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Abstract

Abstract

The welfare of farmed fish is a subject of growing public, commercial and 

governmental interest. The Farm Animal Welfare Council’s report on the welfare of 

farmed fish (Anon., 1996a) highlighted stocking densities used in intensive fish 

production as a major welfare concern. This thesis investigates links between stocking 

density and welfare of rainbow trout (Oncorhynchus rnykiss, Walbaum, 1972).

The effects of stocking density and water quality deterioration on the welfare of 

rainbow trout were assessed in two controlled experiments. Fish welfare was assessed by 

measuring a range of morphometric (growth, fin condition), physiological (haematocrit, 

plasma cortisol and glucose) and immune response (lysozyme activity) indicators. 

Principal Components Analysis (PCA) was used to generate welfare indices based on 

coherence that existed between the individual welfare indicators.

The first experiment stocked different numbers of fish into the tanks at the same 

inflow rate (60 1 min'1) to achieve stocking densities of 10, 40, and 80 kg m'3. Results 

suggested that, provided good water quality was maintained, stocking densities around 80 

kg m"3 did not produce consistent negative effects on growth rate, stress response or 

immunological indicators of welfare. Fin erosion increased with increasing density, 

although the exact cause of the erosion remains unclear. Increased size variation and 

elevated cortisol levels in the 10 kg m'3 treatment, possibly linked to dominance 

hierarchies, indicated that low, as well as high, stocking densities may have a detrimental 

effect on trout welfare.



Abstract

The second experiment assessed the effect of water quality deterioration by 

adjusting inflow rate (20, 40 or 60 1 min'1) in tanks containing the same initial stocking 

density of fish (16 kg m"). Inflow rate affected growth during the 3 month summer 

period when water temperatures were highest (~14°C), with significantly better growth 

observed in the 60 1 min'1 treatment. There was no significant effect of inflow rate on 

cortisol, haematocrit or fin erosion, but higher mortality and poorer body condition were 

observed in the 20 1 min'1 treatment.

A questionnaire survey of stocking density practices on UK trout farms found 

marked differences in the stocking practices and the perception of a high SD when 

comparing farms producing trout exclusively for the table market with fisheries and 

restocking farms. A lack of accurate flow rate data from respondents highlighted the 

difficulties of trying to apply alternative methods of quantifying stocking density rather 

than the conventional unit of kg m '\ On-farm work successfully applied the system of 

welfare assessment in a range of selected commercial systems and confirmed some of the 

findings from the tank based experiments and questionnaire survey.

In summary, increased stocking density resulted in increased fin erosion although 

there was also the suggestion that there are welfare implications at low as well as high 

SD. Systems applying high SD or loading rates may run an increased risk of mass 

mortality in the event of system failure, necessitating the need for increased supervision 

and appropriate back-up systems. A universally applied SD limit will not guarantee good 

fish welfare and it is suggested that defining limits of key water quality parameters may 

prove to be more effective. Further work is required to establish thresholds of water 

quality parameters to safeguard fish welfare.
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Chapter 1: General Introduction

Chapter 1: General Introduction

The welfare of farmed fish is a subject of growing public, commercial and 

governmental concern (Lymbery, 1992, 2002; Kestin, 1994; Anon., 1996a; FSBI, 

2002; Lines et al., 2003). As a relatively new major agricultural sector, aquaculture 

was largely overlooked by both pressure organisations and welfare legislators until 

the last two decades. Aquaculture now represents the world’s fastest growing sector 

of food production and there are increasing concerns surrounding the ethics and the 

environmental impact of fish farming (Lymbery, 2002).

The stocking densities used in intensive fish production are seen as a welfare 

concern and specific references to this issue have been made by pressure groups 

(Lymbery 1992; 2002) and also by the Farm Animal Welfare Council (FAWC; Anon., 

1996a). Similar to concerns surrounding the intensity of terrestrial livestock e.g. 

poultry (Anon., 1992a; 1995; 1997) and pig farming industries (Anon., 1996b; 

Council of Europe Directives 2001/88/EC; 2001/93/EC), the densities at which fish 

are farmed has been targeted as a potential welfare issue. Unlike terrestrial farm 

animals, where minimum spatial areas are stipulated to provide for an animal’s 

behavioural needs (Anon., 1996c), there are currently no regulations regarding the 

densities at which fish can be farmed.

The FAWC report on the welfare of farmed fish (Anon., 1996a) made 121 

recommendations relating to the farming of Atlantic salmon (Salmo salar Linnaeus, 

1758), brown and rainbow trout (Salmo trutta Linnaeus, 1758; Oncorhynchus mykiss, 

Walbaum, 1792). The FAWC report made 43 specific recommendations for trout, 

four of which related specifically to stocking density (Table 1.1).
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Table 1.1. Recommendations relating to the stocking density of farmed trout (Anon.,

1996a)

No. Recommendation

69 The stocking densities in hatcheries should allow for adequate oxygen 

provision for each fish.

70 The stocking density must allow fish to show most normal behaviour with 

minimal pain, stress and fear. Scientific research is needed on the effect of 

stocking density on fish welfare but it seems that 30-40 kg m’3 is too high a 

stocking rate for trout. Higher densities may be acceptable for short periods 

prior to slaughter and during treatment for diseases and parasites.

71 Research should be undertaken urgently to determine acceptable maximum 

stocking densities taking account of factors referred to in paragraph 143 of 

the report and include objective measures of the welfare of fish. These results 

should be available within five years, at which point we expect to 

recommend the introduction of legislation to limit stocking densities.

80 Stocking density should be kept within manageable levels for holding

facilities.

The government published a response to the FAWC report in which stocking 

density was identified as an issue for inclusion in a proposed ‘welfare code’ for 

farmed fish production, stating that “stocking density employed at any particular time 

should pay proper regard to the need to allow fish to show normal behaviour with 

minimal pain, stress and fear” (Anon., 1998).

This introduction will discuss what is meant by welfare, the existing 

legislation relating to fish welfare, the different measures of stocking density and the 

ways in which stocking density can potentially affect fish welfare. An outline of the 

topics covered in the remainder of the thesis is also provided.
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1.1. What is welfare?

Although there is no universally accepted definition for welfare, welfare is commonly 

seen to represent an assortment of notions relating to health, well-being and quality of 

life i.e. the physical and mental state of an animal in relation to its environment 

(Appleby & Hughes, 1997; Duncan & Fraser, 1997). The lack of a concise definition 

is arguably one of the reasons that welfare is often criticised by other fields of science 

as being vague and subjective. One of the main difficulties in defining welfare is the 

fact that suffering is a central theme to animal welfare, and suffering is inherently 

difficult to assess. Assessing suffering is hindered by subjective interpretations of an 

animal’s feelings. With fish, this is further complicated due to the lack of 

vocalisations and difficulties associated with observing behavioural patterns 

underwater.

A concise definition covering all aspects of welfare may not be possible and a 

recent briefing paper from the Fisheries Society of the British Isles (FSBI) categorised 

definitions of welfare into three main areas (FSBI, 2002):

1. Feelings-based definitions: e.g. mental state, well being.

2. Function-based definitions: e.g. animal’s health status; biological function.

3. Nature-based definitions: e.g. animal can live natural life and display natural 

behaviour.

In light of the difficulties associated with defining welfare, an alternative 

approach has been to instead define conditions that compromise welfare i.e. lay down 

the conditions that must be met to ensure acceptable welfare. One such approach is 

The ‘Five Freedoms’ (Anon., 1992b; Table 1.2), which is now one of the most widely
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accepted frameworks for animal welfare policy (Appleby & Hughes, 1997; Cooke, 

2001). The Five Freedoms were originally developed with terrestrial animals in mind 

and some of the points are not relevant to fish welfare e.g. freedom from thirst and 

ready access to freshwater. However, the principals of the Five Freedoms are 

recognised to be equally applicable to fish (Cooke, 2001; Anon., 2002; Ellis et al., 

2002; FSBI, 2002).

Table 1.2. The five freedoms of animal welfare (Anon., 1992b)

Welfare Freedom

1. Freedom from thirst, hunger and malnutrition

by ready access to fresh water and a diet to maintain full health and vigour

2. Freedom from discomfort

by providing suitable environment including shelter and a comfortable resting 

area

3. Freedom from pain, injury and disease

by prevention or by rapid diagnosis and treatment

4. Freedom of normal behaviour

by providing sufficient space, proper facilities and company o f animal's own 

kind

5. Freedom from fear and distress

by ensuring conditions which avoid mental suffering

Using the same concept as the Five Freedoms, the use of Five Domains has 

also been suggested based on the recognition of five main areas in which welfare may 

be compromised (Table 1.3).
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Table 1.3. The Five Domains in which welfare may be compromised (Mellor & 

Stafford 2001: cited in FSBI, 2002)

Domain of welfare infringement

Domain 1 Water and food deprivation, malnutrition

Domain 2 Environmental challenge

Domain 3 Disease injury and functional impairment

Domain 4 Behavioural/interactive impairment

Domain 5 Mental and physical suffering

Lymbery (2002) suggested that welfare should be separated into two 

components that focus on production-related welfare (i.e. keeping the animal alive 

and growing) and factors associated with quality of life (i.e. preventing animal from 

suffering as a result of behavioural or environmental deprivation). By separating 

welfare into these components Lymbery suggested that traditional production-based 

indicators alone do not sufficiently represent all aspects of welfare, and that good 

performance in terms of growth and feed conversion, is not necessarily implicit to 

good welfare.

Perhaps the most succinct way of capturing both the physical and mental 

aspects of animal welfare is presented by Dawkins (2004) in the form of two 

questions;

1) Are animals healthy?

2) Do they have what they want?

Dawkins stated that these two questions avoid the ambiguity of using the word 

‘need’ e.g. animals may be highly motivated to obtain something, even though they
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do not need it, if need is viewed in the context of being something required for 

survival or good health. Dawkins (2004) described an experiment that used preference 

testing to determine what farmed chickens wanted by connecting boxes containing 

food, water and a nesting box (everything the chickens needed) to either an enriched 

(wood-shavings with a box of sprouting wheat) or barren environment (bare wire 

floor). The chickens preferred the enriched environment, but faecal cortisol levels 

were higher and there was a greater loss of egg shell thickness associated with the 

enriched environment (cited in Dawkins, 2004). This example demonstrates some of 

the difficulties in assessing animal welfare, as use of the objective measures alone 

(cortisol; egg shell thickness) could have been interpreted as being indicative of poor 

welfare, though the fact that the chickens spent more time in the enriched 

environment suggests that this is what they wanted.

Finally, a less conventional interpretation of animal welfare focuses on the 

importance of consciousness and what is “in the mind’s eye” of an animal (Kirkwood, 

2004). The idea that animals are capable of sentient experience (having the power of 

perception by the senses) and capable of conscious thoughts akin to humans remains a 

subject of great debate. Probably the first detailed acknowledgement that animals are 

capable of emotional expression dates back to 1872 when Charles Darwin published 

‘The expression of the emotions in man and animals’ (Darwin, 1872). Before this 

time it was largely believed that man was the only animal capable of inner reflection, 

largely attributed to a connection with an omnipotent God. Using a series of 

illustrated examples, Darwin demonstrated the wide array of emotions that animals 

display, such as fear (trembling and tucking of the tail between the legs of a dog), 

wellbeing and contentment (whinnying in horses, purring in cats) and aggression 

(erection of dermal appendages and vocalisations; growling, roaring, snarling etc.).
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Fish have long been known to display complex behavioural patterns such as 

migratory behaviour (e.g. Atlantic salmon), intricate nest building and courtship 

rituals (e.g. Siamese fighting fish Betta splendens) and there are also examples of con- 

specific signalling to indicate social rank and aggressive intent (Abbot & Dill, 1985; 

O’Connor et al., 1999). However, it is largely dependent on personal perception to 

decide if such behaviour equates to sentience.

The subject of cognition in fish is an area of growing interest and research has 

shown that fish are capable of complex, flexible behaviours and of forming mental 

representation (reviewed by Braithwaite & Huntingford, 2004). To date, most 

salmonid cognition work has focused on aggressive behavioural interactions. Ellis et 

al. (2002) summarised aggressive behavioural interactions in salmonids as consisting 

of signalling (body colouration, posture and erecting of depressing fins), attacking 

(displacement, charging and chasing) and fighting (non-reciprocated nips or mouth- 

fighting). In the wild, stream dwelling salmonids are reported to be territorial 

(Hartman, 1965; Berejikian et al., 1996), but under culture conditions they have been 

shown to form social hierarchies (Johnsson et al., 1996; Adams et al., 2000; Sloman 

et al., 2000). Position in the hierarchy is largely dictated by body size (Abbott et al., 

1985; Adams et al., 2000), with uneven food acquisition as larger fish monopolise the 

food source further enforcing the hierarchy (McCarthy et al., 1992). There is also 

evidence of endocrine mediation of aggression, through hormones such as cortisol 

(Pottinger & Carrick, 2001) and growth hormone (Johnsson et al., 1996). Further 

evidence suggests that learning also plays a role in dominance in salmonids, with 

examples of changes in aggressive behaviour depending on previous experience 

(Abbot et al. 1985) and previewing of an opponents fighting ability (Johnsson & 

Akerman, 1998).
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Fish are receiving more recognition for the complex animals that they are, but 

a question that remains unresolved is the capacity of fish to suffer. Suffering is central 

to the welfare concept and the necessity of safeguarding fish welfare will always be 

questioned without evidence that fish are capable of experiencing suffering akin to 

that of humans. Rose (2002) argued that the experience of pain and emotion in fish is 

untenable as fish lack any functional equivalent to the mammalian neocortex. Rose 

acknowledged the ability of fish to display a wide array of non-conscious, 

neuroendocrine and stress responses, but remained largely dismissive of evidence of 

learning behaviour and suggested any such evidence was merely associated or 

implicit learning i.e. learning relationships between a stimulus or stimuli and a 

behavioural response. Rose concluded that behavioural responses to noxious stimuli 

are separate from the physiological experience of pain, and that awareness of pain in 

humans is dependent on functions of specific regions of the cerebral cortex and the 

absence of such a region or functional equivalent in fish means that they are incapable 

of awareness of fear, or experiencing pain.

Rose’s review generated much debate and the idea that humans and higher 

primates are alone in their capacity to suffering has been viewed as extreme. 

Braithwaite and Huntingford (2004) recently reviewed research outlining the 

nociceptive and cognitive capacities of fish. Using Rose’s own rationale it was 

suggested that if fish have the capacity for mental representation, then they should 

also have the capacity to experience suffering. Though acknowledging the fact that 

fish are unlikely to experience pain and suffering in the same way as humans, it was 

concluded that fish possess both the apparatus and powers of perception necessary to 

experience pain (Braithwaite & Huntingford, 2004).
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Recent work that has generated much media interest has focused on 

nociception in the rainbow trout (Sneddon 2002; 2003a; 2003b; Sneddon et al., 2003). 

Physiological (electrophysiology) and anatomical findings showed that rainbow trout 

possess A-delta and C fibres in the trigeminal nerve ganglion akin to those 

responsible for nociception in higher vertebrates (Sneddon, 2002). Braithwaite and 

Huntingford (2004) discussed some unpublished work in which the natural tendency 

to avoid a novel object was reduced in groups of fish that were exposed to noxious 

stimuli (Sneddon et al. in press). There was also evidence to suggest that morphine 

acted as an analgesic, as the avoidance of the novel object by fish treated with 

morphine and acetic acid was similar to control fish, suggesting that fish treated with 

the acid alone may have been distracted with the pain of the stimulus. Another 

experiment that used the same noxious stimuli demonstrated that following exposure 

to the acid, rainbow trout displayed anomalous behaviour (rocking form side to side 

on pectoral fins and rubbing snouts in the gravel), increased opercular beat and a took 

a longer period of time to resume feeding (Sneddon, 2003). The anomalous behaviour 

and the time taken to resume feeding were reduced in groups treated with acid and 

morphine compared with acid alone. Sneddon (2003) concluded that they had fulfilled 

all of the criteria for animal pain as proposed by Zimmerman (1986), where pain in 

animals is defined as an adverse sensory experience that is caused by a stimulus that 

can or potentially could cause tissue damage; this experience should elicit protective 

motor (move away from) and vegetative reactions (e.g. inflammation and 

cardiovascular responses) and should also have an adverse effect on the animal’s 

general behaviour (e.g. cessation of normal behaviours).

There are strong arguments both for and against the ability of fish to 

experience pain, though scientists representing both sides of the argument agree there

9



Chapter 1: General Introduction

is a need for further research into the subject. In light of such uncertainty, an approach 

often advocated by researchers working in animal welfare is to take the stance that 

pain should be considered without an emotional element and that a distinction should 

be drawn between human and animal pain (e.g. Bateson, 1991). A more simplistic 

approach is to give the benefit of any doubt that exists regarding an animal’s ability to 

suffer in favour of the animal, and take necessary measures to minimise any suffering 

that might occur as a result of contact with man.

1.2. Summary of existing fish welfare legislation

The welfare of fish farmed for food is presently covered by the Agriculture Act 1968, 

which makes it an offence to cause unnecessary pain or unnecessary distress (Anon., 

1996c). This legislation only covers farms on agricultural land, but protection on other 

sites is offered by the Protection of Animals Act 1911, which protects against general 

offences of cruelty against any domestic or captive animal (including fish). Other 

legislation and regulations that are relevant to fish welfare include:

• The Registration of Fish Farming and Shellfish Farming Business Order 1985; 

requires all fish farms to be registered and specifies the requirement for all 

registered farms to keep records of stock movements and mortality.

• Welfare of Animals (Transport) Order 1997; requires animals to be transported in 

a way that does not, and is not likely to, cause injury or unnecessary suffering.

• The Welfare of Animals Regulations (Slaughter and Killing) 1995; makes it an 

offence for anyone engaged in the movement, restraint and stunning of fish to 

cause or permit any fish to sustain any avoidable excitement, pain or suffering.

10
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• Fish Health Regulations, 1997; granted powers of inspection to The Fish Health 

Inspectorate for the collection of samples for the purposes of monitoring and 

control of certain diseases.

As animals farmed for food, fish are afforded a degree of protection by the 

statutory regulations relating to cruelty, but such legislation was designed with 

terrestrial animals rather than fish in mind. The only legislation with specific 

references and conditions relating to fish are the Fish Health Regulations, although 

their main focus is controlling the introduction and spread of diseases rather than 

promoting fish welfare. However, this situation is soon likely to change with the 

proposed introduction of new laws relating specifically to fish welfare by the Council 

of Europe (Council of Europe, 2002). The Standing Committee of the European 

Convention for the Protection of Animals Kept for Farming Purposes first started 

drafting fish welfare conditions in 1998 and at the time of writing, the draft was 

undergoing its 13th revision.

The introduction of pan-European legislation is understandably a slow and 

complicated process, but there are already several quality schemes and codes of 

practice that make specific references to the safeguarding of fish welfare e.g. the 

British Trout Association Code of Practice, (Anon., 2002) and the Federation of 

European Aquaculture Producers (Anon., 2000). However, as codes of practice (CoP) 

are not legally binding, they are often viewed by pressure groups as being inadequate 

and there remains a demand for the introduction of legally binding legislation 

specifically aimed at safeguarding fish welfare (Lymbery, 2002).

11
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1.3. What is stocking density?

This section will define what is meant by stocking density (SD) and describe some of 

the different ways in which SD can be expressed. Despite the widespread use of the 

term SD, there are very few definitions in the literature, although it is commonly used 

to refer to the density of fish at any point in time (Wedemeyer, 1996). Strictly 

speaking, SD should refer to the concentration that fish are originally stocked into a 

system and Ellis et al., (2001) suggested that the term SD is actually a misnomer and 

that ‘stock density’ or just ‘density’ would be more appropriate terms to reflect the 

changes in fish concentration during the commercial production cycle (SD increases 

due to somatic growth and is reduced by thinning and grading). However, due to its 

prevalent use, the term ‘stocking density’ has been used in this thesis, where SD 

describes the weight of fish per unit volume of water at a given point in time, using 

the metric unit of kg m'3. For improved clarity, reviewed literature using alternative 

expressions of SD have been converted into kg m‘‘.

There are many alternative expressions of stocking density (reviewed by Ellis 

et al., 2001) that incorporate different measurements to represent the spatial and 

physiological needs of the fish (Table 1.4). Haskell (1955) first proposed the idea 

‘carrying capacity’ i.e. the animal load that a farming system can support, based on 

physiological, rather than spatial requirements. Haskell’s carrying capacity was based 

on the assumption that food consumption will be proportional to both oxygen 

consumption and waste production and therefore suggested that carrying capacity 

would be limited by the amount of feed fed per day per unit volume of water.

12
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Haskell’s concept was further developed through the late 1960’s and 70’s by 

other researchers in the United States to incorporate factors such as flow rates 

(Willoughby, 1968) and fish size (Westers, 1970; Piper, 1970). Westers (one of the 

World’s most well respected sources on production considerations relating to 

intensive fish farming) has proposed many different ways to calculate carrying 

capacity that recognise the importance of limiting factors such as oxygen availability, 

ammonia production, water exchange rate and water reuse (Westers, 2001).

Loading Factor is an alternative expression of density that has been used in 

several studies (Piper et al., 1970; Larmoyeux & Piper, 1973). A maximum 

permissible Loading Factor of 1.5 is recommended for trout, which can be used in the 

following equation to determine the permissible weight of fish, at a given water 

inflow for a given size of fish (Piper, 1970):

W
Loading Factor = ---------

L x I 

W = weight of fish (lbs.)

L = fish length (inches)

I = Inflow rate (gallons per minute)

Piper et al. (1982) later renamed Loading Factor to ‘Flow Index’ (FI) and 

provided a table to correct for altitude and water temperature, where the maximum 

recommended FI decreased with increasing water temperature and altitude e.g. the 

recommended FI at 4.5°C at sea level is 2.7, but at 17.8°C and 9,000 ft. the 

recommended FI is 0.83. Piper et al. (1982) also recognised that although FI 

accounted for the physiological requirements (oxygen consumption and ammonia 

production) and environmental factors (temperature and altitude) to allow good
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survival and growth, the system was not necessarily optimal for disease control and 

fish quality, so also proposed the Density Index:

W
Density Index = ---------

L x V 

W = weight of fish (lbs.)

L = fish length (inches)

V = System volume (cubic feet)

Density Index (DI) also takes spatial requirements into consideration, for 

which Piper et al. (1982) suggested a maximum value of 0.5 for trout, i.e. the density 

in lbs. ft' should not exceed half the fish length in inches (equates to a metric ratio of

3.2, between fish length in cm and density in kg m'3).

Loading Rate (LR; also referred to as ‘Loading Density’) is another expression 

of density that has been applied in several studies (e.g. Brauhn et al. 1976; Iwamoto et 

al. 1986) and was also previously used in the BTA CoP (Anon., 1996d). Loading Rate 

is calculated as the weight of fish per unit of water flow (kg 1 min'1) and similar to 

carrying capacity, LR recognises the physiological requirements for oxygen provision 

and the removal of metabolic waste (e.g. ammonia, carbon dioxide, faecal waste).

1.4. How can stocking density affect fish welfare?

The different expressions of stocking density were designed to take account of the 

various spatial and physiological requirements of the fish, and latterly, to also 

incorporate other factors such as fish size and environmental parameters (Table 1.4). 

The expressions of density can be grouped into those that focus on spatial 

requirements (SD and DI), and those that focus on physiological requirements
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(carrying capacity, FI etc.). These groupings represent the two main routes by which 

SD can potentially affect fish welfare:

1) Behavioural routes of welfare infringement

2) Physiological routes of welfare infringement

A summary of the hypothetical ways in which SD could infringe welfare in 

regard to the Five Domains of animal welfare is shown in Table 1.5.

Table 1.5. Hypothetical pathways by which stocking density could compromise

welfare in regard to the Five Domains of welfare infringement

Domain of welfare infringement and causative mechanisms by which stocking

density may potentially infringe welfare

Domain 1 Water and food deprivation, malnutrition

o Uneven food acquisition (low and high SD)
o Physical obstruction preventing visual location and access to food (high SD) 
o Aggressive behaviour preventing the access of subordinate fish to food (low SD) 
o Increased energy requirements due to increased activities at higher SD 
o Poor feeding response (low SD)

Domain 2 Environmental challenge

o Water quality deterioration:
• Limited oxygen availability due to increased biomass (high SD)
• Accumulation of harmful metabolic waste e.g. ammonia, carbon dioxide, and 

faecal waste (high SD)

Domain 3 Disease, injury and functional impairment

o Increased transmission of disease and parasites (high SD) 
o Increased fin and body damage due to aggressive nipping (low & high SD) 
o Increased fin and body damage due to abrasion against tanks surfaces (high SD) 
o Impaired immune function due to chronic physiological stress (low & high SD)

Domain 4 Behavioural/interactive impairment

o Formation of dominance hierarchies (low SD)
o Aggressive behaviour restricting access of subordinates to food (low & high SD)

Domain 5 Mental and physical suffering

o Pain caused by fin and body damage (low & high SD) 
o Fear in subordinate fish (low & high SD)
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1.5. Recommended maximum stocking densities for rainbow trout

The FAWC report (Anon. 1996a) suggested that stocking densities of 30 -  40 kg m'3 

were potentially detrimental to rainbow trout welfare and called for research to be 

carried out to determine an acceptable maximum limit of SD to safeguard welfare. 

However, the feasibility of specifying a maximum SD has since been questioned 

(Ellis et al. 2001) and the value of SD (kg m'3) as a unit has also been suggested to be 

of little or no value for safeguarding fish welfare (Ellis et al., 2002). There are 

obvious differences that complicate the process of determining acceptable stocking 

densities for fish compared with terrestrial farm animals:

• Fish live in a three-dimensional medium.

• Fish are dependent on water not only for their spatial requirements, but also for 

the physiological requirements just as terrestrial animals need air; Westers (2001) 

drew comparisons with the high rates of water exchange used in flow-through 

aquaculture systems and the high air turn over rates used in intensive production 

of broilers.

• Fish culture systems are usually not static, especially in the case of intensive

rainbow trout farming, so the rate of water exchange will also affect the 

acceptable SD.

• Fish are poikilothermic, so water temperature will have a much greater effect on

their metabolism than air temperature will for terrestrial animals.

• Water chemistry is subject to regional variation and factors such as pH and

alkalinity have profound effects on the tolerance of fish to toxic waste products 

such as ammonia and carbon dioxide (discussed in greater depth in Chapter 5).
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These factors mean that adopting an approach similar to that used in the UK to 

prescribe the spatial requirements of calves, pigs and battery hens (Anon., 1996c), 

may not take account of the physiological requirements of the fish. The summary of 

the various expressions of density (Table 1.4) shows that no single measurement takes 

account of all of the physiological and environmental factors that could potentially 

affect fish welfare. The prevalent use of the SD (kg m~3) is likely to reflect the ease 

with which it can be calculated (the only information required is the volume of the 

rearing system and the weight of fish inside). The idea of a maximum SD was 

probably more relevant before the intensification of trout farming and the introduction 

of modem fish farming systems (e.g. liquid oxygen injection). Different farming 

systems have different capacities for the amount of fish that they can support and 

providing for spatial need alone is not sufficient to safeguard fish welfare.

Wedemeyer (1996) wrote of the elusive nature of quantifying density 

tolerance and suggested that estimates that are too conservative waste space, whereas 

densities that are too high may cause stress, disease and problems such as fin erosion. 

Similarly, Westers suggested that unlike measurements of carrying capacity 

(physiological requirements), it is more difficult to determine safe, optimal spatial 

requirements and stated that there is a lack of understanding with regard to optimum 

densities for particular sizes and species of fish (Westers, 2001).

The difficulty of specifying a maximum SD is reflected in the wide range of 

recommendations in the literature (Table 1.6).
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Table 1.6. Published recommendations for maximum stocking density of rainbow

trout; reproduced from Ellis et al. (2002)

System Author Recommendation (kg m'3)
Cages Boydstun & Hopelain, 1977 <40

Collins, 1972 >55
Kilambi et al., 1977 >45
Sahin et al., 1999 20-25
Teskeredzic et al., 1986 20
Wojno, 1976 4-18

Tanks Kebus et al., 1992 >267
Kincaid et al., 1976 40-80
Kindschi et al., 1991a 196-261/<147 depending on strain
Makinen & Ruohonen, 1990 >50
Rigolino et al., 1989 43

Raceways Laks & Godfriaux, 1981 160
Papoutsoglou et al., 1980 40-50
Papoutsoglou et al., 1987 >88.5
Piper, 1970 90
Wedemeyer, 1996 8-35 (for fish of 0.5 to 30g)

The wide variation in recommendations for maximum SD may be partly 

explained by the variety of experimental systems used in studies, but even when 

recommendations are grouped into generic system types (e.g. cage; tank; raceway) 

there is still a large degree of variability.

In the past, recommendations have focused primarily on optimising growth 

and maximising profitability rather than safeguarding fish welfare (Piper et al., 1980; 

Wedemeyer, 1996). Previous studies have demonstrated that it is possible to grow 

rainbow trout at very high stocking densities with no negative effects on growth or
•5

mortality; Buss et al. (1970) achieved densities of 545 kg m' in small-scale units with 

no effect on mortality, and Bagley et al. (1994) showed that growth of young rainbow
*3

trout was unaffected by densities of up to 500 kg m' . However, it is generally 

accepted that good welfare encompasses more than just optimum growth and survival 

(FSBI, 2002).
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1.6. Stocking density policy for other farmed animals

The space allowances for other types of farmed animals have already been considered 

in some depth (Table 1.7).

Table 1.7. Recommendations for space allowances for terrestrial livestock extracted

from codes of recommendations for the welfare of livestock (Defra, 2004).

Animal Holding System (age/sex/size) Space Allowance
Cattle All types None specified*
Ducks Slatted/mesh floors (10 days to 3 weeks) 

Slatted/mesh floors (3 to 8 weeks)
Solid Floors (10 days to 3 weeks)
Solid Floors (3- 8 weeks)
Grass runs (3-8 weeks)

25 ducklings m'2 
8 ducklings m"2 
14 ducklings m'2 
7 ducklings m'2 
2,500 ducklings hectare1**

Pigs Pens (Weaners/rearing pigs up to 10kg) 
Pens (Weaners/rearing pigs >10-20kg) 
Pens (Weaners/rearing pigs >20-30kg) 
Pens (Weaners/rearing pigs >30-50kg) 
Pens (Weaners /rearing pigs >50-85kg) 
Pens (Weaners/ rearing pigs >85-110kg) 
Pens (Weaners/ rearing pigs >110kg) 
Pens (Pregnant sows)
Pens (Boars)

0.15 m2 per pig 
0.20 m2 per pig 
0.30 m2 per pig 
0.40 m2 per pig 
0.55 m2 per pig 
0.65 m2 per pig 
1.00 m2 per pig 
2.25 m2 per pig*** 
6 m2 per boar

Chickens All types (Laying Hens)
All types (Broilers of slaughter weight of 
1.8-3.0 kg)

12 hens m'2 
34 kg m'2

Rabbits Cages (5-12 weeks) 
Cages (>12 weeks) 
Hutches (5-12 weeks)

0.07m2 per rabbit 
0.18 m2 per rabbit 
0.09 m2 per rabbit

Sheep Housed (Lowland Ewes 60-90 kg) 
Housed (Lowland Ewes lambing) 
Housed (Hill Ewes 45-65 kg)
Housed (Hill Ewes lambing)
Housed (Lambs up to 12 weeks) 
Housed (Lambs 12 weeks -12 months) 
Housed (Rams)

1.2-1.4 m2 per ewe
2.0-2.2 m2 per ewe
1.0-1.2 m2 per ewe 
1.8-2.0 m2 per ewe 
0.5-0.6 m2 per ewe 
0.8-0.9 m2 per ewe 
1.5-2.0 m2 per ewe

Turkeys Broiler-type housing 
Tier brooders 
Pole bams 
Enclosed range area

0.260 m2 per kg 
0.515 m2 per kg 
0.410 m2 per kg 
10 m2 per bird

* the code states that space allowances for cattle should be based on the age, sex, 
individual size, herd size, behavioural needs and also whether or not the cattle have 
horns.
** may be increased to 5,000 ducklings per hectare if the run is well-grassed
***1.3m2 of which must be continuous solid floor
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For some animals the spatial requirements of some animals are stipulated very 

specifically depending on factors such as size {e.g. pigs), type of production {e.g. 

broiler chickens vs. laying hens), or type of housing {e.g. turkeys). In contrast, the 

spatial recommendations for cattle are very broad, and focusing on specific welfare 

requirements that should be met rather than stipulating an actual maximum stocking 

density.

1.7. Outline of the thesis

The work carried out in this thesis was funded by Defra (Department of Environment, 

Fisheries and Rural Affairs) as a direct result of the recommendations made in the 

FAWC report on the welfare of farmed fish (Anon., 1996a). As such, the research 

brief was aimed specifically at addressing the issues outlined by FAWC with regard 

to stocking density of farmed rainbow trout (Table 1.1).

This introductory chapter has addressed the theme of fish welfare and defined 

stocking density and some of the practicalities/impracticalities of applying different 

expressions of SD to fish welfare. Chapter 3 will discuss ways in which fish welfare 

can be assessed and provides experimental evidence for the effects of chronic and 

acute stress responses in rainbow trout. Chapters 4 and 5 form the main body of 

experimental work, with objective measures of fish welfare applied to assess the 

effects of stocking density (Chapter 4) and water quality deterioration (Chapter 5) in 

controlled studies. Chapter 6 provides an overview of stocking density practices on 

UK trout farms based on the results of a postal questionnaire. Chapter 7 will cover the 

on-farm application of welfare assessment in a longitudinal survey of selected 

commercial rainbow trout farms, and the thesis concludes with a general discussion.

21



Chapter 2: General Materials and Methods

Chapter 2: General Materials and Methods

This chapter describes the materials and methods applicable to more than one 

experiment. Procedures that are specific to a particular chapter are described in the 

materials and methods section at the start of relevant chapters.

2.1. Fish husbandry

2.1.1. Experimental Animals

Stocks of all female, farm-reared rainbow trout were used in all but one experiment 

where fish of mixed sex were used. Where possible fish of the same strain were used 

but details of the origin, source, age and size of fish are detailed in the materials and 

methods section of each chapter.

2.1.2. Experimental sites

All experimental work discussed in chapters 3, 4 and 5 was carried out at the 

University of Stirling’s Niall Bromage Freshwater Research Facility (previously 

named Buckiebum) located near to Stirling (56:03°N; 3:59°W). All experimental tank 

systems received first use water from a reservoir located approximately 1 km to the 

North of the site. The characteristics of the water from this reservoir were ‘soft’ with a 

low alkalinity (around 25 mg I'1), pH 6.5 -  7, and had an annual temperature range of 

0 -  17 °C. The water had brown discolouration due to the high peat (humic acid) 

content of the soil in the catchment area.
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2.1.3. Fish maintenance

The fish in Chapters 3, 4 and 5 were all held in fibreglass tanks under flow-through 

water conditions.

The system used for the majority of the experimental work (Chapters 4 and 5) 

comprised 10 x 2 m diameter circular fibreglass tanks with an external standpipe 

adjusted to maintain a water depth of approximately 60 cm and a volume of 1.8 m3. 

During the interim between experiments discussed in chapters 4 and 5, the 2 m system 

was upgraded with the addition of fibreglass lids, fitted with two 16 watt lights (RS 

Components Ltd.; Northants, UK) creating approximately 500 lux at the water 

surface and 300 lux at the tank floor. The lights were controlled by clockwork timers 

(Kingshield timer, Powerbreaker PLC; Essex, UK), which were adjusted in 

accordance with sunrise and sunset in a Simulated Natural Photoperiod (SNP).

2.2. Anaesthesia

Fish were anaesthetised in a 1:10,000 bath of 2-phenoxy ethanol (Sigma; Dorset, UK) 

made up in farm water. Anaesthesia typically took approximately 3 min. Recovery 

from anaesthesia was achieved using a bath of fresh, aerated farm water. No 

mortalities were recorded following anaesthesia.

2.3. Fish euthanasia

For the removal of blood for analysis in Chapters 3, 5 and 7 the fish were euthased 

prior to the removal of the sample in accordance with Home Office regulations for a 

Schedule I kill. Fish were placed in an anaesthetic bath with a 1:5,000 solution of 2- 

phenoxy ethanol and following anaesthesia fish were killed with a strong single blow 

to the head such that loss of sensibility was instantaneous.
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2.4. Growth measurements

Fish were weighed to the nearest 0.1 g on an electronic balance (Model QC7DCE-S, 

Sartorius AG; Germany). Length measurements were made using a customised fish 

measuring board with all or some of the following measurements used in various

trials; Standard Length, Fork Length, Total Length (Figure 2.1).

Standard Length

Fork Length

Total Length

Figure 2.1. Schematic diagram showing the position of the measurements for 

standard, fork and total length

2.5. Blood sampling

All blood samples were taken from the dorsal-caudal aorta of anaesthetised or dead 

fish. Either 1 or 2 ml syringes (Terumo Europe N.V.; Leuven, Belgium) were used 

depending on the amount of blood required. Generally, for fish of less than 250 g a 

23G sterile hypodermic needle (Terumo Europe N.V.; Leuven, Belgium) and for fish 

over 250 g a larger gauge 21 G needle was used. Syringes were rinsed with a 4 mg ml" 

1 solution of porcine intestinal heparin (Sigma; Dorset, UK) to allow the collection of 

plasma. The blood was then emptied from the syringe into 1.5 ml micro-centrifuge
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tubes and centrifuged at a relative centrifugal force (RCF) of 1200 G (2500 rpm) for 

15 min at 4°C. Plasma was then transferred to another ependorf tube and stored at - 

70°C until analysis were performed.

2.6. Welfare Indicators

2.6.1. Cortisol radioimmunoassay

Concentrations of plasma cortisol were determined using a radioimmunoassay 

adapted from Pickering et al. (1987).

Assay Buffer

The following constituents were dissolved in 100 ml of nanopure water in a 

volumetric flask with the aid of a magnetic stirrer and heated plate:

Sodium dihydrogen orthophosphate 0.74 g

Disodium hydrogen orthophosphate 2.88 g

BSA 1.00 g

Sodium Chloride 4.00 g

EDTA 0.15 g

Sodium Azide 0.05 g

Once dissolved, the volume was made up to 500 ml with nanopure water, mixed, and 

cooled to 4 °C. Buffer was generally made up the day before each assay and stored at 

4 °C, but the addition of sodium azide permitted the buffer to be used for up to 7 days. 

All the chemicals used were of Analar grade and supplied by either Sigma or BDH 

Chemicals Ltd.
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Charcoal Buffer

On the morning of day 2 of the assay, the following constituents were dissolved in a 

conical flask in 100 ml of nanopure water with the aid of a heated plate with magnetic 

stirrer.

Once the gelatine was in solution the charcoal and dextran was added in the following 

quantities and the buffer was made up to 250 ml with a further 150 ml of nanopure 

water. The buffer was then left to stir on ice for at least 1 h before use.

Radiolabel

[l,2,6,7-3H]Cortisol radiolabel was supplied by Amersham Pharmacia Biotech UK 

Ltd. in quantities of 9.25 MBq (250 /rCi). The radiochemical was supplied in 0.25 ml 

of a toluene:ethanol (9:1 v/v) solution at an initial purity of 99.8%. An intermediate 

stock solution was prepared by diluting 20 (x\ of stock solution in 2 ml of absolute 

ethanol and from this a working solution of approximately 5000 disintegrations per 

minute (dpm) per 100 /xl was made (approximately 75 /xl in 25 ml of assay buffer). 

The radiolabel and intermediate stock were stored at -20 °C.

Antibody

Freeze-dried sheep anti-cortisol serum was supplied by Diagnostics Scotland (lg  per 

vial), hydrated with 20 ml of fresh assay buffer (1:20 dilution) and then frozen in 1 ml

Sodium dihydrogen orthophosphate 

Disodium hydrogen orthophosphate 

Gelatine

0.37 g 

1.44 g 

0.25 g

Activated Charcoal 1.25 g 

0.25 gDextran

26



Chapter 2: General Materials and Methods

aliquots. One aliquot was diluted with a further 20 ml of assay buffer to achieve a 

1:400 dilution as required (enough for an assay of 90 samples in duplicate).

Cortisol Standard

A standard was prepared from 1.0 g Hydrocortisone in hydrolysed powdered form 

(Sigma, UK). The following stock standards were prepared:

Stock 1 (50 pg ml'1): 10 pg cortisol in 20 ml absolute ethanol

Stock 2 (5 jig ml'1): 100 pi Stock 1 in 10 ml absolute ethanol

Stock 3 (50 ng ml'1): 100 pi Stock 2 in 10 ml absolute ethanol store at -20 °C.

A working standard of 4 ng ml'1 was made by diluting 400 pi of Stock 3 in 4.6 ml 

ethyl acetate.

Cortisol Assay Protocol 

Sample Extraction

1. For each sample, 200 pi of plasma was added to a separate polypropylene tube 

(LP3P: Thermo Life Science, Hampshire, UK). If plasma was limited, as was 

often the case for small fish, 100 pi plasma was extracted instead.

2. In the fume cupboard, 1 ml ethyl acetate (BDH Chemicals Ltd) was added to each 

sample before capping.

3. Samples were spun on a rotary mixer for 1 h at room temperature and then 

centrifuged at 4 °C for 10 min at a RCF of 430 g (1500 rpm).

Samples were stored at 4 °C until assayed (samples were assayed in duplicate within 

6 months of the extraction date.
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Day 1

1. A serial dilution of cortisol working standard (4 ng ml"1) was prepared with 200 pi 

of ethyl acetate (12.5-800 pg tube"1) in LP3P polypropylene tubes.

2. 200 pi ethyl acetate was added to a further 4 tubes that act as the zero standard 

and the non-specific binding (NSB).

3. 200 pi of each extracted sample was transferred into a separate LP3P tube (if high 

levels of cortisol were expected, a dilution factor was be used).

4. The standards and sample extracts were dried down in a vacuum oven at less than 

35 °C. Tubes were then covered and cooled to 4 °C for at least 1 h.

5. 100 pi of assay buffer was added to all tubes.

6. 100 pi of anti-cortisol was added to all tubes except the NSBs, to which lOOpl of 

assay buffer was added instead.

7. 100 pi of tritiated cortisol was added to all tubes.

8. All tubes were vortexed, covered and left to incubate at 4 °C for 18 h.

Day 2

1. Charcoal buffer was made up and stirred on ice for 1 h before adding 1 ml to each 

tube.

2. Tubes were vortexed and left to incubate at 4°C for 30 min.

3. Tubes were centrifuged at RCF of 1270 G (2500 RPM) for 12 min at 4°C.

4. For each standard and sample, lOOOpl of supernatant was transferred into a 

scintillation vial (Canberra Packard Ltd.) before adding 4 ml of scintillation fluid 

(Ultima Gold, Canberra Packard Ltd.).
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5. To provide an estimation of the total amount of radioactivity added to each sample 

lOOjul of tritiated cortisol was added to two further vials containing 4 ml of 

scintillation fluid (these were referred to as the total counts).

6. The blank comprised of a vial containing 4 ml of scintillation fluid to correct for 

background radioactivity.

7. All vials were capped, labelled and until the pellet was homogenised with the 

scintillation fluid using a vortex mixer.

8. The scintillation activity (dpm) of each vial in was measured in a scintillation 

counter (Tri-Carb 2500TR, Canberra Packard, Ltd.) for 5 min; the blank vial was 

placed first to allow automatic subtraction of background radioactivity.

Calculations

1. To correct for the difference between the total reagent volume per tube (1300 pi) 

and the volume of supernatant added to each vial (1000 pi), it was necessary to 

multiply the average dpm for each vial by 1/1.3.

2. The average dpm of the non-specific binding was subtracted from all of the 

standards and samples.

3. The percentage binding (percentage of radiolabel bound to antibody) of the 

standards and samples was calculated relative to the total counts [% binding = 

(standard or sample dpm / total dpm) xlOO]

4. The percentage binding of the standards was plotted against cortisol concentration 

on log-linear paper or with the use of a graphics package. The pharmacology 

function on SigmaPlot 8 (SPSS Inc., USA) was used to draw the standard curve 

and calculate the cortisol concentration for unknown samples (Figure 2.2)

5. The concentration of cortisol in each tube was read from the graph and then 

multiplied by 0.03 to correct for the volume of extract assayed (200 pi from 1.2
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ml; x 6), volume of plasma extracted (200 pi; x 5 ml), and finally converted to ng 

m l'1 (x 1/1000).

Quality Control

The sensitivity of the assay {i.e. the minimum amount of cortisol that is statistically 

distinguishable from zero) was 12.5 pg tube'1. Two pooled samples of rainbow trout 

plasma were obtained from ‘unstressed’ fish, and from fish 1 h after being subjected 

to standardised handling stress (confined in a net for 1 min) were used as quality 

controls (QCs) to check the reproducibility of the measurements between each assay. 

The cortisol concentrations of the ‘unstressed’ and ‘stressed’ samples were 

approximately 4 and 30 ng ml'1 respectively. The intra-assay coefficient of variation 

was 2.4% (determined by comparing the concentration of an aliquot of the ‘stressed’ 

QC at the start and end of each assay), and the inter-assay coefficient variation was

11.2%. Assays were rejected if the difference between the cortisol concentration 

measured from the QCs was greater than 2 standard deviations from the average 

cortisol concentration of the QCs obtained from previous assays.

Validation

To ascertain that the cortisol in the standard was immunologically similar to that in 

the rainbow trout plasma, serial dilutions (1:2) of the extracted rainbow trout plasma 

were used to create an inhibition curve (Figure 2.3).

When plotted against a serial dilution of cortisol standard, no statistically 

significant difference (P<0.05) was observed between the slope of the inhibition plot 

and the standard curve regression lines using an ‘in house’ programme on Microsoft 

Excel 2000 (courtesy of Dr Iain Berrill).
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Figure 2.2. A typical standard curve from a cortisol radioimmunoassay; the 

concentration of cortisol in a sample was determined by intersecting the standard 

curve at the point corresponding to the percentage binding in the sample.
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j

Figure 2.3. Parallelism of an inhibition curve obtained from a serial dilution (1:2) of 

200jul aliquots of pooled rainbow trout plasma extract (200/rl plasma in 1 ml ethyl 

acetate) with the cortisol standard curve. Each point represents the mean of duplicate 

measurement; the X-axis denotes the natural log of the cortisol content in the 

standards. The two curves have been transferred to a linear relationship using the logit 

transformation outlined in Randall 1992: logit b = In (b/100-b) where b is the 

proportion of radiolabel bound to antibody expressed as a percentage of that of the 

zero standard (% maximum binding).

£  

H H
P3

H
3
o

4

Standard y = 5.362 - 1.0847x R2 = 0.9955 
Pooled Plasma y = 5.5103 - 1.125x R2 = 0.9967

3

1

0

1

•2
2 3 54 6 7

In CORTISOL (pg/tube)

32



Chapter 2: General Materials and Methods

2.6.2. Lysozyme activity

Lysozyme activity was measured tubimetrically using a modified 96 well plate

method (Lygren et al. 1999) adapted from the tubimetric method described by Ellis

(1990). This assay was based on the decrease in absorbance of a cell suspension of

Micrococcus leisodeikticus that occurs when the cells are lysed by lysozyme within

the plasma samples.

Assay Buffer

A 0.04M pH 5.8 Sodium phosphate buffer (SPB) from the following stocks:

Stock A: 0.2M solution of NaH2P0 4 ; 31.20 g in 1L Distilled water 

Stock B: 0.2M solution of Na2HPC>4; 35.59 g in 1L Distilled water

1. The stock buffers were mixed together to achieve pH 5.8 (for 100 ml 

approximately 8 ml of stock B was added to 92 ml of Stock A).

2. The 0.2 M SPB buffer was diluted with 100 ml distilled water to give a 0.1 M 

SPB solution (final volume 200 ml).

3. A 2:5 dilution of the 0.1 M solution was carried out to achieve a 0.04 M SPB {i.e. 

dilute 40 ml buffer with 60 ml distilled water)

Assay

1. 10 pi sample was added to 4 wells of a 96 well micro-plate (Nunc, Hampshire, 

UK)

2. 190 pi of 0.2 pg ml'1 Micrococcus lysodeiticus was (0.02 g per 100 ml 0.04 M 

SPB) was added to each well using a multi-channel pipette.
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3. Absorbance at 540 nm was measured using an ELISA micro-plate reader (MRX, 

Dynex labsystems, UK) at 1 and 5 min after adding the Micrococcus lysodeiticus.

4. Lysozyme activity was calculated using the following calculation:

A] = absorbance at time 1 

A2 = absorbance at time 2 

T = time (4 min)

2.6.3. Plasma Glucose

The assay used to determine the glucose concentration in plasma or serum 

samples was supplied by Sigma Diagnostics and adapted from the method outlined by 

Trinder (1969). The assay is based on the principle of a two step enzymatic reaction 

resulting in a change of absorbance. Glucose in the sample is oxidised into gluconic 

acid and hydrogen peroxide, which then reacts with the 4-aminoantipyrine and p- 

hydroxybenzene sulfonate in the presence of peroxidase to form quinoneimine dye, 

with a maximum absorbance at 505 nm:

1. Glucose Gluconic Acid

r

A l ' A 2 70.001x100 U minimi*1
t

+ Glucose Oxidase
> +

h 2o  + o 2 h 2o 2

2. H20 2 + 4-Aminoantipyrine + p-Hydroxybenzene Sulphonate

Peroxidase
v

Quinoneimine Dye + H20
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Sample collection and Storage

Plasma samples were centrifuged and separated within 30 min of collection using a 

micro-centrifuge (Sigma, Philip Harris 1-15).

Methodology

1. A 96 well micro-plate was loaded in the following way (Figure 2.4):

• 1.75 fi\ of plasma was added to 4 wells of columns 1 to 10 of a 96 well micro­

plate (one plate was used to assay 2 0  samples in quadruplicate).

• 1.75 fx 1 of 300 mg dL" 1 glucose standard (Glucose/Urea Nitrogen combined 

standard, SIGMA diagnostics) was added to all 8  wells of column 11.

• 1.75 /rl of deionised water was added to all 8  wells of column 12.

2. 350 [x\ of glucose (Trinder) reagent was added to all wells using a multi-channel 

pipette.

3. The plate was loaded into an ELISA micro-plate reader (MRX, Dynex labsystems, 

UK) and the absorbance was measured at 505 nm (the programme used included a 

1 0  seconds ‘shake’ period of to remove any air bubbles).

4. Samples were placed into an incubator set to 25 °C for 18 min.

5. After the 18 min the absorbance at 505 nm was measured for a second time.

6 . The glucose concentration was determined as follows:

,_ASAMPLE - ABLANK x Concentration of Standard (mg dL'1) 
ASTANDARD - ABLANK

e.g. ABLANK
ASAMPLE
ASTANDARD

= 0.017 
= 0.230 
= 0.419

0.230 - 0.017 x 300
0.419 - 0.017

159
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Samples Glucose standard
(1.75 fi\ into 4 wells of columns 1-10) (1.75 fi\ into 8 wells)i i

1 2 3 4 5 6 7 8 9  10 11 12

A

B

C 

D  

E  

F  

G  

H

t
Distilled water 

(1.75 fi\ into 8 wells)

Figure 2.4. The layout of a 96 well microplate for a glucose assay

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 o 0 0
0 0 0 0 0 0 0 0 o 0 0 0
0 0 0 0 0 0 0 0 0 o o 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 o 0 0 0 0 0 0 0 0 0
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| 2.6.4. Haematocrit

Haematocrit is the volume percentage of the red blood cells in blood and varies 

depending on the health and physiological condition of a fish. Samples were taken in 

duplicate i.e. two capillary tubes filled per blood sample using the following 

procedure:

1. The tip of a pre-heparinised capillary tube was inserted into a collected blood 

sample and allowed to fill by capillary action. Once about 80% full, the flow of 

blood was stopped by covering the opposite end of the capillary tube before 

sealing with sealant (Critaseal; BDH).
[

2. Capillary tubes were placed into a Hawksley Micro-haematocrit centrifuge 

(Hawksley & Son, UK) with the sealed ends facing the outside wall of the rotor, 

flush to the rubber seal. The tubes were then spun for 3 min at RCF of 14,000 G.

3. The packed cell volume was then determined by measuring the length of the 

packed red blood cells from the top of the sealant to the bottom of the ‘buffy’ 

layer of white blood cells (Length 1). The total length of the fraction of the blood 

sample was then measured i.e. from the top of the sealant to the top of the clear 

plasma (Length 2); see Figure 2.5.

sealant packed cell volume ‘buffy’ layer blood plasma

r h ------------------ r n   1czzz^mEmp
|  Length 1________

Length 2

Figure 2.5. Schematic diagram of a haematocrit sample after centrifugation
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4. The percentage packed cell volume was then calculated by:

[ Length 1 (mm) / Length 2 (mm) ] x 100

2.6.5. Somatic indices

Ratios of organ to body weights have previously been suggested for use in assessment 

of fish health and condition (Goede & Barton, 1990).

