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Properties of vibrations in bumblebees 
 

 

Abstract 16 

Vibrations play an important role in insect behaviour. In bees, vibrations are used in a variety of 17 

contexts including communication, as a warning signal to deter predators and during pollen foraging. 18 

However, little is known about how the biomechanical properties of bee vibrations vary across 19 

multiple behaviours within a species. In this study, we compared the properties of vibrations 20 

produced by Bombus terrestris audax (Hymenoptera: Apidae) workers in three contexts: during 21 

flight, during defensive buzzing, and in floral vibrations produced during pollen foraging on two buzz-22 

pollinated plants (Solanum, Solanaceae). Using laser vibrometry, we were able to obtain contactless 23 

measures of both the frequency and amplitude of the thoracic vibrations of bees across the three 24 

behaviours. Despite all three types of vibrations being produced by the same power flight muscles, 25 

we found clear differences in the mechanical properties of the vibrations produced in different 26 

contexts. Both floral and defensive buzzes had higher frequency and amplitude velocity, 27 

acceleration, and displacement than the vibrations produced during flight. Floral vibrations had the 28 

highest frequency, amplitude velocity and acceleration of all the behaviours studied. Vibration 29 

amplitude, and in particular acceleration, of floral vibrations has been suggested as the key property 30 

for removing pollen from buzz-pollinated anthers. By increasing frequency and amplitude velocity 31 

and acceleration of their vibrations during vibratory pollen collection, foraging bees may be able to 32 

maximise pollen removal from flowers, although their foraging decisions are likely to be influenced 33 

by the presumably high cost of producing floral vibrations.  34 

 35 

Keywords: Apidae, bee behaviour, biomechanics, Bombus, buzz pollination, energetic costs, flight, 36 

poricidal anthers, Solanum.37 
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Introduction 38 

Vibrations play an essential role in the natural behaviour of animals, particularly, among 39 

invertebrates. For example, spiders and antlions use vibrations produced by prey during hunting 40 

(Guillette et al., 2009; Mencinger-Vračko & Devetak, 2008; Nakata, 2010), and larval leafminers use 41 

vibrations to detect and avoid parasitoid wasps (Djemai et al., 2001). Animal vibrations can be 42 

transmitted both through the air (sound) and through the underlying substrate (most often plant 43 

tissue) as substrate-borne vibrations (Cocroft & Rodríguez, 2005). The substrate-borne component 44 

of vibrations can be particularly important in some contexts such as during insect communication 45 

because vibrations produced by small animals can be more efficiently transmitted through the 46 

substrate than through air (i.e. as sound) (Barth et al., 2005; Cocroft and Rodríguez, 2005; Mortimer, 47 

2017).  48 

Most studies of insect vibrations have focussed on vibrations produced for communication 49 

or as a by-product of flight (Hill et al., 2019; Tercel et al., 2018). But insects can use vibrations for 50 

much more than communication and locomotion. Among bees, vibrations play a particularly 51 

multifaceted role. For example, bees not only use vibrations to communicate with their nest mates 52 

(Barth et al., 2005) and as a warning or defence mechanism against potential predators (Hrncir et al. 53 

2008; Barth et al., 2005), but also during nest construction (Rosenheim, 1987), and as a foraging tool 54 

to harvest pollen from certain flowers (Macior, 1962; Thorp, 2000; Vallejo-Marín, 2019). For 55 

example, substrate-borne vibrations are one of the ways in which some bees can rapidly dislodge 56 

and collect pollen on flowers with poricidal anthers (anthers that release pollen through small pores 57 

or slits; Buchmann, 1983). The ability to use vibrations during pollen harvesting occurs in 58 

approximately 58% of all bee (Anthophila) species including 15% of genera in all bee families 59 

(Cardinal et al., 2018), and buzz-pollination (pollination using vibrations) is associated with more 60 

than 20,000 species of flowering plants (Buchmann, 1983; De Luca & Vallejo-Marín, 2013). Despite 61 

the widespread use of vibrations across diverse behavioural contexts, including during buzz 62 
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pollination, we still know relatively little about the extent to which vibrational properties vary within 63 

the same species and across behaviours. 64 

In bees, the same mechanism that drives the wings during flight is responsible of producing 65 

vibrations used during communication, defence and buzz pollination. Vibrations are produced by 66 

cyclical deformations of the bee’s thorax caused by the alternate contraction of dorsal longitudinal 67 

and dorso-ventral power flight muscles (Hedenström, 2014). These contractions are not 68 

synchronised with nerve impulses, instead bee flight muscles are “stretch-activated”, with the 69 

stretching of one of the antagonistic pairs of muscles stimulating the contraction of the other. This 70 

cycle of stretching and contraction creates a relatively self-sustaining series of cyclical thorax 71 

contractions along longitudinal and ventral axes (Dickinson, 2006; Josephson et al., 2000), with nerve 72 

impulses mostly working to maintain this cycle or make broad-scale changes such as an increase in 73 

power (Gordon & Dickinson, 2006).  74 

Despite sharing a common production mechanism (thoracic power flight muscles), flight and 75 

non-flight vibrations in bees have clearly different vibrational properties. Non-flight vibrations are 76 

produced with the wings folded, effectively uncoupling power flight muscle contraction and 77 

wingbeat (King et al., 1996). For a given bee species, non-flight vibrations have higher frequencies 78 

than those produced during flight (Barth et al., 2005; De Luca et al., 2019; Hrncir et al., 2008; King & 79 

Buchmann, 2003), in part due to reduced drag from the wings as well as increased tension in the 80 

thoracic muscles (Hrncir et al., 2008; King et al., 1996). In contrast, non-flight vibrations produced in 81 

different contexts are superficially very similar. Both defence and floral vibrations are produced with 82 

folded wings and it is not clear to what extent non-flight thoracic vibrations have different properties 83 

to one another. Few studies have compared non-flight vibrations produced in different contexts on 84 

the same bee species. Hrncir et al. (2008) found that the frequency of vibrations produced by the 85 

tropical stingless bee, Melipona quadrifasciata Le Peletier (1836) (Apidae), during defence buzzes is 86 

approximately 60% of the frequency of vibrations used to communicate between foragers (350 vs. 87 
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487 Hz, respectively). In bumblebees (Bombus spp. Lattreille 1802), comparison of two European 88 

species found frequency differences in non-flight vibrations, namely defence and floral buzzes. 89 

