase clones were analysed by the computer program 

SeqMan (DNAStar) and organised into single whole sequences (contigs). The 

sequences are shown below

M a t u r i n g  a l p h a - g a l a c t o s i d a s e  c o n t i g .

GCCCTAAATCCTTTAAAAGCCACCGCCCAAGCTACTTTTATTTCTCTTCTTTCTTTC

TTTGTTTCTTAACTATTATCAGCTTGGGGCGTTGGCCTATATACATATATATACATA

TACATACAAAAGATCATTATATAAGTAGCATCTTCCACTTCATCTATATATCATATA

ACACTCACACGTATACACTACACACACACTCATATATATATATATAGAGAGAGAGAG

AGAGAGAGAGATTTATATAGAAAGAAATGGAGAAAATGATGATGTGGGCAAAGGTTG

TGTTGTGCTTGTTTTGGGTCTTGAATGCTTCTAATTGTTCAGGTCGCTTGTTGAACA

CAATTGGCAATGATCACAACAACATCCATGGAAGACTACTTCTTGGAAATGGACTTG

GAAACACTCCTCCCATGGGATGGAATAGCTGGAACCACTTTCAGTGTGACATTAATG

AGGAGATGGTTCGAGAAACAGCTGATGCAATGGTGTCAACGGGTCTTGCATCTTTGG

GGTACGAATACGTCAATTTAGATGATTGCTGGGCTGAACTTAACCGAGACTCTAAGG

GAAATATGGTTCCTAGTGCTTCAAAATTTCCTTCAGGAATTAAGGCTCTGGCTGATT

ATGTTCATAGCAAAGGATTGAAGTTTGGGGTTTATTCTGATGCTGGAAACCAAACAT

GCAGTAAAGCTATGCCTGGATCACTAGGACATGAGGACCAAGATGCAAAAACATTTG

CTTCCTGGGGGGTTGATTTCTTGAAGTATGACAATTGTAACACCAATGATATAAGCC

CAAGAAATAGGTATCCAAAAATGTCTGAAGCTCTAGCAAATTCTGGAAGGGCAATCT

TCTTCTCTATGTGTGAATGGGGATCAGAAGACCCTGCACTATGGGCCAAAAGTGTGG
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GAAATAGTTGGAGAACAACAGGAGATATTGAAGATAAGTGGGAAAGTATGGCATCTA

TTGCTGACCAAAATGACAAATGGGCATCTTATGCTGGACCTGGAGGGTGGAATGATC

CTGATATGCTTGAAGTTGGAAATGGAGGCATGACAACAGAAGAATATCGTTCTCATT

TTAGCATATGGGCATTAGCTAAGGCTCCTTTGTTGATTGGTTGTGATGTTCGATCAA

TGGATGGCGCAACATACGGACTGCTAAGCAACAAGGAAGTTATTGCAGTAAACCAAG

ACAGTCTAGGAGTCCAAGGAAAGAAGGTGAAAAGTGATGCTGGTTTGGAGGTTTGGC

CAGGTCCTCTGAGTGATAACAGAGTGGCAGTGGTGTTGTGGAATAGAAGTTCATCAA

AAGCTACTGTGACTGCATCTTGGTCTGACATAGGGCTTGAAAAAGGAAAGGTGGTCA

CTGCAAAAGATTTATGGGAGCACACTACAAAAGCATCAGTTTCAGGACAAATTTCTG

CAGATATAGATTCACATGCTTGTAAGATGTATGTTCTGACTCCCAATTAAGGCAGAC

AGGAAGGTGATGAAAGCCAAGGTTTTAAGGAAGAGAAATACAATCCAAGGATTCAAA

GAAGGATGGAGAAAATAAACATGGAGTTTATTTTTCAATAAGAAATATATAGAAATA

ATTAAATAAGATAGAAATTGCCTGAGATTTCTATCATTATTTGTATTATTGGAGCAT

TGAGATTTGAGACCTTTTGATTTCAATTCAATAATTATACCGCAAATGTTTCTCTAT

ATTTTCCATAATTATGGTGATTATAATAAATGTTAAATTTGCTTGATG
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G e r m i n a t i n g  a l p h a - g a l a c t o s i d a s e  c o n t i g .

TGCCCTAAATCCTTTAAAAGCCACCGCCCAAGCTACTTTTATTTCTCTTCTTTCTTT

CTTTGTTTCTTAACTATTATCAGCTTGGGGCGTTGGCCTATATACATATATATACAT

ATACATACAAAAGATCATTATATAAGTAGCATCTTCCACTTCATCTATATATCATAT

AACACTCACACGTATACACTACACACACACTCATATATATATATATAGAGAGAGAGA

GAGAGAGAGAGATTTATATAGAAAGAAATGGAGAAAATGATGATGTGGGCAAAGGTT

GTGTTGTGCTTGTTTTGGGTCTTGAATGCTTCTAATTGTTCAGGTCGCTTGTTGAAC

ACAATTGGCAATGATCACAACAACATCCATGGAAGACTACTTCTTGGAAATGGACTT

GGAAACACTCCTCCCATGGGATGGAATAGCTGGAACCACTTTCAGTGTGACATTAAT

GAGGAGATGGTTCGAGAAACAGCTGATGCAATGGTGTCAACGGGTCTTGCATCTTTG

GGGTACGAATACGTCAATTTAGATGATTGCTGGGCTGAACTTAACCGAGACTCTAAG

GGAAATATGGTTCCTAGTGCTTCAAAATTTCCTTCAGGAATTAAGGCTCTGGCTGAT

TATGTTCATAGCAAAGGATTGAAGTTTGGGGTTTATTCTGATGCTGGAAACCAAACA

TGCAGTAAAGCTATGCCTGGATCACTAGGACATGAGGACCAAGATGCAAAAACATTT

GCTTCCTGGGGGGTTGATTTCTTGAAGTATGACAATTGTAACACCAATGATATAAGC

CCAAGAAATAGGTATCCAAAAATGTCTGAAGCTCTAGCAAATTCTGGAAGGGCAATC

TTCTTCTCTATGTGTGAATGGGGATCAGAAGACCCTGCACTATGGGCCAAAAGTGTG

GGAAATAGTTGGAGAACAACAGGAGATATTGAAGATAAGTGGGAAAGTATGGCATCT

ATTGCTGACCAAAATGACAAATGGGCATCTTATGCTGGACCTGGAGGGTGGAATGAT

CCTGATATGCTTGAAGTTGGAAATGGAGGCATGACAACAGAAGAATATCGTTCTCAT

TTTAGCATATGGGCATTAGCTAAGGCTCCTTTGTTGATTGGTTGTGATGTTCGATCA

ATGGATGGCGCAACATACGGACTGCTAAGCAACAAGGAAGTTATTGCAGTAAACCAA

GACAGTCTAGGAGTCCAAGGAAAGAAGGTGAAAAGTGATGCTGGTTTGGAGGTTTGG

C C A G G T C C T C T G A G T G A T A A C A G A G T G G C A G T G G T G T T G T G G A A T A G A A G T T C A T C A

A A A G C T A C T G T G A C T G C A T C T T G G T C T G A C A T A G G G C T T G A A A A A G G A A A G G T G G T C

ACTGCAAAAGATTTATGGGAGCACACTACAAAAGCATCAGTTTCAGGACAAATTTCT
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GCAGATATAGATTCACATGCTTGTAAGATGTATGTTCTQACTCCCAATTAAQGGAGA

CAGGAAGGTGATGAAAGCCAAGGTTTTAAGGAAGAGAAATACAATCCAAGQATVCAA

agaaggatggagaaaataaacatggagtttatttttcaataagaaatatataqaaat

AATTAAATAAGATAGAAATTGCCTGAGATTTCTATGATTATTTGTATTATTGGAGCA

TTGAGATTTGAGACCTTTTGATTTCAATTCAATAATTATACCGCAAATGTTTCTGT

The two Senna a-galactosidase nucleotide sequences were then compared using the 

program MegAlign (Dnastar) which utilised the Clustal sequence aliguwenst algo*Mm 

