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Abstract
Sustainable fisheries management requires detailed knowledge of population ge-
netic structure. The European sprat is an important commercial fish distributed from

UInstitute of Aquaculture, School of Natural Morocco to the Arctic circle, Baltic, Mediterranean, and Black seas. Prior to 2018,
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Sea (ICES) was based on five putative stocks: (a) North Sea, (b) Kattegat-Skagerrak

and Norwegian fjords, (c) Baltic Sea, (d) West of Scotland—southern Celtic Seas, and
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(e) English Channel. However, there were concerns that the sprat advice on stock
size estimates management plan inadequately reflected the underlying biological
units. Here, we used ddRAD sequencing to develop 91 SNPs that were thereafter
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used to genotype approximately 2,500 fish from 40 locations. Three highly distinct
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and relatively homogenous genetic groups were identified: (a) Norwegian fjords; (b)
Northeast Atlantic including the North Sea, Kattegat-Skagerrak, Celtic Sea, and Bay
of Biscay; and (c) Baltic Sea. Evidence of genetic admixture and possibly physical mix-
ing was detected in samples collected from the transition zone between the North
and Baltic seas, but not between any of the other groups. These results have al-
ready been implemented by ICES with the decision to merge the North Sea and the
Kattegat-Skagerrak sprat to be assessed as a single unit, thus demonstrating that
genetic data can be rapidly absorbed to align harvest regimes and biological units.
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1 | INTRODUCTION

2016), challenges with illegal, unreported, and unregulated fish-
ing (IUU) are extensive (Agnew et al., 2009), and the degree of cli-

Increasing global attention is being given to sustainable production mate-driven changes in many of the world's marine ecosystems is

and harvest of human food from the marine environment. This is unparalleled (Frainer et al., 2017; Stige & Kvile, 2017). Consequently,

occurring at a time when many of the world's fisheries are either there is a growing need to develop tools that ensure the sustainable

overexploited, depleted, or recovering from earlier depletion (FAO, management of the living marine resources.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2020 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd

1906 wileyonlinelibrary.com/journal/eva Evolutionary Applications. 2020;13:1906-1922.


www.wileyonlinelibrary.com/journal/eva
mailto:﻿
https://orcid.org/0000-0003-4762-2192
https://orcid.org/0000-0002-5297-032X
https://orcid.org/0000-0002-3843-9663
https://orcid.org/0000-0002-0854-3021
https://orcid.org/0000-0002-6070-8073
https://orcid.org/0000-0002-7541-1299
http://creativecommons.org/licenses/by/4.0/
mailto:maria.quintela.sanchez@hi.no
http://crossmark.crossref.org/dialog/?doi=10.1111%2Feva.12942&domain=pdf&date_stamp=2020-03-17

QUINTELA ET AL.

Failing to take the underlying components of fisheries into
consideration, such as the spatiotemporal mixing of populations,
can lead to differential exploitation and potential overexploita-
tion of resources (Allendorf, England, Luikart, Ritchie, & Ryman,
2008; Kerr et al., 2017). Although genetic data for some marine
fish species have existed for decades (Hauser & Carvalho, 2008),
their application in fisheries management was initially slow (Reiss,
Hoarau, Dickey-Collas, & Wolff, 2009; Waples, Punt, & Cope,
2008). However, genetic and genomic methods are now providing
unprecedented levels of precision in understanding connectivity
among marine populations (Besnier et al., 2014; Dahle, Quintela,
et al., 2018; Hemmer-Hansen et al., 2019), and in many cases have
led to increased understanding of potential mechanisms underly-
ing local adaptation (Ayllon et al., 2015; Kirubakaran et al., 2016;
Martinez Barrio et al., 2016). The ICES Stock Identification Methods
Working Group (SIMWG) reviews new approaches for stock identi-
fication with genetic techniques as one of its core methodologies.
Recommendations on the validity and use of results from the vari-
ous stock identification techniques are given to the relevant work-
ing groups for use in their stock assessments. Genetic and genomic
tools have been applied directly to management issues, including
“real-time” regulation of harvest (Dahle, Johansen, Westgaard,
Aglen, & Glover, 2018; Johansen et al., 2018), cost-effective fish-
eries enforcement (Glover, 2010; Martinsohn et al., 2019), and
updated management plans (Mullins, McKeown, Sauer, & Shaw,
2018; Saha et al., 2017; Westgaard et al., 2017). The definition of
stock units in fisheries management needs to consider the spatial
structure of biological populations to prevent overexploitation of
unique spawning components. There is the general recognition, at
least within the Northeast Atlantic, that this is one the main threats
to sustainable fisheries, with recent studies also highlighting other
problems and suggesting ways to act accordingly (see Kerr et al.,
2017 for revision).