2.6.5.1. Hepatosomatic index (HSI)

Hepatosomatic index is an expression of the relative weight of the liver as a 

percentage of total body weight:

(Liver weight / Total body weight) x 100

The liver was removed from dead fish by making two perpendicular cuts with a 

scalpel, one of which was ran vertically adjacent to the gill operculum, and the other 

horizontally along the underside of the fish between the pectoral and pelvic fins along 

to the anus. The body wall was then pulled back to allow access to the internal organs 

of the fish. The connective tissue around the oesophagus was cut using scissors 

allowing the viscera to be pulled out and separated from the liver using forceps and a 

scalpel. The gall bladder was separated from each liver as it was sometimes burst 

during separation from the viscera, resulting in the contents being emptied. The liver 

was blotted on tissue paper and weighed to the nearest 0 . 1  g.
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2.6.5.2. Splenosomatic index (SSI)

The spleen was separated from the connective tissue around the gut using forceps and 

a scalpel. Once removed, the spleen was blotted on tissue paper before weighing to 

the nearest O.lg allowing SSI index to be calculated as follows:

Splenosomatic Index = (Spleen weight / Total body weight) x 100 

2.6.5.3. Condition factor

Condition factor (CF) is often used as an indicator of body conformation for 

salmonids (Herbinger & Friars, 1991). CF was calculated from fork length and total 

weight of individual fish using the following equation:

Condition factor = [Weight (g) x 100] /  length (cm)3

2.6.6. Fin measurements

2.6.6.I. Fin Index

A qualitative scale was used to score to the dorsal and caudal fins from 0 - 3  based on 

the perceived degree of erosion; where 0 = minimal visible damage (<5% of fin 

missing), 1 = minor damage (5-30% of fin missing), 2 = Moderate damage (between 

30 and 70% missing) and 3 = Severe damage (>70% missing); see Figures 2.6 and

2.7. This scoring system was modified from the one proposed by Moutou et al. (1998) 

where a score of 0  indicated a fin with no visible damage from populations of wild 

and hatchery reared trout. However, all of the fish used in this thesis were farmed and 

had some degree of damage was apparent on even the best fins, so it was considered 

more appropriate to use the score of 0 to indicate minimal visible damage (<5%).
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Figure 2.6. Dorsal fin erosion index photographic scale; 0 = minimal visible damage 

(<5% missing), 1 = minor damage (5-30% of fin missing), 2 = moderate damage (30- 

70% missing), 3 = Severe damage (>70% missing) (modified from Moutou et al., 

1998)
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Figure 2.7. Caudal fin erosion index photographic scale; 0 = minimal visible damage 

(<5%), 1 = minor damage (5-30% of fin missing), 2 = moderate damage (30-70% 

missing) (modified from Moutou et al., 1998)
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2.6.6.2 Relative Fin Length (RFL)

Measurements of the rayed fins were made using callipers (Batty; Switzerland). The 

measurements were taken parallel to fin rays from the base to the outside edge at the 

longest point of each fin. The approximate positioning of the measurements is shown 

in Figure 2.8. The total length of the fish was also recorded (see Figure 2.4 for details) 

allowing the length of the fins to be expressed in relation to the size of the fish to 

allow the relative fin length (RFL) to be calculated:

Relative fin length = (fin length x 100)/(total length)

Several previous studies have used the RFI measurement for rainbow trout (Kindschi, 

1987; Bosakowski & Wagner, 1994a) and the system is seen to be a less subjective 

form of assessing fin erosion than scoring systems.

2.6.7. Performance based indicators of welfare

2.6.7.1. Specific growth rate (SGR)

Specific growth rate was calculated based on changes in weight over a known time 

using the following calculation:

Specific growth rate (SGR) = [Ln Wt2 -  Ln Wti] / (t2 -ti)

Wti = fish weight (g) at time ti 

Wt2 = fish weight (g) at time t2
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2.6.7.2. Feed conversion ratio (FCR)

Feed conversion ratio provides a crude estimate of how efficiently the food that is 

presented to the fish is converted into somatic growth over a specified period of time. 

FCR was calculated using the following formula where the lower the FCR, the more 

efficiently food is being converted into somatic growth:

FCR = Feed fed (kg) / Fish biomass increase (kg)

2.7. Water Quality Analysis

2.7.1. Water Sample Collection

Water samples were collected in 500 ml polypropylene bottles (Arco, UK). Bottles 

were completely filled so that no air bubbles were present. In the tank based studies 

the sample was taken directly above the outflow screen and in the farm based studies 

samples were taken from the inflow and outflow of culture systems at approximately 

half of the total water depth. Alkalinity and pH were determined before filtration and 

ammonia was determined on filtered samples. If not analysed immediately, water 

samples were stored in a cool box.

2.7.2. Determination of Water Quality Parameters

2.7.2.I. pH

Determination of pH in was carried out in the field using a portable Jenway 3150 pH 

meter (Jenway Limited, UK) and in the laboratory with a Philips PW9409 pH meter 

(Philips, UK). Both meters were calibrated before use with sachets of pH 4 and pH 7 

‘perpHect™’ buffers (Orion Research Inc., USA). Approximately 100 ml of 

unfiltered sample was decanted into a clean glass beaker from a 500 ml water sample.
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The pH probe was then immersed in the water sample and the reading was allowed to 

stabilise before being recorded. The probe and beaker were rinsed with distilled water 

between each sample.

2.7.2.2. Dissolved oxygen (DO)

For all of the experiments carried out at the Niall Bromage Freshwater Research 

Facility the oxygen was measured using OxyGuard® probes (OxyGuard International 

A/S). The static probes (located above the outflow) of each of the tanks were 

calibrated against the hand-held probes on a regular basis.

DO was measured on-farm directly from the inflow and outflow of culture 

systems using a Oxi 197 portable DO meter (WTM, UK) by positioning the probe 

directly into the water column at approximately half of the total water depth.

2.7.2.3. Total Alkalinity

Total alkalinity is due almost entirely to hydroxides, carbonates and the total 

dissolved solids. A volume of 100 ml of unfiltered farm water of was measured into a 

clean conical flask and a few drops of BDH 4.5 indicator were added before titrating 

against hydrochloric acid (HC1). The endpoint of the titration (pH 4.5) resulted in a 

colour change from turquoise to a peachy/pink colour (detection of endpoint was 

aided by carrying out the procedure above sheet of white waterproof paper). The 

molarity of the HC1 was usually 0.01 M, although for samples collected from farms 

with hard water (SE of England) it was necessary to use 0.1 M HC1.
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Alkalinity was determined using the following equation from the Standard Methods 

for the examination of water and waste water (Standard Methods, 1975).

Total Alkalinity (m eq 1) = N x Vj x 1000

V2

Vi = volume of acid to achieve endpoint 

V2 = volume of sample (100ml) 

N = concentration of acid (normally 0.01M)

2.7.2.4. Ammonia

Total ammonia nitrogen (TAN) was measured in the field using the salicylate method 

and a Hach® field kit (Hach®, USA).

1. Duplicate 25 ml samples of water samples were measured into graduated 

cylinders.

2 . 25 ml of deionised water was measured into another cylinder to act as a blank.

3. The contents of one Salicylate Reagent Powder Pillow were added to each 

cylinder. Each cylinder was capped and shaken until reagents were dissolved.

4. The reagents were left to react with the water samples for 3 min.

5. Following the 3 min period, the contents of one Alkaline Cyanurate Powder 

Pillow were added to each cylinder.

6 . Cylinders were capped and shaken until the reagent dissolved and allowed 15 min 

to react (green colour developed if ammonia nitrogen was present).

7. The reader was zeroed by pouring the blank into the sample cell and measuring

absorbance at 655 nm.

8 . Subsequent samples were compared with the blank by measuring absorbance at 

655 nm, resulting in a reading [total ammonium nitrogen (TAN) mg I'1].
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Results were expressed as ammonia (NH3 ) or ammonium (NH4 +) concentration (mg 1' 

J) by multiplying by 1.22 or 1.29 respectively. The proportion of unionised ammonia 

was calculated by referring to ionisation tables (Piper et al., 1982) after determining 

the temperature and pH of the sample. For proof of accuracy a standard (0.20 mg I' 1 

N-NH3 ) was used in place of a sample. If the concentration of N-NH3 in a 25 ml 

sample exceeded 0.50 mg. I"1, a dilution factor was applied.

2.8. Statistical Analysis

Unless otherwise stated, the principals of most of the statistical methods used in this 

thesis are described in Zarr (1996).

2.8.1. Basic calculations

Throughout this thesis the arithmetic or sample mean was used to provide an estimate 

of the population mean along with the standard error of the mean (SEM) to represent 

the sample distribution. The coefficient of variation (CV) was presented on occasion 

as a measure of relative variability to allow the comparison of variation in populations 

with different means. All basic statistics were calculated with the aid of Microsoft 

Excel 2000.

2.8.2. Parametric assumptions

Prior to detailed statistical analysis, all data were first analysed to confirm normality 

and homogeneity of variance. This process was necessary to conform with the 

fundamental assumptions of parametric techniques i.e. that observations must be 

derived randomly, be independently distributed, display homogeneity of variance and 

display a normal Gaussian distribution.
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2.83. Testing for normality and homogeneity of variance

Normality of distribution was tested throughout this thesis using the Kolmogorov- 

Smirnov test to quantify the discrepancy between sample distributions from the ideal 

Gaussian distribution. The F-test was used for the comparison of two sample 

variances and Bartlett’s test was used to compare the homogeneity of more than two 

sample variances. In both cases the tests were carried out using the Instat statistical 

package (Instat version 3.0, Graphpad Software Inc.) and variance was considered 

homogeneous if the calculated value was lower than the tabulated value, at the 5% 

level.

2.8.4. Comparison of two samples

Student’s F-test was used to compare the means of two samples using the Instat 

statistical package (Instat version 3.0, Graphpad Software Inc.). If the variance of the 

two samples were homogenous the means were compared using Student’s t-test 

utilising a pooled estimate of the variance. If the variances were heterogeneous, the 

means were compared using Student’s F-test utilising estimates of each variance and 

reduced degrees of freedom. If the calculated value for F was greater than the 

tabulated value for F at P = 0.05 (5%) or less, the difference between means was 

concluded to be statistically significant. If data failed parametric assumptions of the 

F-test a non-parametric Mann-Whitney U-test was used (Instat version 3.0, Graphpad

Software Inc.).

2.8.5. Parametric comparison of multiple samples

Provided samples passed parametric assumptions, a one-way analysis of variance 

(ANOVA) was used for the preliminary comparison of the means of three or more
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samples using the Instat statistical package (Instat version 3.0, Graphpad Software 

Inc.). Tukey’s test was used for all post-hoc comparisons for parametric tests where a 

statistical difference was observed (P<0.05). Tukey’s test allowed the pair-wise 

comparison of sample means to identify where the significant variation existed.

2.8.6. Non-parametric comparison of multiple samples

If the prerequisite assumptions for parametric analysis were not met, Kruskal-Wallis’ 

non-parametric multi-comparison test was performed in place of a one-way ANOVA 

using the Instat statistical package (Instat version 3.0, Graphpad Software Inc.). If a 

significant difference was observed (P<0.05), Dunn’s post-hoc test was used for pair­

wise comparison of samples.

2.8.7. Multivariate analysis

2.8.7.1. General Linear Models

Multivariate analysis was carried out through construction of General Linear Models 

(GLMs) using the Statistica software package (Staistica version 6.0, StatSoft, Inc.). A 

GLM allows numerous factor levels to be incorporated into the model allowing the 

robustness of each test to be increased beyond that of the conventional ANOVA and 

multiple regressions. Furthermore, GLMs can also account for random factors and 

replicate effects when presenting the statistical significance levels. Where GLMs were 

carried out, the sample size (n) was generally large enough to allow normality and 

homogeneity of variance to be confirmed by the examination of residual plots.
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2.8.7.2. Generalised Linear Models

The Generalised Linear Model (GLZ) function on Statistica 6.0 was used if the 

residual plots of a GLM did not display normal distribution or homogeneity of 

variance, even following subsequent transformation of data. The GLZ approach is 

more robust than the GLM and allows non-linear as well as linear effects to be tested 

for variables that may not be normally distributed (e.g. gamma, Poisson, binomial 

etc.)

2.8.7.3. Principal Components Analysis

Numerous variables that were used in this thesis to assess fish welfare and analysis of 

these variables in isolation, and even pair-wise regression of variables, could only 

provide limited information. Furthermore, the relationships between the individual 

variables Were not always clear, the direction of change in relation to welfare was not 

always the same, and some indictors were subject to a large degree of intraspecific 

variation. These factors presented difficulties in the interpretation of the data and the 

determination of its structure.

In order to better understand interaction between variables, Principle 

Components Analysis (PCA) was used to generate a ‘score’ that was representative of 

coherent trends within the data set. By transforming the original variables to a smaller 

number of uncorrelated variables based upon coherence that existed between in the 

data, PCA aided the job of identifying patterns among the different variables. Using 

PCA also avoided the subjectivity of allocating a ‘weighting’ to variables based upon 

their perceived importance in terms of fish welfare.

PCA is an evolution of the concept of correlation between two variables i.e. a 

line of best fit that passes through a 2 -dimensional scattering or cloud of data. The
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computation of factors in PCA consists of converting a symmetric correlation matrix 

of all of the variables into a multidimensional space, determined by the number of 

variables and number of cases (fish). By the creation of a new set of axes, called 

factor axes, obtained in a lower dimensional space, PCA allows a line or lines (factor 

axes) to be plotted through the centroid of the cloud of points. PCA results in the 

generation of a new set of uncorrelated variables called principal components (PCs) 

that are linear combinations of the original variables based on the straight lines that 

best fit the clouds of points in the multi-dimensional vector space (see Jambu, 1991).

The resulting PCs account for the inherent variation of the data to the 

maximum possible extent. Each PC has an Eigenvalue, which is a representation of 

how much of the observed variability is accounted for by a particular PC {i.e. the 

higher the Eigenvalue the more variability it is accounted for). A simple line graph 

called a Scree plot that shows the Eigenvalues for each of the PCs and is used to aid 

the selection meaningful PCs; it is generally accepted that only the PCs situated to the 

left of this point where the graph levels off (the ‘elbow’) and with an Eigenvalue of 

greater than 1 should be included in further analysis (Jambu, 1991).

The relative contribution of each of the variables within the different PCs was 

obtained along with Factor Scores for each of the PCs for all of the individual fish. 

This process effectively resulted in the generation of one or two new variables for 

each fish, which can be seen to represent welfare status or other trends in the data. 

The factor scores for the PCs were included as independent variables in GLMs with a 

range of categorical and continuous predictors in an effort to establish the effect of the 

environmental parameters on rainbow trout welfare.
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Chapter 3: Assessment of fish welfare

3.1. Introduction

This chapter of the thesis focuses on some of the different parameters that can be used 

to assess fish welfare. A brief overview of the origins and evolution of welfare 

assessment will be given before leading on to discuss specific examples of parameters 

that can be used to assess welfare in rainbow trout. This section also presents data 

from three short experiments that measured a range of welfare indicators in situations 

of acute and chronic stress.

The concept of stress in biological systems has been, and still is, the subject of 

much discussion and disagreement (see Pickering, 1981; Barton & Iwama, 1991). The 

stress concept is intrinsic to the approach of welfare assessment used in this thesis and 

this is a fitting point at which to define the context in which the term stress is used 

throughout this work. The use of the term stress in this thesis loosely refers to the 

physiological responses resulting from a stimulus, which will be referred to as the 

stressor. This definition is based on one of the earliest definitions of stress, where 

stress was defined as the ‘”the sum of all the physiological responses by which an 

animal tries to maintain or re-establish a normal metabolism in the face of a physical 

or chemical force” (Selye, 1950). There are many different definitions and 

interpretations of the term stress in the literature, but in an eloquent introduction to the 

book ‘Stress in fish’, Pickering pointed out that all definitions of stress share the 

common principle of a stimulus acting on a biological system and the subsequent 

reaction of the system (Pickering, 1981).

There can be no mention of the stress concept without referring back to the 

work of Professor Hans Selye, who in a series of publications dating back to 1936
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provided the foundation of the present day understanding of stress (reviewed in Selye 

1973). Selye points out that an important step in scientific understanding of the stress 

concept is the distinction between stress and stressor, whereby ‘stress’ is the reaction 

exhibited by an animal and ‘stressor’ is the factor producing the stress (Selye 1973).

Central to the stress concept is the need for biological systems to maintain 

balance, and fish, in common with all with all animals, must maintain a stable internal 

environment in order to develop, grow and reproduce normally (Pottinger, 2000). One 

of the more recent definitions described stress as “the change in biological condition 

beyond the normal resting state that challenges homeostasis and thus, presents a threat 

to health” (Barton & Iwama, 1991). This immediately leads us to one of the pitfalls 

associated with attempting to define stress i.e. what constitutes the ‘normal’ resting 

state of an animal, and the argument that the stress response is merely a component of 

normal metabolism.

Selye’s definition of stress assumed that stress was part of normal metabolism 

and proposed the theory of the general adaptation system (GAS), where the stress 

response is separated into three phases: an initial period of alarm generalised as a “call 

to aims” of the body’s defences, followed by a period of resistance whereby an 

animal may display an adaptive response that results in a degree of tolerance as a 

result of repeated exposure to a stressor, which, if the stressor is severe or prolonged 

enough, is followed by a stage of exhaustion (Selye, 1950). As our understanding of 

the different components of the stress response has become clearer the applicability of 

the GAS-concept has been questioned and it has since been argued that the GAS is 

flawed as it assumes an identical response to all forms of stressors (Schreck 1982; 

Morberg, 2000).

53



Chapter 3: Assessment of Fish Welfare

One way in which the concept of stress has evolved is in the distinction of the 

different components of the stress response and the separation of aspects that are 

adaptive i.e. help the fish to overcome the stressor, from those that are maladaptive 

effects i.e. reduce the animals fitness (Figure 3.1; reproduced from Barton & Iwama, 

1991).

Stressor
e.g. physical stressors in aquaculture, such as 

handling, crowding, and transport

I
STRESS

1

Stress Responses

Maladaptive
e.g., t  ion/water fluxes 

t  metabolic acidosis 
I circulating lymphocytes 
i  immunocompetence 
I reproductive capacity 
i  capacity for growth

Figure 3.1. Simple representation of the relationship among the stressor, stress and 

representative adaptive and maladaptive responses in fish; reproduced from Barton & 

Iwama, (1991); T indicates an increase in a factor (stress response) and j indicates a

decrease.

Adaptive
e.g., t  plasma cortisol

j  plasma catecholamines 
|  branchial blood flow 
t  plasma glucose 
t muscular activity
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3.1.1. Measuring stress in fish

The rapid growth of the aquaculture industry over the last few decades has resulted in 

great interest in the stress physiology of fish, particularly for species of commercial 

importance. The study of stress and the quantification of its effects is complex, as 

stress responses can be observed at different levels of biological organisation (from 

molecular up to ecosystem level), and over different periods of time i.e. chronic and 

acute stressors. One approach used to simplify the process has been to separate the 

stress response into primary, secondary and tertiary responses (Wedemeyer, 1996):

(i) Primary Response 

Neuroendocrine responses:

a. Activation of the sympathetico-chromaffin system resulting in the release of

catecholamines (primarily adrenaline) from chromaffin cells located mainly in 

the head-kidney (adrenal medulla equivalent).

b. Stimulation of the hypothalamic-pituitary-interrenal axis (HPI-axis), resulting

in the release of adrenocorticotropic hormone (ACTH) from the hypothalamus 

and the rapid up-regulation and release of corticosteroids from interrenal 

tissue.

(ii) Secondary Response

Including physiological alterations such as changes in metabolic rate and 

blood chemistry.

(iii) Tertiary Response

Effects observed are on a whole-animal scale (e.g. impaired growth and 

reproductive success).

Quaternary responses for population scale effects of stress (e.g. decreased 

recruitment or prevalence of a species) are also sometimes reported, but have been 

excluded since they are not relevant to aquaculture. A schematic representation of 

some of the stress responses in fish is presented overleaf in Figure 3.2.
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3.1.2. Primary stress responses in fish

3.I.2.I. The hypothalmic-pituitary-interrenal axis (HPI-axis)

Cortisol is the principle corticosteroid in fish and is frequently used to assess the level 

of stress in fish (Donaldson, 1981). Cortisol levels rise rapidly in response to almost 

any kind of external disturbance that triggers the hormonal ‘cascade’ known as the 

HPI-axis, or acute stress response in fish (Pottinger & Moran, 1993). The magnitude 

and duration of the cortisol response following exposure to an acute stressor has been 

shown to vary considerably between different species of salmonid (Donaldson, 1981). 

There is also wide variation in the cortisol response between strains of the same 

species (Pickering & Pottinger 1989) and individuals of the same strain (Pottinger & 

Carrick, 1999a). In rainbow trout, pre-stress levels of plasma cortisol are generally 

acknowledged to be less than 5 ng ml' 1 (Barton, 1980; Pickering & Pottinger, 1989). 

Following stimulation of the HPI-axis plasma cortisol concentrations increase rapidly 

to reach peak concentrations of between 40-200 ng ml'1, at 45 min to 3 h following an 

acute stressor (usually handling). Plasma cortisol will gradually return to pre-stress 

baseline concentrations between 48 and 72 h post-stress (Barton, 1980; Barton et al., 

1987; Pickering & Pottinger, 1989).

The HPI-axis represents a non-specific stress response and can be initiated by 

a wide range of stimuli (Donaldson, 1981; Barton & Iwama, 1991). A common means 

of assessing the activity of the HPI-axis of fish is to subject groups of fish to a 

standardised stress and measure plasma cortisol concentrations over the following 48 

to 72 h period (Table 3.1).
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Table 3.1. Summary of documented changes in plasma cortisol concentration in

rainbow trout subjected to variety of stressors (adapted from Barton & Iwama, 1991)

Plasma cortisol conc.
(ng ml'1) 

Pre-stress Post-stress

Stressor and conditions Reference

< 2 43 Handling and 90s confinement
< 2 70 1 h agitation Barton et al.
< 2 213 Continuous confinement (1980)
< 2 50 6  h transportation

9 140 30 s handling, pH6 . 6 Barton et al.
23 340 30 s handling, pH 5.5 (1985)
5 1 0 0 Brief handling and confinement Sumpter et al.
7 53 5 min restraint and confinement (1986)

1 1 32 10 wk habituation, 30 s handling Barton et al.
8 65 No habituation, 30 s handling (1987)

<5 80 Handling plus 1 h confinement
<5 40 30 s handling Pickering &
3 9 6  wk confinement Pottinger (1989)
2 8 2 1  d at 1 2 0  kg m°

3.1.2.2. Sympathetic hormone response

The sympathetic hormone response, also known as the adrenergic response and 

sympathetico-chromaffin system, is less well studied in fish than the HPI-axis, partly 

as a result of difficulties in measuring the response due to rapid onset (Barton & 

Iwama, 1991). The sympathetic system has fewer stages than the HPI-axis and upon 

perception of a stressor, levels of catecholamines [primarily adrenalin (epinephrine) 

or noradrenalin, depending on species] are secreted directly from chromaffin cells. In 

mammals the main location of chromaffin tissue is the adrenal medulla, but lacking a 

corresponding structure the main location of chromaffin tissue in teleost fish is the 

head kidney (Mazeaud & Mazeaud, 1981). Similar to the cortisol response, levels of 

adrenalin in rainbow trout rise from low basal levels, normally <5 nmoles I' 1 to reach 

peak levels that are reported to range from as low as 5.5 nmoles 1 1 up to 720 nmoles 1 

1 (reviewed in Barton & Iwama, 1991). Also in common with the cortisol response,
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catecholamines are released into the blood in response to stimulation regardless of the 

nature of the stress. This presents difficulties in separating the effects of cortisol and 

catecholamines on secondary stress responses, although the main actions of 

catecholamines are understood to be modulation of cardiovascular and respiratory 

functions and mobilisation of energy stores to help meet the extra demands associated 

with stressful situations (see reviews by Mazeaud & Mazeaud, 1981; Reid et al. 

1998).

3.I.2.3. Selection for stress resistance based on primary stress responsiveness

There has been considerable interest in the potential for selecting stress resistant 

strains of rainbow trout (Pottinger, 2000). The concept of selecting for animals with 

low stress responsiveness has been widely applied in the poultry farming industries 

for turkeys (reviewed by Freeman, 1976) and chickens (Gross & Siegel, 1985). A 

similar approach has also been adopted for rainbow trout by teams of scientists 

working with Fevolden and Rped at the Institute of Aquaculture Research in Norway, 

and Pottinger at the Windermere Laboratory of the Institute of Freshwater Ecology, 

UK. These research groups have published the results from numerous studies 

suggesting a genetic basis for the cortisol responsiveness of rainbow trout (Fevolden 

et al., 1991; 1992; 1999; 2002; 2003; Fevolden & Rped, 1993; Pottinger & Moran 

1993; Pottinger et al., 1994; Pottinger & Carrick, 1999a; 1999b; Trenzado et al., 

2003).

The approach taken by these two laboratories was very similar, whereby 

individuals were selected based on the magnitude of their peak cortisol response 

following exposure to a standardised stressor (Fevolden et al., 1991; Pottinger et al., 

1994). Fish were separated into high cortisol responding (HC) and low cortisol
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responding (LC) families and the progeny of these families were subsequently crossed 

to produce families with divergent cortisol responses.

The cortisol response has been shown to be consistent (Pottinger et al., 1992) 

and display a relatively high heritability (h2) of 0.50 (Fevolden et al., 2002), although 

the benefits of selecting for lower stress responsiveness remain unclear. Pottinger 

suggested that in theory, reducing the responsiveness of an individual to stressors 

should provide a broad range of benefits with the potential for improved growth, 

reproductive performance and disease resistance (Pottinger, 2000). However, initial 

attempts to assess the benefits of selecting for stress responsiveness have proved 

ambiguous. Fevolden et al. (2002) reported significant negative phenotypic 

correlations between individual-specific growth rate and post-stress levels of cortisol, 

suggesting that lower stress responsiveness had a growth promoting effect. However, 

Pottinger and Carrick (1999a) found the opposite, with fish selected for high stress 

responsiveness for glucose and cortisol growing more rapidly than those selected for 

low responsiveness. Fevolden et al. (2003) recently reported a beneficial effect of low 

cortisol response on survival of rainbow trout subjected to a combined salt and 

confinement stress and suggested that fish with higher responsiveness to stress were 

less able to cope with multiple stressors.

3.1.3. Secondary stress responses in fish

3.I.3.I. Energy mobilisation

The mobilisation of energy reserves during the acute stress response is one of the 

most widely reported effects of elevated levels of corticosteroids and is one of the 

responses that forms the basis of the Tight or flight’ response in fish (Pickering & 

Pottinger, 1989; Trenzado et al., 2003). Cortisol and catecholamines are both reported

60



Chapter 3: Assessment of Fish Welfare

to play an important role in the up-regulation of gluconeogenesis by stimulating the 

liver to convert fat and protein to intermediate metabolites (Mazeaud & Mazeaud, 

1981; Matteri et al., 2000). Cortisol is known to carry out many important ‘house­

keeping’ functions in maintaining homeostasis (Mommsen et al., 1999), but in 

situations of chronic stress, its metabolic actions can become maladaptive resulting in 

protein catabolism and elevated plasma glucose concentration (hyperglycaemia) 

(Matteri et al., 2000).

Hyperglycaemia is one of the most well reported secondary stress response in 

fish, with reports dating back to 1921 (Scott, 1921: in Mazeaud & Mazeaud, 1981). In 

rainbow trout, glucose levels will normally show an approximate two or three-fold 

increase to peak levels following exposure to a stressful stimulus (Pottinger & Carrick 

1999a; Trenzado et al., 2003). The natural range for clinically healthy rainbow trout is 

reported to be in the range of 41-151 mg d L 1 (Wedemeyer, 1996), although the basal 

and peak levels of glucose will be affected by diet and nutritional status as well as 

stress per se (Vijayan & Moon, 1992).

A reduction in liver glycogen levels is often reported to accompany stress 

induced hyperglycaemia (Trenzado et al., 2003). Hepatosomatic index and liver 

glycogen have been shown to be reduced in rainbow trout that were fed cortisol or 

subjected to a daily handling stress (Barton et al., 1987). Pottinger and Carrick 

(1999a) selected rainbow trout based on high or low glucose stress response (HG or 

LG) following exposure to acute handling stress in the same way as described earlier 

for cortisol response. Interestingly, there was no link between the cortisol and glucose 

responsiveness, but there were significant differences in size between the low and 

high responding fish for each trait, with the HC fish significantly larger than the LC 

fish, and the same true of the HG fish compared with the LG fish. There was no size
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mediated effect within either the low or high responding groups for glucose or 

cortisol, and the authors suggested that size differences between high and low 

responding groups were a result of stress responsiveness, possibly a result of 

behavioural differences.

The lack of association between the peak glucose and cortisol response 

suggests that the actions of the HPI-axis and sypathetico-chromaffin system in 

rainbow trout may not be closely coupled. Pottinger and Carrick (1999a) suggested 

that mobilisation of glucose during the stress response in rainbow trout may be 

primarily related to the catecholamine pulse following tissue stimulation of the 

sympathetic nervous system. Barton and Iwama (1991) emphasised the need for work 

to establish whether cortisol is genuinely gluconeogenic, or just acts to sustain 

glucose levels following an initial response to catecholamines by influencing the 

action of other metabolic hormones such as insulin, or thyroid hormone.

3.I.3.2. Haematological Changes

The main haematological changes that take place during the stress response include 

changes in haematocrit, leucocrit, erythrocyte numbers, leucocyte numbers, 

lymphocyte:red blood cell (RBC) ratio, thromobocyte numbers and blood clotting 

time (Barton & Iwama, 1991). One of the most commonly used haematological 

measurements is haematocrit, which provides a rapid and simple measurement of the 

relative fraction of blood made up of erythrocytes, referred to as the % packed cell 

volume (PCV). The range of haematocrit reported for clinically healthy rainbow trout 

is between 24-43% PCV (Wedemeyer, 1996). Increased haematocrit can be 

interpreted as an indication of an acute stress response, though it is unclear if this is 

mediated by corticostreroids or a transient response to acute disturbances (Barton et
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al., 1987). High haematocrit can also indicate haemoconcentration through gill 

damage, while low haematocrit can be indicative of anaemia and haemodilution 

(Wedemeyer, 1996).

Barton et al. (1987) observed an increase in haematocrit in rainbow trout that 

were fed cortisol and suggested that the increase may have been due to a cortisol- 

mediated decrease in extracellular fluid relative to blood cell volume. Swelling of 

erythrocytes, accompanied by a redistribution of body fluids has been suggested as a 

possible cause of increased haematocrit in the acute stress response of rainbow trout 

(Milligan & Wood, 1982), although the only evidence that this is cortisol mediated in 

rainbow trout is provided by Barton et al. (1987).

3.1.4. Tertiary stress responses in fish

Growth is probably the most well studied aspect of fish biology and the nature of 

aquaculture as a food production industry means that this is normally driven by 

economic interest in commercially important species aimed at maximising profits. 

Growth integrates all of the biotic and abiotic variables acting on an organism making 

it an ideal indicator of tertiary effects of environmental stressors (Goede & Barton, 

1990). There is a vast volume of published work relating to the effects of stress on 

growth of fish (see reviews by Schreck 1981; 1982; Pickering, 1990) and it is 

generally recognised that stress has an overall negative on growth (Schreck 1981; 

Pickering, 1990; FSBI, 2002).

Growth in fish is indeterminate and flexible, depending on the intake and the 

utilisation of energy; with stress having direct and indirect effects on both of these 

processes resulting in a negative effect on energy balance (FSBI, 2002). Energy used 

during the stress response will be directed away from somatic growth and can be seen
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as a representation of the metabolic cost of dealing with the disturbance and regaining 

homeostasis following a stressful episode (Schreck, 1981). This is illustrated in 

Schreck’s model for growth and the concepts of potential and realised growth (Figure 

3.3), where the maximum potential for growth is genetically predisposed, and the 

realised growth is that observed after the effect of limiting factors of environment 

(e.g. temperature, nutrition) and stress (Schreck, 1981).

Genetic Stress Environment

Figure 3.3. The relationship between the potential and realised performance 

capacities and the influence of ultimate (genetic) and proximate (environment and 

stress) limiting factors (reproduced from Schreck, 1981).

A little-explored avenue of research is the effect of stress on the appetite of a 

fish. It may be that reduced growth commonly associated with the metabolic cost of 

stress is partly due to a reduction in the consumption of feed bought about by 

hormonal regulation of appetite. This subject remains relatively unstudied though
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Jprgensen et al., (1993) attributed a reduction in growth of Arctic charr (Salvelinus 

alpinus Linnaeus 1758) held at low stocking densities to reduced feed intake.

Numerous methods of assessing the performance fish have been developed for 

the aquaculture industry, some of which are potentially useful as indictors of tertiary 

stress responses. Measurements commonly applied as performance indicators in 

salmonid farming include:

Specific growth rate (SGR; see section 2.6.7.1 for calculation, page 42)

SGR reflects the rate of fish growth over a specified period of time, with higher SGR 

indicating more rapid growth. SGR can be estimated for groups of fish based on the 

mean weight or length at time 1 and 2, or for individual fish if fish have been tagged 

e.g. PIT-tagging

Feed conversion ratio (FCR; see section 2.6.7.2 for calculation, page 44)

FCR provides an indication of how efficiently food is converted into somatic growth. 

Though FCR is an intrinsic function of the balance between carbohydrate, protein, 

and lipid in the feed, it is strongly affected by the rearing environment, including 

factors such as feed wastage, temperature, water quality, behaviour, and stressful 

husbandry procedures such as grading (Westers, 2001). The lower the value for FCR, 

the more efficiently food is turned into flesh, with optimum FCR in salmon and trout 

in the region of 1.1:1 i.e. 1.1kg of food will produce 1 kg of fish tissue (Wedemeyer, 

1996).
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Condition factor (CF; see section 2.6.5.3 for calculation, page 39)

CF is a crude indicator of the nutritional status of fish providing an indication of the 

energy reserves or fatness of a fish (Goede & Barton, 1990). CF of a well fed fish will 

be higher than for a poorly fed fish of the same length. There are differences in the 

values depending on the units of measurement of length and weight {i.e. imperial or 

metric measurements) though the most commonly reported values for salmonids are 

based on the British system (inches, pounds) where CF for rainbow trout is normally 

>1 (Westers, 2001).

3.1.5. Stress and the immune system

In common with other vertebrates, the immune system in fish has a specific and non­

specific component. Although the two components of the immune response are 

inherently linked, non-specific responses are generally directed towards micro­

organisms and foreign material, while the specific response involves the production of 

antibodies and activated T-lymphocytes that target and bind to antigens on invading 

viruses (Anderson, 1990). The association between stress and an increased 

susceptibility to disease has been recognised for some time and forms the basis for the 

stage of exhaustion in Selye’s GAS concept (Selye, 1936). While immunosuppression 

is a commonly recognised maladaptive response to stress (Figure 3.1.) the 

mechanisms involved in this relationship are poorly understood (reviewed by Ellis, 

1981).

The immunosuppressive effects of corticosteroids form the basis of the 

relationship between increased susceptibility to disease and stress, although Ellis 

emphasised that stress responses can also be immunostimulating and suggested that 

‘immunoregulation’ is a better term than ‘immunosuppression’ regarding the effects
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of stress response on defence systems (Ellis, 1981). Despite gaps in the understanding 

of immune function of fish, stress is known to increase susceptibility of fish to 

infectious disease (Wedemeyer, 1976; Snieszko, 1976). Wedemeyer (1996) listed 

some of the mechanisms by which immune function is affected by stress:

• Decreased serum bactericidal activity (complement, lysozyme)

• Impaired phagocytosis (macrophages, lymphocytes)

• Decreased leukocyte count (lymphocytopaenia)

• Decreased antibody production by lymphocytes

Specific examples of most of these mechanisms can be found in the literature 

for rainbow trout. Mock and Peters (1990) observed reduced lysozyme activity in 

rainbow trout for at least 24 h following 2 h transportation, and Fevolden et al. (2002) 

demonstrated a significant negative phenotypic correlation between cortisol and 

lysozyme activity in rainbow trout selected for low and high stress responsiveness. 

Nanaware et al. (1994) observed reduced macrophage phagocytosis in rainbow trout 

subjected to a range of environmental stressors.

Despite observing interrenal acclimation {i.e. cortisol levels retuned to basal 

levels) in rainbow trout subjected to chronic crowding stress (172 kg m'3), Pickering 

and Pottinger (1987a) observed a consistent reduction in numbers of circulating 

lymphocytes over a 3 week period. A decrease in numbers of circulating lymphocytes 

was observed in rainbow trout (Barton et al., 1987) and brown trout (Pickering, 1984) 

treated with cortisol. Pickering and Pottinger (1989) also reported a dose-dependent 

increase in mortality from secondary bacterial and fungal diseases in brown trout that 

were given intraperitoneal cortisol implants.

67



Chapter 3: Assessment of Fish Welfare

3.1.6. Summary

This introduction provided a brief overview of the stress response in fish and with the 

aim of providing an appreciation of some of the physiological changes that can be 

measured to quantify stress. The subject of stress in fish is well studied and most 

aspects of stress have been the subject of comprehensive reviews {e.g. Pickering, 

1981; Barton & Iwama, 1991). The main points of these reviews have been 

summarised with the inclusion of key references that provide specific examples for 

quantifying stress responses in rainbow trout. The main focus of this introduction has 

been on the variables that were subsequently applied to assess fish welfare in the 

following experimental chapters.

The indicators discussed in this introduction represent just some of the more 

common measurements that can be used to assess welfare and are by no means 

exhaustive. Alternative approaches of assessing welfare such as observing 

behavioural responses are equally valid (Dawkins, 2004) and welfare assessment 

should ideally take account of behavioural processes as well as indicators of condition 

and physiology (FSBI, 2002). In situations of commercial aquaculture detailed 

behavioural studies are practically difficult due to the vast numbers of fish involved 

and the fact that fish are not always visible from surface or sub-surface observation. 

However, recent developments in the field of hydro-acoustics have given rise to novel 

techniques for assessment of shoaling and feeding behaviour in Atlantic salmon (Juell 

et a l , 2003; Bron et al. in preparation).

Behavioural observations are non-invasive and allow animals to be observed 

in their normal farm habitat. Such observations are intrinsic to good fish husbandry 

and an experienced stock worker would be expected to be familiar with the way that
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their stock behaves. Any radical deviation from the ‘normal’ behaviour could be used 

as an early warning system for more serious problems.

Although difficult to quantify, such behavioural clues may alert farmers to 

other problems e.g. reduced feeding may be a result of a water quality problem, or 

certain behaviour may signal an outbreak of disease. Subjective indices of welfare are 

gaining credibility to the extent that the validity of welfare assessment based solely on 

objective indicators has been questioned (Wemelsfelder, 1997).

The selection of welfare indicators involves striking a balance between 

practicalities, resources (time, experience and economics) and scientific justification. 

The approach taken to assess fish welfare in this thesis was based upon objective 

quantification of stress responses at different levels of organisation, measuring 

components of the primary (cortisol) and secondary responses to stress (glucose and 

haematocrit) in conjunction with an indicator of immune function (lysozyme activity) 

and measurements of growth, body condition and mortality. In addition, water quality 

was monitored to provide an indication of the quality of the environment in which the 

fish lived. As previously discussed, due to the relationship between increased stocking 

density and water quality deterioration, the measurement of key water quality 

parameters was essential to distinguish the effects of water quality on welfare from 

the effects of stocking density per se.
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3.2. Experimental assessment of the acute stress response of rainbow  

trout

In order to establish the acute stress response of the different strains of rainbow trout 

used in this thesis, two short trials were conducted in which fish were exposed to a 

standardised handling stress. Various parameters were measured from the plasma of 

fish before the exposure (baseline or residual levels), and at timed intervals following 

the exposure (post-stress), to establish the timing and magnitude of peaks and also the 

time taken to return to baseline levels. The first experiment was carried out with the 

same batch of fish used in Chapter 4, which will be referred to as Strain 1. Experiment 

2 used fish from the same batch as Chapter 5, which will be referred to as Strain 2.

3.2.1. Experiment 1: The acute stress response of rainbow trout Strain 1

3.2.1.1. Materials and Method

Experiment 1 took place from 26th and 27th July 2000. During this period water 

temperature ranged between 14.4 and 14.9°C and photoperiod was 17 h of daylight 

and 7 h of darkness. The water level in a 5 m diameter stock tank was lowered and 

100 female rainbow trout (529g ± 96g SD) of Strain 1 were randomly netted and 

moved into a 2 m diameter tank where they were allowed 10 days to acclimatise.

At 8.30 am on the morning of sampling, 10 fish were removed, killed and 

blood sampled to provide ‘unstressed’, baseline plasma levels of stress indicators. 

Concurrently, the standpipe of the 2 m tank was dropped and the tank drained until 

the remaining 90 fish were emersed. The fish were rapidly netted into buckets 

following a total period of no more than 2 min exposure to air and were distributed in 

groups of 10 into 9 x 1 m2 tanks with external standpipes adjusted to create a water 

depth of 30 cm (volume 0.3 m3). Each tank was fitted with an opaque fibreglass cover
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fitted with light a 16 W drum fitting light (RS Components Ltd.; Northants, UK). 

During the natural photoperiod regime light was controlled using a photosensitive 

switch (RS components Ltd., Northants, UK) adapted by Alex Brewsters electrical 

contractors (Stirling, UK)

One tank of fish was killed and blood sampled at each of the following times: 

15 min, 30 min, 40 min, 60 min, 3 h, 6 h, 24 h and 48 h post-stress. Plasma was 

extracted from the blood samples and frozen at -70°C. Plasma concentrations of 

cortisol and lysozyme activity were measured from each of the samples.

Statistical analysis

If data were normally distributed (Kolmogorov-Smimov test) and with equal standard 

deviation (according to Bartlett’s test) a one-way parametric ANOVA was carried out 

with a Tukey-Kramer multiple comparisons post-hoc test. If data were not normally 

distributed and/or there were significant differences in the standard deviation between 

samples, data were transformed to result in a normal distribution. If the transformed 

data still failed the assumptions required for ANOVA, a Kruskal-Wallis non- 

parametric ANOVA was earned out with a Dunn’s multiple comparison post-hoc test.

3.1.1.2. Results

There was a marked change in plasma cortisol following exposure to the handling 

stress, with levels rising from a baseline level of 6.7 ng I"1 to a peak of 163.0 ng I'1 at 

30 min post-exposure (Table 3.2). The concentration of cortisol dropped steadily over 

the following 6 h, but there was an unexpected increase 24 h post-exposure when 

cortisol levels of 80.9 ng I’1 were measured (Figure 3.4a).
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Table 3.2. Cortisol and lysozyme activity response in rainbow trout Strain 1 

following a standardised handling stress; mean values of fish at each time point with 

SEM in italics

Time Post-Stress 

(min / h)

Plasma Cortisol 

(n g l1)

Lysozyme Activity 

(U min'1 ml'1)

Number of fish 

sampled

0 6.1 ±6.8 2491± 1007 10

15 min 30.9 ± 10.8 2218 ±559 10

30 min 163.0 ±66.2 2212 ±466 11

45 min 144.5 ± 70.6 1458 ±272 10

60 min 88.9 ± 46.7 1708 ±755 11

3 h 41.3 ±21.4 1567 ±477 9

6 h 23.9 ±17.7 1600 ± 363 12

12 h 48.5 ±77.9 1816 ±227 11

24 h 80.9 ± 30.5 1696 ± 392 8

48 h 32.7 ± 33.5 2018 ± 241 10

The pattern of change in lysozyme activity following the handling stress was 

not as well defined as the cortisol response, although there appeared to be a decrease 

from the post-stress level of 2491 U min'1 ml'1 to a minimum of 1458 U min'1 ml'1 

occurring at 45 min post-stress (Table 3.2, Figure 3.4b).
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Figure 3.4. Changes in plasma cortisol concentration (a) and lysozyme activity (b) in 

rainbow trout following exposure to a standardised handling stress in experiment 1; 

each point represents the mean ± SEM (rc=10)with significant differences compared 

with pre-stress levels denoted by asterisks; ***P<0.001, **P<0.01, *P<0.05.
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3.2.2. Experiment 2: The acute stress response of rainbow trout Strain 2

3.2.2.1. Materials and Method

Experiment 2 was carried out between 26th and 28th January 2002. Water temperature 

ranged between 2.8 and 3.4°C and photoperiod was 8 h of daylight and 16 of 

darkness.

220 rainbow trout of Strain 2 were randomly removed from a 5 m stock tank 

containing approximately 7250 fish into a 2 m diameter tank and allowed 5 days to 

acclimatise. The fish were mixed sex with a mean weight 132g (±43g SEM) Any fish 

showing signs of precocious maturation were not included in the experiment.

The methodology used was the same as in experiment 1, but with the following 

changes.

• 20 fish were sampled at each of the time points instead of 10.

• The timing of samples was adjusted to include sample points at 2 h and 72 h post­

stress, with the omission of the 15 and 45 min samples.

• Instead of simulating the photoperiod with artificial light as in experiment 1, the 

feeding hatches on the lids were left open to allow natural daylight to enter tanks.

• Haematocrit and glucose were also measured in addition to cortisol and lysozyme 

activity.

3.2.2.2. Results

The values for the blood parameters measured at each of the sample points are shown 

in Table 3.3. There was a significant increase in plasma cortisol following exposure to 

the handling stressor, with concentrations rising from a pre-stress level of 12.4 ng ml'1 

to around 35 ng ml'1 at 1, 2 and 3 h post-stress time points (Figure 3.5a). At the 6 h 

post-stress time point plasma cortisol concentration was no longer significantly
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different from pre-stress levels and by 24 h post-stress cortisol had dropped below the 

pre-stress concentrations. Low levels of cortisol were observed at 24, 48 and 72 h 

post-stress and though not statistically different from pre-stress concentrations 

(P>0.05), mean cortisol concentrations were less than half the pre-stress at all of these 

time points.

Table 3.3. Changes in blood parameters of rainbow trout Strain 2 following a 

standardised handling stress; mean ± SEM with number of samples shown in 

parenthesis.

Time post-stress Plasma cortisol Lysozyme Haematocrit Glucose

(h) (ng I'1) activity 

(U min'1 ml'1)
m (mg dL'1)

0 12.4 ±2.1 (10) 866 ±72 (15) 39 ± 6  (20) 56 ± 19 (7)

0.5 h 22.9 ±2.9 (10) 787 ± 63 (20) 53 ± 5 (20) 55 ± 11 (10)

1 h 36.3 ±3.2 (10) 1084 ±83 (19) 53 ±5 (19) 56 ± 12(11)

2 h 37.5 ±5.2 (10) 799 ±62 (18) 52 ± 6  (19) 69 ± 12(9)

3 h 33.0 ±4.4 (10) 884 ±41 (19) 55 ± 4  (19) 57 ± 9  (11)

6 h 24.3 ±6.2 (10) 853 ± 65 (20) 54 ± 7 (20) 68 ± 10(11)

12 h 27.5 ±5.4 (10) 934 ±91 (20) 54 ± 6 (20) 97 ± 10(13)

24 h 3.8 ±0.6 (10) 1000 ±62 (18) 50 ±5  (20) 108 ±7  (13)

48 h 6.2 ±1.5 (10) 820 ± 58 (20) 45 ± 4 (20) 105 ±11 (13)

72 h 3.1 ±0.9 (10) 1111 ±88 (20) 49 ± 6  (20) 72 ± 6  (13)

It was unclear if the handling stress resulted in elevation or suppression of 

lysozyme activity in Strain 2. There were significant differences between the 

lysozyme levels at the different post-stress time points, but when compared with the 

pre-stress levels there were no significant differences. Lysozyme activity appeared to 

be elevated 1 h post-stress when activity was 1084 U min'1 ml'1 compared with a pre­

stress level of 866 U min'1 ml'1, although over the 72 h period there was no clear trend
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(Figure 3.5b). The levels of lysozyme activity were generally much lower than those 

observed in Experiment 1, possibly due to the low water temperature.

Pre-stress levels of haematocrit were around 40% PCV and there was a rapid 

increase following the handling stress, after which haematocrit remained significantly 

higher than pre-stress levels until 48 h post-stress (Figure 3.6a). Haematocrit values at 

the 72 h time point were again significantly higher than pre-stress levels, but the level 

of significance was lower (P<0.05) than the earlier time points within 12 h of the 

handling stress CPcO.OOl).

Plasma glucose concentration displayed a relatively slow but clear response to 

the handling stress. For the first 6 h post-stress, levels of glucose remained similar to 

pre-stress concentrations of 56 mg dL'1. By 12 h post-stress, plasma glucose appeared 

to be elevated at a concentration of 96 mg dL'1, though the difference compared with 

pre-stress levels was not significant (P>0.05). Plasma glucose continued to increase 

and was significantly higher than pre-stress levels at 24 and 48 h post-stress, with 

concentrations of 108 and 105 dL'1 respectively. At 72 h post-stress plasma glucose 

concentration was no longer significantly increased from pre-stress levels suggesting 

that the peak of glucose had passed (Figure 3.6b).
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Figure 3.5. Changes in plasma cortisol concentration and lysozyme activity in 

rainbow trout following exposure to a standardised handling stress in experiment 2; 

each point represents the mean ± SEM (/2=20), with significant differences compared 

with pre-stress levels denoted by asterisks; **P<0.01, *P<0.05.
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Figure 3.6. Changes in haematocrit and plasma glucose concentration in rainbow 

trout following exposure to a standardised handling stress; each point represents the 

mean ± SEM (n=20), with significant differences compared with pre-stress levels 

denoted by asterisks; ***P<0.001, **P<0.01, *P<0.05.
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3.2.3. Summary of results for experiments 1 and 2

Cortisol response

Plasma cortisol increased significantly in both strains of rainbow trout in response to 

the handling stress. Peak cortisol levels occurred at 30 min in experiment and 2 h in 

experiment 2. There was a large difference in the magnitude of the peaks, with the 

mean post-stress peak in cortisol much higher in experiment 1 (163 vs. 37 ng ml’1). 

The pre-stress levels of cortisol were higher in experiment 2 with a mean 

concentration of 12.4 ng ml"1 compared with 6.7 ng ml"1 in experiment 1. The low 

levels of cortisol observed at the 24, 48 and 72 h post-stress sample points in 

experiment 2 suggested that the pre-stress concentration of 12.4 ng ml"1 may not have 

been a true basal level, and that there may still have been the remnants of a previous 

stress response, possibly due to the shorter period of acclimation in experiment 2 (5 

days acclimation compared with 10 days in experiment 1), and/or lower water 

temperatures during the period of acclimation. Basal levels of plasma cortisol in 

unstressed rainbow trout are normally in the range of 0-5 ng ml'1 (Barton et al., 1980; 

Pickering & Pottinger, 1989), so this would again suggest that the pre-stress levels 

observed in experiment 2 were not true basal levels. The magnitude and duration of 

the peak cortisol response observed in experiments 1 and 2 were around the range of 

40-200 ng ml'1 reported for other strains of rainbow trout exposed to similar 

standardised stressors (Pickering & Pottinger, 1989).

The time taken for plasma cortisol to return to pre-stress baseline levels was 6 

h for both strains, although the comparatively high pre-stress level and low peak 

concentration of cortisol in experiment 2 meant that the differences at 6 and 12 h were 

not statistically significant from pre-stress levels even though plasma cortisol 

concentrations continued to decrease at the 24, 36 and 72 h time points. The
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prolonged cortisol response and slower on-set of the peak levels of cortisol in 

experiment 2 was possibly due to the low water temperatures during the time of 

experiment 2 (water temperature ranged between 14.4 and 14.9°C during experiment 

1 and 2.8 and 3.4°C for experiment 2).

Levels of cortisol in Strain 1 were elevated again at 12 and 48 h post-stress 

compared with the pre-stress sample, but at 72 h post-stress the difference was no 

longer significant. It may have been that the automated switching on and off of lights 

caused the apparent increase in cortisol at 12 and 48 h post-stress, as it would have 

been the first time that these fish would have been exposed to artificial light.

To summarise, the cortisol response observed in experiment 1 had a 

considerably higher peak than in experiment 2 and was also more rapid, in terms of 

both the time taken to peak and the time taken to return to pre-stress levels. Although 

there was a difference in cortisol response observed in the two exposure experiments, 

direct comparison was hindered by differences in the age and size of fish (mean 

weight of Strain 1 was 529 g compared with 130 g for Strain 2), and also differences 

in water temperature. It was therefore not possible to determine if the difference in 

response was due to a strain difference as there were likely to have been confounding 

influences of other factors.

Lysozyme activity

There was a marked change in lysozyme activity following the handling stress in 

experiment 1, with significant reductions in lysozyme activity observed from 45 min 

to 6 h post-stress, after which levels began to increase and return to the pre-stress 

levels. The pattern of response was almost a mirror image of the cortisol response,
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although the relatively high lysozyme activity at 15 and 30 min post-stress suggested 

that the change in lysozyme activity was slower than the cortisol response.

The lysozyme response in experiment 2 was difficult to interpret and there 

were no significant differences between pre-stress and post-stress lysozyme activity. 

Levels of lysozyme activity were considerably lower in experiment 2, but this was 

probably due to the lower water temperatures at the time of experiment 2. This is 

biologically valid, as enzyme activity would be expected to be reduced at lower 

ambient temperatures in poikilothermic animals; this is discussed later in more detail 

in Chapters 4 and 5.

Based on the pattern of response in experiment 1, the pre-stress level of 866 U 

min'1 ml"1 observed in experiment 2 was lower than expected. This again suggested 

that the pre-stress sample point for Strain 2 may not have been a true basal level for 

‘unstressed’ fish. The lowest level of lysozyme activity observed in experiment 2 

occurred at 30 min (787 U min'1 ml'1), which again did not fit the pattern of response 

observed in experiment 1. However, apart from the pre-stress and 30 min time points, 

the pattern of response would be the same as that shown for Strain 2 i.e. a reduction in 

activity corresponding with high levels of cortisol, followed by a return to high levels 

when cortisol returned to baseline levels.