However, the direction and size of the difference in frequency between defence and floral buzzes 90 

differed between the two bumblebee species (De Luca et al., 2014). While non-flight vibrations in 91 

bees are a potentially useful system for understanding the evolution and diversification of vibratory 92 

behaviours, clearly, more work is needed to characterise the exact differences between non-flight 93 

vibrations in different contexts.   94 

 Comparing the properties of vibrations produced on different behavioural contexts is 95 

technically challenging. Traditionally, substrate-borne vibrations produced by bees have been 96 

studied indirectly by recording the airborne component of the vibration using acoustic recorders. 97 

Yet, recent work indicates that although frequency components are reliably inferred from either 98 

acoustic or substrate-borne measurements, the magnitude of substrate-borne vibrations are poorly 99 

correlated with the magnitude of their acoustic component (De Luca et al., 2018). This may be 100 

because small invertebrates are poor acoustic transducers (De Luca et al., 2018), a view that is 101 

consistent with the fact that most insect communication occurs through a plant substrate, rather 102 

than through airborne sound (Cocroft & Rodríguez, 2005). This is one reason why most of the 103 

previous work comparing the vibration properties of different bee behaviours has been focused on 104 

acoustically measured frequency differences, with relatively few studies attempting to measure both 105 

frequency and amplitude (acceleration, velocity or displacement) components (Nieh and Tautz, 106 

2000; Hrncir et al., 2008). To get a more complete view of how vibrations differ across bee 107 

behaviours, it is necessary to capture both frequencies and amplitudes components (Vallejo-Marín, 108 

2019). Vibration amplitude can be experimentally measured using vibration transducers such as 109 

accelerometers or laser vibrometers (Cocroft & Rodríguez, 2005).  A full characterisation of 110 

substrate-borne vibrations is particularly important in the context of buzz pollination because 111 

biophysical models of poricidal anthers (Buchmann & Hurley, 1978), as well experimental tests with 112 
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artificial buzzes, suggest that vibration amplitude, rather than frequency, is a key determinant of the 113 

rate of pollen ejection from flowers (De Luca et al., 2013; Rosi-Denadai et al., 2018).  114 

 In this study, we characterised for the first time, the extent to which a single species of 115 

bumblebee can modify the properties of their vibrations across multiple behaviours. Rather than just 116 

comparing flight and non-flight vibrations, we used accelerometers and laser vibrometry to directly 117 

measure the vibrational properties of buzzes produced by bumblebees (Bombus terrestris ssp. 118 

audax, (Harris 1776); hereafter B. audax) both during flight and in two different non-flight 119 

behavioural contexts: defence and floral vibrations. In addition, we compare the floral vibrations 120 

produced by bees on two different buzz-pollinated plant species (Solanum rostratum Dunal and S. 121 

citrullifolium (A. Braun) Nieuwl., Section Androceras, Solanaceae). Previous work has shown 122 

conflicting results on the extent to which bumblebees change the vibrations produced during floral 123 

visitation (floral vibrations), with some studies showing differences between flowers (Switzer and 124 

Combes, 2017) or with experience (Morgan et al., 2016; Switzer et al., 2019) and others showing 125 

more limited flexibility (Russell et al., 2016b). However, while other studies of bee vibrations have 126 

used non-contact methods (laser vibrometry) to look at differences in vibration properties (Conrad 127 

and Ayasse, 2015; Conrad and Ayasse, 2019), few studies to date have used these methods to 128 

examine floral vibrations directly on bees (Nunes-Silva et al., 2013). Our study addresses three 129 

specific questions: 1) What are the main differences in the vibrations produced by bumblebees 130 

across different behaviours? 2) To what extent floral vibrations produced by the bee depends on the 131 

species of flower being visited? 3) Do the characteristics of vibrations depend on bees’ 132 

morphological traits such as size? 133 
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Materials and methods 134 

Study system 135 

Bees 136 

We used two colonies of the buff-tailed bumblebee, Bombus terrestris audax (Koppert, Agralan Ltd, 137 

Wiltshire, UK). Each colony had access to ad libitum “nectar” solution (Koppert) within the colony. 138 

Each colony was attached to a flight arena (122 × 100 × 37 cm), illuminated with an LED light panel 139 

(59.5 × 59.5 cm, 48 W Daylight; Opus Lighting Technology, Birmingham, UK) and maintained on a 140 

12h:12h supplemental light:dark cycle. The ambient temperature was 20-23°C and humidity was 50-141 

60% RH. In each arena, bees were also provided with a 1M sucrose solution, ad libitum, from three 142 

feeders in each colony, as well as eight inflorescences (four Solanum rostratum, four S. citrullifolium) 143 

every two days.  144 

Plants 145 

We tested floral vibrations on two closely related species from the genus Solanum (Solanaceae). 146 

Solanum rostratum and Solanum citrullifolium are both nectarless species, which attract and reward 147 

pollinators solely with pollen. In common with other Solanum species, S. rostratum and S. 148 

citrullifolium have poricidal anthers, which requires pollinators to vibrate the anthers to release 149 

pollen. Unlike some other Solanum species, S. rostratum and S. citrullifolium are both 150 

heterantherous, with bees primarily focussing their attention on “feeding anthers” presented at the 151 

centre of the flower, while a single, rarely visited “pollination anther” deposits pollen on the visiting 152 

bee. Solanum species are a classic system for the study of buzz pollination (e.g. Buchmann & Cane, 153 

1989; King & Buchmann, 1996), and S. rostratum and S. citrullifolium have been directly compared in 154 

a previous study which identified apparent difference in the coupling factors of these species 155 

(Arroyo-Correa et al., 2019). Vibrations applied to S. rostratum show less attenuation than vibrations 156 

applied to S. citrullifolium, making this pair an ideal comparison for the effect of bee-produced 157 

vibrations on flowers.  158 
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S. rostratum and S. citrullifolium plants were grown from seed at the University of Stirling 159 

research glasshouses, using the method described in Vallejo-Marín et al. (2014). Seeds of S. 160 

rostratum were collected in Mexico (20.901°N, 100.705°W; accessions 10s77, 10s81, 10s82) and 161 

seeds of S. citrullifolium were obtained from self-fertilised fruits (accession 199) grown from seeds 162 

obtained from Radboud University’s seed collection (accession 894750197). For daily flower 163 

provision for bees, inflorescences were placed in water-soaked Ideal Floral Foam (Oasis Floral 164 

