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Should all choices count? Using the cut-offs approach to edit responses in a 

choice experiment. 

 

 

 

Abstract 

Should we give equal weight to all responses in a choice experiment? Previous Choice 

Modelling papers have considered the issue of the internal consistency of choices – such as 

the extent to which strictly-dominated options are chosen. In this paper, a different focus is 

employed, namely the extent to which people choose options which violate their stated upper 

or lower limits for the acceptable levels for individual attributes. Since hypothetical over-

statement of WTP has been a focus in stated preference studies, we concentrate on violations 

of stated upper limits of WTP, and explore the effects of “editing” such choices using a 

variable censoring rule and alternative approaches to re-classifying choices. The empirical 

case study is a choice experiment on eco-tourists in Rwanda. Our main conclusion is that the 

suggested approach offers a useful way of imposing consistency on choices, and that editing 

choices in this manner has an appreciable impact on estimated willingness to pay. However, 

issues remain with regard to explaining why people apparently violate their stated maximum 

willingness to pay. 
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1. Introduction 

Choice Modelling papers have considered the issue of the internal consistency of 

choices – such as the extent to which strictly-dominated options are chosen, or whether 

respondents consistently choose the same alternative when a choice set is repeated as part of a 

survey (Hanley, Wright and Koop, 2002). Inconsistent responses can then be removed from 

the data set before a choice model is estimated. There is also a wider literature on the 

determinants of choice consistency, which considers issues such as the role of choice 

complexity and the use of heuristics (de Shazo and Fermo, 2002; Amir and Levev, 2008). In 

this paper, a different focus is employed, namely the extent to which people choose options 

which violate their stated upper or lower limits for the “acceptable” levels for individual 

attributes. Swait (2001) proposed that how people choose between alternatives might be 

represented using a “cut-offs” approach, whereby respondents specify minimum or maximum 

acceptable levels for different attributes. Choice sets which violate these levels can be either 

rejected (in the “hard” cut-offs version of the model), or else attract a utility penalty in the 

“soft” cut-offs version. The soft cut-offs alternative, described in detail below, allows for 

potential kinks in the utility function to be included. Here, we extend the method to allow for 

choices which violate an individually-stated maximum Willingness to Pay to be re-classified, 

and show that this produces substantial effects on parameter estimates and on willingness to 

pay for changes in attribute levels. 

Indeed, hypothetical over-statement of WTP has been a focus of critical review in 

stated preference studies, leading to the notion that WTP estimates from choice experiments 

are in some senses “too high” (Carlsson and Martinsson, 2001; Harrison and Rustrom, 2005; 

List et al, 2006) . For this reason, we concentrate here on violations of stated upper limits for 

the price attribute : that is, instances where individuals choose options which are more 

expensive than the maximum they indicate they are willing to pay. We explore the effects of 
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editing such choices using a variable censoring rule, and with alternative approaches to re-

classifying choices. People who choose options which are in excess of the most they say they 

would pay for the good might be viewed as not considering the price attribute carefully 

enough (Campbell, 2008), behaviour which can be tested for in a number of ways. Here, we 

take the position that individuals would not actually be willing to buy the good if they chose 

options which imply a violation of their stated maximum WTP by a certain percentage. This 

leads us to re-classify such choices as “no purchase” (we also explore the effects of simply 

deleting such choices instead). 

 

In what follows, we first review the cut-offs model, before describing the empirical context of 

the choice experiment being analysed here. The design of the choice experiment is then 

reviewed. Results are followed by a discussion. 

 

2. The “cut-offs” model in Choice Experiments. 

In this paper, we make use of the “cut-offs” choice experiment approach proposed by Swait 

(2001). As originally set out, this attempts to deal with the limited ability of standard choice 

modelling approaches to represent non-compensatory preferences. Non-compensatory 

preferences imply that consumers can no longer be assumed to have smooth, continuous 

indifference curves, such that any change in environmental quality can be compensated for by 

a finite change in a numeraire good such as income. Here, we extend the approach to deal 

with choice inconsistency. 

In choice modelling, we typically assume respondents to be rational individuals who 

maximise their utility by choosing alternatives from a finite choice set that brings them the 

highest utility. Following the theoretical framework of Swait (2001), a typical formulation of 

the choice problem is:  



 4 

 

 

[ ] ( )

. . 1; ; 0,1 .

i i

i C

i i i

i C i C

Max U U X

s t p Y i C



  



 



    



 
     (1) 

 

where U is the utility, C is the set of substitute alternatives such as alternative nature-based 

tourism experiences, δi is a choice indicator equal to 1 if respondents choose alternative i and 

0 otherwise, pi is the price of alternative i, Xi is the k dimensional vector that describes the 

good, and Y is respondents‟ income. 

In this context, respondent n is typically assumed to consistently evaluate all the 

attribute tradeoffs between competing alternatives. However, many other decision rules may 

be used by respondents, depending on factors such as the difficulty of the choice task, their 

knowledge about the goods under study, and the environmental and social conditions in which 

the choice is carried out. Cut-offs can be viewed as a non-compensatory choice heuristic 

thought to simplify choices in a world of costly decision-making. The use of cut-offs suggests 

that individuals are unwilling or unable to maximise utility by considering all possible choices 

and their pay-offs, relative to their budget constraint (Svenson, 1996). Here, though, we take a 

different interpretation: we assume that stated cut-offs represent limits to acceptable trade-offs 

between the attributes of goods. 

