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Abstract 

 

Generalized assessments of the accuracy of spectroscopic estimates of ecologically important leaf traits, 

such as leaf mass per area (LMA) and leaf dry matter content (LDMC), are still lacking for most ecosystems 

and particularly for non-forested and/or seasonally dry tropical vegetation. Here, we tested the ability of 

using leaf reflectance spectra to estimate LMA and LDMC and classify plant growth forms within the 

cerrado and campo rupestre vegetation, a seasonally dry non-forest vegetation types of Southeastern Brazil, 

filling an existing gap in published assessments of leaf optical properties and plant traits in such 

environments. We measured leaf reflectance spectra from 1648 individual plants comprising grasses, herbs, 

shrubs, and trees, developed partial least squares regression (PLSR) models linking LMA and LDMC to 

leaf spectra (400–2500 nm), and identified the spectral regions with the greatest discriminatory power 

among growth forms using Bhattacharyya distances. We accurately predicted leaf functional traits and 

identified different growth forms. LMA was overall more accurately predicted (RMSE = 8.58%) than 

LDMC (RMSE = 9.75%). Our model including all sampled plants was not biased towards any particular 

growth form, but growth-form specific models yielded higher accuracies and showed that leaf traits from 

woody plants can be more accurately estimated than for grasses and forbs, independently of the trait 

measured. We observed a large range of LMA values (31.80 - 620.81 g/m2), rarely observed in tropical or 

temperate forests, and demonstrated that values above 300 g/m2 cannot be accurately estimated. Our results 

suggest that spectroscopy may have an intrinsic saturation point, and/or that PLSR, the current approach of 

choice for estimating traits from plant spectra, is not able to model the entire range of LMA values. This 

finding has very important implications to our ability to use field, airborne, and orbital spectroscopic 

methods to derive generalizable functional information. We thus highlight the need for increasing 

spectroscopic sampling and research efforts in drier non-forested environments, where environmental 

pressures lead to leaf adaptations and allocation strategies that are very different from forested ecosystems, 

producing thicker leaves. Our findings also confirm that leaf reflectance spectra can provide important 

information regarding differences in leaf metabolism, structure, and chemical composition. Such 
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information enabled us to accurately discriminate plant growth forms in these environments regardless the 

lack of variation in leaf economics traits, encouraging further adoption of remote sensing methods by 

ecologists and allowing a more comprehensive assessment of plant functional diversity. 

 

Keywords: leaf spectroscopy; LMA; LDMC; partial least squares regression (PLSR); plant functional 

traits, campo rupestre; cerrado. 
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1. Introduction 1 

Trade-offs in acquisition and allocation of resources to support growth, survival, and reproduction can lead 2 

to a variety of plant functional strategies, which have been the main focus of so-called “trait-based ecology” 3 

(Violle et al., 2007). In this context, leaf structural properties or ‘traits’ are essential variables - they are 4 

relatively easy to measure and indicate fundamental trade-offs in plant survival strategies (Díaz et al., 2016; 5 

Wright et al., 2004). Two very important functional leaf traits are leaf mass per area (LMA), a key trait 6 

related to plant growth and representing the trade-off between the energetic cost of leaf construction and 7 

the achieved light intercepting area (Poorter et al., 2009), and leaf dry matter content (LDMC), which 8 

captures the investment trade-off between structural versus liquid-phase processes (Hodgson et al., 2011; 9 

Kikuzawa and Lechowicz, 2011). Both traits have been extensively studied since they are key components 10 

of the “leaf economics spectrum” (LES) (Wright et al., 2004), an important functional dimension 11 

representing a continuum of carbon and nutrient investment strategies and leaf persistence. In the LES 12 

context, low LMA and LDMC values suggest rapid production of biomass, lower physical strength, and 13 

shorter leaf lifespan, while high values suggest efficient conservation of nutrients, slow growth rates, and 14 

long-lived leaves (Garnier et al., 2001).  15 

A wide set of leaf traits, including many of the LES traits, can be detected and accurately predicted using 16 

leaf spectral reflectance data (Asner et al., 2016; Cavender-Bares et al., 2017; Curran et al., 2001; Serbin et 17 

al., 2014). Still, despite its ecological relevance, the relationship between leaf-level spectral reflectance and 18 

important functional foliar traits such as LMA and LDMC remains under-explored, and is mainly focused 19 

on plants from forested ecosystems (Van Cleemput et al., 2018). There is also an apparent inconsistency 20 

with the trait names used by the remote sensing community and by ecologists (Homolová et al., 2013). In 21 

the ecology literature, LMA is the ratio of leaf dry weight (mass) per leaf area (g m-2), while LDMC is an 22 

investment index, determined by the ratio between leaf dry and fresh weights (g/g) (Pérez-Harguindeguy 23 

et al., 2013). However, several remote sensing studies use the terms ‘‘leaf dry matter content’’ or ‘‘dry 24 

matter content’’ when actually referring to LMA (Homolová et al., 2013), and also refer to the ratio between 25 
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leaf fresh and dry weights (LDMC) as quantification of “leaf water content” (Ball et al., 2015; Cheng et al., 26 

2011). Although LDMC is mathematically related to leaf water content (LWC = 1- LDMC, Pérez-27 

Harguindeguy et al., 2013), ecologists tend to consider LMA, LDMC, and LWC as separate traits.  28 

Despite this misunderstanding among scientific fields, leaf spectral reflectance data has proven very 29 

successful for the estimation of LMA (Asner et al., 2011b; Chavana-Bryant et al., 2016; Doughty et al., 30 

2017, 2011; Feilhauer et al., 2015; Féret et al., 2018; Serbin et al., 2014), and LDMC (Ali et al., 2016; 31 

Roelofsen et al., 2014), but the functional breadth of these studies remains limited (Homolová et al., 2013). 32 

Mixed performance results have been reported before, suggesting that LMA can be retrieved with low to 33 

moderately good accuracy (average RMSE 45%-30%, see Homolová et al., 2013 for a review), but with 34 

little agreement among physically based and empirical methods on the best spectral wavelengths for LMA 35 

estimation (Féret et al., 2018). Furthermore, most studies to date have been focused on forested systems 36 

(Van Cleemput et al., 2018).   37 

There is a sufficient and well-established theoretical basis linking the spectral, chemical, and taxonomic 38 

diversity of tree species (Asner et al., 2014; Ball et al., 2015; Castro-Esau et al., 2006; Cavender-Bares et 39 

al., 2017; Curran et al., 1992; Ferreira et al., 2013; Sánchez-Azofeifa et al., 2009; Schweiger et al., 2018; 40 

Serbin et al., 2014; Sims and Gamon, 2002; Ustin and Gamon, 2010), but there are remarkable functional 41 

differences between leaves from forest plants in relation to plants from open-canopy environments. Trees 42 

reaching the top of the forest canopy have been successful in competing for light, and have consequently 43 

developed trait combinations that maximize growth rates in these environments (Falster and Westoby, 44 

2005), with more similar sun-exposed leaves in respect to growth strategy and nutrient stoichiometry 45 