Products, Washington, UK) in plastic containers. For experiments, we used a single flower, cut 2-3cm 165 

below the calyx.  166 

Recording of floral vibrations 167 

To facilitate the recording of bee vibrations using laser vibrometry, we tagged individual bees with a 168 

small (2mm2) piece of reflective tape placed in the dorsal part of the thorax. Bees buzzing on flowers 169 

in the flight cages were captured, placed in a freezer at -26°C for seven minutes, and tagged with 170 

reflective tape using Loctite UltraControl instant adhesive (Henkel Limited, Winsford, UK). After 171 

being at room temperature, bees resumed normal activity after approximately 7-10 minutes and 172 

were released back into the colony. 173 

At least 24 hours after being tagged, bees were allowed to visit flowers in the arena and a 174 

tagged bee which was actively buzzing flower was collected from flowers in the flight cage and 175 

released onto a single flower of either S. rostratum or S. citrullifolium in the test arena. The flower 176 

species were chosen so that each colony received the same number of flowers from each plant 177 

species. The vibrations produced by the bee were recorded simultaneously in two ways. First, we 178 

measured vibrations produced in the bee’s thorax using a laser vibrometer (PDV 100, Polytec, 179 

Coventry, UK). Laser vibrometry provides a direct, contactless measure of the vibrations produced by 180 

the bee. Vibrations measured with the laser were sampled at a rate of 10240 Hz using a low pass 181 

filter of 5Hz, and a maximum velocity range of either 100 mm/s (for bees 1-14) or 500 mm/s (for 182 

bees 15-32). The laser vibrometer was placed approximately 20cm away from the flower and aimed 183 
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at the reflective tag on the bee’s thorax. Second, we used an accelerometer (352C23, 0.2g; PCB 184 

Piezotronics) to record the vibrations transmitted from the bee to the flower (Arroyo-Correa et al., 185 

2018). The accelerometer was attached to the calyx at the base of the flower being vibrated by the 186 

bee using a 5mm x 0.35mm pin made from an entomological pin (Austerlitz, Size 0) and glued to the 187 

accelerometer with instant adhesive as described in Arroyo-Correa et al. (2018).  The accelerometer 188 

and laser were set to register along the same axis of movement.   189 

Both laser vibrometer and accelerometer data were simultaneously recorded and time-190 

stamped using Data Acquisition System (cRIO model 9040 with the C series module NI 9250; 191 

National Instruments, Newbury, UK) using a custom-made LabView (National Instruments) program 192 

(available upon request). While the bee buzzed the flower, data were recorded during two seconds 193 

at a sampling rate of 10240 Hz and saved to a file.  After collecting 5-10 buzzes for each bee, the bee 194 

was caught in a 30mL plastic container (201150; Greiner, Gloucestershire, UK), and euthanised by 195 

being placed in -26 freezer for 48 hours. In total, we collected data for 16 bees from two colonies, 196 

eight on each flower species. For each bee we recorded analysed an average of 6.13 buzzes (N = 98 197 

buzzes from 16 bees). 198 

Recording of defence and flight vibrations 199 

For the recording of flight and defence buzzes bees were selected at random from the flight box. As 200 

for the flower buzzing, bees were immobilised by being placed in the freezer for seven minutes. In 201 

addition to gluing a 2mm2 reflective tag to the scutum, immobile bees were also tethered to the 202 

apparatus for recording defence and flight buzzes, similar to that used by Hrncir et al. (2008). The 203 

neck of the bee was held by a loop of fine nylon string threaded through a needle and attached to a 204 

syringe secured by a clamp (Figure 1). After 7-10 minutes, the tethered bee had returned to regular 205 

activity levels and we continued with data collection.   206 

To record both flight and defence buzzes, the laser vibrometer was placed above the bee 207 

and aimed at the tag on the bee’s thorax. The laser beam was perpendicular to the platform on 208 
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which the bee was tethered. Defence and flight vibrations measured with the laser were sampled at 209 

a rate of 10240 Hz using a low pass filter of 5Hz, and a maximum velocity range of 500 mm/s.  To 210 

induce defence buzzes, the tethered bees were gently squeezed along the sides using featherweight 211 

forceps. To record flight buzzes, the platform underneath the tethered bee fell away inducing the 212 

bee to start flight activity (Hrncir et al., 2008). As before, vibration data was recorded through the 213 

cRIO data acquisition system using a custom LabVIEW program, which collected two seconds of data 214 

at a time at a sampling rate of 10240 Hz, with a low pass filter of 5Hz and a velocity range of 500 215 

mm/s. Flight and defence buzzes were recorded from 20 bees in total, with defence and flight buzzes 216 

captured from all bees. To avoid order effects, 10 of the bees had defence buzzes collected first and 217 

10 had flight collected first. Following recording, tethered bees were immobilised again by being 218 

placed in the freezer, removed from the tether, placed in a plastic container, and euthanised in the -219 

26°C freezer. For each bee, we analysed an average of 5.6 flight vibrations (n = 112 vibrations from 220 

20 bees) and 6.8 defence buzzes (n = 136 from 20 bees). 221 

Bee size 222 

Bee size was approximated using intertegular distance (ITD), the distance between the tegulae at the 223 

base of the wings (Cane, 1987). We measured ITD using a digital photograph of euthanised bees 224 

taken with a dissecting microscope (MZ6, Leica Microsystems, Milton Keynes, UK) (Figure S1), and 225 

analysed with the FIJI distribution of ImageJ (Schindelin et al., 2012). 226 

Data Analysis 227 

Analysing vibrations 228 

We used a section of each recorded vibration for analysis (Figure 2). For floral buzzes, we selected a 229 

section of each recording that successfully captured both laser and accelerometer sensors. The 230 

sensor data (time series with voltage units) were converted from voltage to either velocity (laser) or 231 

acceleration (accelerometer) using the factory-provided conversion factors for each sensor. We 232 

zero-centred the data by subtracting the mean amplitude from each value and applied an 80-5000 233 
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Hz band-pass filter and a Hamming window (window length = 512), using the fir function in the R 234 

package seewave (Sueur et al., 2008). The acceleration data were converted to velocity by numerical 235 

integration using the cumtrapz function in the pracma package (Borchers, 2019), and the band-pass 236 

filter was applied again. The fundamental frequency of the analysed vibration was obtained with the 237 

fund function, calculated over the entire sample and setting a maximum frequency to 1000 Hz. Peak 238 

amplitude velocity for each vibration segment was calculated from the amplitude envelope 239 

calculated using the env function with a mean sliding window of length 2 and an overlap of 75%. All 240 

analyses were done in R version 3.6.0 (R Core Team, 2019) 241 

Transmission of bee vibrations through flowers 242 

To quantify the extent to which the vibrations produced by bees differ from those measured in the 243 

flower itself, we calculated King’s coupling factor (King, 1993). The bee’s coupling factor (Kbee) was 244 

calculated by dividing the root mean squared (RMS) amplitude velocity of the vibration produced by 245 

the bee by the RMS amplitude velocity recorded by the accelerometer placed in the flower’s calyx 246 