Swait (2001) notes that such cut-offs may be thought of as “hard” or “soft”. Hard cut-

offs are attribute levels that must be reached before a choice is allowed. Including hard cut-

offs into the choice modelling framework requires adding additional constraints that prevent 

respondents from choosing an alternative that violates any of their stated cut-offs. For 

example, if respondent n stated that he would not pay more than x
1
  for a good (the hard cut-
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offs value), the utility maximization process only considers all the alternatives with a cost less 

than x
1
. Equation (1) is then rewritten as: 
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where θ
L
 = [l1 l2 ..... lk lp]´ is the vector of lower limits and price (lp) cut-offs; and θ

U
 = [u1 u2 ..... 

uk up]´ is the vector of upper limits and price (up) cut-offs and Zi  is a k+1 dimensional vector 

that describes alternative i (Xik) where the additional dimension is the price (i.e., Zi(k+1)=  pi). 

 However, cut-offs need not be hard: consumers can choose to violate them if the 

benefits are great enough (that is, once the opportunity costs of self-imposed hard cut-offs are 

recognised). This approach was first proposed by Huber and Klein (1991). Soft cut-offs can 

be used to represent non-linearities or kinks in the deterministic portion of the utility function. 

Swait (2001) claimed, and showed for his data on rental car choices, that use of a soft cut-offs 

model would provide a better fit to stated choice data; this was also found by Amaya-Amaya 

and Ryan (2006) for two stated choice data sets for health care options. Swait also notes that 

ignoring the presence of soft cut-offs where these are in fact present in peoples‟ decision 

making will lead to biased estimates of marginal utilities.  

Making the cut-offs “soft” requires adding to the utility function a penalty function 

associated with cutoff violations: 

 

                                                 
1
 The same would apply in case of a lower limit cut-offs, for instance if respondent declares he/she would not 

select any alternative cheaper than x. 
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where wk is the marginal disutility of violating the lower cutoff for attribute k (k=1...K+1); vk 

is the marginal disutility of violating the upper cutoff for attribute k (k=1...K+1); λik is a cutoff 

constraint variable for the lower limit cut-offs and κik is a cutoff constraint variable for the 

upper limit cut-offs. The coding of such cut-offs constraints is straightforward. For 

quantitative attributes λik = max(0, θ
L

k-Zik), κik = max(0, Zik- θ
U

k) where (k=1...K+1); for 

qualitative attributes λik and κik are equal to 0 or 1 depending if the stated cut-offs have been 

violated or not. Note that if a choice alternative satisfies all cut-offs, the optimal solution has 

all λik and κik equal to zero, thus the utility maximization problems reduces to equation (1). 

In this model specification, we use a linear utility function in which the marginal 

effects of each attribute on utility will be affected by the disutility of cut-offs violation. In 

particular, we assume:  
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The suggestion made in this paper is that attribute cut-offs can also be used as a way to 

identify choices which are inconsistent with what appears to be respondents‟ maximum WTP 

for the good in question. We can test for such behaviour in a simple way by specifying hard 

cut-offs constraints when respondents violate their upper price stated cut-offs – the most they 
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say they are willing to pay for any specification of the good within the attribute space defined 

in the choice experiment - by more than an exogenously specified value. For instance, if 

respondent n declared that he/she would not be willing to pay more than 100 € for a whale-

watching trip, the “soft” cut-offs approach allows him/her to pay more (say 120 €) when the 

alternative offers her some compensating features that give her greater benefits than the 

marginal cost above the cutoff, albeit with a utility penalty for violating the soft cut-off. 

However, this can viewed as acceptable only up to a specific degree of cutoff violation. A 

constraint can then be added to the maximization problem by requiring that the cut-offs 

violations for price cannot be greater than a percentage of the respondents‟ stated maximum 

WTP (their cutoff value for the price attribute); 
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    (5) 

 

where γ is an exogenous value set by the analyst. This value represents the amount of the 

violation (as a percentage relative to upper price cutoff) that the analyst is willing to accept. 

To respondents whose preferred alternatives cost more than the upper price cut-offs 

(maximum WTP) but which are lower than the value of γ, then the “soft” cut-offs approach 

will be applied. Choices whose ratio κip / θ
U

p is greater than the γ value (i.e., the price 

violation is too large with respect to what can be considered “acceptable”) are then treated as 
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if they chose the zero-cost opt-out option
2
. In the case of nature-based tourism, for example if 

a respondent declares that he is willing to pay as maximum 100 € to take a trip and later 

chooses an alternative that costs 200 €, there are clues to think that his choice is inconsistent. 

If the analyst is willing to accept a violation of the upper price cut-offs of 50% as a maximum 

(i.e. 150 €) this respondent would be treated as they had chosen the “no trip” choice.    

Which value to use as an acceptable limit is an empirical question that the analyst has 

to address by undertaking a sensitivity analysis using different “γ values”. In this study we 

test several “γ values” extending over the interval [0.04-1.5]: results are reported in section 5. 

Inconsistent choices, defined in this way, could also be simply deleted from the data set, 

rather than being re-coded as “no trip”: results are also reported for this treatment.  

 

3. Case Study: Gorilla Tourism in Rwanda. 

In many developing countries, tourism is providing an increasingly important source of export 

earnings and foreign direct investment (Wunder, 2000). In Rwanda, nature tourism is a 

particularly dynamic sub-sector, thanks to the charismatic mountain gorilla population found 

in the Volcanoes National Park (VNP) in the north-west of the country.  VNP consists of 

about 160km
2
 of montane forest and until Rwanda‟s independence in 1962 was part of 

Africa‟s first national park, the Parc National Albert, created in 1925 with an intention of 

protecting the great apes (ORTPN, 2004). Both the mountain gorillas and the VNP as a tourist 

destination became internationally renowned through the work of the conservationist Dian 

Fossey who died in 1986 and whose biography was later turned into the popular movie 

“Gorillas in the Mist”. By the early 1980‟s Rwanda was receiving up to 22,000 visits to the 

national parks annually. However, visits collapsed during the genocide, civil war and 

                                                 
2
 As Swait (2001) pointed out, the set C must have a null alternative (i.e. the possibility of not choosing), 

otherwise the utility maximization problem might not have a feasible solution for particular configuration of 

attributes and cut-offs.  
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subsequent period of insecurity from 1994 to 1998 (ORTPN, 2004).  Despite recent threats to 

the gorillas from illegal hunting, today the park is well protected, and numbers of the great 

apes are increasing (Gray et al, 2005). Since the park was re-opened in 1999 its tourism 

industry has seen an incredible rebound from 417 park visits in that year to around 30,000 

park visits in 2006.  