The European sprat, Sprattus sprattus (L.), hereafter referred to
as sprat, is a fast-growing, small, short-lived pelagic shoaling fish
(Moore et al., 2019; Peck et al., 2012) inhabiting the Northeast
Atlantic from northern Norway to Morocco and into the Baltic
Sea, the northern Mediterranean basins, and the Black Sea (Debes,
Zachos, & Hanel, 2008). Sprat has formed the basis for a fishery
throughout most of its natural distribution, and it is also an im-
portant prey for different piscivorous fishes, marine mammals, and
seabirds (ICES, 2013, 2018d). The International Council for the
Exploration of the Sea (ICES, www.ices.dk) provides annual catch
advice for this species. The management of exploitation, specifically
within the majority of the ICES Greater North Sea Ecoregion (ICES,
2018a, 2018b), consists of an “escapement strategy” whereby the
aim is to maintain the stock above a certain critical level by using

an upper limit (cap) on fishing mortality (F___ currently set at 0.7).

cap,
The sprat abundance assessment uses a natSraI mortality estimate
derived from a multispecies model including many of its predators,
thus partly ensuring a exploitation level, which will not negatively
impact populations reliant on sprat as a prey source (ICES, 2013,

2018c). The total catch (commercial harvest) can therefore vary
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quite considerably interannually depending on the strength of an
incoming year class (see ICES, 2018e). In the Norwegian fjords,
sprat catches have declined from ~18,000 tonnes in 1973 to ~1,315
tonnes in 2018 (source: Directorate of Fisheries, Norway). Although
the causative reasons for the declining catches are not fully known,
they partly reflect a reduction in abundance as well as vessels par-
ticipating in this fishery.

Sprat displays population genetic structure throughout its dis-
tribution (Debes et al., 2008; Glover, Skaala, Limborg, Kvamme, &
Torstensen, 2011; Limborg, Hanel, et al., 2012; Limborg, Pedersen,
Hemmer-Hansen, Tomkiewicz, & Bekkevold, 2009). For example,
genetic differences have been observed among sprat sampled in
the Norwegian fjords, the North and the Baltic Seas (Glover et al.,
2011), and between samples from the Baltic Sea and the Kattegat-
Skagerrak area (Limborg et al., 2009). No clear differentiation has
been identified between populations spawning east and west of the
British Isles (Limborg et al., 2009). However, these previous studies
were based on mtDNA or fewer than ten microsatellite DNA mark-
ers, and although they have provided some knowledge of genetic
structure especially in the Northeast Atlantic, more rigorous tools,
such as those incorporating more loci and/or full-genome coverage,
are often needed to obtain enough resolution for determining lo-
cal-scale processes in marine fish populations (e.g., Bekkevold et al.,
2015b; Carreras et al., 2017; Figueras et al., 2016; Tine et al., 2014).

Until recently, ICES provided advice on maximum total catch
on five separate sprat stocks in the Northeast Atlantic: (a) North
Sea, (b) Kattegat-Skagerrak and Norwegian fjords, (c) Baltic Sea, (d)
West of Scotland—southern Celtic Sea, and € English Channel (ICES,
2013). However, this stock delineation was considered as unlikely
to adequately reflect the true underlying biological units, that is,
populations. Consequently, there was a stated need to improve the
knowledge about population genetic structure to describe the bio-
logical units in order to inform more sustainable exploitation (ICES,
2018c, 2018f, 2019). In the present study, we addressed this issue
by performing a genetic analysis of an extensive set of sprat sam-
pled in the North Sea, Kattegat-Skagerrak, and Baltic Sea areas,
with the aim to strengthen input to harvest advice and management.
We also analyzed samples from a substantial number of Norwegian
fjord systems spanning around 1,560 km, to infer demographics of
these units. In order to achieve this, we first identified single nu-
cleotide polymorphism markers (SNPs) throughout the genome by
using ddRAD sequencing, and thereafter genotyped and analyzed
approximately 2,500 sprat from the geographical areas described.

2 | MATERIALS AND METHODS
2.1 | Sampling

Approximately 2,500 sprat were sampled by commercial fisher-
men and scientific cruises from forty locations in the NE Atlantic
(Figure 1). Part of these samples had been formerly analyzed using

microsatellite markers in previous studies (see Table 1). As there is
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FIGURE 1 Map of the sampling locations. The colored areas show the different management areas used by ICES for giving advice in
2019. Codes and associated full names for the sampling sites can be found in Table 1

a strong management interest in defining stock affiliation of sprat
fished in the Kattegat-Skagerrak areas, sprat were sampled in these
areas both during the spring spawning season and outside the spawn-
ing season by the pelagic fishery. Norwegian fjord samples spanning
most of the sprat's Norwegian distribution range were also sampled.
To compare with geographically more distant populations, samples
were included from the Bay of Biscay, the Celtic Sea, and two out-
groups representing the southernmost distribution of the species:
the Adriatic Sea and the Black Sea. Sample size per location ranged
from 21 to 116 individuals. Sprat are indeterminate batch spawners
(i.e., individual fish may spawn over protracted periods) and locally
the spawning season may stretch over the majority of the year (e.g.,
Ojaveer & Kalejs, 2010). Sampling spawning individuals represents
the most robust approach to delineating population genetic struc-
ture and sampling was directed toward ripe individuals, where pos-
sible. However, in some areas (Table 1), samples were mainly taken
outside the main spawning season and may thus represent both local
and migratory individuals of mixed origin.