(Arroyo-Correa et al. 2019). We also calculated King’s coupling for vibrations produced by a 247 

mechanical calibrated shaker (Handheld shaker model 394C06, PCB Piezotronics). The calibrated 248 

shaker produces a vibration of constant properties (frequency = 159.2Hz, RMS amplitude velocity = 249 

9.8 mm s-1) that are transmitted to a small metal plate at one end of the instrument. The metal plate 250 

of the calibrated shaker was firmly pushed against the feeding anthers of the flower, and we 251 

recorded four to five samples of two seconds each using the data acquisition system described 252 

above (Analysing Vibrations). For each flower, we selected one clean recording, converted voltage to 253 

velocity as described above, and obtained King’s coupling factor for the shaker (Kshaker) using the 254 

ratio between expected and observed RMS velocity. Measuring both Kbee and Kshaker allowed us to 255 

compare the difference in the efficiency with which a bee and a mechanical shaker transmit 256 

vibrations to the flower. 257 
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Statistical analyses 258 

To compare the properties of vibrations in different contexts we used linear mixed effect models 259 

using either peak velocity or fundamental frequency as response variables, buzz type 260 

(flight/defence/floral) and intertegular distance as explanatory variables, and bee identity as a 261 

random effect. In addition to peak velocity and frequency, which were measured directly, we also 262 

used these measures to derive the displacement amplitude (in mm) and acceleration (in mm/s2) of 263 

the vibration. As with velocity, we analysed the peak recordings of each of these measures with 264 

linear mixed effect models, with buzz type and intertegular distance as explanatory variables and 265 

bee identity as a random effect. To compare the properties of floral vibrations on different Solanum 266 

species, we employed linear mixed effect models, using either laser-recorded peak velocity, laser-267 

recorded fundamental frequency, accelerometer-recorded peak velocity or accelerometer-recorded 268 

fundamental frequency as response variables, flower species and intertegular distance as 269 

explanatory variables, and bee identity as a random effect. Finally, to compare the effect of flower 270 

species and recording method on coupling factors, we used a linear mixed effect model with 271 

coupling factor as a response variable, flower species, intertegular distance, and vibration method 272 

(bee vs artificial) as explanatory variables, and bee ID as a random effect. All analyses were 273 

performed using lme4 (Bates et al., 2015) to estimate parameters and lmerTest (Kuznetsova et al., 274 

2017) to assess statistical significance.  275 

Ethical approval 276 

These experiments were approved by the Animal Welfare and Ethical Review Board of the University 277 

of Stirling. 278 

Data availability 279 

Data and code will be deposited in Dryad with information given in the final manuscript. 280 



Properties of vibrations in bumblebees 
 

13 
 

Results 281 

Comparison of buzzes produced in different behavioural contexts 282 

The vibrations produced during flight, defence and pollen extraction differ significantly in properties 283 

including fundamental frequency and peak amplitude velocity (Table 1). The peak amplitude velocity 284 

of floral buzzes (262.85 ± 9.52 mm/s) was significantly higher than both defence (194.85 ± 6.12 285 

mm/s) and flight buzzes (57.29 ± 1.28 mm/s; Figure 3A, Table 1). We found no significant effect of 286 

bee size on peak amplitude velocity (Table 1). Floral buzzes also had significantly higher frequencies 287 

(313.09 ± 2.63 Hz) than both defence (236.32 ± 4.29 Hz) and flight buzzes (136.95 ± 1.73 Hz) (Figure 288 

3B). We also detected an interaction between bee size and buzz type with larger bees achieving 289 

higher frequency defence buzzes and lower frequency flower and flight buzzes than smaller bees 290 

(Table 2).  The differences in peak amplitude velocity across the three behaviours observed here 291 

extended to peak amplitude acceleration, with floral buzzes achieving higher accelerations (517.77m 292 

s-2 ± 19.40), than defence (297.41m s-2 ± 11.96), and flight vibrations (49.43 m s-2 ± 1.34) (Figure 3D). 293 

In contrast, the peak amplitude displacement of floral (0.27 mm ± 0.009) and defence buzzes (0.27 294 

mm ± 0.007) were similar, although both greater than the displacement amplitude of flight 295 

vibrations (0.14 mm ± 0.005) (Figure 3C). 296 

Floral buzzes 297 

Our analyses of the vibrations produced by bees while visiting flowers (floral buzzes) shows that only 298 

some of the properties of these vibrations depend on whether they are recorded on the bee or on 299 

the flower (Figure 4). The magnitude of vibrations recorded directly on the bee had considerably 300 

higher peak velocity amplitudes (273.56 ± 12.49 and 247.34 ± 14.53 mm/s for S. rostratum and S. 301 

citrullifolium respectively) than those vibrations measured on the flower (36.61 ± 2.30 and 19.20 ± 302 

1.03 mm/s for S. rostratum and S. citrullifolium, respectively; Figure 5A, Table 2).  In contrast, the 303 

fundamental frequency of the floral vibrations was similar whether recorded directly from the bee 304 

(313.16 Hz ± 2.86 and 312.09 Hz ± 4.99 Hz for S. rostratum and S. citrullifolium, respectively) or 305 
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indirectly via the accelerometer on the flower (312.70 Hz ± 2.92 and 313.16 Hz ± 4.81 for S. 306 

rostratum and S. citrullifolium, respectively; Figure 5B, Table 2). Interestingly, we observed that 307 

vibrations measured on the bee contained more harmonics (S. citrullifolium: 10.75 ± 0.38; S. 308 

rostratum: 11.34 ± 0.35) than those observed on vibrations measured on the flower (S. citrullifolium: 309 