(Niinemets, 2010). This is not generalizable to other vegetation types, such as savannas, due to differences 46 

in biomass allocation; savanna plants tend to allocate less biomass to leaves and stems than forest 47 

individuals (Hoffmann and Franco, 2003), as competition shifts from light towards water and other limiting 48 

resources, as well as being influenced by adaptations to fire, resulting in much greater plasticity of leaf 49 

structural traits (Hoffmann and Franco, 2003). 50 
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Diversification of leaf functional strategies is also conditioned by the integration of multiple traits at the 51 

plant level, underlined by the overall growth form of the plant (Rossato et al., 2015). The larger phenotypic 52 

plasticity of leaves and growth forms in savannas may thus affect the consistency of leaf trait-reflectance 53 

relationships, and potentially limits the utility of empirical trait–spectra relations usually applied in forested 54 

systems. A recent meta-analysis has shown that, from a structural perspective, only leaf area index has been 55 

extensively addressed by grassland and shrubland spectroscopy studies (Van Cleemput et al., 2018) and the 56 

number of studies predicting LMA and/or LDMC is very limited in these systems (Ball et al., 2015; 57 

Roelofsen et al., 2014; Wang et al., 2019). 58 

In order to achieve a truly global remote sensing framework for assessing plant functional diversity, more 59 

effort is needed in sampling grassland and shrubland ecosystems on arid and tropical regions, in terms of 60 

both plant traits and spectroscopic measurements (Jetz et al., 2016; Martin et al., 2012; Schimel et al., 2015; 61 

Van Cleemput et al., 2018). This shortfall sets a fundamental limit to our knowledge regarding the 62 

generality of correlations between optical and structural traits (Van Cleemput et al., 2018) from plants with 63 

different growth forms, life histories, and deciduousness strategies, and is crucial for further adoption of 64 

spectroscopic approaches by ecologists, given the increasing availability and affordability of data generated 65 

by hyperspectral sensors. 66 

Here, we measured LMA and LDMC, two ecologically-relevant functional leaf traits (Violle et al., 2007; 67 

Díaz et al., 2016; Feilhauer et al., 2018; Shipley et al., 2006) together with leaf-level spectral reflectance, 68 

discriminating among dominant growth forms found in cerrado and campo rupestre vegetation occurring 69 

along a seasonally dry tropical landscape. We then assessed the potential of spectroscopy to predict 70 

structural traits in such tropical and seasonally-dry environments, by addressing the following questions: 71 

(i) does the relationship between leaf spectra and leaf traits as we know it from forests hold on a grass-72 

shrubby-dominated and water limited environment? and given that variations in leaf reflectance should 73 

come from variations in leaf chemistry and structure, (ii) do spectral reflectance provides more evidence of 74 

plant functional strategies than usually measured functional traits in seasonally dry environments?  75 
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2. Materials and Methods 76 

2.1 Study area and sampling design 77 

The Espinhaço Mountain Range, in Southeastern Brazil, is among the most ancient landscapes on Earth, 78 

having remarkably high levels of diversity and endemism with more than 5000 described plant species 79 

(Fernandes, 2016; Fernandes et al., 2018; Silveira et al., 2016). Located at the southern portion of the 80 

Espinhaço Range, the Serra do Cipó subregion (19°23'29.8" S, 43°32'00.7" W) is also known for its 81 

megadiverse vegetation, with more than 1800 species recorded within a 200 km2 area (Alves et al., 2014; 82 

Giulietti et al., 1987). The climate of Serra do Cipó is marked by strong seasonality with two 83 

distinguishable seasons: a warm rainy season from October to April (average temperatures between 18 ºC 84 

and 28 ºC; monthly precipitation > 60 mm) and a cold dry season from May to September (average 85 

temperatures between 13 ºC and 25 ºC; monthly precipitation <40 mm) (Fernandes et al., 2016; ANA 86 

2017).  87 

The rugged topography of Serra do Cipó provides a complex combination of topographic and edaphic 88 

conditions, which can lead to frequent and abrupt changes in vegetation structure and composition, where 89 

a large variety of plant growth forms and phenotypes assemble (Schaefer et al., 2016; Silveira et al., 90 

2016). At lower elevations, a gradient of cerrado vegetation types differing from each other in structure, 91 

composition, and deciduousness can be found, while above 1000 m, natural areas of campo rupestre 92 

sensu stricto (Silveira et al., 2016) growing on shallow soils dominate the landscape. Campo rupestre has 93 

been described as a montane, fire-prone grassland vegetation growing on sandy, stony, or waterlogged 94 

soils, interspersed with rock outcrops dominated by evergreen shrubs, forbs and a few herbs (Morellato & 95 

Silveira 2018).  96 

We sampled leaf traits and leaf reflectance spectra during the October 2016 – March 2017 growing season 97 

(Streher et al. 2017). Our study design included five sampling sites distributed along the elevation 98 

gradient, from 820 m to 1500 m, based on the natural environmental stratification of elevation and 99 

edaphic conditions (Mattos et al. 2019). Within each elevation, four transects of 250 m, distant at least 50 100 
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m from each other, were established based on expert knowledge and interpretation of high-resolution 101 

aerial images, ensuring the inclusion of all vegetation types (a proxy for edaphic conditions and resulting 102 

functional assemblages) found within each site (see Mattos et al. 2019, for detailed description of 103 

vegetations and soil). Our samples thus encompassed all types of cerrado and campo rupestre vegetation, 104 

and are hereafter referred to as campo rupestre, as this was the dominant vegetation sampled.  105 

Sampling points were established at 7 m intervals along each transect, with a 3.5 m search radius 106 

delimited around each point. Within each search radius, we identified and sampled three individual plants, 107 

applying the following selection criteria: 1) we identified the three individuals closest to the center of the 108 

search radius belonging to morphotypes not sampled before in the same transect; 2) if less than three 109 

individuals from new morphotypes were found, we sampled the closest individuals to the center of the 110 

search radius, regardless of species, to reach three samples per sampling point. This sampling strategy 111 

was designed to ensure maximal sampling of morphotypic variation and maximizing trait variability, 112 

while still reflecting the relative abundances of different mophotypes. For each individual plant, three 113 

fully-expanded sun leaves were sampled. In total, we sampled 4944 leaves from 1648 individual plants, 114 

encompassing all observed growth form and representing the majority of plant phenotypes found at Serra 115 

do Cipó.  116 

 117 

2.2 Plant growth form definitions 118 

We followed the ‘growth form’ classification system proposed by Dansereau (1951), which relies on the 119 

forms (morphological aspects and height) shown by plants in their aboveground structure, and has already 120 

been applied to cerrado plants by Rossatto & Franco (2017). The plants at Serra do Cipó encompass an 121 

array of woody and herbaceous growth forms, comprising trees, shrubs, sub-shrubs, herbs, and grasses 122 

(Zappi et al., 2014, Mattos et al. 2019). Based on the proposed classification system and field 123 

observations, we classified all the growth forms encountered into three dominant classes found in cerrado 124 

(Warming, 1908): 125 
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● “Woody”: taller plants with secondary vascular growth, such as trees (woody plants with a 126 

defined stem, taller than 2m) and shrubs (height between 2 and 3 m, without a dominant stem and 127 

having lignified branches and stems); 128 

● “Forbs”: plants with herbaceous and/or partially lignified stems, but with herbaceous branches, 129 

such as herbs (small eudicots from 0.1– 0.6m height, with herbaceous stems and branches) and 130 

sub-shrubs (plants with 0.5 – 1m height, generally with a thickened, partially lignified stem, and 131 

with aerial parts growing annually from an underground woody xylopodium); 132 

● “Graminoids”: monocot plants, including grasses and sedges from the Poaceae, Xyridaceae, and 133 