2.2 | SNP isolation and genotyping

DNA was extracted from fin clips stored in ethanol using the Qiagen
DNeasy 96 Blood & Tissue Kit in 96-well plates, each of which con-
tained two or more negative controls.

A double-digest RAD library was constructed from eight sprat
genomic DNA samples from Hardangerfjorden, comprising a 400-
700 base pair region of Sbfl- and Sphl-restricted DNA and involv-
ing individual-specific inline barcode adapters. The methodology
has been previously described in detail by Manousaki et al. (2015).
The library was thereafter sequenced on the Illumina MiSeq plat-
form (part of a shared flow cell run, V2 chemistry, 300 cycle kit,
160 base paired-end reads). Stacks software v1.47 (Catchen,
Hohenlohe, Bassham, Amores, & Cresko, 2013) was used to de-
multiplex sequence reads and identify and score SNPs (de novo as-
sembly; key Stacks parameters m (minimum depth of coverage) = 4,
M (maximum distance allowed between stacks) = 2, n (humber of
mismatches allowed between loci among individuals) = 1). Data
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were then exported to Microsoft Excel for filtering to identify po-
tential SNPs suitable for Sequenom-based multiplex SNP assay.
This involved selecting RAD loci (trimmed length 135 bases) that
contained a single diallelic SNP with at least two occurrences of
the minor allele among the eight samples and that the SNP was
positioned between base 41 and base 95, to allow for enough
flanking sequence for PCR primer design. For the final filtered set,
SNP locus primer design, amplification, and genotype calling were
performed using the Sequenom MassARRAY iPLEX Platform, as
described by Gabriel, Ziaugra, and Tabbaa (2009).

2.3 | Statistical analysis

Observed heterozygosity (H)) and unbiased expected heterozygo-
sity (uH,), as well as the inbreeding coefficient (F ), were computed
for each sample with GenAlEx (Peakall & Smouse, 2006). The geno-
type frequencies of each locus and its direction (heterozygote defi-
cit or excess) were compared with Hardy-Weinberg expectations
(HWES) using the program GENEPOP 7 (Rousset, 2008) as was link-
age disequilibrium (LD) between pairs of loci. HWE and LD were ex-
amined using the following Markov chain parameters using 10,000
steps of dememorization, 1,000 batches, and 10,000 iterations per
batch, and signification was assessed after the post hoc sequential
Bonferroni correction (Holm, 1979).

Many marine fish species display a weak genetic population
structure because populations are large and gene flow is high (Ward,
Woodwark, & Skibinski, 1994). As a consequence, the majority of ge-
netic markers may be uninformative about demographic processes,
which has fueled the search for loci carrying signatures of locally
divergent selection that might serve as powerful markers to assess
spatially explicit genetic structure as well as to outline stocks for fish-
eries management (Russello, Kirk, Frazer, & Askey, 2012). Here, loci
deviating from neutrality were statistically identified using two com-
plementary outlier approaches: the hierarchical Bayesian method
described in Beaumont and Balding (2004) and implemented in
BayeScan software (Foll & Gaggiotti, 2008), and the Fdist approach
of Beaumont and Nichols (1996) implemented in LOSITAN (Antao,
Lopes, Lopes, Beja-Pereira, & Luikart, 2008). To minimize the risk of
detecting false positives, only the putative outliers flagged by both
procedures were retained. BayeScan was run by setting sample size
to 10,000 and the thinning interval to 50 as suggested by Foll and
Gaggiotti (2008). The loci with a posterior probability above 0.99
were retained as outliers, corresponding to a Bayes factor >2, that
is, “decisive selection” (Foll & Gaggiotti, 2006). In LOSITAN, a neu-
tral distribution of F¢ with 100,000 iterations was simulated, with a
forced mean F¢; at a significance level of 0.05 under an infinite allele
model. Under both approaches, the outlier tests were conducted in
two different ways: (a) including all the locations in the same anal-
ysis, both excluding and including the southern out-group samples
(i.e., 38 and 40 samples, respectively), and (b) in a pairwise manner
between regions. In the pairwise analysis, all the fish sampled within

a region (e.g., Norwegian fjords and Baltic Sea; see Table 1) were
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pooled together into a single “sample” from which a random subset
of individuals was extracted. The number of individuals per sample
in the pairwise design was kept identical to avoid bias due to uneven
sample size.