Haematocrit

Haematocrit was only measured in experiment 2, but there appeared to be a clear 

response, with levels increasing from pre-stress levels of around 40% to a peak of 

55%, 3 h post-stress. The levels of haematocrit were in agreement with those 

observed by Benfrey and Biron (2000) following exposure of diploid and triploid 

rainbow trout to an acute confinement stress. Haematocrit began to decrease after 24 h
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and at 48 h levels were no longer significantly elevated compared with pre-stress 

levels, though a slight increase in haematocrit at 72 h post-stress meant that this point 

was also significantly higher than pre-stress levels. The haematocrit response was 

very rapid in its onset and also prolonged. The increase in haematocrit was observed 

before the increase in cortisol and levels remained elevated after cortisol had dropped 

below pre-stress levels. This suggested that changes in haematocrit may not be 

mediated by corticosteroids. The relative ease with which haematocrit can be 

measured and the prolonged period of response suggested that haematocrit is 

potentially a very useful welfare indicator.

Glucose

The handling stress resulted in a significant increase in plasma glucose concentration 

at 24 and 48 h post-stress, but the increase in plasma glucose concentrations appeared 

to be initiated earlier, between 2 and 6 h post-stress. The pattern of glucose response 

of Strain 2 was in general agreement with previously published responses to similar 

handling stressors. Trenzado et al. (2003) showed plasma glucose in rainbow trout to 

peak at around 24 h post-stress and Barton et al. (1987) found a peak of glucose at 

around 6 h post-stress in response to a confinement stress. Benfrey and Biron (2000) 

suggested a more rapid rise in glucose elevation with significant increases observed 

just 30 min post-stress in rainbow trout and brook trout (Salvelinus fontinalis 

Mitchell, 1815). The apparent slower on-set of response in the present study may have 

been due to the low water temperatures for the duration of experiment 2 (3.4°C max 

compared with 9.2 °C for Benfrey & Biron, 2000).
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3.3. Assessing the chronic stress response of rainbow trout

Several different approaches have previously been used to assess the effect of chronic 

stress on rainbow trout. One such method has been the repeated exposure to a 

standardised stress over a period of time (e.g. Barton et al., 1986; 1987). Another 

approach involved simulating the effects of chronic stress by implanting (Pickering & 

Pottinger, 1989) or feeding (Barton et al., 1987) exogenous cortisol. A third approach 

was to maintain groups of fish in conditions that are perceived to be chronically 

stressful as demonstrated by Pickering and Pottinger (1989) and Pickering et al. 

(1991), who used different stocking densities (between 20 and 120 kg m'3) to simulate 

what they termed ‘chronic crowding stress’.

3.3.1. Experiment 3 - The effect of chronic elevation of plasma cortisol on the 

stress physiology of rainbow trout

This trial was conducted between August - September 2000 by Dr. Clive Randall as 

part of a National Environmental Research Council (NERC, ROPA GR3/R9827) 

grant to investigate endocrine, growth and reproductive interactions in rainbow trout. 

The original aim of this experiment was to attempt to detect and measure levels of 

leptin, a hormone that has been shown to regulate appetite and energy expenditure in 

mammals (Johnson et al., 2000). Based on the hypothesis that appetite is reduced in 

stressful situations, exogenous cortisol was implanted at different concentrations in an 

attempt to detect differentiated levels of a leptin-like peptide in rainbow trout plasma. 

Following the departure of Dr Randall from the Institute of Aquaculture in September 

2000 and several unsuccessful attempts to detect and measure leptin using 

commercially available radioimmuno assay kits, the plasma samples were used in this 

study to provide a model for the effect of chronic stress on indicators of welfare. The
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original design and set up of this experiment was the work of Dr Randall, but all 

subsequent sampling and analysis was the work of the author.

3.3.3.1. Materials and Methods

50 juvenile female rainbow trout of Strain 1 were randomly selected from a 5 m 

diameter stock tank containing approximately 2000 fish of mean weight 140 g (± 3.6g 

SEM). Ten fish were randomly distributed into 5 x 1 m2 diameter square tanks (as 

described in experiment 1) and allowed 2 weeks to acclimate. Each of the tanks and 

treatments was allocated a random number using the random number generator on a 

calculator; the random numbers were sorted in ascending order to pair the tanks and 

treatment (Table 3.4).

Table 3.4. Distribution of tanks and treatments in experiment 3

Tank Number Implant size (mm) Cortisol concentration (mg)

1 3.0 Placebo

2 3.0 2.5

3 3.0 5

4 4.5 15

5 4.5 Placebo

21-day release implants were purchased from Innovative Research (Sarasota, USA). 

The implants were of two different sizes (3 or 4.5 mm) and contained 2 .5 -1 5  mg of 

hydrocortisone; placebo implants of each size were also purchased containing an inert 

pellet.

The fish were anaesthetised as described in section 2.2 and a 1 cm incision 

was made slightly above and behind the pelvic fins with a scalpel. Muscle layers were 

eased apart and the implant was introduced into the peritoneal cavity. The incision
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area was sealed with a 3:1 mixture of Orahesive powder (Squibb and Sons Ltd.; 

Middlesex, UK) and Cicatrin antibiotic (The Welcome Foundation Ltd.; Middlesex, 

UK) to prevent infection.

Blood sampling took place at 10, 20 and 30 days post-implantation and 

extracted plasma was frozen at -70°C. A daily ration of 1.42 % body weight per day 

was fed to the fish for the duration the experiment.

Statistics

Non-parametric Kruskal-Wallis, ANOVA was used to compare the levels of cortisol, 

glucose and haematocrit at each of the time points. Dunn’s test was used to compare 

means of implant treatments relative to the respective placebos if P<0.05. A one-way 

ANOVA was carried out for lysozyme activity

3.3.3.2. Results

Water temperature at the start of the trial was 14.5°C and this decreased as the trial 

progressed to a low of 10.7°C on the final day of the trial.

Mortality

Mortality was very low, with 100% survival in all but the 4.5 mm placebo treatment, 

where one fish was euthased on day 10 due to infection of the implant incision.

Growth

A problem with the weighing balance meant that weight data was only recorded on 

day 30 of the trial. Length data was recorded at days 20 and 30 (Figure 3.7a) and from 

this it was possible to calculate the length specific growth rate (L-SGR) for each of
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the treatments. The change in length between days 20 and 30 of the trial showed that 

highest L-SGR occurred in the 4.5 mm placebo treatment and lowest L-SGR occurred 

in the 4.5 mm 15 mg treatment (0.23 vs. 0.12; Figure 3.7b). As fish were not PIT- 

tagged it was not possible to carry out statistical analysis for individual L-SGR and 

was only possible to estimate the mean L-SGR of each treatment.

Cortisol

There was a significant effect of the implants on plasma cortisol levels (Kruskal- 

Wallis, non-parametric ANOVA; PcO.OOl); the plasma cortisol levels at days 10, 20 

and 30 of the experiment are shown in Figure 3.8a. The 4.5 mm, 15 mg implant 

resulted in comparatively high levels of cortisol and a highly significant post-hoc 

difference was observed at all of the sample points compared with the 4.5 mm 

placebo implant (P<0.001; Dunn’s). There was just one significant post-hoc 

difference in cortisol levels of the 3 mm implant treatments observed on day 30 when 

cortisol was significantly higher in the 3 mm, 5 mg treatment compared with the 3 

mm placebo. There were no significant differences in cortisol concentrations between 

the 3 and 4.5 mm placebo treatments suggesting that there was no effect of implant 

size. The levels of cortisol that were observed appeared to decrease with time and this 

was well illustrated in the concentration observed in the 15 mg implant treatment 

(Figure 3.8a).
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3.7a

240-1

Placebo (3mm) 2.5 mg (3mm) 5 mg (3mm) Palcebo (4.5mm) 15 mg (4.5mm)

3.7b
0.25 n

0.20 -

f t  0.10 - 
(ZD
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0.00
5 mg (3mm) Palcebo (4.5mm) 15 mg (4.5mm)Placebo (3mm) 2.5 mg (3mm)

Implant size (mm) and cortisol concentration (mg)

Figure 3.7. Changes in length of rainbow trout given implants containing different 

concentrations of cortisol. Figure 3.7a shows mean (±SEM) fork length at days 20 and 

30 for each treatment (n=10) and Figure 3.7b shows the length specific growth rate

for this period.
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Figure 3.8. Changes in blood parameters of rainbow trout given implants containing 

different concentrations of cortisol; bars represent the mean (±SEM) for each 

treatment («=10), with significant differences at each time point denoted by columns 

not sharing the same letter. Levels of significance compared to the placebo implant of 

the same size are indicated by asterisks; *',:*.P<0.001, **P<0.01, *P<0.05.
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Lysozyme activity

There appeared to be no effect of the implants on levels of lysozyme activity as no 

significant differences were observed between the treatments at any of the sample 

points (Figure 3.8b; parametric one-way ANOVA). There was a reduction in levels of 

lysozyme activity as the trial progressed, but as this reduction also occurred in the 

placebo treatments, it was probably an effect of the change in water temperature.

Glucose

There was a significant elevation of glucose in the treatments with cortisol implants 

compared with the placebo treatments on days 10 and 20 of the experiment (Kruskal- 

Wallis, non-parametric ANOVA; P<0.001), but on day 30 there were no significant 

differences between the treatments (Figure 3.5c).

3.3.3.3. Summary of results of the cortisol implant experiment

Although the cortisol levels were clearly elevated in the 15 mg implant treatment, 

there was no consistent increase in plasma cortisol observed in the 2.5 or 5 mg 

implants. It may have been that 2.5 and 5 mg were too low a concentration to result in 

elevated plasma cortisol, but this is unlikely as these concentrations would have 

equated to respective doses of around 7 and 35 mg kg'1 (based on the starting mean 

weight of 140 g), which were within the ranges reported to successfully increase 

cortisol plasma cortisol levels in rainbow trout (Pickering & Pottinger, 1989). As 

there were no differences in plasma cortisol levels between the different 

concentrations of 3 mm implants and just one significant difference compared with 

the placebo, it may have been that the 3 mm implants were not functioning properly. 

However, despite the lack of plasma cortisol increases in the 3 mm cortisol implants
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there appeared to be an elevation of plasma glucose concentration relative to placebos 

in both the 3 and 4.5mm implant treatments on days 10 and 20 of the experiment. 

There were no differences in glucose observed on day 30 between any of the 

treatments and it may be that there was acclimation or exhaustion of the energy 

mobilising effect of the cortisol. However, this is purely speculative as no examples 

of glucose measurement in response to cortisol administration were found in the 

literature for a period of greater than 24 h following feeding of cortisol carried out by 

Barton et al. (1987).

There were no significant differences in levels of lysozyme activity between 

any of the groups, but lysozyme appeared to decrease in all treatments as the trial 

progressed. As lysozyme activity also appeared to decrease in placebo treatments as 

well as implant treatments, it is unlikely this was due to exogenous cortisol and more 

likely to have reflected the change in water temperature between the start and end of 

the trial (approximately 4°C higher at the start of the trial). Although not statistically 

significant, levels of lysozyme activity were consistently lower in the 4.5mm 15mg 

treatment compared with the 4.5mm placebo. As the 15mg implant was the only 

treatment in which plasma cortisol was consistently elevated it may be that there was 

an effect of chronically elevated cortisol on lysozyme, but this was masked by the 

reduction in lysozyme activity in all treatments bought about by the drop in 

temperature and the inconsistent effect of the 3mm implants.

Growth data collected during this experiment was limited, but the changes in 

length measured between days 20 and 30 suggested that there may have been a 

suppressive effect of the cortisol implants on growth (Figure 3.4b). Lowest growth 

was observed in the 15 mg treatment, with the L-SGR in this treatment almost half 

that of the 4.5 mm placebo treatment (0.12 vs. 0.23). A growth suppressing effect of
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exogenous cortisol was reported by Barton et al. (1987) who demonstrated clear 

suppression of somatic growth in rainbow fed cortisol. In addition to the catabolic, 

energy mobilising effects of corticosteroids and their catecholamine pre-cursors, other 

suggestions for the cause of reduced growth include the cortisol-mediated control of 

levels of pituitary growth hormone and reduced feed intake (Pickering et al., 1991).

3.4. Discussion

The experiments in this chapter have demonstrated some of the changes that occur in 

rainbow trout in situations of acute and chronic stress. Experiments 1 and 2 showed 

that acute stress response to be characterised by a rapid elevation in cortisol from 

basal levels of around 5 ng ml'1 to peak levels occurring around 1 h post-stress. These 

experiments also demonstrated differences in the magnitude and duration of cortisol 

response, but it was unclear whether this was due to strain-specific differences in 

cortisol responsiveness, or due to other factors such as differences in fish size and 

water temperature.

The increase in cortisol appeared to be accompanied by a corresponding 

decrease in lysozyme activity during the acute stress response, but experiment 3 found 

no significant reduction in lysozyme activity following chronic elevation of cortisol. 

There is some evidence in the literature for a negative correlation between cortisol 

responsiveness and lysozyme activity (Feveolden et al., 2002), and also a report of 

reduced lysozyme activity following exposure to an acute stress episode (Mock & 

Peters, 1990). However, lysozyme activity is not yet a commonly measured parameter 

in fish , and differences in methodology and working units make interpretation of 

results difficult. The rapid increase in haematocrit and slower increase in glucose
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concentration following the acute handling stressor (experiment 2) was in general 

agreement with previous reports of the acute stress response of rainbow trout.

The results of the cortisol implant experiment were on the whole inconclusive, 

partly due to experimental design and partly due to a lack of confidence in the action 

of the 3 mm implants. There appeared to be increased plasma glucose in the cortisol 

implant treatments relative to placebo treatments, but the effects of the exogenous 

cortisol on lysozyme activity were inconclusive. There are many unanswered 

questions arising from experiment 3 that certainly warrant further investigation, 

although any such study would need to be replicated with individually PIT-tagged fish 

and would also benefit from temperature control. Feed intake should also be measured 

to determine if the apparent reduction in growth observed in this study and by Barton 

et al. (1987) was a result of a reduction in feed intake, or due to increased energy 

utilisation triggered by the exogenous cortisol. The original aim of experiment 3 was 

to measure leptin in fish, with the hypothesis that increased cortisol concentrations 

would result in appetite suppression. Unfortunately, attempts made at measuring 

leptin were unsuccessful due to lack of specificity to the commercially available 

antibodies (mouse and human), but this promises to be an exciting area of future 

research.
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Chapter 4: The effects of stocking density on the welfare of

farmed rainbow trout

4.1 Introduction

The FAWC report (Anon., 1996a) suggested that stocking densities of above 30 -  40

-3kg m may be detrimental to rainbow trout welfare and that research was required to 

determine an upper SD limit that would safeguard fish welfare. Although the concept 

of fish welfare may be relatively new and complex (Lymbery, 1992; Kestin, 1994; 

Anon., 1996a; FSBI, 2002), many of the principles of good welfare are inherent to the 

general aim of trout growers i.e. to produce good quality, healthy fish. Considerable 

research effort has been invested in the investigation of the effects of SD on 

productivity, health, and stress physiology of rainbow trout, although until recently 

there have been few specific references to fish welfare. A summary of the main 

findings of these studies will now follow.

In a recent review of the relationships between SD and welfare in rainbow 

trout, Ellis et al. (2002) summarised the findings of 43 studies. A summary of study 

conditions and the authors’ conclusions of the effects of stocking density on mortality, 

growth and fin condition from the reviewed studies that measured these parameters 

are presented in Table 4.2, with the addition of a further 2 studies (Bebak et al., 2002; 

Boujard et a l, 2002) that were not included in the original review. A more detailed 

table summarising the effects of stocking density on all of the welfare indicators that 

were measured in these studies can be viewed in Appendix 1.
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Table 4.1. Summary of studies examining the effects of stocking density on 

indicators of trout welfare, with authors’ conclusions concerning the effect of 

increasing density indicated by ‘ +, O’ signifying beneficial, adverse, and 

no/inconclusive effect; NS = not specified

Study Stocking Density Study Duration Main Effects
(kg m'3) System (days)

Start End Mortality Growth Fin
Condition

Alanara & 
Brannas, 1996

2-64 NS Tanks 30 -

Atay et al., 
1986

0.8-4.8 10-38.3 Raceways 182 0 “

Bagley et al., 
1994

0.4-7.0 22-478 Tanks 99 + 0

Baker & Ayles, 
1990

10-85
maintained

Tanks 42 “

Bircan, 1997 10.8-18.7 20-35 Cages 0 0

Boydstun & 
Hopelain, 1977

5-15 16-39 Cages 125 0 -

Boujard et al. 2.6-13 28-100 Tanks 125 0 -
2002
Brauhn etal., Tanks 175
1976
Collins, 1972 14-29 41-83 Cages 115 0 0

Holm et al., 107-219 249-455 Tanks 129 - -
1990
Iwamoto et al., 3-16 8-32 Raceways 190 -

1990
Kebus et al., 50-232 50-232 Cages 0

1992
Kilambi et al., 32-98 73-171 Cages 138 0 -

1977
Kincaid et al., 14-124 27-170 Tanks 84-133 - -

1976
Kindschi etal., 
1991a
Leatherland,

8-67

25-70

30-295

62-148

Tanks

Tanks

126

84

- +/- strain 
dependent

1993
Leatherland & 60-120 134-299 Tanks 224 -

Cho, 1985 
Li & Brocksen, 0.07-0.37 Raceways -

1977
Makinen & 5-62 15-147 Tanks 182 -
Ruohonen, 1990 
Miller et al., 2.5-10 19-68 Raceways 203-215 0 0/-

1995 
Murai & 7.2-14.4 24-42.6 Tanks 112 - -

Andrews, 1972 
Papoutsoglou et 
al., 1979 
Papoutsoglou et 
al., 1980 
Papoutsoglou et 
al., 1987 
Pickering & 
Pottinger, 1987a

Piper, 1970

0.4-1.7

1.9-18.8

0.03-0.26

24-172

14-94
(simulated)

7.5-15.8

7.7-38.5

14-89

Tanks

Tanks

Raceways

Raceways

Tanks

300

52

181

365

21

+

-
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Table 4.1 continued.
Study Stocking Study Duration Main Study Stocking Study

Density System (days) Effects Density System
(kg m ') (kg m‘ )

Procarione et 40-120 Tanks 28 -

al., 1999
Purser & Hart, 0.15-1.2 52-85 Tanks 224 - - -

1991
Refstie, 1977 1.26-7.3 58-74 Tanks 42 - 180 +/- -

Rigolino et al., 5.8-12.2 21-50 Tanks 245 0 0
1989
Roell et al., 0.94-1.88 0.7-4.5 Cages 64 0 0
1986
Rosenthal et 20-140 Raceways 69 -
al., 1984 (simulated)
Sahin et al., 0.35-0.72 7.4-16 Cages 181 0 0
1999 2.9-7.0 18.9-40.2 182 0 -
Soderberg et 0.16-0.32 0.26-0.71 Ponds 122 0 0
al., 1983
Teskeredzic et 0.8-4.5 4.6-20.6 Cages 170 - -
al., 1986
Trzebiatowski 3.3-19.8 35.4-170.2 Cages 147 + -
etal.,  1981
Tsintsadze, Tanks -
1981
Unlu & Baran, 1.9-3.4 Tanks 142 -
1992
Wagner etal., 15-32 Raceways 109 0 0
1996b
Winfree et al., Tanks 154 - 0 -
1998
Wonjo, 1976 1.9-4.2 11.8-18.9 Cages 143 0

The range of stocking densities, types of system, sizes and strains of fish used 

in these 48 studies was understandably diverse. Studies were carried out in tanks, 

raceways, ponds and cages, with final experimental densities ranging from less than 1 

kg m 3 (Soderberg et al., 1983) to more than 450 kg m'3 (Holm et al., 1990). The 

duration of the trials also varied considerably, ranging from less than a month 

(Wedemeyer, 1976; Pickering & Pottinger, 1987) to one year (Papoutsoglou et al., 

1987). The experimental design of most of the reviewed studies involved monitoring 

fish from an initial SD, which increased through the course of the trial as the fish 

grew, with the exceptions of Kincaid et al. (1976) who regularly adjusted SD, and 

Baker and Ayles (1990) who maintained experimental SD through the course of their

experiment.
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A wide range of parameters have been used to assess the effects of SD on 

rainbow trout and a summary of some of density effects on some of the more 

commonly measured indicators is presented in table 4.2.

Table 4.2. Summary of the effects of stocking density on indicators of rainbow trout 

welfare; see Appendix 1 for details of individual studies

Welfare Indicator No. o f studies in 
which parameter 

was measured

No. o f studies 
reporting an 

adverse effect of 
increasing SD

No. o f studies 
reporting 

no/inconclusive 
effect o f  

increasing SD

No. o f  studies 
reporting a 

beneficial effect 
o f increasing SD

Mortality 26 11 12 4

Food Intake 4 4 0 0

Food Conversion 
Efficiency

24 13 9 2

Body Condition Index 15 9 5 1

Hepatosomatic Index 2 2 0 0

Growth 43 32 13 0

Size Variation 4 1 3 0

Haematocrit/erythrocyte
count

7 1 6 0

Leucocrit 3 0 3 0

Fin Condition 7 5 2 0

Gill Condition 1 1 0 0

Plasma Cortisol 7 2 4 2

Plasma Glucose 5 0 5 0

Oxygen Consumption 3 0 3 0

4.1.1 Mortality

Mortality is the ultimate endpoint of any experiment and was measured in 26 studies 

that assessed the effects of stocking density on rainbow trout. An adverse effect of 

increasing SD on mortality was reported in 11 studies, a beneficial effect was reported 

in 4 studies, and 12 studies found an inconclusive effect; Refstie (1977) observed both
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negative and beneficial effects of increased SD depending on genetic strain. The exact 

cause of mortality was often not reported and the only references to specific causes of 

mortality at high stocking densities were: injury (Collins, 1972), ectoparisites 

(Soderberg et al., 1983), increased transmission of infectious pancreatic necrosis virus 

(Bebak et al., 2002), severe aggressive interactions (Laidley & Leatherland, 1988; 

Pottinger & Pickering, 1992), and cannibalism due to uneven growth (Kindischi et al., 

1991a).

Kindischi et al. (1991a) maintained wild and domesticated strains of rainbow 

trout at stocking densities of up to 295 kg m"3 with oxygenated water. Interestingly, 

cannibalism was only observed in the wild strain of rainbow trout, and had it not been 

for mass mortality events due to a series of systems failures in the tanks containing 

the domesticated strain, the authors imply there would have been no significant effect 

of SD on mortality. This highlights some important considerations that must be made 

with regard to SD studies, firstly that strain differences in the tolerance of rainbow 

trout to SD are likely to exist, and also that systems operating at high stocking 

densities run an increased risk of mass mortality episodes due to system failure, a 

point which was also made by other authors (Piper, 1970; Miller et al., 1995).

Mortality has been associated with low as well as high SD, with both Laidley 

and Leatherland (1988), and Pottinger and Pickering (1992) observing increased 

mortality in rainbow trout kept in pairs compared with groups containing larger 

numbers of individuals. Both studies attributed the mortality to aggressive social 

interactions caused by one fish in the pair becoming dominant over the other. 

Soderberg et al. (1983) undertook a study that followed growth and mortality of 

rainbow trout stocked in static ponds. Although no significant effect of SD on 

mortality of rainbow trout was observed, differences in mortality between ponds
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displayed a negative correlation with average daily maximum un-ionised ammonia 

exposure (R = -0.75). Mortality was attributed to ectoparasites, Costia spp., 

Trichodina spp., and Tricophrya spp. and the authors suggested that fish subjected to 

high levels of unionised ammonia might have been more susceptible to parasitic 

infection (Soderberg et al., 1983).

Increased disease transmission is commonly assumed to occur at higher 

stocking densities (Lymbery, 1992; 2002). Possible mechanisms by which this may 

occur include: assisted horizontal transmission of disease due to closer proximity of 

fish, deterioration of water quality predisposing fish to infections and impaired 

immune function caused by crowding stress (Shepherd & Bromage, 1988; Noble & 

Summerfelt, 1996; Wedemeyer, 1996). Despite logical rationale, increased disease 

transmission at higher SD was only recently demonstrated experimentally for rainbow 

trout, where an increase in the peak death rate and reduced overall chance of survival 

was observed in fish challenged with IPN at higher SD (Bebak et al., 2002)

4.1.2 Growth, feeding and nutritional status

Somatic growth is said to integrate all of the biotic and abiotic variables acting on an 

organism (Goede & Barton, 1990), thus making it an ideal indicator of tertiary effects 

of environmental stressors. Measuring growth is also simple and inexpensive and it is 

therefore a very popular parameter to study. The effect of SD on growth was 

measured in 43 of the 48 previous studies, and increased SD was found to have a 

beneficial effect in just one study. Kindshi et al. (1991a) observed poorest growth at 

the lowest SD for a wild strain of rainbow trout, which the authors attributed to a poor 

feeding response. A domesticated strain of trout were used in the same study and 

subjected to the same ranges of SD, but showed a step-wise decrease in growth with
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increasing SD. Apart from this one exception, the majority of experiments (74%) 

reported negative effects of increasing SD on growth of rainbow trout, with a further 

13 studies reporting no or inconclusive effects.

In addition to measuring growth as changes in weight/length, the effect of 

increasing SD on feed conversion efficiency (FCR) was also measured in 24 studies. 

The majority of these studies found a negative effect of increased SD on FCR, with 13 

studies reporting a negative effect of increasing SD on FCR, 2 reporting a beneficial 

effect, and a further 9 studies that were inconclusive. It is often suggested that a poor 

feeding response can occur if SD is too low (Purser & Hart, 1991; Winfree et al., 

1998; Kindchi et al., 1991a), but an adverse effect of increasing SD on feed intake 

was observed in all 4 of the studies in which it was measured (Papoutsoglou et al., 

1979; Leatherland, 1993; Alanara & Brannas, 1996; Boujard et al. 2002).

The summary of the studies in which growth and FCR were measured 

indicates a strong association between increasing SD and reduced growth. Pickering 

and Stewart (1984) interpreted reduced growth at higher SD in a number of salmonid 

studies to be a result of either reduced food intake or poorer food conversion 

efficiency. Numerous authors proposed mechanisms by which increasing SD might 

reduce growth, most of which focused on either the physiological effects of water 

quality deterioration or behavioural changes as a result of increased social interaction. 

Ellis et al. (2002) collated the potential mechanisms by which suppressed growth 

could occur, and this is reproduced in Table 4.3. Although feasible, there is little 

experimental evidence to support the suggested mechanisms for reduced growth in 

rainbow trout as a result of increased SD.
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Table 4.3. Compilation of suggested mechanisms associated with increasing SD and

reduced food intake and poorer FCR of rainbow trout (reproduced from Ellis et al. 

2002).

Cause Process affected Mechanism
Water quality 
deterioration

Food intake 
Conversion 
efficiency

Metabolite concentration reducing feeding activity. 
Metabolite concentration affecting energy expenditure.

Social
interaction

Food intake Physical obstruction preventing visual location o f food. 
Physical obstruction preventing access to food. 
Aggressive behaviour preventing access of subordinates 
to food.
Aggressive behaviour reducing appetite of subordinates.

Conversion
efficiency

Reduced gut absorption efficiency.
Increasing energy expenditure due to higher planes of 
excitation due to presence of conspecifics with visual 
range.
Increasing energy expenditure due to occupation of 
suboptimal environmental conditions.
Decreasing growth due to increased cell atrophy or 
decreased cell proliferation.
Decreasing growth due to increased protein and lipid 
catabolism as a result of increased anabolic metabolism. 
Increasing energy expenditure due to increased activity 
levels.

Innate survival 
strategy

Conversion
efficiency

Limitation of growth potential when exposed to 
overcrowded conditions.

Condition factor (CF) is commonly used in salmonids to give an indication of 

the energy reserves or fatness (see section 2.6.5.3) and was measured in 15 studies 

that assessed the effects of SD on rainbow trout. An adverse effect of increased SD 

was observed in 9 studies (60%), with 6 reporting no effect, suggesting that high SD 

has the potential to negatively impact on nutritional status (Table 4.2).

The liver plays a major role in carbohydrate metabolism in fish, storing around 

one-eighth of total glycogen and it is also the main site for oxidation of lactate to 

pyruvate (Smith, 1982). Two studies measured the effects of SD on the liver of 

rainbow trout (Leatherland & Cho, 1985; Leatherland, 1993). Hepatosomatic index 

(HSI) was found to decrease with increasing SD in both studies, but no effect of SD 

was observed on hepatic glycogen or hepatic lipid. Leatherland and Cho (1985) found
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no decrease in liver glycogen at increased SD, but suggested that all other indicators 

were suggestive of food-deprived animals (reduced thyroid hormone levels, plasma 

protein, growth and liver size). Levels of glycogen are relatively unaffected by 

exercise, but rapidly become depleted during fasting, resulting in a rapid decrease of 

HSI (Smith, 1982; Barton et al., 1988). Although not clear from the experimental 

protocols, it may have been that fish were fasted before sampling and this may have 

masked treatment differences in glycogen that existed prior to fasting (Leatherland & 

Cho, 1985; Leatherland, 1993). Other indicators of nutritional status based upon the 

composition of the body have also been measured, but results have been less 

conclusive. No effect of SD was found on protein or ash content of rainbow trout 

(Leatherland & Cho, 1985; Winfree et al., 1998), and from 5 studies that measured 

lipid content, a reduction with increased SD was observed in just one study 

(Papoutsoglou et al., 1987), with the rest observing no effect.

4.1.3 Health and condition profile

As well as indications of nutritional status, condition indices provide a relatively 

simple and rapid indication of how fish cope with their environments (Goede & 

Barton, 1990). An autopsy-based assessment of health and condition profile (HCP) of 

fish was proposed by Goede and Barton (1990), which comprised of the following 

measurements: weight, length, CF, blood constituents, damage to external extremities 

(fin and tail damage, scale loss) eye damage, gill condition, pseudobranch, thymus 

appearance, mesenteric (visceral) fat deposits, spleen (size and appearance), hind gut 

inflammation, kidney appearance, colouration of liver and bile and state of sexual 

maturity. The HCP has been used to assess the effects of SD on rainbow trout in
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several studies (Kindschi et al., 1991a, Miller et al., 1995; Wagner et al., 1996a), but 

components of the HCP are commonplace in most studies.

4.1.3.1. Blood composition

Haematocrit, is perhaps the most commonly measured blood parameter and was 

measured in 7 studies (Table 4.2), although just one study found an effect of SD, 

where an elevated level of haematocrit was interpreted as an effect of stress (Wagner 

et al., 1996a). Precise interpretation of haematocrit results is complicated by a large 

‘normal’ range (24-43% for rainbow trout) and due to the fact that both elevated and 

lowered levels can be taken as indications of poor health (Wedemeyer, 1996). The 

abundance (leucocrit) and type of blood cells (erthrocytes, neutrophils, lymphocytes 

and thrombocytes) was measured in 3 studies (Appendix 1) with one study observing 

an adverse effect of increased SD. Pickering and Pottinger (1997a) observed a 

significant reduction of lymphocyte and thrombocyte numbers in crowded (172 kg m' 

3) compared with uncrowded (24 kg m'3) treatments, but found no effect of SD on 

numbers of circulating erythrocytes or neutrophils.

4.1.3.2. Fin condition

Fin condition was measured in 7 studies, 5 of which (71%) found an adverse effect of 

increased SD. Fins were either measured quantitatively, by measurement of fins 

relative to body length (Kindschi et al., 1991a; Miller et al., 1995), or qualitatively 

using scoring or ranking systems (Boydstun & Hopelain, 1977; Makinen & 

Ruohonen, 1990). Although the exact cause of fin erosion was unknown, several 

plausible causes were suggested by authors, which included abrasion against surfaces 

of rearing units, nipping by conspecifics, infection, and water quality deterioration.
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4.1.3.3. Other indicators of health status

The thymus is a lymphoid organ that is located just under the epithelium at the 

posterior margin of the opercular cavity. Goede and Barton (1990) proposed a 3-point 

thymus index based upon the degree of haemorrhaging and the general appearance of 

the thymus. Wagner et al. (1996a) found that increasing SD adversely affected 

thymus index, but Miller et al. (1995) observed no effect of SD, despite operating at 

higher maximum SD (maximum SD used by Miller et al. was 68 kg m'3 compared 

with a maximum of 32 kg m'3 in Wagner’s study). Rosenthal et al. (1984) examined 

gill and spleen condition and found the length of gill lamellae and spleen size 

decreased with increasing SD in a system that simulated the effects of increasing SD 

on water quality deterioration (this study will be discussed in greater depth in Chapter

5).

4.1.4 Stress indicators

High SD is generally assumed to be stressful to fish (Shepherd & Bromage, 1988; 

Lymbery, 1992; 2002; Anon., 1996a) and several authors have used the term 

‘crowding stress’ to association with increased SD (Pickering & Stewart, 1984; 

Pickering & Pottinger, 1987a; Wedemeyer, 1996). However, in the 7 studies that 

attempted to measure the effects of SD on circulating levels of cortisol, only 2 

concluded that increasing SD had an adverse effect i.e. cortisol levels increased with 

SD (Pickering & Pottinger, 1987a; Pickering et al., 1991). A study comparing cortisol 

levels in ‘crowded’ and ‘uncrowded’ groups of rainbow trout (24 and 100 kg m"3 

respectively) initially found significantly higher levels of cortisol in the fish in the 

crowded treatments (~8 and 7 vs. 4 and 1 ng ml'1 in crowded and uncrowded

103



Chapter 4: The effect of Stocking Density on the Welfare of Rainbow Trout

treatments and 2 and 6 days respectively), but subsequent samples at 10, 14 and 21 

days found no such differences (Pickering & Pottinger, 1987a). Pickering et al. (1991) 

also reported higher plasma cortisol levels in rainbow trout reared at 100 compared 

with 25 kg m 3 during a period of increasing water temperature and decreasing 

dissolved oxygen, but later in the trial when both treatments were provided with 

additional aeration this difference was no longer apparent.

In contrast, Leatherland and Cho (1985) and Procarione et a l (1999) both 

found highest levels of cortisol in the lowest SD treatments. Two other studies 

observed significantly increased levels of cortisol in rainbow trout that were kept in 

pairs, which the authors attributed to severe behavioural interaction due to one fish 

dominating the other (Laidley & Leatherland, 1988; Pottinger & Pickering, 1992). 

Laidley and Leatherland (1988) demonstrated this interaction with a comparison of 

the high and low plasma cortisol concentrations from the paired fish; the mean ‘high’ 

level from 6 replicates was 160 nmol I'1 compared with a mean ‘low’ cortisol level of 

around 10 nmol I"1. All other studies that used cortisol as an indicator of stress found 

an inconclusive effect of SD. Interrenal cell diameter can also be measured to provide 

an indication of interrenal activity (Donaldson, 1981), but in the 2 studies in which it 

was measured, no effect of SD was observed (Leatherland & Cho 1985; Kebus et al., 

1992).

In addition to measurement of plasma cortisol levels and other indicators of 

HPI-axis responsiveness, secondary responses such as increased plasma glucose, 

haematocrit and metabolic rate, decreases in plasma chloride and white blood cells, 

and atrophy of gastric mucosa have also been assessed (Kebus et al., 1992). There is, 

however, very limited evidence to suggest that increasing SD has an effect on any of 

these factors (Appendix 1).
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4.1.5 Summary

Wide discrepancies exist in the data from previous studies investigating the effects of 

SD on indicators of welfare in rainbow trout. Growth was measured in most studies 

and the majority (74%) found an adverse effect of increasing SD, but even this is not 

as clear-cut as it may appear. Ellis et al. (2002) illustrated this by a comparison of 

studies that reported depressed growth at relatively low (<40 kg m'3) SD (Murai & 

Andrews, 1972; Wojno, 1976; Boydstun & Hopelain, 1977; Alanara & Brannas, 

1996; Sahin et a l, 1999), with studies that found no effect at densities in excess of 

100 kg m'3 (Kebus et al., 1992; Bagley et al., 1994).

A more consistent effect of increasing SD was observed on fin erosion. 

Adverse effects of SD were observed at <40 kg m'3 (Boydstun & Hopelain, 1977) and 

none of the studies reported a beneficial effect of increasing SD on fin erosion. The 

studies measured fin erosion over a wide range of SD and different systems (tanks, 

troughs, raceways and cages).

The evidence for ‘crowding stress’ occurring at increased SD in rainbow trout 

is poor and there was little substantiation for adverse effects of increasing SD on 

either primary or secondary indicators of stress. There are difficulties in interpretation 

of the results for stress indicators as the most commonly applied indicators (cortisol, 

glucose, haematocrit) are perhaps more appropriate indicators of acute stress, and SD 

is more likely to be a chronic stressor. Inter-study comparisons of observed levels of 

stress indicators are very difficult as most of the commonly used indicators are subject 

to wide ranges of intraspecific and environmental variation. The use of such 

indicators poses an additional problem in regard to the selection of the most 

appropriate means of control, as maintaining fish in experimental systems or under 

aquaculture conditions is arguably stressful in its self.
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The potential for water quality to act as a root cause of infringed welfare will 

be discussed in greater detail in Chapter 5, but it is possible that lack of attention paid 

to the confounding interaction of water quality parameters at increased SD may have 

contributed to the inconsistency of results from previous studies. Water quality is 

inherently difficult to measure as parameters are continuously fluctuating and in the 

absence of expensive monitoring equipment each parameter would be subject to 

separate manual analysis. Even in studies where authors have argued that water 

quality deterioration was not the cause of adverse effects attributed to high stocking 

densities, Ellis et al. (2002) have suggested that such statements may be flawed 

because there is a poor understanding of critical thresholds for key water quality 

parameters such as dissolved oxygen and the various forms of ammonia, and also that 

point samples for water quality fail to take into account temporal fluctuations.

The findings of trials investigating the effects of stocking density on the 

growth and stress response of rainbow trout are often conflicting and this is reflected 

by the large variations in author’s recommendations for maximum stocking densities 

and loading rates (Table 1.1 authors’ recommendations). The main focus of the 

majority of previous studies concentrates on the effect of SD on performance of the 

fish using end-points of specific growth rate and mortality rather than quantifying 

welfare per se. Anon. (1996a) recognised the lack of appreciation and the inconsistent 

interpretation of the effects of SD on fish welfare and called for scientific work to 

investigate the issue.
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4.2. Experimental investigation of the effects o f stocking density on 

the welfare of rainbow trout

The aim of this experiment was to investigate the effects of SD on the welfare of 

rainbow trout. Under controlled conditions, this experiment applied stocking densities 

reflective of low, medium and high-density commercial farming operations (10, 40 & 

80 kg m ") during the on-growing stages of trout production (~150-500g). A number 

of physiological, morphological and performance-based indicators were measured in 

an effort to assess the affects of stocking density on rainbow trout welfare. A major 

consideration of this experiment was the minimisation of the confounding effects of 

water quality deterioration. This was achieved through the application of high rates of 

water exchange and provision of additional aeration. The experiment was carried out 

under ambient water temperature and photoperiod in order to investigate the 

contribution of seasonal environmental fluctuations on fish welfare.

4.2.1. Materials and Methods

4.2.1.1. Experimental fish

This trial used 3800 female rainbow trout (181.0 ± 3.5 g) obtained from a South 

African stock purchased from Selcoth fisheries (Dumfrieshire, Scotland). The fish 

were certified disease free on arrival and acclimated at ambient temperature and 

photoperiod for 3 weeks prior to the start of the experiment in a 5 m diameter tank 

(=40 m3) at a SD of 17.5 kg m'3.

4.2.1.2. Tanks and flow regimes

During the experimental trial period, fish were maintained in 2 m (volume 1.82 m3) 

diameter fibreglass tanks at ambient temperature and photoperiod, with inflow rates
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set to 60 1 min 1 (2 tank volume exchanges per hour). A theoretical disturbance level 

(TDL) was attributed to each tank within the system depending on its position and the 

likelihood of the tank being subject to disturbance i.e. tanks adjacent to the main 

walkway leading from one tank house through to the other (tanks 3, 4, 8 and 9) were 

the assumed to be the most likely to be disturbed and were assigned a TDL of 3, while 

tanks that backed onto the wall (tanks 1, 2 and 5) were least likely to be disturbed and 

were assigned a TDL of 1. One replicate from each of the density treatments was 

allocated into each group of tanks according to the TDL (Figure 4.1).

4.2.1.3. Water quality and temperature

Inflow rates were set high to ensure that water quality parameters remained within the 

limits suggested by Wedemeyer (1996). Water temperature of the farm inflow was 

monitored twice daily throughout the course of the trial. Dissolved oxygen (DO) 

concentration was monitored twice daily from the outflow of each tank up until 6th 

November 2000, after which dissolved oxygen remained above 10 mg I'1 at all times. 

A multi-channel Oxyguard® system (A06DC230, Oxyguard®, Denmark) was installed 

on 17th January 2001, which recorded DO and temperature 5 min intervals via probes 

located above the outflow of each tank. Alarms were triggered and additional aeration 

supplied via an air pump and diffusion stone if DO in the outflow dropped below 6 

mg r 1.
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4.2.1.4. Feed and feeding

Throughout the experiment, fish were hand-fed a quality commercial finishing feed 

(AminoBalance™ - Trouw Aquaculture) at a daily ration (% body weight/day) 

calculated from the manufacturer’s tables as a function of water temperature, mean 

weight and fish numbers in each tank.

4.2.1.5. Experimental Protocol

On September 14th 2000, fish were randomly distributed into 2 m diameter tanks to 

achieve stocking densities of 10, 40, and 80 kg m'3 in triplicate. An initial sample of 

100 fish was weighed, measured and allocated fin condition scores for dorsal and 

caudal fins as described in section 2.6.6.1 (Table 4.4). A further 15 fish were 

sacrificed and taken back to the laboratory where each of the fins was measured using 

a pair of callipers allowing the relative fin index to be calculated as described in 

section 2.6.6.2.

The fish were sampled after 2 weeks, and thereafter at approximately monthly 

intervals (minimum sampling interval was 19 days, maximum was 41 days). 

Sampling procedures were as follows:

• 60 fish were removed from each tank and anaesthetised in 2-phenoxyethanol 

(Sigma) at a dose of 1:20,000 (0.5 ml per 10 1 of tank water).

• Each fish was weighed to the nearest gram, allocated a score for dorsal and caudal 

fin erosion, and fork length was measured to the nearest mm.

• The first 10 fish from each tank were individually blood sampled within 5 minutes 

of capture.
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• Haematocrit levels were calculated in duplicate from each of the blood samples on 

site (see section 2.6.4 for details).

• Plasma was extracted and stored as described in section 2.5; see additional 

sections in Chapter 2 for individual protocols for measuring lysozyme activity, 

glucose and cortisol.

The biomass and stocking density in each tank was re-calculated following monthly 

sampling and the appropriate number of fish were removed to maintain the stocking 

densities at the desired levels.

4.2.I.6. Statistical Analysis

All of the statistical methods applied in this Chapter are described in section 2.8 of 

Chapter 2. The majority of the analysis was carried out with GLMs to assess the effect 

of time and stocking density with each of the welfare indicators included as dependent 

variables. All percentage data was arcsine transformed before statistical analysis and 

details of any other data transformations that were carried out to conform to 

parametric assumptions are provided in appropriate sections.

The statistical analysis concluded with the application of Principal 

Components Analysis (PCA) to generate welfare indices based on coherence in the 

data for the individual welfare parameters (see section 2.8.7.3 for details).
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4.2.2. Results

The mean measurements for weight, length, CF and fin scores for the initial sample of 

100 fish taken on September 14th 2000 are shown below in Table 4.4.

Table 4.4. Morphometric measurements collected on 14/9/00 (n=100).

Weight (g) Length (cm) Condition Dorsal Fin Caudal Fin
Factor Score Score

Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

180.5 3.5 238.2 1.3 1.3 0.01 0.72 0.06 0.68 0.05

4.2.2.1. Stocking Density Regulation

Stocking density increased between sample points as fish grew, resulting in maximum 

SD in excess of 100 kg m'3 in the 80 kg m'3 treatment. Fish were removed following 

monthly sample points to re-establish the desired stocking densities (Figure 4.2).

4.2.2.2. Water Quality

Water temperature ranged from a maximum of 13.2°C in August to a low of 0.1°C, 

recorded in February (Figure 4.3). Oxygen remained above 6 mg I'1 at all times

-3although additional aeration was required to achieve this in the 40 and 80 kg m' . 

Following the installation of the Oxyguard® system in January 2001, it was possible 

to log the DO from each of the experimental tanks (Figure 4.4).
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Figure 4.2. Biomass regulation in tanks of rainbow trout cultured at different stocking 

densities; mean ± SEM of 3 replicates, n= 180.
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Figure 4.3 Farm inflow water temperature profile.
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Figure 4.4. Dissolved oxygen in tanks of rainbow trout cultured at different stocking 

densities; each line represents the mean value for each treatment calculated from the 

daily average of 3 replicates (error bars emitted for clarity).
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There were clear differences in the levels of ammonia between the treatments with 

peak levels measured during June (Table 4.5). The pH ranged between pH 6.5 and 

6.9, so even around the time of highest water temperatures, only 0.15% of TAN 

existed as NH3 (calculated from ammonia ionisation tables; Piper et al. 1982).

Table 4.5. Water quality parameters for individual replicate tanks at peak water

temperature (12.6°C) and feeding rate

Water Quality 
Parameter 1 0  kg m' 3

Stocking Density 
40 kg m' 3 80 kg m' 3

PH

Total ammonia
6 . 6 8 6.72 6.75 6.72 6 . 6 6 6.59 6.59 6.60 6.54

nitrogen 
(NH3-N; mg r 1)

0.08 0 . 1 2 0.05 0.54 0.46 0.69 0.84 0.89 0.96

Ammonia 
(NH3; mg I'1) 0 . 1 0 0.15 0.06 0 . 6 6 0.56 0.84 1.03 1.09 1.17

Conversion factor (%) 

Un-ionised ammonia
(n h 3; mg l*1)

0.09 0 . 1 1

<0.00015

0.15 0 . 1 2 0 . 1 2

<0.0009

0 . 1 2 0.09 0.09

<0 . 0 0 1 0 0

0.09

4.2.2.3. Mortality

Mortality remained low in all tanks (Table 4.6) and there was no trend relating to the 

time at which mortality occurred (Figure 4.5).

Table 4.6. Cumulative mortality for groups of rainbow trout held at different stocking

densities for 1 0  months.

Stocking
density

Replicate Mortality
Replicate Mortality (%) Treatment Mean (%)

1 4.00
1 0  kgm "3 2 0 . 0 0 2.33

3 3.00
1 1.89

40 kg m' 3 2 1 . 1 0 1.27
3 0.81
1 1.69

80 kg m' 3 2 1.41 1.41
3 1.13
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Figure 4.5. Total treatment survival for rainbow trout cultured at different stocking 

densities.
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4.2.2.4. Growth

Throughout the course of the trial there was little difference in growth observed 

between the treatments; after a 9 month period of culture the maximum difference 

between mean weight in treatments was just 28 g (40 vs. 80 kg m'3; Figure 4.6). The 

individual weights of the fish recorded from each monthly sampling point (n=6Q fish 

per tank; 180 fish per treatment) were included as a dependent variable in a GLM 

with time and SD as categorical predictors, and replicate as a random factor (Table 

4.7).

Table 4.7. Whole model effects for GLM using weight as a dependent variable.

Dependent
Variable

Adjusted R Degrees of 

Freedom

F P

Weight 0.48 80 56.3 0.00

The main effect of the model was the effect of time (PcO.OOl), likely to be reflecting 

fish growth as the trial progressed. However there was no significant effect of SD 

(P=0.31) or replicate (P=0.697); see Table 4.8 for univariate effects of the GLM.

Table 4.8. Univariate tests of significance for GLM using fish weight as a dependent

variable.

Dependent
Variable

Effect Effect Degrees of 
Freedom

F P

Weight Intercept Fixed 1 23263.50 0.000
Time Fixed 8 813.08 0.000
Treatment Fixed 2 1.58 0.312
Replicate Random 2 0.40 0.697
Time*Treatment Fixed 16 1.02 0.465
Time*Replicate Random 16 0.92 0.559
Treatment*Replicate Random 4 15.69 0.000
Time*Treatment*Rep. Random 32 0.73 0.867
Error 4691
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Figure 4.6. Growth of rainbow trout reared at different stocking densities; mean ± 

SEM of 3 replicates, «=180.
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There was a significant interaction between treatment and replicate (PcO.OOl), and 

when the model was repeated individually for each of the treatments there were 

significant replicate differences within the 10 (PcO.OOl) and 40 kg m’3 treatments 

(PcO.Ol). However, in both cases there was no significant interaction with time 

(P=0.98 and 0.40 respectively for the 10 and 40 kg m‘3 treatments). A plot of the 

changes in mean weight of replicates of each of the density treatments is presented in 

Figure 4.7.

Specific Growth Rate (SGR)

Fluctuations in SGR mirrored water temperature as would be expected (Figure 4.8). 

During warmer temperatures, SGR was comparable to those that might be expected 

under commercial conditions (>1% body weight per day) (Shepherd & Bromage, 

1988; Westers, 2001). Between the February and March sample points SGR was very 

low in the 40 and 80 kg m‘3 treatments with negative growth recorded in several of the 

replicates. Although little or no growth is routinely experienced during winter months 

at the Niall Bromage Freshwater Research Facility due to low water temperatures, it is 

possible that the negative SGR was a reflection of sampling error i.e. 60 fish were 

sampled from tanks containing approximately 250 and 500 fish for the 40 and 80 kg 

m'3 treatments compared with the 10 kg m'3 treatment where nearly all fish within

each tank were sampled.

The GLM was repeated using the estimated specific growth rate (SGR) 

between sample points for each replicate within the different SD treatments as a 

dependent variable. There was no effect of SD (P=0.22) or replicate (P=0.22) and 

time was the only significant effect on the model (P<0.001).
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Figure 4.7. Replicate differences in growth of rainbow trout cultured at different 

stocking densities; mean ± SEM, n= 60.

121



Sp
ec

ifi
c 

Gr
ow

th
 

Ra
te 

(
%
)

Chapter 4: The effect of Stocking Density on the Welfare of Rainbow Trout
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Figure 4.8. Specific Growth Rate (estimated) of rainbow trout cultured at 3 different 

stocking densities; mean ± SEM of 3 replicates, n=60 per replicate.
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Feed Conversion Ratio (FCR)

Similarly to SGR, feed conversion ratio (FCR) was around industry norms (Westers, 

2001) at the warmer water temperatures with FCR’s approaching 1:1 in all treatments 

(Figure 4.9). The poorest (highest) FCR occurred in the period between January and 

February for the 10 kg m 3 treatment (mean FCR 4.3:1) and between February and 

March for the 40 and 80 kg m'3 treatments (mean FCR = 3.8 and 4.9:1 respectively). 

The apparent delay between lowest water temperature and poorest FCR and SGR in 

the 40 and 80 kg m’3 treatments compared with the 10 kg m'3 treatment is again 

possibly an artefact of sampling rather than a reflection of any underlying 

physiological mechanism.

4.2.2.5 Condition Factor (CF)

The mean CF remained steady for the duration of the trial with values for the most 

part between 1.30 and 1.35 for all of the density treatments (Figure 4.10). There were 

no obvious seasonal fluctuations, but there was a significant effect of time (PcO.OOl) 

when the log transformed CF data for the monthly samples of 60 fish from each tank 

(«=180 per treatment) was included as a dependent variable in the GLM.

■ X ) i VA.. •' ^
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Figure 4.9. Feed Conversion Ratio (estimated) of rainbow trout reared at different 

stocking densities; mean ± SEM of 3 replicates based on sample of 60 fish per tank.
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Figure 4.10. Condition Factor of rainbow trout reared at different stocking densities; 

mean ± SEM of 3 replicates based on sample of 60 fish per tank. The presence of the 

same letter indicates no significant difference between treatments at the sample point 

(P>0.05).
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There was no effect of SD or replicate on CF, but there were significant interactions 

between SD and time (P=0.023) and SD and replicate (P=0.004; Table 4.9). Post-hoc 

analysis found a significant difference in CF between the 40 and 10 kg m'3 treatments 

in March (Tukey’s; P<0.05), and also confirmed significant differences between 

replicates in the 10 (Replicate 1 v Replicate 2; PcO.OOl) and 40 kg m'3 treatments 

(Replicate 1 v Replicates 2 and 3; P<0.01).

Table 4.9. Univariate tests of significance for GLM using condition factor as a 

dependent variable.

Dependent
Variable

Effect Effect Degrees of 
Freedom

F P

Weight Intercept Fixed 1 316621.7 0.000
Time Fixed 8 6.5 0.001
Treatment Fixed 2 1.5 0.326
Replicate Random 2 0.0 0.988
Time*Treatment Fixed 16 2.3 0.023
Time*Replicate Random 16 3.0 0.004
Treatment*Replicate Random 4 13.4 0.000
Time*Treatment*Rep Random 32
Error 4691 0.000

4.2.2.6 Haematocrit

There appeared to be a marked effect of water temperature on haematocrit values, 

with packed cell volume increasing in colder temperature and then dropping again as 

water temperature increased (Figure 4.11). There was a general trend for the 10 kg m'3 

treatment to have the highest haematocrit, and the 80 kg m'3 to have the lowest values 

(5 of the 8 sample points where haematocrit was measured). With the exception of the 

December and January sample points, the mean haematocrit levels were inside the 

range of 24-43% reported for clinically healthy rainbow trout (Wedemeyer, 1996).
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Figure 4.11. Haematocrit values for rainbow trout reared at different stocking 

densities; mean ± SEM of 3 replicates (10 fish per replicate). The presence of the 

same letter indicates no significant difference between treatments at the sample point 

(P>0.05).
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The arcsine transformed haematocrit data from the monthly blood samples (n=10 fish 

per tank; 30 fish per treatment) was included in a GLM as a dependent variable with 

time, SD and replicate. The model was significant PcO.OOl with an adjusted R2 of 

0.52. Univariate analysis found a significant effect of stocking density on haematocrit 

(P=0.010), and also a significant interaction (P=0.048) between SD and time (Table 

4.10). Post-hoc significant differences were detected in December and January, when 

levels in the 10 kg m'3 treatment were significantly higher compared with the 40 and 

80 kg m 3 treatments in December, and the 80 kg m’3 treatment in January (Tukey’s, 

PcO.Ol).