(Higgins and Sharp 1989), The alignments are shown
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g e r m i n a t i n g  a - g a l . s e q  
m a t u r i n g  a - g a l . s e q

A- g e r m i n a t i n g  a - g a l . s e q  
A- m a t u r i n g  a - g a l . s e q

79 0

T G A T A T  A A G C C C A A G  
T G A T -A  T A * , S  C C i # A  A  G 2

81 0

. .. . . ,3 T g e r m i n a t i n g  a - g a l . s e q  
'  T A  G' G T m a t u r i n g  a - g a l . s e q

820_1 830 840

A T t  C A A A  A A T G T C T'G* A A G-'.CIT C 1
811 A T ' C  C A A A  A A T G T C T G A A G C T C 7  A \

T g e r m i n a t i n g  a - g a l . s e q  
F T m a t u r i n g  a - g a l . s e q

850 8604-
8 70

G G A A G G G C A A T C T T C T  T i t :  T C W  
■-* G A A G G G C A A T C .?  7 c;T.;!T f l C  T/.

. G T G-T G g e r m i n a t i n g  a - g a l . s e q  
G T G T G m a t u r i n g  a - g a l . s e q

890

G G G A T ;C A .G A AU3.A C C  
G 5 , 5  a  :G A A ' i ^ A  C C

900
4 -

T G G G g e r m i n a t i n g  a - g a l . s e q  
f T G m a t u r i n g  a - g a l . s e q

910 920 930

g e r m i n a t i n g  a - g a l . s e q  
m a t u r i n g  a - g a l . s e q

991

940

-  T; A ?  T G A A G A T A A G T G G 
i ' " ' A 7  A T T. G A A .G  A T A K  G T G G

970 980

C.C T . A . T  T. G C T G A C C A A A A T 
A i S l c  T  A T T G C T S A C C A A A A T

1000 1010

'■A g e r m i n a t i n g  a - g a l . s e q  
A m a t u r i n g  a - g a l . s e q

J g e r m i n a t i n g  a - g a l . s e q  
m a t u r i n g  a - g a l . s e q

1020

A r  c T T  A f  G C T-G G A C C T G G A G  G G T G G  A g e r m i n a t i n g  a - g a l .
991 G G S i  A T: C T T A T 'G  C T -G G A C C 7  G G A G; G G T G G-A m a t u r i n g  a - g a l . s e q

1030  1040 1050

1021 A T .G  A T O O  T G A T A T G-C T T G A A G T T G G A A A IT  G g e r m i n a t i n g  a - g a l . s e q  
1021 A T 0 A 7 C C T G A T .A T G G T T G A 'A  G T T G G  A A A - T ' C  m a t u r i n g  a - g a l . s e q

1060
-A

A .7 G A C A A C A G A A G  . 
' ..C A T  5  A-C  A A C A. 6  A A G

1070-4 1080

A T A T .C.-G T T C T C germinating a-gsi.seq 
A T A T t  G 7  T C T , C  m a t u r i n g  a - g a l . s e q
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Alignment Report of Unfitted, using Clustal method with Weighted residue weight table.
Sunday, September 26,1999 5:06 PM........   ■*..........     i ..,------------...................~ ......- ------ i_ p ._ ~ ._ - ;

1Q90 1100  1110

1061  A T T T T; A-' G C A T, A T G G G C A X T A G C T A A Q 0 , 0  T C g e r m i n a t i n g  a - g a l . s e q  
1081 A T T T T A G  C A T A T  G G G  C A T T A G C T A A G  S ..C .T  C m a t u r i n g  a - g a l . s e q

11 401120 1130

A T C A A g e r m i n a t i n g  a - g a l . s e q  
A A m a t u r i n g  a - g a l . s e q

1150 1160
Jr.

1170J-
11 41 T G T C *<?-C A ‘A C A ’T-'-A C G GT.A C T G X

T A  A G'-C A g e r m i n a t i n g  a - g a l . s e q  
3S A A G C A m a t u r i n g  a - g a l . s e q

1171
1171

1201
1201

1180  11 9 0  1200

A " ' c ' a  A G G A A G T T A T T G C A G  T ;A  A A C C A A G A C  A  g e r m i n a t i n g  a - g a l . s e q  
A C A A G G A A G T T A T T &  C A G T A A A C C A A G A . o W  m a t u r i n g  a - g a l . s e q

1210 1220JL. 1230
. . C T A G G A G T C C A A G G A A A G A A G 
G IF C T A .G G A' G T C C A A G G A A A  G-A A G G '

g e r m i n a t i n g  a - g a l . s e q  
m a t u r i n g  a - g a l . s e q

1240

1231
1231

1250
sfe?

G 1 ? ^ . T  G C T G G T  X 'X  G G A -G G T T T-G G C C A 
G T 5  A X ,G C T G G T T T G G A G G T T T G G C C A

1260
.■■V. L
a G T..g; g e r m i n a t i n g  a - g a l . s e q  
l . S .  T , l ‘ m a t u r i n g  a - g a l . s e q

1270

---- ---- p. ...........- ,

1260
................ » ..................

.......... i
1290

1261 I  T
1251 i f

i C.  T G K G T G A.  T A .A: C A G 
'■St’T- G A ‘G T G A T A A C A G

A. G 7  G g : c  A G 
'A G T G G-.C A G

T G G. T G T, ■ 
T G G T 0  T :

1300 13 10
................i , , . -

1320
........................ i

1291  T;ip 
1291 -T. G

T «  G A A T A G A A G T T C.
G X . A T A G A A - G  7  T C.

.A T C A A JA A G 
A-.T C A A W  A.G-

C T A C X G . 
C T A C T  G i

1330 1340 1350

g e r m i n a t i n g  a - g a l . s e q

1321
1321

1351
1351

A 'C -X .  G C - A T  Cv.T. t  G ;G t  e  b A c  a  r  a  b . u  g  c  i i g g e r m i n a t i n g  a - g a i . s  
A C. T G C A T C 7  T G G 7 C T G A C A T  A-G G G C. r T  G m a t u r i n g  a - g a l . s e q

13 60  1370  1380
   t i.     — „ —„ ——4——   —   -c— i -
A A A A. A G G A A ArG G T/G G T C A C T G C A A  A A G A T T g e r m i n a t i n g  a - g a l . s e q  
A A A A A G G-A A A G G T G G T C A C T G C  X-'A A A G m a t u r i n g  a - g a l . s e q

-------------------------------------- 1----------------------------------------1-------------------------------------- r-
13 90  1400 1410i i..... .......---- J_

1381 ,T. A  T G G G A G C A C A C T A C A A A A G C A T C A G T X T  g e r m i n a t i n g  a - g a l . s e q
1381 7  A T G G G -A G C A C A C T A C A A A A G C A T .C  A G 321T T m a t u r i n g  a - g a l . s e q

---------------------   — i-------------------------- - — i r~
1420  1430  1440

1411 C A C- G A C A A A T T T C T G C A G. A T A T A ;G-A T T d:A' 0  g e r m i n a t i n g  a - g a l . s e q
1411 C A ~G 'G A C A A A T T T C T G C A G A T A T A G A T T C. A C m a t u r i n g  a - g a l . s e q
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Aiignment Report of Untitled, using Clusral method with Weighted residue weight table
Sunday, September 26,1999 5:06 PM

1441
1441

1450 1460JL- 1 4 7 0_L
A T  G -C T T G T A A G A T G ;T A T G T T C T G A C T'-C C C a  germinating a-gal.seq 
A T G C T T G T A A G A ? G T A T G't T C T G A C T C C C A maturing a-gal.seq

