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Abstract: Understanding tropical forest dynamics and planning for their sustainable 

management requires efficient, yet accurate, predictions of the joint dynamics of hundreds of tree 

species. With increasing information on tropical tree life-histories, our predictive understanding 

is no longer limited by species data, but by the ability of existing models to make use of it. Using 25 

a demographic forest model, we show that the basal area and compositional changes during 

forest succession in a Neotropical forest can be accurately predicted by representing tropical tree 

diversity (hundreds of species) with only five functional groups spanning two essential tradeoffs 

– the growth–survival and stature–recruitment tradeoffs. This data-driven modeling framework

substantially improves our ability to predict consequences of anthropogenic impacts on tropical30 

forests.

One Sentence Summary: Representing tropical tree diversity with two demographic tradeoffs 

yields accurate predictions of tropical forest dynamics. 

Main Text: Tropical forests are highly dynamic. Only about 50% of the world’s tropical forests 

are undisturbed old-growth forests (1). The remaining half comprises forests regenerating after 35 

previous land use, timber or fuelwood extraction, or natural disturbances. Even unmanaged old-

growth forests are a dynamic mosaic of patches recovering from single- or multiple treefall gaps 
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(2). Thus, understanding how forest structure and composition of the diverse tree flora change 

during recovery from disturbance is fundamental to predict carbon dynamics, as well as to plan 

sustainable forest management (3). Despite the importance of regenerating tropical forests for the 

global carbon cycle and timber industry, our mechanistic understanding and ability to forecast 

compositional changes of these forests remains severely limited (4).  5 

Conceptually, tropical forest succession has been viewed mostly through a one-

dimensional lens distinguishing species along a fast–slow life-history continuum, or growth–

survival tradeoff (4-6). ‘Fast’ species are light-demanding, grow quickly, but survive poorly, and 

dominate early successional stages, while ‘slow’ species are shade-tolerant, grow slowly, but 

survive well, and reach dominance in later successional stages. However, several studies suggest 10 

that tropical tree communities are also structured along a second major tradeoff axis that is 

orthogonal to the growth–survival tradeoff: the stature–recruitment tradeoff (7, 8). The stature–

recruitment tradeoff distinguishes long-lived pioneers (LLPs) from short-lived breeders (SLBs). 

LLPs grow fast and live long and hence attain a large stature, but exhibit low recruitment. SLBs 

grow and survive poorly and hence remain short-statured, but produce large numbers of 15 

offspring (8). However, we are lacking a systematic assessment of how important these tradeoffs 

are for tropical forest dynamics. 

To evaluate the importance of the growth–survival and stature–recruitment tradeoffs for 

tropical forest dynamics, we parameterized the Perfect Plasticity Approximation (PPA) model (9, 

10) with demographic tradeoffs derived from forest inventory data. The model simulates the20 

dynamics of a potentially large number of species based on a small set of demographic rates

(growth, survival, recruitment) and accounts for height-structured competition for light by

distinguishing up to four canopy layers (11). Canopy gaps are filled by the tallest trees from

lower canopy layers, without regard for their horizontal position (perfect plasticity assumption,

9).25 

Our study site is the tropical moist forest at Barro Colorado Island (BCI), Panama, where 

recruitment, growth and survival of individual trees have been monitored in a 50-ha plot for over 

30 years (2, 11, 12). To account for the dependence of these demographic rates on light 

availability, we assigned all monitored individuals of 282 tree and shrub species to one of four 

canopy layers based on their size and the size of their neighbors (11, 13) and estimated model 30 

parameters (annual diameter growth and survival rates) for each species in each canopy layer (8). 

Additionally, we calculated species recruitment rates per unit of basal area. A dimension 

reduction of model parameters (weighted PCA, 14) reveals the two demographic tradeoffs, i.e. 

the growth–survival tradeoff and the stature–recruitment tradeoff, which together explain 65% of 

demographic variation among the 282 species (Fig. 1). 35 

<INSERT FIG. 1> 

Fig. 1: Demographic tradeoffs for 282 tree species at BCI, Panama. Arrows show loadings of 

a weighted PCA on annual diameter growth and survival rates of individuals ≥ 1 cm diameter in 40 

four canopy layers (where 1 is full sun and 4 is shaded by 3 canopy layers) and the number of 

sapling recruits per unit of basal area. Colored dots are locations in demographic space of plant 

functional types that were used in model scenarios 1 and 3. 
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Our goal here is to explore whether this low-dimensional demographic tradeoff space can 

capture tropical forest dynamics, and if so, how much demographic diversity is necessary to 

accurately predict changes in basal area (a proxy for carbon storage in aboveground biomass) 

over time. We used species’ positions in the tradeoff space to estimate model parameters for all 

282 species (11), thus smoothing across observed relationships between demographic rates. We 5 

simulated forest dynamics under four scenarios that differed in the number of tradeoffs (1 versus 

2) and level of demographic diversity (number of simulated species or plant functional types

PFTs; Table 1, Fig. 2A). We tested model performance for the 50-ha old-growth plot at BCI

(also used to derive demographic rates) and for a chronosequence of nearby secondary forests

that share a similar topography, soil, and the majority of tree species (15).10 

Table 1: Model scenarios. Model scenarios differ in the number of included tradeoffs and the 

level of demographic diversity. LLP – long-lived pioneers, SLB – short-lived breeders. 

Scenario Tradeoffs Demographic diversity 

1 Growth–Survival 3 PFTs (fast, intermediate, slow) 

2 Growth–Survival 282 species 

3 Growth–Survival, Stature–Recruitment 5 PFTs (fast, slow, LLP, SLB, 

intermediate)  

4 Growth–Survival, Stature–Recruitment 282 species 

<INSERT FIG. 2> 15 

Fig. 2: Predicted and observed basal area in four model scenarios (Table 1). (A) Locations 

of species (colored dots) and representative plant functional types (PFTs) used for model 

scenarios (black dots) in demographic space; each species was assigned to a PFT based on 

proximity in demographic space and color-coded as in Fig. 1. (B) Predicted (lines) and observed 20 

(asterisks) basal area by PFT in old-growth tropical forest (BCI, black is total basal area) and (C) 

secondary tropical forest in the Barro Colorado Nature Monument. RSME is the root mean 

square error of prediction of total basal area, MASE is the mean absolute scaled error of PFT-

level predictions (11). 

