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Abstract 39 

 40 

As the human population grows and climate change threatens the stability of seafood sources, we face the 41 

key question of how we will meet increasing demand, and do so sustainably. Many of the 20 International 42 

Council for the Exploration of the Sea (ICES) member nations have been global leaders in the protection 43 

and management of wild fisheries, but to date, most of these nations have not developed robust 44 

aquaculture industries. Using existing data and documentation of aquaculture targets from government 45 

and industry, we compiled and analyzed past trends in farmed and wild seafood production and 46 

consumption in ICES nations, as well as the potential and need to increase aquaculture production by 47 

2050. We found that the majority of ICES nations lack long-term strategies for aquaculture growth, with 48 

an increasing gap between future domestic production and consumption—resulting in a potential 7 49 

million tonne domestic seafood deficit by 2050, which would be supplemented by imports from other 50 

countries (e.g., China). We also found recognition of climate change as a concern for aquaculture growth, 51 

but little on what that means for meeting production goals. Our findings highlight the need to prioritize 52 

aquaculture policy to set more ambitious domestic production goals and/or improve sustainable sourcing 53 

of seafood from other parts of the world, with explicit recognition and strategic planning for climate 54 

change affecting such decisions. In short, there is a need for greater concerted effort by ICES member 55 

nations to address aquaculture’s long-term future prospects. 56 

 57 

Keywords: aquatic farming; food security; horizon scanning; adaptive planning 58 
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Introduction 60 

 61 

Fisheries have long been the primary source of aquatic food production, with commercial or industrial 62 

fishing dramatically increasing during the early 20th century (Worm et al., 2009; Watson and Tidd, 2018). 63 

It was however the lack of effective management during the rise of industrial scale fishing that led to the 64 

overharvest and collapse of many stocks. Yet, policy reform and associated fisheries management, largely 65 

initiated during the mid-1990s, demonstrated effective ways to recover and sustain several of the major 66 

fisheries (Worm et al., 2009; Hilborn and Ovando, 2014; Costello et al., 2016; Hilborn et al., 2020). 67 

Some of the leaders in fisheries research and management are nations of the International Council for the 68 

Exploration of the Sea (ICES)—currently 20 nations, generally aligned with the convention to study and 69 

disseminate research pertaining to the Northern Atlantic Ocean and the resources therein (Went, 1972). 70 

However, these success stories belie an important fact: while the majority of assessed fisheries appear 71 

sustainable, meeting the growing demand and food security need for seafood has not and cannot be met 72 

without other forms of seafood production (freshwater and marine), in particular aquaculture—now 73 

accounting for approximately half of all global aquatic production (FAO, 2018a).  74 

 75 

During the earlier years of large-scale industrial fishing, the nations of ICES were major global 76 

contributors to both the consumption and production of seafood (Figure 1) and eventually recognized the 77 

need for scientific assessments and management of wild-capture fisheries (Went, 1972), but largely 78 

overlooked aquaculture. However, as the human population has expanded to 7.7 billion people, changes 79 

in the availability and access to seafood have influenced the contribution of ICES nations to global 80 

seafood production and consumption (Figure 1). First, improved fisheries management has recovered 81 

many stocks, but globally catches have stagnated in the absence of global reform adoption, particularly in 82 

coastal developing nations more dependent on seafood for food security (FAO, 2018a). As a result, a 83 

major factor contributing to the change in seafood production came from countries focused on fishing and 84 

aquaculture development. China in particular has put tremendous effort towards increasing seafood 85 

production over the last 30 years, now accounting for ca. 60% of all aquaculture production and is the 86 

largest net exporter of seafood globally (Szuwalski et al., 2020). However, such efforts have come with 87 

large, negative environmental consequences (e.g., habitat degradation, invasive species, pollution), which 88 

the country now hopes to address, to some extent, through reduced fishing (catch and effort) and 89 

increased polyculture and offshore aquaculture expansion (Szuwalski et al., 2020)—though 90 

socioecological standards may still be comparatively more lax (Cao et al., 2015). Importantly, the growth 91 

in aquaculture production occurred in parallel with global trade, transporting wild and farmed seafood 92 

products all over the world (Gephart and Pace, 2015). As a result, ICES nations now account for a much 93 
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smaller proportion of global consumers and producers (Figure 1). Yet, total demand for seafood continues 94 

to increase in ICES countries and around the world, as well as the associated food security issues therein 95 