Table 4.10. Univariate tests of significance for GLM using haematocrit as a 

dependent variable.

Dependent
Variable

Effect Effect Degrees of 
Freedom

F P

Haematocrit Intercept Fixed 1 135932.8 0.000
Time Fixed 7 63.1 0.000
Treatment Fixed 2 18.3 0.010
Replicate Random 2 11.4 0.472
Time*Treatment Fixed 14 2.1 0.048
Time*Replicate Random 14 0.5 0.896
Treatment*Replicate Random 4 0.7 0.576
Time*Treatment*Rep Random 28 2.5 0.000
Error 626

4.2.2.7 Lysozyme Activity

Lysozyme activity mirrored water temperature with levels decreasing through winter 

and increasing again as water temperature increased (Figure 4.12). The results for the 

GLM using lysozyme activity as a dependent variable are shown in Table 4.11. There 

was a significant effect of SD on lysozyme activity (P=0.014) and there was also a 

significant interaction between SD and time (P=0.045). Post-hoc analysis (Tukey’s)

128



Chapter 4: The effect of Stocking Density on the Welfare of Rainbow Trout

found lysozyme activity in the 40 kg m~3 treatment to be significantly lower than the 

10 and 80 kg m 3 treatments in November (P<0.05). November was the only month in 

which a significant difference was detected, but there was a general trend for the 80 

kg m 3 treatments to have the highest lysozyme activity and the 10 kg m'3 the lowest 

(six of the nine sample points).

Table 4.11. Univariate tests of significance for GLM using lysozyme as a dependent 

variable.

Dependent
Variable

Effect Effect Degrees of 
Freedom

F P

Lysozyme Intercept Fixed 1 13074.56 0.000
activity Time Fixed 8 50.86 0.000

Treatment Fixed 2 14.82 0.014
Replicate Random 2 0.34 0.725
Time*Treatment Fixed 16 2.01 0.045
Time*Replicate Random 16 2.02 0.045
Treatment*Replicate Random 4 0.60 0.666
Time*Treatment*Rep Random 32 1.31 0.121
Error 710
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Figure 4.12. Lysozyme activity in the plasma of rainbow trout reared at different 

stocking densities; mean ± SEM of 3 replicates (10 fish per replicate). The presence 

of the same letter indicates no significant difference between treatments at the sample 

point (P>0.05).
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4.2.2.8 Cortisol

| There were marked differences in the levels of cortisol observed between the SD
I;

treatments at different points throughout the experiment (Figure 4.13). The cortisol 

data were log transformed and included as a dependent variable in a GLM with time, 

I SD and replicate (Table 4.12).

Table 4.12. Univariate tests of significance for GLM using cortisol as a dependent 

variable.

Dependent
Variable

Effect Effect Degrees of 
Freedom

F P

Cortisol Intercept Fixed 1 672.34 0.001
Time Fixed 8 11.52 0.000
Treatment Fixed 2 10.28 0.027
Replicate Random 2 2.13 0.217
Time*Treatment Fixed 16 2.60 0.010
Time*Replicate Random 16 1.39 0.210
Treatment*Replicate Random 4 1.07 0.388
Time*Treatment*Rep Random 32 4.91 0.000
Error 711

The GLM detected significant effects of both time (P<0.001), SD (P=0.027) and also 

a significant interaction between the effects of time and SD (P=0.010). Post-hoc 

analysis found levels of cortisol in fish from the 10 kg m'3 treatment to be 

significantly higher than the other SD treatments at five of the nine sample points 

(Tukeys, P<0.01). Cortisol levels in the 40 and 80 kg m'3 treatments were generally 

very similar except for in October and March, when cortisol in the 40 kg m'3 

treatment was significantly higher than the 80 kg m (Tukeys, P<0.01).
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Figure 4.13. Plasma cortisol in rainbow trout reared at different stocking densities; 

mean ± SEM of 3 replicates per treatment (10 fish per replicate). The presence of the 

same letter indicates no significant difference between treatments at the sample point 

(P>0.05).
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The levels of cortisol observed in the first and final sample points (September 

and May) were low in all treatments (~ 5 ng ml"1), with cortisol levels consistent with 

reported baseline levels in unstressed rainbow trout (Donaldson, 1981). However, the 

levels observed in the 10 kg m 3 treatment in February and March are representative 

of peak levels of cortisol following an acute stress episode (see Figure 3.4; page 79, 

Chapter 3). In February all of the replicates in the 10 kg m"3 treatment exhibited high 

levels of cortisol (40, 36 and 30 ng ml'1 in replicates 1, 2 and 3 respectively), but the 

high levels of cortisol observed in March were principally due to one of the replicates 

in the 10 kg m"3 (replicate 1) where a mean cortisol level of 71 ng ml'1 was observed 

(Figure 4.14).

Before considering the implications of the high levels of cortisol in the 10 kg 

m'3 treatment in-depth, it was first necessary to identify possible confounding effect/s 

of factors other than stocking density. Plasma cortisol concentrations are highly 

sensitive to a range of stressors and even the slightest manipulation (deliberate or 

accidental) can potentially alter cortisol through stimulation of the HPI-axis 

(Mommsen et al., 1990). However, examination of some of the more obvious 

potential confounders in this experiment failed to provide a logical explanation.

The experimental design endeavoured to take into account the positioning of 

tanks and the associated level of disturbance (Figure 4.1). Comparison of mean 

cortisol levels from tanks grouped together on the basis of TDL found no significant 

differences (P=0.41) between the TDL groupings (Kruskal-Wallis ANOVA; Figure 

4.15).
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Figure 4.14. Replicate differences in plasma cortisol levels in rainbow trout reared at 

different stocking densities.
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Figure 4.15. Effect of theoretical disturbance level on mean plasma cortisol 

concentrations in rainbow trout reared at different stocking densities. Boxes represent 

25th to 75th percentiles, with dashed and solid lines representing the mean and median 

respectively; error bars denote 10th and 90th percentiles with dots representing outliers 

(>95% confidence interval). Disturbance levels were estimated on a scale of 1 to 3 

where 1 represents tanks with the least chance of disturbance and 3 the highest (see 

figure 4.1 for plan of tank house).
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Another possible explanation for the higher cortisol in the 10 kg m"3 treatment 

could have been the fact that it took longer to catch and sample the fish in this 

treatment as there were fewer fish in these tanks making it more difficult to net the 

fish. However, a regression of the sequential sampling order against plasma cortisol 

showed no correlation in any of the SD treatments (P=0.23, 0.66 and 0.89 

respectively in the 10, 40 and 80 kg m"3 treatments; Figure 4.16).

Elevated cortisol levels have been reported to correlate with reduced growth 

(Barton et al., 1987; Pickering, 1990; Pickering et al., 1991) and immunosuppression 

(Ellis, 1981; Pickering & Pottinger, 1989; Nanaware et al. 1994). Further analysis was 

carried out to investigate the relationships between plasma cortisol levels and growth 

rate and lysozyme activity. When the monthly SGR estimated from each of tanks for 

the duration of the experiment was correlated with the mean cortisol concentration for 

the corresponding month, there was a significant negative correlation coefficient 

(P=0.03, R = -0.43, Figure 4.17). A runs test suggested that the relationship between 

increased cortisol and reduced SGR was not linear (P<0.001). A linear regression of 

cortisol concentration against lysozyme activity in fish from all of the SD treatments 

found there to be a significant negative correlation (R = -0.3112, R2 = 0.49). A runs 

test suggested that the relationship was not linear, with significantly fewer runs than 

would be expected (P<0.001; Figure 4.18).
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Figure 4.17. Correlation between mean plasma cortisol concentration and mean 

specific growth rate in rainbow trout reared at different stocking densities
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Figure 4.18. Correlation between mean plasma cortisol and mean lysozyme activity 

concentration in rainbow trout reared at different stocking densities.

139



Chapter 4: The effect of Stocking Density on the Welfare of Rainbow Trout

4.2.2.9 Fin Erosion

Fin Indices

The individual scores for the dorsal and caudal fin indices were transformed [Log(fin 

score +2)] and included as dependent variables in a GLM with time, SD treatment and 

replicate (Table 4.13). There was a significant effect of time (P=0.001) on both fin 

indices, and a post-hoc analysis detected significant differences between the fin 

indices to be significantly higher (worse fins) at the end of the experiment compared 

with the start (Tukey’s, P<0.01). Changes in mean dorsal and caudal fin index in the 

SD treatments through the course of the experiment are presented in Figure 4.19.

Table 4.13. Univariate tests of significance for GLM using fin index scores for dorsal 

and caudal fins as dependent variables

Dependent
Variable

Effect Effect Degrees of 
Freedom

F P

Dorsal Fin Intercept Fixed 1 147283.46 0.000
Index Time Fixed 7 7.89 0.001

Treatment Fixed 2 5.67 0.068
Replicate Random 2 0.28 0.767
Time*Treatment Fixed 14 2.55 0.017
Time*Replicate Random 14 1.88 0.076
Treatment*Replicate Random 4 5.61 0.002
Time*Treatment*Rep.
Error

Random 28
4190

0.98 0.496

Caudal
Index

Fin Intercept Fixed 1 2127095.72 0.000

Time Fixed 7 7.27 0.001
Treatment Fixed 2 1.15 0.402
Replicate Random 2 0.03 0.970
Time*Treatment Fixed 14 1.17 0.351
Time*Replicate Random 14 1.17 0.347
Treatment*Replicate
Time*Treatment*Rep.
Error

Random
Random

4
28
4190

4.42 0.007
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Figure 4.19. Dorsal (a) and caudal (b) fin index of rainbow trout reared at different 

stocking densities; mean ± SEM of 3 replicates per treatment (>2=60 fish per replicate). 

Points within the same column that do not share a common letter are significantly 

different (Tukey’s, *P<0.01, **P<0.001).
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There was a significant effect of SD on dorsal fin index (DFI) and a significant 

interaction between the effects of SD and time (P=0.017), with significant post-hoc 

differences observed between the 10 and 80 kg m’3 treatments in November, 

December (PcO.OOl), and April (PcO.Ol). However, there were no significant 

differences in DFI between the treatments at the end of the trial (Figure 4.19a).

Throughout the course of the experiment, caudal fin index (CFI) score ranged 

between 0 and 2, and damage to the caudal fin was generally less severe in 

appearance than the dorsal fin, where DFI scores of 3 were common. There was a 

significant effect of time on CFI (P=0.001), and by the end of the experiment CFI was 

significantly higher than at the start (PcO.OOl). There was no significant effect of 

stocking density on CFI (P=0.402), nor any interaction between the effects of SD and 

time (P=0.347).

Relative Fin Length (RFL)

Comparison of the RFL values for the SD treatments at the end of the experiment 

showed a significant effect of SD on the dorsal, caudal, and left and right pectoral fins 

(ANOVA, PcO.OOl). Post-hoc analysis showed the 40 and 80 kg m'3 treatments to 

have significantly lower RFL than the 10 kg m'3 treatment for dorsal and caudal fins 

(Tukey’s, PcO.OOl), but no differences were observed between the 40 and 80 kg m'3 

treatments (P>0.05). However, analysis of the RFL for the pectoral fins showed a 

step-wise significant decrease in RFL with increasing SD (Tukey’s, PcO.OOl; Figure 

4.20). Significant differences were observed between the left and right pectoral fins in 

the 40 and 80 kg m‘3 treatments (Paired T-test; PcO.Ol) suggesting that the left sided 

pectoral fins suffered more severe erosion than those on the right.
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Left Pectoral Right PectoralDorsal Caudal

Figure 4.20. Relative Fin Length of rainbow trout reared at different stocking 

densities. Treatment means and SEM with different letters denoting significant 

differences for each fin (PcO.Ol)
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An example of asymmetric damage to the pectoral and pelvic fins of a fish 

from one of the 80 kg m"3 replicates is shown in Figure 4.21. This observation was 

consistent through all of the replicates and was likely to have been a result of the 

water current direction within the tanks. The inflow pipe was angled to result in 

clockwise water current into which the fish would generally school i.e. hold station 

with heads orientated against the direction of flow. Schooling behaviour was the norm 

throughout the trial in the 40 and 80 kg m'3 treatments but was not so obvious in the 

10 kg m'3 treatment, although it was more difficult to observe fish within the 10 kg m" 

3 treatment as the clarity of the water was poor and it was only possible to observe 

fish near the surface.

4.2.2.10 Size Distribution

At the end of the trial there was a noticeable difference in the population structure of 

the different density treatments, with a wider size distribution in the 10 kg m'3 

treatment (Figure 4.22). There appeared to be a higher number of smaller fish that had 

grown very little or not at all since the start of the trial in the 10 kg m'3 treatment. 

Although the final size distribution in the 10 kg m'3 treatments passed a Kolmogorov- 

Smimov normality test, suggesting that it followed a Gaussian distribution, Bartlett's 

test for homogeneity of variance suggested that there were significant differences in 

the variance between the different populations (PcO.Ol). A comparison of the change 

in coefficient of variation for weight (CVw) also demonstrated the difference in size 

distribution between the SD treatments, with the 10 kg m"3 treatment showing a steady 

increase in CVW whilst the 40 and 80 kg m'3 treatments remained lower (Figure 4.23).
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Figure 4.21. Examples of asymmetric erosion of the pectoral and pelvic fins from a 

fish in the 80 kg m~3 treatment.
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Figure 4.22. Size distribution of rainbow trout reared at different stocking densities.
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trout reared at different stocking densities.
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4.2.2.11 Principal Components Analysis

This study applied numerous indicators in an effort to assess fish welfare. These 

indicators were subject to a considerable amount of intraspecific variation and were 

also influenced by factors other than welfare. This meant that analysis of the 

individual parameters in isolation and even pair-wise regression of variables could 

only provide limited information. In order to better understand the interaction between 

the various welfare indicators, PCA was used as a data reduction technique to 

generate ‘welfare indices’ based upon the statistical relationships observed between 

the simultaneously measured individual indicators of welfare. The following variables 

were used to generate Principal Components (PCs); CF, plasma cortisol, lysozyme 

activity, haematocrit, dorsal and caudal fin scores; data from September and October 

were not included in the analysis as data for some of the variables was missing for 

these months. Two PCs were selected based on Eigenvalues of the correlation matrix 

and quality of representation of the data. Both of the PCs had Eigenvalues of greater 

than 1 and when combined, they explained 60% of the total variance observed 

between the welfare indicators (Figure 4.24). The bearing of the welfare indicator 

variables contributing to each PC is shown in Table 4.14.

Table 4.14. Factor coordinates of the variables included in the PCs, based on 

correlations of the variables and factor axes from the correlation matrix.

Variable PCI PC2
Factor

coordinates
Contribution Factor

Coordinates
Contribution

Condition Factor -0.20 0.03 -0.62 0.31
Dorsal Fin Index 0.02 0.00 -0.43 0.15
Caudal Fin Index 0.20 0.03 -0.56 0.25
Plasma cortisol 0.75 0.42 -0.14 0.02

Haematocrit 0.28 0.06 0.59 0.26
Lysozyme activity -0.78 0.46 0.08 0.01
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trout welfare.
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The main variables contributing to PCI were cortisol and lysozyme and the 

factor coordinates of these variables meant that a fish with high plasma cortisol, and 

low lysozyme activity would have relatively high coordinates, and this was 

interpreted as poor welfare status. Interpreting the factor coordinates for PC2 is more 

difficult, with strong, negative factor coordinates of CF, and the dorsal and caudal fin 

score variables, and positive coordinates for haematocrit. This would indicate that a 

fish with low dorsal and caudal fin scores (good fins) combined with low CF and high 

haematocrit would have a high factor score for PC2. Intact fins would intuitively be 

associated with good welfare, but so would a high CF, so in the case of PC2 it was 

difficult to interpret whether high factor coordinates should be associated with good 

or poor welfare. The possible implications of PC2 will be examined in greater depth 

in the discussion.

The relative contribution of the variables in each of the PCs is illustrated in 

Figure 4.25, based upon their factor coordinates. The position of a variable within the 

correlation circle indicated the bearing of its contribution on the observed factor score 

for each PC based upon the direction (+ve of -ve) and distance from the origin of the 

circle e.g. a fish with high cortisol and low lysozyme activity would have had a high 

factor score for PCI.

The individual factor scores for each of the PCs were used as dependent 

variables in GLMs that used stocking density and time as categorical predictors and 

dissolved oxygen as a continuous predictor; in all cases this was shown to be the 

model that most effectively described the data based on the adjusted R2 values and 

distribution of residuals (Table 4.15).
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Table 4.15. Effects of time, stocking density and dissolved oxygen for GLMs using 

Principal Components of trout welfare as dependent variables.

PCI PC2
Whole model adjusted P2 0.464 0.271
Whole model P 0.000* 0.000*
Dissolved oxygen 0.009* 0.092
Time 0.000* 0.000*
SD 0.000* 0.312
Time x SD 0.000* 0.141

PCI

The GLM detected a significant effect of SD on PCI, with an inversely proportional 

relationship between factor scores for PCI and increasing SD (Figure 4.26a; PcO.Ol). 

The major variables contributing to PCI were plasma cortisol (+ve) and lysozyme 

activity (-ve), and increasing factor coordinates of PCI were interpreted as being 

indicative of poor welfare status. The decrease in PCI with increasing SD confirmed 

the patterns observed earlier in the analysis of plasma cortisol and lysozyme activity. 

This further confirmed that fish at the lowest SD treatment were displaying signs of 

acute stress and possible suppression of the non-specific immune response. There was 

also a significant interaction between the effects of SD and time (PcO.Ol), with 

significant post-hoc differences detected between the 10 kg m'3 compared with the 40 

and 80 kg m'3 treatments on 5 of the 7 months included in the PCA (Tukey’s, PcO.Ol; 

Figure 4.26b). The GLM also detected a significant effect of DO on PCI (PcO.Ol). 

However, it was unclear how DO contributed towards the higher factor score for PCI 

at lower stocking density as DO was generally highest at low SD (Figure 4.4).
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PC2

There was no significant effect of SD on PC2 (Figure 4.27a), nor was there a 

significant interaction between the effects of SD and time (Figure 4.27b). The nature 

of variables contributing to PC2 showed a degree of conflict, with negative 

contributions from factors that could be associated with both good (e.g. CF) and poor 

welfare (e.g. fin erosion). Although the relationship was not significant, PC2 appeared 

to be lower in the 80 kg m'3 treatment compared with the 10 and 40 kg m‘3, 

treatments, and this may have been due to the increased fin erosion that was evident 

the highest density treatment. Additionally, it was likely that the lower CF observed in 

the 10 kg m'3 also contributed to this pattern.
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4.2.3. Discussion

This experiment sought to investigate the effect of stocking density on rainbow trout 

welfare by applying a range of stocking densities reflective of low, medium and high- 

density commercial operations. The experimental design aimed to be representative of 

typical farming practices, but under controlled conditions. Through the course of this 

experiment mortality remained low and the performance of the fish in terms of FCR 

and SGR was reflective of industry norms (Westers 2001; Piper et al., 1982).

Production

The majority of studies that have investigated the effects of increased SD on growth 

of rainbow trout have found a negative effect of increasing SD (Table 4.1). Similarly 

to the present study, 13 of the 43 studies that assessed the effect of SD on growth of 

rainbow trout were inconclusive (Piper, 1970; Collins, 1972; Soderberg et al., 1983; 

Roell et al., 1986; Pickering & Pottinger, 1987a; Rigolino et al., 1989; Kebus et al., 

1992; Bagley et al., 1994; Miller et al., 1995; Bircan, 1997; Wagner et al., 1996a; 

Winfree et al., 1998; Sahin et al., 1999), and just 1 study showed an adverse effect of 

low density on growth (Kindschi et al., 1991a).

Some aspects of experimental design could explain the lack of association 

between SD and growth in some of the studies that observed no effect of increasing 

SD on growth. The experimental densities used in some of the studies were very low 

and it may have been that they were too low to elicit an effect on growth e.g. the 

highest SD treatments used by Roell et al. (1986) and Soderberg et al. (1983) were 

4.5 kg m' 3 and 0.71 kg m ' 3 respectively. Three of the studies that observed no effect of 

SD on growth were conducted in cages (Collins, 1972; Kebus et al., 1992; Bircan, 

1997; Sahin et al., 1999), where the effect of water quality deterioration associated
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with increasing SD may not have remained localised to cages with high SD. Some of 

the trials may have been too short for a significant effect of increased SD on growth to 

occur e.g. in a trial that lasted just 21 days, Pickering and Pottinger (1987a) suggested 

that a significant reduction in growth would have been observed in their highest SD 

treatment if the trial had progressed longer. Other studies specified that high levels of 

water quality were maintained through high inflow rates e.g. Miller et al. (1995) used 

inflow rates of 299-333 1 min" 1 in 4 m‘ 3 raceway system and Bagley et al. (1994) 

achieved very high SD (478 kg m"3) without observing an effect of SD on growth by 

adjusting inflow rates to ensure that DO remained above 8  mg I'1. In the remaining 

studies there was either insufficient information provided regarding study conditions 

(Winfree et al., 1998), or there was no clear explanation for the fact that no reduction 

in growth was observed (Piper, 1970; Rigolino et al., 1989; Wagner, et al., 1996a). 

The only study that reported reduced growth of rainbow trout at low SD was Kindschi 

et al. (1991a), in which growth was lower in a wild strain of rainbow trout in the 

lowest SD treatment. The authors attributed the reduced growth at the lowest SD to a 

poorer feeding response. The same study also reported the findings of a trial that was 

carried out concurrently with a domesticated strain of trout over the same range of 

SD, which observed reduced growth with increasing SD. The differential response to 

SD exhibited by the wild and domesticated strains of rainbow trout, suggests that 

mechanisms other than water quality deterioration could be responsible for observed 

differences in growth between studies.

In the present experiment there was no effect of SD on the mean weight within 

the treatments, but there appeared to be differences in the variance of weight observed 

within the SD treatments, with greatest variance observed in the 10 kg m'3.
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Size variation has been measured in 4 previous studies that investigated the 

effect of SD on rainbow trout (Kilambi et al., 1977; Kindschi et al., 1991a; Purser & 

Hart, 1991; Bagley et al., 1994), but none of these studies reported reduced size 

variation at higher SD. Increased size heterogeneity {e.g. larger coefficient of 

variation of weight) has been suggested to indicate of the presence of dominance 

hierarchies (Jobling, 1995), where a hierarchy can be defined as comprising of a 

group of dominant individuals at the top of the hierarchy, followed by a number of 

subordinants and, thereafter, a number of subordinates with low rank positions 

(Symons, 1970). The greater size variation in the 10 kg mf treatment was possibly 

due to the presence of a hierarchy.

Bagley et al. (1994) suggested that aggression is generally highest at 

intermediate SD, and that the formation and maintenance of hierarchies must become 

exceedingly difficult at high stocking densities; possibly the situation in the present 

study in the 40 and 80 kg m' 3 treatments. This has important implications for 

production, and it may be that increasing SD could be used as method to reduce 

variation arising from hierarchical interactions. The implications of the hierarchy are 

discussed further in relation to cortisol levels, behaviour and the PCA.

Cortisol

The high levels of cortisol observed in the 10 kg m"3 treatment were perhaps the most 

unexpected result of this experiment and also the most difficult to interpret. 

Examination of potential confounding effect/s of factors other than stocking density 

failed to provide alternative explanation. Seven previously published studies have 

used plasma cortisol as an indicator of stress in experiments investigating the effects 

of stocking density on rainbow trout, but just two of these found higher levels of
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cortisol at increased SD (Leatherland & Cho, 1985; Procarione et al., 1999). 

Leatherland & Cho (1985) found significantly higher levels of plasma cortisol in 

rainbow trout reared at 134 kg m ' 3 compared with 210, and 277 kg m ' 3 (approximately 

65 vs. 18 and 9 ng ml' 1 respectively measured 4h after last feeding). If the increased 

cortisol in the lowest SD treatment was a genuine treatment effect rather than an 

artefact of experimental design (the study was not replicated, carried out in 60 1 

aquaria, and just 1 0  fish were sampled for cortisol per treatment), it was unlikely that 

it was caused by the same mechanism as the present study as the lowest final stocking 

density in Leatherland and Cho’s study was 134 kg m'3.

In a 24 h sampling regime of cortisol in rainbow trout reared at different 

densities, Procarione et al. (1999) observed highest levels of cortisol in fish kept at the 

lowest density. The authors expressed surprise at these results as the lowest density 

treatment displayed the best growth and FCR, but was the only treatment that showed 

signs of stress (elevated glucose and reduced chloride levels in addition to the 

elevated cortisol).

Further evidence for increased cortisol at low SD is provided from studies 

where significant increases in cortisol were observed in trout that were kept in pairs 

(Laidley & Leatherland, 1988; Pottinger & Pickering, 1992). The authors suggested 

that this was likely to have been a result of extreme behavioural interaction, with one 

fish becoming dominant over the other. The majority of studies measuring cortisol as 

an indicator of stress in rainbow trout have found no effect of stocking density (Table 

4.2).

There is little evidence in the literature to support a negative effect of 

increased SD on plasma cortisol in rainbow trout, or to provide an explanation for the 

high levels of cortisol observed in 10 kg nrf treatment in this study. There are,
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however, reports of similar observations for other salmonid species. A study that 

investigated the effects of stocking density on growth and stress response in brook 

charr at a similar range densities to those used in this study (30, 60 & 1 2 0  kg m"3) 

found an inverse linear relationship between cortisol and density (Vijayan & 

Leatherland, 1988). The authors suggested that the lower levels of cortisol at higher 

densities may have been an adaptive response to a chronic stressor and cited Pickering 

and Pottinger’s (1987a) observations of initial transient increases in cortisol followed 

by a return to ‘baseline’ levels within several days of exposure to sustained high 

density. Another explanation offered by Vijayan and Leatherland was that the 

differences in observed levels of cortisol were reflective of the metabolic needs of the 

fish, and they suggested that the highest levels of cortisol were linearly correlated 

with the fastest growing fish. However, this theory is not supported by the results of 

this trial, as there was a negative correlation between mean cortisol and SGR (R = - 

3.80, R2 = 0.144, P<0.001; Figure 4.17).

Vijayan and Leatherland (1990a) also found that preparations of the head 

kidney of brook chan- that were acclimated to high stocking density ( 1 2 0  kg m'3) had 

higher levels of resting cortisol secretion than fish acclimated to 30 kg m'3. A similar 

result has also been reported for coho salmon (Oncorhynchus kisutch Walbaum, 

1792), where the same methodology showed higher resting cortisol secretion from 

interrenal tissue from fish held at high stocking density (Patino et a l , 1986). These in 

vitro findings suggested that interrenal cells of salmonids maintained at high stocking 

density are spontaneously active and that the liver may play a role in the metabolic 

clearance rate (MCR) of cortisol, resulting in the apparent acclimation of plasma 

cortisol levels from tissue measurements of fish maintained at high stocking densities 

(Vijayan & Leatherland, 1990a). Further evidence to support the theory of apparent

160



Chapter 4: The effect of Stocking Density on the Welfare of Rainbow Trout

acclimation of the cortisol response to continued exposure to a stressor comes from a 

study that investigated the effects of chronic cortisol administration and daily 

exposure to acute handling stress (Barton et al., 1987), where the authors suggested 

that the capacity of fish to elicit an interrenal response to additional stressors is 

reduced through continuous negative feedback of cortisol on the HPI-axis.

There is some evidence for reduced plasma cortisol in fish reared at high 

stocking densities, but it is unclear if this is a result of behavioural acclimation, 

interrenal exhaustion, increased MCR, or through regulation of the HPI-axis as a 

result of down-regulation of ACTH receptors or modification of ACTH levels. In a 

comprehensive review of cortisol in teleost fish, Mommsen et al. (1999) discussed 

some of these points and also questioned the validity of quantifying cortisol and its 

effects based solely on measurement of plasma cortisol concentrations. The authors 

noted that plasma cortisol concentrations reflect the net effect of production and 

clearance of the hormone and that this is dependent upon binding proteins, target 

tissue receptors and catabolism of cortisol and highlight the importance of 

understanding the regulatory factors that modulate cortisol and the physiological 

responses that it elicits.

The present study observed peaks in cortisol during the winter months, with 

the cortisol concentrations peaking in the 80 kg m' 3 treatment in February, and the 10 

and 40 kg m ' 3 treatments in March (Figure 4.13). No such seasonal pattern of cortisol 

levels is previously reported for rainbow trout. A similar seasonal change has been 

reported in juvenile Atlantic salmon (Thorpe et al., 1987), but the authors suggested 

that the peak levels (46 ng ml'1) observed in March were likely to have been due to 

behavioural and physiological responses to the smoltification process.
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Haematocrit

Haematocrit was significantly higher in the 10 kg m ' 3 treatment in December and 

January, but at all other times no significant differences were observed. The nature of 

the effect of SD on haematocrit was unclear i.e. haematocrit may have been elevated 

in the 1 0  kg m‘ 3 treatment, indicating an acute stress response, or reduced in the other 

treatments, possibly suggesting anaemia. Just one of the seven studies that measured 

the effect of SD on haematocrit in rainbow trout found an effect of increased SD 

(Table 4.2), where Wagner et al. (1996a) concluded that haematocrit was elevated in 

the high SD treatment. Cortisol was also significantly elevated in the 10 kg m’ 3 

treatment in January (PcO.OOl), which supports the suggestion for a stress mediated 

increase in haematocrit. However, if this was the case it remains unclear why there 

was no corresponding elevation of haematocrit in February, March or April when 

cortisol was also significantly elevated in the 1 0  kg m‘ treatment.

Lysozyme activity

Although there are no previous reports of lysozyme activity being used as an indicator 

of crowding stress, it has been measured in conjunction with cortisol in numerous 

previous studies (Demers & Bayne, 1997; Fevolden et al., 1991, 1992, 1994, 1999, 

2002; Fevolden & Rped, 1993; Muona & Soivio, 1992). Direct comparisons with 

previously published data are hindered by differences in methodology and the lack of 

a universally recognised unit, although it is possible to make general comparisons of 

the direction of change in response to a stressor.

The present study found significant effects of SD on lysozyme activity at 

certain time points during the trial, but these were not consistent and interpretation 

was complicated by a strong effect of water temperature. Although not always
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statistically significant, there was a trend for lysozyme activity to be highest in the 80 

and lowest in the 10 kg m 3 treatment. Previously published data is slightly 

conflicting, but there is evidence to suggest an inversely proportional relationship 

between lysozyme activity and plasma cortisol concentrations (Fevolden et al., 2002). 

A linear regression of cortisol concentration against lysozyme activity in the present 

study showed there to be a significant negative correlation (PcO.Ol; Figure 4.18). This 

relationship was further confirmed in the PCA, where the main factors contributing to 

PCI were cortisol (positive factor coordinates) and lysozyme activity (negative factor 

coordinates), so that a fish with high cortisol and low lysozyme activity had a high 

factor score for PCI. Corticosteroids are known to be potent immunosuppressants 

(Pickering, 1984; Barton et al., 1987; Wedemeyer, 1996) and this could explain the 

negative correlation observed between cortisol and lysozyme activity.

An alternative explanation for the differences in lysozyme activity between the 

SD treatments could be that lysozyme activity was elevated in the higher SD 

treatments as a result of stimulation of the immune system in response to the higher 

levels of fin erosion observed with increased SD. The fin index scores for the dorsal 

and caudal fins of the 30 fish that were blood sampled each month from the 

treatments was insufficient to confirm this relationship; if RFL had been calculated 

for these fish it may have been possible to confirm a relationship between fin damage 

and lysozyme activity.

Fin Condition

Perhaps the most consistently reported effect of stocking density on rainbow trout is 

an increased prevalence of fin erosion at higher densities. The lower RFL in the 40 

and 80 kg m' 3 treatments observed in this study is in accord with previously published
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studies (Boydstun & Hopelain, 1977; Makinen & Ruohonen, 1990; Purser & Hart, 

1991; Bosakowski & Wagner, 1994a; Miller et al., 1995; Winfree et al., 1998). 

Although fin damage is generally accepted to increase with increasing SD, the exact 

cause is unknown, although suggestions include abrasion against the sides of rearing 

units or conspecifics, aggressive nipping, accidental nipping during feeding, handling, 

poor water quality, and pathogen infection (Abbot & Dill, 1985; Kindschi, 1987; 

Bosakowski & Wagner 1994a, 1994b).

Two different methods were used to quantify fin damage in this study and 

both methods of fin assessment found increased fin damage with increased SD. Both 

systems found the dorsal and caudal fins in the 40 and 80 kg m‘ 3 treatments to be 

significantly smaller than those in the 10 kg m‘3. Neither method found any difference 

between caudal fins in the 40 and 80 kg m' 3 treatments, perhaps suggesting that a 

threshold density was passed somewhere between the 10 and 40 kg rri , but that after 

passing this threshold density, the level of damage plateaued.

The two methods of fin assessment yielded slightly different results for dorsal 

fin score, with no treatment effect apparent at the end of the trial using the fin index 

system, but significant differences between treatments using the RFL measurements; 

this is likely to be a reflection of the increased statistical power of continuous vs. 

categorical data. The RFL system was also used to assess pectoral fin damage and 

found a cumulative effect of stocking density resulting in reduced RFL of pectoral 

fins. There was also the unexpected result of lower RFL scores for the left pectoral 

fins compared with the right pectoral fins in the 40 and 80 kg m~3 treatments.

These results suggest that different fins may be differentially prone to distinct 

types of physical damage due to their position. The different methods of fin damage 

assessment produced different results, with the RFL measurements appearing to be
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the more sensitive of the two methods; a conclusion also drawn by Bosakowski & 

Wagner (1994a). However, the fin index system did have an advantage over the RFL 

system in that it permitted observations of large numbers of fish to be made through 

the course of the trial, something that would not have been possible using the more 

laborious RFL method.

Abbot and Dill (1985) reported that dorsal fin damage in juvenile steelhead 

was primarily a function of aggressive nipping, and the same observation has been 

reported for juvenile Atlantic salmon (Turnbull et al., 1998). This is logical, as the 

positioning of the dorsal fin would make damage as a result of abrasion against tank 

surfaces unlikely. The increased dorsal fin damage at 40 and 80 kg m'‘ compared with 

1 0  kg m ' 3 could have been due to the higher numbers of fish, resulting in an increased 

potential for aggressive or accidental damage through nipping, though this does not 

explain why there was not an increase in dorsal fin damage at 80 compared with 40 kg 

m"3 when there were twice as many fish present. A possible explanation could come 

from a previously published study that showed size heterogeneity reduced aggression 

in Atlantic salmon parr (Adams et al., 2000). The greater size variation in the 10 kg 

m ' 3 treatment (Figures 4.22 & 4.23) may have resulted in a similar situation where the 

presence of a few larger dominant fish resulted in a mean reduction of aggressive 

interactions within the population.

The positioning of the pectoral fins would suggest that they would be 

susceptible to contact with tank surfaces, and this is supported by findings of Turnbull 

et al. (1998), who inferred abrasion against tank surfaces as the cause of observed 

damage to pectoral fins of Atlantic salmon reared in isolation. The fact that there 

appeared to be an additional effect of water current direction on the extent of the 

damage to the pectoral fins in this study may offer clues to the cause of the damage.
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The left pectoral fin was significantly smaller than the right pectoral in the 40 and 80
_3

kg m ; if the fish predominantly swam against the clockwise water current, this 

corresponded to the inside fin, ruling out perhaps the most obvious explanation of 

abrasion against the outside wall of the tank.

There are no similar reports of such fin erosion in the literature so the cause of 

this damage is purely conjecture. If we assume that the fish spent majority of their 

time schooling into the direction of water current, the motion would be coming from 

the oscillation of the fish’s body with the caudal fin providing the propulsion. The 

pectoral fins would be used to provide direction and as the tanks are round it might 

also be assumed that the outside fin would be held close to the body while the inside 

fin would be extended to provide the turning circle while, making it a obvious target 

for aggressive or accidental nipping or more likely to come into contact with the 

bottom surface of the tank or other fish. The asymmetric damage was only evident in 

the 40 and 80 kg mf3 treatments, suggesting that both direction of flow and stocking 

density contributed to the damage. The apparent contribution of these two factors 

suggested that the erosion may be a function of sub-optimal positioning of the fish 

within the tank i.e. more fish were forced to occupy space close to the bottom of the 

tank resulting in abrasion against the surface of the tank floor at higher stocking 

densities.

Behavioural interactions

Although it was not possible to carry out detailed behavioural observations of the fish 

in this study, there are several previously published studies that have attempted to 

assess the effects of stocking density on behaviour of salmonids. It has been suggested 

that Arctic charr grow better at higher SD as a result of decreased social interactions
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(Wallace et al., 1988; Baker & Ayles, 1990; Brown et al., 1992). At high SD, Arctic 

charr have been shown to spend more time shoaling, with fewer aggressive 

interactions (Brown et al., 1992). Alanara and Brannas (1996) demonstrated reduced 

bite activity (triggering of demand feeders) of top-ranking fish in both rainbow trout 

and Arctic charr with increased SD and suggested that the ability of dominant fish to 

monopolise demand feeders was reduced at higher SD.

Jobling (1985) proposed that short-term bouts of aggression associated with 

feeding can lead to reduced feed intake and subsequent reduced growth by certain 

fish. An alternative suggestion for reduced growth at lower SD in Arctic charr is 

increased energy expenditures as a result of increased aggressive behavioural 

interactions (Brown et al., 1992).

Although dominance hierarchies are relatively well studied in salmonids, the 

implications of hierarchies in terms of fish welfare are rarely considered beyond the 

aspect of reduced growth. One of the few exceptions is a study that assessed the 

physiological effects of dominance hierarchies on brown trout (Sloman et al., 2000). 

The authors suggested that second-ranked individuals occupied the least beneficial 

position within the hierarchy, based on a reduced CF compared with increased CF in 

the first-ranked (dominant) and third-ranked (subordinate) fish over the same 

duration.

Hierarchies are not just associated with poor welfare and there may also be 

some beneficial aspects implications to fish welfare. Increased size heterogeneity was 

shown to be beneficial in Atlantic salmon parr, whereby the introduction of a few 

larger individuals resulted in reduced aggression and significantly higher growth rate 

(Adams et al., 2000). Similarly, Brannas et al. (2002) observed lower incidences of
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aggressive interactions in unsorted groups of Arctic charr compared with groups of 

size-sorted large and intermediate sized individuals.

The Five Freedoms makes specific reference to freedom from hunger and 

malnutrition, and in the case of a subordinate fish, access to food may be restricted by 

dominant fish. Other potential welfare freedoms that could be affected by dominance 

hierarchies include freedom from pain, injury and disease (fin nipping) and 

hypothetically, freedom from fear and distress.

Principal Components Analysis

The PCA was used as a final stage of the data analysis to identify underlying 

coherence that existed within the dataset. Two PCs were identified from the PCA. The 

first PC (PCI) confirmed the negative correlation that was observed between cortisol 

and lysozyme activity (PCI). When the factor scores for PCI were include in a GLM 

with time, SD and DO, there were significant differences between the 10 kg m"3 

treatment and the other SD treatments.

The bearing of contribution of the variables in PC2 was initially unclear, with 

seemingly contradictory contributions of low scores for dorsal and caudal fin indices 

(good fins) and low condition factor and high haematocrit. However, during the 

experiment small fish that with visibly poor body condition, but almost perfectly 

intact fins were occasionally sampled. It may have been that PC2 was reflecting these 

individuals, which represented subordinate fish within the experimental populations. 

If these subordinate individuals were not actively competing for food, nor attempting 

to occupy a premium position within the tanks, it may have been that they were able 

to avoid fin damage. These fish were generally more prevalent in the 10 kg m' 3
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treatment, but when the factor scores for PC2 were include in the GLM, the only 

significant effect was of time.

A final discussion point of the GLM results for the PCs was the significant 

effect of time on both models. There was a clear seasonal effect of time, with PCI 

peaking between January and March (time points 4, 5 and 6 ), while PC2 was lowest 

during February and March. High factor coordinates for PCI were interpreted as 

indicating poor welfare status and the same was true for low factor scores for PC2, 

suggesting a consistent effect of reduced welfare status during the winter months.

Problems were encountered when attempts were made to incorporate water 

temperature into the GLMs, due to the lack of variation that existed within the 

temperature data between the treatments, but it is probable that some of the 

significance that was attributed to time in the models was a result of temperature 

fluctuations that may not have been present if the trial had been carried out at a 

constant water temperature. As poikilotherms, the physiology of rainbow would be 

expected to be influenced by water temperature, especially in temperate regions where 

large seasonal fluctuations exist. In the present study, fluctuations in ambient water 

temperature exacerbated the observed variation of the welfare indicators, which were 

already subject to considerable intra-specific variation. This highlights the difficulty 

of specifying acceptable (or even ‘normal’) levels of welfare indicators.

In summary, the present study found no effect of increased SD on growth, 

possibly because good water quality was maintained throughout the trial and that 

critical thresholds for DO and/or NH3 were not exceeded. The increased size 

variation, coupled with elevated cortisol in the 1 0  kg m 3 treatment suggested that 

there may be welfare implications of low as well as high SD. There an increased level 

of fin damage observed with increasing SD.
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Chapter 5: The effects of water exchange rate on the growth 

and welfare of rainbow trout

5.1 Introduction

In addition to their spatial needs, fish are also dependent upon water for both 

provision of their oxygen and removal of the waste products of their metabolism 

(ammonia, CO2 , suspended solids). Stocking density and water quality deterioration 

are interrelated, and in a given volume of water the supportable biomass of fish will 

be proportional to the requirements for oxygen and the products of metabolism. Ellis 

et al. (2 0 0 2 ) concluded that some of the studies that attempted to examine the effects 

of SD may have overlooked or underestimated the confounding influence of water 

quality deterioration.

This introduction will review aspects of the water quality that are of particular 

importance when considering SD and rainbow trout culture. Topics covered include a 

summary of the recommended ‘safe’ limits for key water quality parameters for 

salmonid culture, the physical, biological and chemical interactions that occur 

between these parameters, and the mechanisms by which exceeding these limits can 

result in poor fish welfare. This introduction will also review key studies that have 

taken alternative experimental approaches to simulate or eradicate deterioration of 

water quality caused by increased SD.

Managing water quality is acknowledged to be one of the most important ways 

of reducing stress and susceptibility to disease in fish husbandry (Wedemeyer, 1996). 

A summary of thresholds for the key water quality parameters and the generally 

accepted requirements for salmonid culture are presented in Table 5.1. Although these
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levels provide a useful guideline, it is worth noting that they have been derived 

mainly from acute and chronic toxicity testing and do not necessarily reflect the 

optimum conditions for safeguarding fish welfare.

Table 5.1 Water chemistry limits recommended to protect the health of salmonids in 

intensive fish culture (abridged from Wedemeyer, 1996).

Parameter Recommended limits

pH

Alkalinity

Ammonia (un-ionised) 

Gas supersaturation

Nitrate (NO3 ')

Nitrite (NO2 )

Oxygen

Total dissolved solids 

Total suspended solids

pH 6-9

>20 mg I' 1 (as CaCOi) 

<0.02 mg r1
< 1 1 0 % total gas pressure 
(103% salmonid eggs/fry)

< 1 . 0  mg f 1

<0 . 1  mg I' 1

6  mg f 1

< 2 0 0  mg I' 1

<80 mg f 1

5.1.1 Oxygen

Dissolved oxygen (DO) is perhaps the most important limiting factor associated with 

fish production. DO is typically expressed as either mg f 1 or as percent of saturation, 

where saturation refers to the amount of a gas dissolved when the aqueous and 

atmospheric phases are in equilibrium (Piper et al., 1982). At higher altitudes and, 

more importantly, higher temperatures, the amount of oxygen that can be dissolved in 

a mven volume of water decreases and DO can become limiting. Low DO levels are 

also often attributed to increased oxygen consumption as a result of increased activity 

in anticipation of, during, and in the h following feeding (Kindschi et al. 1991b).

The minimum recommended DO concentration of for rainbow trout culture is 

typically in the range of 5-6 mg f 1 (Brett, 1979; Piper et al., 1982; Colt & Watten,
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1988; Wedeyemer, 1996). Failure to maintain DO above these lower limits can lead to 

the fish having a reduced tolerance to ammonia (Thurston et al., 1981), increased 

probability of disease (Sniesko, 1974), and adverse effects on growth and overall 

survival rates (Kindschi et al., 1991a). These problems associated with low DO can be 

alleviated by increasing the oxygen concentration in the water. Increasing water 

exchange rate is usually the simplest way to increase DO, but if this is not a viable 

option, pure oxygen can be injected directly into the water, or water can be aerated 

using equipment such as paddle wheels or diffusers.

Several recent studies have used supplemental oxygen to rear trout at high 

densities (Duolos & Kindschi 1990; Kindschi et a l, 1991a; Kindschi et a l, 1991b; 

Miller et al., 1995). These studies have demonstrated the ability to achieve high 

stocking densities (294 kg m~3 in Kindschi et al., 1991a), increasing the overall 

carrying capacity of a system. Laks and Godfriaux (1981) went so far as to suggest 

that trout benefited in terms of growth when reared in oxygen-supersaturated water.

Miller et al. (1995) found no significant differences in health or condition 

indices between fish reared at differing densities with oxygen supplementation, 

though the authors cited slightly decreased growth, increased fin erosion and the need 

for increased supervision as possible drawbacks for high density culture. Doulos and 

Kindschi (1990) highlight a further potential drawback of rearing salmonids in water 

supersaturated with oxygen, namely, gas bubble disease. However, despite observing 

gas bubble disease in 94% of cutthroat trout (Oncorhynchus clarki Richardson, 1836) 

reared in raceways with oxygen supersaturated water (172%), no cases of gas bubble 

disease were observed in rainbow trout cultured with slightly lower supersaturation 

(150%). Comparison of fin quality, growth and feed conversion between 

supersaturated groups with control fish held in water at or below saturation, found no
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differences for either species (Doulos & Kindschi, 1990). There are mixed reports 

regarding the effect of SD on oxygen consumption (usually calculated in terms of 

grams consumed per kg of fish). Medland and Beamish (1985) and Miller et a l 

(1995) both observed increased oxygen consumption (mg kg' 1 h 1) at higher stocking 

densities compared with controls, which they attributed to increased activity levels 

and energy expenditure at higher SD. However, no density-related differences in 

oxygen consumption were reported by Kindschi et a l (1991a). Oxygen consumption, 

per unit body weight, is reported to decrease with increased size of fish (Piper et a l , 

1982; Kindschi et al, 1991a), although Miller et a l (1995) observed no such 

correlation. There is limited information regarding strain affects on oxygen 

consumption in rainbow trout, although Kindschi et a l (1991b) found no differences 

in oxygen consumption between wild and domesticated strains over periods longer 

than 24 h.

Culturing rainbow trout at high stocking densities with supplemental oxygen 

has been shown to be both possible and economically viable, but doing so increases 

the risk of mortality due to equipment failure and requires the provision of increased 

supervision and appropriate backup equipment (Kindschi 1991a; Miller et a l, 1995). 

It is possible that the decreased growth that has generally been observed in some 

studies at higher stocking densities with supplemental oxygen was a reflection of 

other factors such as accumulation of ammonia or carbon dioxide and/or behavioural 

interactions rather than a deleterious effect of the oxygen per se.

5.1.2. Carbon Dioxide

Satisfying the need for oxygen has lead to the identification of other limiting factors 

for production that were previously considered less important e.g. carbon dioxide
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accumulation (Summerfelt, 2000). High concentrations of CO2  may result in a 

reduced capacity of the haemoglobin to transport oxygen, formation of calcareous 

deposits in the kidneys (nephrocalcinosis), and blood acidosis (Colt & Watten, 1988; 

Wedemeyer, 1996; Summerfelt, 2000). Dissolved CO2  of 20 mg T1 will begin to 

impair blood oxygen transport and at concentrations of 30-40 mg I'1, oxygen carrying 

capacity may become reduced to a point where even high environmental dissolved 

oxygen concentrations may be insufficient to prevent decreased blood oxygen levels 

(Wedemeyer, 1996).

Colt and Watten (1988) and Wedemeyer (1996) both suggested that CO2  

concentrations should be maintained below 1 0 - 2 0  mg T1 in culture systems for salmon 

and trout. However, these estimates may be conservative, as Heinen et al. (1996) 

suggested a safe upper limit for chronic exposure to CO2  of 30 mg I'1, and Smart et al. 

(1979, cited in Smart, 1981) found no significant effect on fish growth or feed 

conversion until CO2  concentrations approached 55 mg I'1.

There is a lack of information in specific regard to CO2  and SD though logic 

would dictate that CO2 production mirrors O2 consumption, so there will be an 

increased risk of accumulating harmful levels of C 0 2  at higher stocking densities, 

especially at low rates of water exchange. The potential for CO2 levels to increase will 

be substantially increased in multi-pass commercial facilities, where strategically 

positioned oxygen injection units enable water to be re-used through numerous 

holding systems; this will be discussed in greater detail in Chapter 6 .

The toxicity of CO2 is affected by environmental factors such as DO, 

temperature and pH. Low DO increases the toxicity of C 02, but increasing water 

temperature decreases the solubility of C 0 2  (Wedemeyer, 1996). The effect of 

increased pH on toxicity of carbon dioxide is illustrated in the following equation,
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whereby, below pH 5 most dissolved carbon dioxide exists as CO2 ; between pH 7-9 

as non-toxic HCO3 ; and above pH 11, as the CO3 ' 2  ion (Wedemeyer, 1996):

C 0 2 + H20  H2CO2 <->H+ + HCO3' <-► H+ + CO3'2

5.1.3. Nitrogenous Waste

5.I.3.I. Ammonia

In aqueous solution, ammonia exists as either un-ionised (NH3 ) or ionised (N H /) 

ammonium ions. The proportion of ammonium existing as NH3 increases with pH and 

water temperature and can be interpreted from ionisation tables (e.g. Piper et a l, 

1982).

NH3 + H+ + OH ^  NH4+ + OH

Ammonia is the end product of protein catabolism and is the primary 

nitrogenous metabolite excreted by fish. The main pathway for ammonia excretion in 

fish is across the gills; by passive diffusion for NH3 , or active NH4 +/Na+ exchange 

(Randall & Wright, 1987). Un-ionised ammonia is much more toxic to fish than NfL* 

(Alabaster & Lloyd, 1980; Smart, 1981); Thurston et a l (1981) speculated that NH3 is 

300-400 times as toxic as N H /. It is suggested that the difference in toxicity may be 

due to the fact that NH3 will readily diffuse across the gill membrane, whereas the 

ionised form will not; this is especially relevant in situations of acute toxicity (Smart, 

1975). Levels of N H / in the blood of the fish have been shown to increase if the 

levels in surrounding water are elevated and it is thought that excretion may become 

inhibited (Fromm & Gillette, 1968). Even though NH3 is more toxic than N H /, under 

water quality conditions suitable for trout farming, the proportion of the total 

ammonia nitrogen (TAN) in solution that exists as N H / is always much greater than
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NH3 . For example, even at the upper limits of temperature and pH recommended for 

salmonid culture (16°C and pH 8.5; Council of Europe, 2002) only 11% of TAN will 

exist as NH3.

The recommended upper limit of NH3 for fish culture is around 0.02 mg I' 1 

(Wedemeyer, 1996), and the 96 h LC50 (lethal concentration resulting in 50% 

mortality of exposed fish over a 96 h period) for rainbow trout is 0.60 mg I' 1 

(Thurston & Russo, 1983). One of the most common sublethal effects of ammonia is 

gill damage (Rosenthal et al., 1984; Soderberg et al., 1984). Other sublethal toxic 

effects of ammonia on rainbow trout include kidney damage (Thurston et a l, 1984), 

behavioural changes indicative of neurological dysfunction (Daoust & Ferguson, 

1984), deleterious effects on survival and development of eggs and fry (Burkhalter & 

Kaya, 1977), increased fin erosion (Bosakowski & Wagner, 1994b), increased 

ventilation frequency (Lang et al., 1987), and decreased growth and feed conversion 

efficiency (Brauhn et al., 1976).

In addition to the effect of pH and temperature on the relative proportion of 

un-ionised ammonia, other factors such as salinity, free CO2 , and dissolved oxygen 

can also affect ammonia toxicity (Wedemeyer, 1996). Ammonia production is highly 

variable over a 24 h period and is affected by factors such as the time of day, feeding 

and water temperature. Wagner et al. (1995) observed fluctuations of peak NH3 

concentration up to 490% higher than baseline concentrations. Another effect of 

elevated ammonia on rainbow trout is reported by Mock & Peters (1990), who 

observed a decreased level of lysozyme activity at 36 h following a chance pollution 

incident in which two rearing ponds were contaminated with liquid fertiliser. Levels 

of NH3 increased from 0.005 mg l' 1 up to 0.229 mg I' 1 in one pond and 0.450 mg I' 1 in
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another; the respective decrease in lysozyme activity was 7 3 .4 % and 5 4 .5 % of pre­

exposure levels.

Rainbow trout have been shown to display an adaptation to experimentally 

elevated NH3 , whereby initial responses of greatly increased ventilation frequency 

and reduced food intake returned to levels only slightly above and below pre-exposure 

and controls (Lang et al., 1987). In an experiment that investigated the effects of 

water reuse on growth of rainbow trout, Larmoyeux and Piper (1973) moved fish 

from the first trough (single-use water) of a cascade system into the last trough system 

(7th use water) and noted that within 30 mins the fish displayed signs of distress. The 

authors concluded that the fish in the lower levels of the cascade had adapted to 

environmental stresses associated with elevated levels of ammonia and reduced DO 

and that the fish from higher in the cascade, which were accustomed to better water 

quality, could not tolerate such conditions without acclimatisation.