Population genetic structure was examined by estimating Fq;
(Weir & Cockerham, 1984) between sample pairs using ARLEQUIN
v.3.5.1.2 (Excoffier, Laval, & Schneider, 2005). Statistical significance
was calculated after 10,000 permutations followed by sequential
Bonferroni correction. The Bayesian clustering approach imple-
mented in STRUCTURE v. 2.3.4 (Pritchard, Stephens, & Donnelly,
2000) was used to identify genetic groups under a model assuming
admixture and correlated allele frequencies and no population prior.
The analysis was conducted using the program ParallelStructure
(Besnier & Glover, 2013) which distributes STRUCTURE runs among
parallel processors to speed up the computational time. Ten runs
with a burn-in period consisting of 100,000 replications and a run
length of 1,000,000 MCMC iterations were performed for K = 1
to K = 10 clusters. To determine the number of genetic groups in
the data, STRUCTURE output was analyzed using two approaches.
Firstly, the ad hoc summary statistic AK of Evanno, Regnaut, &
Goudet (2005) was calculated. Secondly, StructureSelector (Li &
Liu, 2018) was used to estimate four alternative statistics (MedMed,
MedMean, MaxMed, and MaxMean), which have been described as
more accurate than the previously used methods to determine the
best fit number of clusters, for both even and uneven sampling data.
Finally, the ten runs for the selected Ks were averaged with CLUMPP
v.1.1.1 (Jakobsson & Rosenberg, 2007) using the FullSearch algo-
rithm and the G’ pairwise matrix similarity statistic, and graphically
displayed using barplots. Genetic clustering was also examined
and visualized using discriminant analysis of principal components
(Jombart, Devillard, & Balloux, 2010) in adegenet (Jombart, 2008).

Kattegat-Skagerrak is known to be a hybrid zone for a num-
ber of marine taxa (e.g., Luttikhuizen, Drent, Peijnenburg, Veer,
& Johannesson, 2012; Nielsen, Hansen, Ruzzante, Meldrup, &
Grgnkjeer, 2003; Viinola & Hvilsom, 2008). To elucidate the poten-
tial mixing and interaction between North Sea and Baltic Sea sprat
in the Kattegat-Skagerrak contact zone, given the strong interest in
defining stock affiliation and allocation of individuals back to their
respective stock of sprat fished in this area, a set of 150 in silico
simulated individuals was created by HYBRIDLAB (Nielsen, Bach, &
Kotlicki, 2006). Parental stocks were defined by randomly selecting
150 individuals from the North Sea sites and 150 from the Baltic
Sea, respectively. The set of F1 hybrids together with the parental
stocks were analyzed via STRUCTURE as described above. In addi-
tion, the individual assignment option in ONCOR (Kalinowski, 2007)
was used to estimate the probability of assignment of the individu-
als from the contact zone to the each of the three main geographic
areas: Norwegian fjords, Baltic Sea, and North Sea.

To examine demographic relationships between geographically
explicit samples, the genetic distance, measured as Fq/(1-Fgp),
between the northernmost sample (HOL, Holandsfjord) and each
of the remaining ones excluding the southern European outliers,

was plotted against the corresponding shortest water distance,
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which was calculated using the path function in GoogleEarth. The
southern out-groups were excluded for clarity as well as to limit
this analysis to the samples for which management advice was

intended.

3 | RESULTS

The MiSeq run generated over 6 million paired-end (pe) reads (1.14-
2.14 pe reads per individual) identifying 5,648 rad loci. Of these,
121 putative SNPs were selected for a Sequenom-based high-
throughput genotyping assay for screening all samples, and 99 were
distributed into four multiplex reactions. After purging those SNPs
for which allele discrimination was not reliable (i.e., poor clustering)
as well as the ones that produced no genotypes or amplified in a
very limited number of individuals (i.e., deficient amplification), 91
loci were retained for analyses. Additionally, individuals with >30%
missing genotypes were purged from the dataset. The SNP loci and
their corresponding flanking regions, together with the raw data, are
available in Supplementary Information_Raw data, Tables S1 and S2,
respectively.

The final screened data set consisted of 2,425 individuals geno-
typed for 91 SNPs using the Sequenom MassARRAY iPLEX Platform,
98.4% of which showed <10% of missing data. Deviations from HWE
were found in 293 of the 3,640 loci by population tests (8.05%),
which dropped to 51 tests (1.4%) after Bonferroni sequential cor-
rection (Table 1). The 24 loci involved were scattered across 28 out
of the 40 samples and thus did not reflect any specific locus or pop-
ulation-relevant signal. Out of the 163,800 performed tests for LD,
5,528 (3.4%) showed significant LD, which dropped to 74 (0.04%)
after Bonferroni correction. Therefore, no loci were removed from
the 91 SNP dataset.

LOSITAN analysis excluding the southern out-groups reported
thirteen candidate loci for divergent selection (14%), whereas
BayeScan flagged ten (9%), all of which overlapped with those
from LOSITAN (Ssp210, Ssp222, Ssp225, Ssp226, Ssp248, Ssp263,
Ssp264, Ssp290, Ssp305, and Ssp319). However, when the Black
and Adriatic Seas were included, LOSITAN revealed fifteen candi-
dates of directional selection (16%) conversely to the 12 (13%) found
by BayeScan. In this case, the consensus between LOSITAN and
BayeScan was met for ten loci (Ssp210, Ssp222, Ssp225, Ssp226,
Ssp243, Ssp248, Ssp263, Ssp264, Ssp275, and Ssp305), eight of
which overlapped with the ones formerly found without the out-
groups. LOSITAN-pairwise analyses conducted between regions
after excluding the southern out-groups revealed 1-9 loci putatively
under directional selection per comparison (21 unique loci; none of
them shared in all six pairwise tests). However, the consensus set
incorporating BayeScan results reduced the number of outliers to
three (Ssp210, Ssp263, and Ssp248). In the pairwise analyses includ-
ing the southern out-groups, no locus flagged as an outlier candidate
by LOSITAN was confirmed by BayeScan.