25 

To compare the observed dynamics of the 50-ha old-growth plot in BCI with model 

predictions, we initialized the model with inventory data from 1985 and simulated forest 

dynamics until 2010. When only the growth–survival tradeoff was included, basal area was 

predicted to decline because of a decline of the number of trees >20 cm diameter, especially of 

fast species (Figs. 2B, S1). Including the stature–recruitment tradeoff axis improved the match 30 

between predicted and observed basal area and aboveground biomass (AGB, Figs. 2B, S2-S3) 

for different PFTs and size classes (Figs. S4-S5). However, when all species were simulated 

individually (scenario 4), the number of large trees (>60 cm diameter) and basal area were 

incorrectly predicted to increase (Fig. S1). This was due to the greater influence of measurement 

errors due to small sample sizes when parameterizing the model for 282 species (11), although 35 

most species-level predictions were reliable (Fig. S6). Maximum diameters were accurately 

predicted by all scenarios, except for scenario 2, where observed maximum diameters >150 cm 
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were not reproduced (Fig. S7). This test shows that the model scenarios that included both 

tradeoffs were able to reproduce the structure and stability of the forest over the time span that 

was used to derive demographic rates.  

 Next, we tested the ability of the model to predict successional changes in secondary 

forests. We used the same model parameterization scenarios, initialized the model with data from 5 

40-year-old secondary forest, and compared predictions of forest dynamics with observations

from a chronosequence of 60, 90, and 120-year-old secondary forests (two 1-ha plots in each age

class). As in old-growth forest, predictions of secondary succession were most accurate when

forest diversity was represented by 5 PFTs spanning both demographic tradeoffs. When only the

growth–survival tradeoff was included, the increase of basal area (Fig. 2C) and AGB (Fig. S2)10 

during succession was underestimated, because the number of large trees (>60 cm diameter) was

underestimated (Fig. S8). In contrast, when both tradeoffs were included, observed successional

changes in basal area, AGB, and abundance for different PFTs and size classes were accurately

reproduced (Figs. 2C, S2, S8-S10). However, when all species were simulated individually

(scenario 4), the number of large trees (>60 cm diameter) and basal area of fast species and LLPs15 

were overestimated. The observed peak in basal area in the 90-year-old secondary forest is likely

caused by remnant trees in the study plots and disappears when larger spatial scales are

considered (16). The diameter distribution after 400 years of simulation closely matched the

observed diameter distribution only when both demographic tradeoffs were included (Fig. 3A).

In addition to the above simulations, we also ran simulations with alternative initial 20 

conditions to explore the robustness of our results. The alternative initial conditions (bare-ground 

and 20-year-old forest; 11) did not qualitatively affect our results. For all initial conditions, the 5-

PFT case spanning both demographic tradeoffs yielded predictions that best matched 

observations (Fig. S11). 

To assess whether the forest in the 50-ha plot at BCI is at equilibrium with the local 25 

disturbance regime, we simulated forest succession (starting from 40 years as above) under 

scenario 3 for 1000 years without any external disturbances. Here, the slow PFT and LLPs co-

dominated the forest after 400–500 years (Fig. S12). Fast species died out because the canopy 

gaps that they require for persistence (17) are treated in our model in a simplistic (non-spatially-

explicit) manner. In reality, however, the forest is comprised of a mosaic of patches of different 30 

successional age since the last disturbance event (18). Thus, we compared the simulated 

successional trajectories of the fast and slow PFTs with observed species composition at the 0.1-

ha scale to infer the patch-scale age distribution (Fig. S13, 11). This model-inferred age 

distribution suggests that the majority of the 0.1-ha patches within the BCI 50-ha plot are 

between 50 and 250 years old. This is consistent with LiDAR data collected on BCI, which 35 

suggest that between 0.43 and 1.6% of the area is disturbed every year, corresponding to an 

average disturbance interval between 63 and 233 years (11, 19). When we use the estimated 

proportion of 0.1-ha patches in each age class to generate the PFT-composition at equilibrium 

with the disturbance regime, predictions closely match observations (Fig. 3B). 

These results suggest that the forest in the 50-ha plot at BCI is at equilibrium with the 40 

local disturbance regime. This helps to resolve a long-standing dispute of whether long-lived 

pioneers are a transient feature of successional forests (5, 20, 21) and shows that, in this forest, 

they are not transient, but an integral and dominant component of the old-growth forest. In fact, 

long-lived pioneers dominate most successional stages and contribute more AGB than any other 

demographic group, except in very young forests (<40 years) or patches that have remained 45 
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undisturbed for a long time (>400 years, Fig. S12). They are able to maintain populations in the 

absence of large-scale disturbances and compensate for their low recruitment by growing quickly 

up to the canopy or emergent layer where they may persist as seed source for several centuries 

(8). 

<INSERT FIG. 3> 5 

Fig. 3: Model validation. (A) Diameter distribution in 400-year-old simulated forest for the four 

model scenarios. (B) Predicted and observed basal area in model scenario 3. Observed basal area 

is from an old-growth tropical forest in BCI, Panama. Predicted basal area is based on the 

estimated number of 0.1-ha patches in each age class (Fig. S13, 11). 10 

Overall, our results clearly show that two demographic tradeoffs are needed to accurately 

predict successional patterns in tropical forest structure and composition. Considering only the 

fast–slow continuum of life-histories is not sufficient, because it ignores long-lived pioneers, one 

of the most important (in terms of tree size and AGB) components in many tropical forests. 15 

Although the existence of long-lived pioneers has long been recognized (4), they have often been 

assumed to be part of the fast–slow continuum, i.e. considered to be mid-successional, because 

they reach their highest basal area in intermediate stages of succession (5). However, long-lived 

pioneers lie on a second demographic dimension (8, 22), and this second dimension is essential 

to understanding tropical forest dynamics.  20 

Our results also suggest that a small number of demographic niches is sufficient to 

capture the dynamics of the BCI forest. Specifically, just 5 PFTs were sufficient to adequately 

capture successional patterns of forest composition and carbon dynamics (Figs. 2-3). To explore 

the robustness of the 5-PFT approach under future climate, we used relationships between 

climate, functional traits, and demographic rates to implement our model simulations under 25 

alternative future climate scenarios (11). As under current conditions, the 5-PFT and species-

level models yielded similar predictions to each other under future climate scenarios (Fig. S14), 

suggesting that a limited number of PFTs may be sufficient to capture the community response 

to climate change. This conclusion warrants further investigation with models that include 

physiological mechanisms not included in our model, as well as additional functional axes (e.g., 30 

drought tolerance) that are likely to be relevant at broader spatial or temporal scales. 