1 4 8 0  14 90  1500

.T A A G G C A G 'A-C A.:G ;G A A ^ ' G -  T G A T G A C C g e r m i n a t i n g  a - g a l . s e q
:'T  A A G G C A 3• A C A G G A A .G G T G A T G A A A G C,’&  m a t u r i n g  a - g a l . a e q

1510

1501 A A G G T T T T A A.G G A A G A G A A A T A C A A : 
1501 A A G  G T T  T T A A G  G A A C A G  A A A T A C  A A '

1530

C A A, g e r m i n a t i n g  a - g a i . s e q  
C A A m a t u r i n g  a - g a l . s e q

1540

1531
1531

1550-U
1560

G G A T; CT • C A A A G A A G G A T G G A G A A 'A  A T " 
G G A f ' ' T : C "A A A G A A G G A T G G A G A oA'A A T

V A C A g e r m i n a t i n g  a - g a l . s e q  
i A C A m a t u r i n g  a - g a l . s e q

1 57 0 1590rJ- 1590

1561 T G G A G  T -T T A T T T: T T C A A T A A G A A . 
1561 T G G A G T 7  T A"T T T T T C A A T A A G A A .

T A T A g e r m i n a t i n g  a - g a l . s e q  
W A T  A m a t u r i n g  a - g a l . s e q

1610

1591
1591

1600
T a A  T T a  a  A T a  A..G A T A  G A A A T-;:T. G C C T; 
rn a a T T-A  A A T  A A G  A T A.-<3 'A* A A T T G C C . T;:

1620

.  g e r m i n a t i n g  a - g a l . s e q  
5 m a t u r i n g  a - g a l . s e q

1630 1640

T C ,A 7 T A T T T G T A T T 
?  C A T 7  A ?  T T G T A T

1650

T G G A G  g e r m i n a t i n g  a - g a l . s e q  
' T G G A; G m a t u r i n g  a - g a l . s e q

1660 1670 1680

1651
1651

G A T T  G A G A 7  T- ,T G A G A C C .T : T  T T G A T T T C A A  T g e r m i n a t i n g  a - g a l . s e q  
, 0  A T 7  G A G A T T T G A G A C C T 7 T T G A T  T T C A A T  m a t u r i n g  a - g a l . s e q

1690  1700   ! ,   L— :-------- —
1681 Ti;C A A T A A T T A T  A C C G C A A A T G"T: T .T C T C T  g e r m i n a t i n g  a - g a l . s e q
1681 T-'G A A T  A A T T A T  A C C G C A A .  A T G  T T T  C T..C;.T. m a t u r i n g  a - g a l . s e q

D e c o r a t i o n  ' D e c o r a t i o n  # 1 ' :  S h a d e  ( w i t h  b l a c k  a t  25% f i l l !  r e s i d u e s  t h a t  m a tc h  
g e r m i n a t i n g  a - g a l . s e q  e x a c t l y .
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The DNA sequences of the maturing and germinating a-galactosidases can be seen to 

be 100% identical. The two forms of the a-galactosidase must therefore be 

transcribed from the same gene within the senna genome. Using the SWISS-PROT 

Internet resource both the Senna a-galactosidase DNA sequence was translated into 

amino acid sequence. The full amino acid sequence (including the signal sequences) 

are shown below.

S e n n a  O c c i d e n t a l i s  a l p h a - g a l a c t o s i d a s e  a m in o  a c i d  

s e q u e n c e .

M E K M M M W A K V V L C L F W V L N A S N C S G R L L N

T I G N D H N N I H G R L L L G N G L G N T P P M G W N S

W N H F Q C D I N E E M V R E T A D A M V S T G L A S L G

Y E Y V N L D D C W A E L N R D S K G N M V P S A S K F P

S G I K A L A D Y V H S K G L K F G V Y S D A G N Q T C S

K A M P G S L G H E D Q D A K T F A S W G V D F L K Y D N

C N T N D I S P R N R Y P K M S E A L A N S G R A I F F S

M C E W G S E D P A L W A K S V G N S W R T T G D I E D K

W E S M A s I A D Q N D K W A S Y A G P G G W N D P D M L

E V G N G G M T T E E Y R S H F S I W A L A K A P L L I G

C D V R S M D G A T Y G L L S N K E V I A V N Q D S L G V

Q G K K V K S D A G L E V W P G P L s D N R V A V V L W N

R S S S K A T V T A S W S D I G L E K G K V V T A K D L W

E H T T K A S V S G Q I S A D I D S H A C K M Y V L T P N

S t o p

17S



The Senna a-galactosidase amino acid sequence along with the amino acid sequences 

of the a-galactosidases of Coffee and Guar (the only published plant a-galactosidases 

on the SWISS-PROT database) were used in a MegAlign clustal multi-sequence 

alignment. The results of the alignment are shown overleaf:-



Alignment Report of mult-pro-altgn2, MEG, using Clustal method with PAM250 residue weight table. Page 1
Friday. September 17, 1999 10:24 AM
'  -- ----------------------------------------------------— r - ~ ----------------------------------------       - - r — ..................

10 20

1 M.E..K M -  - M M  W:A K V. V L C L  F W.V L s e n n a - g e r m - a g a l . PRO
' K M -  -  M:M W A K V V T, C L F W V L s e n n a - m a t u r i r i g - a g a l . PRO

1 j j A  T H Y S I  i  G G M I  I  V V - t  L M I I  g u a r - a - g a l . PRO
1 - - - - - - - - - - - - - - - -  -  c o f f e e - a - g a l . PRO

30 4.0

19 N A S N C S G. R L .L N -  -  -  -  -  T I  "G N s e n n a - g e r m - a g a l . PRO
19 N A S N C S G K L L N ------------------- T ILG N s e n n a - m a t u r i n g - a g a l . PRO
21 G S E -  -  G G;R ;L:L E K K N R T S A E A  g u a r - a - g a l . PRO
4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ g  p g  T c o f  f e e - a - g a l . PRO

50 60

34 J 3 H N N I H G R L L  L'.G N G ~L ~g '¥ :^ P  ¥  s e n n a - g e r m - a g a l . PRO
34 D H N N I H G R L L L G N . G L  G N T  P P s e n n a - m a t u r i n g - a g a l . PRO
39  E H Y N V R -  R Y L A E N G L G Q T  P 'E‘ g u a r - a - g a l . PRO
8 E D Y T -  R -  R S L L A N \G L G L T P |  c o f  f e e - a - g a l . PRO

s e n n a - g e r m - a g a l . PRO 
s e n n a - m a t u r i n g - a g a l . PRO 
g u a r - a - g a l . PRO 
c o f f e e - a - g a l . PRO

s e n n a - g e r m - a g a l . PRO 
s e n n a - m a t u r i n g - a g a l . PRO 
g u a r - a - g a l . PRO 
c o f f e e - a - g a l . PRO

110 120

94 D D C W A E I  N R D S K G N M V P S A S  s e n n a - g e r m - a g a l . PRO
94 D jp c  W A E L N R D S K G N M V P S A S s e n n a - m a t u r i n g - a g a l . PRO
98 r.) f) C ? A r  I N R r S t S N M V P N A A g u a r - a - g a l , PRO
66 D D C  W A E L N R U S Q G N L V P  K G S c o f  f e e - a - g a l . PRO

180



Alignment Report of mult-pro-align2.MEG, using Clustal method with PAM250 residue weight table. Page 2
Friday, September 17,1999 10:24 AM ___________________________________

13 0  140

s e n n a - g e r m - a g a l . PRO 
s e n n a - m a t u r i n g - a g a l . PRO 
g u a r - a - g a l . PRO 
c o f f e e - a - g a l . PRO

ibO ^  160

134 G V Y S D A G  N .0 T C.  S K I M  P G/S'  L G s e n n a - m a t u r i n g - a g a l . PRO
138 G V Y S D A G N Q T C S K R M P G* S L G g u a r - a - g a l . PRO
106  G p i s  O A G T Q T C S K t : m  P &/ S L G. c o f  f e e - a - g a l . PRO

1 70  180
 ........... ..... ----- ------ .... ---------- j-,,.... ..........