The Virunga mountain gorilla (Gorilla beringei beringei) is a highly endangered 

African ape subspecies, with a total estimated population of 380 existing only in the Virunga 

Conservation Area encompassing Rwanda, Democratic Republic of Congo and Uganda 

(Homsey, 1999; Fawcett et al, 2004) The distribution of the Virunga mountain gorillas is 

limited to an approximate area of 447 km
2
, which encompasses the Mgahinga Gorilla 

National Park in Uganda, the Parc National des Volcans of Rwanda and the Mikeno sector of 

the Parc National des Virunga of the Democratic Republic of Congo. The current population 

size of 380 individuals represents a 17% increase from 1989, when a complete census 

estimated 324 individuals. The Virunga mountain gorilla represents an isolated island 

population in an upland area surrounded by a sea of humanity at some of the highest human 

densities found on the African continent (some areas reach 820 people per km
2
) with 

extremely poor, agricultural-based local economies (Plumptre et al, 2004). Gorillas are and 

will continue to be severely threatened by anthropogenic disturbance, such as agricultural 

conversion and illegal extraction of resources.  

Nature-based or eco-tourism is an approach to promoting both environmental and 

social development goals. The client base for gorilla tourism in Rwanda is broad, the gorillas 

being visited by independent traveller, over-landers and high-end tours (ORTPN, 2004). 

Tourism development strategies based on market differentiation are being developed 

regionally. Distinct pressures exist on national parks authorities to maximize their revenues in 

order to be able to finance their conservation and tourism activities. There is thus a critical 
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balance to be achieved between exploitation of theses resources through tourism, and their 

conservation. To protect gorilla health and behaviour, limits have been agreed within the VNP 

regarding the number of groups “habituated” for tourism as well as the number and duration 

of tourist visits. This limit currently stands at a maximum of 8 tourists, for one hour, once per 

day with each habituated gorilla group designated for tourism (Homesy, 1999). Moreover, 

recent work has shown that current conservation measures impose costs on local 

communities, in terms of restrictions in access to forest areas and restrictions on hunting and 

food and fuel collection (Bush, 2008). This means that future measures which can at least 

partly compensate local people for these costs would be particularly valuable. For this reason, 

we include the percentage of tourism revenues returned to local people as one of the attributes 

in the choice experiment design described below. 

 

4. Study Design 

To aid questionnaire design, focus groups and pilot interviews were conducted in June and 

July 2005 with groups of visiting tourists in Volcanoes National Park (VNP), to identify the 

key attributes that visitors to the gorillas were concerned about.  Collection of the main survey 

data ran from August 2005 until January 2006. In total 426 surveys were administered, of 

which 419 were returned complete and useable. Respondents were identified at random each 

morning when they arrived for gorilla trekking at the VNP and asked if they would participate 

later that day in the survey. They were later approached in their accommodation, in and 

around Ruhengeri Town and Kinigi Village to fill out the questionnaires on 1) personal socio-

economic and demographic characteristics, related tourism activities and interests, 2) the 

choice task (with nine sets/cards per respondent) and 3) the cut offs. 
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A total of 18 different choice sets were developed following the design procedure proposed 

by Street et al (2005)
3
, which were separated into two different blocks. Following extensive 

focus group discussions, the choice attributes included in the design were trek group size, 

length of trek, the possibility of seeing other wildlife, community benefits from tourism and a 

price parameter representing possible future increases in current trekking fees (see Table 1 

and Figure 1). The current trek price at the time of the survey was $375, and almost all treks 

were fully-booked, indicating that it was likely that some people would have been willing to 

pay more for the experience. Prices have since risen to $500 per trip, and treks are still fully-

booked. 

We experimented with cut offs presented both before and after the choice experiment 

in order to assess the impact of cut-off questions on the completion of the choice task
4
. To 

accomplish this, we split the sample into two halves; to the first we asked for the cut-offs 

before the choice task. The second group were asked to provide information on their cut-off 

levels after the choice questions. Cut offs were identified for maximum trek group size, the 

minimum and maximum length of trek, the minimum % of tourism receipts being channelled 

to the local community, and maximum willingness to pay over current permit price specified 

by each respondent (see Table 2), leading to a total of 6 cut-off parameters to be estimated
5
.  

                                                 
3
 The design efficiency was 94.07% efficient and main effects were perfectly uncorrelated. The design was 

attribute balanced and does not contain any dominated choice sets. 
4
  Swait (2001) commented that the positioning of cut-off questions was an interesting avenue for future work. 