In specific regard to SD, Wagner et al. (1995) found effect of SD on NH3 

production (on a per fish basis) in rainbow trout cultured in raceways, with ratios of 

NH3 production highly correlated with biomass. Soderberg et al. (1983) found no 

effect of SD on the growth or mortality of rainbow trout cultured in static water 

ponds, though growth and mortality both displayed significant negative correlation 

with the average daily maximum levels of un-ionised ammonia.

At higher SD the increased biomass of fish respiring in a given volume of 

water will invariably result in increased levels of ammonia. If high SD or loading 

rates are coupled with high water temperatures and alkaline waters (>pH7), the 

potential for ammonia levels to result in poor welfare will be greatly increased. For 

more complete reviews of ammonia toxicity, see reviews by Alabaster & Lloyd, 

(1982); Meade, (1985); Randall & Wright (1987).
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5.I.3.2. Nitrite

Nitrite (NO2 ) is an intermediate product of ammonia oxidation by the nitrifying 

bacteria such as Nitrosomonas spp. in the simplified equation:

2 NH4 + 3 O2 -» 2N 02 +2H20  + 4H+

Nitrite can be further reduced into the less toxic nitrate by Nitrobacter spp.

N 02 +NH4+ 6O 2 2H20  + 2N 03

Nitrite is toxic to freshwater vertebrates through oxidation of haemoglobin to 

met-haemoglobin, a form incapable of carrying oxygen to tissues (Piper et a l , 1982; 

Vedel et al., 1998). The recommended upper limit for nitrite is <0.1 mg I' 1 in soft 

water and 0.2 mg I 1 in hard water (Wedeymer, 1996). There is evidence in the 

literature for increased susceptibility to parasitic infection of juvenile rainbow trout 

exposed to sublethal concentrations of nitrite (Carballo & Munoz, 1991). However, 

there is limited information relating specifically to SD and nitrite.

Recirculation systems are not common in commercial trout production in the 

UK (this will be discussed in greater detail in Chapter 6 ), so the potential for nitrite 

levels to accumulate is very low, even at high SD. However, if water is recirculated 

there is a far greater potential for harmful levels of nitrite level to accumulate. This 

can be exacerbated at low water temperatures when the reproduction of Nitrobacter 

spp. in the biofilter of recirculating water systems can be reduced (Noble & 

Summerfelt, 1996).
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5.I.3.3. Nitrate

Nitrate (NO3) is less toxic to fish than nitrite although there is less understanding of 

the mode of toxicity of nitrate on fish. The recommended upper limit for salmonid 

culture varies but appears to have been lowered with the passage of time; Kincheloe et 

al. (1979) found nitrate concentrations of 5-10 mg I"1 to be mildly toxic to developing 

eggs and early fry of rainbow trout, Larsen (cited in Piper et al., 1982) then 

recommended an upper limit of 3.0 mg I'1, and most recently, Wedeymer (1996) 

recommended an upper limit of 1.0 mg I 1. Similarly to nitrite, unless water is 

recirculated, levels of nitrate normally remain well below recommended safe limits, 

even at high SD.

5.1.4. Limitations of recommended water quality thresholds

Although recommended limits for salmonids exist for key water quality parameters, 

there are substantial contradictions in the recommendations. Such contradictions are a 

function of numerous biological and environmental factors that affect both the 

toxicity of the individual parameters and the fish’s tolerance to them. The size, strain 

and previous exposure of a fish are recognised to affect tolerance to water quality 

parameters (Piper et a l, 1982; Colt & Watten, 1988). Most of these recommendations 

originate from information defining chronic and acute toxicity levels (e.g. 96 h LC5 0 ) 

for each parameter in isolation and are not necessarily considered in the context of 

fish welfare, nor do they account of the interaction between the different water quality 

parameters.

Feeding plays a key role in water quality fluctuations, with peaks and troughs 

of DO and ammonia common features in fish farms following feeding. Unfortunately 

toxicity test data are frequently generated with starved fish and therefore of little
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relevance to farmed fish, this is especially true for ammonia since there is evidence 

that fasting exacerbates ammonia toxicity (Wicks & Randall, 2002). The variation in 

recommended safe water quality limits and the questionable relevance of such data 

makes it difficult for farmers and legislators to identify practical guidelines 

highlighting the need for the review of water quality recommendations.

5.1.5. Effect of environmental factors on water quality deterioration

5.I.5.I. Temperature

Water temperature is of fundamental importance to all aspects of fish culture and due 

to the vast volumes of water that are required for trout farming, temperature is also 

one of the most difficult variables to control. The recommended range of water 

temperature for salmonid culture is 7-18°C, and 8-10°C for eggs and fry (Council of 

Europe, 2002). Temperature will ultimately determine the availability of oxygen, rate 

of metabolism of fish, and also has profound effects on the toxicity of ammonia and 

free carbon dioxide.

There is evidence for acclimation of rainbow trout to temperatures of up to 

26.3°C (Charlton et al., 1970: cited in Alabaster & Lloyd, 1982), though higher 

temperatures (>16°C) are generally considered problematic to the trout as a result of 

the reduced solubility of dissolved oxygen and increased toxicity of ammonia. This is 

well illustrated by Klontz (1993), who showed that increasing water temperature from 

9°C to 15°C decreased availability of DO by approximately 13% while the metabolic 

rate and ammonia excretion of a lOOg rainbow trout living in this increased by 6 8 % 

and 9 9 % respectively. If this example is put into a commercial perspective where 

there may be in excess of 2 0 , 0 0 0  fish in a single holding unit, it is clear that there is a 

far greater potential for DO and ammonia to reach critical limits at higher water
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temperatures. It is common for feeding to be restricted or suspended at water 

temperatures of 16°C or above (Anon., 2002). Similar to oxygen, the solubility of CO2  

also decreases at higher temperatures (Alabaster & Lloyd, 1982).

5.1.5.2. Acidity

The range of pH recommended for rainbow trout culture is pH 6.0 -  8.5 in fresh water 

and pH 7.0 -  8.5 in seawater (Council of Europe, 2002). As mentioned earlier, due to 

acid base interactions, fluctuations in pH will affect the toxicity of ammonia and 

carbon dioxide. Wagner et a l (1997) observed an increased stress response in 

rainbow trout kept in water at pH 9.0 and above; laboratory and field tests also 

showed increased mortality in at pH levels greater than 9.3-9.4. Bosakowski and 

Wagner (1994b) found fin erosion in a number of species of hatchery reared trout to 

be correlated with lower alkalinities (lower capacity of water to neutralise acid). For 

reviews on the effects of pH on freshwater fish see reviews by Fromm (1980), and 

Alabaster and Lloyd (1982).

5.1.5.3. Gas supersaturation

The main problem associated with rearing fish in gas-supersaturated water is gas 

bubble disease. When water is supersaturated with a gas, a fish’s blood may also 

become supersaturated and subsequent changes in temperature or pressure can bring 

supersaturated gases out of solution forming bubbles in blood vessels or tissues. This 

may result in possible restriction of respiratory circulation, and subsequent death by 

asphyxiation (Piper et al., 1982). Wedeymer (1996) recommended an upper limit of 

110% total partial pressure of dissolved gases for salmonid culture (103% for 

salmonid eggs/fry; 102% for lake trout). However, Piper et a l (1982) report that

181



Chapter 5: The Effects of Water Quality on Rainbow Trout Welfare

nitrogen gas concentrations in excess of 105% cannot be tolerated by rainbow trout 

fingerlings.

5.I.5.4. Suspended solids

Wedemeyer (1996) recommended an upper limit of 80 mg I' 1 suspended solids for 

intensive fish culture. Suspended solid matter occurs naturally in nearly all rivers and 

lakes, although the actual concentration of matter is subject to large temporal and 

spatial fluctuations. Suspended solids may be either organic or inorganic and the 

threat of the solids to fish health will be highly dependent on the nature of the 

material. Suspended solids may pose a threat to fish health by:

1. Direct physical damage to respiratory structures (abrasion),

2. Indirect physical damage caused by gill fusion to basic salts and toxic metals, or,

3. Environmental degradation resulting from reduced oxygen levels caused by the 

respiration of micro- organisms during the oxidation of organic matter.

There is evidence to suggest that rainbow trout can survive short periods of 

exposure to very high levels of suspended solids (5-300 g I 1), although subsequent 

observations of gill epithelium showed thickening and proliferation often resulting in 

death (Herbert & Merkens, 1961). Reduced growth and an increased susceptibility to 

‘fin-rot’ are also reported as deleterious effects of suspended solids on rainbow trout 

(Herbert & Richards, 1963). Piper et a l (1982) commented that ‘turbidity’ based on 

light penetration may affect the ability of fish to find food. For a more complete 

coverage of the effects of suspended solids on freshwater fish, the reader is referred to 

a comprehensive review by Alabaster & Lloyd (1982).
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5.I.5.5. Water exchange rate

As the rate of water exchange in a system increases, so too will the provision of DO 

and the removal of toxic metabolites such as ammonia and C 02> and therefore the 

biomass of fish that a system can support. This is often referred to as the carrying 

capacity, a concept that was first proposed by Haskell (1955). In fish culture, carrying 

capacity depends upon water flow, volume, exchange rate, temperature, oxygen 

content, pH, size and species (Piper et al., 1982). Several authors have built upon 

Haskell’s ideas and further developed methods of calculating the maximum biomass 

of fish that a system can safely support (Willoughby, 1968; Piper, 1970; Westers, 

1970).

5.1.6 Effects of water quality on trout welfare

5.1.6.1 Water quality and stress response

Stocking rainbow trout at high levels has been shown to cause deterioration in water 

quality (Rosenthal et al., 1984; Larmoyeux & Piper, 1973), and this may act as a 

chronic environmental stressor. Pickering et al. (1991) found that chronic stress 

caused by low DO resulted in elevated plasma cortisol. Pickering and Pottinger 

(1987b) demonstrated how combinations of reduced oxygen and low pH significantly 

increased plasma cortisol levels in rainbow and brown trout. This experiment also 

found the unexpected result of a suppressed cortisol response following a combined 

exposure to elevated C 0 2 and ammonia; the authors suggested that a possible 

anaesthetic effect of the increased level of C 0 2  may have been responsible for the 

decrease in stress response (Pickering & Pottinger, 1987b). Swift (1981) and 

Donaldson (1981) provided further evidence of increased cortisol levels in rainbow 

trout following acute exposure to NH3 and low DO.
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5.1.6.2 Water quality and disease

It is generally accepted that poor water quality will result in an increased prevalence 

of disease, although such statements are not often supported by evidence for causal 

mechanisms. It has been shown in the previous sections that poor water quality can 

result in elevated plasma cortisol levels in fish, and chronic elevation of plasma 

cortisol is associated with deleterious effects on immunocompetence (Pickering & 

Pottinger, 1989).

There are several reports of increased susceptibility to opportunistic infections 

as a result of exposure to poor water quality. Noble and Summerfelt (1996) described 

outbreaks of bacterial gill disease in rainbow trout occurring in response to high levels 

of ammonia caused by overloaded recirculating systems (Density Index > 0.5; Piper 

et al., 1982) during the grow-out phase. Similarly, Soderberg et al. (1983) correlated 

increased mortality due to ectoparasitic protozoa with increased ammonia, suggesting 

that fish exposed to ammonia were more susceptible to infection. Bosakowski and 

Wagner (1994b) correlated NH3 levels with increased fin erosion, but suggested that 

the association may have also been due to confounding influences of other water 

quality parameters such as metabolic wastes, microbes, and suspended solids. 

Similarly, observations of increased susceptibility to ‘fin-rot’ in rainbow trout 

exposed to increased levels of suspended solids made by Herbert and Richards (1963) 

may have been a confounding effect of increased bacterial loading.

5.1.7 Experimental evidence for the effect of SD related deterioration in water 

quality on trout welfare

Several studies have attempted to separate the effects of water quality deterioration 

from behavioural or physiological interactions that may occur at higher stocking
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densities as a result of increased numbers of fish in a given space. One such approach 

has been to simulate the effects of water quality deterioration caused at higher SD by 

either altering the loading rates of tanks through manipulation of inflow rate, or by 

passing water successively through compartments containing a known biomass of 

fish. These approaches have allowed the effects of water quality deterioration to be 

separated from any behavioural or physiological effects.

Three previous studies have manipulated inflow rate to investigate the effects 

of water exchange rate on rainbow trout (Brauhn et a l 1976; Baker & Ayles, 1990; 

Ross et a l , 1995). In a large-scale study that investigated the effects of loading rate on 

the growth of rainbow trout in circular tanks, increased loading rate (achieved by 

either increasing biomass or reducing inflow rate), was shown to display consistent 

and predictable impairment of growth and feed conversion (Brauhn et al,. 1976). 

Brauhn et a l (1976) demonstrated that critical thresholds of TAN could be exceeded 

in advance of DO becoming limiting.

Baker and Ayles (1990) manipulated inflow rates in tanks of rainbow trout 

reared at a constant SD (25 kg m"3) and found the optimum loading level to be 1.0 kg 

I'1 min'1, with growth rate decreasing when this at loading levels greater than 1.0 kg I'1 

min'1. The authors attributed this reduced growth to deterioration in water quality, 

though interestingly growth was also reduced at lower loading rates (0.38, 0.52 & 

0.75 kg I'1 m in1) where water quality was better. The authors suggested that higher 

current speeds caused by the higher inflow rates at the lower loading levels could 

have resulted in increased swimming speeds, and also may have resulted in food 

pellets being more quickly washed down the drain.

The experimental design used by Ross et al (1995) meant that it was not 

possible to make direct comparisons between the effects of different inflow rates, as
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the different flow regimes were not carried out concurrently. The study did, however, 

produce some interesting findings regarding the influence of system design and the 

effect of speed and direction of water current on growth and behaviour.

An alternative approach to altering inflow rates to simulate water quality 

deterioration caused by increased SD has been to maintain rainbow trout in a series of 

holding units at the same density and cascade water successively through each unit in 

series. Several studies were carried out in such a system at the Bozeman Fish Culture 

Development Centre (Montana, USA), where water was passed through a duplicate 

series of 7 aluminium troughs that were stocked with the same biomass of rainbow 

trout (Piper, 1970; Larmoyeux & Piper, 1973; Mayer & Kramer, 1973). The findings 

reported by Piper (1970), and Larmoyeux and Piper (1973) were effectively from the 

same experiment, though the latter provided a more detailed account of the study. 

Larmoyeux and Piper (1973) found that water quality deteriorated through the series 

with oxygen dropping from 7.7 mg I'1 in the first trough down to 3.3 in the 7th, and 

TAN increased from 0.1 mg I'1 to 0.8 mg I 1. Growth remained uniform through the 

first 4th troughs, after which there was a significant reduction in growth and increase 

in FCR. The reduced growth occurred when TAN exceeded 5 mg I'1 and DO dropped 

below 5 mg I'1, although low DO was suggested as the critical factor, since another 

experiment (unpublished) at the same facility kept fish for 6 weeks in an environment 

with DO >7 mg I'1 and TAN concentration of 0.8-1.0 mg I'1 with no negative 

observed effects. In a study that used the same system and similar experimental 

design, Mayer and Kramer (1973) also found growth to deteriorate at the same 

position (trough 4) within the cascade of troughs, though no information regarding 

water quality was provided in this study.
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Similar to the cascade approach, Rosenthal et al. (1984) simulated SD related 

deterioration in water quality by using screens in an experimental channel to create 

seven compartments, each stocked with 20 kg m’3 of rainbow trout to create a 

cumulated equivalent of 140 kg m"3. The average levels of TAN increased 

progressively from an average of 0.02 mg I'1 to 0.35 mg I'1 from the first compartment 

through to the last, while DO dropped from an average of around 9 mg I*1 in the first 

compartment down to 5 mg I 1 in the last. A significant reduction in growth was 

observed after the fourth compartment where average TAN and DO were around 0.2 

and 6.8 mg I'1 respectively.

Instead of simulating the effect of SD on water quality deterioration, a 

divergent experimental approach has been to effectively eliminate any differences in 

water quality, flow and loading rates between density treatments and instead focus 

specifically on effects resulting from differences in the actual numbers of fish. This 

has been achieved in several studies by suspending netted compartments stocked with 

different numbers of fish within mutual holding systems (Soderberg & Krise, 1986; 

Kebus et al., 1992; Procarione et al., 1999). Kebus et al. (1992) grew rainbow trout at 

densities of 50 and 232 kg m'3 in rectangular nylon net cages suspended in round 

tanks. The authors found no differences in growth, condition, haematocrit, interrenal 

cell diameter, or peak serum cortisol levels following exposure to a standardised 

stressor. The authors concluded that providing good water quality was maintained, it 

is possible to rear juvenile rainbow trout at densities of as high as 232 kg m'3 (DI 

=11.1 g I'1 cm fish length) without impaired growth or chronic stress. Similarly, 

Soderberg and Krise (1986) found no differences in growth rates of lake trout 

(Salvelinus namaycush) reared at density indices (DI) of 0.8, 1.6, 3.2 and 6.4 g I"1 cm'1 

(published in imperial units of 0.25, 0.50, 1.0 and 2.0 lbs ft3 inch) in nets suspended in
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2 m diameter circular tanks, but the authors did observe increased mortality at the 

highest DI.

Contrary to the findings of Soderberg and Krise (1986) and Kebus et al. 

(1992), Procarione et al. (1999) reported differences in the growth rate of juvenile 

rainbow trout reared at loading rates of 0.5 or 0.75 kg I'1 min’1. Furthermore, there 

was a significant effect of DI, with groups of fish cultured at 5.6 and 8.4 g I*1 cm 

gaining significantly less weight than those at the lowest DI of 2.8 g I’1 cm. 

Procarione et al. (1999) acknowledged the fact that these findings were in discord 

with similar studies and suggested that growth might not be impaired until a critical 

limit of temperature or loading is exceeded, after which the differences become 

apparent.

5.1.8. Summary

There are mixed reports on the effect of SD on oxygen consumption, with Kindschi et 

al. (1991b) finding no effect of SD, but Medland and Beamish (1985) and Miller et al. 

(1995) both observed increased oxygen consumption (mg kg’1 h’1) at higher SD. 

However, at higher SD there will invariably be a greater biomass of fish respiring and 

metabolising in a given volume of water, so the risk of DO becoming limiting, or 

metabolites accumulating will increase proportionally.

It has been shown that by paying close attention to water quality parameters it 

is possible to rear fish successfully at increased stocking densities (Kindschi et al., 

1991a; Kebus et al., 1992; Miller et al, 1995). However, it must be added that 

culturing fish at such densities runs an increased risk of mass mortality in the event of 

equipment failure and that high density culture requires the increased supervision and 

appropriate backup equipment.
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The dynamic and interactive nature of the various water quality parameters are 

reflected in the wide and often contradictory ranges of published recommended 

critical limits. The complexity of these interactions is reflected in Smart’s 

recommendation that no single aspect of water quality should ever be considered in 

isolation from the influence of other water quality parameters (Smart, 1981). 

Determining ‘safe’ upper limits is further complicated by the fact that no two culture 

systems are the same and the prevailing environmental factors should also be taken 

into consideration for each production facility in regard to tolerance limits. 

Experiments designed to minimise the effects of other factors except for water quality 

(Larmoyeux & Piper, 1973; Rosenthal et a l , 1984; Baker & Ayles, 1990) provide 

strong evidence to suggest that deterioration in water quality is the root cause of 

reduced growth and other problems associated with high stocking densities. This is 

further supported by experiments that have found no effect of SD on growth when the 

influence of water quality has been removed (Soderberg & Knse, 1986; Kebus et al., 

1992).
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5.2. Experimental investigation into the effects o f water quality 

deterioration on the welfare of rainbow trout

The overall aim of this experiment was to investigate the effect of water quality 

deterioration associated with increased loading levels on the welfare of rainbow trout.

5.2.1. Materials and Methods

5.2.1.1. System specifications

The same 2 m diameter tank system used in Chapter 4 was also used in this 

experiment, however, between the two experiments the system was upgraded (Figure 

5.1). Upgrades to the system included:

• In-line Dataflow indicators (DFM900; Parker Filtration, Norfolk, UK) were fitted 

to the inflow pipe of each tank allowing the flow rate to be measured (± 1 1 min'1) 

using the hand-held Dataflow monitor (DFM950; Parker Filtration, Norfolk, UK). 

The system worked on the principle of measuring the speed of rotation of a 

turbine that was driven by the inflowing water.

• The pipe work was altered to add a down-pipe into each of the tanks to reduce the 

affect of the different rates of inflow on surface disturbance and water current.

• Opaque fibreglass covers were added to each tank fitted with 2 x 100 W drum 

bulkhead lights with prismatic covers and 4-pin, 2D tungsten lamps (RS, 

Northampton, UK). Lighting was regulated using analogue clock timers (RS 

electric) that were adjusted on a weekly basis to simulate natural photoperiod 

(SNP).

• An oxygen injection system was installed that delivered oxygen to each tank via a 

DAD3 ceramic diffuser (Dryden Aquaculture, Edinburgh).
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5.2.1.2. Water quality monitoring

An Oxyguard® monitoring system was used throughout the trial taking temperature 

and dissolved oxygen readings at 5 min intervals from a probe situated directly above 

the outflow of each of the tanks (Figure 5.1). Alarms were triggered if dissolved 

oxygen dropped below 5 mg I'1 and additional oxygen was added to tanks as 

necessary to ensure that levels were maintained above this level. Data was relayed 

through the Oxyguard® system into a desktop computer.

Ammonia and pH were measured once a month, approximately 1 h before 

feeding and again at approximately 3 h after first feeding. A 24 h water quality profile 

of DO and ammonia was also carried out carried out towards the end the experiment 

when loading rates were at their highest.

5.2.1.3. Feeding

Fish were fed a percentage body weight ration of a commercial diet (Skretting). The 

ration and pellet size of the diet varied with water temperature and fish size in 

accordance to manufacturer’s tables. All tanks of fish were fed the same amount of 

feed throughout the course of the trial, which was calculated from the mean weight of 

all 9 tanks of fish (estimated from the 40 PIT-tagged fish in each tank) and numbers 

of fish in each tank. Food was distributed via automatic feeders that were set to 

deliver a 3 second burst of feed to each tank at 15-30 min intervals. Feed interval was 

adjusted to ensure that all feed was delivered during daylight hours of a simulated 

natural photoperiod. Feeding commenced from approximately 8.30 am each morning, 

until the feed hopper was empty, which normally occurred between 3 and 6 pm.
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5.2.1.4. Experimental fish

Mixed-sex rainbow trout fingerlings were used in this experiment. The fish were 

hatched on-site from virgin-spawning female brood stock of Danish origin, crossed 

with male fish from an established domesticated stock at the Niall Bromage 

Freshwater Research Facility, also of Danish origin.

5.2.1.5. PIT tagging

Passive integrated transponder (PIT) tags (Avid tags, Norco; Ca, USA) were used to 

permit identification of individuals within the study population. Small, cylindrical PIT 

tags (12 mm) were inserted into the peritoneal cavity by making a small incision in 

the posterior, ventral surface of the fish and injecting the tag into the cavity. A 3:1 

mixture of Orahesive powder (Squibb and Sons Ltd.; Middlesex, UK) and cicatrin 

antibiotic (The Welcome Foundation Ltd.; Middlesex, UK) was applied to the 

incision area to prevent infection. The adipose fin of tagged fish was removed during 

the tagging procedure to permit visual identification of tagged individuals within the 

non-tagged population.

5.2.1.6 Experimental set-up

The trial was set up on 12th February 2002 by hand-grading 1800 rainbow trout of 

mean weight 134.9 g (SE ± 1.1 g) from a 5 m stock tank containing approximately 

7000 fish. The fish were graded by length (200-250 mm) under a light dose of 

anaesthetic. Any fish that were showing signs of precocious maturation were not 

included in the study.

• 200 fish were randomly distributed into 9 of the 2 m diameter tanks.
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• 40 fish in each tank were PIT-tagged and the adipose fin was removed from these

fish to make them easily identifiable. Weight, length (total and fork) and

measurements of all fins were recorded for each PIT-tagged fish at the start of the 

trial.

Flow Regimes

In-flow rates were set using the Dataflow indicators and monitor as follows:

• 601 min'1 (30 min tank volume water exchange)

• 40 1 min'1 (45 min tank volume water exchange)

• 201 min'1 (90 min tank volume water exchange)

5.2.I.7. Sampling protocol

Subsequent sampling took place on a monthly basis over the course of two days as 

follows:

Day 1

Each month 10 untagged fish were randomly selected from each tank and sacrificed. 

The following measurements were taken from each fish: total and fork length (± 1 

mm) (total and fork), weight (± 1 g), fin length of all rayed fins (± 1 mm). Each fish 

was blood sampled to allow haematocrit and plasma lysozyme activity cortisol, and 

glucose concentration to be measured. The liver and spleen were also weighed (± 0.1 

g) to allow calculation of HSI and SSI. Examination of gonads took place to allow the 

sex and maturation status of the fish to be determined.
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Day 2

The weight and fork length were measured from the 40 PIT-tagged fish in each tank. 

The empty tank in the system permitted the fish within each tank to be sorted into the 

adjacent tank in an anti-clockwise direction. This permitted the cleaning and 

maintenance of tanks with minimal handling of the fish. The trial lasted for 10 months 

so by the end of the trial the fish had experienced one month in each tank within the 

system, removing any effect that position of the tank may have had (Table 5.2).

Table 5.2 Distribution of treatments through the course of the water exchange

experiment.
T an k
No.

F eb M a rch A pril M ay Ju n e Ju ly Aug Sep O ct Nov

1 40 1 m in '1 
Rep 3

60 1 m in '1 
Rep 1

40 1 m in '1 
Rep 1

40 1 m in '1 
Rep 2

20 1 m in '1 
Rep 3

201 m in '1 
Rep 2

60 1 m in '1 
Rep 2

60 1 m in '1 
Rep 3

20 1 m in '1 
Rep 1 Control

2
60 I m in '1 

Rep i
40 1 m in '1 

Rep 1
40 1 m in '1 

Rep 2
20 1 m in '1 

Rep 3
20 1 m in '1 

Rep 2
60 1 m in '1 

Rep 2
60 1 m in 1

.. p - V

20 1 m in '1 
Rep 1

Control 401 min 
Rep 3

3
40 1 m in '1 

Rep 1
40 1 m in '1 

Rep 2
20 1 m in '1 

Rep 3
20 1 m in '1 

Rep 2
60 1 m in '1 

Rep 2
60 1 m in '1 

Rep 3
20 I m in '1 

Rep 1
Control

40 1 m in '1 
Rep 3

60 1 m in '1 
Rep 1

4
40 1 m in '1 

Rep 2
20 1 m in '1 

Rep 3
20 1 m in '1 

Rep 2
60 1 m in '1 

Rep 2
60 1 m in '1

....

20 1 m in '1 
Rep 1 Control

• ;■ ..
40 1 m in '1 

Rep 3
60 1 m in '1 

Rep 1
40 1 m in '1

Rep 1

5
20 1 m in '1 

Rep 3
20 1 m in '1 

Rep 2
60 1 m in '1 

Rep 2
60 1 m in '1 

Rep 3
20 1 m in '1 

RcP. 1..._
Control

40 1 m in '1 
Rep 3

60 1 min' 
Rep 1

40 1 m in '1 
Rep 1

40 1 m in '1 
Rep 2

6 Control
40 1 m in '1 

Rep 3
60 1 m in '1 

Rep 1
40 1 m in '1 

Rep 1
40 1 min"1 

Rep 2
20 1 m in '1 

Rep 3
20 1 m in '1 

Rep 2
60 1 m in '1 

Rep 2
60 1 min"1 

r £P_3. ,

20 1 m in '1 
Rep 1

7
20 1 m in 1 

Rep 1
Control

40 1 m in '1 
Rep 3

60 1 m in '1 
Rep 1

40 1 m in '1

RcP-..Lt_

40 1 m in 1 
Rep 2

20 1 m in '1 

Rh t 2

20 1 m in '1 
Rep 2

60 1 m in '1 
Rep 2

60 1 min"1 
Rep 3

8
60 1 m in '1 

Rep 3
20 1 m in '1 

Rep 1
Control

40 1 m in '1 
Rep 3

60 1 min' 
Rep 1

40 1 m in '1 
Rep 1

40 1 min 
Rep 2

20 1 m in '1 
Rep 3

20 1 m in '1 
Rep 2

60 I m in '1 
Rep 2

9
60 I m in '1 

Rep 2
60 1 m in '1 

Rep 3
201 m in '1 

Rep 1
Control

40 1 m in '1 
Rep 3

60 1 m in '1 
Rep 1

40 1 m in '1 
Rep 1

40 1 m in '1 
Rep 2

20 1 m in '1 
Rep 3

20 1 m in '1 
Rep 2

10
20 1 min"1 

Rep 2
60 1 m in '1 

Rep 2
60 1 m in '1 

Rep 3
20 1 m in '1 

Rep 1
Control

40 1 m in '1 
Rep 3

60 1 m in '1 
Rep 1

40 1 m in '1 
Rep 1

40 1 m in '1 
Rep 2

20 1 m in '1 
Rep 3

Additional Measurements

The fins of all PIT-tagged fish were measured at the August sample point and again at 

the conclusion of the experiment. At the conclusion of the trial the HSI and SSI of 

each PIT-tagged fish was calculated. Additionally, the gonads of these PIT-tagged 

fish were removed, allowing the sex and gonadosomatic index (GSI) of each fish to 

be calculated [GSI= (gonad weight/total weight) x 100].
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5.2.I.8. Statistical Analysis

Most of the statistical analysis was carried out as described previously in sections 2.8 

and 4.2.1.3. A repeated measures ANOVA was used to compare the fins of PU- 

tagged fish within each treatment at the start, middle and end of the experiment (Instat 

version 3.0, Graphpad Software Inc.). The individual welfare parameters were 

included as dependent variables in GLMs with time, inflow rate and replicate as a 

random factor. The collection of water quality data from individual tanks also allowed 

the GLMs to be extended, to include temperature, DO, and ammonia as continuous 

predictors. A more detailed description if the modelling for specific welfare 

parameters is presented in section 5.3.7

The statistical analysis concluded with the application of Principal 

Components Analysis (PCA) as an exploratory and data reduction tool to generate 

welfare indices based on coherence in the data for the individual welfare parameters. 

The factor scores for the most appropriate principal components (PCs) were then 

included as dependent variables in GLMs as (see section 2.8.7.3 for details).
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5.3 Results

5.3.1 Water Quality

5.3.1.1. Temperature

The water temperature profile for the course of the experiment is shown in Figure 5.2. 

The lowest water temperature of 2.6°C was observed in February near the start of the 

trial, and water temperature peaked at 16°C during August, A rapid drop in water 

temperature occurred towards the end of October, when water temperature plummeted 

from around 12°C down to 5.5°C in the space of 10 days. The rapid drop in water 

temperature was likely to have been due to mixing of water in the reservoir following 

a period of heavy rain in the last week of October 2002, which was preceded by a 

long period of below-average rainfall.

5.3.1.2. Dissolved Oxygen

There were two periods during the trial when it was not possible to log the DO data 

collected from the individual tanks. This was initially was due to a problem with the 

desktop PC into which the data was logged, and in the second instance it was a result 

of software failure of the Oxyguard® package. Although the dissolved oxygen data 

were not logged during these two periods, the monitoring and alarm system continued

to function normally.

The average daily DO for each of the treatments is shown in Figure 5.3. It was 

necessary to supplement the oxygen in the tanks of the 20 1 m in1 treatment from early 

in the trial to maintain DO above 5 mg I 1. By April 9th, when water temperatures 

reached 6.7°C, all tanks in the 20 1 min'1 treatment required supplementary oxygen 

and did so for the remainder of the trial.
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Figure 5.2. Seasonal change of water temperature through the course of the water 

exchange experiment.
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Figure 5.3. Dissolved oxygen in tanks of rainbow trout cultured in tanks with 

different inflow rates; each line represents the mean value for each treatment, 

calculated from the daily average of 3 replicates (error bars are omitted for clarity).
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All tanks within the 40 1 min'1 treatment received supplementary oxygen by 

the end of May, and as water temperatures began to peak and biomass increase 

through August, it was also necessary to supplement oxygen in the 60 1 min'1 

treatment. When supplementary oxygen was added to tanks, the initial differences in 

DO that were apparent between the treatments were no longer evident (Figure 5.3). 

When the monthly mean DO for individual tanks was included as a dependent 

variable in a GLM with time and inflow rate as categorical predictors, there was no 

significant effect of inflow rate on DO. There was a significant effect of time on DO 

CPcO.OOl), which was likely to have been due to the combined effects of changes in 

water temperature, fish biomass and feed rates at different stages in the experiment.

Although the supplementary oxygen enabled DO to be maintained above the 

threshold of 5 mg I'1, the system used did not permit DO to be automatically 

maintained within a pre-set range. Manual adjustment of the valves controlling the 

oxygen supply to each tank was carried out to prevent the levels becoming 

excessively high, but this could only be carried out during the working hours of the 

staff at the facility. A 24 h profile of DO was measured in November (1 h intervals), 

when the biomass within each of the tanks was highest. Figure 5.4 shows that during 

the 24 h sampling period, the highest mean DO was observed in the 40 1 min'1 

treatment, suggesting that during this period the additional oxygenation added to the 

tanks outweighed the effect of differences in inflow rate.

5.3.I.3. pH

The pH of the water remained stable for the duration of the experiment at between pH 

6 and 7.
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Figure 5.4. Dissolved oxygen profile through a 24 h period in tanks of rainbow trout 

cultured in tanks with different inflow rates; sampling interval was 1 h, each line 

represents the mean value for each treatment (error bars omitted for clarity).
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5.3.I.4. Ammonia

At approximately monthly intervals between the sampling of the fish, total ammonia 

nitrogen (TAN) was measured from the outflow of each of the tank. Samples took 

place 1 h prior to the first daily of feed of the fish, and again between 3-4 h after first 

feed during. This was true of all months except for October, when a shortage of 

reagents meant that it was only possible to carryout the post-feed measurements 

(Figure 5.5). There was a highly significant treatment effect of inflow rate on TAN 

(P>0.001) when post-feed TAN concentrations were included in a GLM as a 

dependent variable. There was again a significant effect of time on TAN 

concentrations (P<0.001) and a whole model effect of time and inflow rate with 

replicate included as a random factor (PcO.Ol). Levels of TAN were generally highest 

in the post-feed water samples, although the difference was not always significant. 

Paired P-test comparison of the pre and post-feed TAN found significant differences 

(P>0.05) during all months except June, July and September. In November, a 24 h 

profile of TAN measurements was carried out and provided the unexpected result of a 

peak in TAN during the middle of the night (Figure 5.6).

The pH and temperature of water samples were also measured to allow the un­

ionised ammonia concentration to be calculated from ionisation tables (Piper et al., 

1982). The pH remained between 6 and 7 throughout the trial, which resulted in the 

levels of un-ionised ammonia (NH3) being very low, with the maximum level of NH3 

of 0.0007 mg I'1, well below the 0.01 mg l"1 that is generally accepted to be the 

maximum safe limit for salmonids (Wedemeyer, 1996).

202



Chapter 5: The Effects of Water Quality on Rainbow Trout Welfare

0.7 -|
(5.5a) 1 hour before 1st daily feed

0.6 -

— 20 In in  
•O " 401 min 

— 601 min
0.5 -

0.4-

&  0 .3 -

0.0 -

Feb-02 Mar-02 Apr-02 May-02 Jun-02 Jul-02 Aug-02 Sep-02 Oct-02 Nov-02 Dec-02

Sample Date

0.7 -i (5.5b) 3-4 hours after 1 daily feed

0.6 -

—• — 201 nin 
•■••O'" 401nin 
— 601 nin

0.5 -

B0
0.4-

60

P  0 .2 -

0.0 -

Mar-02 Apr-02 May-02 Jun02 Jul-02 Aug-02 Sei>02 Oct-02 Nov4)2 Dec-02

Sample Date
Feb-02

Figure 5.5. Total ammonia nitrogen profile in tanks of rainbow trout cultured in tanks 

with different inflow rates 1 h before (5.5a), and 3-4 h following (5.5b) the first daily 

feed; each point represents the treatment mean + SEM.
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Figure 5.6. Total ammonia nitrogen profile through a 24 h period in tanks of rainbow 

trout cultured in tanks with different inflow rates; sampling interval was 4 h, each 

point represents the treatment mean ± SEM.

204



Chapter 5. The Effects of Water Quality on Rainbow Trout Welfare

5.3.2 Stocking density and loading rate

At the start of the experiment, the SD was 16 kg m 3 in all tanks. Growth was poor at 

the start of the trial and SD remained almost static in for the first 4 months as the 

small increase in biomass due to growth was offset by the monthly removal of 10 fish 

for sampling. From June onwards there was a steady increase in SD and by the end of 

the trial SD exceeded 40 1 m in1 in all treatments (Figure 5.7). At the end of 

experiment there was no significant difference between the mean SD in each of the 

treatments, which were 40.1, 41.2 and 45.5 kg m"3 respectively for the 20, 40 and 60 1 

min'1 treatments. There were clear differences in Flow Index (FI) between the tanks 

from the start of the trial and these remained through until the end. The highest FI was 

observed in the 20 1 min'1 treatment, and by October FI exceeded 2 in all replicates of 

this treatment (Figure 5.8).

5.3.3 Mortality

A mass mortality event occurred in the 20 1 min'1 treatment on 4th April caused by a 

plumbing failure that resulted in the loss of 118 fish. A damaged standpipe seal 

resulted in the level of the tank gradually dropping over the course of the night and 

this was not detected until the following morning when only a few centimetres of 

water remained in the tank. The dead fish in this replicate were replaced with 

stockfish of the same age and origin and sampling continued as normal for the 

remainder of the trial, although data from this replicate was not included in any 

statistical analysis. A blockage to the inflow of another replicate of the 20 1 min'1 

treatment in the final week of the trial resulted in the loss of 5 fish, but the alarms 

were triggered in time to prevent major mortalities. Apart from these two events, 

mortality remained very low (Table 5.3).
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Figure 5.7. Stocking Density of rainbow trout cultured in tanks with different inflow 

rates; Mean ± SEM of 3 replicates (only 2 replicates for 20 1 m in1 treatment 

following the loss of one replicate).
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Figure 5.8. Flow Indices of tanks of rainbow trout with different inflow rates; Mean ± 

SEM of 3 replicates (only 2 replicates for 20 1 min"1 treatment following the loss of 

one replicate).
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Table 5.3. Mortality of rainbow trout maintained in tanks with different inflow rate.

Treatment Replicate
Mortality 

Replicate Mortality (%) Total Treatment 
Mortality (%)

1 62.96
201 m in1 2 6.19 34.05

3 0.00
1 0.84

401 m in1 2 0.84 0.80
3 0.84
1 0.84

60 1 m in1 2 0.00 0.30
3 0.00

5.3.4 Growth

Over the course of the trial, the fish grew from a mean weight of around 140g, to final 

mean weights of 580, 595 and 652g in the 20, 40 and 60 I min 1 treatments 

respectively (Figure 5.9). When the individual weight of all PIT-tagged fish was used 

as a dependent variable in a GLM with time, inflow rate and replicate as a random 

factor, there was a significant effect of inflow rate, with growth significantly higher in 

the 60 1 min'1 compared with the 20 and 40 1 m in1 treatments (P>0.01). There was 

also a significant combined effect of time and inflow rate, and post-hoc comparison 

showed that the fish in the 60 1 m in1 were significantly larger than those in the 20 and 

40 1 min'1 treatments from September through until the conclusion of the trial at the 

end of November (P>0.05; Tukey’s).

5.3.4.1. Specific Growth Rate

Growth was poor during the first month of the trial and this was reflected by the low 

SGR for all treatments, with many fish actually losing weight. SGR began to increase 

in April as the water temperature increased and this trend continued until August 

when SGR peaked at levels of above 0.8 % in all treatments (Figure 5.10).
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Figure 5.9. Weight gain of rainbow trout cultured in tanks with different inflow rates. 

Each point represents the mean (± SEM) individual weight for all PIT-tagged fish 

within each treatment; n = 120 for 40 and 60 I min"1 treatments, and 80 for 20 I min"1 

treatment following the loss of 1 replicate. Treatments not sharing a common letter 

are significantly different at that time point (*P<0.05, **P<0.01; Tukey’s multiple 

comparison post-hoc following GLM with weight as a dependent variable and time 

and inflow rate as categorical predictors, with replicate as a random factor).
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Figure 5.10. Specific growth rate of rainbow trout cultured in tanks with different 

inflow rates. Each point represents the mean (± SEM) individual SGR for all of the 

tagged fish within each treatment (n = 120 for 40 and 601 m in1 treatments, and 80 for 

20 1 m in1 treatment following the loss of 1 replicate). Treatments not sharing a 

common letter are significantly different at that time point (P<0.05; Tukey’s multiple 

comparison post-hoc following GLM with weight as a dependent variable and time 

and inflow rate as categorical predictors, with replicate as a random factor).
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During the summer months (June -  September), SGR appeared higher in the 60 1 min’ 

treatment compared with the 20 and 40 1 min'1 treatments. There was a significant 

effect of inflow rate on SGR (P<0.05), with significantly higher SGR in the 601 min'1 

treatment compared with the 40 and 20 1 min’1 treatments (P<Q.01; Tukey's). There 

was also a significant interaction between time and inflow rate and a post-hoc 

difference was observed between August and September, when SGR was significantly 

higher in the 60 compared with the 401 m in1 inflow treatment (P<0.05).

5.3.4.2. Feed Conversion Ratio

FCR was estimated for each PIT-tagged fish from the change in weight between 

sampling periods and the amount of feed ‘presented’ (total food fed per tank / fish 

numbers) over the same period. Throughout the course of the trial the mean FCR for 

the various treatments ranged between 1 and 2.5 (Figure 5.11). Many fish lost weight 

or grew very little during the first month of the trial (February -  March), making FCR 

for these individuals impossible to compute. Due to the high number of negative 

values for the period between sample points, FCR data for this period were removed 

from statistical analysis.

The lowest (best) FCR occurred between the March and April sample 

points, which was surprising considering water temperature was still relatively low 

during this period. It may have been that following a prolonged period of low growth, 

the fish displayed compensatory growth as water temperature began to increase. Feed 

rates were lower in March and April compared with the summer months, so this may 

also have contributed to the low FCR through this period. It may also have been 

possible that the fish were underfed in March and April and had the ration been 

increased during this period, FCR may not have been so low.
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Figure 5.11. Estimated Feed Conversion Ratio of rainbow trout cultured in tanks with 

different inflow rates. Each point represents the mean (± SEM) individual FCR of all 

of the tagged fish within each treatment (n = 120 for 40 and 60 1 min'1 treatments, and 

80 for 20 1 min'1 treatment following the loss of 1 replicate).
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The estimated FCR data for each PIT-tagged fish were included as a 

dependent variable in a GLM with time, inflow rate and replicate (log transformed 

with negative values removed). There was a significant effect of time (PcO.OOl), but 

there was no significant effect of inflow rate (jP=0.312). There was no interaction 

between time and inflow rate (P=0.849), but when corrected for replicate there was a 

significant overall effect of the model (P<0.001).

5.3.5. Somatic Indices

5.3.5.1. Condition Factor

Following an initial decrease during the first 3 months of the experiment, CF 

increased steadily in all treatments until the end of the experiment (Figure 5.12). 

There was a significant interaction between inflow rate and time (PcO.Ol) and post- 

hoc analysis showed CF to be significantly higher in the 60 1 min'1 compared with the 

20 1 min'1 treatment in August (P<0.05; Tukey’s), and 40 1 min'1 treatment in 

September (P<0.05; Tukey’s). Although CF appeared to be highest in the 60 1 m in1 

treatment until the conclusion of the experiment, the differences were no longer 

statistically significant in November or December.

5.3.5.2. Hepatosomatic Index

HSI remained at around 1% body weight in all inflow rate treatments for the first 6 

months of the trial, but then showed a steady increase after the August sample point, 

eventually reaching around 1.5% in all treatments at the end of the experiment (Figure 

5.13a). The HSI values (arcsine transformed) from the monthly samples were 

included as a dependent variable in a GLM with time, inflow rate and replicate

(random factor).
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Figure 5.12. Condition Factor of rainbow trout cultured in tanks with different inflow 

rates. Each point represents the mean (± SEM) individual Condition Factor of all of 

the tagged fish within each treatment (n =120 for 40 and 60 1 min'1 treatments, and 80 

for 20 1 min'1 treatment following the loss of 1 replicate). Treatments not sharing a 

common letter are significantly different at that time point (P<0.05; Tukey’s multiple 

comparison post-hoc following GLM with weight as a dependent variable and time 

and inflow rate as categorical predictors, with replicate as a random factor).
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Figures 5.13. Hepatosomatic Index of rainbow trout cultured in tanks with different 

inflow rates. 5.13a shows HSI from monthly samples (n=30 for 40 and 60 1 min'1 

treatments, and 20 in the 20 1 min'1 treatment). 5.13b shows HSI of all tagged fish at 

the end of the trial (columns with different letters denote significant differences;

P<0.05).
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There was a significant effect of time (PcO.OOl), but no significant effect of 

inflow rate (P=0.419), nor was there an interaction between inflow rate and time 

(P=0.102). When HSI was modelled with time, inflow rate, temperature, ammonia 

and DO, with replicate included as a random effect, there were significant effects of 

time, DO and temperature (PcO.Ol), although inflow rate, ammonia and tank number 

were not significant (P>0.05).

At the end of the trial, the livers of all of the PIT-tagged fish were weighed 

(Figure 5.13b) and a significant difference in HSI was detected between the 60 and 20 

1 min'1 treatments (P<0.05; Dunn’s multiple comparisons test following Kruskal- 

Wallis non-parametric ANOVA).

5.3.53. Splenosomatic Index

Spleen weight was measured from the June sample point onwards, before this point 

the spleen weights were often below the sensitivity of the balance (O.lg). SSI 

remained fairly stable for most the trial at around 0.20% body weight, but in 

November SSI dropped to around 0.15% (Figure 5.14a).

A GLM using arcsine transformed SSI data from monthly samples detected no 

significant effects of time, inflow or replicate on SSI (P<0.05). At the end of the trial 

the spleen weight was measured for all of the PIT-tagged fish (Figure 5.14b), but no 

significant differences in SSI were observed between the inflow rate treatments 

(Kruskal-Wallis non-parametric ANOVA on transformed SSI values).
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5.3.6. Maturation and sex differentiation

It was only possible to confidently determine the sex of fish by gross examination 

from July onwards and before this point sex determination was not carried out. At the 

end of the experiment all remaining fish (tagged and untagged) were sexed. The ratio 

of male to female fish in the PIT-tagged populations were 1.14, 0.83 and 0.95:1 

respectively in the 20, 40 and 60 1 min'1 treatments (Table 5.4). The overall ratio of 

male to female fish for all fish within each treatment (tagged and untagged) was 1.07, 

1.02 and 0.90:1 respectively in the 20,40 and 60 1 min'1 treatments.

The gonads of all PIT-tagged fish were excised and weighed at the end of 

the experiment to allowing the sex and GSI of each fish to be determined (Table 5.4 

and Figure 5.15).

Table 5.4. Maturation assessment and sex allocation of all PIT-tagged rainbow trout 

within each treatment at the end of the experiment.

Treatment
GSI data of PIT-tagged fish (%) 

Male Female All Male

Sex

Female M : F

20 1 min ' ! 4.1 ± 1.6 1.0 ±1.3 2.7 ±2.1 41 36 1.14

40 1 min A 3.6 ±1.8 1.2 ±1.7 2.3 ±2.1 52 63 0.83

60 1 min 1 4.4 ±1.2 1.7 ±1.7 2.8 ±1.9 56 59 0.95
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Figure 5.14. Splenosomatic Index of rainbow trout cultured in tanks with different 

inflow rates. 5.14a shows SSI from monthly samples (n=30 for 40 and 60 1 m i n 1 

treatments, and 20 in the 20 1 min'1 treatment). 5.14b shows HSI of all tagged fish at 

the end of the experiment; mean ± SEM.
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Figure 5.15. Gonadosomatic Index of all PIT-tagged fish within each treatment at the 

end of the experiment; mean ± SEM.
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The GSI data for the male fish was very similar in all of the treatments (4.1, 

3.6 and 4.0% in the 20, 40 and 60 1 min’1 treatments respectively), and by the end of 

the experiment most of the male fish were either at an advanced stage of sexual 

maturation (displaying a kype and darkened body colour) or sexually mature (running 

with milt). The GSI data for the female fish was significantly lower than that of the 

male fish within each treatment (P<0.01; Mann-Whitney U-test on log transformed 

GSI data). Male rainbow trout mature earlier than female and based on previous work 

carried out at the Niall Bromage Freshwater Research Facility, the majority of the 

female fish would not have been expected to reach full sexual maturation for another 

12-14 months following the end of the experiment (Randall, 1992).

There appeared to be a treatment effect of inflow rate on the GSI of female 

fish, with GSI increasing with inflow rate (Figure 5.15b). However, due to a wide 

range of maturational stages in the female fish, which ranged from almost no ovarian 

development (GSI<0.1%) up to female fish with well developed ovaries (maximum 

female GSI=7.0%) the GSI data from the female fish had an uneven distribution and 

could not be normalised by transformation. This meant that it was only possible to 

carry out non-parametric statistical analysis where no significant difference was 

observed between the treatments (P=0.172).

A Kruskal-Wallis non-parametric ANOVA was carried out on the GSI data, 

though no significant differences were detected following separate comparison of GSI 

from male and female fish within each treatment. When the GSI of male and female 

fish was analysed as a single variable in for each treatment, there was again no

significant effect of inflow rate (P=0.079).

Comparison of total body weight of the PIT-tagged male and female fish 

within each treatment found the male fish to be significantly larger than the female
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fish in the 40 1 min 1 treatment (P=0.012), but no significant difference was observed 

in the 201 min 1 (P=0.099) or 601 min'1 treatments (P=0.923); the weights of the male 

and female fish in the 601 min"1 treatment were very similar (Table 5.5).

Table 5.5. Comparison of the mean weights of male and female PIT-tagged rainbow 

trout that were cultured for 10 months under different flow regimes.

Inflow rate 
(1 min'1)

Mean weight (± SEM) 
of male fish (g)

Mean weight (± SEM) 
of female fish (g)

Student’s T-test 
P

20 600.6 ± 19.2 558.1 ± 16.2 0.099
40 626.1 ±16.2 570.1 ± 14.9 0.012
60 650.6 ± 19.7 652.8 ± 15.3 0.923

5.3.7. Blood analysis

Two different GLMs were used to test to for significant effects on each of the welfare 

indicators from the blood. The effects of time and inflow rate were examined by 

modelling each indicator as a dependent variable in a GLM with time and inflow rate 

included as categorical predictors, and replicate as a random effect; this model will be 

referred to as GLM1 and the results are summarised in Table 5.6. GLM1 allowed for 

post-hoc analysis and also presented clear information regarding the bearing of any 

significant effects and/or changes over time.

Data for each welfare indicator were subsequently included as a dependent 

variable in a GLM with time, inflow rate, DO, ammonia and temperature as 

continuous independent variables, with replicate as a random factor, this model will 

be referred to as GLM2 and the results are displayed in Table 5.7. GLM2 allowed 

more parameters to be modelled, but did not permit post-hoc analysis, nor was it 

possible to determine derive details of the nature of any significant effects of 

independent variables on the welfare indicators.
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Table 5.6. Summary of results from statistical analysis of blood parameters as a 

dependent variable in GLM1, with time and inflow rate as categorical predictors and

replicate as a random categorical factor.

Dependent
Variable

Effect Degrees of 
Freedom

F P

Haematocrit Intercept Fixed 1 46126.68 0.000
Time Fixed 8 20.30 0.000
Inflow Rate Fixed 2 1.13 0.389
Replicate Random 2 3.25 0.714
Time*Mlow Rate Fixed 16 0.71 0.759
Time*Replicate Random 16 0.83 0.649
Inflow Rate*Replicate Random 4 0.24 0.911
Time *Inflow Rate*Replicate 
Error

Random 24
633

3.79 0.000

Glucose Intercept Fixed 1 3894.76 0.000
Time Fixed 8 33.96 0.000
Inflow Rate Fixed 2 0.42 0.681
Replicate Random 2 1.44 0.363
Time*Inflow Rate Fixed 16 1.52 0.172
Time*Replicate Random 16 0.87 0.611
Inflow Rate*Replicate Random 4 1.34 0.283
Time *Inflow Rate*Replicate 
Error

Random 24
632

1.93 0.005

Lysozyme Intercept Fixed 1 3510.16 0.000
activity Time Fixed 8 44.59 0.000

Inflow Rate Fixed 2 8.35 0.010
Replicate Random 2 3.61 0.372
Time*Inflow Rate Fixed 16 2.33 0.030
Time*Replicate Random 16 1.21 0.327
Inflow Rate*Replicate Random 4 0.08 0.988
Time *Inflow Rate*Replicate 
Error

Random 24
635

1.43 0.083

Cortisol Intercept Fixed 2 443.26 0.001
Time Fixed 15 16.79 0.000
Inflow Rate Fixed 4 0.51 0.635
Replicate Random 4 0.56 0.611
Time*Inflow Rate Fixed 24 1.21 0.327
Time*Replicate Random 24 1.03 0.462
Inflow Rate*Replicate Random 24 1.33 0.286
Time *Inflow Rate*Replicate 
Error

Random 631 2.43 0.000
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5.3.7.1. Haematocrit

Similarly to the experiment outlined in Chapter 4, there appeared to be an effect of 

water temperature on haematocrit levels, with haematocrit generally higher during 

periods of low water temperature (Figure 5.16). There was a significant effect of time 

on arcsine transformed haematocrit values (P>0.001), but there was no significant 

effect of inflow rate (P=0.389), with very similar haematocrit levels in all of the 

treatments throughout the course of the experiment (Table 5.6). There was a 

significant interaction between time, inflow rate and replicate on haematocrit levels 

(PcO.OOl), but this was likely to have largely been a result of the large temporal 

fluctuations in haematocrit, as there was no significant effect of inflow rate (P=0.389) 

or replicate (P=0.714). The results from GLM2 detected significant effects of time, 

ammonia (P<0.01) and inflow rate (P<0.05) on haematocrit (Table 5.7). The effect of 

time was expected, but the direction of the significant effect of inflow rate was 

unclear, given the apparent lack of differences between the treatments in GLM1.