(FAO, 2018a). 96 

 97 

Unanswered is the fundamental question of how ICES nations will continue to develop sustainable 98 

aquaculture industries to help meet their own expected seafood needs and contribute to the global market; 99 

an issue that is likely to become even more relevant with increased uncertainty and security of ocean 100 

resources in the face of climate change. Challenges to sustainable seafood production will continue to be 101 

exacerbated under a changing climate. For fisheries, many wild-stock ranges are expected to shift out of 102 

originally managed extents to track ocean temperature (Pecl et al., 2017; Oremus et al., 2020; Pinsky et 103 

al., 2020) and productivity and recruitment declines may lower overall productivity of a system (Britten 104 

et al., 2015; Free et al., 2019). For aquaculture, marine production faces similar temperature and 105 

acidifying pressures as their wild counterparts, while inland production is combating flooding and sea 106 

level rise, while compromising the health and infrastructure of cultured systems (Peterson et al., 2017; 107 

Ahmed et al., 2018; FAO, 2018b; Froehlich et al., 2018). While there is recognition that climate change 108 

threats to aquatic systems will likely grow, the longer-term strategic adaptive planning, especially for 109 

aquaculture, still appears nascent (FAO, 2018b; Hollowed et al., 2019; Reid et al., 2019). 110 

 111 

Given the history and relevance of seafood for ICES countries, we ask what role sustainable aquaculture 112 

may play in these countries in the future, which includes consideration of trade and climate change. 113 

Drawing on existing quantitative and qualitative data sources, we explored the relative trends and 114 

forward-looking strategies for aquaculture among the respective nations who were, and continue to be, 115 

leaders in fisheries science and management. First, we assessed the change in aquatic sources of the 116 

collective and individual 20 ICES nations by comparing the general trends (tonnage and interannual 117 

variation) of wild capture versus aquaculture production over the last five decades, paying particular 118 

attention to the top producing countries. Next, to determine how future aquaculture goals of the ICES 119 

members matched the prevailing trends, we compiled documents and sources from government and 120 

industry on proposed growth targets for each country since 2013. From the references, we extracted set 121 

goals, if any, for future aquaculture production (year, tonnage, and type). We then modelled the potential 122 

2050 aquaculture increases (based on the growth targets) to that of the possible total seafood consumption 123 

(i.e., demand) over the same time period, noting years of surplus or deficit. Recognizing that seafood 124 

from other countries fills domestic deficits, we highlight the top non-ICES seafood-trade partners, 125 

aquaculture production in those countries, and the implications for sustainable seafood. Lastly, we sought 126 

evidence of a base-level consideration of climate change in relation to future ICES’ goals, given the 127 
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increasing recognition climate change related impacts may challenge aquaculture globally (FAO, 2018b). 128 

In that, we looked for mention of ‘climate change’ within the associated references. Based on the results, 129 

we reflect on the future of seafood for the ICES nations and food system accountability in a global 130 

market, including adaptive strategies under a changing climate. 131 

 132 

Methods 133 

 134 

We used United Nations’ Food and Agriculture Organization (FAO) data (production and food supply) to 135 

compare general trends of production and variation of wild capture and aquaculture (freshwater and 136 

marine; excludes aquatic plants) of the 20 ICES’ nations over the last five decades (FAO, 2013, 2018a). 137 

First, we assessed how the percent of contribution of ICES total (in tonnes) consumption and production 138 

(capture plus aquaculture) has changed over time relative to global trends. Finding declining trends, 139 

which suggests a smaller role in global seafood overall, we next assessed which ICES nations contributed 140 

to the past and more recent production of wild and farmed seafood, and the evenness of that tonnage per 141 

country by comparing the coefficient of variation (CV) of intercountry production. This helped highlight 142 

if aquaculture is more or less skewed than fisheries between the ICES nations, similar to global trends. 143 

Lastly, we compared the yearly percent change in capture and aquaculture production and the probability 144 

[binomial generalized linear model, log link: positive change (0,1) ~ year + type(capture, aquaculture) + 145 

year:type] of seeing more increases instead of declines over time in the respective systems. 146 

 147 

For assessing future aquaculture goals, we compiled information (government and industry) on proposed 148 

growth targets for the ICES member nations since 2013. First, we leveraged the ICES members of the 149 