5
 For example for the price cutoff, we asked: “What is the maximum additional amount above the current permit 

price that you would be willing to pay?” 
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5. Econometric Approach 

We used a Random Paremeters Logit model to analyse the choice data (for details on this 

approach, and how it compares with multi-nomial logit, see Henscher et al, 2005). In the 

standard random utility framework, implementing a cut-offs model modifies the deterministic 

part of the utility function to incorporate a penalty when soft cut-offs have been violated. The 

size of cut-off violation and their associated utility penalties λik and κik with their coefficients 

wk  and vk are added to the deterministic component of utility.  Considering a linear-in-utility 

function ( in k ink

k

V X ) defined over attributes X,  the deterministic part of utility becomes 

 

 ( )in k ink k ink k ink

k

V X w v          (6) 

 

In the random parameter modelling framework, the utility attached to each attribute is allowed 

to vary over individuals:  

 

 kn(     + )in k ink ink k ink k ink

k

V X X w v         (7) 

 

where kn is a vector of k deviation parameters which represents an individual‟s tastes relative 

to the sample average (), (kn=  k+ ηkn). The  terms, as they represent personal tastes, are 

assumed constant for a given individual across all the choices they make, but not constant 

across people. Random parameter logit probabilities are weighted averages of the logit 

formula evaluated at different values of , with the weights given by the density f(). The 

probability that respondent n chooses alternative i is given by: 

 )()()(  dfniLniP        (8)  
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where Lni () is the logit probabilities evaluated at parameters . Since this integral has no 

closed form, parameters are estimated through simulation and maximising the simulated log-

likelihood function. In order to estimate the model it is necessary to make an assumption over 

how the  coefficients are distributed over the population. Here we assume that preferences 

for all the attributes follow a normal distribution, based on the results of focus groups and pre-

testing. This means, for example, that we allow some people to prefer longer treks and some 

to prefer shorter treks. The price parameter was initially allowed to vary across respondents as 

well. However, testing showed that heterogeneity in preferences towards price disappeared 

once we use the stated upper price cut-offs to edit choices. Thus, the reported models show 

the price term as non-random. 

The criteria used in selecting a value for γ – in equation (5), the exogenous censoring 

parameter for choices - included model fitting and degree of implied censoring of choices. 

Since larger values of the γ parameter allows for larger violations of the price cutoff to be 

counted in the choice model as a purchase decision, there is an argument for not using values 

of γ that are “too large”, if the intention is to mitigate against the tendency of respondents to 

give price-inconsistent responses. On the other hand, smaller values of γ imply an 

increasingly-strict censoring of choices, in that the number of choices re-classified will be a 

decreasing function of the value of γ. In terms of model fitting, Figure 2 shows that the 

maximum likelihood of the model at convergence is pretty stable at small values of the γ 

parameter. It decreases gently until it reaches the γ value of 0.37 where it decreases sharply. 

The same could be said for the intervals of γ values between 0.5 and 0.75. Results revealed 

that when using low values of the γ parameter (between 0.04 and 0.25) there is a significant 

increase of model fitting. When higher inconsistencies are allowed (γ >1.5 for instance) the 

model fitting decreases until it corresponds to that of the model with all inconsistencies. 

Sensitivity analysis showed that models estimated using a γ values = 0.37 are very similar to 
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the model estimates using a γ value of 0.75. For example, setting γ = 0.50 produces a 

parameter estimate for price equal to -0.002 and for its cut-off equal to -0.023 (both 

significant), values which are almost identical to those for γ = 0.75,  Consideration of both 

criteria (model fitting and degree of censoring of choices) led us to choose a value of γ = 0.75 

(75%) for reporting of choice model results: estimates for other values of γ can be obtained 

from the authors. 

 

 6. Results 

Table 2 shows the cut-off values stated by respondents. Looking at the price attribute, 

33% of respondents said that they were not willing to pay any increase in the price of a trek, 

whilst the mean maximum WTP above current price was $95. Table 3 shows detail on cut-off 

violations in terms of the actual choices made by the respondents, compared to their 

individually-stated cut-offs. The key fact that emerges from Table 3 is that many choices 

involve the violation of stated cut-offs: as noted in section 2, this is permissible in the context 

of the model, although violations will incur a utility penalty. The greatest number of 

violations occurred for the price and the community benefit attributes, with just under half of 

respondents choosing options which violated their stated cut-offs.  Violations were lowest for 

tour group size. A statistical test showed that there were no significant differences in the 

frequency of cut-offs violation comparing the sub-samples where the cut-offs are elicited 

before or after the choice task (
2

4= 4.45, sig. 0.34). Furthermore, a likelihood ratio test of the 

null hypothesis that the estimated preference parameters are independent of the positioning of 

the cut-offs question (before of after the choice tasks) fails to reject this null. 

 Econometric results are organised as follows. First, we present a model estimated on 

all data but without the cutoff terms, and then compare this to a model which includes soft 

cut-offs. Secondly, we consider the impacts of reclassifying choices where people violate 
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their stated maximum WTP (price cutoff) by at least 75% (see below for how this value for γ 

was chosen) as “no trip” choices. Third, we repeat the exercise for people violating their 

stated maximum WTP by at least 75%, but this time deleting these from the dataset before the 

choice model is estimated, rather than re-classifying them as “no trip”.  

  

 

6.1 Using all the choice data: soft cut-offs versus no cut-offs 

This is the comparison closest to the Swait (2001) paper. Table 4 shows the no cut-offs results 

compared to the results with soft cut-offs. Note that the model fitting improves between 

columns 1 and 2 (this improvement is significant at 99%). However, the price attribute has a 

positive parameter in both cases, whilst the parameter on the upper price cutoff is not 

statistically significant. The positive sign on the price variable might be explained by 

respondents considering that price reflected some other desirable attribute of a gorilla trek that 

was not described by the other attributes (which cannot be tested for), or by some respondents 

not paying attention to the price attribute. We also note that all individuals chose either A or 

B in the choice sets answered – that is, none chose the “no trip” option. This is not surprising 

when one considers that, for most individuals, the main point of their (expensive) visit to 

Rwanda is to go on a gorilla trek. However, choice inconsistencies might lie behind the 

positive sign on price result. To investigate this we now re-code trip choices that violate 

respondents‟ stated maximum WTP by 75% or more as “no trip”.  