154 H E D Q D A K T F A S  W G V D F L KAY D s e n n a - g e r m - a g a l . PRO
154 H, E ..p Q D A K T F A S, W G V, D F I  K Y D s e n n a - m a t u r i n g - a g a l . PRO
158 H E E Q D A K  T F A  S >  G V D Y L K Y D g u a r - a - g a l . PRO-
126 --HE E Q D 'A  K T F A S '• W G V'D Y L K.Y D c o f  f e e - a - g a l . PRO

190  2 00

17 4 N C N T N D I . S  P R N R  Y P K M S E A L s e n n a - g e r m - a g a l . PRO
174 N C N T N D I S P ;R N R Y p ' K  M S E A L  s e n n a - m a t u r i n g - a g a l . PRO
178 IRC E N L G I / S  V K E R . ’Y P P M  G K A L g u a r - a - g a l . PRO
14 6 I f l 'c  N N N N I ' S  P K E P i f ' S  K A L c o f  f e e - a - g a l . PRO

114 K F P S G I  K A L A D Y V H S K. G L K F
114 K F P S G I K A 1 A  D Y V H S K G L K F
118 A F P S G I K A L A D  Y V H S K G L P L
86 T F P S G I  K A L A D Y V H S K G L K L



Alignment Report of mutt-pro-align2.MEG, using Clustal method with PAM250 residue weight table.
Friday, September 17,1999 10:24 AM

Page:

250  260

234 :;E' S M A S I  A D Q N D K W A S  Y A G P  G s e n n a - g e r m - a g a l . PRO
234 JS :S  H A S I  A D Q N D K W A S Y A G" P G s e n n a - m a t u r i n g - a g a l . PRO
238 N S M T S I  A D S N D K W A S Y A G:;P G g u a r - a - g a l . PRO
206 S S M T S R A D M N D K  W A S  Y A G P  G c o f  f e e - a - g a l . PRO

2 7 0  2 8 0

254 G W N D P DM L E V G N G G M T ?  E 'E  Y s e n n a - g e r m - a g a l . PRO
254 5G W N D P D M  L-E V G N G G M T T E E Y  s e n n a - m a t u r i n g - a g a l . PRO
258 ,'G W N.D P D M L E V G N G G M T  T E,„ E Y g u a r - a - g a l . PRO
226 G W N D P D M L E V G N G GM  T T' T E Y c o f  f e e - a - g a l . PRO

2 9 0  30 0

27 4 R S H F S I  W A L A K A P L L I. G G D -V s e n n a - g e r m - a g a l . PRO
27 4 R SvK F I s  I  W A L A K A P L L I  G; C D W; s e n n a - m a t u r i n g - a g a l . PRO
27 8  R SMI F . s  I ,.W A .L  A K A P L L V Gl:C D I  g u a r - a - g a l . PRO
24 6 R S B F S I  W A L A K A  P L  L I  G C D  1 c o f  f e e - a - g a l . PRO

3 1 0  3 20

2 94 R S M D'-G A T Y. G L -L S N K E V I ' A V N s e n n a - g e r m - a g a l . PRO
294 R S M D'-G A T Y G L L 3 M K E V ' - f  A V t!. s e n n a - m a t u r i n g - a g a l . PRO
298 R A M D' D T .T  K E L I  5 N A E v"i;A V. 11 g u a r - a - g a l . PRO
266 R S/M D G A T  F Q L L  S N A E V I  A V %  c o f  f e e - a - g a l . PRO

330 340

314 "q D S L G V-Q G K K V K'-S D A G L E v".w" s e n n a - g e r m - a g a l . PRO
314 Q D S  L G  V Q G K K -V K S D A G L E V- W s e n n a - m a t u r i n g - a g a l . PRO
318 Q D K L.G V Q G K K V K S T N D :L E V W g u a r - a - g a l . PRO
28 6 ,Q DI K L G  V Q G N K V K T Y G D 'L E V -W c o f  f e e - a - g a l . PRO

350 360

334 P G P L S D N R V A. V f  L W N .R S S S K s e n n a - g e r m - a g a l . PRO
334 P G P L S D N R V A V V L W M R S S S K s e n n a - m a t u r i n g - a g a l . PRO
338 A G P L S D N K V A V I L W N R. S S' S R g u a r - a - g a l . PRO
306 A G P L S G K R V A V A.L  W N R G S S T c o f  f e e - a - g a l . PRO

182
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3 70  380

354 A T V T A 5 W S D I  G L. E K G'K V V T A s e n n a - g e r m - a g a l . PRO
354 A; T V  T A 3 : W S D I G L E K G K; V V T A s e n n a - m a t u r i n g - a g a l . PRO
358 A T V T A 5 W 8 D I G L Q Q G t T V D A- g u a r - a - g a l . PRO
326 A I f  I  T A Y W 3 D  V" G L P S T A V ' V n I  c o f  f e e - a - g a l . PRO

3 9 0  400

374 K D -I, W:E k ;.T TiK A.S..V S G Q I S A D  I  s e n n a - g e r m - a g a l . PRO
37 4 K D L W E' H ' f  T t  A $':;.V  S G Q I  S ' A ; 'D I  s e n n a - m a t u r i n g - a g a l . PRO
378 R D L W E H S T Q S L V S G“ E I  S A-E I  g u a r - a - g a l . PRO
34 6 R D L W A H S T E K S V K G Q I  S A A V c o f  f e e - a - g a l . PRO

s e n n a - g e r m - a g a l . PRO 
s e n n a - m a t u r i n g - a g a l . PRO 
g u a r - a - g a l . PRO 
c o f f e e - a - g a l . PRO

D e c o r a t i o n  " D e c o r a t i o n  #1 *: S h a d e  ( w i t h  b l a c k  a t  25% f i l l )  
r e s i d u e s  t h a t  m a t c h  s e n n a - g e r m - a g a l . PRO e x a c t l y .

410

3 94 S H A C K  M Y V L T P N
394 D' S  H A C /K M Y V L T P; N
398 D S H A C K M Y V L T P R S
366 A H D S K M* Y V L T P'  Q
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From the plant a-galactosidase multiple sequence alignment it was possible to draw 

up a table of percentage similarity, this is shown in Table 21.

Table 21. The percentage similarity o f the senna, coffee and guar a-galactosidase 

amino acid sequences.

Senna Coffee Guar

74.1 75.7 Senna

75.9 Coffee

Guar

The multiple alignment was also used to produce a phylogenetic tree of the Senna, 

Coffee and Guar a-galactosidases. The tree is shown in figure 67.

--------------------------------- Senna

-------------------------------- Guar
—Coffee

Figure 67. A phylogenetic tree showing the distances between the amino acid 

sequences o f maturing Senna, germinating Senna, Guar and Coffee a-galactosidases.

Exhaustive database searching using the ExPASy bot revealed a further 11 published 

non-plant a-galactosidase sequences. These sequences were used with the plant 

sequences to produce a definitive a-galactosidase multiple sequence alignment. The 

percentage similarities of the a-galactosidases areshown in table 2 2 .
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Table 22. The percentage similarity o f  all published a-galactosidase amino acid

sequences.