Working Group on Scenario Planning on Aquaculture, from which this project emerged, to provide 150 

known documents or sources about their respective countries and any addition information on the other 151 

nations (i.e., expert knowledge). One review document we heavily leveraged, which provided detailed 152 

reference to aquaculture targets for EU countries (no. countries =12), was O’Hagan et al., 2017. We 153 

paired the expert-elicited collection with GoogleTM searches for references on any remaining countries of 154 

interest. The search terms included country name and aquaculture, future, horizon, and/or 2050. We then 155 

read the sources of information (N = 20) and manually extracted future aquaculture production goals 156 

(year, tonnage, and type, such as freshwater, marine, taxa) for the 20 member nations. If we found 157 

multiple goals for a given country for the same time periods, we took the mean of the values. From both 158 

experts and internet searchers, we incorporated industry reported values for nations in which we could not 159 

find explicit government targets (Iceland) or were cited by the government (Scotland). Another important 160 

note, the UK as a whole is the ICES member, but the aquaculture target is the composite of Scotland, 161 
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England, Wales, and Northern Ireland and a 2030 report (not included) was in progress during the time of 162 

this study. We also noted if the associated references mention ‘climate change,’ which we used as a basic 163 

indicator of recognition and possible consideration for aquaculture growth. All documents and sources 164 

(Supplementary Data Table 1) not in English were either translated by an ICES working group member or 165 

GoogleTM Translate. While our approach resulted in information on aquaculture growth for every ICES 166 

country, we may have missed other, less accessible documents or sources due to language barriers, policy 167 

relevance, or limits on information sharing. In particular, goals from nations outside of the EU, Norway, 168 

USA, and Canada are likely less certain. 169 

 170 

To test the feasibility and trajectory of ICES seafood production and consumption, we combined and fit 171 

models to past and future FAO aquaculture data (production and consumption) and the extracted future 172 

values. Comparing linear, exponential, and second order polynomial models using corrected Akaike 173 

Information Criterion (AICc) for model selection (Burnham and Anderson, 2002), we found the 174 

significant exponential model (log(tonnage) ~ Year) best described total aquaculture (tonnes) over time 175 

with and without inclusion of the future production values. We then compared future production goals to 176 

the potential total consumption trend – assuming a statistically significant linear increase in total 177 

consumption to 2050 – to calculate the seafood production deficit (i.e., total production - total 178 

consumption). We focus on the ‘domestic deficit’ because seafood imported from other countries 179 

(external to ICES) has different environment and policy implications (e.g., displaced socioecological 180 

burden). All data collection, modelling and figures were produced with MicrosoftTM Excel and Rv3.6.1 (R 181 

Core Team, 2019). 182 

 183 

In addition to assessing the ‘domestic deficit,’ we complied the top import-seafood trade ICES partners 184 

(USD$) and the production of aquaculture and wild fisheries to qualitatively compare the dependence on 185 

other, potentially less regulated countries for seafood (FAO, 2018a). We gathered the country-specific 186 

trade information from ResourceTrade.Earth, which is supported by the Chatham House Resource Trade 187 

Database (CHRTD) and sourced from the United Nations Commodity Trade Statistics Database (UN 188 

Comtrade) by the United Nations Statistics Division. 189 

 190 

Results and Discussion 191 

 192 

Past trends of catch and production 193 

 194 
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Total aquaculture among the ICES countries is dwarfed by the volume of wild capture fisheries 195 

production (Figure 2a). As of 2015, eight nations (Canada, Denmark, Iceland, Norway, Russia, Spain, 196 

UK, and US) accounted for nearly all (87%) of the total ICES wild capture (total catch = 16.8 million 197 

tonnes), and these same countries contributed the vast majority of aquaculture production (88%) among 198 

the 20 countries (total aquaculture = 3.1 million tonnes; Figure 2b). However, the contribution of tonnage 199 

of wild capture is much more evenly distributed (country CV = 0.83) among the eight countries compared 200 

to aquaculture production (country CV = 1.31). For example, in 2015 the United States landed the most 201 

(by volume) with ca. 5 million tonnes (majority from Alaska pollock Theragra chalcogramma), or 26% 202 

of the total ICES catches. In comparison, Norway was the top aquaculture producing country (nearly all 203 

Atlantic salmon Salmo salar) with 1.4 million tonnes, or 45% of the total ICES aquatic production 204 