5.3.7.2. Glucose

Plasma glucose concentrations remained similar in all of the treatments throughout 

the course of the trial (Figure 5.17). There was no significant effect of inflow rate on 

plasma glucose levels (P=0.681), nor was there a significant interaction between 

inflow rate and time (P=0.172). Similarly to haematocrit, there was a highly 

significant effect of time on plasma glucose concentration (P<0.001) and this was 

reflected in a significant interaction between time, inflow rate and replicate on GLM1 

(P=0.005). Significant effects of temperature and DO (P<0.001) were observed in 

GLM2, suggesting possible reasons for the temporal fluctuations in glucose (Table

5.7).
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Figure 5.16. Haematocrit of rainbow trout cultured in tanks with different inflow 

rates (mean ± SEM; n- 30 for 40 and 60 1 m in1 treatments, and 20 in the 20 1 min'1 

treatment).
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Figure 5.17. Plasma glucose of rainbow trout cultured in tanks with different inflow 

rates (mean ± SEM; n=30 for 40 and 60 1 m in1 treatments, and 20 in the 20 1 min'1 

treatment).
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5.3.7.3. Lysozyme activity

Lysozyme activity increased and decreased synchronously with water temperature, 

with lowest levels observed in March and highest levels occurring during the summer 

months (Figure 5.18). There was a significant effect of inflow rate on the lysozyme 

activity in GLM1 (P=0.01), and the effect was also a significant interaction between 

inflow rate and time (P=0.03). Levels of lysozyme activity appeared to be higher in 

the 20 1 min4 treatment in May and June, with a similar increase observed in the 40 1 

min4 treatment during June and July. Post-hoc analysis confirmed lysozyme activity 

to be significantly higher in the 20 1 min4 treatment compared with the 60 1 min4 

treatment in June (Tukey’s PcO.OOl). There were significant effects of temperature, 

DO (PcO.OOl) and ammonia (P<0.05) on lysozyme activity in GLM2 (Table 5.7).

5.3.7.4. Cortisol

Levels of cortisol were low in all treatments for the duration of the experiment, and at 

no point did there appear to be any elevation from baseline levels (Figure 5.19). 

Cortisol levels appeared slightly higher in the in the 40 1 min4 treatment in March and 

April, but even at these times, the treatment mean remained low (> 6 ng ml4). When 

log-transformed cortisol data was included as a dependent variable in GLM1 there 

was a significant effect of time (P<0.001) and also an interaction between time, 

inflow rate and replicate (PcO.OOl; Table 5.6). GLM2 detected significant effects of 

time, DO (P<0.001), temperature (P=0.001) and inflow rate (P<0.05) on plasma 

cortisol levels (Table 5.7).
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Figure 5.18. Lysozyme activity of rainbow trout cultured in tanks with different 

inflow rates (average ± SEM; n=30 for 40 and 60 1 min'1 treatments, and 20 in the 20 1 

min'1 treatment). Different letters denote significant differences within that time point 

(P<0.05; Tukey’s multiple comparison post-hoc following GLM with weight as a 

dependent variable and time and inflow rate as categorical predictors, with replicate 

as a random factor)
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Figure 5.19. Plasma cortisol of rainbow trout cultured in tanks with different inflow 

rates (average ± SEM; n=30 for 40 and 60 1 m in1 treatments, and 20 in the 20 1 m in1 

treatment).
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5.3.8. Fin condition

The data for the RFL of the PIT-tagged fish measured at the start, middle and end of 

the experiment are presented in Figure 5.20. The result of repeated measures ANOVA 

was used to compare the RFL of each fin, of each of the PIT-tagged fish, as the trial 

progressed (Table 5.8). A one-way ANOVA was used to test for treatment effects on 

RFL of the PIT-tagged fish at the end of the experiment. Additionally, the RFL data 

for the 10 untagged fish that were sacrificed from each tank at the monthly samples 

were included as dependent variables in a GLM with time and inflow rate and as 

categorical predictors and replicate as a random factor (Table 5.9).

5.3.8.1. Dorsal fin

There was a significant increase in dorsal RFL between the start and middle of the 

experiment in the 20 1 min'1 treatment (PcO.Ol), but no differences in dorsal RFL 

were observed between the start and end of the experiment in any of the treatments 

(P>0.05). There was no significant difference in dorsal RFL between the treatments at 

the end of the experiment (P=0.226). There was a significant effect of time on dorsal 

RFL collected from monthly sampling (PcO.OOl) (Table 5.9).

5.3.8.2. Caudal fin

There was a significant reduction in caudal RFL in all treatments at the middle and 

end of the experiment compared with the start (PcO.OOl), with mean caudal RFL 

above 10% at the start of the experiment and below 8% at trials conclusion (Figure 

5.20). There were no significant differences in caudal RFL between the inflow rate 

treatments (P=0.837). The GLM detected a significant effect of time on caudal RFL 

P=0.009), and an interaction between time (inflow rate and replicate (P=0.001).
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5.20a. February 2002 - start of experiment

D o r s a l  C a u d a l  A n a l  L e f t  P e c t o r a l  R i g h t  P e c t o r a l  L e f t  P e l v i c  R i g h t  P e l v i c

5.20b. August 2002 - middle of experiment

10 -

C a u d a l  A n a l  L e f t  P e c t o r a l  R i g h t  P e c t o r a l  L e f t  P e l v i c  R i g h t  P e l v i c

5.20c. December 20002 - end of experiment

L e f t  P e c t o r a l  R i g h t  P e c t o r a l  L e f t  P e l v i c  R i g h t  P e l v i c
C a u d a lD o r s a l

Figure 5.20. Relative fin index of PIT-tagged rainbow trout reared under different 

flow regimes at the start, middle, and end of the experiment (mean ± SEM).



I
1
4-J
3

I
£o

X >c
•a
04
Go

c3
3
O'
u
<D-4-»

&

o

&
W
<D

X
H
OS
Vh
<D4-J
a

x
U

s
<u

X I*-»
w
Ctf

x : 
cn • *"■*

<4-1

’SM
3FB
IE-*H-I

Ph
<D

X S+-»
<4-*
O

*•■■4
03
U*

t 2
c/>

§
13
>
•S
& o

<u

■a
w
(A
►
t l
C/5

I
t3

02
>•

-M
U
B
05

s i
•■a

S "u■a >

w |  
a  & 
§>‘•3

8 P  G

I IS 5(3 
’■3

S o •o >•n jj 
0

a  c*--
s 1CJ P  

Im  ,<U
*S ^

•£3 >
•= 3 u J

.3 ,  ■a

B 0 -
D

. sE

8  o  o  £  Z Z

8 M M
§  Z  2
V

o  o  o  Z Z Z

vpa C'l *—
o  o  ^
O  Q  o

C/D 00z z

S 5 5>- z z

CA CAZ Z

a
Vi
i*
o

p

>• >* £

CA Ov Os

8  8  8

> - > * > -

— Osos 00 Ots n n

8 8 8OV ©V OV

2 u  S

r~ cs cs 
oo M  
-  N  N

8 8

a
- d

§
U

a o  oz z z

— r> M m inZ P o  o

-  M 00

Z >- ><

« 8 § 
z ? ■?

C3
C

o  o  o  Z Z Z

IA1 ON ["-
2 3 $o d d

00 VJ V3«i A) 5)
> - > « > -

§ 8 8

> - > * > *

fil
_ J  0)
^  PU

>- z: >,

1 1 1

g  s

«J o  
> • > < > <

8 8 8 8 8 8

8 ss a 
> - > * > «

C/5 C/5 V?
4) O  O

> - > • > *

8 8 8

(S CO cn

8 8 8

8  8  8  
> - > - > -

V) <N CN
rvj m <N

8 8 8

^  u■as
2  £

C3>-» fc- s*-i © 
3/  * 5

' © 
PU

~  2 
■ a !
« s

Pu

23
2



Chapter 5: The Effects of Water Quality on Rainbow Trout Welfare

Table 5.9. Summary of results from statistical analysis of arcsine transformed relative 

fin length data of untagged fish as a dependent variable in GLM with time and inflow 

rate as categorical predictors and replicate as a random factor.

Fin Degrees o f  Freedom F P
Dorsal Intercept 1 564354.7 0.000

Tim e 8 4.5 0.006
Inflow Rate 2 0.8 0.512
Replicate 2 0.1 0.949
Tim e*Inflow Rate 16 0.7 0.734
Time*Replicate 16 0.9 0.552
Inflow Rate*Replicate 4 1.5 0.233
Tim e *Inflow Rate*Replicate 
Error

24
633

1.5 0.055

Caudal Intercept 1 3461.9 0.000
Time 8 48.5 0.009
Inflow Rate 2 0.5 0.634
Replicate 2 0.4 0.693
Tim e*Inflow Rate 16 0.7 0.746
Tim e*Replicate 16 0.9 0.610
Inflow Rate*Replicate 4 0.5 0.759
Tim e *Inflow Rate*Replicate 24 2.1 0.001
Error 633

Anal Intercept 1 21633.1 0.000

Tim e 8 8.0 0.000

Inflow Rate 2 1.1 0.392

Replicate 2 16.8 0.706

Tim e*Inflow Rate 16 0.5 0.895

Time*Replicate 16 0.6 0.883

Inflow Rate*Replicate 4 0.5 0.754

Tim e *Inflow Rate*Replicate 24 3.8 0.000

Error 633

Left Pelvic Intercept 1 5283.5 0.000

Time 8 1.8 0.273

Inflow Rate 2 0.2 0.839

Replicate 2 0.1 0.894

Tim e*Inflow Rate 16 0.5 0.930

Time*Replicate 16 1.5 0.170

Inflow Rate*Replicate 4 0.4 0.799

Tim e * Inflow Rate*Replicate 24 2.1 0.002

R ight Pelvic Intercept
Time

1
8

10044.5
14.2

0.000
0.042

Inflow Rate 2 0.4 0.663

Replicate 
T im e*Inflow Rate

2
16

2.0
0.7

0.161
0.767

Tim e*Replicate 
Inflow Rate*Replicate

16
4

0.9
0.8

0.594
0.540
0.003Time *Inflow Rate*Replicate 24 2.0

Left Pectoral Intercept 1
0

817.0
64.2

0.000
0.001

Time 9 0.0 0.989
Inflow Rate 9 0.3 0.748
Replicate

16
16

0 8 0.671
Tim e*Inflow  Rate 
Tim e*Replicate 1.0

0 3
0.502 
0 857

Inflow Rate*Replicate 4
1.3 0.176Tim e *Inflow Rate*Replicate 24

R ight Intercept 1
g

2079.9
12.2

0.000
0.000

Pectoral Time 9 1.8 0.198
Inflow Rate 2 4.4 0.027
Replicate

16
16

3.6 0.002
Tim e*Inflow Rate 1.8 0.086
Time*Replicate 0.8 0.516
Inflow Rate*Rephcate 4

1.0 0.530
Time * Inflow Rate*Rephcate 24
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5.3.8.3. Anal

There was a significant reduction in the anal RFL of the PIT-tagged fish in the 40 and 

60 I min treatments (PcO.OOl), but no significant difference was observed in the 20 1 

min 1 treatment (P>0.05). There was a significant effect of time (PcO.OOl) and also a 

significant interaction between, inflow rate and replicate on anal RFL (PcO.OOl; 

Table 5.9). However, there were no differences in anal RFL between the inflow rate 

treatments at the end of the experiment (P=0.483).

5.3.8.4. Pelvic fins

There was a significant reduction in left ventral RFL in all of the treatments between 

the start and end of the experiment (PcO.OOl). However, no differences were 

observed in the right pelvic RFL at the start compared with the end of the trial 

(P>0.05; Table 5.8), and there was a significant increase in right pelvic RFL in the 20 

and 40 1 min"1 treatments at the mid-point compared with the start (Table 5.8). There 

were no differences between left ventral RFL of the PIT-tagged fish in the different 

inflow treatments at the end of the experiment (P=0.445), but there was a significant 

treatment effect on right pelvic RFL (P=0.02). Post-hoc analysis detected a significant 

difference in right ventral RFL between the 40 and 60 1 min'1 treatments (Tukey’s; 

Pc0.05). The GLM detected a significant effect of time on right pelvic RFL 

(P=0.042) and there was a significant interaction between time, inflow rate and 

replicate on both the left and right pectoral fins of the untagged fish (PcO.Ol; Table 

5.9). Finally, paired P-test between the left and right pelvic fins of each PIT-tagged 

fish found the left pelvic RFL to be significantly lower than the right pelvic RFL in all 

of the treatments (PcO.OOl in all cases).
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5.3.8.5. Pectoral fins

Similarly to the pelvic fins, the RFL of the left pectoral fins appeared lower than the 

right pectoral fins (Figure 5.20). A paired F-test of the left and right pectoral RFL 

values confirmed this difference to be statistically significant in all of the treatments 

PcO.OOl). At the start of the experiment the RFL for the right and left pectoral fins 

was between 10 and 10.5%, but by the end of the experiment pectoral fin RFL was 

between 7.1 and 8.5% (Figure 5.20). A paired F-test comparing the pectoral RFL data 

for the PIT-tagged fish at the start compared with the middle and end of the 

experiment found significant decreases in the both right and left pectoral fins in all of 

the inflow rate treatments (PcO.OOl in all cases; Table 5.8). The GLM for the 

untagged fin data detected a significant effect of time on both the right and left 

pectoral fins (PcO.OOl; Table 5.9).

Between treatment comparisons of the RFL of the pectoral fins at the end of 

the experiment found no significant differences for left pectoral fin (P=0.259), but 

there were significant differences between treatments for the right pectoral RFL 

(PcO.OOl). Post-hoc analysis found the right pectoral RFL to be significantly higher 

in the 20 compared with the 401 min'1 treatment (Tukey’s; PcO.OOl).

5.3.9. Principal Components Analysis (PCA)

Data collected from the 30 fish blood sampled monthly from each treatment was used 

in the PCA analysis. Case-wise deletion was used to remove any fish that had missing 

data for any of the parameters from the analysis. Any variables expressed as a 

percentage (HSI, RFL and haematocrit) were arcsine transformed before inclusion in

the PCA.
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5.3.9.1. PCA of blood parameters

PCA of welfare indicators measured from the blood produced two viable PCs with 

Eigenvalues >1, which together accounted for more than 60% of the observed 

variation of these indicators (Figure 5.21); these PCs for the blood parameters will be 

referred to as B-PC1 and B-PC2. An indication of the magnitude and direction of 

contribution for each of the blood parameters is shown in Table 5.10.

Table. 5.10. Contribution and factor coordinates and of the variables included in 

blood PCA.

Variable B-PC1 B-PC2
Contribution Co-ordinates Contribution Co-ordinates

Cortisol 0.313 0.664 0.019 -0.140
Lysozyme 0.348 -0.700 0.063 -0.254
Glucose 0.002 0.058 0.878 0.952
Haematocrit 0.336 0.688 0.040 -0.204

B-PC1 consisted of positive contributions from cortisol and haematocrit, a 

negative contribution from lysozyme and a negligible contribution from glucose. A 

fish with a high factor score for B-PC1 would be displaying signs characteristic of the 

acute stress response. The main variable contributing to B-PC2 was glucose (0.878). 

High positive factor co-ordinates for glucose (0.952) indicate that a fish with a high 

factor score for B-PC2 would have had a high plasma glucose concentration.
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Figure 5.21. Scree-plot showing Eigenvalues for PCs of blood parameters; plasma 

cortisol, lysozyme activity and glucose, with arcsine transformed haematocrit values; 

percentage values indicate the proportion of explained variability for each PC.
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The factor scores for each of the fish were included in the GLMs using time, 

inflow rate and water quality parameters as continuous predictors with tank number as 

random categorical factor. Both models were highly significant, although the R2 of the 

models suggested that the model using B-PC1 was a much better fit (P2= 0.38 and 

0.06 for B-PC1 & B-PC2 respectively; Table 5.11).

Table 5.11. Whole model effects for GLM including factor scores for PCs derived 

from based from blood parameters.

Dependent Variable Adjusted R2 SS Degrees of F P

Freedom

BloodPCl 0.38 267.82 7 61.24 0.000
BloodPC2 0.06 56.82 7 4.33 0.000

Table 5.11 shows the results for univariate tests of significance for the variables in the 

GLMs. Interestingly, neither time or flow rate had a significant effect in either model. 

There was, however, a significant effect water temperature (P<0.05) and DO 

(PcO.OOl) and in both models. Ammonia was also shown to have a significant effect 

on B-PC2 (P=0.021).

Table 5.12. Univariate tests of significance for B-PCs 1 and 2.

Dependent Variable Effect SS Degrees of 
freedom F P

B-PC1 Intercept Fixed 3.40 1 5.43 0.020

Time Fixed 1.33 1 2.13 0.145

Flow Rate Fixed 1.44 1 2.31 0.129

Temp Fixed 25.20 1 40.34 0.000
DO Fixed 24.63 1 39.44 0.000
Ammonia Fixed 0.21 1 0.34 0.559

Tank No. Random 2.12 2 1.70 0.183

Error 434.17 695
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Table 5.12. (continued) Univariate tests of significance for blood PCs 

Dependent Variable_____________ Effect SS______ Peg, of freedom F_____P_
Intercept Fixed 29.40 1 32.04 0.000
Time Fixed 0.00 1 0.00 0.948
Flow Rate Fixed 0.48 1 0.52 0.471
Temp Fixed 3.80 1 4.16 0.042
DO Fixed 32.06 1 35.06 0.000
Ammonia Fixed 4.90 1 5.36 0.021
Tank No. Random 2.88 2 1.57 0.208
Error 635.52 695

5.3.9.2. PCA of fin measurements

Similarly to the blood PCA, two viable PCs were derived from the RFI data for all of 

the fins (Figure 5.22). The relative contribution and factor co-ordinates of the 

variables for Fin-PCs 1 and 2 are shown in table 5.13.

Table 5.13. Factor co-ordinates of 

transformed relative fin index data.

the variables included in PCA for arcsine

Variable Fin-PCl Fin-PC2

Contribution Co-ordinates Contribution Co-ordinates

Dorsal 0.098 -0.487 0.013 -0.136
Caudal 0.186 -0.670 0.075 0.329
Anal 0.154 -0.609 0.041 -0.243
Left Pelvic 0.079 -0.436 0.273 -0.627

Right Pelvic 0.036 -0.294 0.434 -0.790
Left Pectoral 0.213 -0.717 0.102 0.383
Right Pectoral 0.233 -0.750 0.063 0.301

The factor co-ordinates of Fin-PCl were all negative, with relatively strong 

contributions from the caudal, anal and pectoral fins. In contrast, there was a strong 

contribution for the ventral fins in Fin-PC2, with a much smaller contribution from 

the other fins. A fish with a high factor score for Fin-PCl would have a low RFI for 

caudal, anal and pectoral fin, whilst a high factor score for Fin-PC2 would signify a

low RFI for pelvic fins.
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Figure 5.22. Scree plot showing Eigenvalues from PCA for arcsine transformed 

relative fin index values; percentage values indicate the proportion of explained 

variability for each PC.
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The Fin PCs were included in the GLM and produced similar R2 values of 

0.345 and 0.301 respective (Table 5.14).

Table 5.14. Whole model effects for GLM including factor scores for PCs derived 

from relative fin length data.

Dependent Variable Adjusted R2 SS Degrees of F P

Freedom

Fin-PCl 0.345 247.72 7 54.02 0.000
Fin-PC2 0.301 217.53 7 22.85 0.000

The univariate results for the GLMs for Fin-PCs 1 and 2 are shown in (Table 

5.15). Both fin PCs were influenced by time and temperature, and there was also a 

significant random effect of replicate on both models (P<0.05). The GLM for Fin- 

PC2 was also detected significant effects of inflow rate, DO and ammonia (PcO.Ol).

Table 5.15. Univariate tests of significance for GLMs using factor scores for Fin-PCs

1 and 2 as dependent variables.

Dependent
Variable

Effect SS Degrees of F 
Freedom

P

Fin-PCl Intercept Fixed 12.52 1 18.86 0.000
Time Fixed 41.84 1 63.87 0.000
Flow Rate Fixed 0.02 1 0.03 0.866

Temp Fixed 7.23 1 11.04 0.001

DO Fixed 0.75 1 1.15 0.284

Ammonia Fixed 0.07 1 0.11 0.739

Replicate
Error

Random 4.35
457.27

2
698

3.32 0.037

Fin-PC2 Intercept Fixed 17.91 1 25.19 0.000

Time Fixed 71.94 1 103.01 0.000

Flow Rate Fixed 6.93 1 9.92 0.002

Temp Fixed 7.70 1 11.03 0.001

DO Fixed 7.39 1 10.58 0.001

Ammonia Fixed 4.15 1 5.95 0.015

Replicate
Error

Random 5.61
487.47

2
698

4.02 0.018
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53,9.3. PCA combining all welfare indicators

The PCA analysis concluded by combining all of the welfare indicators in turn with 

Fin-PCl and Fin~PC2. The two sets of analysis both produced just one viable PC each 

that explained approximately 30% of the observed variability within the indicators; 

these PCs will be referred to as C-PC1 and C-PC2 (Figure 5.23). The contributions 

and co-ordinates of the variables in C-PC1 and C-PC2 are shown in are shown in 

tables 5.16 and 5.17.

Table 5.16. Factor co-ordinates and contributions of variables included in C-PC1

Variable Combined PC including Fin-PC 1
Contribution Co-ordinates

CF 0.267 0.765
HSI 0.239 0.723
Haematocrit 0.194 -0.653
Cortisol 0.001 -0.048
Lysozyme 0.092 0.450
Glucose 0.000 -0.029
Fin-PCl 0.206 0.671

Table 5.17. Factor co-ordinates and contributions of variables included in C-PC2

Variable Combined PC including Fin-PC2
Contribution Co-ordinates

CF 0.283 0.780
HSI 0.271 0.763
Haematocrit 0.177 -0.617
Cortisol 0.004 -0.088
Lysozyme 0.079 0.411
Glucose 0.000 -0.019
Fin-PC2 0.186 -0.632

The pattern of the contribution and co-ordinates of the variables was very similar for 

both C-PC1 and C-PC2, though the co-ordinates of the fin component suggested a 

positive contribution of the Fin-PCl, but a negative contribution of Fin-PC2.

242



Chapter 5: The Effects of Water Quality on Rainbow Trout Welfare

2.6

2.4

2.2

2.0

1.8

1.6
m
I  14

a 1.2

1.0

0.8

0.6

0.4

0.2

0.0

31.74%

£01%
.36% 8.96%

i.40%

0 3 4 5

Eigenvalue number

2.4

31.10%2.2

2.0

4.76%
1.0

1.60%
10.59%

8.33%
0.6

0.4

0.2

Eigenvalue number

Figure 5.23. Scree-plots showing Eigenvalues for PCs that combined morphological 

and blood parameters with Fin-PCs 1 (5.23a) and 2 (5.23b); percentage values 

indicate the proportion of explained variability by each PC.
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The nature of the contributions of the variables to the C-PC1 was complex. 

Positive co-ordinates for HSI, CF and lysozyme activity, with a negative contribution 

from haematocrit, suggested that a high factor score for C-PC1 would be indicative of 

a fish with good welfare. However, positive factor co-ordinates of Fin-PCl suggested 

that low RFL values also contributed towards a high score for C-PC1.

The contribution of the variables in C-PC2 was almost identical to C-PC1, 

except for the bearing of Fin-PC2, which was negative. A high factor score for Fin- 

PC2 was typical of fish with low RFL for pelvic fins (Table 5.13). Therefore, a fish 

with a high factor score for C-PC2 would typically have high HSI, CF and lysozyme 

activity and ventral RFL, with low haematocrit, all of which would normally be 

associated with good welfare.

When the factor scores for the combined PCs were included as a dependent 

variable in the GLM, they produced very similar results (R2 = 0.694 & 0.690 

respectively; Table 5.18).

Table 5.18. Whole model effects for GLMs using factor scores for CPCs 1 and 2 as 

dependent variables.

Dependent Variable Adjusted R2 SS Deg. of freedom F P

C-PC1 0.694 489.6 7 228.93 0.000
C-PC2 0.690 486.5 7 224.22 0.000

There was a significant effect of time on both of the models (PcO.OOl), but there was 

no significant effect (P>0.05) of flow rate, temperature or ammonia on either of the 

models (Table 5.19). There was, however, a significant effect of DO and random 

effect of replicate on C-PC2, which was not present on C-PC1.
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Table 5.19. Univariate tests of significance for GLMs using factor scores for C-PCs 1

and 2  as dependent variables.

Dependent
Variable

Effect SS Deg. of 
Freedom

MS F P

C-PC1 Intercept Fixed 16.14 1 16.14 52.51 0.000
Time Fixed 1 0 2 . 6 8 1 1 0 2 . 6 8 336.04 0.000
Flow Rate Fixed 0.32 1 0.32 1.04 0.308
Temp Fixed 0.05 1 0.05 0.17 0.677
DO Fixed 0.47 1 0.47 1.55 0.213
Ammonia Fixed 0.83 1 0.83 2.71 0 . 1 0 0

Replicate. Random 1.23 2 0.61 2 . 0 1 0.135
Error 212.35 695 0.31

C-PC2 Intercept Fixed 18.71 1 18.71 58.65 0.000
Time Fixed 120.29 1 120.29 388.04 0.000
Flow Rate Fixed 0.05 1 0.05 0.16 0 . 6 8 6

Temp Fixed 0 . 2 1 1 0 . 2 1 0.67 0.413
DO Fixed 1.84 1 1.84 5.95 0.015
Ammonia Fixed 0.19 1 0.19 0.61 0.433
Replicate Random 3.59 9 1.79 5.79 0.003
Error 215.45 692 0.31

245



Chapter 5. The Effects of Water Quality on Rainbow Trout Welfare

5.4 D iscussion

5.4.1. Water Quality

There were clear differences in water quality between the inflow rate treatments. It 

was necessary to supplement the oxygen in the 2 0  1 min' 1 treatment to maintain the 

levels above 5 mg 11 from the middle of April, and the same was true of the 40 and 60 

1 min 1 treatments in May and August respectively. If oxygen had not been supplied to 

the tanks, mass mortality would have been very probable and feeding would have 

needed to be restricted or suspended. The oxygenation system used in the study did 

not facilitate total control of DO within the tanks and there were fluctuations in DO 

though the course of a day, with peaks and troughs corresponding to feeding and 

activity of the fish (Figure 5.4). The oxygenation system did permit DO to be 

maintained above 5 mg I'1, and there were no significant statistical differences 

between the monthly average daily oxygen levels of the treatments. During periods 

when the tanks were not receiving additional oxygen, the DO in the tanks was 

proportional to inflow rate as would be expected. However, once oxygen was 

administered, DO was no longer related to inflow rate; this is highlighted in Figure

5.4 where average DO was higher the 401 min' 1 treatment throughout a 24 h period.

There was a significant effect of inflow rate on post-feed TAN, although 

similar to the SD experiment (Chapter 4), the prevailing pH (6-7) and water 

temperature (max 16°C) meant that only a very small percentage of the TAN (0.135% 

maximum) existed as the more toxic NH3. Levels of NH3 remained well below the 

generally accepted safe limit of 0.02 mg I' 1 (Wedemeyer, 1996).

A 24 h sample period of water quality in each of the tanks showed ammonia 

levels peaked in the middle of the night (Figure 5.6). This midnight peak of ammonia 

was unexpected, as the design of the sampling regime had assumed that highest levels
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of ammonia would occur several hours after first feeding. In a study that examined 

ammonia excretion in starved and fed rainbow trout over a 24 h period, Rychly and 

Marina (1977) observed a significant increase in ammonia 4 h after feeding in the fed 

compared with starved treatments. The same study also found significant differences 

between the highest and lowest daily ammonia levels within both treatments and 

suggested that peaks of ammonia (occurring between 2-4 pm and 6 - 8  am) may have 

been due to a circadian rhythm. Wagner et al. (1995) measured ammonia excretion by 

rainbow trout over a 24 h period and found peaks to be highly variable. Wagner et al. 

(1995) concluded that it was not possible to accurately predict peaks of ammonia 

based on feeding time alone, although they did note that peaks generally occurred 

during daylight h with lowest levels occurring close to dawn. Paulson (1978) 

modelled ammonia excretion in rainbow trout and observed a pulse of excretion 7-8 h 

after feeding. Ammonia excretion has been shown to increase with exercise in the 

rainbow trout (Holeton et al. 1984); suggesting that excretion would also be expected 

to be reduced at night when activity levels would be assumed to be lower. There is 

some evidence in the literature to support the midnight peak in ammonia observed in 

this trial provided by Rosenthal et al. (1984), where two 12 h ammonia profiles 

showed levels to increase steadily throughout the day and peak at 10 pm. Smart 

(1981) also found ammonia excretion of rainbow trout to peak around midnight.

Though unexpected, the midnight peak of ammonia observed in the present 

experiment highlighted the fact that point samples of water quality analysis provide 

only patchy data. It is also likely that the maximum level of ammonia to which the 

fish were exposed during this experiment was higher than the levels assumed by the 

post-feed water quality measurements.
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5.4.2. Mortality

The mortality events that occurred in this study were both due to plumbing failures, 

and it may have been coincidental that both events occurred within the 2 0  1 min’ 1 

treatment. However, the fact that the 2 0  1 min’ 1 treatment was running at the highest 

loading levels meant that there was an increased dependence on the supplementary 

oxygen for life support and that there was less time to react before levels of DO 

became critical in the event of a system failure. Kindschi et al. (1991a) reported a 

similar mass mortality event in a high density treatment following system failure and 

Miller et al. (1995) suggest that though feasible, high density culture with 

oxygenation systems require increased supervision and the requirement of appropriate 

back-up systems.

Apart from the system failures, mortality was very low in all treatments and it 

is likely that during this experiment water quality did not deteriorate sufficiently to 

result in levels of mortality observed in other studies that investigated the effects of 

water quality deterioration (Rosenthal et al., 1984; Soderberg et al. 1983).

5.4.3. Growth

For the first 3 months of the experiment the growth of the fish in the different 

treatments was very similar and it was only when water temperature began to increase 

that differences in growth were apparent. The mean weight of the PIT-tagged fish in 

the 60 1 min' 1 treatment was significantly larger than those in the 20 and 40 1 min' 1 

treatments from September through to the end of the experiment (Figure 5.9).

In terms of the rate of growth, the only period that a significant difference 

occurred was between the August and September sample points, when SGR in the 60 

1 min’ 1 treatment was significantly higher than in the 20 and 40 1 min’ 1 treatments
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(Figure 5.10). Although August/September was the only period in which the 

differences SGR were significant, SGR in the 60 1 min’ 1 treatment appeared higher 

than the other treatments for the whole summer period from the May through to 

October. Growth rates at all other points were very similar, suggesting that it was only 

during the periods of high water temperature that inflow rate had an effect on growth.

Several studies have investigated the effects of water quality deterioration 

associated with increased SD on rainbow trout (Larmoyeux & Piper, 1973; Mayer & 

Kramer, 1973; Brauhn et a l , 1976; Rosenthal et a l , 1984; Baker & Ayles, 1990). 

Similarly to the present experiment, these studies simulated water quality 

deterioration caused by increased SD while removing the potential interference from 

behavioural related effects resulting from keeping different numbers of fish together. 

Keeping stocking densities equal in a number of tanks, these studies simulated water 

quality deterioration by either successively passing water through a series of tanks to 

simulate water reuse (Larmoyeux & Piper, 1973; Mayer & Kramer, 1973; Brauhn et 

a l, 1976), or by the manipulation of flow rate to simulate high loading rate (Brauhn et 

a l, 1976; Baker & Ayles, 1990). All of these experiments found adverse effects of 

increased loading rate or water reuse on growth and feed conversion of rainbow trout.

Further evidence to support the hypothesis that water quality deterioration is 

{jig root cause of reduced growth associated with increased SD is provided by 

Soderberg and Krise (1986) and Kebus et a l (1992). These studies effectively 

removed the effect of water quality deterioration by stocking fish at a range of 

densities within the same compartmentalised tank, and observed no effect on growth.

The only contradictory evidence for water quality being the root cause of 

reduced growth is provided by Procarione et a l (1999), who adopted the same 

approach as Soderberg and Krise (1986) and Kebus et a l (1992), but found an effect
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of fish numbers on growth. Acknowledging the fact that their results were in not 

consistent with the findings and conclusions of several similar studies, Procarione et 

a l  (1999) suggested that growth might not be impaired until a critical limit of 

temperature or loading is exceeded, after which the differences become apparent. A 

similar conclusion could be made of the present study, as inflow rate only appeared to 

effect growth rate during the periods of warmer water temperature.

Several studies have shown a relationship between water quality deterioration 

and reduced growth, but there is a lack of evidence or consensus on the mode of 

action by which the reduction in growth occurs. The lower growth in the 20 and 40 1 

min ' 1 treatments was either due to reduced food intake, or poorer conversion of the 

food that was consumed. As direct measurement of feed intake or uneaten pellets was 

not carried out in this study, it was not possible to ascertain whether reduced feed 

intake was the cause of reduced growth, though there is some evidence in the 

literature to support this theory. Several authors have observed reduced vacuolation of 

liver hepatocytes in rainbow trout exposed to chronically high levels of ammonia 

(Larmoyeux & Piper, 1973; Soderberg et a l , 1984; Soderberg, 1985). The authors 

suggested that this was due to reduced feed intake, as vacuolation of liver hepatocytes 

occurs mainly as a result of glycogen accumulation (Simon et a l , 1967: cited in 

Soderberg et a l , 1984). Similarly, Leatherland (1993) suggested fish reared at higher 

SD showed signs of reduced feed intake. Three other studies also reported food intake 

of rainbow trout to be lower at higher SD (Papoutsoglou et a l , 1979; Alanara & 

Brannas, 1996; Boujard et a l 2002). Boujard et a l  (2002) suggested that the reduced 

feed intake at higher SD was due to restricted accessibility to food rather than water 

quality deterioration, as flow rates were set relative to the density of fish in each of 

their treatments.
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There is enough evidence here to support a link between water quality 

deterioration and reduced appetite and this is certainly an area that warrants further 

research.

5.4.4. Sex allocation and maturation

The UK rainbow trout farming industry generally uses single sex populations of 

female fish (Anon., 1996a). Male fish are generally considered less desirable due to 

problems associated with early sexual maturation, which may occur in fish as small as 

20g (precocious males), or more naturally when male fish are around 500g in weight 

(Randall, 1992). However, as a preventative measure for the introduction of diseases 

into the Niall Bromage Freshwater Research Facility a policy change in October 2000 

meant that it was no longer possible to import fish from external sources, and instead 

a mixed sex population of fish that were hatched on site was used. Hand grading 

removed any precocious males from the study, although there was always a risk that 

the numbers of male and female fish would not be uniform in the different treatments. 

The proportion of male and female fish in the groups was fairly uniform with 

male:female ratios ranging from 1.1:1 to 0.9:1 (Figure 5.15).

Throughout the trial the weights of the PIT-tagged fish in each tank were used 

to estimate the mean weight and the male:female ratios of the tagged fish were 1.14, 

0.83 & 0.95:1 for the 20, 40 and 60 1 min' 1 treatments respectively (Table 5.5). There 

were significant differences in weight between the male and female fish in the 40 1 

min ' 1 treatment (P>0.05; unpaired T-test), and although not statistically significant, 

there was also a 40g difference between the mean weight of the male and female fish 

in the 20 1 min' 1 treatment. Interestingly, the mean weight of the PIT-tagged male and 

female fish in the 60 1 m in 1 treatment was very similar (651 vs. 653g).
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Though not statistically significant, there was some evidence to suggest that 

the female fish in the 60 1 min 1 were at a more advanced state of maturation than the 

other treatments (Figure 5.15), possibly as a result of the growth achieved in this 

treatment. The reproductive success of salmonids is affected by a multitude of 

environmental and nutritional factors (see review by Bromage et al., 2000). In this 

study the onset of maturation may have been delayed in the fish in the 2 0  and 40 1 

min' 1 treatments, either through reduced feed intake and/or poorer FCR during the 

summer months as a result of poorer water quality in these treatments.

5.4.5. Welfare Indicators

5.4.5.I. Somatic Indices

Condition Factor and Feed Conversion Efficiency

A significant effect of inflow rate on CF was observed in this study, and during 

September and October the CF of fish in the 60 1 min' 1 treatment was significantly 

higher than the other treatments. Following a steady increase from May through to 

October, the CF of the fish in the 60 1 m in 1 treatment appeared to have reached a 

plateau in November, while CF of fish in the 20 and 40 1 min" 1 treatments was still 

increasing. In November and December the differences in CF between the treatments 

were no longer significant; this may have been due to compensatory fattening in the 

20 and 401 min' 1 treatments, although another explanation could be increased CF with

the onset of sexual maturation.

The most relevant studies with which to draw comparisons were conducted by 

Larmoyeux and Piper (1973) and Rosenthal et al (1984). Despite observing a 

significant reduction in growth rates, Larmoyeux and Piper (1973) observed no 

significant differences in CF associated with decreasing water quality. Rosenthal et a l
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(1984) found no significant differences in CF at lower compartments of their channel 

system, but concluded that there was a trend for reduced CF with increased water 

quality deterioration.

Other studies that have measured the effects of SD on CF found either no 

effect (Kilambi et al., 1977; Winfree et al., 1998; Makinen & Ruohonen 1990; Miller 

et al., 1995) or a significant reduction in CF with increased SD (Refstie, 1977; 

Pickering & Pottinger, 1987a; Atay et a l, 1988; Rigolino et a l, 1988; Unlu & Baran, 

1992; Wagner et a l, 1996a).

CF provides a crude indication of the energy reserves of a fish (Goede & 

Barton, 1990). A fish with high CF has either eaten more food, or converted the food 

that it has eaten more efficiently into fat and muscle than a fish with lower CF. 

Drawing conclusions from CF data from fish in this experiment was hindered by the 

on-set of sexual maturation and the resulting differences in CF between the male and 

female fish. However, the higher CF in the 60 1 min' 1 treatment in August and 

September and lower FCR in the 60 1 min' 1 treatment in June, July and September 

suggested that there was a genuine effect of inflow rate. It was not possible to 

measure uneaten feed in this experiment, so FCR was estimated based on the amount 

of food presented to each fish over a given period of time. It was therefore not 

possible to determine whether differences in FCR were genuine, or due to the fact that 

less food was consumed.

HSI

The HSI data of the 30 fish sampled monthly from each treatment showed no 

significant effect of inflow rate (Figure 5.13a). However, the HSI data collected from 

all of the tagged fish at the end of the experiment showed the relative size of the liver
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in the 60 1 min treatment to be significantly larger than those in the 2 0  1 min’ 1 

treatment. This suggested that the differences in HSI were subtle and only became 

significant in the comparatively large sample size at the end of the experiment 

(approximately 120 fish per treatment). Two previous studies measured the effect of 

SD on HSI, both of which reported a negative effect of increased SD (Leatherland & 

Cho 1985; Leatherland, 1993). In both studies the authors suggested that the reduced 

HSI of the fish reared at high SD was consistent with other physiological signs 

characteristic of food deprivation (reduced growth, thyroid activity, and protein 

concentration), even though both studies fed fish to satiation. Furthermore, 

Leatherland and Cho (1985) suggested that the reduction in HSI that they observed at 

higher SD was not an effect of reduced water quality, as they used vigorous aeration 

and high rates of water exchange (3-4 times per h). However, details of the frequency 

and methods of water quality monitoring are vague in one study (Leatherland & Cho, 

1985) and non-existent in the other (Leatherland, 1993). Both studies suggested that 

growth was reduced at high SD as a result of a reduced ability of fish to locate feed 

and that reduced thyroid activity and HSI are consistent with what the authors termed 

as a ‘ration restricted state’. Water quality deterioration has also been suggested as a 

possible cause of reduced feed intake at higher SD and several authors have attributed 

a reduction in hepatocyte vacuolation to chronic exposure to high levels of ammonia, 

leading to reduced feed intake, independent of fish numbers (Larmoyeux & Piper, 

1973; Soderberg e ta l, 1984; Soderberg, 1985).

SSI

In the months that spleen weight was measured, there was no effect of inflow rate on 

SSI. The SSI data from the PIT-tagged individuals at the end of the experiment
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suggested that SSI was slightly lower in the 20 1 min' 1 treatment, but there was no 

significant difference (ANOVA; P=0.30). The only other study that used spleen 

condition as an indicator of the effects of SD or loading rate on rainbow trout 

observed a trend for reduced spleen size (lower SSI) with increasing water quality 

deterioration (Rosenthal et a l, 1984). It may be that in the present study water quality 

did not deteriorate sufficiently to elicit an effect on SSI.

S.4.5.2. Blood parameters 

Haematocrit

There was no effect of inflow rate on haematocrit levels, which at all points of the 

experiment remained within the range of 24 -  43% reported for clinically healthy 

rainbow trout (Wedemeyer, 1996). Similar to the experiment described in Chapter 4, 

haematocrit displayed an inverse correlation with water temperature; although in this 

experiment the effect was not as consistent, with relatively low haematocrit levels in 

October and November when water temperature had dropped to around 5°C. Most 

studies that have measured the effect of SD and loading rate on haematocrit have 

found no effect (Leatherland & Cho, 1985; Pickering & Pottinger, 1987a; 

Papousoglou et al., 1987; Kindschi et al, 1991a; Kebus et al., 1992; Miller et a l, 

1995).

There is some evidence in the literature of elevated haematocrit levels at 

higher SD (Wagner et al., 1996a). Furthermore, Thurston et al. (1984) found 

differences in haematocrit levels of fish that were reared for 9 months in different 

levels of ammonia, with lower haematocrit observed in fish that were held in highest 

ammonia concentrations (>0.047 mg I"1). Perhaps most relevant to the present study, 

Larmoyeux & Piper (1973) found levels of haematocrit to increase with decreasing
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water quality. Swift (1981) also observed a short-lived acute stress response that 

included elevated levels of haematocrit following sub-lethal exposure of rainbow trout 

to a range of pollutants and low DO.

Glucose

There was no significant effect of inflow rate on glucose levels during this 

experiment, which is in agreement with several other studies that similarly found no 

effect of SD or loading rate on glucose concentrations (Larmoyeux & Piper, 1973; 

Wedemeyer, 1976; Leatherland & Cho, 1985; Laidley & Leatherland, 1988; 

Papousoglou et al., 1987; Procarione et al, 1999). Although glucose levels were very 

similar in all of the inflow treatments for most of the trial, levels appeared to be 

elevated in the 20 1 min' 1 in July (Figure 5.17), coinciding with the period in which 

water temperature and ammonia were near their peak (Figures 5.2 & 5.5).

Swift (1981) showed levels of glucose to rise dramatically in response to 

hypoxia and un-ionised ammonia and it may have been that a similar effect was 

observed in the 20 1 m in 1 in July in response to water quality deterioration. Swift 

(1981) also commented on the difficulties of interpreting changes in plasma glucose 

levels in relation to stress and discussed the complications that the nutritional state of 

the fish may have on plasma glucose levels. This may have implications for this study 

as fish were routinely starved for at least 24 h prior to sampling in an effort to reduce 

the chance of mortality during anaesthesia and prevent gill damage caused by 

regurgitation of gut contents.
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Lvsozvme activity

There was a significant difference in lysozyme activity in the 20 1 min" 1 compared 

with the 60 1 m in 1 treatment in June (PcO.Ol). Although not statistically significant, 

lysozyme activity also appeared elevated in the 40 1 min" 1 in June and July (Figure 

5.18). It is unclear why lysozyme activity was elevated at these points in these 

treatments, because at all other points in the trial the levels of lysozyme activity were 

very similar in the treatments.

Lysozyme activity has previously been shown to display a close link with 

cortisol response (Fevolden et al., 1999), but there has been limited use of lysozyme 

activity as a welfare indicator in fish. The widespread use of arbitrary units also 

makes cross-referencing between studies very difficult. Mock and Peters (1990) 

observed significantly decreased levels of lysozyme activity at 36 h following acute 

exposure to NIL, although it is likely that the exposure would have elicited an acute 

stress response and the reduce lysozyme may have been a result of higher levels of 

cortisol (not measured) following stimulation of the HPI-axis.

In Chapter 3 of this thesis lysozyme was measured in conjunction with several 

blood parameters under situations of chronic and acute stress. Following an acute 

handling stressor lysozyme appeared to decrease from pre-stress levels (Figure 3.4). 

Similarly, in Chapter 4, there was a significant, negative correlation between 

lysozyme activity and plasma cortisol (Figure 4.18). However, the fact that cortisol 

remained low in all treatments throughout the experiment suggested that the change in 

lysozyme activity observed in this experiment was unlikely to have been stress 

mediated.
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Cortisol

Levels of cortisol remained very low throughout the course of the experiment and at 

no point did they appear to be elevated above basal levels. The highest mean cortisol 

level in a treatment was around 6  ng ml"1, which occurred in the 40 1 min’ 1 treatment 

in April, but in comparison the 2000/1 SD experiment, plasma cortisol concentration 

were very low throughout. A number of factors may have contributed to the lower 

levels of cortisol in this study, such as the fact that tanks were covered with opaque 

fibreglass lids as opposed to the jump-nets used in the SD experiment, and also that 

hand feeding was replaced with automatic feeders. The strain of rainbow trout used in 

the 2000/1 SD experiment also appeared to display a greater cortisol response 

following a standardised handling stress. The mean peak level of cortisol for the strain 

of fish used in this study was around 40 ng ml' 1 (Figure 3.5; Chapter 3), whilst the 

strain of fish used in Chapter 4 had peak cortisol levels of around 160 ng ml’ 1 (Figure 

3.4; Chapter 3). Mean peak cortisol levels of 160 ng ml" 1 and 40 ng ml" 1 would be 

characteristic of high (HR) and low responding (LR) strains of rainbow trout 

(Pottinger et a l , 1991; Pottinger & Carrick, 1999). Direct comparison between the 

fish used in this experiment and the 2000/1 SD experiment are hindered by 

differences in fish size, season and water temperature, but a three-fold difference in 

peak cortisol level may suggest that the fish used in this experiment may have been a 

lower cortisol responding strain than those used in the Chapter 4.

The majority of studies that have attempted to measure the effect of increasing 

SD on plasma cortisol levels in rainbow trout have found no, or inconclusive effects 

(Leatherland & Cho, 1985; Laidley & Leatherland, 1988; Pickering et a l , 1991; 

Kebus et a l, 1992; Procarione et al, 1999). However, there is evidence for cortisol 

levels to increase in response to acute changes in water quality in a number of
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salmonid species in response to a wide range of pollutants (reviewed by Donaldson, 

1981). Swift (1981) found increased plasma cortisol levels in rainbow trout following 

exposure to concentrations of 0.24 mg I' 1 un-ionised ammonia or greater, but found no 

increase of cortisol in response of hypoxia.

Another consideration is the effect that combined deterioration of water 

quality parameters may have on the HPI-axis. Pickering and Pottinger (1987b) 

demonstrated that whilst elevated NH3 alone had no effect on the acute stress 

response of brown trout, but when elevated NH3 was combined with lowered pH, a 

significant increase in plasma cortisol response was observed.

There appeared to very little stimulation of the HPI-axis in this experiment and 

levels of cortisol were low in all treatments throughout. There is evidence to suggest 

that fish become acclimatised to water quality conditions (Larmoyeux & Piper, 1973). 

Cortisol levels have been shown to increase in response to acute changes in water 

quality, but plasma cortisol measurement appears to be of limited use as an indicator 

of chronic water quality deterioration.

5.4.6. Fin Condition

There was generally a significant decrease in RFL as the trial progressed and with the 

exception of the dorsal and right pectoral fins, RFL was lower in the PIT-tagged fish 

at the end compared with the start of the experiment. The fins were generally 

unaffected by the inflow rate treatments and comparison of the RFL values for the 

PIT-tagged fish at the end of the experiment found the right-sided pelvic and pectoral 

fins to be the only fins affected by inflow. The bearing of this significant effect was 

not very consistent, although the general pattern suggested that RFL of the right sided 

fins decreased with increasing inflow rate (Figure 5.20). Similarly to the 2000/1 SD
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experiment (Chapter 4), significant differences were observed between the right and 

left pelvic and pectoral fins, with the RFL of the left sided fins significantly lower 

than the right-sided fins.

The experimental design endeavoured to reduce the effect that different rates 

of inflow had on water current by using down-pipes that directed the inflowing to the 

bottom of the tanks. However, the nature of the round tanks and the Coriolis effect 

meant that a clockwise water current was still established, and although not measured, 

water current would theoretically have been stronger in the higher inflow rate 

treatments. The fish in all treatments were observed to generally orientate themselves 

to swim against the flow, so that the right of the fish was predominantly facing the 

outside wall of the tank. The fact that the inside fin should be more prone to damage 

again remained unexplained, although it appeared to be a consistent effect of rearing 

fish in this system of round fibreglass tanks. An explanation for the apparent 

treatment effect on the right sided fins may also have been due to differences in water 

current. It may be that the fish situated themselves closer to the walls and floor of the 

tank to reduce the drag caused by the current. There is some evidence to support this 

from a study that assessed the effect of rearing-unit design on the behaviour of 

rainbow trout, where contact time with the bottom of the tank was shown to increase 

significantly at higher rates of water exchange (Ross et a l , 1995).

The PCA of the fin data confirmed some of the patterns observed in the 

univariate analysis of individual fins. Fin-PCl comprised of negative contributions 

from all of the fins, while Fin-PC2 was predominantly made up of negative 

contributions from the pelvic fins. The GLMs including the factor scores for the Fin- 

PCs found there a significant effect of time and water temperature (Table 5.15). There 

was also a significant random effect of replicate on both of the Fin-PCs, with factor
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scores for both PCs appearing higher (worse fins) in replicate 3, although it is unclear 

why this should have occurred. The effect of water temperature appeared to be 

positive on both of the Fin-PCs (i.e. worse fins at higher temperatures), although this 

may have been a confounding influence of time, as water temperature generally 

increased as the trial progressed. Significant effects of ammonia and DO were also 

observed on Fin-PC2, with scatter plots suggesting that Fin-PC2 decreased with 

increasing ammonia (i.e. better pectoral fins at higher levels of ammonia), and 

increased with increasing DO (i.e. worse pectoral fins at higher DO concentrations). 

A confounding influence of water current may have caused this effect, as water 

quality was higher in the tanks with high inflow rate. Fin damage would generally not 

be expected to increase at higher levels of water quality, although Larmoyeux & 

Piper, (1973) observed that the fish from the final two troughs in their cascade system 

had less dorsal fin erosion than those from higher in the cascade, which they 

attributed to reduced activity in the lower oxygen environment. Bosakowski and 

Wagner (1994b) associated increased ammonia with increased fin damage and 

suggested that other water quality problems associated with high levels of ammonia 

such as increased metabolic wastes, microbes, and suspended solids, may also have 

contributed to the effect.

5.4.7 Principal Components Analysis

The PCA of the blood parameters produced two viable PCs, one of which was based 

on associations between the cortisol, lysozyme activity and haematocrit (B-PC1). The 

second B-PC was comprised almost solely of glucose and when modelled produced a 

similar result to the earlier univariate analysis of glucose. The GLM including factor 

scores for B-PC1 found significant effects of temperature and DO. Scatter plots of
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factor scores for B-PC1 against temperature and DO indicated a significant positive 

correlation with DO (PcO.OOl, correlation coefficient = 0.574, R2 = 0.32) and a 

negative correlation with temperature (PcO.OOl, correlation coefficient = -0.579, R2 =

0.33). Water temperature and DO were also highly correlated (.R2 = 0.58), so the result 

of the GLM for B-PC1 suggested that the fish were more stressed in the winter 

months when temperature was lower and DO higher.

When PCA was carried out on the blood parameters, somatic indices and the 

Fin-PCs to create a combined welfare index, the resulting PCs were harder to explain. 

There appeared to be a contradictory contribution of Fin-PCl in C-PC1, which may 

have been explained by the general lack of differences that were observed on the RFL 

values between the treatments. The only significant effect on the GLM with factor 

scores of CPC1 was time, which was not surprising given the general absence of 

treatment effects on any of the welfare parameters.

The contribution of Fin-PC2 in C-PC2 was more logical and in addition to a 

significant effect of time, the GLM for C-PC2 factor scores detected a significant 

effect of DO. A linear regression between factor scores for C-PC2 and DO suggested 

a decrease in C-PC2 with increased DO (PcO.OOl, correlation coefficient = -0.580, R2 

= 0.337). The nature of this result was again counter intuitive as high dissolved 

oxygen would be expected to be beneficial for fish welfare.