Pairwise F¢; estimates ranged between 0 and 0.217, with the

largest estimates found between either of the southern out-group

samples and any northern collection (ranging 0.125-0.217). The
lowest estimates were found among samples within each of the
geographical areas: Norwegian fjords, Baltic Sea, and North Sea-
Kattegat-Skagerrak, although 9-12 pairwise comparisons within
these areas still came out as statistically significant (Figure 2, Table
S3). A distinct clustering of samples by geographical region was also
evident in the DAPC analysis, where the first principal component
(PC1), explaining 33.7% of the variation, revealed a major differenti-
ation between the southern and northern samples (Figure 3a). PC2,
accounting for 22.5% of the variation, separated samples into three
main clusters: (a) Norwegian fjords, (b) Kattegat-Skagerrak-North
Sea, and (c) Baltic Sea and out-groups. Samples from the North Sea-
Baltic Sea transition area Uddevalla, Great Belt, and @resund, oc-
cupied an intermediate position without fully integrating with any
of the three clusters. Samples from the Kattegat-Skagerrak area all
grouped with the North Sea, irrespective of the time they were col-
lected (during or out the spawning season). PC3 incorporated a rela-
tively small proportion of the variation (2.8%) and mostly separated
the Adriatic Sea from the other samples (Figure S1 in Supplementary
Information). Lower level PCs 4-80 only explained minor degrees of
variation and were not examined further. When removing the two
southern out-groups (Figure 3b), almost all variation was retained
by PC1 and 2, explaining 35 and 27%, respectively. Again, the three
main aforementioned regional clusters were clearly identified, and
the three samples from the transition area formed an intermediate
cluster between the North Sea and Baltic Sea samples. PC1 was
driven mainly by ten loci, of which a single (non-outlier) locus Ssp275
contributed twice as much as the second ranked locus, whereas
PCs 2-3 were driven by several loci (Figure S2a-c in Supplementary
Information).

In the STRUCTURE analysis, the Evanno test conducted a poste-
riori reported K = 2 as the most likely number of clusters (AK = 180.1)
revealing strongest genetic divergence between Norwegian fjord
sprat and all other locations. In contrast, three of the four estimators of
StructureSelector reported K = 3 as the most likely number of genetic
clusters (Figure 4), grouping samples into the same three groups as
identified with DAPC. AtK = 3, samples from Uddevalla (UV), Great Belt
(GB), and @resund (@S) showed admixed North Sea-Baltic Sea genetic
profiles with slightly higher admixture with the Baltic Sea cluster than
with the North Sea cluster. An analogous pattern was also observed
in the North Sea x Baltic Sea in silico-generated hybrids (Figure 5).
Thus, the plot of individual proportion of admixture (q) revealed that
80% of the in silico-created hybrids showed overlapping confidence
intervals, close to the 73% that was recorded for the true individuals
in UV, GB, and @S. In addition, the individuals showing non-admixed
profiles (either natural genotypes or created in silico) grouped with the
North Sea and the Baltic Sea cluster in relatively even proportions. The
exception to this was UV, in which 78% of the individuals clustered
with the geographically closer North Sea group. ONCOR showed that
the probabilities obtained for assignment of the individuals sampled
in UV, GB, and @S to the three main genetic clusters reflected, to a
large extent, the inferred ancestry of the individuals in STRUCTURE

(see Figure S3). Finally, even when the ten outlier loci were excluded
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FIGURE 2 Heat map of pairwise Fq; values in the bottom diagonal and the corresponding p-values after 10,000 permutations in the
top diagonal. Cells highlighted in pink depict values significantly different from zero after sequential Bonferroni correction. Greener colors
indicate low differentiation (F; closer to zero), increasing toward red to indicate large differentiation. This matrix has also been included in

the Supplementary Information to ease reading

from the STRUCTURE and DAPC analyses, the overall pattern reveal-
ing three distinct genetic clusters was retained (Figure S4).

The shortest oceanic distance between the northernmost lo-
cation sampled in Norway, Holandsfjord (HOL), and each of the
37 other locations (excluding the two out-groups) significantly
correlated with the corresponding genetic distance measured as
Fs/(1-Fs;): R? = .615, p < .0001; albeit, there was local variation
over the studied geographic range (Figure 6). Hence, comparisons
among the Norwegian fjord samples spanning a geographic stretch
of some 1,500 km showed low F¢; across the board and no evi-
dence of increasing genetic divergence with geographic distance.
However, in a similar geographic span, when comparisons included
Kattegat-Skagerrak and North Sea samples, an increase in genetic
differentiation with distance from HOL was detected. Finally, the
differentiation between HOL and the samples from the Baltic Sea
plateaued around an average F¢; of 0.380.