(Figure 2b). Norway is a particularly interesting case, demonstrating both sustained catch and a 205 

comparatively rapid increase in aquaculture production volume, a unique trend among the top ICES 206 

nations. 207 

 208 

In evaluating past and current temporal trends in production for wild-caught and farmed seafood, we see 209 

capture fisheries production has varied little over time (Figure 3a), and that on average, yearly catches in 210 

a given ICES country have a slightly higher probability of declining from the previous year since the 211 

1990s (Figure 3b). In contrast, aquaculture has seen substantially larger variation in growth, in particular 212 

with large increases in the past when many fish farms were just developing (Figure 3c), with increases in 213 

production from year to year being more probable than declines (Figure 3d); although the yearly trends 214 

were not statistically significant (p-value = 0.075). In addition, the variation appears to be contracting as 215 

aquaculture grows and matures (Figure 3c). Consistent with global trends, present capture fisheries within 216 

ICES countries appear either relatively stable or declining, while aquaculture has been steadily increasing 217 

(Costello et al., 2016; FAO, 2018a; Hilborn and Costello, 2018). 218 

 219 

Targets for aquaculture growth 220 

 221 

Since 2013, all ICES countries have government-sponsored and/or industry-lead reports or initiatives that 222 

state potential growth interests or goals for aquaculture (freshwater and marine) within their own 223 

territorial boundaries (Figure 4). That said, we were unable to find explicit targets for only one country, 224 

Estonia (consistent with O’Hagan et al., 2017), but there does seem to be intent for expansion (e.g., 225 

“...areas for suitable aquaculture will be mapped...”). The vast majority of explicit targets (16 out of 20) 226 

were very short-term, set for the years 2020-2023. In comparison, only three countries (Canada, Spain, 227 

and Norway) outlined more strategic planning out to 2030-2050. Nearly all documented targets were for a 228 
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doubling of production or less (median goal magnitude = 2), with only four countries setting more 229 

ambitious growth production goals into the future (Portugal: 3.5x by 2020; Belgium: 4.9x by 2023; Spain: 230 

3x by 2030; Norway: 4x by 2050) (Figure 4). Norway’s target represents the most substantial proposed 231 

increase in absolute production (3.8 million additional tonnes), while Portugal, Belgium and Spain’s 232 

targets represent more modest increases of 25 thousand tonnes, 820 tonnes, and 447 thousand tonnes, 233 

respectively.  234 

 235 

In addition to general production goals, we also found a tendency of focusing on marine expansion (no. 236 

countries = 14) compared to freshwater (no. countries = 6); this is not necessarily surprising given current 237 

marine production is approximately four-fold that of freshwater aquaculture in ICES countries. Some 238 

countries even specified the species or mode of production they were interested in expanding. For 239 

instance, Norway articulated continued expansion of salmon, but also seaweed species. Similarly, 240 

Germany highlighted Integrated Multi-trophic Aquaculture of mussels and seaweed in the Baltic Sea, 241 

while Latvia emphasized pool and recirculating aquaculture. Of note, nearly all of ICES countries 242 

mentioned spatial planning or zoning as part of the specific strategy for growth. The association between 243 

spatial planning and aquaculture seems to track with other policies and initiatives globally, including the 244 

reform of the 2013 EU Common Fisheries Policy (CFP) (O’Hagan et al., 2017) and various Regional 245 

Commissions for Fisheries (RECOFI) (Meaden et al., 2015). 246 

 247 

Sources with mentions of spatial planning tended to co-occur with acknowledgment of preparation for 248 

climate change (84% of sources). However, detailed climate change action plans for aquaculture, 249 

especially long-term, were not apparent in the documents we assessed. This is not to say that ICES 250 

nations are not planning for climate change, as many countries indeed have ongoing research projects 251 

(e.g., EU H2020 CERES and ClimeFish, US NOAA climate science strategy, etc.) and other marine 252 

planning which may include aquaculture, such as the EU Directive 2014/89/EU (O’Hagan et al., 2017). 253 

However, what the specific plans are and how they align with the respective goals for aquaculture growth 254 

were not overtly apparent in the sources assessed. The lack of climate change planning perhaps indicates 255 

a further need within long-term aquaculture strategies. 256 

  257 

Looking across the ICES members’ goals, what emerges is the clear pattern that most countries have 258 

established comparatively conservative targets (median magnitude = 2) for increasing aquaculture 259 

production, though interest in some level of growth appears ubiquitous. Smaller or larger production 260 

targets are not better or worse. That said, such targets do have potential implications for the ability of 261 

countries to meet their own consumption demand and the tradeoffs therein, an issue we explore next. 262 
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  263 