Nevertheless, our results suggest that functional diversity in species-rich tropical forests may be 

much smaller than taxonomic diversity, and that tropical forest diversity could be accurately 

represented in Earth System Models by a small number of PFTs that span the relevant functional 

axes (23).  35 

Beyond suggesting a simple yet accurate means to represent tropical forest functional 

diversity with a limited number of PFTs, our study also demonstrates the feasibility of embracing 

species-level diversity. Together, the demographic forest model and the empirical demographic 

tradeoffs define an objective and reproducible workflow that also delivers stable predictions of 

forest dynamics when run at the species level. Such workflows, along with the increasing 40 

availability of tropical forest inventory data, offer the opportunity to develop truly species-based 

models to support the evidence-based planning of forest restoration and sustainable tropical 

forest management by predicting rates and trajectories of forest regrowth both at the species and 

community level (3). 
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Materials and Methods 

The PPA model 

We used a deterministic version of the PPA model that is based on Purves et al. (10), where tree 

crowns are assumed to be flat. The simulation area was 1 ha and the model time step was 5 

years. The model works on cohorts of trees that share the same age, diameter at breast height 

(dbh, in cm) and species/plant functional type (PFT). The number of trees in a cohort can be 

fractions of individuals, including numbers <1. Cohorts are removed from the simulation when 

they have <0.001 individuals. We extended the model from two to four canopy layers (13) and 

species/PFTs are characterized by growth and mortality rates in each of the four layers. We 

modified several aspects of the model. Cohorts are removed if they are assigned to a layer >4. 

Sapling cohorts enter the model at 1 cm dbh (originally 0.01 cm). Recruitment rates are constant 

(see below, originally they scaled with a species’ crown area in the canopy layer). Sapling 

cohorts recruit to layer 4. The dbh (cm)-crown radius (m) relationship is nonlinear (originally 

linear),  

crown radius = 0.5*dbh0.62. 

Likewise, the dbh (cm)-height (m) relationship is non-linear and parameters for both 

allometries were determined using data from BCI (24),  

height = 11*(dbh/10)0.5. 

As a single allometry for all trees worked equally well as species-specific allometries in 

determining structural and dynamics properties of the forest (13), we used a single allometry for 

crown radius and height. 

To calculate aboveground biomass (AGB, Mg), we followed ForestGEO protocols and used 

allometric equations based only on dbh and wood density (wd), but not height, from Chave et al. 

(25) for moist tropical forest:

AGB = (wd*exp(−1.499+2.148*log(dbh)+0.207*log(dbh)²−0.0281*log(dbh)³) / 1000),

where dbh is measured in cm and wd in g/cm³. 

Parameterization 

In a previous study, we performed a weighted PCA (14) on nine demographic parameters for 282 

species from the BCI 50-ha plot, namely growth rate in the four canopy layers, survival 

(expressed as lifespan) in the four canopy layers, and the number of recruits per unit of adult 

basal area, which were derived from forest inventory data (8, 26). We follow the taxonomy as of 

2017 (27). The first two principal components of this PCA correspond to the fast−slow 

continuum (37% explained variation) and a stature−recruitment tradeoff (28% explained 

variation), respectively. Here we used a slightly modified version of the PCA using the number 

of recruits per unit of total species’ basal area, and used the first two principal components 

(henceforth ‘axes’ or ‘tradeoffs’) to determine model parameters. An exception are recruitment 

rates, which we determined directly from forest inventory data (independent of the basal area of 

a species and independent from the PCA). We assumed recruitment rates to be constant over 

time because the 50-ha plot is embedded within a larger forest area from which seeds 

continuously arrive into the study area. Moreover, relationships between recruitment rates per 

PFT and total basal area in 31.25 x 31.25 m² subplots or basal area of the respective PFT were 

weak or absent (not shown). 

To determine growth and mortality rates, we specified coordinates of five PFTs 

symmetrically in the two-dimensional demographic space (Fig. 1 in main manuscript): 
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- Intermediate (location x1=0, x2=0)

- Fast (location x1=−1.5, x2=0)

- Slow (location x1=1.5, x2=0)

- Long-lived pioneer (LLP, location x1=0, x2=1.5)

- Short-lived breeder (SLB, location x1=0, x2=−1.5)

Coordinates of +/−1.5 on the two tradeoff axes correspond to between 9 and 19% of species 

having more extreme demographic strategies.  

For the simulations including all species, we used their PCA scores along the 1st or 1st and 

2nd PCA tradeoff axis, depending on the scenario (Data S1).  

We then solved the linear system of equations consisting of the PCA loadings of the nine 

parameters (Table S1) and species’ scores (setting all species’ scores on axes 3 to 9 to 0, i.e. 

x3…x9 = 0) to obtain transformed input parameters to the PCA (Data S1). These were then back-

transformed to model parameters by de-centering, de-scaling, and de-logging. Lifespan was 

transformed into mortality, i.e. mortality = 1/lifespan (Tables S2,S3). 

From these strategies, we simulated four scenarios, differing in the number of species/PFTs: 

1. 1 tradeoff, 3 PFTs (fast, intermediate, slow)

2. 1 tradeoff, 282 species

3. 2 tradeoffs, 5 PFTs (slow, fast, LLP, SLB, intermediate)

4. 2 tradeoffs, 282 species

Annual recruitment rates (at 1 cm dbh) for each PFT were determined as the average annual 

sum of recruits (per ha) of species that were assigned to the PFT. For scenarios (2) and (4), 

species without observed recruits (25 species) were assigned one recruit in 25 years and 50 ha, 

i.e. 0.0008 recruits per year and ha. New recruits enter the simulation every year and experience

deterministic mortality every year. However, annual recruit numbers were determined from 5-

year census intervals. Thus, we adjusted annual recruit numbers by species/PFT-specific

mortality such that, after a 5-year time step, simulated recruit numbers matched observed

average recruit numbers in 5-year census intervals in the 50-ha plot at BCI.