3.65 ± 0.27; S. rostratum: 2.57 ± 0.20) (Figure 4).  310 

Plant species did not significantly affect the frequency or peak amplitude velocity of floral 311 

vibrations (but see section Transmission of vibrations through flowers for differences in the 312 

transmission of vibrations from bee to flower in the two Solanum species). Bee size (intertegular 313 

distance) was negatively associated with fundamental frequency of floral vibrations (Figure 5C), 314 

while bee size had no effect on their peak amplitude velocity (Table 2). We found no statistically 315 

significant interaction between bee size and plant species on either frequency or peak amplitude 316 

velocity of floral vibrations.  317 

Transmission of vibrations through flowers 318 

To analyse the effect of plant species on the transmission of floral vibrations through the flower, we 319 

compared King’s coupling factor (K, the ratio of vibration magnitude produced to vibration received) 320 

for the two Solanum species. We found that S. rostratum had a significantly lower coupling factor 321 

(Kbee = 5.64 ± 0.61, Kshaker = 5.95 ± 1.77; mean ± SE) than S. citrullifolium (Kbee = 9.92 ± 0.97, Kshaker = 322 

8.93 ± 1.97; Table 3, Figure 6). Our analysis showed no difference within plant species between 323 

coupling factors calculated from either bee floral buzzes (Kbee) or synthetic vibrations applied with 324 

the calibrated shaker (Kshaker) (Table 3), although Kbee is less variable than Kshaker (Figure 6). We did not 325 

find an effect of bee size on coupling factor (Table 3). 326 

Discussion 327 

Bumblebees and other buzz-pollinating bees present a unique opportunity for research on insect 328 

vibrations. In addition to producing vibrations during locomotion and as a signal to predators or 329 
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conspecifics, the two forms of thoracic vibrations most commonly studied in bees and other insects, 330 

buzz-pollinating bees also use vibrations to forage. While the posture of bees during floral buzzes 331 

and defence buzzes are very similar, with both requiring the wings folded back over the body, the 332 

functions of these two buzzes are very different, making them a useful comparison for 333 

understanding how function might influence the properties of bee vibrations. In this study we 334 

directly compared these different types of vibrations within a single species of bumblebee, not only 335 

comparing flight and non-flight vibrations, but also characterising different types of non-flight 336 

vibrations. Our results show clear differences in biomechanical properties of defence and floral 337 

buzzing, as well as differences between these vibrations and those produced during flight. In 338 

addition to differences between different behaviours, we also found that the species of plant being 339 

vibrated and the size of the bee, affected the properties of the floral vibrations experienced by 340 

plants.  341 

Floral vibrations and bee size 342 

Our results are consistent with previous work showing that plant species differ in their transmission 343 

of floral vibrations (King 1993; Arroyo-Correa et al., 2019). Between the two studied plant species, 344 

we found that Solanum rostratum is better at transmitting vibrations applied on the anthers to other 345 

parts of the flower than S. citrullifolium, as shown by its lower coupling factor (cf. Arroyo-Correa et 346 

al., 2019). Interestingly, the coupling factor calculated using synthetic vibrations applied with a metal 347 

plate and the one calculated using vibrations applied by live bees were similar, suggesting that fine 348 

floral manipulation by the bee during buzzing has little effect on the vibrations transmitted to other 349 

parts of the flower. Further analyses of the biomechanical properties of flowers are required to 350 

determine the mechanism responsible for the different coupling factors observed here and in 351 

previous studies.  352 

 We found little evidence that the magnitude of floral, flight and defence buzzes can be 353 

explained by the range of bee size variation observed within a single species of bumblebee. In 354 
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contrast, bee size was negatively associated with frequency of floral and flight buzzes but positively 355 

with defence buzzes. The frequency of flight vibrations in bees is usually negatively associated with 356 

size both within (this study) and across species (De Luca et al., 2019).  For floral vibrations, the 357 

association between frequency and size seems to vary (reviewed in De Luca et al., 2019), ranging 358 

from negative, as in our study on B. terrestris audax, to positive (Arroyo-Correa et al. 2019) to no 359 

detectable relationship both within species (De Luca et al., 2013; De Luca et al. 2014, Nunes et al. 360 

2013) and across multiple species (De Luca et al., 2019; Rosi-Denadai et al., 2018). Moreover, the 361 

relationship between the frequency of floral buzzes and bee size within species may further depend 362 

on the metric of bee size used (Corbet & Huang, 2014; Switzer & Combes, 2017). Taken together this 363 

body of work suggests that differences in size are not sufficient to explain variation in floral buzzes 364 

during buzz pollination. 365 

Differences among buzz types 366 

We found that bumblebees vibrating flowers produce higher accelerations than in other behaviours, 367 

and much higher than previously thought. The floral vibrations measured in this experiment were on 368 

average 500 m/s2, more than 2-3 times what Arroyo Correa et al. (2019) and King (1993) calculated 369 

after measuring floral buzzing from the plant and correcting with the corresponding coupling factor. 370 

Despite this, our measurements for frequency and velocity, from which acceleration was calculated, 371 

were consistent with those found by other studies looking at flying, defence buzzing, and flower 372 

buzzing bees (Nunes-Silva et al., 2003, King 1993). Floral buzzes appear to be characterised by higher 373 

accelerations, velocities, and frequencies, than defence buzzes. And both floral and defence buzzes 374 

have higher accelerations, velocities, displacement amplitude and frequencies, than are produced 375 

during flight. The key question raised by our results, then, is why are the properties of floral, defence 376 

and flight vibrations so different to one another? This question can be addressed in two ways: 1) by 377 

considering how the mechanisms underlying these vibrations might differ across behaviours; and 2) 378 

how the function of the behaviour might select for particular vibration properties.   379 
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Mechanisms of bee vibrations 380 

All of the vibrations we measured in this study were produced by contractions of the dorsal 381 

longitudinal and dorso-ventral flight muscles in the thorax. The fact that these vibrations all share a 382 

common mechanisms could mean that something other than the muscles might be responsible for 383 

the differences we observed. One early suggestion was whether the decoupling of the wings from 384 

the flight muscles during non-flight vibrations (defence, floral buzzes) changed the resonant 385 

properties of the thorax and led to higher frequencies. It is plausible that the deployment of the 386 

wings could lower the frequency of the vibrations, wings produce drag and inertia, which is one 387 

reason why insects with larger wing have a lower wingbeat frequency (e.g. Greenewalt, 1962; Joos 388 

et al., 1991). When insect wings are cut shorter the frequency of flight increases (Hrncir et al., 2008; 389 