A B C D E F G H I J K L M N
25.1 32.3 29.2 25.6 26.7 23.4 23.8 23.1 23.1 23.1 24.4 28.8 24.7 A

33.9 27.5 37.8 39.9 21.3 21.7 22.4 22.4 22.4 22.0 28.1 24.4 B
75.9 36.0 31.5 33.1 35.2 35.7 35.7 35.7 33.9 75.7 35.2 C

28.7 28.5 29.2 29.2 29.7 29.7 29.7 31.6 74.1 32.8 D
78.0 23.1 23.8 22.6 22.6 22.6 22.8 30.3 26.1 E

22.4 23.2 22.7 22.7 22.7 23.2 30.0 23.9 F
97.5 96.0 96.0 96.0 80.3 30.8 68.0 G

96.8 96.8 96.8 80.9 30.3 67.8 H
100.0 100.0 81.5 31.5 67.0 I

100.0 81.5 31.5 67.0 J
81.5 31.5 67.0 K

32.3 68.7 L
31.0 M

N
Key
A-Aspergillus niger (den Herder et al 1992)
B-Caenorhabditis elegans (Wilson et al 1994)
C-Coffea arabica (Zhu and Goldstein 1994)
D-Cyamopsis tetragonoloba (Overbeeke et al 1989)
E-Homo sapiens (Komreich, Desnick and Bishop 1989)
F-Mus musculus (Ohshima et al 1995)
G-Saccharomyces cerevisiae MEL1 (Liljestroem 1985)
H-Saccharomyces cerevisiae MEL2 (Turakainen, Kristo and Korhola 1994) 
I-Saccharomyces cerevisiae MEL5 (Turakainen, Kristo and Korhola 1994) 
J-Saccharomyces cerevisiae MEL6  (Turakainen, Kristo and Korhola 1994) 
K-Saccharomyces paradoxus (Naumova et al 1996)
L-Saccharomyces spp (Naumova et al 1996)
M-Senna occidentalis
N-Zygosaccharomyces cidri (Turakainen et al 1994)

The full multiple alignment was also used to produce a phylogenetic tree of all the a- 

galactosidase sequences. The tree is shown in figure 6 8 .
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Figure 68. A phylogenetic tree with scaled braches showing the distances between 

the amino acid sequences o f all the published (%-galactosidases. The lower scale 

indicates the degree o f divergence.

The primary amino acid structures of the three plant a-galactosidases were used with 

the Swiss-model secondary structure prediction utility (Guex, N. and Peitsch, 1997. 

Peitsch, 1996. Peitsch, 1995) to produce an alignment of secondary structures, shown 

in figure 69.
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NM ALPHA.-GAL
LGNGLGNTPPMGWNSWNHFQCDINEEMVRETADAMVSTGLASLGYEYVNLDDCWAELNRD -Senna 
LLLLLLLLLLLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLEEEEELHHHLLLLLL

NM ALPHA-GAL
AENGLGQTPPMGWNSWNHFGCDINENWRETADAMVSTGLAALGYQYINLDDCWAELNKD | -Guar 
LLLLLLLLLLLLLLHHHHHLLLHHHHHHHHHHHHHHHHHHHHLLLEEEEELLLLLLLLLL|

ALPHA-GAL
LANGLGLTPPMGWNSWNHFRCNLDEKLIRETADAMVSKGLAALGYKYINLDDCWAELNRD | -Coffee 
LLLLLLLLLLLLLLHHHHHLLLLHHHHHHHHHHHHHHHHHHHLLLEEEEELLLLLLLLLL

NM NM+NG
SKGNMVPSASKFPSGIKALADYVHSKGLKFGVYSDAGNQTCSKAMPGSLGHEDQDAKTFA -Senna 
LLLLLLLLLLLLLLHHHHHHHHHHHLLLEEEEEELLLLLLLLLLLLLLLLHHHHHHHHHH

NM NM+NGPKC
SEGNMVPNAAAFPSGIKALADYVHSKGLKLGVYSDAGNQTCSKRMPGSLGHEEQDAKTFA | -Guar 
LLLLLLLLLLLLLLHHHHHHHHHHHLLLEEEEEELLLLLLLLLLLLLLLLHHHHHHHHHH|

NM NM
SQGNLVPKGSTFPSGIKALADYVHSKGLKLGIYSDAGTQTCSKTMPGSLGHEEQDAKTFA
LLLLLLLLLLLLLLHHHHHHHHHHHLLLEEEEEELLLLLLLLLLLLLLLLHHHHHHHHHH

-Coffee

PKC PKC CKII PK
SWGVDFLKYDNCNTNDISPRNRYPKMSEALANSGRAIFFSMCEWGSEDPALWAKSVGNSW | -Senna 
HHLLEEEEELLLLLLLLLLLLLHHHHHHHHHHLLLEEEEEELLLLLLLLLLLLLLLLLLL| 

PKC+CKII PKC CKII PK
SWGVDYLKYDNCENLGISVKERYPPMGKALLSSGRPIFFSMCEWGWEDPQIWAKSIGNSW -Guar 
HHLLEEEEELLLLLLLLLLLLLLHHHHHHHHHLLLEEEEEELLLLLLLLLLLLLLLLLLL 

PKC+CKII PKC CKII PK
SWGVDYLKYDNCNNNNISPKERYPIMSKALLNSGRSIFFSLCEWGEEDPATWAKEVGNSW | -Co f f ee 
HHLLEEEEELLLLLLLLLLLLLLHHHHHHHHHLLLEEEEEELLLLLLLLLLLLLELLLLL

CCKII CKII NM+CKII
RTTGDIEDKWESMASIADQNDKWASYAGPGGWNDPDMLEVGNGGMTTEEYRSHFSIWALA 
LLLLLLHHHHHHHHHHHHHHHHHHHLLLLLLLLLLLEEEELLLLLLHHHHHHHHHHHHHH 
CCKII CKII NM+CKII

-Senna

-GuarRTTGDIEDNWNSMTSIADSNDKWASYAGPGGWNDPDMLEVGNGGMTTEEYRSHFSIWALA 
LLLLLLHHHHHHHHHHHHLHHHHHHLLLLLLLLLLLEEEELLLLLLHHHHHHHHHHHHHH 
CCKII PKC+CKII NM+CKII
RTTGDIDDSWSSMTSRADMNDKWASYAGPGGWNDPDMLEVGNGGMTTTEYRSHFSIWALA | -Coffee 
LLLLLLHHHHHHHHHHHHHHHHHHHLLLLLLLLLLLEEEELLLLLLHHHHHHHHHHHHHH |

TKP NM CKII+PKC AM
KAPLLIGCDVRSMDGATYGLLSNKEVIAVNQDSLGVQGKKVKSDAGLEVWPGPLSDNRVA
HLLLLELLLHHHHLHHHHHHHLLLLEEEEELLLLLLLLLEELLLLLEEEELLLLLLLLEE

CKII CKII AM CKII
KAPLLVGCDIRAMDDTTHELISNAEVIAVNQDKLGVQGKKVKSTNDLEVWAGPLSDNKVA
HLLLLLLLLHHHHLHHHHHHHLLLLEEEEELLLLLLLLLEELLLLLEEEELLLLLLLLEE

CKII NM CKII PKC+AM
| KAPLLIGCDIRSMDGATFQLLSNAEVIAVNQDKLGVQGNKVKTYGDLEVWAGPLSGKRVA 
IHLLLLELLLHHHHHHHHHHHHLLLLEEEEELLLLLLLLLEELLLLLEEEELLLLLLLLEE

--Senna

--Guar

-Coffee
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NG+PKC CKII NM PKC+CKII PKC NM
WLWNRSSSKATVTASWSDIGLEKGKWTAKDLWEHTTKASVSGQISADIDSHACKMYVL | -Senna 
EEEEELLLLLLEEEEEEEELLLLLLLLEELELHHHLLLLLLLLLLEEEEELLLLEEEEEE|

NG+PKC CKII NM CKII
VILWNRSSSRATVTASWSDIGLQQGTTVDARDLWEHSTQSLVSGEISAEIDSHACKMYVL | -Guar 
EEEELLLLLLLLEEEEEEELLLLLLLELLHHHHHHHLLLLLLHHHHHEELLLLLLEEEEE|

NM NM PKCPKC NM
VALWNRGSSTATITAYWSDVGLPSTAWNARDLWAHSTEKSVKGQISAAVDAHDSKMYVL
EEEELLLLLEEEEEEEELLLLLLLLLLLEEHHHHHHLLLLLLLLEEEEEELLLLLEEEEE

-Coffee

TPN
LLL
PKC
TPRS
LLLL
TPQ
LLL

-Senna

-Guar

-Coffee

Figure 69. The alignment o f the secondary structures o f the Senna, Guar and Coffee 

a-galactosidases. Secondary structure codes are H  = helix, E  = extended (sheet), L = 

loop (other structure). In bold type are the substitution sites, PKC = Protein kinase C 

phosphorylation site, CKII = Casein kinase II phosphorylation site, TKP = Tyrosine 

kinase phosphorylation site, NM — N-myristoylation site, AM  = Amidation site, 

ALPHA-GAL = Alpha-galactosidase signature.
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Discussion

The initial aim of this project was to compare the a-galactosidase present in the 

maturing endosperm of Senna seeds and responsible for the late developmental 

change in the Man/Gal ratio of galactomannan with the a-galactosidase produced in 

the germinating Senna endosperm, responsible for the mobilisation of the 

galactomannan reserves.