Wood density (wd) for PFTs was determined as the volume-weighted mean of wd in old-

growth forest. Wood density is from bci.spptable (28; sometimes to genus or family level only). 

Individual tree volume was calculated as 

volume = exp(−1.499+2.148*log(dbh)+0.207*log(dbh)²−0.0281*log(dbh)³) / 1000. 

Volume-weighted wood density of the PFTs in secondary forest was slightly different from 

that of the PFTs in the old-growth forest, due to differences in species’ abundance. We used the 

volume-weighted wood density of the PFTs in old-growth forest, when we calculated AGB in 

simulations of old-growth forest dynamics, and wood density of the PFTs in secondary forest 

plots, when we calculated AGB in simulations of secondary forest succession.  

Species assignment to PFTs, model initialization and validation 

Old-growth forest – In the 50-ha permanent plot in tropical moist forest on Barro Colorado 

Island (BCI), Panama, every tree ≥ 1 cm dbh is tagged, mapped, and measured approximately 

every five years (26). In this paper our analyses are based on six censuses (conducted between 

1985 and 2010). We leave out the first census of 1982 because in this census some tall trees with 

buttresses were measured at lower heights than in subsequent censuses introducing a bias in 

basal area and AGB estimates. Detailed methods for the plot censuses can be found in (2) and 

(12). 
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For comparison of model predictions with data, we assigned species to PFTs based on their 

PCA scores along the 1st or 1st and 2nd PCA axis. For scenarios (1) and (3), we assigned species 

to the PFT with the closest location that was used for parameterization (Figs. 1, 2A in main 

manuscript). For scenario (1), 98 species were assigned to the ‘fast’ PFT, 83 to the ‘slow’ PFT, 

and 101 to the ‘intermediate’ PFT. For scenario (3), 75 species were assigned to the ‘fast’ PFT, 

76 to the ‘LLP’ PFT, 60 to the ‘slow’ PFT, 30 to the ‘SLB’ PFT, and 41 to the ‘intermediate’ 

PFT. For visualization purposes, we used the same PFT assignments for scenarios (2) and (4), 

where all species were simulated individually. 

For simulation of old-growth forest dynamics, we initialized the model with the average (in 

terms of species abundances and tree sizes) of the 50-ha plot on Barro Colorado Island in 1985. 

Individuals of species that were not included in the PCA (mostly palms and hemiepiphytes, 1.4% 

of individuals, 3.5% of basal area) were omitted in these calculations as they could not be 

associated with a PFT. Thus, the initial state of the model is slightly less populated than the real 

forest. Species were assigned to one of 111 size classes and tree numbers were aggregated by 

size class and species/PFT. Size classes were 1 cm wide for individuals between 1 and 50 cm 

dbh, 2 cm wide for individuals between 50 and 100 cm dbh, and 5 cm wide for larger 

individuals. The lower limit of the size class was used as initial cohort size in the PPA model. 

We validated the model against field data in terms of overall basal area, AGB, and 

abundance per PFT, as well as in different size classes. Forest structure and composition was 

determined from the six censuses of the 50-ha plot (1985−2010). Basal area and AGB were 

compared for the size classes 1−20 cm, 20−60 cm, ≥ 60 cm, ≥ 1 cm dbh (total). Abundance was 

compared for the size classes 5−20 cm, 20−60 cm, ≥ 60 cm, ≥ 5 cm dbh (total).  

As measures of predictive power, we calculated the root mean square error (RMSE) of 

prediction for total basal area. RMSE measures the average deviation of the predicted value from 

the observed value and is in the same unit as observations (m²/ha). We also calculated the mean 

absolute scaled error (MASE) to compare the predictive power of different model 

parameterizations at the PFT level that are at different scales (29). MASE is scale-independent 

and measures the predictive power of a model relative to a naïve random walk forecast. 

We compared simulated (after 100 years of simulation) and observed maximum diameters. 

Maximum diameter for each PFT in the field data and the simulations was calculated as the 

largest 5-cm diameter class with >0.1 individuals per ha. For parameterizations (2) and (4) (282 

species), it was calculated for each species as the largest 5-cm diameter class with >0.005 

individuals per ha. 

We compared the diameter distribution of simulated 400-year-old forest with the observed 

diameter distribution of the old-growth forest. The observed diameter distribution again is an 

average of six censuses and includes palms and hemiepiphytes. All analyses were carried out in 

R (30). 

Secondary forest – Data on secondary forests is from eight forest plots (1 ha each) in the Barro 

Colorado Nature Monument National Park, all plots are <7 km away from the old-growth forest 

plot (15, 31-32). There were two plots in each of four age classes (40, 60, 90, and 120 years). All 

secondary forest stands had been in agriculture, including pasture, swidden farming, and 

plantation farming, for undetermined lengths of time prior to fallow (15). The plots were 

inventoried between 2011 and 2014. In all plots, every tree ≥ 5 cm dbh was tagged, mapped, and 

measured, and in most of the plots, in a 0.5-ha subset of the plot every tree ≥ 1 cm dbh was 
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tagged, mapped, and measured. We only considered the largest stem of multi-stemmed 

individuals to match old-growth forest data. 

We excluded 254 individuals without recorded dbh as well as palms (8 species, 474 

individuals), hemiepiphytes (1 species, 4 individuals), cultivated species (1 species, 1 

individual), and unidentified individuals (214). Of the remaining 242 species (9935 individuals), 

we had no information on demographic strategy from the old-growth forest for 50 species (1212 

individuals). We assigned some of these species to the PFTs of a closely related species, and 

others based on average demographic characteristics of taxonomically-related species and/or 

species with similar functional traits, i.e. wood density and growth form (Data S2). Wood density 

and growth form is from bci.spptable (28; sometimes to genus or family level only). 

For simulation of secondary forest succession, we initiated the model with the average of 

two 1-ha 40-year old secondary forest plots. Species were assigned to one of 111 size classes and 

tree numbers were aggregated by size class and PFT. Size classes were 1 cm wide for individuals 

between 1 and 50 cm dbh, 2 cm wide for individuals between 50 and 100 cm dbh, and 5 cm wide 

for larger individuals. The lower limit of the size class was used as initial cohort size in the PPA 

model. 