Roeder, 1951). While wing deployment can explain the different between flight and non-flight 390 

vibrations, it cannot explain the differences between the two non-flight vibrations (floral and 391 

defence buzzes), where the wings remained folded and the mass of the system remains unchanged.  392 

Instead of the mechanical effect of the wings, differences between non-flight vibrations 393 

could be the result of differences in muscle activity, either in terms of increasing muscle power or by 394 

changing the stiffness and resonant properties of the thorax. Although bumblebee flight muscles are 395 

stretch activated, and so do not contract in time with motor neuron firing, studies of similar muscles 396 

in Drosophila show that increasing the frequency of firing increases the Ca2+ concentration in the 397 

flight muscles, resulting in more powerful contractions(Dickinson et al., 1998; Gordon & Dickinson, 398 

2006; Lehmann & Bartussek, 2017; Wang et al., 2011). Bees could also use other muscles to stiffen 399 

the thorax, changing its resonant properties, altering the frequency at which the cycle of stretch-400 

activated contractions reaches equilibrium (Nachtigall & Wilson, 1967). Although these mechanisms 401 

have yet to be studied in bees, neurophysiological studies of bee flight muscles have found 402 

differences between flight and non-flight vibrations (Esch & Goller, 1991; King et al., 1996), which 403 

might also explain differences between non-flight vibrations. During flight, both the dorso-ventral 404 

and dorsal longitudinal muscles sets are stimulated equally, whereas during defensive buzzes the 405 
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dorsal longitudinal muscles are stimulated at twice the rate as the dorso-ventral muscles (King et al. 406 

1996). If, for example, the increased difference in activation between the flight muscles sets is 407 

responsible for the increased frequency of non-flight vibrations, then we might expect the difference 408 

in excitation between the muscle sets to be even more extreme during floral buzzes than during 409 

defence buzzes. By comparing the mechanisms underlying floral buzzes, defence buzzes, and flight, 410 

in this way, we can begin to understand how bees use changes in muscular activity and associated 411 

shifts in the resonant properties of the bee’s body, to adjust the mechanical properties of their 412 

vibrations.  413 

Function of bee vibrations 414 

In addition to considering differences in the actions of the muscles, another approach to thinking 415 

about why the muscles produce vibrations with these particular properties is to consider how what 416 

properties might best serve these functions. In vibratory communication, for example, the 417 

properties of the signalling environment, such as the degree of frequency filtering, determine the 418 

“best” vibratory properties to transmit information from producer to receiver (Cocroft & Rodríguez, 419 

2005). Similar factors could influence the “best” properties for defence buzzes.  Like the vibratory 420 

signals studied in other insect species, the function of a defence buzz is to transmit information from 421 

the producer (the bee) to a receiver (the predator). This information is effective; defence or alarm 422 

sounds produced by insects, including bumblebees, have been shown to reduce or slow down 423 

predator attacks (Masters, 1979; Moore & Hassall, 2016). The effectiveness of defence buzzes is 424 

likely affected by the properties of the vibration itself. Although, in our experiment, we found that 425 

defence buzzes were on average of lower frequency, peak amplitude velocity and peak amplitude 426 

acceleration than floral buzzes, these properties do not correlate with what is likely a more 427 

important property of a warning signal: volume (De Luca et al., 2018). A previous comparison of the 428 

acoustic properties of defence and floral buzzes found that defence buzzes were significantly louder 429 

than floral buzzes (De Luca et al., 2014), and it is possible that the lower frequency or amplitude of 430 

the bee’s vibrations during defence buzzing might actually increase the perceived volume of the buzz 431 
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by predators. A lower frequency and velocity vibration may also be beneficial for the bee as it might 432 

be less energetically costly than the higher frequency and velocity floral buzz. Although the costs of 433 

buzzing by bees have only been measured for a handful of behaviours (Kammer & Heinrich, 1974; 434 

Heinrich, 1975), increasing the frequency and amplitude of vibrations could carry a significant cost. 435 

For instance, in the carpenter bee, Xylocopa varipuncta Patton, increases in the frequency and 436 

amplitude of their wingbeats when flying in less dense gases, are associated with increases in their 437 

metabolic rate by over a third (Roberts et al., 2004). By using lower frequency and velocity 438 

vibrations, bumblebees might be able to perform defence buzzes for longer, increasing their 439 

effectiveness against predators.  440 

 Unlike defence buzzes, the primary function of floral buzzes is not to transmit information to 441 

receivers but to shake pollen loose from flowers. Pollen is essential for larval nutrition (Westerkamp, 442 

1996), and bumblebees possess many specialisations to assist in pollen collection, from 443 

morphological features such as corbiculae (Thorp, 1979), to behaviour specialisations, including 444 

optimising pollen collection (Rasheed & Harder, 1997), rejecting flowers that appear empty of pollen 445 

(Buchmann & Cane, 1989; Harder, 1990), and modifying their buzzes in response to the presence or 446 

absence of pollen (Russell et al., 2016; Switzer et al., 2019). It is possible that the properties of floral 447 

buzzes are also tuned to maximise the pollen collected from poricidal anthers. If that was the case, 448 

we would expect the properties that defined floral buzzes in this study, high frequency, velocity, and 449 

acceleration, to correlate with the vibration properties which release the most pollen. Studies with 450 

artificial shakers have subjected buzz-pollinated flowers to a broad array of vibrations to determine 451 

what kinds of vibration release the most pollen (De Luca et al., 2013; Harder & Barclay, 1994; Rosi-452 

Denadai et al., 2018). Although the frequency of floral buzzes appears very consistent across studies, 453 

frequency does not appear to determine how much pollen is released from anthers. Instead, as we 454 

observed, higher frequencies may result in higher velocities and accelerations, and it is these 455 

properties which most determine how much pollen an anther releases (De Luca et al., 2013; Rosi-456 

Denadai et al., 2018). The effect of increasing the velocity or acceleration of floral buzzes on pollen 457 
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release can be dramatic. De Luca et al. (2013) for example, found that for a floral buzz lasting for one 458 

second, doubling the velocity of the buzz led to four times as much pollen being released. Rosi-459 