Cyperaceae family. 134 

 135 

From the 1648 sampled individuals, 369 (22%) were classified as “Forbs”, 564 (34%) as “Graminoids” 136 

and 715 (54%) as “Woody”. We randomly subset 300 samples of each growth form group and then 137 

performed a One-Way ANOVA to compare if trait data is significantly different between growth 138 

forms. We tested for homoscedasticity and the normality distribution of residuals using standardized 139 

residuals versus fitted values scatter plots and Shapiro–Wilk test. When normality could not be accessed, 140 

log-transformed response variables were used. Post hoc Tuckey tests were applied in order to test for 141 

differences among groups of plant forms.  142 

 143 

2.3 Leaf trait measurements 144 

For trees and shrubs, we harvested branches of individual canopies containing sunlit and mature leaves, 145 

while for grasses we sampled the whole plant, keeping roots when possible (Pérez-Harguindeguy et al., 146 

2013). We followed partial rehydration protocols by immediately storing the samples in moistened sealed 147 

plastic bags, under elevated CO2 concentrations and saturated air humidity, stored in lightproof containers 148 

filled with ice (Garnier et al., 2001; Pérez-Harguindeguy et al., 2013). We kept the samples at ~ 4 ºC in 149 

the dark, and measurements were taken between six to eight hours after harvesting. From each 150 

branch/individual sampled, we removed three healthy leaves with no serious herbivore or pathogen 151 
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damage, including petioles, blotted them dry to remove surface water, immediately weighed them to 152 

determine saturated fresh mass (Garnier et al., 2001) and then measured reflectance spectra. All spectral 153 

measurements were taken within the same day (Foley et al., 2006), between six to eight hours after branch 154 

harvesting (see next section). We then determined one-sided leaf area (Pérez-Harguindeguy et al., 2013) 155 

by photographing each leaf under a straight overhead (nadir) view, while gently pressing individual 156 

leaves between a glass plate and a sheet of paper including a printed distance scale, ensuring photo scale 157 

calibration and thus accurate area measurements. We then calculated leaf area using the ImageJ2 software 158 

(Schindelin et al., 2015). After photographing, we oven-dried leaf samples at 80 °C for 72 hours to 159 

determine leaf dry mass to the nearest 0.01 g. We computed LMA (g/m2) as the ratio between dry mass 160 

and leaf area, and LDMC (g/g), as the ratio between leaf fresh mass and dry mass (Pérez-Harguindeguy et 161 

al., 2013). 162 

 163 

2.4 Leaf spectral measurements  164 

We acquired leaf spectra using a full-range (350–2500 nm) ASD FieldSpec 4 Standard spectroradiometer 165 

(Analytical Spectral Devices, ASD, Malvern, Worcestershire, UK), with a spectral resolution of 3 nm in 166 

the VNIR and 10 nm in the SWIR, and wavelength accuracy of 0.5 nm. We used the ASD leaf probe 167 

accessory, which measures the spectral reflectance at close range from the leaf. The probe contains its 168 

own calibrated light source and the measuring end of a bare fiber-optic cable (25° field-of-view (FOV)) 169 

mounted at 42º perpendicular to the contact surface (Serbin et al., 2014), minimizing measurement errors 170 

produced by variations in illumination geometry. 171 

Bi-directional reflectance measurements were taken for the same three replicate leaves from which LMA 172 

and LDMC were estimated, immediately after obtaining saturated fresh mass. Leaves were arranged over 173 

a large black non-reflective surface, covering the whole diameter of the contact probe (10 mm) and 174 

ensuring that no light escaped the measurement. Plants with small leaves or leaflets were arranged so that 175 

the FOV was fully covered, without any gaps or excessive overlap, using more than a single leaf or leaflet 176 
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when necessary. For each leaf, ten measurements were taken at one to six different parts of the leaf 177 

adaxial surface (depending on leaf size), avoiding main veins, herbivory and pathogens damage when 178 

possible, following the protocols and standards by Asner & Martin (2009). For compound leaves, we took 179 

up to 10 measurements of different leaflets. The final leaf spectrum of each leaf was then given as the 180 

average of the 10 scans.  181 

To ensure measurement quality and improve signal-to-noise ratio (SNR), we re-calibrated the 182 

spectrometer for dark current and stray light between each set of leaf replicates, using a white reflectance 183 

reference (Spectralon; Labsphere Inc., Durham, NH, USA). Recorded spectra were read using the 184 

“FieldSpectra” package (Serbin et al., 2014) of the R statistical language, version 3.4.0 (R Development 185 

Core Team 2007), and underwent quality assurance by visual assessment. Finally, we averaged the 186 

triplicate measurements of all leaf traits and leaf reflectance to the individual level, and trimmed the full-187 

range leaf spectra at the far edges (450 to 2400 nm), to remove data with low SNR.  188 

 189 

2.5 Leaf trait predictive modeling 190 

We used partial least squares regression (PLSR) models (Geladi and Kowalski, 1986; Wold et al., 2001), 191 

adapting the approach from Serbin et al. (2014), to predict LMA and LDMC from leaf spectral properties. 192 

PLSR is the most employed method for relating leaf spectroscopy and leaf traits, due to its capacity to 193 

compensate for multicollinearity and reduce a large predictor matrix down to a relatively low number of 194 

predictors, the non-correlated latent components (Feilhauer et al., 2015; Serbin et al., 2014; Wu et al., 195 

2017). 196 

We fit four models to predict each of the two leaf traits: a model based on all observations (“All”), and 197 

three models restricted by plant growth form (“Woody”, “Forbs”, and “Graminoids”), for a total of eight 198 

PLSR models. Based on the initial results, we also fitted four additional models for a subset of the 199 

original LMA dataset, comprising only values between 0 and 300 g/m2. For each model, we split our data 200 

into training (70%, hereafter train set) and validation (30%, hereafter test set), using the 201 

“createDataPartition()” function from the “caret” package (Kuhn, 2008) in R, to ensure that both sets 202 
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spanned the entire range of measured values for each trait. To reduce overfitting, we optimized the 203 

number of PLSR latent variables in the final models by minimizing the root mean square error (RMSE) of 204 

the prediction residual sum of squares (PRESS statistic, Chen et al., 2004). For the larger datasets (“All”, 205 

“Woody”, and “Graminoids”), we calculated the PRESS statistic of successive model components using a 206 

10-fold cross-validation scheme, while for the “Forbs” dataset we used a standard leave-one-out cross 207 

validation (LOOCV) analysis as recommended for datasets with fewer observations (Serbin et al., 2014). 208 

We assessed the final accuracy of each model by calculating the RMSE value between predicted and 209 

observed trait values in the test set, expressing it in the original variable units (RMSE), as percentage of 210 

the sample data range (%RMSE), and as the ratio of each model RMSE to the mean value of the trait 211 

dataset (mRMSE). Thus, we computed the coefficient of determination (R2) of the observed versus 212 

predicted values of each model, to understand the percentage of variance explained by the model in the 213 

test dataset. We also report RMSECV, the RMSE obtained from the cross-validation procedure using the 214 