We validated the model against field data in terms of total basal area, AGB, and abundance 

per PFT, as well as in different size classes. Basal area, AGB, and abundance were compared for 

the size classes 5−20 cm, 20−60 cm, ≥ 60 cm, ≥ 5 cm dbh (total), because sampling of the 

different secondary forest plots <5 cm dbh was inconsistent. Observed AGB was calculated 

using the same PFT-level wood density as in the respective model scenario. As a result, total 

observed biomass varies slightly between the different model scenarios. To calculate RSME and 

MASE, we averaged the observations in the two 1-ha plots per age class to yield a single time 

series of basal area. 

Comparison of PFT-level and species-level simulations 

For the old-growth forest, the species-based simulation including two tradeoffs (scenario 4) 

performed slightly worse than the PFT-based simulation (scenario 3) and slightly overestimated 

the basal area of fast species, slow species, and LLPs. The reason is that growth rates in the top 

(and second) canopy layer were overestimated and/or mortality rates in the top canopy layer 

were underestimated for some species (e.g. for Cecropia insignis (fast), Hybanthus prunifolius 

(slow), Poulsenia armata (fast), Quararibea asterolepis (LLP), Trichilia tuberculata (slow)). 

This can occur because species have different sample sizes in the different canopy layers. As an 

example, C. insignis has few individuals in the lowest canopy layer 4, while H. prunifolius has 

few individuals in the top canopy layer. Thus, the demographic rates in different layers are 

associated with different levels of uncertainty, which affects species positions in the PCA space, 

and hence parameters estimates. 

For the secondary forest plots, most of the discrepancy between observed and simulated 

basal area is due to the fact that species composition and especially species abundances varied 

strongly between the different plots. The model was initialized with the species composition and 

abundance of the two 40-year-old plots, but simulation results were validated against data from 

different plots. Additionally, single species that were rare in the old-growth forest (used to derive 

demographic rates), were affected by the same sample size issue mentioned above. Examples are 

Apeiba tibourbou (fast), Cordia alliodora (fast), Lacmellea panamensis (LLP), Pachira sessilis 

(LLP), Terminalia amazonia (LLP), and Xylopia macrantha (LLP), for which growth rates in 

single layers were overestimated. For Apeiba tibourbou, mortality was additionally 
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underestimated. All of these species were especially abundant in the 40-year-old plots. Thus, the 

combination of idiosyncrasies in species composition and unrealistic parameter estimates leads 

to the inferior performance of the species-based approach. The PFT-based approach, in contrast, 

averages over species composition as well as demographic rates and delivers accurate predictions 

of ‘average forest succession’. 

Simulation of early successional dynamics 

We took two approaches to assess model behavior during early succession (<40 years). First, we 

derived recruitment rates in high-light conditions (gaps) and simulated forest succession from 

bare ground. Second, we initialized the model with sparser data from 20-year-old secondary 

forests and simulated forest recovery as in the main text. 

Gap-dependent recruitment rates – To estimate recruitment rates of species in very early 

successional forests from the old-growth forest data, we found the recruitment rates of species in 

areas of the forest that appear to be open canopy gaps. To find gaps within the old-growth forest 

data, we took subplots of 5 meter radius, spaced every 4 meters. If the total estimated crown area 

of the trees rooted within the 5 meter radius plots was less than the area of the plot, we called the 

center 4 meter radius of the subplot a "gap". Using these gap-specific recruitment rates for the 

first 25 years (and the average rates from old-growth forest subsequently), we simulated forest 

recovery from bare ground and compared it with the data from secondary forests starting at 40 

years. Here, as in the main text, scenario 3 (5 PFTs) reproduced the dynamics of the data most 

accurately (Fig. S11A). In scenario 1 (3 PFTs), the recovery of fast species was underestimated, 

while the recovery of slow species was overestimated. In scenario 2 (1 tradeoff – 282 species), 

the recovery of slow species was underestimated. In scenario 3 (5 PFTs), fast species decreased 

too late, LLPs increased too slowly, and intermediate species had too much basal area. The 

overall recovery of basal area was too slow. Scenario 4 (2 tradeoffs – 282 species) deviated most 

strongly from observed forest recovery. 

Initialization at 20 years – We used data from 0.48 ha of 20-year-old forests on trees ≥ 5 cm dbh 

(15) to initialize the model. As there was no information on small trees available, we used the

data from the 40-year-old forest for the small size classes (1−5 cm dbh). We also excluded trees

with a dbh >40 cm, because we assumed that those were remnant trees. Again, scenario 3 (5

PFTs) reproduced observed forest recovery best (Fig. S11B). The scenarios only including only

one tradeoff underestimate forest recovery, while scenario 4 (2 tradeoffs – 282 species)

considerably overestimated forest recovery.

Both analyses do not change the qualitative results of the main text. However, the simulations 

beginning at 40 years better adhere to the strengths and limitations of our approach. This is 

because our model parameterization exclusively relies on the demographic rates of species in 

old-growth forest. However, the average recruitment rates of species in old-growth forests are 

likely greatly underestimating recruitment rates in very early successional stages, especially for 

early successional species. Moreover, starting from ‘bare ground’ in central Panama means 

starting from cattle pastures which are covered in dense grass and burn regularly. Seed 

characteristics of tree species germinating in the face of strong competition with grasses and 

regular fires, and traits of saplings that survive fires are outside the range of traits of species that 

occur in the 50-ha plot. Thus, very young secondary forests are, to a large degree, composed of 
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species that are never or very rarely found in older forests and that also represent different 

demographic strategies. These factors make it difficult to extend the model to very early 

successional forests without specific research on the demographic tradeoffs they exhibit and data 

on their dynamics. 

Disturbance interval 

Analyses from detailed LiDAR data from the year 2009 estimated 0.43% of the area of BCI to be 

canopy gaps with <2 m canopy height and 1.6% of the area to be canopy gaps <5 m canopy 

height (19). Assuming that the vegetation can re-grow to a canopy height between 2 and 5 m 

within one year, the fraction of the forest that is disturbed every year is between 0.43 and 1.6%. 

This corresponds to an average disturbance interval between 62.5 (100/1.6) and 232.6 (100/0.43) 

years.  