Heat maps of the major allele frequency for neutral and outlier
loci can be found in Tables S4 and S5, respectively, in Supplementary
Information. For the three loci consistently flagged as outliers, pair-
wise allele frequency distances were also examined against the geo-
graphic distance. Locus Ssp210 (Figure 7a) and Ssp248 (Figure 7b)
region-specific differences
STRUCTURE groups. At locus Ssp210, Uddevalla, Great Belt, and
@resund occupied intermediate positions between the Norwegian

showed clear among the three

and Baltic clusters and distant from the Kattegat-Skagerrak sam-
ples. However, at locus Ssp248, they clustered with the Norwegian
samples. Conversely, allele frequencies at locus Ssp263 discrimi-
nated between the Norwegian populations and all the remaining

ones (Figure 7c).

4 | DISCUSSION

The primary goal of this study was to investigate population genetic
structure of sprat in order to advise the ICES management plan for
this species in the North Sea and its surrounding areas. To fulfill
this aim, a suite of 91 SNP markers identified by ddRAD sequencing
was genotyped in approximately 2,500 individuals collected from
40 locations. Three highly distinct genetic groups were identified,
corresponding with the geographical regions: (a) Norwegian fjords;
(b) the Northeast Atlantic region including the North Sea, Kattegat-
Skagerrak, Celtic Sea, and Bay of Biscay; and (c) the Baltic Sea, in-
cluding its transition zone with the North Sea, the latter exhibiting
admixed genetic profiles. As the former ICES catch advice for sprat
in Europe was given for stock units that partially mis-align with the
genetic data presented here, data from the present study have now
been implemented by introducing a change in the stock units ICES
uses for biological assessment of sprat (ICES, 2018c). Therefore, this
study represents a case where novel genetic data on stock structure
were directly used to inform relevant advisory bodies to align har-
vest regimes with biological units.

4.1 | Patterns and underlying of population genetic
differentiation

A handful of previous studies have contributed to the current un-
derstanding of sprat population genetic structure in spite of certain
limitations regarding geographical scope, sampling coverage, and/or

the resolution of the genetic tools implemented (Debes et al., 2008;
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Glover et al.,, 2011; Limborg, Hanel, et al., 2012; Limborg, Hanel et al.,
2012). The results of the current study, which are based upon both
a greater number of samples and genetic markers than all previous
studies (91 genome-wide SNPs in approximately 2,500 fish), largely

aligned with former results but provide increased resolution. Primarily,

the existence of three distinct geographically distinct genetic groups
in the Northeast Atlantic was demonstrated, each of which showed
pronounced lack of genetic differentiation within groups.

A striking result was the lack of genetic differences identified

among Norwegian fjord samples spanning about 1,500 km coastline,
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suggesting extensive gene flow among fjords. Likewise, no statis-
tically significant genetic differentiation was detected between
samples from the Celtic Sea, the Bay of Biscay, and the North Sea,
despite encompassing distances up to 2,000 km. Yet in contrast, sev-
eral other comparisons indicated distinct genetic borders between
areas separated by very short distances. For example, the sample
from the Uddevalla fjord (UV, sample 16) showed clear divergence
from the Kattegat samples collected offshore less than 40 km away.
Likewise, the Norwegian west coast sample from Lysefjord (LYS,
sample 14) showed clear divergence from samples from the North
Sea, some of which were collected within distances of less than
250 km. This specific observation supports suggestions from an ear-
lier study that there is little, if any, physical mixing and gene flow be-
tween sprat in Norwegian fjords and coastal areas, and sprat in the
North Sea (Glover et al., 2011). Apart from Oslofjord, which showed
low, albeit in some cases statistically significant genetic differenti-

ation from fjords in western Norway, our sampling design did not

include any of the several Norwegian Skagerrak fjord populations.
We were therefore not able to determine whether population struc-
ture follows a gradient along the Norwegian Skagerrak coast. This
needs to be investigated in future studies.

The lack of clear population genetic differentiation identified
within each of the three main genetic groups, despite some sam-
ples within groups being separated by very large distances, cou-
pled with the large genetic differences observed between groups,
despite short distances between pairs of samples in some cases,
begs the question: What are the mechanisms underpinning such
distinct patterns in this small pelagic fish? In order to answer
this question, different processes need to be considered. First,
the relatively sharp genetic divergence observed from the Baltic
Sea to the Kattegat and North Sea, coupled with the admixed
genetic profiles of samples in the transition area, likely reflect a
combination of demographic processes associated with Baltic Sea