10-fold or LOOCV methods, as discrepancies between RMSECV and RMSE can indicate model 215 

overfitting (Kuhn and Johnson, 2013). 216 

Lastly, we computed the variable importance of projections (VIP, Wold (1994)) metric for each model, to 217 

identify the spectral regions that contributed the most to the prediction of each leaf trait. VIP is the 218 

weighted sum of squares of the PLSR-weights, with the weights calculated from the amount of variance 219 

from the response variable explained by each PLS component (Wold 1994). 220 

 221 

2.6 Spectral dissimilarities among plant growth forms 222 

To understand the contribution of different spectral regions to the identification of plant functional 223 

strategies, we evaluated spectral dissimilarity between plant growth forms using the Bhattacharyya 224 

distance (Bhattacharyya, 1943; Kailath, 1967) (Eqn. 1). This metric quantifies the integrated difference 225 

between two individuals of different growth forms over the full spectral range, identifying the 226 

wavelengths with the greatest discriminatory power. This metric has been successfully applied for the 227 
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recognition of differences between species (Baldeck and Asner, 2014), and plants with different growing 228 

habits (Sánchez-Azofeifa et al., 2009). 229 

 230 

𝐵 =
1

8
(𝜇𝑖 −  𝜇𝑗)𝑇∑−1(𝜇𝑖 −  𝜇𝑗) + 

1

2
 𝑙𝑛(

|∑|

√|∑𝑖|− |∑𝑗|
)   Eqn 1 231 

    232 
 233 

where 𝜇
𝑖
 and 𝜇

𝑗
 are the mean values across all spectral bands for species i and j, Ʃi and Ʃj are the 234 

covariance matrices for each individual, and Ʃ is the pooled covariance matrix. 𝐵 is the Bhattacharyya 235 

distance. 236 

 237 

We used a randomized approach to estimate the distribution of 𝐵 by randomly sampling 1000 pairs of 238 

spectra for each combination of growth forms (“Woody” x “Grass”; “Woody” x “Forb” and “Forb” x 239 

“Grass”), and then computing the average and spread (standard deviation) of the 1000 calculated pairwise 240 

distances for each combination. 241 

  242 
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3. Results 243 
 244 
3.1 Leaf trait variability 245 

Differences in LDMC and LMA were subtle among growth forms (LDMC :F2,897 = 24.44 , p < 0.001; 246 

LMA: F 2,897 = 16.21, p < 0.001) (Fig. 1, and Supplementary material S1). Overall LDMC values varied 247 

between 0.12 and 0.67 g/g, with a similar range of variation between growth forms (Fig. 1 and Table 1), 248 

with the largest LDMC range observed for “Graminoids” (0.12 – 0.67 g/g) and the smallest for “Forbs” 249 

(0.12 – 0.61 g/g). Average LDMC values per growth form were lowest for “Forbs” (mean = 0.34; 250 

standard error of the mean (se) =  0.004 g/g), followed by “Woody” (0.38  0.003 g/g) and 251 

“Graminoids” (0.41  0.003 g/g) (Fig. 1). Post hoc comparisons using Tukey test showed that there was a 252 

significant difference between the mean LDMC of “Forbs” and other growth forms, with woody plants 253 

showing an average of LDMC 0.05 g/g higher than “Forbs”, while “Graminoids” had an average LDMC 254 

value of -0.06 g/g lower than “Forbs” (Table S2). The total measured range of LMA values was 31.8 to 255 

621 g/m2. Average LMA values by growth form were lowest for “Graminoids” (137.9  3.31 g/m2), and 256 

similar for the other two growth forms, with “Woody” having lower standard error among all growth 257 

forms (168.7  4.05 g/m2 for “Forbs”, 167.9  2.76 g/m2 for “Woody”) (Fig. 1). “Graminoids” had the 258 

smallest LMA range (32.8 – 529 g/m2), and woody plants the largest LMA range (41.9 – 621 g/m2). The 259 

mean LMA values of “Graminoids” differ from the other growth forms, with LMA mean values lower 260 

than “Woody” and “Forbs” (30.93 g/m2, 28.35 respectively) (Table S2).  261 
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 262 

Figure 1. Variability of leaf functional traits measured for 1648 individuals of campo rupestre vegetation 263 

at Serra do Cipó, Southeastern Espinhaço range, Brazil, including 369 individuals of the “Forbs” class, 264 

564 individuals of the “Graminoids” class, and 715 individuals of the “Woody” class. (a) Leaf dry matter 265 

content (LDMC); (b) leaf mass per area (LMA). Differences in LDMC and LMA were subtle among 266 

growth forms, but statistically significant (LDMC: F2,897 = 24.44, p < 0.001; LMA: F 2,897 = 16.21, p < 267 

0.001) (Table S1).  268 

 269 

3.2 PLSR modeling 270 

Both leaf traits were predicted with high accuracy from reflectance measurements of fresh leaf material, 271 

and no models showed signs of overfitting (Table 1). Overall, LMA was estimated from leaf reflectance 272 

with higher accuracy (%RMSE = 8.58 %) than LDMC (%RMSE = 9.75 %), however the predicted values 273 

from the LDMC PLSR model explained more (68%) of the variance of the predicted values than the 274 

LMA PLSR model (58%) (Table 1). In general, “Graminoids” were the growth form with the worst 275 

modelling performance for both traits, while “Woody” was the most accurate estimated growth form 276 

(Table 1).  277 
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Table 1. Results of the partial least-squares regression (PLSR) modeling and cross-validation for each 278 

leaf trait, showing the number of samples and range of trait variation for the global data set (all) and per 279 

growth form. RMSECV is the root mean square error (RMSE) of the cross-validation procedure with 280 

train data set; RMSE is the measured error using the test data; mRMSE is the ratio of the error of each 281 

model in relation to the mean values (RMSE/mean); and the RMSE percentage (%RMSE) shows the error 282 

of each model as a percentage of the observed data range. R2 shows the goodness-of-fit between the 283 

observations and the predicted values of each model. All results are presented for the entire range of LMA 284 

and LDMC values (“All” class) and per growth form. “LMA < 300” represents the data set containing 285 

only LMA values bellow 300 g/m2.  286 

Growth form 
Number 

of 
samples 

Range of variation 
(min - max) 

RMSECV 

Final 
number 
of latent 
variables 

RMSE 

mRMSE 

(RMSE/
mean) 

%RMSE 
(% of 

range) 
 R2 

LDMC  

ALL 1648 0.12-0.67 (g/g) 0.052 (g/g) 20 0.053 (g/g) 0.13 9.75 % 0.68 

Graminoids 564 0.12-0.67 (g/g) 0.063 (g/g) 17 0.059 (g/g) 0.15 11.66 % 0.48 

Forbs 369 0.12-0.61 (g/g) 0.046 (g/g) 13 0.055 (g/g) 0.15 11.22 % 0.73 

Woody 715 0.15-0.67 (g/g) 0.043 (g/g) 18 0.051 (g/g) 0.13 9.98% 0.78 

 LMA 

ALL 1648 31.80 - 620.81 (g/m2) 44.56 (g/m2) 17 50.58 (g/m2) 0.32 8.58 % 0.58 

Graminoids 564 32.77 - 529.12 (g/m2) 44.89 (g/m2) 16 43.22 (g/m2) 0.31 8.70 % 0.60 

Forbs 369 31.80 - 560.29 (g/m2) 53.12 (g/m2) 14 44.08 (g/m2) 0.26 8.34 % 0.42 

Woody 715 41.89 - 620.81 (g/m2) 39.57 (g/m2) 18 43.33 (g/m2) 0.26 7.48 % 0.65 

 LMA < 300 

ALL 1571 31.80 – 298.94 (g/m2) 32.00 (g/m2) 18 30.70 (g/m2) 0.21 11.49 % 0.71 

Graminoids 539 32.77 - 297.23 (g/m2) 33.56 (g/m2) 20 35.73 (g/m2) 0.28 14.45 % 0.58 

