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x Beaches geologically controlled by rock and coral formations are common globally. 

x We review the state of knowledge of geological control of sandy beaches. 

x There was no encompassing classification system for these beaches. 

x We present longshore and cross-shore models from low to high geological control. 

x There is poor applicability of models for management of this common beach type. 
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Abstract 1 

Beaches that are geologically controlled by rock and coral formations are the rule, not 2 

the exception. This paper reviews current understanding of geologically controlled 3 

beaches, bringing together a range of terminologies (including embayed beaches, 4 

shore platform beaches, relict beaches, and perched beaches among others) and 5 

processes, with the aim of exploring the multiple ways in which geology influences 6 

beach morphology and morphodynamics. We show how in addition to sediment 7 

supply, the basement geology influences where beaches will form by providing 8 

accommodation, and in the cross-shore, aspects of rock platform morphology such as 9 

elevation and slope are also important. Geologically controlled beaches can have 10 

significant variations in sediment coverage with seasons and storms, and geological 11 

controls have fundamental influences on their contemporary morphodynamics. This 12 

includes wave shadowing by headlands and rocky/coral formations inducing strong 13 

alongshore gradients in wave energy, resulting in corresponding variations in 14 

morphodynamic beach state and storm response. Geologically-induced rip currents 15 

such as shadow rips and deflection rips, and even mega-rips that can develop on 16 

embayed beaches during storms, are an integral feature of the nearshore circulation 17 

and morphodynamics of geologically controlled beaches. We bring these processes 18 

together by presenting a conceptual model of alongshore and cross-shore levels of 19 

geological control. In the longshore dimension, this ranges from beaches that are 20 

slightly embayed, through to highly embayed beaches where headlands dominate the 21 

entire beach morphodynamic response. In the cross-shore dimension, this ranges from 22 

beaches without discernible geological controls, through to relict beaches above the 23 

influence of the contemporary littoral zone. Given the prevalence of geologically 24 

cRQWUROOed beacheV aORQg Whe ZRUOd¶V cRaVWV, iW is paramount for coastal management 25 

to consider how these beaches differ from unconstrained beaches and avoid applying 26 

inappropriate models and tools, especially with our uncertain future climate. 27 
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Keywords: Beach morphodynamics; shore platform; coral reef; headlands; perched 28 

beach; equilibrium profile 29 

1. Introduction  30 

Strong feedback loops exist within sandy beach systems, where a change in a single driver 31 

such as wave period and height, or sediment size, may result in an adjustment to beach 32 

form, whose interaction was termed morphodynamics by Wright and Thom (1977) and 33 

synthetized by Wright and Short (1984) for sandy beach environments. Most research on 34 

beach morphodynamics focuses on cross-shore and alongshore sediment exchange that is 35 

(at least assumed to be) unconstrained by geology or other hard substrates (Cowell and 36 

Thom, 1994; Short and Jackson, 2013; Feal-Pérez et al., 2014; Trenhaile, 2018). Classic 37 

examples include the beach change frameworks developed for single, double (Wright and 38 

Short, 1984; Wright et al., 1985) and multi-barred (Short and Aagaard, 1993) wave-39 

dominated beaches, and the model of Masselink and Short (1993) that accounts for tidal 40 

range using the Relative Tidal Range (RTR) parameter. In these models, the surf zone and 41 

beach morphology is essentially a function of grain size, wave and tide hydrodynamics, 42 

conveniently described thURXgh Whe VXUf VcaOiQg SaUaPeWeU, DeaQ¶V SaUaPeWeU aQd RTR 43 

(Jackson et al., 2005; Jackson and Cooper, 2009). However, many beaches have significant 44 

geological controls due to headlands, reefs, platforms, rock outcrops and islets (Short, 45 

2006), which determine beach boundaries, beach morphology, morphodynamics and long-46 

term evolution (Jackson et al., 2005; Gómez-Pujol et al., 2007; Short, 2010). An increasing 47 

number of studies show that beaches with geological controls have distinctly different 48 

behaviour compared to unconstrained beaches (González et al., 1999; Muñoz-Pérez et al., 49 

1999; Jackson et al., 2005; Jackson and Cooper, 2009; Gallop et al., 2011b; Gallop et al., 50 

2012, 2013; Loureiro et al., 2013; Gallop et al., 2015a; Trenhaile, 2016), which causes 51 

significant complications for coastal managers as traditional erosional models are not directly 52 

applicable in such settings. However, geologically controlled beaches are still largely not 53 
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classified as a distinct type, there is still a fundamental lack of data on their behaviour, and 54 

there is no commonly-accepted terminology and classification system of their morphology.  55 

Thus, the aims of this critical review are to understand our current state of knowledge on 56 

how geological control affects sandy beach morphology and morphodynamics, to identify 57 

key research needs and management implications of these understudied, globally distributed 58 

coastal systems. In Section 2 we review the terminology used for geologically controlled 59 

beach systems. Section 3 focuses on the morphodynamics of sandy geologically controlled 60 

beaches, starting with conditions necessary for beach accumulation in terms of the 61 

underlying geological surface morphology (Section 3.1), followed by a discussion of the 62 

sometimes stark temporal variations in sediment coverage that can occur in these systems 63 

(Section 3.2). This is followed by the analysis of how geological controls can reduce beach 64 

wave exposure, and also filter wave energy increasing the dominance of infragravity waves 65 

(Section 3.3). We then discuss the range of geologically controlled rip currents in Section 66 

3.4, followed by a summary of beach rotation in Section 3.5. Section 4 presents conceptual 67 

models of geological control in longshore directions (existing models) and in a cross-shore 68 

direction (a new model developed in this review). This is followed by conclusions in Section 69 

6.  70 

2. Defining geologically controlled beaches 71 

Various terms have been applied in the geomorphological and engineering domains to 72 

describe geologically controlled beaches and their morphology (Table 1, Figure 1). The 73 

terms geologically controlled and geologically constrained have been used interchangeably, 74 

both to describe beaches with alongshore geological controls (Short, 2006, 2010) and/or 75 

where there is a geologically influenced cross-shore beach profile (Jackson and Cooper, 76 

2009; Muñoz-Pérez and Medina, 2010). In particular, alongshore geological control is an 77 

important concept in delineating coastal sediment compartments (or cells) for coastal 78 

management (Gallop et al., 2015b), particularly where boundaries are located at rock 79 
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headlands (Cooper and Pontee, 2006; Thom et al., 2018). It is a fundamental principle 80 

behind the development of headland control as an engineering solution for coastal 81 

stabilization (Silvester and Hsu, 1997).  82 

In contrast, beaches without geological control in the cross-shore dimension, termed 83 

unconstrained by Jackson and Cooper (2009), have a sedimentary profile envelope that 84 

does not intersect or interact with the basement geology or semi-consolidated Quaternary 85 

lithologies (Jackson and Cooper, 2009) over contemporary morphodynamic time-scales. A 86 

typical example are the wave-dominated sandy beaches analysed in the classic Wright and 87 

Short (1984) morphodynamic model, where there is abundant sediment and the beach 88 

profile is assumed to adjust freely and fully to local hydrodynamic forcing by waves and tides 89 

(Jackson and Cooper, 2009). Some examples of geologically controlled beaches are given 90 

in Figure 1. While this paper focuses on hard substrates such as rock and coral, beach 91 

morphodynamics may also be influenced by other types of bioherms such as reefs built by 92 

gastropods, fan worms and molluscs such as oysters (Milliman, 1974; Piazza et al., 2005). 93 