post-glacial founder events, in addition to environmentally driven
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adaptations to Baltic Sea conditions (e.g., Momigliano et al., 2017).
Strong genetic differences across the North Sea-Baltic Sea region,
with admixed populations in the transition area, reflects the gen-
eral pattern seen across a broad taxonomic range of species in this
region (review in Johannesson & Andre, 2006). With increasing
insights from genomic sequencing analyses, evidence is amassing
for specific adaptations to brackish conditions (Berg et al., 2015;
Lamichhaney et al., 2012; Limborg, Helyar, et al., 2012; Petereit
etal., 2018; do Prado, 2018; Vilas, Bouza, Vera, Millan, & Martinez,
2010) and other environmental conditions specific to the Baltic
Sea, such as light regime (Hill et al., 2019). It is possible that one or
more of the SNPs identified as outliers in the present study may
be located in genomic regions containing genes associated with
adaptive processes to the environmental differences experienced
in the gradient from the outer to inner Baltic. Candidate loci to
divergent selection showed region-specific allele frequency dif-
ferences, as opposed to most of neutral loci (Tables S4 and S5), in
agreement with the patterns found for the East Atlantic peacock
wrasse (Symphodus tinca), endemic to the Mediterranean (Carreras
et al., 2017). Significant allele frequency changes in genes that
were differentially expressed after five generations of size-selec-
tive harvesting have also been reported for zebrafish (Danio rerio)
(Uusi-Heikkila, Savilammi, Leder, Arlinghaus, & Primmer, 2017).

However, disentangling demographic from adaptive effects on

specific types of genetic variation typically requires genomic re-
sources beyond those available in the present study.

The very low level of genetic differentiation observed among the
samples collected from the Norwegian fjords, despite distances of
up to ~1,500 km between them, may suggest that there is a high
level of genetic and demographic connectivity among sprat in this
region. Complex oceanic currents exist within and among Norwegian
fjords, leading to retention in certain periods and flushing in others
(Asplin et al., 2014; Asplin, Salvanes, & Kristoffersen, 1999; Johnsen,
Fiksen, Sandvik, & Asplin, 2014). In turn, these complicated currents
affect pelagic larval drift between fjords. However, knowledge of
these currents does not provide us with data that would unequiv-
ocally enlighten our understanding of observed patterns in genetic
connectivity across this region for this species. In addition, there is
extensive evidence that sprat spawn in most, if not all, of the fjords
along the Norwegian coastline (e.g., Bakken, 1973; Ellingsen, 1979;
Torstensen, 1998). Furthermore, we cannot exclude the possibility
that there is a low degree of genetic structure in this region eluding
scrutiny with the set of markers used here. Effective population sizes
of sprat are expected to be sufficiently large that genetic drift may
be too low to render selectively neutral markers adequate for differ-
entiating local demographic units (Gagnaire et al., 2015). Based on
genome sequencing in another pelagic clupeid from the North Sea-

Baltic Sea area, Atlantic herring (Clupea harengus L.), it was shown
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FIGURE 7 Allele frequency per sample as a function of the geographic distance to the starting point of the transect (HOL, in
northernmost Norway) for the loci identified as undergoing divergent selection after consensus between LOSITAN and BayeScan. Sites are
represented by dots colored corresponding to the patterns of the STRUCTURE barplots, whereas the squares depict the samples from the

English Channel, Celtic Sea, and Bay of Biscay

that the majority of the identified genomic variation exhibited no
differentiation among populations that otherwise had strong genetic
divergence for candidate genes inferred to be under local adaptation
(Martinez Barrio et al., 2016). Studies like these emphasize that ge-
netic marker-based evidence for connectivity should be treated with
some caution as future studies utilizing full-genome tools may reveal
currently unidentified divergence.

The observed lack of genetic structure of sprat along the
Norwegian coastline contrasts with patterns in population ge-
netic structure in other fishes in this region. For example, demersal
Atlantic cod (Gadus morhua L.) display a north-south genetic gradi-
ent (Dahle, Quintela, et al., 2018), while rocky shore wrasse species
such as corkwing (Symphodus melops L.) and ballan wrasse (Labrus
bergylta A.) show clear differentiation across a sandy stretch of habi-
tat discontinuity (Blanco Gonzélez, Knutsen, & Jorde, 2016). Clearly,
species with different environmental requirements, dispersal mech-
anisms, and life-history strategies display very different patterns
of genetic structure in this region (e.g., André et al., 2016; Florin &
Hoglund, 2008; Knutsen et al., 2018). In a broader context, pelagic
species such as the European sardine, Sardina pilchardus, Walbaum
1792 sampled from NE Spain to south of Morocco reflected a single
evolutionary unit with mtDNA yet showed weak but significant ge-
netic differentiation depicting an IBD pattern when using microsat-
ellites (Gonzalez & Zardoya, 2007). In contrast to sardine and in line
with our results, the sprat congener Sprattus fuegensis (Jenyns 1842)
in Patagonian Chile display two highly differentiated genetic clusters,
potentially the result of larval retention via combination of ocean-
ographic mesoscale processes combined with local geographical
configuration (i.e., embayment areas, islands, archipelagos) (Canales-
Aguirre, Ferrada-Fuentes, Galleguillos, & Hernandez, 2016).