Age distribution and simulated equilibrium forest 

We divided inventory data from the six censuses between 1985 and 2010 from the 50-ha plot 

into 512 31.25 m x 31.25 m subplots and calculated the basal area (m²/ha) of species assigned to 

the slow and fast PFTs of scenario 3 for each subplot. Then, we determined the year (in steps of 

5 years) in a simulated succession to which the basal area of fast and slow PFTs in each subplot 

was most similar, respectively, and took their mean. As the model was initialized with inventory 

data from 40-year-old forest, we linearly extrapolated the basal area of PFTs for younger ages 

between 0 m²/ha for year 0 and the observed basal area at year 40. The resulting combined 

(across censuses) age distribution of subplots (Fig. S13) was then used to generate a ‘simulated’ 

equilibrium of the forest as the sum of simulated basal area or AGB of the respective ages, 

weighted by the proportion of subplots in the respective age class. Note: We only considered the 

fast and slow PFTs because they show a clear successional pattern, while LLPs maintain high 

and SLBs and the intermediate PFT maintain low basal area throughout much of the succession. 

Simulation of forest dynamics under different climate scenarios 

To evaluate forest dynamics under different future climate scenarios, we first determined 

projected climate variables for the year 2070 under two representative concentration pathways 

(RCP2.6 and RCP8.5), we then assessed the projected change in functional traits using 

established climate−trait relationships (33), and finally derived changes in demographic rates 

using trait−demography relationships (8). 

Climate scenarios – We downloaded reference climate data (1979−2013) as well as climate 

projections (CMIP5) for 2070 (2061−2080) under RCP2.6 and RCP8.5 from CHELSA for the 

coordinates of BCI (lat 9.1543, lon −79.8461, 34-35). We selected ten climate models with low 

interdependency (CanESM2, CESM1-CAM5, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-ESM2G, 

GISS-E2-H, HadGEM2-AO, IPSL-CM5A-LR, MPI-ESM-MR, NorESM1-M; 36). We then 

determined the mean of predicted mean annual temperature (°C * 10), annual precipitation 

(kg/m²), and temperature seasonality (standard deviation of monthly temperature, °C * 100) and 

precipitation seasonality (coefficient of variation of monthly precipitation, kg/m²) across the ten 

models (Fig. S15, Table S4). The aridity index and solar radiation were not available for climate 

projections. The ten models consistently predicted increasing temperatures for the year 2070. 

Projected changes in other climatic variables were more variable and rather moderate. Rainfall, 

temperature seasonality, and rainfall seasonality were predicted to slightly increase on average. 
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Projected changes in functional traits – We used data from Šímova et al. (33) to determine 

climate−traits relationships for three functional traits that are strongly related to the demographic 

rates of tree species at BCI (8), namely adult height (m, mean, SD), seed mass (mg, mean), and 

wood density (g/cm³, mean, SD). We fit linear models of grid-cell means and SDs of traits versus 

mean annual temperature (T), annual rainfall (P), and temperature (TS) and rainfall seasonality 

(PS), all of them in linear and quadratic form. Trait means and SDs were determined based on 

range maps for 88,417 New World species (37). From the 877 grid cells, we excluded non-

tropical climates and extremely seasonal climates to maximize the applicability of modeled 

relationships to BCI. We selected 187 grid cells with T>240 and TS<1000. We identified the 

most parsimonious models (based on AICc) using the dredge function in the ‘MuMIn’ package 

in R (Table S5). From these models, we predicted functional traits under the reference and future 

climate scenarios (Table S6). Consistent with continent-wide climate−trait relationships (33), 

mean height, seed mass and wood density were predicted to increase, while the SDs of height 

and wood density were predicted to decrease (Table S6). All changes in functional traits were 

more severe for RCP8.5 than RCP2.6. 

Projected changes in demographic rates – Demographic rates and spectra show strong 

relationships with functional traits and trait spectra (8). Specifically, the fast−slow continuum (x) 

is aligned with wood density, while the stature−recruitment tradeoff (y) is aligned with plant 

height. Both demographic dimensions are related to seed mass (Fig. 3a in 8). We applied 

projected changes in traits to predict functional traits under the two climate scenarios at BCI 

(Table S7). To project changes in demographic rates, we then fitted linear models for species’ x 

and y positions in the two-dimensional demographic space, using wood density (WD), log 

maximum height, and log seed mass (R²(x) = 0.47, R²(y) =  0.50). As wood density is normally 

distributed at BCI, we transformed predicted mean log WD into mean WD by accounting for the 

variance of wood density (mean WD = exp(mean log WD + 0.279²), 38). 

Life-history strategies at BCI are predicted to shift towards slower strategies and also 

slightly towards more ‘long-lived pioneerness’ (i.e. towards more positive values along the x- 

and y-dimensions of the demographic strategy space; Table S8). As standard deviations of log 

height and log wood density are predicted to decrease, and as these two traits are strongly 

aligned with the two demographic dimensions, we would also expect the variation of 

demographic strategies along both dimensions to decrease. To derive species’ positions in 

demographic space under altered climate, we first adjusted the SD of demographic strategies by 

multiplying species’ original x values by 0.130/0.138 = 0.942 (RCP2.6), and 0.110/0.138= 0.797 

(RCP8.5), y values by 0.66/0.74 = 0.892 (RCP2.6), and 0.52/0.74 = 0.703 (RCP8.5). Note: As 

wood density is normally distributed at BCI, we applied the projected change in the SD of log 

WD to the SD of WD instead. We then shifted species’ positions by +0.140 (RCP2.6) and 

+0.322 (RCP8.5) along the x-axis, and by +0.024 (RCP2.6) and +0.089 (RCP8.5) along the y-

axis.

Simulation of forest dynamics under different climate scenarios – We used the shifted positions 

in demographic space to derive updated parameter values and to assign species to the PFTs. We 

used the new PFT assignments to calculate recruitment rates per PFT in the same way as for the 

original model. We then predicted forest recovery under both climate scenarios (Fig. S14). For 
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the model scenarios only including one demographic tradeoff (scenarios 1 and 2), predicted 

forest recovery hardly changed. However, for the model scenarios including both tradeoffs 

(scenarios 3 and 4), the rate of forest recovery was predicted to slow down with changing climate 

(cf. 39). This is mostly due to the predicted strong contraction of the demographic space along 

the second dimension, i.e. the stature−recruitment tradeoff. This contraction outweighs the shift 

towards more ‘long-lived-pioneerness’. As a consequence, the most extreme long-lived pioneers 

(which attain the largest statures) are predicted to be lost, and the LLP PFT is predicted to be less 

‘long-lived-pioneery’. 
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Fig. S1. 