Mind the domestic production gap 264 

 265 

Applying each country’s aquaculture growth trajectories out to the year 2050 and modelling the potential 266 

growth over time, we uncovered that ICES nations’ goals appear feasible given past aquaculture 267 

production trends (Figure 5a). We specifically found that an exponential model performed best (according 268 

to AICc model selection) in describing past (since 1950) and potential future production among three 269 

models tested (R2
adj = 0.97, Fstat = 2308, p-value < 0.001). Notably, the reported projection from the FAO 270 

is a little lower than the ICES national goals (Figure 5a). However, while the trajectories may seem 271 

achievable based on previous growth of the sector, there are potential constraints and bottlenecks to 272 

aquaculture development, such as a lack of available sites (Sanchez-Jerez et al., 2016), lost production 273 

from disease (Stentiford et al., 2017), highly restrictive regulations (Sea Grant, 2019), and poor public 274 

perception and social license (Froehlich et al., 2017), among other factors. As the industry grows, these 275 

problems can increase, and may slow or limit production for any given country. Nonetheless, assuming 276 

these challenges are addressed and aquaculture production goals of each country are met, ICES countries’ 277 

goals could reflect production potential in the future, with Norway driving 2050 growth (Figure 5b). 278 

Norwegian aquaculture is already the largest producer in ICES, but it is unclear if (Atlantic salmon) 279 

production will continue to be increasingly challenged by sea lice (Young et al., 2019) or aided by 280 

offshore expansion (e.g., SalMar ASA). Interestingly, Norway meeting the proposed four-fold increase 281 

would result in their total aquaculture production surpassing their capture fisheries prior to 2050. 282 

 283 

We also found that ICES nations have a mounting domestic seafood production deficit from consuming 284 

more seafood than they produce (Figure 5c), meaning a growing reliance on imports that may be less 285 

sustainable. If we assume a linear relationship of total seafood consumption (tonnage) over time (R2
adj = 286 

0.95; Fstat = 978; p-value < 0.001), we would expect to see an average 57% increase in the total amount 287 

consumed by 2050 (since 2013; Figure 5a), trends that align with the projected average of the regions of 288 

interest (World Bank, 2013). Compared to the time since the greatest ICES seafood surplus (1988), small 289 

domestic deficits appeared to have occurred in 2008 and 2016 (Figure 5c). Accounting for a continued 290 

rise in ICES consumption and the production goals of the associated nations, we project a seafood deficit 291 

of about 7 million tonnes by 2050 (Figure 5c). Unless aquaculture growth targets are set significantly 292 

higher for the other nations excluding Norway, ICES countries will likely become even more reliant on 293 

other large seafood producers, such as China (Figure 5a). In fact, the top three, non-ICES seafood trading 294 

partners (India, China, and Indonesia), by import value (total USD in 2017 = $23.7 billion), all have 295 

aquaculture production which is equal or exceeds their capture fisheries (in total, 2.2 times great than 296 
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catch). The most common taxa imported from these countries are shrimp and prawns, which have a record 297 

of having significant negative environmental impacts (De Silva, 2012) and human rights violations 298 

(Motilal and Prakriti, 2018). While an ICES seafood deficit in production is not a certainty, this analysis 299 

demonstrates that it is much more likely under current production and consumption trends, and potentially 300 

presents a greater risk of sourcing less sustainable food items.  301 

 302 

 303 

Conclusions and Recommendations 304 

 305 

There is historical precedent for ICES nations to be at the forefront of sustainable seafood production, 306 

whether through domestic and/or better trade dimensions. Over the decades, the exploration and 307 

implementation of new tools and strategies to better manage wild fisheries have been recognized and 308 

adopted to various extents among these nations. While great strides were made to support best fisheries 309 

practices – including governance, funding, and research support – to recover many wild stocks, much less 310 

effort has been given in most of the ICES nations to usher in aquaculture practices in a similar, but more 311 

anticipatory manner. Interestingly, we found that even with the apparent recognition by all current ICES 312 

countries that aquaculture will play an increasingly important role in future seafood production, most 313 