Moreover, seagrass meadows (and associated litter) can also have a direct influence on the 94 

morphodynamics of geologically controlled beaches (Basterretxea et al., 2004; Gómez-Pujol 95 

et al., 2007; Aragonés et al., 2016) and may act in a similar way to a rock or coral reef 96 

(Gómez-Pujol et al., 2011). These features are an important consideration in the 97 

management of many geologically controlled beaches but are beyond the scope of this 98 

paper.    99 
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 100 

Figure 1. Examples of geologically controlled beaches: (a) sandy embayed beach on rock 101 

reef at Man O'War Bay, Dorset, England (Photo: S.L. Gallop); (b) Sandy beach on rock 102 

pavement and intertidal outcrops at Rottnest Island, Western Australia (Photo: S. L. Gallop); 103 

(c) Sandy beach behind intertidal rock platform in Cuba (Photo: M.I. Vousdouskas); (d) 104 

Sandy pocket beach and beach rock platform at Motu Tuamotu, French Polynesia (Photo: 105 

S.L. Gallop); (e) Sandy beach behind Ningaloo fringing coral reef, Western Australia (Photo: 106 

S. Bauer); and (f) Sandy beach on calcareous sandstone platform at Victoria Beach, Cadiz, 107 

SW Spain (Photo: J.J. Muñoz-Pérez).  108 
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Other key terms in the literature describe sub-types of geologically controlled beaches. This 109 

includes beaches constrained by beach rock formed by in situ cementation (Russell, 1959; 110 

Cooper, 1991; Vousdoukas et al., 2007; Vousdoukas et al., 2009; Vousdoukas et al., 2012), 111 

typically in the intertidal zone of tropical/subtropical and low latitude microtidal coasts 112 

(Vousdoukas et al., 2007). On some beaches, geological control occurs due to submerged 113 

or emergent (elevated about MSL) rock or coral reefs (Muñoz-Pérez et al., 1999; Sanderson, 114 

2000), which may be naturally-occurring or artificial predominantly for coastal protection 115 

(Ranasinghe et al., 2006). Beaches on top of shore platforms, or platform beaches (Taborda 116 

and Ribeiro, 2015), are also subjected to strong geological controls (Stephenson, 2000; 117 

Short, 2006; Trenhaile, 2016). The WeUP µhaUd bRWWRP¶ has often been used in the literature to 118 

describe rock outcrops (whether natural or engineered) on the beach and shoreface (Cleary 119 

et al., 1996; Larson and Kraus, 2000; Hanson and Militello, 2005) 120 

Of relevance in the context of geological control are also raised/stranded/relict beaches, 121 

although these terms are also applied to unconstrained beaches. For a beach to become 122 

relict, a change in base level is required to strand the beach above the reach of modern 123 

marine processes, which can be eustatically, glacio-isostatically or tectonically driven 124 

(Blackburn et al., 1967; Kidson and Wood, 1974; Sprigg, 1979; Huntley et al., 1993; Alonso 125 

and Pagés, 2007; Benedetti et al., 2009; Trenhaile, 2016). Raised beaches are particularly 126 

common in tectonically active areas where instantaneous base level change strands 127 

beaches so that they can no longer be reworked by contemporary marine processes, such 128 

as Turakirae Head (McSaveney et al., 2006) and Wellington (Olson et al., 2012) in New 129 

Zealand and Kujikuri, Japan (Tamura et al., 2008).  130 

SRPe geRORgicaOO\ cRQWUROOed beacheV aUe deVcUibed aV µSeUched beacheV¶ ZiWh YaUiRXV 131 

defiQiWiRQV Rf µSeUched¶ e[iVWiQg fURP bRWh Whe geRPRUShRORgicaO aQd eQgiQeeUiQg OiWeUaWXUe. IQ 132 

Whe 1960¶V, Whe cRQceSW Rf eQgiQeeUed SeUched beacheV ZaV iQWURdXced b\ Inman and 133 

Frautschy (1966), who explored the idea that an artificially-steep beach (often due to 134 

sediment QRXUiVhPeQW) cRXOd be PaiQWaiQed if iW ZaV µSeUched¶ RQ aQ eQgiQeeUed VXbPeUged 135 
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dike. The inspiration for this design was based on observations in nature at Algodones in the 136 

Gulf of California where the presence of a natural sedimentary rock outcrop ~2.75 m below 137 

MSL enabled a wider beach than on the neighbouring coast (Moreno et al., 2018). 138 

Nowadays, in coastal eQgiQeeUiQg, Whe WeUP µSeUched¶ beach iV W\Sically defined as a beach 139 

or wedge of sand retained above the otherwise normal profile level by a submerged dike (US 140 

Army Corps of Engineers, 1984) (Figure 2). According to this definition, perched beaches 141 

are essentially an engineered raised beach with an artificial cross-shore geological control 142 

that aims to prevent offshore leakage of sediment.  143 

 144 

Figure 2. Schematic of an engineered perched beach (based on (González et al., 1999), 145 

where the main variables are indicated including (d) water depth over the toe structure (e.g., 146 

breakwater), water depth on the shoreward (hi) and seaward sides (he) of the structure, the 147 

change in beach width (ǻy) and berm height (Bo).  148 

IQ a geRPRUShRORgicaO cRQWe[W, Whe WeUP µSeUched beach¶ iV sometimes used more broadly to 149 

describe beaches and other coastal landforms such as beach-barrier sequences (Pilkey et 150 

al., 1993; Riggs et al., 1995; Cleary et al., 1996), which have a hard substrate (e.g. rock or 151 

coral substrates) outcropping on the beach profile (Alexandrakis et al., 2013). The term 152 

perched beach has also been applied to beaches on shore platforms (Cleary et al., 1996), 153 

including those made of relatively soft, erodible materials such as soft mudstone and soft 154 

clay (Walkden and Hall, 2005) when the underlying and beach materials differ and there is 155 

limited exchange of sediment between the units (Shand et al., 2013). To avoid confusion 156 
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between engineering and geomorphological terminology, Ze VXggeVW WhaW µgeRORgicaOO\ 157 

cRQWUROOed¶ iV PRUe aSSURSUiaWe WhaQ µSeUched¶ to collectively describe beaches with cross-158 

shore geological constraints. The geology in our definition can be both artificial and 159 

engineered and refers to substrate which is more resistant to erosion than the overlying 160 

unconsolidated beach sand. 161 

Table 1. Summary of terms used to describe types of geologically controlled beaches.  162 

Term Definition 

Geologically 

controlled/constrained 

beach 

 

Beach where the physical boundaries such as headlands, outcrops, reefs, 

shore platforms and islets (Short, 2006) determine beach boundaries 

(accommodation space), sediment supply, nature of sediments and 

morphological change (McNinch, 2004; Jackson et al., 2005). Geology may 

also intrude into the cross-shore idealised equilibrium beach profile envelope 

(Jackson et al., 2005; Short, 2010). 

Unconstrained/open beach Beach where the sedimentary profile does not intersect or interact with the 

basement geology or semi-consolidated lithologies (Jackson and Cooper, 2009) 

over decadal time-scales. Beach can adjust freely to local hydrodynamic forcing 

by waves and tides (Jackson and Cooper, 2009). 