Predicted and observed abundance in four model scenarios (rows; A: 1 tradeoff – 3 PFTs, B: 1 

tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) abundance by PFT in an old-

growth tropical forest in Barro Colorado Island, Panama. Color code: purple – slow, yellow – 

fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S2. 

Predicted and observed aboveground biomass (AGB) in four model scenarios that differ in the 

number and demographic characteristics of simulated species or PFTs. (A) Predicted (lines) and 

observed (asterisks) AGB by PFT in an old-growth tropical forest (BCI, ≥ 1 cm dbh) and (B) in 

secondary tropical forest (≥ 5 cm dbh). Color code: purple – slow, yellow – fast, green – LLP, 

blue – SLB, red – intermediate, black – total. 
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Fig. S3. 

Predicted and observed (A) basal area and (B) aboveground biomass (AGB) in four model 

scenarios that differ in the number and demographic characteristics of simulated species or PFTs. 

Error bars show spatial variation (+/– 1SD) of basal area and AGB at the 1-ha scale in an old-

growth tropical forest (BCI, ≥ 1 cm dbh). Lines show model predictions. Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S4. 

Predicted and observed basal area in four model scenarios (rows; A: 1 tradeoff – 3 PFTs, B: 1 

tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) basal area by PFT in an old-growth 

tropical forest in Barro Colorado Island. Color code: purple – slow, yellow – fast, green – LLP, 

blue – SLB, red – intermediate, black – total. 
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Fig. S5. 

Predicted and observed aboveground biomass (AGB) in four model scenarios (rows; A: 1 

tradeoff – 3 PFTs, B: 1 tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 

species) and three size classes (columns). Simulated (lines) and observed (asterisks) biomass by 

PFT in an old-growth tropical forest in Barro Colorado Island, Panama. Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S6. 

Simulated and observed basal area by species in 2010, i.e. after 25 years of simulation. 1:1 lines 

are shown in grey. 
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Fig. S7. 

Simulated and observed maximum diameters of the PFTs or species for four model scenarios. 

1:1 lines are shown in grey. See Suppl. for details. 
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Fig. S8. 

Predicted and observed abundance in four model scenarios (rows; A: 1 tradeoff – 3 PFTs, B: 1 

tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) abundance by PFT in secondary 

tropical forest in Barro Colorado Nature Monument National Park, Panama. Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S9. 

Predicted and observed basal area in four model scenarios (rows; A: 1 tradeoff – 3 PFTs, B: 1 

tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 species) and three size 

classes (columns). Simulated (lines) and observed (asterisks) basal area by PFT in secondary 

tropical forest in Barro Colorado Nature Monument National Park, Panama. Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S10. 

Predicted and observed aboveground biomass (AGB) area in four model scenarios (rows; A: 1 

tradeoff – 3 PFTs, B: 1 tradeoff – 282 species, C: 2 tradeoffs – 5 PFTs, D: 2 tradeoffs – 282 

species) and three size classes (columns). Simulated (lines) and observed (asterisks) biomass by 

PFT in secondary tropical forest in Barro Colorado Nature Monument National Park, Panama. 

Color code: purple – slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – 

total. 
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Fig. S11. 

Predictions of forest recovery for four model scenarios that differ in the number and 

demographic characteristics of simulated species or PFTs. (A) Simulation of forest recovery 

from bare ground using gap-recruitment rates for the first 25 years of the simulation and old-

growth recruitment rates thereafter. (B) Simulation of forest recovery starting from 20-year-old 

secondary forests. Asterisks show observed basal area by PFT in secondary tropical forest in the 

Barro Colorado Nature Monument National Park, Panama (≥ 5 cm dbh). Color code: purple – 

slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, black – total. 
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Fig. S12. 

Simulated long-term succession of scenario 3 (2 tradeoffs – 5 PFTs) starting from 40-year-old 

secondary forest. Lines show simulated basal area and aboveground biomass of individuals ≥ 5 

cm dbh, asterisks show data from secondary forests. Recruitment rates of the PFTs are constant 

and set to annual averages of the number of observed recruits of species assigned to the five 

PFTs. Color code: purple – slow, yellow – fast, green – LLP, blue – SLB, red – intermediate, 

black – total. 
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Fig. S13. 

Estimated age distribution of ~0.1-ha subplots from six censuses (1985, 1990, 1995, 2000, 2005, 

2010). 
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Fig. S14. 

Projected forest recovery in secondary tropical forest in the Barro Colorado Nature Monument 

National Park, Panama, for three climate scenarios: (top) reference climate (1979–2013, 

repeating results from Fig. 2C in the main manuscript), (middle row) RCP2.6, (bottom) RCP8.5 

and four model scenarios (columns). Color code: purple – slow, yellow – fast, green – LLP, blue 

– SLB, red – intermediate, black – total. The grey line at a basal area of 25 m²/ha is inserted to

facilitate visual comparison between model scenarios.
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Fig. S15. 

Projected climatic variables for ten global climate models. 
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Table S1. 

Loadings of demographic parameters in the wPCA. Survival and growth of trees (≥ 1 cm dbh) in 

four canopy layers is indicated by ‘Survival 1’ etc. Recruitment is the number of recruits per unit 

of total species basal area. Only the first one or two principal components are used to back-

calculate model parameters from species scores in PCA space, depending on the scenario. 