planning appears very short term and conservative. Development of long-term aquaculture strategies is 314 

not just about absolute production, but must also include measures to advance improved husbandry, 315 

technology, and participation in the changing seafood market, ideally with sustainability leading these 316 

components. While the goals moving forward to 2050 by the ICES nations may be feasible as the 317 

growing challenges are addressed, growth predominantly depends on one country, Norway. Even if the 318 

goals are met, it does not reconcile the deficits in seafood production, requiring increases in imports of 319 

seafood, often from places with considerably fewer rules and regulations for sustainable harvest or 320 

production. In addition, lack of aquaculture consideration creates a major gap in adaptively planning for 321 

the impact of climate change on the seafood sectors domestically and from exporting countries (FAO, 322 

2018b; Froehlich et al., 2018; Thiault et al., 2019). 323 

 324 

Governance is key to adaptive planning, and targeted policies that support, not just regulate, domestic 325 

aquaculture are needed if ICES countries wish to address the skewed production landscape. In a global 326 

setting, the restrictive and complex regulatory structures have been identified as important factors 327 

stagnating growth of aquaculture in Europe and North America and may have resulted in declining their 328 

share of world aquaculture production (Engle and Stone, 2013; Young et al., 2019; Garlock et al., 2020). 329 

Aquaculture-specific national legislation which clearly defines requirements and objectives is important, 330 
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but not always guaranteed (e.g., Canada) (Sanchez-Jerez et al., 2016), particularly for marine aquaculture 331 

(Davies et al., 2019). Arguably, clear legislation should apply to state and provincial level governance as 332 

well. The Food and Agriculture Organization of the United Nations identified ‘predictability of the rule of 333 

law’ as one of four cornerstones of governance principles to support sustainable aquaculture development 334 

(Hishamunda et al., 2014). Importantly, legislation likely needs to go beyond robust regulatory standards, 335 

which does exist in many of these nations, to include explicit support—which is debatably the case for 336 

wild-capture fisheries. For instance, zoned Aquaculture Management Areas – a designated area shared by 337 

farmers to minimize risk and impact to the surrounding environment (FAO and World Bank, 2015) – 338 

could be a tangible near-term goal for pursuing longer-term aquaculture growth, especially for countries 339 

with some form of spatial planning and management already in place. Zoning differs from spatial 340 

planning alone in that it specifically prioritizes aquaculture in certain areas over other uses, but rarely at 341 

the expense of the environment or other industries (Sanchez-Jerez et al., 2016). Such aquaculture 342 

prioritization and support does occur, including in some ICES nations (e.g., Spain, Norway), but is still 343 

rare and highly variable (Sanchez-Jerez et al., 2016). In the event of aquaculture zoning, coordinated 344 

area-based management beyond a single farm (e.g., ‘beyond farm’ governance, integrated coastal zone 345 

management) may also help improve sustainable aquaculture development into the future, as is the case in 346 

Norway (Hishamunda et al., 2014; Klinger et al., 2018; Bush et al., 2019). In short, aquaculture would 347 

need to become a priority to grow in ICES nations (beyond just Norway), which may not parallel the 348 

social or political will of some of the countries being discussed (Froehlich et al., 2017). 349 

 350 

Trade is intertwined with domestic seafood governance, especially if ICES nations intend to address the 351 

displacement of social and ecological burdens bound to imported seafood. We found the potential for a 352 

domestic seafood production deficit more likely now and increasingly so in the future, which increases 353 

the chance of imports of less expensive seafood from less regulated countries in the absence of 354 

interregional laws. This ‘whole system’ perspective (i.e., beyond local or domestic impacts) applies to 355 

nearly every commodity in this globalized age (Kissinger et al., 2011), but seafood in particular is one of 356 

the most traded commodities on the planet and production is so heavily skewed globally (ca. 90% of 357 

production in SE Asia) (Gephart and Pace, 2015). Accountability of the impacts of our food beyond local 358 

and national borders is legally difficult, but morally deserves attention (Kissinger et al., 2011; Halpern et 359 

al., 2019). Certification, blockchain, and improved monitoring, such as the USA’s new Seafood Import 360 

Monitoring Program (81 FR 88975) are helping address some issues around trade and traceability of 361 

seafood (Gephart et al., 2019). However, with mislabelling and fraud (Stawitz et al., 2016; Luque and 362 