Denadai et al. (2018) found a similar effect for acceleration – vibrations with a similar acceleration to 460 

the floral buzzes we recorded (500 m/s2) released more than three times as much pollen as 461 

vibrations matching the flight vibrations we recorded (100 m/s2), and twice as much as vibrations 462 

matching the defence buzzes (300 m/s2). The accelerations we recorded from floral buzzes, 463 

therefore, are what might be expected from vibrations tuned to maximise pollen release. Producing 464 

high acceleration floral buzzes, however, is likely to have come with a cost. Although it is not clear 465 

exactly how costly these floral buzzes might be, as no-one has yet measured the metabolic cost of 466 

floral buzzing, it has been suggested that bees work to maximise the efficiency of their pollen 467 

collection (Rasheed & Harder, 1997). Their foraging decisions are therefore not just based on 468 

maximising the pollen their collect, but also based on the potential cost. If floral buzzing exerts a 469 

significant cost on bees, this cost might play an important role in their decisions about where and 470 

when to forage on buzz-pollinated flowers (Stephens, 2008).  471 

Conclusion 472 

Our results, demonstrate clear differences between the vibrations produced by bumblebees in 473 

different contexts. In addition to the expected differences between flight and non-flight vibrations 474 

(De Luca et al. 2019), which can be partly attributed to wing deployment and different postures 475 

resulting in physical differences in drag and resonance, we also found equally sizable differences 476 

between floral and defence vibrations, in which the wings remained undeployed and posture is 477 

similar. These differences between non-flight vibrations open up larger questions about the 478 

mechanisms and evolution of insect vibrations. Currently the mechanisms which control the 479 

properties of thoracic vibrations have only been studied in a handful of contexts (Esch & Goller, 480 

1991; King et al., 1996), with most of what we know coming from studies of flight control in 481 

Drosophila (Lehmann & Bartussek, 2017; Lindsay et al., 2017). The vibrations that individual 482 
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bumblebees produce in different contexts exhibit stark but reliable differences in their properties, 483 

providing a model to better understand how individual insects control the properties of the 484 

vibrations they produce. By identifying homologous mechanisms as well as outlining possible 485 

constraints on how insect vibrations respond to selection, investigating the mechanisms of 486 

bumblebee vibrations can also tell us more about how these behaviours evolve. But to understand 487 

how selection might have acted on these vibrations, it is also necessary to examine how bees use 488 

these vibrations for their particular functions. The biomechanical properties of a vibration might only 489 

be part of what makes it effective. Other behaviours can increase the effectiveness of a particular 490 

vibration by increasing the salience or memorability of a signal, such as when animals combine 491 

multiple modalities into a signal (Rowe, 1999), or by modifying the effects of the vibrations, such 492 

when tree crickets build acoustic baffles to amplify the volume of their mating calls (Mhatre et al., 493 

2017). During floral buzzing, bees do not simply applying vibrations like the artificial shakers used to 494 

study pollen release. Instead, bees need to learn to handle flowers correctly, and work to get in 495 

position before starting buzzing (Laverty, 1980; Macior, 1964; Russell et al., 2016). How bees handle 496 

flowers, where they bite anthers, and how they position themselves as they vibrate, could all 497 

influence how the high acceleration vibrations we recorded are applied to the flower and result in 498 

pollen ejection. The next step for understanding why bumblebees, and other insects, produce the 499 

vibrations they do, is to understand how other behaviours work alongside vibrations to serve their 500 

function.  501 
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Tables 689 

Table 1. Analysis of bee size (intertegular distance) and behavioural context on the properties of 690 

thoracic vibrations measured with a laser vibrometer. The parameter estimates and standard errors 691 

were calculated from a linear mixed effect model with bee identity as a random factor. P-values for 692 

each explanatory variable were calculated using a Type III analysis of variance with Satterthwaite’s 693 

estimation of degrees of freedom. Statistically significant values are in bold. 694 

 695 

  696 

Response 
variable 

Parameter Estimate SE P-value 

Peak Amplitude 
Velocity (mm/s) 

Intercept  
(Buzz Type: Flight) 

165.71 94.16  

 Intertegular distance -24.63 21.72 0.27 

 Buzz Type   < 0.001 

      Defence 132.68 8.54  

      Floral 207.65 14.53.  

Fundamental  
Frequency (Hz) 

Intercept  
(Buzz Type: Flight) 

200.93 70.89  

 Intertegular distance -14.53 16.36 0.38 

 Buzz Type   < 0.001 

      Defence 102.93 3.38  

      Floral 177.70 10.50  

 Buzz Type*Intertegular distance   0.002 

Displacement 
(mm) 

Intercept  
(Buzz Type: Flight) 

0.24 0.11  

 Intertegular distance -0.022 0.026 0.40 

 Buzz Type   < 0.001 

      Defence 0.11 0.011  

      Floral 0.13 0.017  

Acceleration 
(m/s2) 

Intercept  
(Buzz Type: Flight) 

358.32 199.45  

 Intertegular distance -71.09 46.01 0.13 

 Buzz Type   < 0.001 

      Defence 248.57 16.82  

      Floral 479.57 30.57  
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Table 2. Analysis of bee size (intertegular distance), plant species, and recording location on the 697 

properties of floral vibrations. Vibrations were recorded on S. citrullifolium and S. rostratum, both 698 

directly on the bee’s thorax using a laser vibrometer and on the flower using an accelerometer. The 699 

parameter estimates and standard errors were calculated from a linear mixed effect model with bee 700 

identity as a random factor. P-values for each explanatory variable were calculated using a Type III 701 

analysis of variance with Satterthwaite’s estimation of degrees of freedom. Statistically significant 702 

values are in bold. 703 

704 Response variable Variable Estimate SE P-value 
Peak Amplitude 
Velocity (mm/s) 

Intercept (Plant: S. citrullifolium, 
Location: Bee) 

312.06 74.43  

 Intertegular distance -13.74 16.31 0.42 

 Plant species: S. rostratum 22.22 12.95 0.11 

 Location: Flower -233.35 9.30 <0.001 

     

Fundamental 
Frequency (Hz) 

Intercept (Plant: S. citrullifolium, 
Location: Bee) 

462.66 60.83  

 Intertegular distance -33.54 13.36 0.027 

 Plant species: S. rostratum 4.40 10.12 0.67 

 Location: Flower -0.20 2.07 0.92 
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 705 