The further aim of this project was to identify potential promoter and enhancer regions 

responsible for controlling the expression of the Senna a-galactosidase gene. If it was 

discovered that the maturing and germinating versions of the a-galactosidase were 

produced from different genes, then it would have been the maturing version’s 

regulatory elements that would have been the target for investigation. The regions of 

DNA upstream from the coding region would be sequenced and used in a database 

probe in an attempt to identify consensus sequences indicating where transcription 

factors would interact with the gene. If no matches were obtained, these upstream 

sequences could have provided the basis for an extensive series of reporter gene 

experiments (Goto et al 1989, Small et al 1992).

The reason for the interest in the (maturing) a-galactosidase promoter regions is that a 

potential application exists to utilise this work. Genetic manipulation of Guar, 

resulting in the expression of a-galactosidase in maturing guar seeds could producing 

the structural equivalent of the more costly Locust Bean Gum galactomannan (or 

indeed Senna galactomannan) in the annual guar plant.
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Due to the fact that the Senna plants had to be hand pollinated and also that maturing 

endosperm tissue had to be isolated by hand dissection, only very small amounts of 

tissue were available. Because of this, it was clearly impractical to attempt large-scale 

protein purifications in order to compare the two a-galactosidases. Therefore it was 

decided to carry out small-scale extractions of the two tissues, identify the appropriate 

bands on gels and to compare as far as possible, the properties of the enzymes. The 

ability to identify the a-galactosidase on gels was provided by the availability of an 

antiserum raised against the a-galactosidase from the endosperm of germinated guar 

(provided by Unilever).

The antibody anti-a-galactosidase used on the Westerns localised only a single a- 

galactosidase protein in the maturing and germinated endosperms (figures 15 and 17 

show this). Using the mobilities of the proteins on SDS-PAGE compared with 

molecular weight markers, a comparison of the apparent relative molecular masses of 

the a-galactosidases was made (figure 18). It was discovered that although the two a- 

galactosidases were very similar in size they did differ slightly. The size of the 

maturing a-galactosidase was calculated to be 44,000 Daltons and the germinating a- 

galactosidase was calculated to be 43,000 Daltons (Table 4). These two sizes fall 

directly between the sizes of the other plant a-galactosidases published, these are 

41.3kDa for Coffee (Zhu and Goldstein 1994) and 45.1kDa for Guar (Overbeek, et al 

1989).
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A further characteristic of the two proteins, which may be used to distinguish between 

them, is isoelectric point (pi). IEFs were run in order to identify the pi’s of both the 

maturing and germinating a-galactosidases. The activities of the a-galactosidases 

were localised on the IEF gels by using the PNP-a-gal assay. The activities of the a- 

galactosidases were then plotted against the pH of the region of the IEF where the 

activity was measured (figures 19 and 20). The pi of the maturing a-galactosidase 

was found to be pH 5.1 and the pi of the germinating a-galactosidase was pH4.9.

Further investigations into the similarity of the two Senna a-galactosidases were 

carried out by performing peptide mapping. Two different peptidases that cut at 

specific points were used to produce peptide fragments, which were run on SDS gels. 

It was discovered that in both cases maturing and germinating a-galactosidases 

produced identical digestion patterns (figures 22 and 23).

To further analyse the similarities between the maturing and germinating forms of the 

a-galactosidases, peptide fragments were generated by endo-peptidase digestion and 

then N terminally sequenced (the sequencing facilities were provided by Unilever). 

Due to the low levels of the a-galactosidases present in the protein preparations, only 

the non-peptidase treated samples produced N-terminal sequences that allowed direct 

comparisons between the maturing and germinating a-galactosidases. These 

sequences showed that the maturing enzyme contained 2  extra amino acids on the 

extreme N terminus when compared to the germinating enzyme.
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From these studies on the a-galactosidase proteins it was possible to summarise that:

1. The two a-galactosidases are of a very similar but slightly different size.

2. The two a-galactosidases have a very similar but slightly different pi.

3. The two a-galactosidases produce identical fragmentation patterns on digestion 

with endo-peptidases

4. The two a-galactosidases have identical N terminus amino acid sequences apart 

from the extreme N terminus where the maturing enzyme has two extra residues 

missing from the germinating enzyme.

It was therefore possible to conclude that the two a-galactosidases were different.

However, it was impossible to conclude whether the two enzymes were different due

to:-

A. Being produced from similar but slightly different genes expressed at the different 

developmental stages.

B. Differential post-translational modifications (such as differential signal sequence 

cleavage, phosphorylation, glycosylation, etc.) at different developmental stages 

taking place on the translated products of the same gene.

C. Artefactual exo-peptidase degradation due to the protein preparation method used.

To discover which of possibilities A, B or C above are true it was necessary to isolate

the cDNA of the a-galactosidases from both the maturing and germinating

endosperms.
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The initial RNA isolation attempts were made using the maturing endosperm tissue. 

A variety of RNA preparation methods were used as starting points for a number of 

experiments, these included, Lopez-Gomez (1992), Logemann (1987), Qiagen and 

Dynabead methods. In all the isolation attempts, the galactomannan present within 

the maturing endosperm presented problems, causing the lysed tissue to become very 

viscous and preventing the isolation of useful amounts of RNA. Attempted RT-PCR 

carried out using this limited amount of RNA resulted in the production of smears of 

nucleic acids (from very large to very small) on agarose gels (figure 31 demonstrates 

this).

Due to the problems encountered with the galactomannan present in the endosperms it 

was decided to temporarily abandon attempts to isolate RNA from the very 

galactomannan rich maturing endosperm. Instead, effort was concentrated on 

preparing RNA from endosperms of seeds that had been germinating for three days 

(and had, consequently, far less galactomannan present).

The isolation of RNA from the germinating endosperms again proved impossible 

using variations of the Qiagen kit. However the use of a modified version of the 

Lopez-Gomez method did produce a low but useable amount of RNA (shown in 

figure35).
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The germinating RNA was subjected to a DNA removal procedure (in order to 

prevent, in subsequent polymerase chain reactions, the amplification of a possible 

maturing a-galactosidase within the contaminating genomic DNA). First strand 

cDNA was produced as outlined in the methods section (Frohman et al 1988). After 

the first strand was produced it was subjected to an alkali lysis technique to remove 

contaminating RNA fragments that were postulated to be acting as primers in the 

previous PCRs and thus causing the nucleic acid smears seen before. 3’ RACE-PCR 

was carried out on the fully cleaned first strand germinating cDNA. The 3’ PCR 

produced products of the sizes expected from the known size of the a-galactosidase 

protein and the estimated locations of the primer sites along the cDNA (figure 36).