Parameters Parameter loadings 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Survival1 0.2103 0.2947 -0.5398 -0.4130 -0.4612 0.3415 -0.2380 0.1407 -0.0356

Survival2 0.3370 0.4051 -0.0063 -0.2672 0.3237 0.0814 0.7127 -0.0482 0.1712 

Survival3 0.4376 0.2396 0.2830 0.2505 0.0200 0.1136 -0.4280 -0.1090 0.6323 

Survival4 0.4541 0.2032 0.2832 0.2428 0.1178 0.2067 -0.1305 0.1782 -0.7127

Growth1 -0.1943 0.2070 -0.6090 0.5235 0.4575 0.2204 -0.0746 -0.1046 -0.0014

Growth2 -0.3504 0.1586 0.2375 -0.5400 0.5401 0.2434 -0.3889 0.0320 -0.0285

Growth3 -0.3899 0.3775 0.1968 0.2308 -0.1839 0.0735 0.1434 0.7262 0.1622 

Growth4 -0.3609 0.3588 0.2738 0.1188 -0.3651 0.3276 0.1296 -0.6163 -0.1215

Recruitment 0.0415 -0.5578 0.0858 0.0571 0.0069 0.7750 0.2025 0.1228 0.1404 
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Table S2. 

PPA model parameters for 3 PFTs (1 demographic tradeoff axis). G1 to G4 and mu1 to mu4 are 

annual growth (mm/y) and mortality (1/y) rates in four canopy layers, respectively. F is the 

number of new recruits over the 1 cm dbh threshold per year and hectare and wd is volume-

weighted wood density (g/cm³) in old-growth (OG) and secondary (SEC) forest. 

PFT Model parameters 

G1 G2 G3 G4 mu1 mu2 mu3 mu4 F wd_OG wd_SEC 

slow 2.46028 0.68289 0.40415 0.36858 0.0174 0.0097 0.01037 0.01641 79.22 0.566 0.613 

fast 4.34277 2.21993 0.89384 0.67679 0.02851 0.02614 0.04981 0.06728 22.65 0.412 0.423 

inter- 

mediate 

3.2687 1.23125 0.60104 0.49945 0.02227 0.01592 0.02272 0.03323 12.62 0.503 0.542 

Table S3. 

PPA model parameters for 5 PFTs (2 demographic tradeoff axes). G1 to G4 and mu1 to mu4 are 

annual growth (mm/y) and mortality (1/y) rates in four canopy layers, respectively. F is the 

number of new recruits over the 1 cm dbh threshold per year and hectare and wd is volume-

weighted wood density (g/cm³) in old-growth (OG) and secondary (SEC) forest. 

PFT Model parameters 

G1 G2 G3 G4 mu1 mu2 mu3 mu4 F wd_OG wd_SEC 

slow 2.46028 0.68289 0.40415 0.36858 0.0174 0.0097 0.01037 0.01641 65.37 0.635 0.624 

fast 4.34277 2.21993 0.89384 0.67679 0.02851 0.02614 0.04981 0.06728 20.83 0.403 0.421 

LLP 4.42383 1.6079 0.88258 0.67557 0.01576 0.00877 0.01479 0.02423 6.22 0.480 0.504 

SLB 2.4152 0.94283 0.40931 0.36925 0.03148 0.0289 0.03492 0.04557 16.83 0.653 0.611 

inter- 

mediate 

3.2687 1.23125 0.60104 0.49945 0.02227 0.01592 0.02272 0.03323 6.24 0.600 0.594 
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Table S4. 

Means of model projections for climatic variables. 

Scenario Temperature Precipitation Temperature 

seasonality 

Precipitation 

seasonality 

Reference (1979−2013) 258.0 3206.0 289.0 57.0 

RCP2.6 (2061−2080) 267.5 3487.3 339.0 58.6 

RCP8.5 (2061−2080) 282.8 3240.5 328.7 62.4 

Table S5. 

Most parsimonious models (based on AICc) using the dredge function in the ‘MuMIn’ package 

in R. 

Table S6. 

Projected changes in functional traits using climate-trait models from Šímova et al. (29). 

Differences between climate projections and the reference climate are shown in bold. 

Scenario Log Height 

(mean) 

Log Height 

(SD) 

Log Seed 

Mass 

Log Wood 

Density (mean) 

Log Wood 

Density (SD) 

Reference (1979−2013) 2.91 0.73 4.48 -0.50 0.095 

RCP2.6 (2061−2080) 2.93 

(+0.02) 

0.65 

(-0.08) 

4.64 

(+0.16) 

-0.47

(+0.03)

0.087 

(-0.008) 

RCP8.5 (2061−2080) 2.98 

(+0.07) 

0.51 

(-0.22) 

4.88 

(+0.40) 

-0.43

(+0.07)

0.067 

(-0.028) 

T T² P P² TS TS² PS PS² R² 

Mean Log Height x x x x x x x 0.76 

SD Log Height x x x x x x 0.74 

Mean Log Seed Mass x x x x x x 0.71 

Mean Log Wood 

Density 

x x x x x x x 0.29 

SD Log  Wood Density x x x x x 0.41 
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Table S7. 

Projected changes in functional traits at BCI. Projected trait values at BCI were determined by 

adding the trait differences from Table S6 to current trait means and SDs. 

Table S8. 

Projected changes in the coordinates of tree species in a two-dimensional demographic space, 

where x corresponds to the fast−slow continuum and y to the stature−recruitment tradeoff (9). 

Scenario Log Height 

(mean) 

Log Height 

(SD) 

Log Seed 

mass (mean) 

Log Wood 

density (mean) 

Wood density 

(SD) 

BCI now 2.62 0.74 3.44 -0.63 0.138 

BCI RCP2.6 

(2061−2080) 

2.64 

(+0.02) 

0.66 

(-0.08) 

3.60 

(+0.16) 

-0.60

(+0.03)

0.130 

(-0.008) 

BCI RCP8.5 

(2061−2080) 

2.69 

(+0.07) 

0.52 

(-0.22) 

3.84 

(+0.40) 

-0.56

(+0.07)

0.110 

(-0.028) 

Scenario Mean x Mean y 

BCI now 0.133 0.181 

BCI RCP2.6 (2061−2080) 0.274 

(+0.140) 

0.205 

(+0.024) 

BCI RCP8.5 (2061−2080) 0.455 

(+0.322) 

0.270 

(+0.089) 



29 

Data S1. (separate file) 

Species scores in PCA space, PFT assignments, and model parameters for 282 tree and shrub 

species at Barro Colorado Island, Panama. 

Data S2. (separate file) 

Assignment of plant functional types (PFT) for species from secondary forest plots for which no 

demographic information was available from old-growth forest.  

Simulation code (separate file) 

Simulation model code, written in R, for 5 PFTs: PPA_5PFTs_4layers.r 