 

6.2 Re-classifying inconsistent responses as “no trip”.  

Setting γ such that any choice which violates a person‟s stated maximum WTP in terms of its 

price by at least 75% is reclassified as a stay-at-home choice produces big effects.  
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Model fitting improves significantly both with and without the inclusion of cut-off penalties 

in the choice model (Table 5). The parameter on price becomes negative in the no cut-offs 

version (suggesting that it was trip choices by those inconsistent respondents who violated 

their maximum stated WTP which are responsible for the positive price effect), whilst in the 

cut-offs version the cutoff parameter on price is also now significant, and 10 times bigger than 

the price coefficient. This implies a steep kink in the marginal disutility of higher prices above 

the upper soft cutoff. Adding soft cut-offs to this edited data set of choices produces, in itself, 

a significant improvement in the model‟s explanatory power: compare, for example, the t 

statistics on the random parameters in the utility function. It may also be seen that, whereas 

the parameter estimate on a “high” chance of seeing other wildlife on the trek is insignificant 

in Table 4, it becomes significant (at the 90% level) and positive once inconsistent responses 

– here, those where maximum WTP is exceeded by at least 75% - are removed. 

Looking at the parameter estimates for the non-price attributes, it may be seen that 

visitors prefer smaller tour groups; prefer a length of trek between 1 and 3 hours to either 

shorter or longer treks; and prefer to see greater numbers of other wildlife in addition to 

gorillas. However, there is no evidence of a significant effect for what percentage of park 

revenues are recycled to local communities in the national park: the parameter in CB is 

insignificantly different from zero at the 95% significance level. In terms of preference 

heterogeneity, we find significant evidence of this for tour group size, seeing other wildlife 

(partially), and community benefits. This can be seen by observing the statistically significant 

standard deviation parameters in Table 5. However, the parameter estimates for the standard 

deviation terms (differences in values held by individuals relative to the mean value) for the 

attributes relating to length of trek and the highest level of other wildlife viewing 

opportunities are not significant at even the 90% level. 
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6.3 Deleting inconsistent choices 

An alternative editing rule for choices which violate the price cutoff (stated maximum WTP) 

by at least 75% is to delete them from the dataset, rather than re-classifying them as “no trip” 

choices. This yields the results shown in Table 6. In the no cut-offs version, the price 

parameter remains as negative and highly significant. However, when cutoff parameters are 

included, the coefficient on price becomes insignificantly different from zero, whilst the price 

cutoff parameter is negative and highly significant. This suggests that, once individuals who 

violate their cutoff by at least 75% are deleted from the data, then prices do not effect choices 

so long as they remain below an individual‟s cut-of value. But once choices are made which 

exceed maximum stated WTP, this comes at a penalty in terms of the deterministic 

component of utility.  

 

6.4 Implicit prices 

The best fitting model is thus a model with soft cut-offs which re-classifies those choosing 

options which violate their stated upper price cutoff by at least 75% as “take no trip” choices 

(Table 5). Focussing these results, it is possible to examine the effects on implicit prices 

(marginal willingness to pay amounts) of including cut-offs in the choice model.  There are 

four possible cases for defining implicit prices in such a model: 

(1) no cut-offs are violated. The implicit price for an attribute such as tour group size (Tgs)  

is equal to (- β tgs/ β price). 

(2) the cutoff for any attribute is violated, but not the cutoff for price. In this case, the 

implicit price for tgs = - (β tgs +  β cutoff tgs) /  β price 

(3) the cutoff for price is violated but not the cut-offs for the other attributes. In this case, 

the implicit price for tgs = - ( β tgs)/ (  β price +  β cutoff price) 
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(4) both sets  of cut-offs are violated: Implicit price  = - ( β tgs +  β cutoff tgs) / (  β price +  

β cut-offs price) 

In Table 7, we present implicit prices for each of the attributes evaluated using (3) 

above, since the effect of violating the price cutoff turns out to be most important for this data 

and compare these to implicit prices evaluated assuming that no cut-offs are violated as in (1) 

above. Note that the validity of these implicit price estimates depends on how reasonable one 

believes the choice editing rule used in Table 5 to be. The effects on the implicit prices are 

indeed significant. For example, looking at tour group size, willingness to pay for a one 

person reduction in the number of people in the tour group falls from £73 in the no cut-offs 

version to £18 in the price cut-offs version. The same effect is found for all the other 

attributes. That is, mean WTP falls significantly once we take into account the soft cutoff 

penalty of the price of a trip, having re-classified choices that violate stated maximum WTP 

by more than 75% as “take no trip”. 

 

7. Discussion and Conclusions 

This paper has proposed use of a cut-offs approach to choice modelling to address the 

issue of choice consistency, focussing very much on the cost attribute since this is key to 

welfare measurement. Choosing options which were more expensive than the most people 

said they would pay was found to result in an upward bias in implicit prices. We used 

violations of the stated price cut-off as a way of eliminating this bias, in the sense of detecting 

instances where individual choose an option which violates their stated maximum WTP by 

more than a particular amount, and penalising all maximum stated WTP choices using the cut-

off penalty function. This echoes the practice of early open-ended contingent valuation 

studies, where large WTP values might be deleted as outliers, often in a rather arbitrary 

manner (for instance, through the use of x% trimmed means).A cut-offs approach also allows 
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us to represent a deterministic utility function which contains kinks around the cut-off levels. 

Swait (2001) states that since breaks in the utility function are person-specific, that “..fit 

improvements over models without (cut-offs) should be, and are, striking” (p914). We also 

find an improvement in model fitting by incorporating cut-offs; although not to the extent 

found by Swait. We find that only a minority of penalty function parameters are significant, 

but that the parameter on the penalty function for the price attribute was much bigger than that 

on the price attribute itself. This is evidence of marked non-linearities in demand. 