Table 3. Effect of bee size (intertegular distance distance), flower species, and vibration method on 706 

the magnitude of King’s Coupling Factor. Vibrations were applied to S. citrullifolium and S. rostratum, 707 

either by the bee (bee) or by pressing a calibrated shaker against the flower (shaker). The parameter 708 

estimates and standard errors were calculated from a linear mixed effect model with bee identity as 709 

a random factor. P-values for each explanatory variable were calculated using a Type III analysis of 710 

variance with Satterthwaite’s method. Statistically significant values are in bold. 711 

 712 

 713 

Response Variable Estimate SE P 

Coupling Factor Intercept  

(Flower: S. citrullifolium + Vibration source: 

Shaker) 

 

14.26 

 

5.92 

 

 Intertegular distance -0.89 1.29 0.51 

 Flower species   0.002 

      S. rostratum  -4.04 1.03  

 Vibration source   0.72 

     Bee -0.32 0.91  
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Figures 714 

 715 

Figure 1: Experimental set up for measuring bee vibrations. For floral buzzes (A), vibrations were 716 

recorded simultaneously by a PDV-100 laser vibrometer focussed on a 2mm2 reflective tag on the 717 

back of the thorax of the bee, and by a 0.2g accelerometer pinned to the calyx at the base of the 718 

flower. These measurements were sent to the compactRIO data acquisition unit (cRIO) which 719 

timestamped the data and exported them to a file. For defence and flight buzzes (bottom), bees 720 

were tethered on a platform using a nylon wire loop fed through a blunted needle. For defence 721 

buzzes (B), bees were gently squeezed on the abdomen using featherweight tweezers. To stimulate 722 

flight (C), the platform was dropped away triggering reflexive flight. In both cases, vibrations were 723 

recorded using a PDV-100 laser vibrometer positioned above the bee and aimed at a 2mm2 on the 724 

back of the thorax. The vibrometer then send the data to the cRIO to be timestamped and exported. 725 

Figure 2. Oscillograms and frequency spectra of vibrations (buzzes) produced by bumblebees 726 

(Bombus terrestris audax) in three different behavioural contexts: Flight (A, B), defence (C, D), and 727 

buzz pollination (E, F). Left-hand side panels (A, C, E) show buzzes in the time domain (oscillograms), 728 

while right-hand side panels show buzzes in the frequency domain (frequency spectra; B, D, F). The 729 

coloured region in the oscillogram show the section of the buzz used to generate the corresponding 730 

frequency spectrum. The first five harmonics (multiples of the fundamental frequency) are shown as 731 

vertical dashed lines in the frequency spectra. 732 

Figure 3. Differences in the properties of vibrations (buzzes) produced in different contexts (flight, 733 

defence, floral buzzes). Vibrations differed in both peak velocity (A) and frequency (B), with floral 734 

buzzes exhibiting the highest velocity and highest frequency buzzes, and flight producing the lowest 735 

velocity and frequency vibrations. From these values we derived the magnitude of the vibrations, in 736 

terms of displacement of the thorax, (C) and the acceleration (D) produced during these vibrations. 737 
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Although there was no difference in the absolute magnitude of the vibrations produced during 738 

defence and floral buzzes, because the floral buzzes were faster and at higher frequency than the 739 

defence buzzes, floral buzzes showed much higher accelerations. Mean +- SE. N = 36 bees from 2 740 

colonies (16 for floral vibrations, 20 for defence and flight vibrations). Details of statistics in Table 1. 741 

Figure 4. Example of a floral vibration produced by Bombus terrestris audax while visiting a flower 742 

of Solanum citrullifolium as recorded directly from the bee (A, B) and on the flower (C, D). The 743 

magnitude of the vibration, measured as peak velocity amplitude, is much higher when measured 744 

directly on the bee’s thorax with a laser vibrometer (A), than when measured using an 745 

accelerometer attached to the base of the flower (C). In contrast, the fundamental frequency of the 746 

buzz produced during floral visitation is the same (355 Hz) whether is measured in the bee’s thorax 747 

(B) or on the base of the flower (D). The coloured section in the oscillograms shown in A and C 748 

represent the section of the buzz used to calculate the frequency spectra shown in B and D. The 749 

dashed lines in panels B and D represent the first five harmonics of the fundamental frequency.  750 

Figure 5. Peak amplitude velocity (A) and fundamental frequency (B) of floral buzzes of Bombus 751 

terrestris audax on buzz-pollinated flowers of Solanum rostratum (closed symbols) and S. 752 

citrullifolium (open symbols). Floral buzzes were recorded directly from the bee‘s thorax using a 753 

laser vibrometer (green symbols) or on the flower using an accelerometer attached to the calyx 754 

(magenta symbols). Vibrations recorded on the flower had significantly lower peak velocities but 755 

similar fundamental frequencies as those measured in the bee. (C) Relationship between bee size 756 

(intertegular distance) and the fundamental frequency of floral buzzes. Each symbol in (C) represents 757 

the average frequency from multiple buzzes produced by an individual bee. Mean +- SE for A & B. N 758 

= 16 bees from 2 colonies (8 on S. rostratum, 8 on S. citrullifolium). Details of statistics in Table 2. 759 

Figure 6. Comparison of the ratio of the magnitude of the input vibration to the magnitude of the 760 

vibration measured at the sensor (King’s coupling factor) on two buzz-pollinated species of 761 

Solanum. Coupling factors were estimated using either natural bee vibrations (bee) or synthetic 762 
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vibrations produced with a calibrated mechanical shaker (shaker) as the input vibration. The 763 

calibrated shaker produced a vibration of fixed properties (frequency = 159.2 Hz, RMS velocity = 764 

9.8mm/s). The magnitude of the vibration produced by the bee was measured using a laser 765 

vibrometer on the bee’s thorax. The vibration transmitted to the sensor on the flower was measured 766 

at the calyx using an accelerometer. Plant species consistently differ in their coupling factor with S. 767 

rostratum having lower values than S. citrullifolium (A), irrespective of whether it is calculated using 768 

bee or calibrated shaker vibrations (B).  Mean +- SE. A: N = 16 bees from 2 colonies (8 on S. 769 

rostratum, 8 on S. citrullifolium), and 13  manual vibrations of flower (6 on S. rostratum, 6 on S. 770 

citrullifolium).  B: N  =   13 bees who had matching manual vibrations of their flower (6 on S. 771 

rostratum, 7 on S. citrullifolium). Details of statistics in Table 3772 
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