Explanations for these results could be that water quality did not deteriorate 

sufficiently to elicit an effect on the welfare indicators, or that the welfare indicators 

used in this study were not sensitive to water quality deterioration. However, the fact 

that there was a significant treatment effect on growth and CF, suggested that at some 

point in the trial welfare was infringed in the 20 and 40 1 min'1.
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5.4.8. Possible improvements and future work

If feed intake had been measured in this study it would have been possible to 

determine if reduced appetite was the cause of the reduced growth observed in the 2 0  

and 40 1 min 1 treatments. Any future study assessing the effects of water quality on 

fish welfare would also benefit from inclusion of some form of assessment of gill 

condition. Rosenthal et a l (1984) observed a reduction in the length of the primary 

gill lamellae and Soderberg et a l , (1984; 1985) related numerous pathologies of 

secondary gill filaments such as blood filled aneurysms, hyperplasia fusion and 

epithelial oedema to NH3 levels. The sampling of the water quality parameters in this 

study was inadequate to confidently estimate the extent of the water quality 

deterioration. The 24 h profile of ammonia highlighted the general lack of information 

available regarding production and excretion of a fundamental metabolic waste 

product. The use of data-logging probes for ammonia and pH in addition to 

temperature and DO should be a requirement of any future study.

5.4.9. Summary

In summary, this experiment, and several other previously published studies have 

demonstrated the potential for water quality deterioration to result in reduced growth 

of rainbow trout. There is also further evidence to suggest that when the effects of 

water quality deterioration have been removed from studies (Soderberg & Krise, 

1986; Kebus et a l , 1992), or steps have been taken to ensure that water quality 

remains at a high standard (Kindschi et a l 1991a; Miller et a l  1995) the commonly 

observed adverse effects of increasing SD is removed or greatly reduced.

The lower growth and condition factor observed in the 20 and 40 1 min' 1 

treatment was not accompanied by changes in the other welfare indicators, suggesting
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either that they were not sensitive indicators of water quality deterioration, or that the 

deterioration in water quality was not sufficient to elicit and effect.

The two, mass mortality events that occurred in the 20 1 min'1 treatment are 

also worthy of comment. Both mortality events were the result of plumbing failures 

and it may have just been a chance occurrence that both events occurred in the 

treatment with the lowest flow (highest loading rate). Had the events occurred in the 

higher flow treatments, mortality may have still have occurred. There are, however, 

similar reports in the literature of mass mortality event in tanks with high loading 

rates (Kindschi et a l, 1991a) and the need for increased supervision and the 

requirement of appropriate back-up systems has been emphasised by other authors 

(Miller et a l, 1995).
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Chapter 6: Questionnaire survey of stocking density practices

on UK rainbow trout farms

6.1. Introduction

This chapter of the thesis discusses SD in the context of commercial practices in the UK 

rainbow trout farming industry. Following a brief overview of the UK industry, the 

results of a postal questionnaire requesting information on stocking density practices are 

discussed.

The earliest reports of rainbow trout culture in the UK date back to 1885 where 

stocks were established in Buckinghamshire and at the Howietoun fishery near Stirling, 

following shipments from North America to the National Fish Culture Association of 

London (MacCrimmon, 1971: cited in Gall, 1992). The 2000 survey of trout production 

in the UK reported 362 active farms, 269 in England and Wales, 63 in Scotland and a 

further 30 sites in Northern Ireland (Dunn, 2002). The UK was the seventh largest 

producer of rainbow trout in Europe (Figure 6.1). The total UK production rainbow trout 

was reported to be around 15,000 tones a year (Anon., 1996a). The most recent published 

figures reported total UK trout production in 2000 to stand at around 15,805 tonnes, 

11,335 tonnes (71.7%) of which went to the table, and 4,470 tonnes (28.3%) for 

restocking (Table 6.1). The 2000 figure for trout production was down slightly on the 

industry peak in 1999 where 17,185 tonnes of trout was produced (Dunn, 2003).
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Figure 6.1. European production of portion sized rainbow trout; constructed from data on 

Federation of European Aquaculture Producers website (www.feap.com).
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Table 6.1. Summary of UK trout production in 2000 (reproduced from Dunn, 2002).

No of Annual Production (tonnes) Percentage of total (%)
sites Table Restocking Total Table Restocking

England and 
Wales

269 5, 757 3,427 9, 184 62.7 37.3

Scotland 63 4,311 843 5, 154 83.7 16.3
Northern Ireland 30 1,267 200 1,467 86.4 13.6

Totals 362 11,335 4,470 15,805 71.7 28.3

Market size for the UK table market is around 400g which can be achieved in less 

than 1 year in the UK but may take longer in more northerly regions (Anon., 1996a). The 

UK table market mainly uses all-female stocks of trout due to problems associated with 

early maturation in male fish. All-female (XX) stocks are produced by the 

masculinisation of fry by addition of methyl testosterone to the feedstuff at first feeding; 

this results in all exposed fish displaying male characteristics. Hormone exposed fry that 

would naturally have been female fish (XX) can be identified and separated the following 

year from natural males (XY) as they are unable to develop a sperm duct. Masculinised 

females will eventually be sacrificed, and their milt can be used to fertilise eggs from 

normal females, effectively eliminating the male determining Y chromosome from the

stock (see Olito & Brock, 1991).

In terms of the stocking densities applied on UK trout farms, Ellis et al. (2002) 

suggested that farmers use a combination of intuition and experience to decide upon the 

most appropriate SD, with codes of practice and hand books used guides. The guidance 

available to farmers is in the range of 2-80 kg m'3, depending on type of holding systems 

and size of fish, although commercial farmers would normally be expected to operate 

somewhere in the range between 15 -  40 kg nf3 with 60 kg nf3 being seen as a maximum
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(Ellis et al., 2002). There are reports of fish being held at higher densities >80 kg m’3 in 

experimental studies with the aid of high rates of water exchange and/or additional 

aeration/oxygenation (Buss et al 1970; Baker & Ayles, 1990 & Kebus et al., 1992). 

However, reports of such high densities being applied commercially are limited (Anon, 

1999).

The FAWC report (Anon., 1996a) made four recommendations expressly 

concerning SD of rainbow trout; presented earlier in Table 1.1 (page 2). Until the time of 

the present study there had been no collection of data regarding SD practices of UK trout 

farms, although both Anon. (1996a) and Lymbery (2002) suggested that SD were too 

high and that densities of 30-40 kg m'3 were potentially detrimental to trout welfare. 

There is currently no legislation regulating the density at which trout can be farmed. 

However, farms that are members of the BTA are encouraged to comply with the code of 

practice, the latest revision of which (Anon., 2002) makes the following references to SD:

• Stocking fish at too high a density should be avoided as this is likely to lower water 

quality and may inflict physical damage and possibly induce stress and disease or 

changes in behaviour and thereby compromise fish welfare. As a general rule each 

litre of water inflow per minute will support 1-4 kg of fish depending on their size, 

although experience may allow some farms to stock at higher levels.

• SD should be kept at an appropriate level to avoid detrimental effects on fish health 

and welfare. Fish should have enough space for swimming but not so large as to 

encourage aggressive territorial behaviour. It should also be borne in mind that the 

optimal SD will vary depending on water flow, current, oxygen concentration and 

temperature and other water quality characteristics and the size, age, sex, health status
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and feeding regime of the fish under culture. If water quality parameters are 

maintained at recommended levels then the health and welfare of the fish should be 

optimal.

The BTA code of practice (Anon., 2002) also makes references to the importance of

maintaining high levels of water quality:

• Trout farms require large quantities of good quality water. Trout generally require 

supplies of water, which provide a minimum of 6 mg I'1 (ppm) of oxygen in the farm 

outflow, although performance may be optimised by using higher levels. Temperature 

also affects carrying capacity with lower temperatures enabling more oxygen to be 

carried in the water and hence more fish to be safely supported. Aside from welfare 

issues, the amount of oxygen carried in the water is generally the primary limiting 

factor on stocking rates and therefore production. As an approximate guide to 

carrying capacity it is suggested that a maximum of 3-4 tonnes of annual production 

may be raised with every one million litres of water per day inflow depending on the 

quality of the water. Aeration/oxygenation or water re-use may increase this.

• Appropriate water flow rates should be maintained and the water should be well 

oxygenated.

• Water quality parameters should be maintained at optimal levels to achieve good 

health and growth of the stock. In particular low levels of ammonia, suspended solids 

and BOD should be maintained with oxygen values as near saturation as possible.
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The revised 2002 version of the BTA code of practice included a section 

specifically relating to fish welfare, the first section of which stated that “trout farmers 

should recognise that by engaging in the act of farming they have a duty to care for the 

welfare of their stock from egg to harvest”. In a recent meeting organised by Deffa on the 

subject of fish welfare, the concept of stewardship, defined as ownership with 

responsibility, was used to encapsulate this aspect of the code of practice (Davies, 2002).

Quality tout UK (QTUK) is a scheme that operates in the UK. Farmers wishing to 

join QTUK must adhere to the operational procedures and standards laid out in the 

Certification Scheme, which makes the following recommendation regarding SD 

(QTUK, 2004):

• Fish must be stocked at densities appropriate to their size, water temperature and 

flow, available oxygen, stage in production cycle and type of fish holding unit in 

order to reduce the risk of poor water quality, physical damage, stress and disease. 

Fish must be allowed to exhibit normal swimming behaviour. Appropriate stocking 

densities will be decided on a farm-to-farm basis and must be such that there is no 

adverse effect on the condition and welfare of the fish. Dissolved oxygen after 

feeding should not fall below 6 mg 11.

In addition to the quality schemes and codes of conduct in the UK, there are also 

pan-European organisations and regulatory bodies that make specific recommendations 

regarding SD. The FEAP code of conduct suggests that SD should be adjusted to the 

specific requirements of the species, and include respect for.

270



Chapter 6: Stocking Density Questionnaire

• The average live weight of the fish.

• The population’s health and behavioural needs.

• The population’s demand on the growing environment, in particular they’re 

behavioural needs, the availability of adequate oxygen supply and the removal of 

wastes to avoid excessive accumulation of substances that may cause stress or toxic 

effects (e.g. CO2  and ammonia).

At the time of writing the Council of Europe (CoE) was in the process of drafting 

a Resolution regarding the welfare of farmed fish in which references to SD are likely to 

feature. The Standing Committee of the European Convention for the Protection of 

Animals kept for Farming Purposes first started drafting fish welfare conditions in 1998 

and at the time of writing the draft was in its 13th Revision (FEAP, 2004). Once complete, 

the introduction of the resolution will provide the framework for subsequent legislation 

that will become law in participating member states of the European Economic 

Community.

Whilst there are no current legislative powers that exist to limit stocking densities, 

farmers are under mounting pressure from retailers to address stocking densities. 

Supermarket chains are becoming increasingly stringent in the demands they make of 

their suppliers, and fish farms are no exception. Supermarkets are ultimately driven by 

consumer demands, and animal welfare is becoming an increasingly important issue in 

the decisions made regarding what people eat and where they purchase food stuffs 

(Cooke, 2001). Supermarkets are already making demands on fish farmers in terms of
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standards of fish welfare, maximum stocking densities and methods of slaughter, and 

enforce these demands with site audits.

6.2 Aim s of the Questionnaire

The questionnaire aimed to collect data regarding the SD practices on rainbow trout 

farms in the UK. The questionnaire also aimed to gain an idea of the way that SD was 

perceived by farmers i.e. what they considered to be a high SD and the welfare 

implications of high SD.

6.3. M aterials and M ethods

The format and content of the questionnaire was initially decided in consultation with the 

late Professor Niall Bromage who was the Scientific Advisor to the BTA. The pilot 

questionnaire was sent to Defra and Council Members of the BTA for comments and 

suggestions, which were incorporated into the final format. In order to reduce the burden 

on respondents, the questionnaire was kept fairly simple and where possible tick-boxes 

were provided, which also aided with analysis. A copy of the questionnaire can be seen in 

Appendix I.

A total of 295 questionnaires were distributed through the BTA, of which 99 were 

BTA members and 196 non-members (obtained from the BTA). The resulting data were 

then analysed and sorted to allow the stocking practices of the main types of farming 

system to be analysed separately. The main focus of the analysis was on-growing farms, 

as it was concern over stocking practices on such farms expressed in the FAWC report 

(Anon., 1996a) that initiated the present study.
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The questionnaire was designed to incorporate all forms, stages and methods of 

trout culture that existed in the UK. This was achieved primarily by breaking down the 

types of farms into four categories; table farms (i.e. producing portions sized trout for the 

table market), fisheries, restocking farms and hatcheries. Questions relating to site, 

husbandry practices and perceptions of SD were also asked. In order to encompass the 

full range of culture facilities in use in on UK trout farms, a density matrix was 

constructed requesting information for fish of different size ranges e.g. minimum and 

maximum (start/finish) SD (kg m'3), and information regarding the type, volume and flow 

rates of holding systems.

6.4. Results

6.4.1. Response Rate

Of the 295 questionnaires distributed, a total of 88 copies of the questionnaire were 

returned, representing a 29.8% return rate. The return rates were 64.6% for BTA member 

farms (99 BTA members in total), and 11.7% for non-member farms. The BTA member 

farms accounted for more than 80% of all UK trout production (Niall Bromage, perrs 

com.), suggesting that the data collected from this questionnaire represented a significant 

proportion of UK trout production.

6.4.2. Species of fish farmed

Question 1 asked what species of fish were farmed and the cover letter that accompanied 

the questionnaire asked that separate questionnaires were filled out for different species.
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The data that is discussed in this thesis relates specifically to the responses that selected 

rainbow trout production for this question.

6.4.3. Types of trout production

Farms were categorised depending on their response to question 2, which asked for the 

types of production carried out on their site i.e. hatchery, fishery, restocking, or table 

farm. Many responses selected more than one type of production, indicating that a large 

number farms carried out more than one type of production. Throughout this chapter the 

results will firstly be discussed for farms that selected more than one type of production

i.e. farms that may have selected both restocking and table trout production. These farms 

were referred to as multi-output farms.

In order to provide more accurate information regarding stocking practices for 

specific types of trout production, farms that produced trout exclusively for the table 

market were separated from those that produced trout for fisheries and restocking 

markets. Fisheries and restocking operations were grouped because restocking production 

is ultimately aimed at supplying sport fisheries, and also because all of the questionnaire 

responses that selected fisheries in question 2, also selected restocking production. These 

farms were referred to as single-output farms.

A large number of restocking and table farms also had hatcheries. Responses that 

were categorised into either table or restocking/fisheries production, but also had 

hatcheries, were not analysed as a separate group as this would have greatly reduced the 

numbers of farms in the single-output categories. There was a third group of interest,
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namely farms that solely carried out hatchery production, but this group accounted for a 

much smaller number of farms and therefore there was less data available for hatcheries.

The predominant forms of trout production among farms were for table and 

restocking purposes, with respective percentages of 62 and 59% of all questionnaire 

responses (Figure 6.2). Hatchery production was carried out on 42% of responding farms, 

indicating that farms with hatchery operations may be supplying more than one table 

farm or restocking farm with fry. Fisheries made up the smallest cohort of production 

with 16% of responding farms carrying out this form of trout farming. With 59% of farms 

carrying out restocking production but just 16% carrying out fishery operations, we can 

infer that fisheries are likely to source fish from numerous different suppliers.

Single-output farms producing trout specifically for the table or fishery/restocking 

markets

There were 25 farms that carried out production specifically for the table market and 24 

that carried out production specifically for the restocking or fisheries markets. 

Additionally there were 4 farms that operated solely as hatcheries.

6.4.4. Annual production of table farms

Analysis of annual production was carried out for all questionnaire responses that 

produced trout for the table (from question 2). Responses were categorised by size based 

on total annual production and the results showed the biggest proportion of table farms 

that responded to the questionnaire were producing >200 tonnes per year (Figure 6.2).
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H atchery Fishery  R estock ing  Farm  T ab le  F arm

Table farm production

14%

Annual Production 
(tonnes)

□  <20t 

■  20-60t

18% neo-ioot
□  100-200t

□  >200t

Figure 6.2. Analysis of the main types of rainbow trout production from all farms 

responding to the questionnaire (above) and the composition of the table farms based on 

total annual production for table farm production (below).
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6.4.5. Water Supply

The vast majority of farms (78%) responding to the questionnaire were partly or solely 

dependent on river water supply. Borehole water was used on 32% of responding farms, 

but mostly in conjunction with river water supply. Just 7% of the farms responding to the 

questionnaire were dependent on lakes/loch water. A further 2 farms, representing 2.5%, 

used other sources of water; 1 farm used partly-recirculated water in the fry rearing units 

and the other used well water, although it was not specified how well water differed from 

borehole water (Figure 6.3).

6.4.6. Perceptions of stocking density

Question 5 attempted to gain an idea of the perception of SD held by UK trout farmers, 

with the aim of establishing what farmers perceived to be a high density, and what 

problems were associated with high stocking densities.

6.4.6.I. Perceived ‘high’ stocking density

There were marked contrasts in the perception of high stocking densities with responses 

ranging ffom 7 to 200 kg m"3. The overall mean perceived high density was 46.3 kg m'3. 

However, there were marked differences in the perception of high SD when the data were 

categorised depending on the type of trout production. Analysis was firstly earned out 

using the perceived high densities from any questionnaire response selecting a particular 

type of production, even if more than one type of production was selected for question 2 

(Figure 6.4). Subsequent analysis was carried out for the single-output farms producing

trout for specific markets.
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Figure 6.3. Water supply of UK rainbow trout farms responding to the questionnaire.
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The mean perceived high SD for multi-output and single-output trout farms are 

shown in table 6.2.

Table 6.2. Perceptions of high stocking density for different types of rainbow trout 

production by UK trout farmers (mean ± SEM).

Type of Trout Production Hatchery Fishery Restocking Table All
Types

Mean ‘high’ SD for multi­ 42.7 33.2 35.4 52.5 46.3
output farms (n=32) (n=ll) (n=44) (n=48) (n=74)
Mean ‘high’ SD for single­ 87.5 28 60.2 -
output farms (kg m'3) (n=4) (n=24) (n=25)

The mean perceived high SD of respondents producing trout specifically for the 

table was twice as high as those producing trout for the fisheries and restocking markets, 

representing an highly significant statistical difference (P<0.001; Student s T-test on log 

transformed data for perceived high SD).

6.4.6.2. Problems associated with ‘high’ stocking density

The second part of question 5 was arguably slightly leading, with boxes were provided 

with pre-conceived problems commonly associated with high SD. Furthermore, any 

associated welfare problem/s would in theory be linked to each respondent’s perceived 

‘high’ SD. However, the majority of farmers elected to answer this question, suggesting 

that farmers acknowledged that there are welfare problems associated with excessive 

stocking densities. Fin erosion was cited as the most commonly associated problem, with 

84% of responding farmers associating this problem with ‘high’ SD. Decreased growth 

and increased prevalence of disease were associated with ‘high’ SD by 63% of 

responding farms and increased mortality by 58% (Figure 6.5).
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Figure 6.5. Problems associated with ‘high’ stocking density by UK trout farmers 

responding to the questionnaire.
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6.4.7. Stocking density practices

Analysis was firstly earned out on the density matrices of all farms that selected table 

production in question 2 (multiple and single-output) allowing a good indication of SD 

practices to be gained for the bulk of the annual tonnage of trout farmed in UK. Analysis 

was then earned out for farms carrying out either exclusive table production or those with 

fisheries / restocking operations (single-output).

6.4.7.I. Multiple-output table trout production

Analysis of the density matrices showed that most farms table operate at densities of 20- 

40 kg m' , although a significant proportion of farms (up to 45% at the grow-out stage) 

operate at densities of 40-80 kg m"3, and some (around 4%) operate at >80 kg m'3 (Table

6.3).

Table 6.3. Proportion of non-specific table farmers (%) operating within density ranges 

for fish of different size brackets.

Stocking Density 
(kgm-3)

Size Range

<5g 5-50g 50 -  lOOg 150 -  250g 250 -  500g > 500g

Start End Start End Start End Start End Start End Start End

0 - 2 0 86 46 83 22 69 17 63 17 64 16 72 26

4 0 -6 0 11 42 15 51 29 49 33 43 26 39 22 54

6 0 -8 0 4 4 2 20 2 19 4 21 8 20 3 14

>80 0 4 0 2 0 2 0 2 0 4 0 0

No. of farms in 
weight category 28 26 46 45 48 47 48 47 50 49 36 35

Percentage of 
farms exceeding 

40 kg m"3
4% 12% 2% 27% 2% 34% 4% 40% 10% 45% 6% 20%
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6A.I.2. Density analysis for single-output farms producing trout specifically for the 

table or restocking and fisheries markets

Analysis of the density matrices showed there to be differences in the ranges of SD for 

specific types of trout production, with a higher percentage of table farms operating 

above 40 kg m 3 for all size ranges of fish (Table 6.4). It was possible to estimate the 

mean maximum SD for fish of different sizes by selecting the mid-point of the density 

brackets. The mean maximum SD for single-output table farm production increased 

steadily from 28 kg m'3 for fry (>5g) to a maximum of around 50 kg m'3 for fish of 250- 

500g. In contrast, the average maximum SD for fisheries/restocking farms remained 

relatively constant at 20 kg m' for fish of all sizes (Figure 6.6).

At least 95% of all respondents carrying out restocking/fishery production used 

initial SD in the 0-20 kg m'3 range, whilst for table production the initial starting densities 

were often in the 20-40 kg m"3 range, with the exception being for fry (>5g) where 82% 

of table farms started in the lowest SD bracket (Figure 6.7). The fact that the table 

farmers responding to the questionnaire used lower start and finishing ranges of SD for 

fry suggested that farmers perceived that small fish may be less tolerant to higher 

stocking densities. The ranges of SD applied on restocking farms and fisheries remained 

fairly uniform for all size ranges of fish, whereas the SD applied on table farms increased 

with fish size, peaking with fish of 250-500g at the end of production. This meant that by 

the end of production, 63% of table farms exceeded 40 kg m compared with just 5% of 

fisheries and restocking operations. For ease of comparison, an alternative graphical 

presentation of the stocking policies for table and restocking/fishery operations is shown

in Figure 6.8.
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— -  Tabieproduction 
•—• Fisheries/restocking production 
  All types of production
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Figure 6.6. Estimated mean stocking density for fish of different sizes ranges on UK 

trout farms based upon the mid-point of the stocking density ranges.
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Table Farms 

Fish Size: < 5g

40

i Stan (min) 
; B ill (max)

I
0-20 20-40 40-60 60-80 >80

Stocking Density Range (kg m'3)

Stocking Density Range (kg m'3)

Restocking and Fisheries 

Fish Size: < 5g
I Start (min) 
I End (max)

■00 -t Fish Size: 5 - 50g
Stan (min) 
End (max)

60 -

40 -

>8060-8040-6020-400-20

0-20 20-40 40-60 60-80 >80

Stocking Density Range (kg m'3)

100 Fish Size: 5 - 50g
■ R t l  Start (min)
I—  End (max)

0-20 20-40 40-60 60-80 >80

Stocking Density Range (kg m’3)

,oo  Fish Size: 50 - 150g
■  Start (min) 
II End (max)

80 -

60 -r"to
oao?etosto

20 -

>8060-8040-6020-40

Stocking Density Range (kg m 3)

0-20

Fish Size: 50 - 150g
Start (min) 
End (max)

0-20 20-40 40-60 60-80 >80

Stocking Density Range (kg m"3)

Fig. 6.7. Stocking density practices for fish of different sizes on UK rainbow trout farms 

producing trout for the table (left) and restocking/fisheries markets (right).
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Table Farms 
Fish Size: 150 - 250g

Stan (min) 
End (max)

I
0-20 20-40 40-60 60-80 >80

Stocking Density Range (kg m'3)

Fish Size: 250 - 500g

Stocking Density Range (kg m")

Fish Size: >500g

Restocking and Fisheries 
Fish Size: 150-250g

—  Stan (min) 
a W  End (max)

100 -i

Stan (min) 
End (max)

80 -

60 -

40 -

20  -

>8060-8040-6020-400-20

0-20 20-40 40-60 60-80 >80

Stocking Density Range (kg mJ )

Fish Size: 250 - 500g

Start (m in) 
End (max)

1 0 0  -i
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Fig 6.7. (continued). Stocking density practices for fish of different sizes on UK rainbow 

trout farms producing trout for the table (left) and restocking/fisheries markets (nght).
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6.8a. Fisheries and restocking trout production

IS 60 -

<u 40 -

6.8a. Table trout production 50-150 150-250 250-500 >500
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2  50 -
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□ 60-80
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Figure 6.8. Stocking density practices for rainbow trout of different sizes on UK farms 

producing trout for the restocking/fisheries (6.8a) and table markets (6.8b). The X-axis in 

represents the different size ranges of fish and the Y-axis shows the percentage of 

responding farms operating within each of the pre-stated stocking density ranges.
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6.4.8. Alternative expressions of stocking density

In addition to the conventional expression of density (kg m’3) it was possible to 

extrapolate information from those questionnaire responses that provided data regarding 

flow rates and holding system volumes. This information enabled the calculation of 

Density Index [DI: biomass of fish fibs) / fish length (inches) x system volume (ft*3)] and 

Flow Index [FI: biomass of fish (lbs.) / fish length (inches) x flow rate (gallons min*1)] 

(Piper et al., 1982); refer back to section 1.3 in Chapter 1 for calculations of DI and FI.

The information on the questionnaire separated the production cycle of rainbow 

trout into size ranges based on weight, but in order to calculate DI and FI it was necessary 

to convert the size divisions from weight brackets into length brackets. This was achieved 

by using biometric data previously collected from more than 20,000 rainbow trout from 

control treatments of growth experiments carried out at the Institute of Aquaculture. The 

biometric data was derived from control treatments of various different experiments 

(2000-02) encompassing wide ranges of conditions representative of different seasons, 

genetic strains and sizes of fish. A scatter plot was created from the log transformed 

length and weight data for the individual fish (Appendix II). The regression analysis 

allowed fish length to be estimated from fish weight using the following formula:

Length = ex[(LN Weight x 0.332) + 3.749]

This calculation was found to be in agreement with other published data for 

length-weight relationships in rainbow trout (Piper a  al, 1982). The converted values for

weight brackets are shown in Table 6.5.
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Table 6.5. Weight to length conversion values for calculation of DI and FI.

Weight (g) Estimated Length (cm)
>5 >7.25

5-50 7.25 -15.5
50-150 22.4 -  26.5

250 - 500 26.5-33.4
>500 >33,4

In addition to the weightrlength conversion, it was also necessary to make an 

estimation of the biomass of fish being held in the holding systems of respondents. The 

biomass estimation was made using the upper-limits of the ranges of SD together with 

system volumes for the start and end of production, e.g.

System volume = 250 m
Stocking Density Ranges = Start (min) 0-20 kg m ; End (max) 60-80 kg m

Estimated Biomass = Minimum = 250 x 20 = 5000 kg
Maximum = 250 x 80 = 20000 kg

Piper et a l (1982) recommended a maximum DI of 0.5 for trout i.e. SD should 

not exceed half the fish length in inches, which can be converted to a metric 

recommendation of 3.2 (x 6.314). Using Piper’s recommendation for DI, the maximum 

SD for fish of 25cm would be 80 kg m'3. Piper’s recommended maximum FI ranged from 

a minimum of 0.83 (18 °C 9,000 ft. above sea level) to a maximum of 2.7 (4.5 C and sea 

level). Imperial units of measurement of FI can be converted into metric equivalents by

multiplying by 0.039.

DI and FI were calculated for all respondents that provided information regarding

a tho f lo w  rates firstly for all farms and then separately for rearing unit volumes and the flow rates, msuy

specific types of trout production (Table 6.6).
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2.8.4.1. Density Index

The mean values for DI fell on, or below the recommended level of 0.5 for all but the 

smallest size bracket (<5g) when all farms were grouped together, and all but the two 

smallest size brackets of fish (<5g & 5-50g) on single-output table farms (Figure 6.9). 

DI was consistently lower for fisheries and restocking, compared with table 

production, There was also a trend for DI to decrease with increasing fish size (Figure 

6.9). Analysis of SD practices showed that SD generally increased with increasing 

fish size (Figure 6.6), but the fact that DI showed such a marked decrease with 

increasing fish size suggested that fish length may have a strong influence on the DI 

results.

2.8.4.2. Flow Index

The highest FI values occurred at the fry (<5g) stage of production, with the mean FI 

for multi-output table farms (FI = 5.09), and also for single-output farms producing 

trout solely for the table market (FI = 6.34), well above Piper’s maximum 

recommended FI value (2.7). At the start of the production cycle FI was generally at, 

or below, the recommended maximum value of 2.7, but by the end of the cycle, FI 

was above this value for all sizes of fish except the 250-500g fish (Figure 6.10).

The FI values for the fisheries and restocking farms were higher than the 

values for the table farms in the 50-150, 150-250 and 250-500g size divisions, which 

was surprising, considering how much higher the SD used by the table farmers was. 

An explanation for the high FI values on the fisheries and restocking farms could be 

the comparatively low inflow rates in large still-water ponds, compared with the more 

compact raceway systems used in table trout production, where rates of water

exchange and inflow are much higher.
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Figure 6.9. Estimated ranges of Density Index for different types of UK trout farms
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An interesting comparison can be made between the DI and FI values for the 

fisheries and restocking farms, where the DI values were well within the 

recommended maximum for all but the smallest size grouping of fish, suggesting that 

there was good provision of space for the fish, but the FI values exceed the 

recommended maximum of 2.7 for 3 of the size ranges of fish.

When proposing the original recommendations for maximal FI and DI values, 

Piper et al. (1982) stressed that they should only be used as a guide and that other 

environmental conditions such as water chemistry and oxygen saturation will 

influence holding capacities. The recommendations made for safe limits of FI and DI 

were based on water supply with oxygen concentration assumed to be at or near 100% 

saturation, but there is no reference to the use of additional aeration or the effect that 

this may have on holding capacity. From the questionnaire response it was evident 

that the vast majority of farms producing trout for the table provided additional 

aeration during production (Table 6.7). It is also useful to bear in mind that although 

the highest FI and DI values were recorded for fry (<5g), this stage of production will 

generally correspond with the lowest seasonal water temperatures in the winter 

months when dissolved oxygen and water availability would be highest.

Table 6.7. Provision of additional aeration on UK table trout production farms.

Size Range (g) <5 5 -50 50-150 150-250 250-500 >500

Percentage of farms providing 49 57 74 79 76 79
additional aeration (%)_________  _________ _________________________
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6.4.9. Additional Comments

This section summarises some of the additional comments that were added to 

questionnaires.

6.4.9.1. Aeration

The vast majority of on-growing farms use additional aeration (Table 6.7) and from 

the comments added to the questionnaires, aeration would appear to be perhaps the 

most important factor when considering SD. Several respondents stated that DO is the 

means by which decisions are made in regard to how heavily fish are stocked. Two 

respondents stated that SD was determined on the premise that DO in outlet water was 

maintained above a specific concentration (>6.5 -  7.0 mg I'1 in one case and >70% 

saturation for the other). Other respondents attributed the associated welfare problems 

in question 5 to insufficient provision of oxygen rather than SD per se.

6.4.9.2. Feeding

Feeding is linked to aeration, particularly in summer months when feeding may be 

restricted or stopped all together if dissolved oxygen is low. Most manufacturers feed 

tables’ state that at water temperatures in excess of 16°C, feeding should be ceased or 

fish should be fed according to DO levels. From the comments on some 

questionnaires it was clear that sub-optimal feeding routinely occurs due to low DO in 

summer months and this in turn could result in, or contribute to, some of the welfare 

problems associated with high stocking densities.
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6.4.9.3. Fish Size

From the questionnaire response data and additional comments added to some of the 

replies, it would appear that there is a general consensus that tolerance to SD varies 

with fish size. However, there are contradictions between respondents in how this 

relationship actually works. The collated SD information in section 1 indicated that 

higher densities (kg m'3) occur during the on-growing stage (150g -  500g), but the 

opposite is true for FI and DI data, which both decreased with increasing fish size.

One farmer producing trout for the table market specified differences in the 

perceived high SD based on fish size, suggesting 30 kg m‘3 for 500g fish and 60 kg m'
-5

for 5g fish. In contrast, another response from a restocking farm stated the opposite, 

highlighting the period between fingerlings up to 200g as being the crucial time at 

which to keep SD low (specifying >14 kg m'3). They also added that fin damage and 

reduced growth occurred at early stages will worsen, almost regardless of future 

stocking densities. These differences in opinion may reflect how different types of 

trout production have different priorities i.e. the priority for a restocking farms may be 

to produce fish with good quality fins, whereas the priority for table production will 

be maximal growth.

6.4.9.4. Season

Several respondents were eager to stress the importance of considering season when 

addressing SD, as during the colder months when water temperature is lower there 

will not only be higher DO but also more water available (78% responding farms are 

supplied by river water). Seasonal effects should also be taken into account when 

considering information already discussed for stocking practices; this is especially 

true for the smaller sizes of fish, as this stage of production coincides with the colder
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months (December -  April), when water temperature and consequently feeding will 

be at their lowest.

6.4.9.5. Sceptics and Advocates

There was some objection to the use of SD as a means of safeguarding fish welfare. 

One response commented that “the use of SD as a basis for a welfare measurement is 

purely theoretical and could not be applied to a practical situation because fish 

naturally shoal and therefore the SD constantly changes”. It was also suggested that 

SD practices are totally site specific. On the opposite scale of the spectrum, other 

farmers were keen to see stocking densities reduced and suggested that quality 

schemes and marketing be introduced akin to ‘free-range’ and ‘barn-reared’ chickens. 

Other respondents suggested that “lower SD would result in better quality of life and 

that welfare and quality go hand in hand”.

6.5. Discussion

The good response rate to the questionnaire and the willingness to supply information, 

opinions and offers of farm visits, suggested that the trout farming industry was aware 

of welfare issues and was prepared to disclose information regarding stocking 

practices. BTA member farms accounted for around 80% of UK trout production and 

with 65% of BTA member farms responding to the questionnaire it would also appear 

that the questionnaire was successful in collecting information from a good proportion 

of the major trout producers in the industry.

There were major differences in the perceptions of a ‘high’ SD ranging from 7 

-  200 kg m'3, but when separated into specific types of production the ranges became
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much tighter with the perceived high density for single-output table farm production 

more than double that of fisheries and restocking operations (60 vs. 33.2 kg m'3).

The majority of farms producing trout exclusively for the table were shown to 

operate at average stocking densities of around 40 -50 kg m’3, with highest densities 

occurring in the final grow-out stage of production (250-500g). The SD used for 

fisheries and restocking operations was around half the figure for table farms, with a 

mean maximum SD of around 20 kg m'3 for fish of all sizes. It is probable that these 

differences in SD practices reflected different production priorities, with the table 

farmers focusing on maximising output, while the fisheries and restocking farms 

concentrated on producing fish with intact fins and no visible blemishes. Parallels 

may be drawn with other forms of farming, where the way in which broiler chickens 

or bullocks are farmed for meat is very different to the way in which laying hens or 

dairy cattle are farmed.

For the most part, the estimated DI values were within the recommended 

maximum of 0.5 and only exceeded this level for the smallest fish sizes (Piper et 

a l, 1982). Fisheries and restocking operations were well within the 0.5 limit for fish of 

all sizes. The results for FI suggested that the recommended maximal level to be 

exceeded for the smallest groups of fish but there after there was a general trend for 

the FI to be well within the limit at the start of stocking, but by the end of a growing 

phase the FI would be on or slightly in excess of the recommended maximal level.

A major problem experienced with the questionnaire responses was the lack of 

accurate information regarding flow rates, with very little accurate data available. 

Respondents predicted flow rates by either timing how long it took for a particular 

system to fill up from empty with knowledge of the system’s volume, or estimated 

flow rates from knowledge of the total throughput of a farm (usually in millions of
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gallons per day), which could then be divided depending on the layout of the farm e.g. 

if all first-use water entering a farm passed though six identical raceways an 

estimation of flow rates could be made. The lack of accurate flow rate data 

highlighted the difficulties of trying to apply alternative methods of quantifying SD 

rather than the conventional unit of kg m'3.

The vast majority (78%) of respondents were either totally or partially 

dependent on river water supply. River water supply is subject to seasonal and annual 

variations, thus adding to the difficulty of estimating flow rates. Flow rate and system 

volume data was generally much better for raceways and smaller tanks, but data 

provided for larger ponds was very limited and obviously no flow data was available 

for cage farms.

In addition to collecting information regarding the SD practices from a good 

proportion of the UK trout industry, this questionnaire also provided an insight into 

the way in which farmers regard SD and trout welfare. Although farmers 

acknowledged the potential of SD to result in poor welfare, there were marked 

differences of opinion regarding exactly what comprised of a ‘high’ SD. It is also 

likely that the priorities of farmers producing trout for the table and restocking/fishery 

markets is very different and that there may be lessons to be learnt from the way in 

which these industries have evolved regarding safeguarding different aspects of fish

welfare.
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Chapter 7: On-farm welfare assessment 

7.1 Introduction

There is a growing demand for systems for on-farm welfare assessment in all areas of 

livestock production. Such systems have a wide range of benefits to farm animal welfare 

and can be used to aid policy makers, provide feedback to farm managers on areas in 

which they can improve the welfare of their stock, and can be developed as a marketing 

tool (Spoolder et al. 2003). An example of a commercially successful application of 

stringent welfare policy as a marketing tool is provided by the Dutch veal farming 

company, ‘Peter’s Farm’. By increasing the amount of space for the calves, using 

communal housing with environmental enrichment and only selecting suppliers that can 

provide high quality animal housing, many of the welfare concerns over traditional veal 

production have been addressed. These practical steps have been combined with modem 

technology to provide total traceability, whereby consumers with internet access can trace 

meat back to the farm where it was grown via a batch code, allowing images of the calves 

at different ages to be viewed along with information on the farmers who grew that batch 

of animals (www.petersfann.com). Although such an approach could be viewed cynically 

as a mere marketing ploy, this approach has been successful in restoring consumer 

confidence in the ethics of veal production and in terms of animal welfare, is a vast 

improvement upon the traditional narrow crate intensive veal production (a practice

which has been banned in the UK since 1990).

In the absence of a ‘Gold Standard’, the objective determination of welfare relies 

on the selection, collection and interpretation of different parameters. The choice and

http://www.petersfann.com
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relative weightings of these parameters will depend largely upon the opinion and 

experience of the experts involved in the decision who may be laypeople (no 

involvement with animal husbandry), specialists (e.g. veterinarians), farmers and welfare 

scientists (Spoolder et al., 2003).

The concept of welfare assessment of fish farms is still in its infancy though 

developments in other areas of livestock production offer a wide variety of different 

approaches. Spoolder et al. (2003) suggested five different approaches in which 

parameters can be integrated for on-farm welfare assessment (Table 7.1).

On-farm welfare assessment of UK trout farms is presently almost non-existent, 

with the only regulatory inspection coming from the Fish Health Inspectorate, which has 

a very limited brief with regard to safeguarding fish welfare. One of the main driving 

forces in promotion of fish welfare policy are the increasing demands made by the 

supermarkets chains. It is now common place for supermarkets to carry out their own 

audits offish farms and there is an increasing demand for farmers to demonstrate that fish 

welfare is being safeguarded. In contrast to the limited power that regulatory bodies 

currently have to enforce welfare legislation, supermarket chains have considerable 

power over farmers, whereby, a contract can be terminated if a farm is not complying 

with their requirements. The welfare policy of supermarkets ultimately reflects a 

consumer concern over the ethics of livestock production (Cooke, 2001), but it is 

important that welfare criteria are determined on a scientific basis rather than an emotive 

response to the demands of pressure organisations.
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There is much debate over the most appropriate means of on-farm welfare 

assessment to use. The current approach with terrestrial livestock is moving away from 

total reliance on objective welfare indicators and back to systems that focus on more 

subjective assessments (Bracke et al. 1999; Bartussek, 1999; Wehmelsfelder et al. 2001; 

Dawkins, 2004).

Documented evidence regarding stocking density practices of UK trout farms is 

very limited and the results of the questionnaire presented in Chapter 6 offer perhaps the 

first insight into the ranges of SD applied on different types of trout farming systems in 

the UK. There is also no proposed system of on-farm welfare assessment of fish farms, 

although systems such as the health and condition profile (Goede & Barton, 1990) 

provide possible directions for ways to assess individual fish.

This Chapter focuses on the pilot-scale application of on-farm welfare assessment 

in relation to stocking density practices from a selected range of UK trout farms. The 

work outlined in this Chapter aimed to:

1. Provide detailed information on stocking density practices from a range of

representative trout farms.

2. Field-test the system of welfare assessment that was used in the experimental studies.

3. Assess the welfare of batches of fish from representative trout farms through the 

grow-out stage of the production cycle (lOOg to harvest).

4. Identify potential areas of improvement for future development of systems of on-farm 

welfare assessment in trout farms.

\
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Chapter 7: On-Farm Welfare Assessment

7.2. Materials and Methods

For this pilot exercise a purposive sampling strategy was adopted because o f a lack o f  

resources and anticipation that compliance may have been problematic. This meant that 

the preferred sampling approach of a randomised epidemiological survey was not 

feasible. Instead, farms that were representative o f high, medium and low intensities o f  

production were selected for inclusion in the study based on the following criteria:

•  Agreement to co-operate with the study.

•  Provision o f reliable information from the postal questionnaire.

•  The agreement to keep batches of fish as distinct groups without mixing or grading.

7.2.1. Sampling strategy

A longitudinal sampling strategy was adopted, which comprised o f repeated o f visits 

between July 2002 and November 2003 to selected farms that were representative o f the 

main types o f trout farming systems used in the UK. The original sampling design 

proposed to follow batches of fish at monthly intervals on four sites, two of which would 

represent low-density production (e.g.  less than 30 kg m"3) and another two representing 

high-density production (>60 kg m'3). However, it was not always possible to follow  

distinct batches o f fish, and from the original four sites it was only possible to follow  

three batches for more than one visit. The sampling was later extended to include a wider 

range o f systems, fish sizes, and to cover a larger geographic area with data collected  

from a total o f seven different farms. A brief description of each o f the farms included in

the study is shown in Table 7.2.

305



T3
<u

" dJd
o
e

<DJC

_ oVj
&

‘C
o
c/5
<D

Q

i >
a>

XJas
H

cd|
'xou>
CL,
a ,<

>> W
H—> O
3 ‘wC/3
a * e

a B
l-H u
ID 2a c3

£
j d
a

a ~L,
23 S 
< w

X
O h

00

Q
<>o

x
cd

a
O

Uh

£
<d
,/j
C/5
ID
!dH-*.

" 3
cj

<+Ho
<u

&
H

e
.2
oa

•Cd
O

a  a
XoI-o-
O h<

£
53Uh

T 3

o
oon

£on

LO
00
o i
o
<N
VO

O
t
OCO

O
■ t

(U
cd

3
<D

J d
£

• d
T3
cdCD

cd
£
<D
CJ
cdt_
a)
3i-,
CJ
Co

U

oo
<N

T 3

I
O
oon

Won

t"-"Ct
co
■d-
vd

otJ-
io

CO

O
VO

D
<DJS
£

-a
T3
cda

j d

cd
£
D
CJ
cd

cd
UJ

O
<N

MOr-
vd

o
•d-

o
VO

a
<D
WO

Xo

acr

cd
£
(D
CJ
cd

cj
eo

U

oo
CO

•cd
I
3 0

t§
Won

00i
C-l

O
(N

O
VO

e
<D
00
> ,
Xo

ao'

cd
£
<D
CJ
cd

oao
U

o
lO
CM

00a
W
w
on

T>

J3b
e

W

£on

CN vq CO in i n
o o r t CN o »—H
r<i 00 "Ct c o m

•cd
<d

<N
O

VO

o
■d-

o
VO

i nr-
vd

o

o
<N

t dajd
3o
[§
Wco

o
COco

in
o o

Ov

o
rj-

<D <D 
0 0  'rr
£ .s
Td
§
J2

I
T3e
ao

cd
£
(D
U
cd

o
ao

U

a
ID
0 0
>>
Xo

(D
a
a
cd

J d
o

■cdao
CL,
jd
£
<D
■cd
§
CO
>>
cd
£
D
CJ
cd

uao
U

cda
.2
"•a•cd
cd

•aaoOh

ID
•a

cd
£
<D
CJ
ed

CJao
U

cda
o

•cd•cd
cd

O
O■ct

O
VO

o■ct

cN

30
6



Chapter 7: On-Farm Welfare Assessment

7.2.2. Sampling Protocol

On each farm visit 24 fish were sampled and killed (Home Office Schedule 1); the time 

taken to do this was always less than 5 minutes. Cadavers were:

• Weighed (±0. lg) and measured for fork and total length (±lmm)

• All rayed fins were measured using calipers (±0.1mm)

• Blood sampled for analysis of: 

o Haematocrit

o Glucose 

o Cortisol 

o Lysozyme activity

Sampling generally commenced at around 10 am on each visit approximately 2 h 

following the first daily feed

Water quality analysis was also carried out for the following parameters from the

inflow and outflow of each system as described in Chapter 2:

• Dissolved oxygen

• Ammonia (TAN)

• pH

• Temperature

• Alkalinity

For improved consistency, water samples were always collected between 2 and 3 

pm at each visit.

Farmers were also asked to keep a log of mortality, feeding, water temperature 

and any stock movements during the period of sampling.
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7.3. Results

7.3.1. Stocking density practices on a selection of UK trout farms

Changes in SD were monitored through the course of the production cycle on farms 1, 2, 

4 and 5. Fish would be stocked into different systems on these farms at initial SD ranging 

from 12.3 to 32.0 kg m 3. When fish were initially stocked into systems the farmers had a 

reasonable estimate of the mean fish weight and total number of fish. Fish numbers were 

determined by either automated fish counters built onto grading machines, or estimated 

from knowledge of the total biomass and mean individual fish weights. Mean weights 

were estimated from batch weights, the frequency and method of which, varied between 

sites. For smaller fish mean weight was normally calculated by counting a known weight 

of fish in or out of a bucket and for larger fish, between 50 to 100 fish were weighed into 

a pre-weighed bin part-filled with water.

With knowledge of the number and weight of fish initially stocked into a system, 

farmers would then feed either a set ration, or use demand feeders to allow fish to feed to 

appetite. Of the 7 farms visited, 6  used the software packages ‘D-Joumal’ or ‘Farm 

Navigator’ to plot and predict the performance of batches of fish. The software packages 

estimated the growth of fish based upon an assumed FCR, which could be calculated by 

recording the amount of food fed each day. Drawing comparison between the estimated 

and actual weights of fish, this system appeared very accurate (see Figure 7.1). However, 

the accuracy of the software for predicting growth was ultimately dependent on the 

accuracy with which fish numbers and the weight of feed supplied to the fish was

recorded.
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Figure 7.1. Relationship between changes in stocking density, fish growth and mortality 

in a raceway of fingerling rainbow trout from Farm 1.
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Chapter 7: On-Farm Welfare Assessment

Due to the large volumes of food fed to fish each day, the amount was often 

recorded based on the number of bags of food used (25kg) e.g. 80,000 fish at lOOg fed on 

a 1.5% body ration would require 120 kg or approximately 5 bags of food per day. With 

feed costs accounting for up to 50% of total production costs (Westers, 2001) farmers 

were very conscious of how much feed was given to the fish.

As fish grew, SD increased and the effect of growth overrode any effect that 

mortality had on reducing SD (Figure 7.1). Farmers are required by law to keep a record 

of daily mortalities and this information was available on all of the farms visited. It was 

usually the case that when fish were graded out of a system, the actual number of fish 

would differ slightly from the estimated number. An example from Farm 2 shows that the 

actual number of fish at grading (86,466) was approximately 250 lower than the 

estimated number 86,719 (Figure 7.1). However, this difference of 250 fish represented 

less than a 0.5% margin of error and could have been attributed to a number of factors 

such as predation (e.g. herons, mink and otters), escapees, or human error.

The way in which SD was regulated was largely site specific, depending on 

factors such as the size, number and availability of culture systems on a particular farm, 

water temperature, water availability, dissolved oxygen and market demand for fish. 

Figure 7.2 follows a batch of around 112,000 fish from their arrival on Farm 5 from a 

size of around 15 g through until harvest. Farm 5 was a particularly large site with a wide 

variety and numerous rearing units, offering a degree of flexibility throughout the 

production cycle. Other farms that were visited were more restricted with fewer systems 

and fewer movements of fish, though in all cases fish would generally be moved or 

graded at least twice during production cycle.
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Figure 7.2. Growth and stocking density regulation of a batch of fish from arrival until 

harvest on Farm 5.

Key:

A. Batch of approximately 112000 fish (mean weight 15g) arrived on-site and were split 

into 5 raceways (13.5 m3; 1st use water)

B. Each raceway of fish is transferred into a larger round tank (80 m3; 1st use water)

C. Fish are transferred from round tanks and mixed with other fish from the same 

original batch into an outlet channel (450 m3; 3 use water)

D. Fish are graded and the top grade of fish at harvest size is removed
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Farms 3 and 4 were examples of modem, intensive trout farming systems, where 

parallel banks of concrete raceways allowed for a compact site with the capacity to 

produce a large biomass of fish (Farm 4 produced around 250 tonnes of fish per annum 

from a site covering around 400 m2). Farms 3 and 4 both operated at maximum SD of 

above 1 0 0  kg m and were dependent on high rates of water exchange and liquid oxygen 

injection to maintain DO above critical levels. Space limitations on Farms 3 and 4 meant 

that it was difficult for farmers to maintain fish as distinct batches for prolonged periods 

of time, although a batch of fish on Farm 4 was followed for a 6  month period, from a 

size of around 40 g until harvest (Figure 7.3). The SD of the batch of fish from Farm 4 

was reduced after around two months by the removal of a screen that had been separating 

this batch from another batch of fish positioned downstream in the raceway. When the 

fish reached an average weight of around 250 g and a SD of more than 120 kg m‘3 they 

were graded, with the top grade (>400g) being harvested and the remainder of the fish 

returned to the raceway before subsequent harvest at approximate monthly intervals 

(Figure 7.3).

7.3.2. Water quality

On most of the sites visited, the main factor influencing farmers’ decisions with regard to 

the maximum SD was oxygen availability. Farms 3, 4 and 5 all used liquid oxygen 

injection, allowing oxygen to be diffused into the water in the inlet channel to the farm. 

Smaller, dome-shaped diffusers positioned strategically around the farm could provide 

top-up injections, allowing the water to be re-used through different rearing systems

without DO becoming limiting.
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Figure 7.3. Growth and stocking density regulation on Farm 4, an example of a modem, 

high density trout farm.

Key:
A. Removal of a dividing screen in the raceway provided fish with more space

B. Fish were partially harvested, where ‘top-grade of largest fish was removed

313

M
ea

n 
fish

 
we

ig
ht

 (
g)



Chapter 7: On-Farm Welfare Assessment

The oxygen injection systems used on Farms 3, 4 and 5 were all fully automated 

and worked on a feed-back loop, whereby DO measurements from probes based at 

strategic points around the farm were relayed back into a control system. The 

oxygenation systems on Farms 4 and 5 were also capable of logging the DO measured 

from the probes into a PC at pre-set time intervals.

The data-logging capacity afforded by monitoring systems such as those used on 

Farms 4 and 5 is illustrated in Figures 7.4 and 7.5. Measurements of water temperature 

and DO taken at 20 min intervals over a 24 h period show how the injection system on 

Farm 4 maintained inflow DO at a steady 12 mg I'1, even though the DO in the river 

supplied the farm ranged between 9 and 11 mg F1. The night-time drop in river water DO 

is typical of the region in which Farm 4 was located (SE England), occurring when the 

large plant biomass that grows naturally in the rivers stopped photosynthesising during 

hours of darkness (Figure 7.4). Data is also presented for the entire 6  month sampling 

period during which a batch of fish was monitored on Farm 4 (Figure 7.5).

Farm 5 also used oxygen injection, but the SD policy differed substantially from 

that of Farms 3 and 4. The highest SD on Farm 5 (approx. 60 kg m'3) occurred when the 

fish were relatively small (>50g) and were housed in 13.5 m3 concrete raceways, but 

when moved into larger systems, the maximum SD was around 30 kg m' 3 (Figure 7.2). 

Instead of using the oxygen injection system to achieve very high SD, Farm 5 used the 

system to enable the water to be re-used through numerous different systems in a multi­

pass or ‘maze’ system.
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Figure 7.4. Fluctuations in dissolved oxygen and water temperature over a 24 h period on 

Farm 4; automated recordings taken at 20 min intervals by an Oxyguard™ monitoring 

system.
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Chapter 7: On-Farm Welfare Assessment

Farms 1 and 2  represented the more traditional style of table trout farm, where 

aeration was provided by paddle wheels and DO was ultimately the limiting factor for 

maximum SD. Farms 1 and 2 both operated at a higher maximum SD during the winter 

months when DO was higher and where maximum SD of around 40 kg m 3 would be 

used compared with the summer maximum of around 30 kg m'3.

Farms 6  and 7 both produced trout mostly for restocking fisheries. The fry stages 

of production on Farms 6  and 7 were similar to the other sites, where fry were grown in 

compact concrete raceways and Farm 7 operated up to a maximum SD of around 40 kg 

m" . However, the maximum SD applied during the on-growing stages (>100g) was less 

than 10 kg m‘3 on both sites, with fish grown in large earth ponds. The main driver 

limiting SD on Farms 6  and 7 was the farmers desire to prevent fin and body damage.

7.3.3. On-farm welfare assessment

Over the course of 39 separate visits a total of 914 fish were sampled from the 7 different 

farms. Following analysis, the data was entered into a spreadsheet foi Principal 

components analysis (PCA).