Forbs 337 31.80 - 298.94 (g/m2) 32.95 (g/m2) 19 35.32 (g/m2) 0.22 13.61 % 0.71 

Woody 695 41.89 - 298.52 (g/m2) 28.65 (g/m2) 20 26.23 (g/m2) 0.16 10.79 % 0.78 

 287 

Our PLSR LDMC spectral model had an overall error (RMSE) of 0.053 g/g, c.a. 9 % of the range of 288 

LDMC values of the entire dataset (Table 1 and Fig. 2). Among growth-form restricted models, accuracy 289 
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was higher for Woody plants, with %RMSE of c.a. 10% (RMSE = 0.051 g/g). The “Graminoids” and 290 

“Forbs” models yielded similar error rates; although “Graminoids” models had higher overall error 291 

(RMSE = 0.059 g/g) than “Forbs” (RMSE = 0.055 g/g), these errors represented similar ratios of error in 292 

relation to the mean class value mRMSE = 0.15) and %RMSE considering the full range of values 293 

(“Graminoids” %RMSE = 11.66%; “Forbs” %RMSE = 11.22%).  294 

 295 

Figure 2. Leaf dry matter content (LDMC) as observed and predicted from leaf level reflectance using 296 

partial least-squares regression (PLSR) models. The upper panel shows the prediction for the total range 297 

of LDMC values (“All” class). The lower panels show the relationship between observed and predicted 298 

LDMC values for each growth form. Symbols and colors indicate the growth form of each individual 299 

plant: blue dots as “Graminoids”; green triangles as “Forbs”, and brown squares as “Woody”. Black lines 300 

indicate the 1:1 relationship as reference. 301 

The PLSR model for LMA had the highest overall accuracy with a RMSE of 50.58 g/m2, representing an 302 

error percentage around 8 % of the range of LMA values of the entire dataset (Table 1 and Fig. 3). The 303 
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restricted models for LMA showed lower discrepancies between growth forms classes, with similar 304 

RMSE between groups. The restricted model with highest accuracy corresponded to the “Woody” data 305 

set, with a RMSE of 43.33 g/m2 and error percentage of c.a. 7 % of the range of values within the class. 306 

While the model accuracy for the “Graminoids” class was similar to the “Woody” class (RMSE = 43.22 307 

g/m2), the error percentage of the range of values was higher (8.7%). The lowest accuracy was yielded by 308 

the “Forbs” restricted model, with RMSE of 44.26 g/m2, ca. 8.4 % of the “Forbs” LMA value range. 309 

 310 

Figure 3: Partial least-squares regression (PLSR) results for observed vs. predicted leaf mass per area 311 

(LMA). The upper panel shows the prediction for the total range of LMA values (“All” class). The lower 312 

panels show the relationship between observed and predicted LMA values for each growth form. Symbols 313 

and colors indicate the growth form of each individual plant: blue dots as “Graminoids”; green triangles 314 

as “Forbs”, and brown squares as “Woody”. Black lines indicate the 1:1 relationship as reference. 315 

 316 
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We observed a loss of predictive power for all PLSR models for high LMA values, i.e. above 300 g/m2 317 

(Fig. 3), while PLSR models performed only slightly worst for LDMC high values (Fig 2). To quantify 318 

the influence of this loss, we refitted the PLSR models using only LMA values between 0 and 300 g/m2 319 

(Table 1), matching the range of LMA values usually observed for tropical (Asner et al., 2011a, 2011b) 320 

and temperate (Serbin et al., 2014) forested systems, which are also typically used in radiative transfer 321 

models (Féret and Asner, 2011) and most frequently reported in the literature of leaf trait spectroscopy. 322 

These restricted-range PLSR models could explained more of LMA variance (R2 = 0.78) (Fig. 4), 323 

yielding an overall decrease in mRMSE of 0.21 in LMA values (Table 1 – LMA < 300 g/m2). The 324 

decrease in the overall error was also uniformly observed for models of each growth form, as so as an 325 

increase in the percentage of variance explained (R2) (Table 1). The highest improvement was found for 326 

the “Forbs” class, with a restricted range mRMSE of 0.22, down from mRMSE= 0.31 from the full range 327 

model (Table 1 and Fig. 5). The lowest performance of the restricted model was found for “Graminoids” 328 

(mRMSE= 0.28), with 1-fold change improvement. Using the same approach with LDMC values above 329 

0.05 g/g (Fig. 2), where the points start to deviate from the 1:1 line, and we found that removing these 330 

points from the analysis did not improve model accuracy and did not increase the percentage of variance 331 

explained (Fig S1 and Table S3). 332 

 333 
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 334 

Figure 4: Partial least-squares regression (PLSR) results for observed vs. predicted leaf mass per area 335 

(LMA), with values restricted to 0 - 300 g/m2. The upper panel shows the prediction for the total range of 336 

LMA values (“All” class). The lower panels show the relationship between observed and predicted LMA 337 

values for each growth form class. Symbols and colors indicate the growth form of each individual plant: 338 

blue dots as “Graminoids”; green triangles as “Forbs”, and brown squares as “Woody”. Gray squares 339 

comprise original LMA values above 300 g/m2
, which were not included in the restricted models. Black 340 

lines indicate the 1:1 relationship as reference. 341 

 342 

Overall, VIP values had consistent patterns across the spectrum, with a few notable variations from 343 

specific wavelengths (Fig. 5). For LDMC, the wavelength region centered in 1400 nm yielded the highest 344 

VIP value, but wavelengths in the visible (VIS) (550 to 650 nm), red-edge (700-750 nm), and in the 345 

shortwave infrared (SWIR) (around 1700 and 1900 nm) were also important (Fig. 4a). The most 346 
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important spectral region for LMA was the red-edge (700-750 nm), followed by the VIS region at the 347 

wavelength centered in 550 nm (Fig. 5b). The VIP metric also varied in the position of peak importance 348 

among growth forms for both traits, but specially for LMA, where a SWIR spectral region from 1900 to 349 

2100 nm stood out for the “Graminoids” form (Fig. 5b). The red-edge (700-750 nm) was the spectral 350 

region with the closest agreement of VIP values among growth forms for both leaf traits. 351 

 352 

Figure 5: Partial Least Squares Regression (PLSR) variable importance of prediction (VIP) plotted by 353 

wavelength for (a) leaf dry matter content (LDMC), and (b) leaf mass per area (LMA), measured for 354 

campo rupestre plants at Serra do Cipó, Southern Espinhaço Range, Brazil. Colored lines represent the 355 

three growth forms investigated in this study with the green dashed line representing “Forbs”, the blue 356 

dashed line representing “Graminoids” and the brown dashed line representing “Woody”. The black solid 357 

line represents “All” growth forms combined. 358 

 359 

 360 
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3.3 Leaf reflectance spectra dissimilarity among growth forms 361 

Overall, full leaf reflectance spectra were able to track the expected ecophysiological changes in leaves 362 

from different growth forms (Fig. 6a). Reflectance measurements showed a reduction in reflectance along 363 

VIS wavelengths and a steep red-edge transition around 700 nm, where variance in reflectance of all 364 

plants was very low. Minor water absorption features were visible around 1000 and 1200 nm, while major 365 

absorption features stood out around 1400 and 1900 nm for all the three growth forms. Comparisons 366 

among growth forms showed that “Woody” plants had the lowest reflectance on the VIS range and the 367 

highest reflectance on the NIR region (Fig. 6a). The average reflectance spectra of “Graminoids” plants 368 

had the opposite pattern, with the highest reflectance in the VIS and SWIR, and lowest in the NIR regions 369 