Embayed/pocket/crenulated 

/headland-bay beach 

Beach bound laterally in one or both extremities by physical barriers such as 

headlands, rock platforms or artificial structures such as groins, jetties and 

breakwaters (Hsu and Evans, 1989; Fellowes et al., 2019).  

Reef-protected 

beaches/beaches with 

submerged structures such 

as breakwaters 

Beaches with natural or artificial submerged or emergent (elevated about MSL) 

rock or coral reefs (Muñoz-Pérez et al., 1999; Sanderson, 2000; Moschella et 

al., 2005), or lithified submerged barriers/ paleo shorelines in the nearshore 

(McNinch, 2004; Gómez-Pujol et al., 2019). See Ranasinghe et al. (2006) for a 

review of shoreline response to nearshore submerged structures.  
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Shore platform beaches Beaches where the underlying beach substrate is an erosional rocky shore 

platform. These beaches occur above MLWS elevation (Stephenson, 2000; 

Trenhaile, 2004; Doucette, 2009; Kennedy and Milkins, 2015). 

Relict/raised/stranded 

beach  

Beach that is elevated well-above current MSL and even extreme storm 

conditions, as a result of eustatically, glacio-isostatically or tectonically driven 

change in base level (Blackburn et al., 1967; Kidson and Wood, 1974; Sprigg, 

1979; Huntley et al., 1993; Alonso and Pagés, 2007; Benedetti et al., 2009; 

Trenhaile, 2016). These terms can be applied to geologically controlled and 

unconstrained beaches alike.   

Perched beach 

 

Engineering: ³a beach RU Zedge Rf VaQd UeWaiQed abRYe Whe RWheUZiVe QRUPaO 

SURfiOe OeYeO b\ a VXbPeUged diNe´ (US Army Corps of Engineers, 1984) 

Geomorphology: broad term describing beaches with either a hard substrate 

outcropping on the beach profile such as submerged beach rock and coral 

reefs (Gallop et al., 2011b; Gallop et al., 2012; Alexandrakis et al., 2013; Gallop 

et al., 2013) or where material underlying the beach has a different 

composition, such as soft clay (Walkden and Hall, 2005). 

It is important to consider that geological beach control will occur in any situation where 163 

bedrock is outcropping on the beach profile. As a result, it is more likely to occur in areas of 164 

high coastal relief and in instances where there is restricted sediment supply (Cooper et al., 165 

2018). Changes to sediment supply which would lead to a reduction in total beach volume 166 

could potentially shift beaches from being unconstrained to geologically controlled as 167 

bedrock becomes exposed (Masselink et al., 2016) (discussed further in Section 3.2). 168 

Globally, this may become more common as sediment supply to the coast is reduced 169 

(Syvitski et al., 2005), however, exploration of this topic is beyond the scope of this study. 170 

 171 

 172 



10 
 

3. Geological control of beach morphodynamics 173 

3.1. Beach accumulation on shore platforms 174 

Beaches that develop through sand accumulation on shore platforms are probably the most 175 

well-studied form of cross-shore geologically controlled beach (Trenhaile, 2016). On shore 176 

platform beaches, a rocky surface occupies at least part of the intertidal zone. The degree to 177 

which sediment can accumulate, and therefore the level of beach profile development, is a 178 

product of the elevation of the platform and its slope (Trenhaile, 2004; Kennedy and Milkins, 179 

2015). Trenhaile (2004) modelled the accumulation of beach sediment on shore platforms 180 

and found that sediment will only accumulate when the slope of the platform is less than the 181 

slope of the beach. This is because a higher platform angle will favour offshore rather than 182 

onshore sediment transport. If the platform gradient is low enough, beach development 183 

initiates at the cliff base and extends seaward if sediment is available. If the platform is 184 

sloping, the beach can only develop on sections of the platform with a gradient less than the 185 

equilibrium beach face gradient, which depends on breaker height, wave period and 186 

sediment grain size (Sunamura, 1989). This relationship of beach development and platform 187 

slope means that the sub-horizontal platforms found in micro- and lower meso-tidal ranges 188 

are particularly conducive to beach formation (Trenhaile, 2004). Beaches are also more 189 

likely to develop on the lower-gradient regions of convex platforms (seaward end) and 190 

concave platforms (landward end). In addition, platform gradient has an influence on the 191 

sediment grain size that can accumulate to form the beach, where smaller grain sizes can 192 

build up on more gently-sloping platforms, compared to larger grain sizes on steeper 193 

platforms. Trenhaile (2004) also suggested that only pebbles and other coarse material can 194 

accumulate on platforms with a gradient of more than 5°, and coarse sand can accumulate 195 

when the platform gradient is between 2° and 5°. 196 

Shore platform gradient tends to increase with tidal range, although local factors are also 197 

important (Trenhaile and Layzell, 1981), which implies that the potential for platform beach 198 
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formation is higher on microtidal rocky coasts. In such low tide range settings in Victoria, SE 199 

Australia, Kennedy and Milkins (2015) found that shore platform elevation was a critical 200 

determinant of beach accumulation. Sand was only able to accumulate when the platform 201 

dropped below the combined elevation of the mean annual wave height and the Mean High 202 

Water Springs (MHWS) tide level. Once sand could accumulate on the shore, the width of 203 

the platform then became a significant factor in determining beach volume. Wider platforms 204 

dissipate more wave energy (Trenhaile, 2005; Marshall and Stephenson, 2011)  and 205 

therefore encourage sediment deposition. In SE Victoria, there was a positive relationship 206 

between platform width and beach volume once the platform was low enough for sediment 207 

to accumulate (Kennedy and Milkins, 2015). In this region, at Cape Paterson (Figure 5iii), 208 

where a wide platform at low tide elevation is found, a steep beachface with cusps 209 

developed, however in Lorne, where the platform is at MSL and has half the width of the 210 

previous case, only a featureless upper beachface is present.  211 

In some predominantly rocky settings, such as on highly embayed coasts, beach 212 

morphology may be more a function of the longshore dimensions of the embayments in 213 

which they are formed rather than solely the platform elevation and width (Bowman et al., 214 

2009). For example, in Niue in the South Pacific Ocean the beaches sit at the rear of wide 215 

shore platforms at intertidal elevations, but are ephemeral, disappearing during tropical 216 

cyclones, and during non-storm periods only the low intertidal parts of the profile can form. 217 

Their morphology is therefore limited by the accommodation space. That is, in addition to 218 

being vertically geologically constrained, their high intertidal and supratidal profile cannot 219 

form due to the presence of vertical cliffs which limit lateral accommodation space.  220 

3.2. Temporal variation in sediment coverage 221 

On geologically controlled beaches, there is a paucity of empirical data on spatial and 222 

temporal changes compared to studies of unconstrained beaches (Fox and Davis, 1978; 223 

Davidson-Arnott and Law, 1996; Masselink et al., 2016). Yet, the limited observations show 224 
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that there can be dramatic temporal changes in sediment coverage and thickness over the 225 

geological substrate. For example, during the extreme 2013±14 winter storms in SW 226 

England, large quantities of sand moved offshore (Masselink et al., 2016), revealing the 227 

underlying rocky substrate. Such behaviour can also occur on a regular basis over seasonal 228 

time-scales, such as on a beach overlying a calcarenite limestone platform near Perth, WA, 229 

where in winter, the sub-horizontal platform can be exposed, and then recovered with 230 

sediment during summer (Doucette, 2009). An example is shown in Figure 3 of Yanchep, 231 