7.3.3.1. Principal Components Analysis of farm data

Haematocrit data was arcsine transformed and case-wise deletion was used, removing 

any individual fish with missing data for any of the parameters leaving a total of 804 fish 

being included in the final analysis.
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Fin Principal Component (Fin-PC)

The first step of the analysis involved creating the PC for the RFL scores for all of the 

fins from measured from each fish. This resulted in a single PC (Fin-PC), which 

accounted for over 50% of the total variance observed within the fin data (Figure 7.5). In 

addition to accounting for more than half of all the variability within the fin data, the 

factor co-ordinates for the fin measurements that made up the Fin-PC indicated that there 

was a unidirectional contribution from each fin i.e. a low RFL value for each fins 

contributed towards a high factor score for Fin-PC (Table 7.3).

Table 7.3. Contribution and co-ordinates of the variables included in Fin-PC for arcsine 

transformed relative fin index data.

Variable Fin-PC 1

Contribution Factor co-ordinates

Dorsal 0.065 -0.479
Caudal 0.082 -0.538
Anal 0.151 -0.728
Left Pelvic 0.182 -0.800
Right Pelvic 0.190 -0.817
Left Pectoral 0.187 -0.809
Right Pectoral 0.142 -0.707

To make the Fin-PC a more intuitive reflection of welfare status, the individual 

factor scores were multiplied by —1, so that a high Fin-PC factor score indicated a fish 

with good fins (high RFL values). It was also necessary to ensure that all values were 

greater than zero for subsequent statistical modeling, and theiefore 4 was added to each 

Fin-PC factor score. The converted Fin-PC factor scores [*-l(+4)] for each case were 

used as an independent variable in a GLM that included farm as a categorical predictor 

with the addition of environmental and water quality parameters as continuous predictors.
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Figure 7.6. Scree plot of Eigenvalues for principal components derived from arcsine 

transformed relative fin index values for rainbow trout collected from 7 UK farms; 

percentages indicate the amount of variability taken into account by each PC (Eigenvalue 

number).

319



Chapter 7: On-Farm Welfare Assessment

The whole model results are shown in Table 7.4 and the high R2 (0.72) indicated 

that the model was taking account of a large proportion of the variability observed in the 

factor scores for Fin-PC.

Table 7.4. Whole model effects based on test for factor scores for Fin-PC derived from 
relative fin index.

Independent Adjusted/ ? 2 SS Degrees of F P
Variable

Freedom
Fin-PC 0.72 579 1 0  206 0 . 0 0 0

Univariate analysis indicated that the predictors that were having a significant effect on 

Fin-PC were SD, temperature, pH, NH3 and farm (Table 7.5).

Table 7.5. Univariate tests of significance for variables included in the GLM using factor

scores for Fin-PC [*-l(+4)] as an independent variable.

Independent
Variable

SS Degrees of MS 
freedom

F P

Fin-PC Intercept 31.62 1 31.623 112.652 0 . 0 0 0

Density 5.29 1 5.290 18.844 0 . 0 0 0

Loading rate 0.04 1 0.039 0.138 0.710

Temp 5.61 1 5.608 19.977 0 . 0 0 0

PH 10.43 1 10.428 37.147 0 . 0 0 0

DO 0 . 1 1 1 0.113 0.401 0.527

Ammonia 0.26 1 0.258 0.920 0.338
n h 3 1.18 1 1.176 4.188 0.041
Farm 144.92 6 24.154 86.045 0 . 0 0 0

Error 220.92 787 0.281

The residuals for the GLM were not normally distributed (Kolmogorov and Smirnov d -  

0.056; P= 0.0136), but when the same model was analysed using a GLZ model with a 

log-link function, the same parameters were found to be significant (Table 7.6).
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Table 7.6. Univariate tests of significance for variables included in the GLZ using factor 

scores for Fin-PC [*-l(+4)] as an independent variable.

Independent
Variable

Degrees of 
freedom

Wald statistic P

Fin-PC Intercept 1 139.0 0 . 0 0 0

Density 1 19.1 0 . 0 0 0

Loading rate 1 0 . 2 0.670
Temp 1 23.6 0 . 0 0 0

PH 1 32.6 0 . 0 0 0

DO 1 1 . 2 0.280
Ammonia 1 0 . 6 0.427
NH3 1 4.0 0.046
farm 6 486.6 0 . 0 0 0

Combined Principal Component (C-PC)

The next stage in the analysis was to include the converted factor scores for the Fin-PC 

along with the values for the other welfare indictors to create a combined principal 

component (C-PC). The PC A resulted in the selection of two C-PCs, which together 

accounted for around 4 5 % of the variability observed within the welfare indicators 

(Figure 7.7). The relative contribution and factor-co-ordinates of variables included in the

C-PCs are shown in table 7.7.

Table. 7.7. Contribution and factor coordinates of the variables included in the PCA 

analysis for the creation of a combined PC welfare index. ________

Variable C-PC1
Contribution Co-ordinates

Condition factor 
Cortisol 
Glucose 

Lysozyme activity 
Haematocrit

Fin PC [(*-1 )+4]

0.170
0.019
0.276
0.001
0.228
0.306

0.520
0.173
-0.661
-0.040
-0.602
0.697

C-PC2
Contribution Co-ordinates

0.048
0.023
0.052
0.662
0.075
0.140

-0.236
0.164
-0.245
-0.875
-0.295
-0.402
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Figure 7.7. Scree plot of Eigenvalues for principal components derived from welfare 

indicators measured from rainbow trout collected from 7 UK farms; percentages indicate 

the amount of variability taken into account by each PC (Eigenvalue number).
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The co-ordinates of the variables included in C-PCs 1 and 2 fitted intuitively with 

what would be expected for a fish with good or bad welfare status. A high score for C- 

PC1 would be indicative of good welfare e.g. a fish with high condition factor, good fins 

(high RFL), low glucose and low haematocrit. The co-ordinates of the variables in C-PC2 

were also very coherent, with the main contributions coming from lysozyme activity, 

condition factor and Fin-PC, although the negative co-ordinates for these variables meant 

that a low score for C-PC2 indicated good welfare.

The factor co-ordinates of glucose and haematocrit were negative in C-PC2, but 

this counter intuitive result had little bearing on the factor scores for C-PC2 as the 

contributions of these variables was very low (0.052 and 0.075 respectively; Table 7.6). 

The strong contribution of lysozyme activity in C-PC2 when it had almost no 

contribution in C-PC1 was also encouraging, suggesting that C-PCs 1 and 2 reflect 

different aspects of fish welfare. Cortisol contributed very little to either of the C-PCs 

(0.019 and 0.023 in C-PCs 1 and 2 respectively).

The relationship between C-PCs 1 and 2 is illustrated in Figure 7.8; the arrows 

indicate the change in welfare status at different positions on the factor plane e.g. a fish 

with a low score for C-PC1 and a high score for C-PC2 was assumed to have poor 

welfare status. The position of each of the variables contributing to the C-PCs on the 

factor plane, illustrates the bearing of their contribution.
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The factor scores for C-PCs 1 and 2 were included in a GLM with the same 

independent variables that were used for the Fin-PC. The R2 values for the whole model 

effects, suggested that the GLMs accounted for around 65% of observed variability for C- 

PC1 28% from C-PC2 (Table 7.8). The residuals for both models were within 

accepted limits for normality tests (Kolmogorov and Smirnov ld’ statistic was 0.024 and 

0.037 for C-PC1 and 2 respectively; P>0.20 in both cases).

Table 7.8. Summary of whole model effects for GLMs using C-PCs 1 and 2 as 

independent variables.

Independent
Variable

Adjusted R2 SS Degrees of 

Freedom

F P

C-PC1 0.646 521.5 13 113.4 0

C-PC2 0.278 232.5 13 24.8 0

The main influence on both of the models was the effect of farm. However, there were 

differences in effects of other variables, with DO, TAN and UIA all having significant 

effects on C-PC1, while the only variables that had a significant effect on C-PC2 were

SD and pH (Table 7.9).

The factor scores for the fin and combined PCs were plotted against the different 

variables included in the models to illustrate the magnitude and bearing of any effects 

that the variables had on the various components of fish welfare. For improved clarity, 

CPC-2 was multiplied by -1 (as with Fin-PC), so that for all of the PCs, a high score 

represented good welfare (Figures 7.7 -  7.15).
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Table 7.9. Univariate tests of significance for effects of variables included in GLMs 

using C-PCs 1 and 2 as independent variables.

Independent
Variable

SS Degrees of MS 
freedom

F P

C-PC1 Intercept 7.8 1 7.8 2 2 . 2 0 . 0 0 0

Density 0 . 1 1 0 . 1 0 . 1 0.703
Loading rate 0.3 1 0.3 0.9 0.342
Temperature 0 . 0 1 0 . 0 0 . 1 0.753
PH 0 . 1 1 0 . 1 0 . 2 0 . 6 8 8

DO 2 . 1 1 2 . 1 5.9 0.016
Ammonia 1.7 1 1.7 4.8 0.029
n h 3 3.2 1 3.2 9.0 0.003
Farm 154.1 25.7 72.6 0 . 0 0 0

Error 278.5 787 0.4
C-PC2 Intercept 0.9 1 0.9 1.3 0.253

Density 19.1 1 19.1 26.5 0 . 0 0 0

Loading rate 0.3 1 0.3 0.5 0.487
Temperature 0 . 0 1 0 . 0 0 . 0 0.904
PH 9.5 1 9.5 13.2 0 . 0 0 0

DO 0.4 1 0.4 0.5 0.463
Ammonia 2 . 1 1 2 . 1 2.9 0.089
n h 3 1.4 1 1.4 1.9 0.169
Farm 51.4 6 8 . 6 11.9 0 . 0 0 0

Error 567.5 787 0.7

7.3.3.2. Summary of effects of variables on welfare PCs 

Stocking Density

During the farm sampling fish were collected from systems operating at a wide range of 

SD (2 0 -  117.3 kg m‘3). The mean SD for the systems included in the study was 43.2 kg 

m-3. There was a significant effect of SD on Fin-PC (PcO.OOl), with a trend for mean 

factor score to decrease with increasing SD (Figure 7.9). A high factor score (=1.25) 

indicated a high RFL (good fins) within the lowest density category «10 kg m'3), which 

was followed by a sharp drop to a mean factor score of around 0 in the 11-20 kg m’3 SD 

category. There was then a steady decrease in the mean Fin-PC factor score as SD 

increased, to reach it’s lowest in the 1 0 0 - 1 10 kg m' 3 SD category.
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Figure 7.9. The effect of stocking density on principal components for welfare indicators 

measured from UK rainbow trout farms; box shows mean ± 95% confidence interval.
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The sharp increase in Fin-PC from around -1.25 up to 0 . 4  (the second highest 

mean over all SD ranges) at a SD of 110-120 kg m’3, which was due entirely to a single 

batch of fish sampled from Farm 3 that had particularly good fins and were the only fish 

that fell into the 110-120 kg m 3 SD category. There was no significant effect of SD on C- 

PC1 (P = 0.703), although similar to the Fin-PC there was a sharp drop in mean factor 

score moving from the <10 kg m 3to the 10-20 kg m"3 SD categories. However, after this 

initial drop, the mean factor score for C-PC1 remained fairly steady at around -0.5 over 

the remaining SD categories. The effect of SD on C-PC2 was found to be significant and 

(P<0.001) and Figure 7.9 suggested that increasing SD generally had a negative overall
a

effect, with negative mean factor scores observed over the SD range of 70 to 110 kg m' , 

although up until 60-70 kg m'3, C-PC2 seemed relatively unaffected by SD. Similar to the 

Fin-PC, there was also a sharp increase in mean C-PC2 at the highest SD categories 

where mean factor score increased from its lowest value of around -0.75 at the 100-110 

kg m 3 category up to 1.25 in the 1 1 0 - 1 2 0  kg m'3, which was incidentally the highest 

mean factor score for C-PC2.
- 3The stocking density categories were separated into 20 kg m' divisions and a 

scatter plot of CPCs 1 and 2 is shown in Figure 7.10; ellipses indicate 70% confidence 

intervals of the data points for each density range (refer back to Figure 7.6 for 

explanation in the direction of change of welfare status).
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Figure 7.10. The effect of stocking density on the projection of factor scores for PCs 

created from welfare indicators measured on UK trout farms; ellipses indicate 70% 

confidence intervals, data points removed from lower plot for improved clarity.
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Loading Rate (LR)

LR ranged from a low of 0.09 to a maximum of 3.27 kg I' 1 min’1, with the mean value of 

1.4 kg 1 min \  There was no significant effect of LR on any of the PCs, but there 

appeared to be an increase in mean factor score for all of the PCs (i.e. improved welfare) 

around the mid range of LR; the increase for the Fin-PC and C-PC1 in the 1.51 -  2.00 kg 

I" 1 min’ 1 category was particularly marked (Figure 7.11). LR was categorised into 

divisions of 0.5 kg I’ 1 min' 1 over the range of 0 -  3.5 kg I' 1 min’ 1 and factor scores for 

CPCs 1 and 2 were plotted against each other, with ellipses indicating the 70% 

confidence interval for each LR categories (Figure 7.12). The ellipse for the 1.51 -  2.00 

kg I" 1 min’ 1 category appeared to be removed from the other LR categories, positioned 

further to the bottom right of the factor plane, suggesting higher welfare status for fish 

sampled in this LR category (refer back to Figure 7.8 for a description of the changes in 

welfare status associated with position on the factor plane).

Water temperature

There was a significant effect of water temperature on Fin-PC (PcO.OOl), although it was 

difficult to interpret how water temperature affected the Fin-PC, as there was no 

consistent trend for Fin-PC to either increase or decrease with water temperature. Water 

temperature ranged between 3.5 and 18.6°C and the mean temperature over the course of 

the sampling was 12.0°C. The mean factor scores for both Fin-PC and C-PC1 peaked 

between 12 and 14°C. The observed mean values for Fin-PC and C-PC1 were very 

similar over the full range of water temperatures. There was no significant effect of water 

temperature on either C-PC1 (P=0.703) or C-PC2 (P=0.904).
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Figure 7.11. The effect of loading rate on principal components for welfare indicators 

measured from UK rainbow trout farms; box shows mean ±95% confidence interval.
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Figure 7.12. The effect of loading rate on the projection of factor scores for C-PCs 

derived from welfare indicators collected from UK trout farms; ellipses indicate 70% 

confidence intervals.
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PH

The average pH measured from the outflow of the systems was 7.9, with the lowest pH 

observed on Farm 1 (pH 6.2) and the highest on farm 7 (pH 8.5). The water on the farms 

located in South East England (Farms 4, 5 & 7) was alkaline (pH 7.61-8.50), while water 

in the Northern and Scottish farms (Farms 1, 2 & 3) was neutral or slightly acidic (pH 

6.20-7.47). There was a significant effect of pH (P<0.001) on Fin-PCl and C-PC2, but 

there was no effect of pH on C-PC1 (P=0.688).

Dissolved oxygen (DO)

The mean DO measured from the outflow of the systems included in the sampling was 

8.7 mg I'1, and at all points the outflow DO remained above 6.5 mg I"1. There was a 

significant effect of DO on C-PC1 (P= 0.016), with an increase in mean factor score with 

increasing DO. The mean factor scores for the different PCs were generally consistent 

over the range of DO.

Total ammonia nitrogen (TAN)

There was a significant effect of TAN on both of the combined PCs (P=0.029 for C-PC1 

and P=0.089 for C-PC2), but there was no effect of ammonia on the Fin-PC (P=0.427). 

The highest concentration of TAN was 0.48 mg I 1, measured from Farm 1 and the mean 

concentration was 0.22 mg I'1; the concentration of TAN measured from the outflow was 

greater than the inflow concentration in all cases. There appeared to be an effect of 

decreasing factor score for C-PC1 with increasing ammonia concentration, suggesting 

poorer welfare at increased ammonia concentration.

333



Chapter 7: On-Farm Welfare Assessment

Unionised ammonia (UIA)

There was a significant effect of UIA on C-PC1 (P=0.003) and the Fin-PC (P=0.041) 

with factor scores decreasing with increased UIA concentration. The levels of UIA were 

generally much higher on Farms 3 and 4 due to a combination of high SD and alkaline 

water. The maximum observed concentration of UIA was 0.038 mg I' 1 (Farm 4), almost 

double the recommended safe level of 0.02 mg f 1 (Wedemeyer, 1996).

Farm

Farm had a significant effect on all of the PCs. Farm 7 stood out as having particularly 

high factor scores for CPC1 and Fin-PC, while Farm 3 had high factor scores for C-PC2 

(Figure 7.13). Farms 4 and 5 had low factor scores for all of the PCs. The factor scores 

generally displayed a similar pattern of change between farms suggesting that there was a 

good degree of coherence between the PCs. A scatter plot of C-PCs 1 and 2 with ellipses 

indicating 70% confidence intervals of the data points for each farm is shown in Figure 

7.14 (refer back to Figure 7.8 for explanation of the direction of change of welfare 

status). Although there was a large degree of overlap between the different sites, Farm 7 

stood out clearly with particularly high scores for C-PC1.
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Figure 7.13. Effect of farm on principal components for welfare indicators measured 

from UK rainbow trout farms. Boxes represent 25th to 75th percentiles, with the mean and 

median factor scores for each farm represented respectively by dashed and solid lines; 

error bars denote 10th and 90th percentiles, with dots representing outliers (>95% 

confidence interval).
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Figure 7.14. The effect of farm on the projection of factor scores for PCs created from 

welfare indicators measured on UK trout farms; ellipses indicate 70% confidence 

intervals, data points removed from lower plot for improved clarity.
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Season

One of the most common comments made by farmers on questionnaire replies was the 

influence of season on their SD practices, suggesting a greater capacity for supporting 

higher SD during the winter months. The dates of the farm visits were sorted into seasons 

[Spring (March -  May); Summer (June -  August); Autumn (September -  November); 

Winter (December -  February)] and data points for C-PCs 1 and 2 plotted with ellipses 

added to indicated 70% confidence intervals (Figure 7.15). There was a large degree of 

overlap between the ellipses although there appeared to be a greater spread of factor 

scores for summer and autumn (wider range of welfare status). However, it is unclear if 

the greater spread of factor scores in summer and autumn was due to the increased 

sampling effort through the summer and autumn months or was a genuine indication of a 

wider range of welfare status.
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Figure 7.15. The effect of season on the projection of factor scores for PCs created from 

welfare indicators measured on UK trout farms; ellipses indicate 70% confidence 

intervals, data points removed from lower plot for improved clarity.
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7.4. Discussion

The farm sampling was subject to a number o f limitations that meant that the study did 

not have sufficient power to allow firm conclusions to be drawn from the dataset. The 

main limitations o f the study were the small number o f farms that were visited and also 

the fact that the farms were not randomly selected. The fact that inclusion o f the farms 

was partly due to the willingness o f farmers to participate in the study could have biased 

the dataset. These limitations meant that the scope o f this part o f the study was limited to 

providing a description o f SD practices on a selection o f representative trout farms and 

testing the feasibility o f the on-farm application o f the system o f welfare assessment used 

in this thesis. Any conclusions or statements made in discussion o f these results are only 

applicable to the 7 farms included in the study and should not be taken to represent the 

whole UK trout farming industry.

The farm sampling was successful in collecting data from a selection o f

-3representative farming systems over a wide range of SD (2 to 117 kg m ). The 

longitudinal sampling approach provided accurate descriptions o f changes in SD and the 

different approaches used to regulate SD in farming systems representing different 

intensities o f production. There were problems associated with follow ing batches o f fish 

for prolonged periods o f time due to the frequency o f grading and m ixing o f batches on 

som e o f the sites. There were also problems associated with disease outbreaks (e .g . the 

protozoan diseases Ic th y o p h th ir iu s  m u ltif i l i is  and T ric h o d in a  spp.) that prevented the 

continuation o f sampling o f some batches o f fish.

The PCA appeared to be an effective method for determining welfare status based 

on correlations within the different welfare indicators that w eie measured on farm. The
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PCs that resulted from the analysis appeared to be both coherent and biologically 

meaningful indications of different components of welfare. It is generally accepted that 

animal welfare can not accurately assessed by measuring any single variable in isolation 

(FSB I 2002; Spoolder et al., 2003) and requires a selection of variables to be measured 

that are indicative of the different aspects of welfare status. However, one of the draw 

backs of such an approach is that there is ultimately a degree of subjectivity associated 

with the weighting of the different components of welfare (Spoolder et al., 2003). The 

use of PCA effectively removed any subjectivity associated with weighting of the 

different variables by extracting statistical significance from the data, resulting in the 

generation of objective welfare indices.

When the results of the farm sampling are used in conjunction with the results of 

the tank based studies there appeared to be a degree of agreement between the data sets. 

Similar to the tank studies there was an effect of increasing SD on fin damage (lower 

RFL) with increasing SD. The sharp drop in factor score for the Fin-PC moving from 0- 

10 kg m'3 up to the 10.1-20.0 kg m'3 density category (Figure 7.9) may suggest that very 

low SD may be required to preserve good fin quality. However, the relatively small 

sample size meant that only the data from the two restocking farms (Farm 6 & 7) fell into 

the <20 kg m'3 SD category. Furthermore, the pronounced effect that a single batch of 

fish with good fins that were being farmed at a high SD (100-120 kg m"J) demonstrated 

how one anomalous result can have a large influence on observed trends within such a 

small data set (Figure 7.9). This anomalous result of a batch of fish at high SD with good 

fins did however suggest that it may be possible to preserve fin quality even at very high 

SD, as these fish were being farmed at 117 kg m~3.
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One of the points of contradiction in the SD questionnaire responses was the 

critical time at which SD had to be kept low to maintain good fins. Some farmers 

suggested that it was at the fry stage, while others suggested the on-growing stages. The 

policy of Farm 7, which had the highest factor scores for Fin-PC was to stock fry at SD 

of up to 40 kg m 3 but to operate a maximum SD of around 10 kg m'3 for larger fish.

There was a wide range in the degree of fin damage observed on the farms, from 

fins with no visible damage down to fins that were completely absent. Fish sampled from 

Farms 4 and 5 generally had poor fins, with the pectoral and pelvic fins appearing 

particularly vulnerable. It also appeared apparent that if a fin was severely damaged it 

was unable to regenerate properly; with heavy scar tissue often evident on twisted and 

deformed fins suggesting a history of damage.

Other factors that had a significant effect on the Fin-PC were temperature, pH and 

UIA. Factor scores for Fin-PC appeared to decrease with increasing pH and UIA 

concentration, but the relationship between temperature and Fin-PC was not clear. There 

are limited reports of fin measurements being recorded for rainbow trout from UK trout 

farms, and as a non-native fish species, there is no reference wild population of rainbow 

trout with which to make to make comparisons. The most relevant piece of literature 

comes from a North American study into the prevalence of fin erosion in hatchery and 

wild reared rainbow trout in the state of Utah (Bosakowski & Wagner, 1994b). This study 

found lower alkalinities, unnatural bottom substrates (steel or concrete), higher UIA 

concentration and higher SD to be significantly correlated with fin erosion. The results of 

the present study are in general agreement with those of Bosakowski and Wagner with 

significant effect observed for UIA and SD. The comparatively small sample size in the
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present study meant that it was not possible to model factors such as substrate or system 

type. As alkalinity was not measured on all visits it was also excluded from the models.

Two PCs were selected from the combined PCA (C-PCl & C-PC2). A fish with a 

high factor score or C-PCl had high CF, good fins, low plasma glucose and low 

haematocrit, suggesting good welfare status. In contrast, C-PC2 was predominantly a 

reflection of lysozyme activity, with very low contributions from the other welfare 

indicators (Table 7.7).

The factors that had a significant effect on C-PCl were DO, TAN, UIA and farm, 

suggesting that water quality deterioration had a greater effect on welfare than SD. The 

significant effect of DO on C-PCl was interesting as DO was above 6.5 mg l'1 in all of 

the systems sampled (6.5 mg f 1 is a conservative estimate of minimum requirement for 

trout culture quoted in the BTA Code of Practice; Anon., 2002). A similar significant 

effect of DO was observed in the tank study in Chapter 5 when DO was maintained 

above 5 mg f 1 at all times. This might suggest that there may be beneficial effects of 

maintaining DO at higher concentrations than are currently recommended for rainbow 

trout.

The change in factor scores for Fin-PC and C-PCl were generally very similar 

over the ranges of the different variables. The Fin-PC was variable with the strongest 

contribution towards C-PCl (Table 7.7), so it was not surprising that factor scores for 

these PCs displayed a strong correlation (adjusted R2 = 0.48). However, the GLMs 

showed that Fin-PC and C-PCl were affected by different factors, suggesting that there 

was a greater degree of complexity in the models than was suggested from the responses 

to individual parameters.
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The effects of the various parameters on C-PC2 were less clear and the 

comparatively low R2 value for the best-fit model for C-PC2 (.R2 = 0.278) compared with 

C-PCl and the Fin-PC suggested that the model accounted for less of the variability 

observed within the C-PC2. The main variable contributing to C-PC2 was lysozyme 

activity so this PC would have been providing a crude indication of the non-specific 

immune status of the fish at the time of sampling.

Farm was a major influence on all of the models and was likely to be a reflection 

of the small number of farms that were visited and the fact that the farms included in the 

study were deliberately selected to cover as wide a range of farming systems as possible. 

The factor scores of the PCs suggested that from the farms sampled, welfare was highest 

on Farm 7 (Figures 7.13 & 7.14).

The fact that cortisol had very little influence on either of the C-PCs was 

surprising considering how prominent it was in the tank based study in Chapter 4. Some 

of the factors influencing cortisol response were discussed in depth in Chapter 4, but it 

may be that the production environment of the farms included this study was less 

stressful than the experimental tank system. Alternatively, it may have been that the 

interrenal cortisol response of the fish was acclimated or exhausted.

Considering the significant effects of water quality parameters on fish welfare, 

any future application of fish welfare assessment might benefit from inclusion of some 

form of gill assessment. Various methods of gill assessment have been proposed in the 

literature such as measurement of the primary gill lamellae (Rosenthal et al., 1984), 

histological examination (Soderberg et al, 1984), and a light-microscopic morphometric 

examination of gill tissue (Hughes & Perry, 1976). Another factor that should be included
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in any future method of welfare assessment is the assessment of feed intake. Reduced 

growth is commonly reported as a negative effect of increasing SD and water quality 

deterioration, but evidence of a mode of action is rarely provided (Ellis et al., 2002).

There was generally good co-operation from farmers participating in this study 

although the degree of enthusiasm was lower in the two restocking farms. The restocking 

farms included in the study both saw low SD as a prerequisite for producing fish with 

good quality fins. There also appeared to be a difference in the way the farmers viewed 

the fish, with the restocking farmers viewing each fish as a potential 10 lb trout to stock 

into a lake, whilst the table farms were more inclined to see each fish a 450g food 

portion. There was likely to have been an element of financial value associated with the 

way in which the fish were viewed by farmers, with a portion sized fish being worth less 

than £1, while restocking fish will be worth much more than their relative value as a food 

product, with anglers prepared to pay in excess of £30 a day to attempt to catch and take 

home a maximum of one or two fish.

The accessibility and ability to provide data from the larger table farms was 

generally much better than smaller farms. Most of the staff of the larger farming 

companies with more than one site had been educated to degree or higher national 

diploma level in some form of fish husbandry course and were confident with the use of 

computers. The larger farms, especially those with liquid oxygen injection were very 

much reliant on computers and software such as D-Joumal or Farm Navigator to keep 

track of batches of fish. Larger farms were generally able to provide detailed information 

regarding fish numbers, mean weights and SD with very little effort. Two of the farms
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with liquid oxygen injection were also able to provide accurate logs of DO and water 

temperature dating back over previous months.

The highest SD were found on table farms using liquid oxygen injection and SD 

in excess of 100 kg m 3 were routinely used on two such sites included in this study 

(Farms 3 & 4). A third site using oxygen injection operated at a maximum SD around the 

industry norm and used the injection system to facilitate the sequential re-use of water 

through different systems, so that the fish in the final outlet channel of this site were 

receiving what was in effect 7th use water. Although the oxygen injection systems allowed 

DO to be maintained above critical levels, such heavy re-use of the water would greatly 

increase the build up of nitrogenous wastes and CO2 .

The larger table farms are now almost totally reliant on the business of 

supermarkets chains but are facing increased pressure from these retailers to be seen to 

address welfare concerns. One of the main concerns for retailers is SD, but the results 

from this preliminary attempt to assess fish welfare in relation to stocking density suggest 

that although there was a significant effect of increased SD on fins erosion, high SD did 

not necessarily result in poor welfare. It is necessary to further improve our 

understanding the implications of fin erosion to fish welfare and also to identify risk 

factors other than SD associated with fin erosion i.e. how did one farm operating at SD in 

excess of 100 kg m'3 manage to maintain better fins than other farms operating at less 

than 40 kg m'3? There is also the need to build upon the base of welfare indicators used in 

these studies with other indicators that provide a reflection of different aspects of fish 

welfare.
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Chapter 8: General Discussion and Future Work

The aim of this study was to investigate the effects of stocking density on the welfare of 

fanned rainbow trout. The first step in the investigative process involved the distinction 

of the two main routes by which stocking density can potentially infringe fish welfare, 

namely, through behavioural interactions associated with fish numbers, and through 

deterioration of water quality bought about by the demand for oxygen and toxic 

metabolite production. Identifying these two root causes of welfare infringement was 

largely achieved by reference to the literature and the focus of the main body of 

experimental work (Chapters 4 and 5) was a direct result of this process.

In order to assess the effects of stocking density on trout welfare it was first 

necessary to establish a system of welfare assessment. This again relied heavily on 

parameters measured in previous studies, but the process was taken a step further by 

incorporating a wider range of indicators, relevant to different aspects of welfare 

infringement. Principal components analysis was used to identify coherence between the 

different welfare indicators and to condense numerous different measurements into fewer 

numbers, which represented a fish’s welfare status.

The final stage of the process was to examine SD from a commercial perspective 

and to confirm the findings from controlled experiments in the farm environment. A 

questionnaire identified the main types of farming system and also established an 

understanding of the practices, perceptions and key issues relating to SD on UK trout 

farms. Finally, welfare was assessed on-farm from a selection of representative farming
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systems. This final chapter will summarise the main findings of these diverse approaches 

to examine the contribution of SD to fish welfare.

8.1. W elfare assessment (Chapter 3)

The approach used to assess welfare in this thesis incorporated aspects of the stress 

response, immune function, nutritional status and body condition. The experiments 

described in Chapter 3 confirmed the widely reported acute cortisol stress response 

observed following a standardised handling stressor, where basal cortisol levels of around 

5 ng ml"1 rose to peak levels between 30 min and 1 h post-stress (Barton et al., 1980; 

Donaldson, 1981). Although the pattern of cortisol response was similar, there were large 

differences in the peak response from the two exposure experiments, but it was not 

possible to establish if these differences were due to a strain effect, or resulted from other 

factors such as differences in fish size, water temperature and season. It would have been 

preferable to have carried out the stress exposures at a similar water temperature on Fish 

of the same size. In addition to measuring the cortisol response, lysozyme activity and 

haematocrit were also measured. The changes in lysozyme activity following the 

standardised handling stressor were not consistent, although in one of the first exposure 

trials lysozyme activity generally displayed a negative correlation with high levels of 

plasma cortisol, which was in general agreement with other published work (Mock & 

Peters, 1990; Fevloden et al., 1999). The data collected in Chapter 3 was important in the 

validation and development of the cortisol radioimmunoassay and it also highlighted the 

profound effect of water temperature and other environmental factors on the welfare

indicators.
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8.2. The effects of stocking density on trout welfare (Chapter 4)

The experiment outlined in Chapter 4 maintained rainbow trout at 10, 40 and 80 kg m'3 

for 10 months and found no effect of SD on growth. This result was unexpected as a 

literature review found a negative effect of increasing SD on growth in 31 of the 42 

studies in which it was assessed (Ellis et al., 2002). Possible reasons for the lack of effect 

of increased SD on growth in this study include the relatively high rates of water 

exchange that were used (2 tank volumes per hour) preventing metabolites reaching 

critical levels and the provision of aeration to maintain DO above 5 mg F1. The fact that 

the fish were fed a set ration instead of fed to appetite may also have contributed to the 

lack of density effect.

There was, however, a significant, cumulative effect of SD on increased fin 

erosion. It was not possible to elucidate the exact cause of the increased incidence of fin 

erosion, although increased aggressive behavioural interactions, abrasion against tank 

surfaces, accidental damage due to feeding/collisions, and water quality deterioration 

with increased SD could all have been contributing factors.

Perhaps the most unexpected result of this study was the significant elevation of 

cortisol observed in the 10 kg m 3 treatment. The potential confounding effect(s) of the 

tank position and sampling sequence failed to provide an explanation, suggesting that the 

high levels of cortisol were a genuine affect of the low SD rather than sampling error. 

There was limited evidence in the literature to support either negative or beneficial 

effects of stocking density on plasma cortisol in rainbow trout, although Vijayan and 

Leatherland (1988) found a similar inversely proportional relationship between cortisol
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and SD in brook charr over a similar range of SD to those used in this study (30, 60 & 

120 kg m'3).

The size distribution within the SD treatments indicated that there was greater size 

variation in the 10 kg m treatment, suggesting the possible presence of a dominance 

hierarchy. There is some evidence in the literature to support this theory, as increased 

levels of cortisol have been observed in subordinate rainbow trout (Laidley & 

Leatherland, 1988; Pottinger & Pickering, 1992). However, the association between 

lower SD and the increased prevalence of dominance hierarchies is tentative and could 

only have been confirmed through investigation of behavioural interactions. Despite 

rainbow trout being one of the most well studied fish species, there is a relatively poor 

understanding of its behaviour, especially under aquaculture conditions and this certainly 

warrants further research.

The elevated haematocrit and lower lysozyme activity observed in the 10 kg m"3 

treatment fitted with the elevated levels of cortisol in this treatment, further suggesting an 

acute stress response. There was a very pronounced effect of water temperature on both 

haematocrit (increased at lower temperatures) and lysozyme activity (increased at higher 

temperatures), suggesting that if incorporating of these parameters in a welfare index, it is 

necessary to account for environmental variation. A temperature controlled experiment 

would have removed the seasonal fluctuation in some of the variables, but the applied 

nature of this study meant that controlling temperature would have removed the focus 

from commercial farm practices in the UK where temperature control is not common.
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A final point to make in regard to the experiment described in Chapter 4 was the 

fact that this study highlighted the important issue of the potential for welfare 

infringement at low as well as high SD.

8.3. Effects of water quality deterioration on trout welfare (Chapter 5)

The experiment described in Chapter 5 tested the hypothesis generated in Chapter 4 and 

also sought to improve upon the experimental design through a combination of upgrading 

the experimental system and introducing the use of PIT-tags to enable individual fish to 

be followed throughout the course of the experiment.

There were distinct differences in water quality depending on the inflow rate, 

although measured ammonia and DO remained within published ‘safe’ limits at all times 

(Wedemeyer, 1996). This highlighted two further points of import, firstly that point 

samples for water quality parameters are of limited value in reflecting maximum and 

mean levels of a particular parameter, and secondly, that reduced growth may occur 

within the recommended ‘safe’ levels. DO was kept above 5 mg I'1 at all times during the 

study but still featured as a significant factor in the GLM. A 24 h water quality profile 

showed that TAN peaked around midnight, a previously unreported observation. The 

poor understanding regarding the production and release of the main nitrogenous waste 

product in a well studied and commercially valuable fish species certainly justifies further 

work.

The main finding of Chapter 5 was that growth and body condition were reduced 

in the 20 and 40 1 min  ̂ compared with the 60 1 min flow treatments. The treatment 

related differences in growth and condition factor coincided with the periods of highest
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water temperature. All of the inflow rate treatments were fed exactly the same amount of 

food through the course of the experiment, so it was not possible to determine if the 

reduced growth was due to reduced feed intake, or poorer conversion of feed into somatic 

growth. This inability to identify a causative mechanism is common to many studies 

reporting reduced growth. Any future study should attempt to ascertain the causative 

mechanism by measuring feed intake. Feed intake could be assessed by feeding to 

appetite, measuring uneaten feed, or estimated by measurement of gut contents or x-ray 

photography.

There was no observed effect of inflow rate on fin length suggesting that the 

increased erosion at higher SD observed in Chapter 4 was due to behavioural interactions 

or space limitation rather than water quality deterioration. There was no effect of flow 

rate on any of the other welfare indicators and cortisol levels remained very low for the 

duration of the experiment.

There were two mass mortality events in the 20 1 min'1 treatment suggesting that 

systems running at high loading rates may run an increased risk of mass fish kills in the 

event of episodic system failures. Similar reports in the literature of mass mortality 

following system failures at high loading rates support this intuitively obvious risk 

(Kindschi et al., 1991a). It is appropriate to echo the recommendations made by other 

researchers for the need for increased supervision and provision of appropriate back-up 

for systems operating at high SD or loading rates (Kindschi et al, 1991a, Miller et al., 

1995; Ellis et al, 2002).
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8.4. On-farm welfare assessment and commercial stocking practices 

(Chapters 6 & 7)

There were marked differences in both the SD practices and the perception of what 

passes for a high SD between farmers producing trout for restocking and farmers 

producing trout for the table. Farmers acknowledged the potential for high SD to infringe 

aspects of trout welfare and with 84% of respondents associating increased fin erosion 

with high. There were marked differences in SD practices between the different types of 

trout production, with farms producing fish for restocking/fisheries markets operating at 

much lower SD than those producing fish for the table. If concerns regarding welfare 

implications of high intensity fish farming continue (e.g. fin erosion, water quality 

deterioration), it may be necessary to focus only on farms producing trout for the table 

rather than re-stocking farms. However, the findings of Chapter 4 suggested that aspects 

of fish welfare can be infringed at low as well as high SD. This is another subject that 

justifies further research to improve understanding of the factors affecting the 

establishment of dominance hierarchies and the implications of such structures on fish 

welfare.

The additional comments added to questionnaires and discussions during farm 

visits provided valuable insights into the priorities of farmers. Several farmers suggested 

that their SD policy was determined by DO levels rather than a specific SD limit. The 

inability of many farmers to provide accurate data regarding flow rates was another 

important point highlighted by the questionnaire, suggesting that applying alternative 

measures other than kg m  ̂is unlikely to be possible on commercial farms.
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The preliminary application of on-farm welfare assessment was successful in 

confirm ing many o f  the observations that were highlighted in the tank-based studies 

described in Chapters 4  and 5. The ability to generalise from the findings o f  the 

commercial application o f  the welfare index was limited by the small number of farms 

included in the study, differences in the number o f visits to the different farms, and also  

by the non-random (purposive) farm selection. However, similar to the tank studies, it 

was shown that there was a significant effect o f SD on the fin length (Fin-PC). There was 

also a significant effect o f temperature and UIA on the fins, which was in general 

agreement with a previously published survey of fin erosion in rainbow trout 

(Bosakowski & Wagner, 1994b). When the Fin-PC was combined with the other welfare 

indicators, the resulting PCs (C-PC1 and C-PC2) appeared to be biologically meaningful, 

with the different variables contributing in a logical and biologically intuitive way. In 

addition to the effect o f  farm, which featured as the most significant factor in all o f  the 

models, there was a significant effect o f DO, TAN and UIA on C-PC1; a similar finding 

was observed in the tank-based studies in Chapters 4  and 5, which showed no significant 

effect o f increased SD on the welfare indices derived from the PCA.

In addition to the preliminary application o f a system for on-farm welfare 

assessment, the commercial sampling provided detailed examples o f  the regulation o f  SD  

in different types o f farming system. This further highlighted the ImpraetleaJities o f  

establishing a maximum SD limit .as the SD changed continuously throughout the 

production cycle. The original scope o f the farm sampling was very broad and the work 

was later extended to incorporate a cross-sectional study to investigate the prevalence of 

fin erosion and a more rigorous longitudinal study to identify the variance that existed
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within the welfare indicators before and after feeding, on a daily, weekly and monthly 

basis, with the aim of establishing the optimum sample size for future farm-based work. 

The extended farm sampling work is not presented in this thesis, although it was part of 

the same study and will form part of the final report that will be presented to the main 

sponsor, Defra.

8.5. Future work

The tank based experiments measured the effects of different numbers of fish in tanks 

with the same inflow rate (Chapter 4) and of different inflow rates in tanks containing the 

same numbers of fish (Chapter 5). A further experiment that could answer some 

remaining questions would be to maintain different numbers of fish at the same SD (kg 

m’3) and loading rate (kg 1 min'1) by adjusting tank volumes together with inflow rates 

between treatments e.g. one treatment with 200 x 100 g fish in 1 m of water with 30 1 

min'1 inflow and another treatment with 100 x 100 g fish in 0.5 m'3 with 15 1 min'1 

inflow. Such an experimental design would allow any effects of fish numbers to be 

separated from those of spatial allocation and water quality deterioration; this would be 

particularly useful in addressing the causes of fin erosion and the formation of dominance 

hierarchies.

Fin erosion was the most reliable indicator of high SD in the tank based studies 

and this was further confirmed during the sampling of commercial farms. However, the 

exact cause of the fin erosion remains unclear and further work is necessary to establish 

how and why fin erosion occurs. There was also the suggestion from samples collected 

from a group of fish being maintained at 117 kg m on Farm 3, that it is possible to
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produce fish with relatively intact fins even when farming at high SD. An 

epidemiological survey to investigate the prevalence of fin erosion on UK trout farms 

could identify risk factors associated with fin erosion, or critical stage in the production 

cycle at which SD should to be limited to maintain fin quality. A research proposal 

adopting such an approach was recently approved by Defra and work is due to commence 

in the coming months.

It could be argued that before identifying the causes of fin erosion it would be 

better to first invest research effort to establish the implications of fin erosion in terms of 

fish welfare. The results of the experiment described in Chapter 4 suggested that the 

increased fin erosion observed in the 40 and 80 kg m'3 treatments did not affect growth, 

but good welfare entails more than good growth and further work is warranted to 

investigate the implications of fin erosion on fish welfare.

The work conducted in this thesis used larger fish (>lOOg) and further work 

focusing on the fry stages would be also beneficial. Such work would be particularly 

relevant in establishing key stages at which fin erosion might occur and there were 

certainly some contradictory comments attached to the questionnaire replies regarding the 

size at which fish are most vulnerable to fin erosion, with some farmers suggesting small 

fish were more vulnerable and another suggesting larger fish. There is some evidence to 

suggest that larger fish have a greater potential to tolerate poorer water quality (Piper et 

al., 1980; Wedemeyer, 1996) and the questionnaire found that highest SD occurred 

during the latter stages of production. On all of the farms that were visited during this 

study, the fry rearing units received first-use water (cleanest), whereas larger fish often 

received water that had passed through other systems. This is likely to be carried out with
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the objective of minimising the chance of cross-infection from older fish with the fry, but 

it could also suggest that smaller fish are perceived to be more sensitive to water quality 

deterioration.

The confounding influence of water quality deterioration at higher SD became 

apparent early on in this project. It also became apparent that there are contradictions in 

the acceptable limits of key water quality parameters for salmonid culture, especially 

when considered from the viewpoint of fish welfare rather than optimised production. 

There remains a need to establish ‘safe’ limits for key parameters (DO, TAN, UIA & 

CO2 ) and also to identify sensitive fish-based indicators of water quality deterioration. 

These concerns were highlighted in the literature review conducted as part of this study 

(Ellis et al., 2002) and Defra is presently funding a further research project to investigate 

the links between water quality and fish welfare.

Lysozyme activity appeared to be a useful indicator of fish welfare, especially 

when used in conjunction with other indicators, but there is no standardised protocol 

making comparison of results between studies very difficult. The development and 

publication of a reproducible and universally recognised protocol for determining 

lysozyme activity would therefore be valuable.

The system of welfare assessment applied in this study combined indicators 

representing different aspects of fish welfare through multivariate analysis to result in the 

generation of welfare indices. With the exception of lysozyme activity, the assay 

procedures used in this study were well established and have been applied in numerous 

other studies, but the PCA took the process further by extending analysis beyond classical 

post-hoc analysis of each individual variable. The welfare indices generated by the PCA
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ultimately reflected the coherence that existed in the particular datasets analysed. The 

PCA analysis in Chapters 4, 5 and 7 produced different PCs, but the contribution of the 

variables in each of the PCs appeared to be biologically feasible, supporting the validity 

of this method of analysis. Different situations will inevitably affect different aspects of 

fish welfare, so the PCA would not be expected to always identify the same PCs. The 

PCA approach also removes problems associated with the subjective weighting of the 

variables in terms of fish welfare.

The development of the welfare indices is perhaps the most important 

requirement for further research and it is recommended that any future indices 

incorporate measurements of feed intake and some form of gill assessment. There is also 

a need for a simplified system of welfare assessment that is not reliant on laboratory 

equipment; such a system would be hugely beneficial for farmers and legislators alike.

There is a very poor understanding of fish behaviour, and more so in the farming 

environment. The study of welfare in terrestrial animals appears to be increasingly 

focused on behavioural measures and there is certainly an argument that although 

behaviour is more difficult to quantify, it can sometimes produce more meaningful results 

than objective indicators (Dawkins, 2004). This study opted for the application of 

objective indices rather than behavioural measurements, but many of the unanswered 

questions such as the causes and implications of fin erosion and dominance hierarchies 

on fish welfare could perhaps be better explained by behavioural studies. However, 

observation of behaviour in commercially farmed populations of fish can be problematic 

(James Turnbull perrs com.)
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Although not discussed in much detail in this study, future work that would be of 

practical benefit to fish fanners would include the identification of risk factors, or critical 

points for each farming system at which welfare might be threatened. One of the 

arguments for not enforcing a maximum SD is the fact that each farming system is 

unique and that farmers have therefore developed systems to best meet the particular 

characteristics of each site. Parallels can be made with other industries, particularly the 

food factory environment where systems such as Hazard Analysis and Critical Control 

Points (HACCP) and Hazard Analysis and Risk Assessments (HARA) have been 

instrumental in establishing universally recognised industry standards across the range of 

factory environments e.g. British Retail Consortium; IS09000. The farm visits 

highlighted the following points that should be considered if a HACCP or HARA 

approach is applied to fish farms:

Feeding

Work is required to investigate the welfare implications of feeding practices such as 

methods of feed delivery (hand, demand, automated) and the frequency of feeding. There 

is an argument that fish could benefit from demand feeders allowing fish to feed when 

they want, but there are also behavioural implications of demand feeders, whereby 

dominant fish may monopolise the food source.

Periods of Starvation

During the production cycle it is relatively common for feeding to be restricted, or for 

fish to be starved for prolonged periods of time. Sometimes this occurs with fish welfare
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in mind e.g. it is considered to be less stressful for fish to be starved before being graded. 

It is also common practice to starve fish if water temperatures reach 16°C and farmers 

will certainly restrict feeding if DO becomes limiting. However, it is also common for 

farmers to hold back’ batches of fish to meet production goals, especially now that there 

are very strict demands made by processors for fish to be of a certain shape and size. 

During the farm visits it was observed that if fish are to be smoked, there can be a period 

of up to two weeks prior to slaughter during which fish are starved to allow the flesh to 

firm, which results in a better final product. Fish differ from mammals in that they are not 

reliant on a constant feed intake to maintain body temperature and will naturally go for 

long periods in the wild without feeding, but establishing the welfare implications of 

restricted feeding is again an area that justifies further work.

Market Demand

It was apparent from the farm visits and from attendance of several annual conferences 

held by the British trout farming community (Sparsholt College, Whinchetser, 2000-

2003) that supermarket chains account for an ever increasing proportion of fish sales. 

Supermarkets demand continuity of supply, increased flexibility to meet market demands 

and also conduct regular audits of farms which increasingly address welfare related 

aspects of production. Although there are obvious potential benefits for fish welfare 

through the auditing system, the fact that supermarkets demand such flexibility from 

farmers can generate welfare problems of its own. The issue of pushing and holding 

back’ batches of fish has already been touched upon, but there is also the problem of fish 

reaching market size with no buyer. This may be due to an oversight by the farmer, or
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due to cancellation of an order by a supermarket, but the result is that a batch of fish at 

market size may have to spend a prolonged period of time on a restricted ration until a 

buyer is found. If the fish are being held at a high SD and/or the delay occurs during the 

summer months, this can result in high levels of mortality; this was a point that also arose 

in the FAWC report (Anon. 1996a). This may also cause a production bottleneck that 

passes down through the farm, especially if there are batches of smaller fish that need to 

be moved into the larger systems that are occupied by the harvest sized fish. Although 

this is ultimately an issue that should be addressed by industry rather than academia, it 

certainly appears to be an increasingly common problem and with the continued growth 

of supermarkets it is likely to worsen in the future.

Weather

During the course of this study there was a period of heavy flooding (Spring 2000) and 

also the hottest year on record (2003), both of which posed serious problems to farmers. 

There are particular welfare problems associated with the summer that have been 

discussed in some detail in this thesis. Although the weather will always remain an 

unpredictable and uncontrollable entity, there could certainly be benefits of planning for 

the worst-, rather than the best-case scenario as highly loaded systems have less capacity 

to cope. This is particularly true for predicting water availability since decisions 

regarding the number of fish that will be present on the farm during the summer months 

are made five or six months in advance when eggs/fry are purchased.
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8.6. Placing this work in a fish welfare legislation context

The FAWC report (Anon., 1996a) has been the subject of much discussion and has 

received a considerable amount of criticism. Some of the recommendations such as the 

need for a universally applied maximum SD reflected a lack of understanding of fish 

biology and farming practice. However, the FAWC report has been instrumental in 

pushing forward the development of fish welfare research and the implications of the 

report will ultimately be of benefit to the aquaculture industry.

8.7. Summary

• It is apparent that a universally applied SD limit is not the answer to safeguarding fish 

welfare.

• Increased SD results in increased fin erosion and more work is required to identify the 

causes and welfare implications of fin erosion.

• Systems applying high SD or loading rates face an increased risk of mass mortality in 

the event of system failure, necessitating the need for increased supervision and 

appropriate back-up systems.

• Defining limits of key water quality parameters may prove to be a more effective 

measure than limiting SD, although further work is required to establish these 

thresholds of these parameters to safeguard fish welfare.

• There may also be welfare implications at low as well as high SD.
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This thesis has addressed just one of the many welfare issues highlighted in the 

FAWC report and in doing so has perhaps generated more questions than answers. The 

Council of Europe is presently drafting its Resolution regarding fish welfare, which will 

ultimately become law in member states of the European Union. Work is also underway 

by Defra to produce a ‘Code of Recommendation for the Welfare of Livestock’ for Fish, 

similar to codes that are already in place for terrestrial livestock. There is also a growing 

emphasis on fish welfare driven by industry codes of practice (Anon., 2002; QTUK,

2004) and farm audits carried out by supermarkets. The profile of fish welfare as an area 

of research is likely to continue to rise in coming years and the scope of the subjects 

addressed in this thesis stretches far beyond the remit of stocking density alone.
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Appendix

Appendix 2. Questionnaire of stocking density practices sent to UK trout farms.

Nam e o f Farm  

T elep h on e......

Contact Person  

E m a il.................

1. Which species of fish do you farm?

□  Rainbow trout □  Brown Trout □  Other (please specify)

2. Which of the following categories best classifies your facility? (you may tick more than one)

[ | Hatchery | | Fishery [^ ] Restocking farm Table farm

3. How is your farm supplied with water?

| | River Borehole/Spring Lake/Loch Other

4. Please give us an idea of the annual production of your facility (tonnes).

Q < 2 0 t .  [ ] ]  2 0 - 6 0 t .  Q  6 0 -lO O t. [^] 100 -  200t. | | >200 tonnes

5. a. What do you consider to be a high stocking density? .......................kg m '

b. Do you associate the high stocking density with any of the following:

1 1 increased mortality □  decreased growth 1 1 fin erosion 1 [disease outbreaks

6. Do you use additional lighting in your production cycle other than in the hatchery or during
working hours?   — .

j j Yes |__I No

If yes, please state when........................................................................................................

7. How do you feed your fish?

Q n a n d  | [Demand Feeders | [Timed Hopper □  Belt Feeders | [Bulk Feeders
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In order to encompass the wide range of trout farming facilities1 and the various stages of the 
production cycle, the following table has been constructed. You are asked to fill in sections that 
are relevant to you as accurately as possible to provide us with an idea of the range of stocking 
densities that you apply and some of the basic husbandry conditions for fish of different sizes. 
Please tick the relevant boxes where possible.

Size of 
R sh

Minimum
Stocking
Density

Maximum
Stocking
Density

Typical 
Holding Unit

Typical 
Row Rate 
(please state 

units)

Additional
Aeration

Less than 
5g

0 - 20 kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 +

0 -2 0  kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 + Voli

Pond
Raceway
Cage
Tank
jm e:.......

Pump & stone 
Oxygen 
Paddle Wheel 
Other

5g-50g

0 - 20 kg/m3 
20 ■ 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 +

0 - 20 kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 + Voli

Pond
Raceway
Cage
Tank
jm e:.......

Pump & stone 
Oxygen 
Paddle Wheel 
Other

50g-150g

0 - 20 kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 +

0 - 20 kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 + Voli

Pond 
Raceway 
Cage 
Tank 
jm e:.......

Pump & stone 
Oxygen 
Paddle Wheel 
Other

150g-250g

0 - 20 kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 +

0 - 20 kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 + Voli

Pond 
Raceway 
Cage 
Tank 
jm e:.......

Pump & stone 
Oxygen 
Paddle Wheel 
Other

250g - 500g

0 - 20 kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 +

0 - 20 kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 + Voli

Pond 
Raceway 
Cage 
Tank 
jm e:.......

Pump & stone 
Oxygen 
Paddle Wheel 
Other

500g +

0 - 20 kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 +

0 -2 0  kg/m3 
20 - 40 kg/m3 
40 - 60 kg/m3 
60 - 80 kg/m3 
80 kg/m3 + Voli

Pond 
Raceway 
Cage 
Tank 
jm e:.......

Pump & stone 
Oxygen 
Paddle Wheel 
Other
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Appendix 3. Correlation of body weight and length in farmed rainbow trout