(Fig. 6a). “Forbs” had intermediate reflectance values, with a spectral profile closer to “Graminoids” in 370 

the VIS region, while more similar to “Woody” in the SWIR (Fig. 6a).  371 

Bhattacharrya distances (B) indicated a greater degree of dissimilarity between the leaf reflectance spectra 372 

of “Woody” and “Graminoids” plants at the VIS (400 – 700 nm), around 1500 nm, and highest at the 373 

edge of the SWIR (>= 1900 nm) (Fig. 6c), in comparison to other pairwise interactions (Fig. 6b; 6d).  As 374 

“Forbs” is an intermediate group between “Graminoids” and “Woody” plants, the dissimilarity between 375 

these pairs of interactions was subtler. The 1450 nm wavelength feature and the SWIR region yielded the 376 

highest degree of separability between “Forbs” and “Graminoids” (Fig. 6b), while “Forbs” and “Woody” 377 

were the most spectrally similar growth forms, as indicated by the smallest values of B, with the VIS 378 

region having the highest degree of separability (Fig. 6d).  379 
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 380 

Figure 6. Comparison of leaf reflectance spectral averages per growth form (a), and the spectral 381 

dissimilarity (Bhattacharyya distance) between growth forms across the full wavelength range (400 – 382 

2400 nm): (b) “Forbs” and “Graminoids”, (c) “Woody” and “Graminoids” and (d) “Woody” and 383 

“Forbs”. The peaks observed on the Bhattacharyya index (B, dashed line and the gray shaded area 384 

represents ± 1 standard deviation) indicate the spectral bands with highest dissimilarities among growth 385 

forms.  386 
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4. Discussion 387 

Modern spectroscopy theory states that leaf reflectance spectra are quantitatively linked to leaf functional 388 

traits, particularly to LMA (Ustin & Gamon, 2010; Asner et al., 2011b; Serbin et al., 2019). Conversely, 389 

our results show that the high LMA values observed in our water limited, grassland-shrubland dominated 390 

system were partially correlated to leaf reflectance, saturating above 300 g/m2, differing from the 391 

expectations based mostly on LMA values observed for moist, forested systems. An important result from 392 

our study is that more efforts are needed to fully understand the relative influence of possible 393 

methodological shortcomings versus the biophysical limitations for predicting high LMA values from 394 

spectroscopy, which is paramount for developing models that will help to expand trait databases in order 395 

to address the known bias in geographical observational datasets and large-scale assessment of functional 396 

diversity (Schimel et al., 2015; Jetz et al., 2016; Van Cleemput et al., 2018). Our results support that 397 

spectroscopy is able to discriminate among woody, herbaceous, and graminoid growth-forms, as also 398 

shown by other studies (Knapp and Carter, 1998; Sánchez-Azofeifa et al., 2009), however we show that 399 

differences between growth forms in campo rupestre plants likely arise mainly from chemical leaf 400 

variation that are not captured by leaf structural trait variation. This illustrates the utility of the spectral 401 

approach in providing rapid, relatively low-cost and nondestructive measurements of key plant traits, 402 

highlighting that full-spectrum leaf profiles carry more ecological information than individual LES traits 403 

per se. 404 

Considering the small variation in leaf traits, our results reinforce the potential of PLSR and spectroscopy 405 

to quantitatively describe structural foliar properties. Our general models were able to successfully 406 

explain variations related to leaf strategy without bias towards any growth form, going one step further 407 

towards the development of generalized global models. Still, the restricted PLSR models had overall 408 

better performances for woody plants than other growth forms for both measured traits. Our error rates for 409 

woody species (%RMSE 7% - 10%) are comparable to rates observed for tropical (Asner et al., 2011b; 410 

%RMSE = 5.9%) and temperate forests (Serbin et al., 2014; %RMSE= 10.1%). To the best of our 411 
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knowledge, there is a small number of studies addressing PLSR-spectroscopy modelling of LMA and 412 

LDMC from “herbaceous” plants, with emphasis on grasses. Our modelling resulted in an equal 413 

predictive performance for LMA on grasses in relation to previous studies (Wang et al., 2019; %RMSE 414 

12%), and slightly lower for LDMC (Roelofsen et al., 2014; RMSE = 0.10).  415 

Although our empirical models provided good estimates of both leaf traits, it underestimated LMA values 416 

above 300 g/m2. Trees usually have LMA values up to ~350 g/m2, and most of the literature on empirical 417 

and radiative transfer models has tested the ability of spectroscopy to quantify LMA up to this value 418 

(Asner et al., 2011b; Cheng et al., 2014; Doughty et al., 2017; Feilhauer et al., 2015; Féret et al., 2018; 419 

Serbin et al., 2014). The global range of LMA variation spans two orders of magnitude (14 -1515 g/m2; 420 

Glopnet data – Wright et al., 2004), and most studies of forest systems capture only c.a. 20% of this 421 

range. Our dataset covers c.a. 39% of the LMA worldwide variance. When we refitted our PLSR models 422 

constraining LMA values up to 300 g/m2, our predictive power improved considerably for all models 423 

(Table 1 and Fig. 5), particularly for eudicot herbs and sub-shrubs. Two key implications emerge from 424 

this result: 1) the PLSR method may not be able to predict large LMA variations; and/or 2) spectroscopy 425 

may not be sensitive to variations of high LMA values (i.e., it has a saturation point). Multivariate linear 426 

non-parametric approaches like PLSR are considered state-of-the- art for operational mapping 427 

applications (Verrelst et al., 2015), and have been shown to perform comparably and equally well to other 428 

non-linear non-parametric methods like Random Forest, Support Vector Machine and Gaussian Processes 429 

Regression (Feilhauer et al., 2015; Van Cleemput et al., 2018; Wang et al., 2019). Our results set an 430 

important direction for future studies, showing the need to increase efforts in sampling leaf spectra for 431 

seasonally dry and dry vegetation sites, open, high light environments (i.e., high LMA), and plants with 432 

contrasting resource use strategies.  That is essential if we expect to fully understand and characterize the 433 

sensitivity of leaf spectroscopy and the feasibility of developing general, globally applicable methods for 434 

spectral LMA quantification. 435 
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The spectral regions selected for predicting LDMC were conservative among growth forms, and were 436 

associated with the red-edge inflection position centered at 740 nm, and a water absorption feature found 437 

at 1400 nm. The red edge is an inflection point where a steep increase in reflectance from the VIS (where 438 

chlorophyll absorbs light in the red region for photosynthesis), towards the NIR wavelengths occurs, 439 

where the intensification of the NIR reflectance is correlated with the increase of leaf thickness (Horler et 440 

al., 1983; Sims and Gamon, 2002). The relationship between spectra and LDMC is fundamentally the 441 

relationship of leaf water content, and leaf structure (carbon), reflecting the ecological significance of 442 

LDMC, which is an investment ratio in cell structure (red edge) versus fluid cell content (water 443 

absorption band) (Kikuzawa and Lechowicz, 2011; Shipley et al., 2006). The red edge was also the most 444 

important spectral region to predict LMA for all growth forms assessed, despite the SWIR being usually 445 

reported as the most important region of the spectrum for this trait in forest systems (Asner et al., 2011b). 446 