Donlan, 2019), worker’s rights and slavery (Diana et al., 2013) and climate change (Brown et al., 2017), 363 
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the scale and complexity of the international seafood issues are overwhelming in the absence of larger 364 

political initiatives at the national and global scale. 365 

 366 

Not only do ICES countries need to plan domestically and internationally for aquaculture, these efforts 367 

should be done in the context of changing environmental conditions. Climate change is already impacting 368 

fisheries and aquaculture, including ICES members (e.g., USGCRP, 2018), and conditions are predicted 369 

to get more challenging in the coming decades, especially in the absence of active mitigation and 370 

adaptation measures (Sumaila et al., 2016; Handisyde et al., 2017; FAO, 2018b; Free et al., 2019; 371 

Hollowed et al., 2019; Thiault et al., 2019; Oremus et al., 2020). Of note, and reminiscent of a 372 

historically narrow focus in fisheries, plans for wild-capture management under climate change are slowly 373 

forming as impacts and conflicts emerge and better methods to predict impacts on productivity and 374 

behavior develop (FAO, 2018b; Free et al., 2019; Hollowed et al., 2019; Sumaila et al., 2019; Thiault et 375 

al., 2019). Yet, we lack even a map of current aquaculture production locations (freshwater and marine) 376 

around the world, making the real versus potential impact on aquaculture highly uncertain, and 377 

precautionary planning much more important and challenging (Froehlich et al., 2018). Some regional 378 

assessments are emerging (e.g., Falconer et al., 2019; EU ClimeFish, 2020), but more research and 379 

support around climate change impacts, mitigation, and adaption for aquaculture are sorely needed. 380 

 381 

In general, ICES’ governments need more deliberate and strategic plans about the extent to which they 382 

wish to increase aquaculture production in their own waters versus importing farmed and capture species 383 

from other countries’ waters, and how these decisions may fair under a changing climate. While the 384 

solution of ‘producing more’ domestically may sound simple, it is in fact a grand challenge that emerges 385 

from highly complex socio-economic and cultural values around seafood, alongside population and 386 

demand growing for seafood, and climate change threatening both fishing and aquaculture sectors, as well 387 

as the people who depend on them. Our results highlight that this challenge should not be left to reactive 388 

future decisions. Instead, nations must proactively prepare for the complex issues ahead. 389 

  390 
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Figure Legends 391 

 392 

Figure 1. Trends in the percent of total global consumption and production of seafood (wild capture and 393 

aquaculture) from ICES nations. The sudden peak corresponds with the socio-political changes in 394 

Russia/Soviet Union. The declining trend in percent of global contribution is largely due to increasing 395 

human population and greater demand in other parts of the world. Data source: FAO, 2018a. 396 

 397 

Figure 2. ICES nations (a) highlighted in maroon, with total combined production (million tonnes) over 398 

time (inset panel) and (b) corresponding individual national aquaculture (orange) and fisheries catch 399 

(blue) freshwater and marine (excludes seaweeds) tonnage time series (1960-2015) (FAO, 2013, 2018a). 400 

 401 

Figure 3. Interannual variability of capture (blue) and aquaculture (orange) tonnage for each ICES nation 402 

over time as shown by percent (%) change in production between subsequent years (a & c) and the 403 

probability the change is positive in a given year across all ICES countries (b & d). 404 

 405 

Figure 4. Magnitude of proposed aquaculture growth targets relative to 2013 FAO production estimates 406 

as calculated from the country-specific documentation. 407 

 408 

Figure 5. (a) Past and future trends of ICES aquaculture (black) and wild (gray) capture. ICES goals are shown in 409 

red and FAO estimates in orange, with the exponential-model fit with 95% confidence intervals. Current (2013) and 410 

future (2050) total consumption levels are depicted as blue horizontal solid and dashed lines, respectively. Chinese 411 

aquaculture is shown as the small, dotted pink line for reference of production scale. (b) Total ICES capture (light 412 

blue), ICES aquaculture excluding Norway (green), and Norwegian aquaculture (aqua). (c) Domestic seafood 413 

deficit in millions of tonnes over time (non-consecutive years) as calculated by consumption minus combined 414 

(fisheries and aquaculture) production based on the reported targets; light blue positive values show no deficit (i.e., 415 

surplus) and orange negative values indicate deficits by 2050. 416 

  417 
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