The PCR products were cloned using the Novogen T/A cloning system. The results of 

the cloning were disappointing, only one clone seemed to contain the inserted PCR 

product when checked using restriction digests (figures 38). This clone was used as a 

template in further PCRs (re-PCRed) to confirm that it did contain the correct insert, 

which it apparently did (figures 3 9  and 41). On sequencing this clone was shown not 

to contain any insert. The confirmation PCRs that gave a PCR band of the size that 

suggested that the correct PCR product had been cloned must have done so because of 

“mis-priming” events. Further attempts to clone the PCR products using the Novogen 

materials proved unsuccessful.

194



Blunt ended cloning was attempted using a method based on the Stratagene pCR- 

script SK(+) cloning method. This procedure produced no clones. The reason for this 

was found to be the result of the blunt ended inserts not ligating to the blunt cut 

pBluescript vector.

T/A cloning was again attempted, using the Invitrogen kit. This method produced 

clones that apparently contained inserts of the correct size (figure 43). Confirmation 

that the Invitrogen kit had cloned the PCR products of interest was provided again by 

using plasmid preparations as templates in confirmation PCRs.

The clones produced by Invitrogen cloning were sequenced manually. The resulting 

data was compared to the published plant a-galactosidase sequences available via the 

ExPASy database bot (coffee and guar). It was discovered that the obtained clones 

were between 6 6  and 87% identical to the coffee and guar nucleic sequences (Table 

13). It was therefore concluded that the clones obtained from the PCRs were 

germinating senna a-galactosidase.

In order to discover whether the germinating a-galactosidase gene was the only a- 

galactosidase present in the senna genome or whether a separate maturing a- 

galactosidase was present, southern blotting was earned out. Genomic senna DNA 

was restriction digested and run out on agarose gels as described in the methods (and 

shown in figure 47). The DNA-containing gels were then blotted to bind the DNA

onto membrane supports.
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To localise the germinating a-galactosidase on the blot, the 3’ portion of the cloned 

senna germinating a-galatosidase was radio-labelled. This section of DNA was then 

used to probe the blot. Due to the fact that the 3’ portion of the cloned germinating a- 

galactosidase contained the 3’ untranslated region, it was therefore (and observably) 

less conserved across the plant a-galactosidases than the rest of the germinating a- 

galactosidase clone. Because this 3’ probe was conserved to only a low degree it 

should only hybridise with only the germinating a-galactosidase on the southern blot. 

Figure 48 shows that the 3’ probe did only pick out one gene; presumably the 

germinating a-galactosidase.

To probe the blot for other a-galactosidase-like genes, the 5’ portion of the cloned 

germinating senna a-galactosidase was radio-labelled. This probe, highly conserved 

across the plant a-galactosidases was used (at the same stringency level as the 3’ 

probe) to label any a-galactosidase-like genes present on the senna genomic southern 

blot. Figure 49 shows that the 5’ probe indicated a number of bands had germinating 

a-galactosidase similarities.

The results of the southern blots were therefore inconclusive. It was indicated that 

there was only one germinating a-galactosidase gene within the senna genome. 

However, there was at least four a-galactosidase-like genes, any or none of which 

could have been a separate maturing a-galactosidase gene.
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To clarify whether the maturing a-galactosidase was encoded on the same or different 

gene as the germinating enzymes, it was necessary to return to maturing endosperm 

RNA preparations. In order to isolate the endospermic RNA, preparations were 

carried out using maturing endosperms still attached to the testas. The rational behind 

this approach was that testa RNA would co-precipitate the endosperm RNA, giving a 

larger yield of both. The yield of RNA did increase and after testing testa only RNA 

for the presence of a-galactosidase encoding mRNAs (none were found) RT-PCR was 

carried out. The PCR amplified cDNAs of the expected size and these were 

(Invitrogen) cloned.

The maturing a-galactosidase clones were sequenced and aligned against the 

germinating a-galactosidase sequence. Both sequences proved to be identical. At this 

stage of the investigation it seemed that both the maturing and germinating otr 

galactosidases were produced from the same gene. However because of the locations 

of the primer sites it had not been possible to obtain DNA sequence that corresponded 

to the area of the extra amino acids possessed by the maturing version of the enzyme 

and therefore conclusive proof had yet to be obtained.

To obtain sequence information upstream from the most 5’ primer possessed it was 

necessary to use new techniques. The techniques using genomic DNA as a starting 

point were inverse-PCR and single-sided PCR (as described in the methods section). 

These techniques offered the possibility of obtaining 5’ regions of the a- 

galactosidase(s) and also upstream promoter elements. Although in both I-PCR and 

SS-PCR, promising PCR products were produced using nested sequential PCR
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techniques (in order to increase the stringency of the reactions), on sequencing, none 

of the clones contained the expected a-galactosidase sequence designed to be 

incorporated into a successful a-galactosidase amplification.

The 5’ regions of the two a-galactosidase were eventually isolated using 5’ RACE- 

PCR techniques. These two sequences were compared and it was discovered that both 

the maturing and germinating cDNAs were almost identical and on translation, 

encoded identical amino acid sequences, including the two amino acids missing from 

the germinating version of the a-galactosidase enzyme. Therefore the difference in 

the N termini of the two a-galctosidase enzymes must be the result of differential 

signal sequence cleavage or accidental exposure to exo-peptidases.

With the knowledge of the extreme 5’ end of the cDNAs primers were designed and 

final, full length cDNAs were produced by the proof-reading DNA polymerase, Pfu. 

The maturing and germinating clones produced were sequenced in sections (by gene- 

walking) and the sections then assimilated into a continuous whole (with the aid of the 

Dnastar package SeqMan).

The final full proof-red maturing and germinating DNA sequences were translated 

into amino acid sequences and compared. The two protein sequences were 100% 

identical. The two nucleic acid sequences were also aligned. These also showed a 

100% similarity; even the third “wobble” position of all the codons were identical.
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From the alignment of the full proof-read maturing and germinating derived 

sequences it was possible to conclude that the two forms of the a-galactosidase 

enzymes present at different stages of the senna developmental cycle were derived 

from the same gene. The observable differences in the mature enzymes must 

therefore be due to either:-

1. Accidental exo-peptidase degradation during preparation (although this unlikely 

because the sizes of the two forms of the a-galactosidase always differ by the 

same degree).

2. Differential post-translational modifications of the a-galactosidase. Differential 

post-translational modifications of a-galactosidase have been observed although 

only in transgenic mice expressing human a-galactosidase constitutively (Ishii et 

al 1998). It was shown that the a-galactosidase expressed in the different mouse 

tissues were glycosylated differently.

The senna a- galactosidase was used in a multiple sequence alignment with all the 

published a-galactosidases on the databases. This multiple sequence alignment 

permitted a sequence similarity table (table 2 2 ) and a phylogenetic tree (fig 6 8 ) to be 

produced.

The phylogenetic tree, with scaled branches, can be used to estimate the relationships 

(shown by the branches) and degree of divergence (shown by the branch lengths) 

between the a-galactosidases since they diverged from a common ancestor.
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The tree comparing the a-galactosidases raises a particularly interesting point. The 

phylogenetic tree shows that the majority of a-galactosidase sequences (including the 

senna sequence) cluster in accordance with the genealogical ties between the 

organisms; the animal, plants and fungi show discrete groupings. However the 

sequence of the a-galactosidase from aspergillus niger does not fit into the phyolgeny 

pattern expected. Fig 6 8  shows that the A. niger a-galactosidase isolated by den 

Herder et al (1992) diverged from the other a-galactosidases at a very early 

evolutionary stage, previous to the divergence of the animals, plants and fungi from 

their common ancestor. This suggests that the a-galactosidases should actually be 

viewed as two sub-groups, Group I containing the a-galactosidases that branched off 

and led to the type isolated by den Herder in A.niger and Group II containing the other 

branch of the a-galactosidase family, which includes the senna a-galactosidase.

The three plant a-galactosidases display a high degree of similarity, it was found that 

the amino acid sequences have a similarity of between 74 and 76%. This high degree 

of similarity can be expected as the three plants from which a-galactosidases have 

been isolated all are members of the leguminosae family.