Why would people make choices which violate their stated cut-offs? In the model 

presented in section 2, we argue that this is rational if the dis-utility from cut-off violation is 

more than compensated for by positive utility from the levels of other attributes in a choice 

alternative. However, we also noted that such behaviour may result from respondents not 

paying enough attention to the price ticket. The good we study here is somewhat distinctive in 

that for most people, their principal motivation for visiting Rwanda is to go on a gorilla trek. 

This is indeed a unique good, and one for which people are WTP considerably more than the 

current (high) price. Yet we also argued that the analyst should treat choice responses which 

violate the price cut-off by more than some “reasonable” limit value with caution. The 

approach taken here was to investigate what this reasonable limit might be in terms of 

maximising explanatory power of the choice model, whilst at the same time not imposing an 

overly-strict censoring rule on choices. Editing choices using this approach produced a model 

which might be judged as superior on a number of grounds.  

Another reason why one might observe choices being made which violate stated cut-

offs is that people are learning about their preferences as they progress through the survey 

tasks, and that asking them to re-consider their stated price cut-off after they have made a 

choice which violated it would be fruitful. Alternatively, people could be asked to re-consider 

their choices (both these suggestions are being followed up in a survey the authors are 
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currently undertaking). However, if this preference learning explanation was correct then one 

would expect to see a difference in results from asking the cut-off questions before, as 

opposed to after, the choice tasks. This split-sample comparison was made here, and no 

significant difference found in responses in terms of parameter estimates. Preference learning 

would thus not be supported by the data in this instance as an explanation for choices which 

violate stated acceptable limits for individual attributes. 

In conclusion, the cut-offs approach offers a useful way of imposing consistency on 

choices, whilst editing choices in this manner has an appreciable impact on estimated 

willingness to pay. The edited cut-offs model of choice proposed here would seem to offer 

some attractions to researchers in its ability to indentify inconsistent choices, as well as its 

well-known ability to allow for kinks in the utility function. The approach also gives analysts 

a new way of controlling for the coherence of stated choices, which might be particularly 

useful in internet and mail survey choice experiments where it is hard to de-brief respondents 

about their choices to make sure that they are internally consistent. However, issues remain 

with regard to explaining why people apparently violate their stated maximum willingness to 

pay. We also note that use of what is essentially an open-ended contingent valuation question 

to elicit peoples‟ maximum willingness to pay (their upper price cut-off) might be viewed as 

problematic, given the well-known problems with open-ended payment questions (Bateman et 

al, 2002). Whether the edited version of the cut-offs approach is successful in addressing the 

problem of hypothetical market bias in stated choices also remains to be tested. Finally, it 

would be interesting to explore the effects of using choice editing rules based on stated cut-

offs for attributes other than price. 

 

We thank ESRC for funding Bush’s PhD, and the Dian Fossey Gorilla Fund International and 

the Great Ape Survival Fund, United States Agency for International Development for 



 21 

funding this work. We also thank participants at the 2008 EAERE conference and the 2008 

Environmental Economics Hub Choice Modelling Workshop in Brisbane for comments, and 

two anonymous referees. 

 



 22 

References 

Amaya-Amaya., M and Ryan, M (2006) “Incorporating attribute cut-offs in health care discrete 

choice models” Discussion paper, Health Economics Research Unit, Aberdeen. 

Amir, O. and Levev, J. (2008) “Choice construction versus preference construction: the instability of 

preferences leaned in context” Journal of Marketing Research, 45 (2), 145-158. 

Bateman, I. et al (2002) Economic Valuation with Stated Preference Techniques. Cheltenham: 

Edward Elgar. 

Campbell, D. (2008) “Identification and analysis of discontinuous preferences in discrete choice 

experiments” Paper to EAERE conference, Goteborg, June. 

Carlsson F and Martinsson P (2001) “Do hypothetical and actual willingness to pay differ in choice 

experiments?" Journal of Environmental Economics and Management, 41, 179-192. 

DeShazo J.R. and Fermo G. (2002) “Designing choice sets for stated preference methods: the effects 

of complexity on choice consistency” Journal of Environmental Economics and Management, 

44 (1), 123-143. 

Fawcett K, Hodgkinson, C & Mehlman P 2004. “An assessment of the impact of tourism on the 

Virunga mountain gorillas‟ Technical report, Diane Fossey Gorilla Fund International, 

Atlanta, USA.  

Gray, M., McNeilage, A., Fawcett, K., Robbins, M. M., Ssebide, B., Mbula, D. and Uwingeli, P. 

2005. “Virunga Volcanoes range and census, 2003.” Joint organizers report. Uganda Wildlife 

Authority/Office Rwandaise du Tourisme et des Parcs Nationaux/Institut Congolaise pour le 

Conservation du Nature.  

Hanley N, Wright R.E. and Koop G. (2002) "Modelling recreation demand using choice experiments: 

rock climbing in Scotland" Environmental and Resource Economics, 22, 449-466. 



 23 

Harrison G. and Rustrom E. (2005) “Experimental evidence on the existence of hypothetical bias in 

value elicitation methods” in C.R.Plott and V.L.Smith (eds) Handbook of Experimental 

Economics. Amsterdam: North Holland. 

Hensher, D., Rose, J. and Greene, W (2005) Applied choice analysis; a primer. Cambridge 

University Press, UK. 

Homesy, J 1999. “Ape tourism and human diseases; how close should we get?” Technical Report for 

the International Gorilla Conservation Program. Nairobi, Kenya. 

Huber J. and Klein N. (1991) “Adapting cut-offs to the choice environment: the effects of attribute 

correlation and reliability” Journal of Consumer Research, 18, 346-357. 

List J., Sinha P., and Taylor M. (2006) “Using choice experiments to value non-market goods and 

services: evidence from field experiments” Advances in Economic Analysis and Policy, 6 (2), 

1-37. 