Nonetheless, Roelofsen et al. (2014) and Wang et al. (2019) have also found the VIS and NIR regions to 447 

be important for predicting the LMA of grasses. The red edge region is known for being strongly related 448 

to chlorophyll content (Curran et al., 2001), but this relationship is affected by variation in leaf thickness 449 

(Gitelson et al., 2003; Sims and Gamon, 2002). This is also consistent with the link between LMA and 450 

plant investment in chemical compounds distributed throughout the leaf mesophyll, which strongly affect 451 

leaf thickness and mass (Asner et al., 2011b; Poorter et al., 2009). Therefore, although unexpected, we do 452 

not consider the importance of red edge in predicting LMA a spurious correlation, and this interrelation 453 

can indicate structural limitations to photosynthesis as a result of increased LMA (Niinemets, 1999). 454 

Future aerial and orbital remote sensors and missions may provide a better and urgently needed synoptic 455 

view of terrestrial ecosystem dynamics, as long as they allow for a high enough frequency of observations 456 

to capture specific phenological stages, thus yielding information on temporal leaf trait variation, a key 457 

information still mostly unexplored in trait-based ecology. Considering the spectral wavelengths 458 

identified in our analyses, multispectral sensors with multiple, high signal-to-noise spectral bands in the 459 
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red-edge (700-750 nm) and SWIR (around 1700 and 1900 nm) regions would bring us to the next level in 460 

scaling-up functional diversity patterns to larger regions. 461 

4.1 Insights from full reflectance spectra on plant functional characterization 462 

Contrary to expectations, at Serra do Cipó LMA and LDMC values were very similar between growth 463 

forms, and the values found for grasses, eudicots herbs, and sub-shrubs are comparable to those found for 464 

woody plants. Usually, plants from the cerrado ground-layer are described as having thin, mesomorphic 465 

leaves (i.e, low LMA and LDMC), since this stratum is completely destroyed during the passage of fire, 466 

while woody plants have thick and rigid sclerophyllous leaves, with large amounts of mechanical tissue, 467 

palisade parenchyma, and a well-developed vascular system (Rossatto et al., 2015; Rossatto & Franco, 468 

2017). The overall leaf structural similarity found among growth forms at Serra do Cipó can be linked to 469 

leaf persistence during drought conditions (Brum et al., 2017; Negreiros et al., 2014), with plants from 470 

abundant families (e.g., Velloziaceae, here classified as Forbs, and Cyperaceae, here classified as 471 

Graminoids), having species with desiccation-tolerant strategies and dormancy during the dry season 472 

(resurrection plants) (Alcantara et al., 2015; Oliveira et al., 2005). The high average values of LDMC 473 

found among growth forms can also be associated with the ability of species to endure very low water 474 

potentials and persist under dry conditions (Brum et al., 2017; Markesteijn et al., 2011; Oliveira et al., 475 

2016).  476 

Despite sharing very similar functional trait values, campo rupestre growth forms could be well 477 

distinguished based solely on leaf reflectance spectra. Our findings indicate that there are significant 478 

differences in pigment composition, and leaf anatomy, and consequently optical properties between 479 

growth forms that the two key LES traits did not capture. Over commonly measured traits, leaf spectra 480 

have the advantage of incorporating more of the total variation associated with leaf chemistry, anatomy 481 

and morphology into a single easy measurement, including variations that are difficult to measure or may 482 

be of unrecognized importance (Schweiger et al., 2018).  483 
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The potential of using leaf reflectance to discriminate growth forms is not new per se (Asner et al., 2011a; 484 

Ball et al., 2015; Castro-Esau et al., 2004; Knapp and Carter, 1998; Sánchez-Azofeifa et al., 2009). But 485 

our results are unique in the sense that the use of full reflectance spectrum allowed us to draw insights on 486 

leaf growth/allocation strategies, in a case where LMA and LDMC, two widely used functional traits, did 487 

not translate into the expected dissimilarities between growth forms. All growth forms had a substantial 488 

amount of mesophyll tissue, indicated by the high reflectance values along the NIR, but the mesophyll of 489 

trees and shrubs were generally thicker in comparison to other growth forms. This can be grasped from 490 

the fact that reflectance will increase when the amount of scattering structures per unit thickness increases 491 

(Knapp and Carter, 1998; Ustin and Gamon, 2010). The fact that NIR reflectance values from grasses 492 

were consistently lower than other growth forms indicates that lack of LMA variation is not a 493 

consequence of leaf thickness, which is highly correlated with NIR wavelengths (Knapp and Carter, 494 

1998), but most likely related to variations in leaf area (Streher et al, unpublished results from the same 495 

dataset). Woody plants and grasses had reflectance spectra with the largest differences in magnitude, and 496 

spectroscopy was able to capture the expected patterns: grasses had the highest VIS and lowest NIR 497 

reflectance, while woody plants had the opposite profile. The predominance of C4 grasses in campo 498 

rupestre suggests that grasses should have higher photosynthetic rates per unit of leaf area in comparison 499 

with other growth forms (Rossatto et al., 2015). The SWIR was the most important region to discriminate 500 

woody plants from grasses, suggesting differences in structural components, water content and water-use 501 

strategies (Curran, 1989) between these two growth forms, not captured by LMA and LDMC.  502 

Eudicot herbs and sub-shrubs represented an intermediate growth form between woody plants and 503 

grasses. On one hand, they were differentiated from grasses by the amount of leaf water and structural 504 

properties absorbing along the SWIR, and lower photosynthetic rates than grasses, in contrast to the 505 

subtle differences found in the VIS from woody plants. The lack of proper spectral discrimination can be 506 

due to our inclusion of herbs and sub-shrubs within the same growth form due to sample size limitations. 507 

Sub-shrubs are unique since they have leaf anatomys similar to herbs (Rossatto et al., 2015), but are 508 
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functionally clustered with trees and shrubs (Rossatto and Franco, 2017). This implies that although they 509 

are on an evolutionary trajectory of ecological convergence with herbaceous plants, they are not 510 

phylogenetically independent of the tree lineages from which they have evolved (Rossatto and Franco, 511 

2017; Simon et al., 2009).  512 

Leaf anatomy has been shown to diverge among growth forms, as plant form (Santiago and Wright, 2007) 513 

is related to leaf structure in environments characterized by frequent fire and highly seasonal rainfall 514 

(Rossatto et al., 2015). In our study site, the severely P-impoverished and shallow soils with low moisture 515 

retention impose a strong environmental filter (Abrahão et al., 2018), leading to a general convergence in 516 

ecological strategies, not reflecting the expected functional differences between leaf growth forms. The 517 

very high LMA and LDMC of scleromorphous leaves from different growth forms from campo rupestre 518 

places them in the stress-tolerant corner of Grime’s C-S-R scheme (Dayrell et al., 2018; Negreiros et al., 519 

2014). At a first glance, the use of soft leaf structural traits to distinguish growth forms in Serra do Cipó 520 

would restrict the use of “growth forms” as functional groups. Nevertheless, leaf spectral profiles shows 521 

that plant growth forms are still distinguishable within the multivariate trait space, particularly for traits 522 

related to photosynthetic activity, water-use strategies and lignin content, emphasized by the selection of 523 