WA, which also undergoes dramatic seasonal changes in sediment coverage and thickness 232 

(Gallop et al., 2013). There have been few studies comparing rates of erosion and accretion 233 

of geologically controlled compared to unconstrained beaches. Muñoz-Pérez and Medina 234 

(2010) found that the accretion rate was much faster on an unconstrained, sandy beach 235 

profile, compared to a profile geologically-constrained by a rock reef (1.01 m3 day-1 236 

compared to 0.33 m3 day-1) in Cadiz, SW Spain. The relatively slower rates of recovery of 237 

geologically controlled beaches may relate partly to the ability of sediment to be transported 238 

above the seaward terminus of the rock/coral substrate and onto the beach. In microtidal 239 

environments this seaward edge can range in shape from a gently sloping ramp to vertical 240 

cliff (Kennedy, 2015, 2016), and when steep it can prevent onshore sediment movement 241 

during calm conditions (Trenhaile, 2004). Bosserelle et al. (2011) reported that the presence 242 

of a sand ramp fronting a rock reef was crucial to allow sediment to overtop the reef onto the 243 

beach. This can increase the time it takes for beaches on platforms/reefs with abrupt 244 

seaward terminuses to recover after erosive events and periods, as very specific and 245 

relatively infrequent hydrodynamic conditions that combine moderately energetic 246 

constructive waves and larger tidal ranges are required for subtidal sediments to be 247 

entrained and transported onshore. 248 
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 249 

Figure 3. Example of large differences in seasonal sediment accumulation at Yanchep, 250 

Western Australia, where the beach is fronted by calcarenite limestone reef. (a) is the winter 251 

(eroded) state; and (b) the summer (accreted) state. (Photos: C. Bosserelle). Volume 252 

changes of up to 1.13 m3/m between summer and winter have been measured here, leading 253 

to a total seasonal change of up to 93,970 m3 over this 600 m long beach (Gallop et al., 254 

2013). 255 

On some types of geologically controlled beaches, such as those on seaward sloping 256 

platforms, a reduced capacity for sediment storage (Trenhaile, 2004) may allow only the 257 

development of a thin, veneer beach in months with more quiescent wave conditions, which 258 

can be easily eroded in winter to expose the platform. For example, in South Wales, UK, 259 

calmer, more southerly and shorter-fetch summer winds and waves transport sand onto the 260 

shore platforms, which are then typically removed during winter storms where longer-fetch 261 

south westerly waves dominate (Naylor et al., 2016). This trend is most evident in the lower 262 
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intertidal zone where sand accumulation is highest (Figure 4). Nine months of bi-monthly 263 

cross-shore monitoring of sand percentage cover (as the accumulations are very thin, 264 

typically less than 1±2 cm thick) data were collected from 26 systematically randomly placed 265 

1 m2 quadrats across the intertidal zone (Figure 4). Sand accumulations varied across this 266 

platform where the presence of sand was strongly modulated by: (1) shore position (with the 267 

upper intertidal zone having considerably less sand accumulation than lower down the 268 

shore); (2) surface morphology, as more sand accumulated in depressions; and (3) biology, 269 

where macroalgae helped retain sediment (Figure 4). It is important to note that these 270 

seasonal modulations of sand allow the polychaete worm, Sabellaria alveolata, to establish 271 

large communities on these shore platforms, as the species requires the presence of sand to 272 

grow the tubes which provide their habitat and a hard substratum on which to affix 273 

themselves to establish their colonies (Naylor and Viles, 2000).  274 
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Figure 4. Spatial and temporal variations in the percentage cover of ephemeral sand 275 

accumulations on a rocky shore platform in South Wales, UK over a 9-month period between 276 

May 1999 and January 2000. (Source: data adapted from Naylor (2001)).  277 

3.3. Geologically controlled reduction in wave exposure 278 

On any given beach, the amount of incident wave energy that reaches the shore (wave 279 

e[SRVXUe) aQd iW¶V aORQgVhRUe YaUiabiOiW\ iV iQWegUaO WR Whe beach PRUShRORg\ aQd behaYiRXU. 280 

Geological features can have a significant influence on the wave exposure of a beach, 281 

where features such as headlands can result in wave shadowing in their lee (Daly et al., 282 

2014), which creates an alongshore gradient in wave energy and concurrent variations in the 283 

beach morphology and behaviour (Castelle and Coco, 2012; McCarroll et al., 2014). In 284 

addition, other wave dissipation processes such as wave breaking and bottom friction can 285 

also be amplified on geologically controlled beaches. For example, besides the relatively 286 

shallow nature of some engineered rock structures and rock/ coral reefs that induce wave 287 

breaking due to depth limitation (Frihy et al., 2004; Gallop et al., 2012), the roughness of 288 

rocks and reefs can increase wave dissipation through bottom friction (Rey et al., 2004; Ford 289 
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et al., 2013; Ruiz de Alegria-Arzaburu et al., 2013), theree reducing wave exposure and 290 

beach erosion (Dickinson, 1999; Frihy et al., 2004). On Kaanapali Beach, Maui, for example, 291 

the shallow (<1 m deep) fringing coral reef promotes beach stability by reducing rates of 292 

longshore sediment transport and increasing wave dissipation (Eversole and Fletcher, 293 

2003). At Yucatan Peninsula (SE Mexico), the landfall of category 4 hurricane Wilma in 2005 294 

caused widespread erosion of an unconstrained beach at Cancun, while 25 km south a 295 

geologically controlled beach with a fringing coral reef accreted due to wave and current 296 

dampening in the lee of the reef (Mariño-Tapia et al., 2014; Mulcahy et al., 2016). It is also 297 

important to consider that the nearshore submarine geology can also influence shoaling 298 

processes and ultimately local beach morphodynamics (Gómez-Pujol et al., 2019), similar to 299 

the reefs and submerged engineering structures described previously. For example, the 300 

presence of paleo-channel/ sub-marine canyons (Jacob et al., 2009) can result in 301 

alongshore gradients in wave energy through impacts on wave refraction and dissipation 302 

and can also lead to rip currents (Long and Özkan-Haller, 2005).  303 

Significant amounts of wave energy may still propagate through submerged coastal 304 

structures such as reefs, due to low-frequency fluctuations, and if resonant conditions occur 305 

(Karunarathna and Tanimoto, 1995). These low-frequency oscillations can occur due to 306 

nonlinearities in the short wave field, and include bound and free long waves (Karunarathna 307 

and Tanimoto, 1995; Payo and Muñoz-Perez, 2013). Moreover, measurements indicate that 308 

the energy spectrum on coral reef flats is dominated by infragravity frequencies (Young, 309 