ORTPN (2004) Strategic Plan 2004-2008. Draft version 2. Office Rwandais du Tourisme et des Parcs 

Nationaux, Kigali. 

Plumptre, A.J., Kayitare, A., Rainer, H., Gray, M., Munanura, I., Barakabuye, N., Asuma, S., Sivha, 

M., and Namara, A. (2004) The Socio-economic Status of People Living Near Protected 

Areas in the Central Albertine Rift. Albertine Rift Technical Reports, 4. 

Street, D., L., Burgess, and J. Louviere. (2005) „Quick and easy choice sets: Constructing optimal 

and nearly optimal stated choice experiments.‟ International Journal of Research in 

Marketing, vol. 22, 459-470. 

Svenson O., (1996) “Decion making and the search for fundamental psychological regularities” 

Organisational Behaviour and Human Decision Processes. 65 (3), 252-267. 

Swait J. (2001) “A non-compensatory choice model incorporating attribute cut-offs” Transportation 

Research B, 35, 903-928. 



 24 

Wunder, S.  2000. Ecotourism and economic incentives-an empirical approach. Ecological 

Economics, 32, 465-479 



 25 

Figure 1     Example choice card with pre-amble text. 
 
 
“We now wish you to review the choice cards below, there is no right or wrong 
answer we are simply interested in your opinion. For each of the 9 select which 
option would be most preferable to you:” 
 
Choice 1 

  

 Option A Option B Neither 

Gorilla Trip Features    

Tour group size 6 8  

I would not 

choose either 

option to visit 

the gorillas 

and would 

conduct some 

other activity 

instead. 

Length of trek More than 3 

hours 

Less than 1 

hour 

Community benefit 10% Of 

permit price 

20% Of permit 

price 

Possibility of seeing 

other wildlife 

High 

 

Low 

 

Increase in permit price $75 

 

$50 

 

Which option do you 

choose  

( one only) 
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Figure 2: Maximum log likelihood of different models estimated using different  values. 

 

 

LL 
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Table 1 Attributes and their levels 
 

Attribute Description (a more comprehensive 

description was provided in the survey 

instrument) 

Levels 

Tour Group Size The number of tourists in a group. Limited to a 

maximum of 8 for conservation reasons 

Small-4 

Medium-6   

Large-8 

Length of trek The amount of time taken to reach the gorillas.  Short,  <1hour 

Medium, >1 but <3 hours 

Long,  > 3hours 

Community 

Benefit 
 

Currently 20% of gate gross park revenues is 

diverted towards financing development 

activities in communities adjacent to the national 

park.   Focus groups showed that some visitors 

felt it is important that local communities receive 

greater benefits from tourist spending. 

No change 

10% more 

20% more 

30% more 

Other wildlife The ability of tourists to see other flora and fauna in 

the park can contribute to the richness of the trek 

experience.  

 

High 

Medium 

Low 

Permit price 

increase 

Price increase on gorilla trek permit and implied 

new total (including park entry fee) – figure in 

parentheses shows new total fee. 

$25   ($400) 

$50   ($425) 

$75   ($450) 

$100 ($475) 

$150 ($525) 

$200 ($575) 

. 
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 Table 2 Cut off frequencies for the sample  
 

Cut off % respondents 

stating cut off 

Max. people on tour/trekking group to gorillas  

1 0.5 

2 1.2 

3 1.7 

4 6.2 

5 6.4 

6 31.7 

7 4.3 

8 47.7 

Min. hours (round trip) to trek gorillas  

SHORT 51.3 

MEDIUM 21.2 

 LONG 27.4 

Max. hours to trek gorillas  

SHORT 20.0 

MEDIUM 27.2 

LONG 52.7 

Lowest % of revenues  to local communities  

2 0.5 

5 6.7 

10 38.9 

20 32.5 

30 17.9 

35 0.2 

40 0.5 

48 0.2 

50 2.4 

100 0.2 

Maximum payment above current permit price ($)  

0 33.3 

25 11.1 

50 11.0 

75 11.1 

100 11.2 

150 11.1 

200 11.1 

Mean $95.55 

Standard Error 6.63 

Median 50 

Mode 0 

Minimum $0.00 

Maximum $500.00 
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Table 3 Frequency of cut off violations  
 

 
  Number of people 

violating their stated cut-

offs for any of their choices 

Versión 

 

Before After Total 

Maximum length of trek 47 35 82 

Minimum length of trek 40 39 79 

Permit price 87 107 194 

Community benefit 98 92 190 

Tour group size 41 35 76 
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Table 4 Random Parameters Logit model all data, no cut-offs versus cut-offs. 
 

 No Cut-offs With soft cut-offs 

 Parameter T stat Parameter t-stat 

Random parameters in utility function 

TGS -0.129 -5.66 -0.133 -5.51 

LOT1 0.200 6.21 0.157 3.55 

LOT2 -0.13 -0.41 -0.139 -3.10 

CB -0.007 -2.62 -0.004 -0.84 

OW1 0.197 6.12 0.192 5.92 

OW2 -0.31 -0.99 -0.023 -0.74 

Non-random parameters in utility function 

Constant 1.237 10.56 1.139 6.87 

Price 0.003 7.87 0.003 4.71 

TG cutoff  0.21 0.56 

CB cutoff -0.002 -0.42 

Price cutoff 0.001 1.55 

LOT cutoff 1 -0.158 -1.41 

LOT cutoff 2 0.437 5.23 

Standard deviations for parameter distributions 

σTGS 0.34 19.30 0.341 19.24 

σLOT1 0.022 0.08 0.116 1.01 

σLOT2 0.172 2.17 0.091 0.62 

σCB 0.000 0.03 0.002 0.11 

σOW1 0.001 0.01 0.000 0.00 

σOW2 0.012 0.15 0.006 0.07 

Log Lik -3524  -3506  

Pseudo r2 0.14 0.15  

N (people, choices) 419, 3771 419, 3771  

 

Notes: We used 100 replications and Halton draws. 