VIS and SWIR regions to discriminate the growth forms assessed here. 524 

 525 

5. Concluding remarks  526 

We accurately predicted LMA and LDMC for seasonally dry tropical plants from spectroscopy, even 527 

though these traits had little variation among growth forms, reinforcing the ability of leaf spectroscopy to 528 

predict functional leaf traits. However, we also found an important limitation in using PLSR methods to 529 

predict high LMA values (> 300 g/m2), resulting in underestimated values for LMA ranges that have been 530 

seldom addressed in the literature before. There are currently large biases in the sampling of plant traits 531 

and related spectra, favoring humid forested systems, hindering our understanding of spectroscopic 532 

relationships and limiting our ability to make reliable inferences and apply them to global biodiversity 533 



 

 30 

science. Further work in determining whether limitations in LMA prediction are a methodological 534 

shortcoming from PLSR and/or a biophysical limitation of spectroscopy in high LMA environments is 535 

thus imperative.  536 

A second key contribution from our study is showing that leaf reflectance carries more ecological 537 

information than commonly-used individual LES traits, at least when characterizing plant functional 538 

diversity in a seasonally dry, tropical area. By using full spectrum data, we revealed an idiosyncrasy of 539 

campo rupestre vegetation, showing that plant growth forms differ more in biochemical leaf traits than in 540 

the expected structural leaf aspects. The integrative depiction of foliar chemistry and morphology yielded 541 

by spectroscopy is thus essential to understand the response and resilience of vegetation to continued 542 

global change. Spectroscopy provides rapid, standardized, cost-effective, and easily replicated 543 

measurements that add more information about life-history strategies than measuring individual traits 544 

(Cavender-Bares et al., 2017; Schweiger et al., 2018), better enabling us to describe variability of leaf 545 

functional traits across different spatial and temporal scales (Serbin et al., 2014; Wang et al., 2018, 2019).  546 

We thus recommend two directions for further work on plant spectroscopic modeling. First, although 547 

spectroscopy offers a powerful tool for acquiring trait data across scales, to fully understand the 548 

sensitivity and potential of leaf reflectance for plant ecology researchers should focus on sampling 549 

vegetations with contrasting life-history strategies and leaf longevities, from forests to grasslands and 550 

across wider seasonality gradients, producing reliable and standardized data and methods that can support 551 

global models relating foliar traits to leaf spectroscopy. Second, to enable a global understanding of trait-552 

spectra relationship we stress the importance of reporting proper statistical information (e.g. goodness-of-553 

fit-statistics, sample sizes, etc.), and standardization in trait nomenclature following known protocols, to 554 

simplify future comparisons between geographical locations and vegetation types. Advancing on these 555 

fronts will enable us to better understand plant trait variability and reduce uncertainties in functional 556 

spectroscopic ecology. 557 

 558 
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S1: ANOVA results comparing trait variation (LDMC and LMA) between growth forms 874 

 875 

 876 

ldmc.aov <- aov(log10(LDMC) ~ growth_form, data = new_df) 877 

lma.aov <- aov(LMA ~ growth_form, data = new_df) 878 

 879 

 880 

Table S1. Anova table comparing the means of LDMC and LMA values among growth forms. 881 

 882 
LDMC 

 DF SUM of Squares Mean Square F-value PR(>F) 

Growth form 2 0.626 0.31296 36.54 5.55 e-16 

Residuals 897 7.683 0.00856   

LMA 

 DF SUM of Squares Mean Square F-value PR(>F) 

Growth form 2 242218   121109 21.15 1.05e-09 *** 

Residuals 897 5135423 5725   

      

 883 

 884 

Table S2. Multiple comparison Tuckey test comparing growth forms. 885 
LDMC 

 Estimate Std. Error t value Pr(>|t|)      

forbs - graminoids -0.078234    0.009436   -8.291    <1e-04 ***  

woody - graminoids -0.019328    0.009436   -2.048     0.101      

woody - forbs 0.058906 0.009436    6.243    <1e-04 ***  

LMA 

 Estimate Std. Error t value Pr(>|t|)      

forbs - graminoids 33.121 6.178    5.361    <1e-05 ***  

woody - graminoids 36.267       6.178    5.870    <1e-05 ***  

woody - forbs 3.146       6.178    0.509     0.867      

 886 

 887 

 888 

 889 

 890 

 891 

  892 
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S2: LDMC spectroscopy saturation analyses 893 

 894 

Looking to figure 2 of the main text is possible observe that approximately near 0.5 g/g the 895 

model does not capture properly the data variability. We perform the same approach as we did 896 

for LMA, and run PLSR restricting values up to 0.5 g/g, and then assessed the new model with 897 

the same metrics (Table 1, main text). Contrary to LMA, this new modelling did not show any 898 

improvement in comparison to the full LDMC model.  899 

 900 

 901 
Figure S1: Partial least-squares regression (PLSR) results for observed vs. predicted leaf dry matter 902 

content (LDMC) with values restricted to 0 – 0.05 g/g. The upper panel shows the prediction for the total 903 

range of LDMC values (“All” class). The lower panels show the relationship between observed and 904 

predicted LDMC values for each growth form class. Symbols and colors indicate the growth form of each 905 

individual plant: blue dots as “Graminoids”; green triangles as “Forbs”, and brown squares as “Woody”. 906 

Gray squares comprise original LDMC values above 0.05 g/g, which were not included in the restricted 907 

models. Black lines indicate the 1:1 relationship as reference. 908 

 909 
 910 
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Table S3. Results of the partial least-squares regression (PLSR) modeling and cross-validation for each 911 

leaf trait, showing the number of samples and range of trait variation for the global data set (all) and per 912 

growth form. RMSECV is the root mean square error (RMSE) of the cross-validation procedure with 913 

train data set; RMSE is the measured error using the test data; mRMSE is the ratio of the error of each 914 

model in relation to the mean values (RMSE/mean); and the RMSE percentage (%RMSE) shows the error 915 

of each model as a percentage of the observed data range. Predicted R2 shows the predictive quality of 916 

each model. All results are presented for the entire range of LMA and LDMC values (“All” class) and per 917 

growth form. “LMA < 300” represents the data set containing only LMA values bellow 300 g/m2.  918 

 919 

Growth form 

Number 

of 

samples 

Range of variation 

(min - max) 
RMSECV 

Final 

number 

of latent 

variables 

RMSE 

mRMSE 

(RMSE/

mean) 

%RMSE 

(% of 

range) 

R2 

LDMC   

ALL 1648 0.12-0.67 (g/g) 0.052 (g/g) 20 0.053 (g/g) 0.13 9.75 % 0.68 

Graminoids 564 0.12-0.67 (g/g) 0.063 (g/g) 17 0.059 (g/g) 0.15 11.66 % 0.48 

Forbs 369 0.12-0.61 (g/g) 0.046 (g/g) 13 0.055 (g/g) 0.15 11.22 % 0.73 

Woody 715 0.15-0.67 (g/g) 0.043 (g/g) 18 0.051 (g/g) 0.13 9.98% 0.78 

 LDMC < 0.05 

ALL 1441 0.12-0.49 (g/g) 0.045 (g/g) 20 0.04 (g/g) 0.12 12.20 % 0.68 

Graminoids 470 0.12-0.49 (g/g) 0.055(g/g) 12 0.04 (g/g) 0.12 12.95 % 0.45 

Forbs 350 0.12-0.49 (g/g) 0.048 (g/g) 12 0.05 (g/g) 0.14 13.9 % 0.72 

Woody 621 0.15-0.49(g/g) 0.048 (g/g) 7 0.03 (g/g) 0.10 11.11  % 0.72 

 920 

 921 
 922 