1989; Brander et al., 2004; Winter et al., 2017), and reef topography can lead to excitation of 310 

resonant modes (Péquignet et al., 2009), such as by wave groups (Gallop et al., 2012). In 311 

addition, on beaches resting on platforms, the frequency of waves is altered as they 312 

propagate across the platforms, with wave breaking filtering out gravity waves and 313 

increasing infragravity wave height (Beetham and Kench, 2011; Ogawa et al., 2012). Thus, 314 

while submerged rock substrates supporting beaches can dissipate waves, significant 315 

amounts of wave energy can still impact the shoreline during particular topographic and 316 
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forcing conditions. It was demonstrated by Winter et al. (2017) that cross-shore standing 317 

water elevation patterns can be generated by infragravity waves, even in environments with 318 

highly irregular alongshore bathymetry such as coral reefs; and refraction of infragravity 319 

waves by nearshore reefs can also propagate in opposite alongshore direction causing a 320 

local standing wave pattern.  321 

3.4. Geologically controlled rip currents 322 

Rip currents are commonplace on wave-dominated beaches and play a key role in sediment 323 

transport, surf zone circulation, and beach morphodynamics (Wright and Short, 1984; Gallop 324 

et al., 2018). There are three broad categories of rip currents, all of which can be present on 325 

geologically controlled beaches. As outlined in the recent review by Castelle et al. (2016), 326 

the first two categories: (1) hydrodynamically controlled rip currents (flash rips and shear 327 

instability rips); and (2) bathymetrically controlled rip currents (channel rips and focused rips) 328 

are found on wave-dominated beaches with and without geological controls. Although 329 

geological controls can influence the spacing, dimensions and behaviour of these rip 330 

currents (Holman et al., 2006; Bryan et al., 2009; Gallop et al., 2011c; Castelle and Coco, 331 

2012), they are not explored further here as their presence is not fundamentally dependent 332 

on geological controls. On the other hand, the presence of rip currents in the third category: 333 

(3) boundary controlled rip currents, is dependent on geological formations such as 334 

headlands (or engineered structures such as breakwaters that mimic these) that exert lateral 335 

controls on surf zone circulation (Alvarez-Ellacuria et al., 2009; Castelle et al., 2016). The 336 

two key types of boundary controlled rips are shadow rips and deflection rips, and they tend 337 

to be relatively permanent features. Shadow rips can form on beaches where an obstacle 338 

such as a headland, shadows (protects) part of the beach from obliquely-incident waves, 339 

resulting in an alongshore gradient in incident wave energy and driving an offshore-flowing 340 

jet (rip current) against the boundary (Pattiaratchi et al., 2009; McCarroll et al., 2014). 341 

Deflection rips are formed when oblique waves drive strong alongshore currents that deflect 342 
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seaward when reaching an obstacle such as a headland (Castelle and Coco, 2013; Scott et 343 

al., 2016).  344 

Geological controls from rock or coral reefs and shore platforms can also result in current 345 

jets in cross-shore through to longshore directions, with rapid shifts between longshore to 346 

rip-dominated beach circulation dependent on wave direction and tidal stage (Horta et al., 347 

2018). For example, rock and coral reefs (or breakwaters) exert an important control on 348 

wave breaking, which results in gradients in water level due to wave set-up and radiation 349 

stress, contributing to ³piling´ Rf ZaWeU iQ Whe Oee Rf a reef due to impeded return flow (Dean 350 

et al., 1997). This drives the development of longshore and rip currents (Dean et al., 1997; 351 

Gallop et al., 2011a; Gallop et al., 2011c; Taebi et al., 2011; Gallop et al., 2015a), which 352 

during storm events can both: (a) exacerbate erosion in areas where sediment is taken from; 353 

and (b) ultimately reduce erosion in areas where sediment transported by the current is 354 

deposited as a sand bar which then promotes wave breaking (Gallop et al., 2012).  355 

On embayed beaches, embayment-cellular rips can also occur (Castelle et al., 2016), where 356 

a rigid boundary (e.g., headlands) can dominate the circulation of the embayment (Short and 357 

Masselink, 1999). These embayment-cellular rips are often topographically controlled and 358 

occur along headlands at one or both ends of an embayment depending on the boundary 359 

geological controls, waves and beach curvature (Castelle and Coco, 2012), or may also 360 

occur at the centre of larger embayed beaches (Short, 2007). Cellular circulation on 361 

embayed beaches is particularly relevant during storms, as it can drive the development of 362 

large, erosional rip current systems called mega-rips (Short, 1985, 2007; Loureiro et al., 363 

2012a). Mega-rips is a broad term describing large (>1 km), strong rip currents flows that 364 

extend far beyond the surf zone that can play an important role in surf zone morphology and 365 

circulation even during post-storm low energy conditions (Short, 1985; McCarroll et al., 366 

2014). Cellular rip current flows in embayed beaches tend to scale positively with increasing 367 

wave height and decreasing embayment size (Short and Masselink, 1999). Megarips can 368 

cause severe surf zone and beach and dune erosion during storms (Short and Hesp, 1982), 369 
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particularly when the mega-rip and feeder channels persist over successive storms 370 

promoting continued erosion and hindering beach recovery (Loureiro et al., 2012a) 371 

3.5. Beach rotation 372 

Due to the inherent alongshore compartmentalisation and exposure to temporal and spatially 373 

variable wave conditions, beach rotation is a common phenomenon on geologically 374 

controlled beaches (Gallop et al., 2013; Habel et al., 2016; Trenhaile, 2016). Beach rotation 375 

can be defined as the alternating morphological response of opposite sections of an 376 

embayed beach, driven by cross-shore and/or longshore morphodynamic processes or their 377 

interaction, coupling the beach and nearshore in response to changes in hydrodynamic 378 

forcing  (Loureiro and Ferreira, 2020). Beach rotation occurs mainly through alongshore 379 

and/or cross-shore non-uniform sediment transport due to variation in wave direction and/or 380 

gradients in wave energy (Harley et al., 2011; Harley et al., 2015), but can also be driven by 381 

cellular circulation mechanisms (Loureiro et al., 2012b). While beach rotation is an 382 

embayment-wide morphological response on geologically constrained beaches, the precise 383 

mechanisms and drivers of beach rotation are often characterized by interacting and 384 

complementary morphodynamic processes (Muñoz-Pérez et al., 2001; Harley et al., 2015; 385 

Blossier et al., 2017). Loureiro and Ferreira (2020) distinguish beach rotation as: (1) an 386 

alongshore coherent response to reversals in wave direction, when sediment transported 387 

alongshore accumulates against a geological boundary (e.g. headland, reef, engineered 388 

structure), while the opposing section erodes and thus the beach appears to rotate, usually 389 

around a pivotal point or transition zone (Antonio Henrique da Fontoura et al., 2002); (2) the 390 

result of combined cross-shore and longshore morphological response to variability in wave 391 

forcing, as detailed in Harley et al. (2015); and (3) beach rotation as the planform expression 392 

of changes in nearshore morphological dynamics and cellular circulation.  393 

Beach rotation occurs at single or combined timescales that range from short-term, often as 394 

a response to individual storms (Ojeda and Guillén, 2008; Bryan et al., 2013), to long-term 395 
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rotation driven by interannual to decadal climate-forced changes in wave climate 396 

(Ranasinghe et al., 2004). In the medium-term (months to a year), beach rotation is 397 

associated mainly with seasonal changes in incident wave characteristics (Turki et al., 2013; 398 

Habel et al., 2016), which can be particularly pronounced in regions that experience a bi-399 

directional wave climate. This distinction between mechanisms and timescales does not 400 

necessarily mean that beach rotation at any given beach takes place always in the same 401 

timescale or through exact the same morphodynamic mechanisms (Loureiro and Ferreira, 402 

2020). Overlapping or interacting timescales and processes are frequently observed, 403 

particularly in cases where quick rotation towards one end of the embayment is driven by 404 

storm events, while the rotation in the reverse direction takes place as slower, posts-storm 405 

recovery, often lagging the changes in hydrodynamic forcing (Ranasinghe et al., 2004).  406 