 

TGS = total group size; LOT1 = length of trek between 1 and 3 hours (the reference is less 

than 1 hour); LOT2 = length of trek more than 3 hours; CB = community benefits OW1 = 

prob of seeing other wildlife = medium (the reference is low); OW2 = prob of seeing other 

wildlife : high. 

 

The attributes TGS and price have upper cut-offs; CB has a lower cut-offs; LOT has both 

lower (LOT1) and Upper (LOT2) cut-offs. 



 31 

Table 5.  

Choices violating upper price cut-off by 75% or more are re-classified as “take no trip” 

 

 No Cut-offs With soft cut-offs 

 Parameter T stat Parameter t-stat 

Random parameters in utility function 

TGS -0.626 -13.325 -0.423 -9.604 

LOT1 0.077 1.562 0.184 2.868 

LOT2 0.035 0.730 -0.111 -1.756 

CB 0.004 0.837 0.007 0.908 

OW1 0.096 1.894 0.132 2.564 

OW2 0.072 1.490 0.086 1.707 

Non-random parameters in utility function 

Constant 1.481 8.817 0.881 3.701 

Price -0.009 -11.233 -0.002 -1.992 

TG cutoff  -0.012 -0.236 

CB cutoff -0.006 -0.732 

Price cutoff -0.022 -12.689 

LOT cutoff 1 0.047 0.310 

LOT cutoff 2 0.395 3.430 

Standard deviations for parameter distributions 

σTGS 0.647 16.572 0.440 13.597 

σLOT1 0.221 2.613 0.151 1.374 

σLOT2 0.127 0.777 0.089 0.632 

σCB 0.021 2.488 0.020 2.286 

σOW1 0.265 3.467 0.280 3.639 

σOW2 0.079 0.814 0.106 1.059 

Log Lik -2383  -2277  

Pseudo r2 0.42 0.45  

N (people, choices) 419, 3771 419, 3771  

 

 

Notes: We used 100 replications and Halton draws and an RPL estimation. 

 

TGS = total group size; LOT1 = length of trek between 1 and 3 hours (the reference is less 

than 1 hour); LOT2 = length of trek more than 3 hours; CB = community benefits OW1 = 

prob of seeing other wildlife = medium (the reference is low); OW2 = prob of seeing other 

wildlife : high. 

 

The attributes TGS and price have upper cut-offs; CB has a lower cut-offs; LOT has both 

lower (LOT1) and Upper (LOT2) cut-offs.  
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Table 6: Choices violating upper price cut-off by 75% or more are deleted. 

 

 

 No Cut-offs With soft cut-offs 

 Parameter T stat Parameter t-stat 

Random parameters in utility function 

TGS -0.447 -9.46 -0.343 -7.87 

LOT1 0.185 3.67 0.227 3.51 

LOT2 0.037 0.77 -0.084 -1.32 

CB -0.004 -1.07 0.006 0.75 

OW1 0.113 2.24 0.117 2.31 

OW2 -0.004 -0.09 0.013 0.25 

Non-random parameters in utility function 

Constant 2.103 11.44 1.56 6.18 

Price -0.0033 -4.09 0.0005 0.56 

TG cutoff  -0.0404 -0.75 

CB cutoff -0.0112 -1.18 

Price cutoff -0.0155 -8.93 

LOT cutoff 1 0.0161 0.104 

LOT cutoff 2 0.4073 3.37 

Standard deviations for parameter distributions 

σTGS 0.605 15.21 0.485 13.56 

σLOT1 0.201 1.89 0.141 0.84 

σLOT2 0.040 0.20 0.002 0.02 

σCB 0.007 0.66 0.007 0.46 

σOW1 0.207 1.74 0.202 1.84 

σOW2 0.034 0.18 0.089 0.52 

Log Lik -2439  -2083  

Pseudo r2 0.26 0.28 

N (people, choices) 347,2278 347, 2278 

 

Notes: We used 100 replications and Halton draws and an RPL estimation. 

 

TGS = total group size; LOT1 = length of trek between 1 and 3 hours (the reference is less 

than 1 hour); LOT2 = length of trek more than 3 hours; CB = community benefits OW1 = 

prob of seeing other wildlife = medium (the reference is low); OW2 = prob of seeing other 

wildlife : high. 

 

The attributes TGS and price have upper cut-offs; CB has a lower cut-offs; LOT has both 

lower (LOT1) and Upper (LOT2) cut-offs.  
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Table 7    Implicit prices and 95% confidence intervals 

 (US $ per person per trip) 

 

 
Implicit Price Model 

(1) 

Implicit Price Model  

(3) 

Attributes 
  

TGS -72.9 

(-90.9; -59.4) 

-17.8 

(- 22.7; -13.8) 

LOT1 22.1 

(2.2; 43.2) 

10.8 

(0.9; 22.8) 

LOT2 17.1 

(-1.7; 37.7) 

-1.6 

(- 13.2; 9.9) 

CB 0.4 

(-0.6; 1.3) 

0.3 

(-0.4; 1.0) 

OW1 30.8 

(8.9;50.9) 

14.8 

(6.8; 22.9) 

OW2 28.1 

(5.8; 48.8) 

12.9 

(4.7; 20.6) 

 

Model 1 corresponds to the model of table 4, panel B without cut-offs; 

Model 3 corresponds to the model of table 4, panel B with soft cut-offs, where the implicit 

prices are estimated considering cut-offs violations on the trip price attribute alone. 

 

 