To further investigate the degree of similarity of the plant a-galactosidases secondary 

structure predictions were made. On comparing the predicted secondary structures of 

the senna, guar and coffee a-galactosidases it is clearly evident that the positions of a- 

helix and (5-sheets are highly conserved. This high level of conservation is also true 

of the positions of the substitution and active sites of the three plant a-galactosidases.
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Whilst the final proof-read maturing and germinating a-galctosidase sequences were 

being assembled and compared, a patent was applied for by Danisco (Jorsboe, 

Brunstedt and Petersen 1997) giving the full sequence of a senna endosperm a- 

galactosidase cDNA. Although the details contained within the patent are sketchy, the 

fact that the RNA preparation method used was that described in Logemann (1987), a 

method shown in this thesis not to isolate RNA from maturing endosperms, makes it 

seems very likely that the RNA amplified by Danisco must have been isolated from 

germinating endosperms. This senna a-galactosidase was amplified by using primers 

designed to match conserved regions of the guar and coffee sequences. Although 

Danisco did not know this at the time, my alignment clearly shows that the conserved 

regions of the guar and coffee are also conserved in senna. When the amino acid 

sequence obtained by Danisco was aligned with the maturing/germinating senna 

sequence obtained by me it was shown that there was a slight difference, the Danisco 

a-galactosidase sequence has 2  amino acid substitutions when compared to my a- 

galactosidase sequence. This was also the case with the nucleic acid sequence 

alignments; the Danisco sequence has 6  base substitutions when compared to my 

sequence. The reason for these slight differences is probably due to Dansico’s use of 

a different strain of senna, than that used in my study (the Danisco patent does not 

state of what type or where its senna was obtained from).

The reason for Danisco’s interest in the a-galactosidase was, like ours, the potential 

commercial importance of a transgenic guar that would express an active a- 

galactosidase within the maturing endosperm and so produce a galactomannan with a 

low galactose content.
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Although Danisco had cloned their a-galactosidase from germinating senna 

endosperms, they did not know that in doing so they had also cloned the a- 

galactosidase present in the maturing senna endosperm and responsible for producing 

the final Man/Gal ratio of galactomannan.

After cloning their a-galactosidase, Danisco produced transgenic guar plants (Jorsboe 

et al 1997). These plants do express a-galactosidase activity. However, this 

expression is controlled by a constitutive promoter, meaning that the a-galactosidase 

is inefficiently expressed throughout the guar plants at all stages of development. 

There is no mention within the patent of any attempts to isolate upstream promoter 

elements that would cause the transgenic a-galactosidase to be expressed only in the 

guar endosperms and only during the final stages of seed maturation. The Danisco a- 

galactosidase genetic modification of guar resulted in only a small shift in the 

harvested galactomannan’s Man/Gal ratio. The original Man/Gal ratio of 1.6:1 was 

increased to a ratio of 1.9:1, an increase of very low commercial significance.

Although Danisco have now applied for a patent to use the a-galactosidase gene along 

with their guar transformation techniques to produce a low galactose guar 

galactomannan, this may not be the only or most effective method of altering the 

galactose content of the galactomannan.
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Recently the techniques developed during this thesis to produce the full length proof

read sequences of the a-galactosidase (such as:- a, RNA preparation methods, b, 3’ 

RACE-PCR using a single degenerate primer designed against N-terminal amino acid 

sequences, c, Cloning techniques and d, 5’ RACE-PCR to obtain the 5’ regions of the 

cDNA), have been used by the Stirling University Plant Biochemistry Group to clone 

a further cell wall biosynthetic enzyme; the membrane-bound fenugreek a-(l-> 6 ) 

galactosyltransferase (Edwards et al 1999). It had previously been shown in vitro that 

by altering the activity of the galactosyltransferase relative to the mannosyltransferase 

activity, it was possible to produce galactomannans of widely varying Man/Gal ratios 

(Edwards 1992). Perhaps this may be achievable in vivo in guar by using a transgenic 

a -( l—>6 ) galactosyltransferase to alter the overall expression or characteristics of the 

a-galactosyltransferase naturally present in the maturing guar endosperm. This could 

be a much more effective method of engineering a valuable low galactose guar 

galactomannan than the method described by Danisco.
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Conclusions.

The initial aim of this project was to compare the a-galactosidase present in the 

maturing endosperm of senna seeds and responsible for the late developmental change 

in the Man/Gal ratio of galactomannan with the a-galactosidase produced in the 

germinating senna endosperm, responsible for the mobilisation of the galactomannan 

reserves. The conclusions obtained from this comparison are outlined below.

Investigation into the physical characteristicst of the two a-galactosidases revealed 

that:-

A. The two a-galactosidases are of a very similar but slightly different size, the 

maturing enzyme is 44 kDa and the germinating enzyme is 43 kDa

B. The two a-galactosidases have a very similar but slightly different pi, , the

maturing enzyme’s pi is 5.1 and the germinating enzyme’s pi is 4.9

C. The two a-galactosidases produce identical fragmentation patterns on digestion

with endo-peptidases

D. The two a-galactosidases have identical N terminus amino acid sequences apart 

from the extreme N terminus where the maturing enzyme has two extra residues 

missing from the germinating enzyme.
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It was therefore possible to conclude that the two a-galactosidases were different. 

However, it was impossible to conclude whether the two enzymes were different due 

to:-

A. Being produced from slightly different genes.

B. Differential post-translational taking place on the translated products of the same 

gene.

C. Artefactual exo-peptidase degradation due to the protein preparation method used.

To discover which of possibilities A, B or C above are true it was necessary to isolate 

the cDNA of the a-galactosidases from both the maturing and germinating 

endosperms.

The initial RNA isolation attempts using the maturing endosperm tissue proved 

unsuccessful because the galactomannan present within the maturing endosperm 

caused the lysed tissue to become very viscous and prevented the isolation of useful 

amounts of RNA.

Effort was therefore concentrated on preparing RNA from endosperms of seeds that 

had been germinating for three days and had, consequently, far less galactomannan 

present. Again the isolation of RNA proved difficult. However, a modified Lopez- 

Gomez did produce a small amount of usable RNA.
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The germinating RNA was used in 3’RACR-PCR and after a number of attempts the 

resulting product was cloned. The clone was sequenced and found to be highly similar 

to the sequences of guar and coffee a-galactosidases.

Southern blotting was carried out to discover whether the germinating a-galactosidase 

was the only a-galactosidase present in the senna genome. It was possible to conclude 

from the results obtained that the senna genome contained a number of germinating a - 

galactosidase-like genes, any of which could have been a maturing a-galactosidase 

gene.

Attempts to isolated the maturing endosperm RNA using co-precipitation eventually 

proved successful. Again the RNA was used in 3 ’ RACE-PCR to produce a clone that 

was sequenced. The maturing a-galactosidase clone proved to be identical to the 

germinating a-galactosidase clone.

To prove conclusively that the two forms of a-galactosidase cDNA were identical it 

was necessary to obtain die 55 region of the cDNAs (were the codons encoding the 

region where the maturing a-galactosidase contained extra amino acids) and to carry 

out full sequencing of proof-read clones. This was performed and the two sequences 

proved 1 0 0 % identical.

It conclusion it was therefore possible to state that the two versions of mature a- 

galactosidase derive from the same gene.
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Appendix

Primers designed using sequenced peptide fragments and synthesised by Unilever.

Primer name Primer sequence
PI GGIAAYACICCICCNATG
P2 CCICCIATGGGIACNAAC
P3 CC I CC I ATGGG IACNAAT
GS1 GTTATTGCIGTIAACCAAGAT
GA1 AT CTTGGTTIACIGCAATAAC
GS2 GAGAAACAGCT GAT GCAAT GG
GA2 CCATTGCATCAGCTGTTTCTC
GS3 ACGTCAATTTAGATGATTGCT
GA3 AGCAATCATCTAAATTGACGT
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