On beaches that experience variable cross-shore geological control, mainly due to the 407 

differences in the alongshore configuration of rock outcrops, seasonal beach rotation can 408 

occur in response to non-uniform oscillation of the cross-shore beach profile (Muñoz-Pérez 409 

et al., 2001). Alongshore variability in nearshore reef configuration also contributes to 410 

rotational responses of geologically controlled beaches, particularly when seasonal infilling 411 

of the nearshore area between the reef and the beach inhibits alongshore sediment 412 

transport, resulting in downdrift erosion. Conversely, when this sediment is eroded due to 413 

winter storms, sediment can then nourish the downdrift beach such as evidenced at 414 

Yanchep Lagoon, Western Australia (Gallop et al., 2013). 415 

Beach rotation can lead to changes in shoreline position in the order of tens of meters (Short 416 

and Trembanis, 2004), but in most cases sediment is assumed to remain within the 417 

embayment, implying no net changes in the overall sediment budget. While this assumption 418 

is valid for most cases and geologically controlled beaches are closed sediment system cells 419 

or compartments, the accumulation of sediment towards one end of an embayment 420 

combined with headland sediment bypassing can lead to significant sediment losses. In such 421 

cases beach rotation becomes a fundamental mechanism for sediment connectivity, 422 
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contributing to a shift of geologically controlled beaches from closed to leaky compartments 423 

(Thom et al., 2018).  424 

4. Models of geological control 425 

Beach-state classifications and conceptual models provide a framework for understanding 426 

the beach environment by distinguishing beaches through the morphology of the 427 

depositional landforms and coupled morphodynamic processes (Wright and Short, 1984; 428 

Wright et al., 1985). In the sections below, we consider existing models and classifications 429 

for beaches with longshore and cross-shore geological control of beach morphodynamics, 430 

and build on these to systematise new conceptual models for geologically controlled 431 

beaches. For a more detailed analysis of accommodation space and first order geological 432 

controls for beaches/barriers see Cooper et al. (2018).  433 

4.1. Longshore geological control 434 

Many geologically controlled beaches are defined as embayed as they are bound laterally by 435 

physical boundaries such rocky headlands and platforms (Hsu and Evans, 1989). The 436 

length, spacing, planform and morphology of embayed beaches is significantly impacted by 437 

this pre-existing bedrock which provides the accommodation space (Short and Masselink, 438 

1999; Cooper et al., 2018), so geological boundaries are a primary control on the 439 

morphodynamics of embayed beaches. The headlands on embayed beaches have diverse 440 

morphology, and may be symmetrical or asymmetrical in terms of their length, width, and 441 

orientation to the shoreline/wave approach (McCarroll et al., 2016; Fellowes et al., 2019). 442 

Embayed beach dimensions and headland length have an important influence on the level of 443 

geological control on the sediment budget and alongshore connectivity. Larger headlands 444 

promote sediment retention within the compartment while OeaNiQg RU µb\SaVViQg¶ Rf VediPeQW 445 

is more likely for smaller headlands, especially combined with large waves coming from an 446 

oblique angle (George et al., 2019). This can result in embayed beaches being defined as 447 
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µcORVed¶ if VediPeQW iV UeWaiQed ZiWhiQ Whe cRPSaUWPeQW, RU µOeaNy¶ if it can bypass headlands 448 

by littoral drift and be lost from the compartment (Thom, 1989; Thom et al., 2018). 449 

In addition to providing the initial setting and accommodation space for a beach to form, the 450 

headlands of embayed beaches are also a fundamental driver of beach morphodynamics. 451 

This occurs through various processes, including wave shadowing which creates an 452 

alongshore wave energy gradient (discussed in Section 3.3), alongside geologically-induced 453 

wave refraction and dissipation (Loureiro et al., 2012a). As discussed in Section 3.4, 454 

headlands and the associated wave shadowing can result in the formation of boundary 455 

controlled rip currents (shadow rips and deflection rips) (Castelle et al., 2016), and, 456 

moreover, the embayment dimensions can also result in cellular circulation and the 457 

developed of mega-rips (Loureiro et al., 2012a). The length and orientation of headlands has 458 

an important influence on the afore-described processes, for example affecting the extent of 459 

wave shadowing and hence alongshore wave energy gradients, which dictate alongshore 460 

changes in morphodynamic beach state, surf zone width and rip channel dimensions 461 

(McCarroll et al., 2016). Whether or not headlands are symmetric is also important in terms 462 

of beach storm response, for example at the embayed Bondi Beach in Australia McCarroll et 463 

al. (2016) found that symmetrical headlands resulted in mega-rip formation at each 464 

headland, while asymmetric headlands may prevent this. In this case, the more protected 465 

end of the beach may remain in a low energy morphodynamic state such as low tide terrace, 466 

while the more exposed zone transitioned to a higher beach state such as from transverse 467 

bar and rip to a complex double bar, with a mega rip at the exposed headland (McCarroll et 468 

al., 2016). Thus, the morphology of headlands, particularly their length and orientation, is 469 

integral for defining the beach setting, whether the beach is a closed or leaky compartment, 470 

and the beach morphodynamics.   471 

The recognition of the fundamental role of geological control has led to a progression of 472 

parametric equations to classify embayed beach planform and morphology. Hsu et al. (1989) 473 

developed the embayed beach planform ratio (based on the ratio of indentation of the 474 
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embayment to width between headlands (Ro), which can only be applied to embayed 475 

beaches with a parabolic shape (Klein and Menezes, 2001). Short and Masselink (1999) 476 

developed the non-dimensional embayment scaling factor ( ሖሻ which is calculated by: 477 

  ሖ ൌ  ௟ଶ       ௕ Eq. (1) 

where Sl is the embayment length (combining length of headland and beach width) and Hb is 478 

breaker wave height.  ሖ  is used to classify between the three key surf zone circulation 479 

patterns on embayed beaches as cellular ( ሖ ൏  ሻ, transitional ( ሖ ൌ  െ   ሻ, and normal 480 

( ሖ ൐   ሻ. Castelle and Coco (2012) built on this to explore in more detail the degree of 481 

headland impact on beach circulation by considering the ratio between embayment length 482 

(L), surf zone slope ( ) and breaking wave height: 483 

  ൌ
  ௕ 
 ௦

 Eq. (2) 

where  ௕ is the breaking parameter and Hs is significant wave height.  Fellowes et al. (2019) 484 

later developed a new approach not requiring in situ data, as it could be applied through 485 

open-source imagery, which classified the degree of embaymentisation through the 486 

embayment morphometric parameter ( ௘ሻ calculated as: 487 

  ௘ ൌ   ඥ ௘ Eq. (3) 

Where a is indentation of the embayment from the seaward end of the headland to landward 488 

back-beach limit, and  ௘  is the embayment area within these limits. The degree of 489 

embaymentisation ( ௘ሻ is an indicator of the level of alongshore geological control on beach 490 

morphodynamics. Fellowes et al. (2019) applied  ௘  to 168 swell-dominated embayed 491 

beaches from 6 global regions, and using k-means clustering identified 4 classes of 492 

embayed beach, with  ௘  increasing with the degree of headland influence and impact on 493 

beach wave exposure. The classes ranged from 1 to 4, with Class 1 being the least 494 

embayed, through to Class 4 which is the most embayed. These classes are represented in 495 