Loci under divergent selection can be applied as an efficient tool
to detect population structure in marine species showing high dis-
persal and gene flow coupled with low genetic drift (e.g., Nielsen
et al.,, 2012). In the present study, some 10% of the analyzed loci
were candidates for divergent selection although genome-wide
markers combined with phenotypic or environmental variation
would be required to identify the underlying causative forces. For
instance, observations from other highly mobile marine organisms
coupling outlier loci with adaptive variation showed many genomic
regions displaying elevated divergence, apparently as a response to
temperature- and salinity-related natural selection in Baltic Sea her-
ring (Guo, Li, & Merild, 2016; Limborg, Helyar, et al., 2012). Similarly,
environmental conditions are suggestive of driving adaptive se-
lection in other clupeids such as the European anchovy, Engraulis
encrasicolus L. Hence, geographic gradients in sea temperature, sa-
linity, and dissolved oxygen in the Adriatic Sea appear to promote
adaptive differences in spawning time and early larval development

among populations (Ruggeri et al., 2016). Furthermore, Catanese

et al. (2017) showed, using 96 SNPs derived from genomic and tran-
scriptomic data, that the selective pressure related to river mouths
apparently acts on the same genes in the Atlantic Ocean as well as in
the Tyrrhenian Sea and North Adriatic Sea. These SNP outliers were
also associated with salinity variability or involved in a critical stage

of fertilization process.

4.2 | Potential mixing in Kattegat-Skagerrak and the
western Baltic Sea

There was no sign that samples collected in offshore Skagerrak-
Kattegat areas at any time of the year contained more than a single
genetic group, and there was hence no evidence of more than one
stock (mixed stocks), as is the case for another clupeid feeding in the
same area, Atlantic herring (Bekkevold et al., 2015a). Although dis-
tinct genetic differentiation was observed between samples from the
edges of each of the main genetic clusters, evidence of physical mix-
ing and genetic admixture was observed in Swedish Skagerrak fjords
(typified by Uddevalla) and the Belt Sea (Great Belt and @resund)
located at the southern border of the Kattegat (Figures 3b and 4).
Although the combination of observed genotypes and North Sea
x Baltic Sea hybrids created in silico suggests admixture (i.e., gene
flow) in this region as reflected in Figure 5 and Figure S2, we cannot
exclude the possibility that this also reflects physical mixing of fish
from the main genetic groups. The latter is explained due to the ap-
proximately 20% of the individuals displayed non-admixed patterns.
Furthermore, physical mixing between the main genetic groups is
likely to show spatiotemporal variation in regions such as Skagerrak
(Weist et al., 2019) and the western Baltic Sea (ICES, 2018a, 2018b,
2018c, 2018d, 2018e, 2018f), as demonstrated in other marine fishes
(e.g., Bekkevold et al., 2015b; Hemmer-Hansen et al., 2019; Knutsen
et al., 2018). Detailed temporal sampling in these areas, ideally com-
bined with biometric and/or life-history measurements (Moore et al.,
2019), is recommended to further elucidate the physical movement
or genetic admixture patterns in both Kattegat and Skagerrak where
all three genetic groups may converge. Certainly, in order to advise
fishery efforts in this region, such analyses should be a priority.

4.3 | Management implications

While questions remain, regarding the extent of genetic admixture
and physical mixing among the three major genetic groups in time
and space, especially in the coastal Kattegat-Skagerrak areas, our
data provide a clear overall picture of population genetic structure
for sprat. As a direct consequence of our genetic analyses, together
with other biological evidence (ICES, 2018b), the stock definitions
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currently in place when assessing spawning stock biomass have now
been modified to consider sprat in the North Sea and Kattegat-
Skagerrak area as a single management unit (ICES, 2019). Thus, our
study contributes to an increasing list of successful implementations
of fisheries genetics in assessment and management (see Dabhle,
Johansen, et al., 2018).

4.4 | Future perspectives

The SNPs used in the current study were developed upon a sam-
ple of eight individuals from one of the Norwegian sites. These
low sampling numbers allowed to confirm that alleles were ro-
bustly analyzable although hampered any reliable estimate of al-
lele frequencies. However, the primary objective was to identify
a “random” panel of markers for high-throughput genotyping to
investigate the population structure of this species, without aim-
ing for diagnostic or geographically informative SNPs. The suite of
91 SNPs genotyped on approximately 2,500 individuals allowed
to successfully identify three highly distinct genetic groups, cor-
responding with the following geographical regions: (a) Norwegian
fjords; (b) the Northeast Atlantic region including the North Sea,
Kattegat-Skagerrak, Celtic Sea, and Bay of Biscay; and (c) the Baltic
Sea. Therefore, considering the wide-ranging MAFs between geo-
graphic groups that loci displayed, and that population genetic
structure showed plausible geographic and biologic resolution,
ascertainment bias seemed not to be of major concern. However,
although this simple marker-identification procedure suitably
matched our objectives, whole genome-based approaches specifi-
cally looking for outlier loci and signs of adaptation may lift knowl-
edge further in the future by capturing variation that might have
eluded our scrutiny so far.

A geographically broad and dense sampling design is beneficial
for any population genetic study. Here, a denser net of samples
in the southernmost part of Norway as well as in the North Sea
and Kattegat-Skagerrak areas might help outlining the transition
zone with higher precision. Furthermore, including samples from
the meridional range of the distribution and increasing the density
in areas such as British Isles, western French coast, Mediterranean,
and Black Sea would provide a comprehensive picture of the num-
ber of populations and level of connectivity between them in this

species.
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