Figure 5a.496 
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4.2. Cross-shore geological control 509 

In addition to the longshore geology, the addition of cross-shore geological controls 510 

completes setting the 3D accommodation space where beaches can accumulate. Cross-511 

shore geological control on beaches can occur in a variety of forms, from thick and semi-512 

permanent deposits atop of hard substrates; through thin, ephemeral veneers over shore 513 

platforms (Trenhaile, 2004; Jackson et al., 2005; Doucette, 2009; Gallop et al., 2013; 514 

Marsters and Kennedy, 2014; Trenhaile, 2016). There have been several attempts to 515 

classify levels of geological control on cross-shore beach profiles. Short (2006) suggested 516 

that in addition to wave/tide-dominated and wave-modified beaches, there is also a distinct 517 

type that is influenced by intertidal rock flats and fringing coral reefs present in Australia. 518 

Jackson and Cooper (2009) later introduced a conceptual model of levels of beach 519 

geological control based on beaches on the Outer Ards Peninsula in Northern Ireland, 520 

ranging from unconstrained, through to semi- and highly-constrained, depending on how 521 

much the beach volume and profile mobility are affected by geology intruding into the natural 522 

beach profile. There remains a need therefore for a universal classification system for the 523 

cross-shore geological control of beaches. Therefore, here we propose a new conceptual 524 

model of levels of geological control on beach morphodynamics, based on the degree of 525 

profile truncation.  526 

The model we present in Figure 5b builds on the original model proposed by Jackson and 527 

Cooper (2009) and includes two extremes of beaches relative to the level of cross-shore 528 

geological control on beach profile activity. One end of the spectrum is occupied by 529 

unconstrained beaches with no cross-shore geological control (Jackson and Cooper, 2009), 530 

and which have a profile with free sediment movement from the wave base to the upper 531 

(landward) limit of storm-wave influence (Short and Jackson, 2013). In such cases, beach 532 

morphology is only a function of interactions between the nature of sediments, sediment 533 

supply and the hydrodynamic environment (Wright and Thom, 1977; Short and Jackson, 534 

2013). At the other end of the spectrum, the geomorphological evolution of relict geologically 535 
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controlled beaches has removed them from the contemporary littoral zone, so that they are 536 

now above the normal reach of waves and tides (Figure 5, example iv). In between these 537 

two extremes, there are varying degrees of geological control. Such beaches actively 538 

respond to marine processes but they are not able to completely form a dynamic equilibrium 539 

profile as sediment supply is limited and rock outcrops at the surface. That is, their cross-540 

shore profile is interrupted by a relatively hard substrate at some position on the shoreface, 541 

i.e., between the landward limit of wave run-up and wave base (Cowell et al., 1999).  542 

Geologically controlled beaches, can be found close to MSL on shore platforms, often at the 543 

cliff-platform junction such as along the Great Ocean Road in SE Australia (Kennedy and 544 

Milkins, 2015), Niue in the South Pacific Ocean (Marsters and Kennedy, 2014) or SE China 545 

(Chen et al., 2011) Such beaches correspond to the examples iii and iv in Figure 5. Here, 546 

most of the beach volume is found in the intertidal zone (Paris et al., 2011), yet they are still 547 

geologically controlled as the lower part of the intertidal profile is occupied by resistant shore 548 

platforms rather than loose sediment. At the opposite end of the spectrum, are beaches 549 

where only the uppermost part of the profile is present, with bedrock or a similar immovable 550 

substrate occupying the lower portions of the profile (Figure 5b, example iv) This part of the 551 

beach will only be active during high magnitude storm events, but can still evidence typical 552 

beach processes as longshore sediment grading (Green et al., 2016).  553 

It is important to note that development of beaches in coral reef seas does not necessarily 554 

occur directly on a reef surface; it can be separated from the reef crest by a lagoon 555 

(Kennedy and Woodroffe, 2002) (e.g., Figure 5b, example i). The depth and width of the 556 

lagoon and its hydrodynamic environment will then determine the degree of geological 557 

control. For example, in the shallow lagoons of the Maldives (Kench and Brander, 2006; 558 

Kench et al., 2006), Lord Howe Island, Australia (Kennedy, 2003), Cancun, Mexico (Mulcahy 559 

et al., 2016) and Samoa (Figure 5b, example i), the wave base is located offshore on the 560 

surrounding reef rim, with active sediment movement occurring across the entire reef 561 

system. In deeper atoll lagoons, such as Kapingamarangi Atoll, Federated States of 562 
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Micronesia, the beach profile is not constrained and extends as an entirely sandy surface 563 

down to wave base (McKee et al., 1959). 564 

At the extreme end of cross-shore geological control is when rocky outcrops are found only 565 

on the lowest parts of the beach profile (termed semi-constrained by Jackson and Cooper 566 

(2009). Such examples are found worldwide, such as in Portugal (Loureiro et al., 2012b) and 567 

Ireland (Jackson et al., 2005), where bedrock has been lowered below the intertidal zone or 568 

resistant lithology is present in the subtidal zone that can resist erosive marine forces (Figure 569 

5b, example ii). The southern coast of south Western Australia (WA) is an example where 570 

rocky outcrops that are initially shore attached progressively deepen and move further 571 

offshore as the coast becomes embayed. In such settings the degree of sediment movement 572 

is directly influenced by the degree of truncation to the beach profile (Gallop et al., 2011b; 573 

Gallop et al., 2012, 2013). In some cases, the geologically controlled nature of the beaches 574 

may only be observable with detailed inshore surveying. For example, in Victoria, SE 575 

Australia, sandy beaches may be relatively sediment-rich in the swash zone under normal 576 

conditions but at greater depths where waves shoal, bedrock dominates the profile (Figure 577 

6). In this respect, while the upper parts of the beach reflect a classic beach-bar system, the 578 

entire profile would have cross-shore geological control during storm conditions when wave 579 

base is located on the rocky outcrops. The rocky and sandy sections also have largely 580 

identical slopes, and the sandy beach profile is not concave as would be expected based on 581 

the equilibrium beach profile theory (Bruun, 1954; Dean, 1977, 1991), suggesting that the 582 

sandy beach has inherited its shape from the pre-existing rocky surface. Such systems have 583 

received scant attention in the literature. 584 
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 585 

Figure 6. Bathymetric LiDAR of the nearshore of Fairhaven Beach, Victoria, SE Australia. 586 

The toe of the sandy beach extends only to 10 m water depth, after which there is bare rock 587 

down to the wave base. The presence of cross-shore geological control is not obvious when 588 

observing only the subaerial beach face (photo: D.M. Kennedy).  589 

5. Management of geologically controlled beaches 590 

In addition to the many services provided by beaches themselves, these coastal systems 591 

also provide an important form of natural protection from the impacts of waves and sea level 592 

rise to coastal communities, infrastructure and habitats which lie behind.  As shown by the 593 

review above, our knowledge of geologically controlled beach morphodynamics and 594 
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therefore how to manage them, is limited. There are few case studies on the management of 595 

beach sediment erosion on geologically controlled beaches. Those that exist tend to apply 596 

techniques that do not consider the complexity and variety of geologically controlled beach 597 

systems. For example, artificial reefs and offshore breakwaters have been put forward as 598 

mechanisms for controlling cross-shore beach erosion (Dean and Dalrymple, 2001), while 599 

perpendicular structures such as groins or artificial headlands are used with the aim of 600 

controlling longshore erosion and promote a stable beach planform (Silvester and Hsu, 601 

1997). While such engineering techniques seem conceptually robust, they are based on a 602 

narrow consideration of the long-term apparent stability of geologically controlled beaches. 603 

They fail to consider the vast majority of characteristic morphodynamic responses of 604 

geologically controlled beaches that we highlight in this paper, such as alongshore non-605 

uniformity in storm response, rip circulation and beach rotation. Because the 606 

morphodynamics of geologically controlled beaches are much more complex than assumed 607 

by existing beach engineering concepts, achieving a dynamic equilibrium with geological 608 

control is unfeasible with coastal engineering solutions that focus on one specific aspect 609 

(i.e., cross shore erosion or planform equilibrium) and disregard the complex cross and 610 

longshore morphodynamics. 611 

Beach nourishment, reprofiling and redistribution are other possible methods to assist these 612 

beach systems provide continued coastal flood and erosion risk alleviation benefits to 613 

society. Some suggestions for applying these techniques to geologically controlled beaches 614 

are made here. First, when considering beach nourishment, it is important to distinguish 615 

between the apparent loss of nourished sediment due to beach rotation or the actual loss of 616 

sediment due to headland bypassing (i.e. leaky systems), which is likely to increase in 617 

nourished geologically controlled beaches. The adjustment of a nourished beach profile 618 

when there are cross-shore geological constraints is also likely to depart from theoretical 619 

models of cross-shore sediment redistribution used in coastal engineering (Muñoz-Perez  et 620 

al., 2020). Scaling up to a local sediment cell, there is scant understanding of and limited 621 
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modelling tools to predict the rates of sediment transport from geologically controlled 622 

beaches to other coastal systems, or between these beaches (Naylor et al., 2016). For 623 

example, a geologically controlled beach might be an important supply of sediment to a 624 

nearby spit (as in Westward Ho!, North Devon, UK), but we have limited understanding of 625 

the process and of how much geologically controlled beach material serves as a key source 626 

of sediment to an economically and socially valuable beach spit. Moreover, it is largely 627 

unclear how to account for spatial variations in geological controls to quantify beach 628 

nourishment volumes and costs, and how to include the effect of this variation on the beach 629 

morphodynamics and hence nourishment performance and longevity (Muñoz-Perez  et al., 630 

2020). 631 

Management implications of sea level rise for geologically controlled beaches can also 632 

consider the changes in accommodation space by higher sea levels and the fact that 633 

geologically controlled beaches cannot retreat landwards according to a Brunn rule style 634 

(Bon de Sousa et al., 2018), as many are backed by rocky cliffs or seawalls/promenades on 635 

developed coasts. This will lead to ³coastal VTXee]e´ (Pontee, 2013) and potential 636 

modification of the beach profile steepness and morphodynamics, such as the potential for 637 

erosion of the beach via faster rates of longshore or cross-shore transport of material. For 638 

example, Brayne (2016)  showed that in North Devon the alongshore difference in platform 639 

elevation can be used as a proxy for sea level rise impacts, showing that as sea level rises, 640 

wave energy delivery to beaches at the cliff-platform junction will increase causing the 641 

beaches to be steeper and higher. 642 

Recent storm events have demonstrated that sandy beaches can be eroded so significantly 643 

during storm events that the underlying bedrock is exposed (see Section 3.2). This means 644 

that beaches can oscillate between behaving as an unconstrained sandy beach, and 645 

geologically controlled beach. Beach recovery will occur during the geologically controlled 646 

phase, which as discussed in this review, is a state for which we largely lack data-driven 647 

methods and models to apply to beach restoration. In addition to ecological and coastal 648 
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defence implications, this also has economic implications, as these beaches are often highly 649 

important for coastal tourism, and thus local economies (e.g. Bon de Sousa et al., 2018). 650 

Conceptual and empirical models that can explain the shifts in beach type and their recovery 651 

(or oscillation between beach types) and response to sea level rise, storminess and changes 652 

in wave climate as well as sediment supply, are thus an important need.   653 

Addressing this gap in our scientific knowledge of these systems and to develop improved 654 

tools for coastal risk management of these beach systems is thus critical to support 655 

geologically controlled beach management strategies and for evaluating their exposure to to 656 

climate change risks.  Of key importance for now, is for coastal geomorphologists, coastal 657 

engineers and coastal managers to clearly communicate what geologically controlled sandy 658 

beaches are and how they differ from well-studied and modelled, unconstrained sandy 659 

beaches. Crucially, it is important to articulate what this means for modelling and managing 660 

these systems, specifically to (1) highlight the poor applicability of the majority of existing 661 

morphodynamic parameterisations and models; and (2) advise managers on how best to 662 

assess, predict and manage geologically controlled beaches.  663 

5. Conclusions  664 

Geologically controlled beaches are a distinct beach type, and have their own unique 665 

morphodynamic processes that make them behave differently to unconstrained beaches. 666 

This review focused on bringing together the various naming conventions and studies of 667 

what geologically controlled beaches are, and focused on the morphology and 668 

morphodynamics of those composed of sand. In addition to sediment supply, key factors that 669 

determine where geologically controlled beaches form are determined by basement geology, 670 

both in terms of longshore accommodation, such as in the form of coastal embayments with 671 

lateral headlands; and in the cross-shore dimension, particularly if there is a rock platform, 672 

whose elevation and gradient also are important factors for determining if a beach can 673 

accumulate. Geologically controlled beaches can have striking variations in sediment 674 
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coverage, where at times the underlying geology could be totally exposed with little beach 675 

sediment or only a thin veneer, through to relatively deep beaches that may have little 676 

interaction with the underlying bedrock. Many geologically controlled beaches are embayed 677 

within headlands, thus wave shadowing by headlands, sometimes enhanced by wave 678 

breaking and dissipation in areas of exposed rock or coral substrates, can result in strong 679 

alongshore gradients in wave energy which result in corresponding variations in beach 680 

morphology, morphodynamics and storm responses. Geologically controlled rip currents 681 

such as shadow rips and deflection rips are important features on embayed beaches, and 682 

cellular circulation and mega-rips can also occur. Finally, beach rotation is also an important 683 

process on many geologically controlled beaches as a result of the combined cross-shore 684 

and longshore gradients in wave energy and resulting beach morphological responses. To 685 

encompass the above processes, we present longshore and cross-shore models of 686 

geological beach control. In the longshore dimension, our model ranges from low geological 687 

control in the form of relatively shallow embayed beaches, through to highly embayed 688 

beaches, as indentation and embaymentisation have an important influence on the 689 

morphodynamic processes and determine if the beach sediment budget is closed or leaky. 690 

The cross-shore model is based on the degree of geological constraint on cross-shore 691 

sediment transport, from beaches with no cross-shore geological control through to relict 692 

geologically controlled beaches that are above the contemporary littoral zone. Further study 693 

is identified as a research priority to more clearly define why and how the morphodynamics 694 

of geologically controlled beaches differ from unconstrained beach systems. This knowledge 695 

is critical for revising sediment transport equations and morphodynamic models of beach 696 

evolution. Such data and process understanding are crucial to assist coastal managers in 697 

effective management of geologically controlled beach systems both now and under an 698 

uncertain future climate. 699 
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