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Abstract Inundated tropical forests are underrepresented in analyses of the global carbon cycle and
constitute 80% of the surface area of aquatic environments in the lowland Amazon basin. Diel variations
in CO2 concentrations and exchanges with the atmosphere were investigated from August 2014 to
September 2016 in two flooded forests sites with different wind exposure within the central Amazon
floodplain (3°23′S, 60°18′W). CO2 profiles and estimates of air–water gas exchange were combined with
ancillary environmental measurements. Surface CO2 concentrations ranged from 19 to 329 μM, CO2 fluxes
ranged from −0.8 to 55 mmol m−2 hr−1 and gas transfer velocities ranged from 0.2 to 17 cm hr−1. CO2

concentrations and fluxes were highest during the high water period. CO2 fluxes were three times higher at a
site with more wind exposure (WE) compared to one with less exposure (WP). Emissions were higher at
the WP site during the day, whereas they were higher at night at the WE site due to vertical mixing. CO2

concentrations and fluxes were lower at the W P site following an extended period of exceptionally low
water. The CO2 flux from the water in the flooded forest was about half of the net primary production of the
forest estimated from the literature. Mean daily fluxes measured in our study (182 ± 247 mmol m−2d−1) are
higher than or similar to the few other measurements in waters within tropical and subtropical flooded
forests and highlight the importance of flooded forests in carbon budgets.

Plain Language Summary Aquatic habitats in the lowland Amazon emit large quantities of
carbon dioxide (CO2). However, information on CO2 fluxes from seasonally flooded forests that
constitute 80% of the surface area of aquatic environments in the lowland Amazon basin is sparse. We
provide the first multi‐year measurements of CO2 exchanges within flooded forests of the central Amazon
basin. Our approach combines measurement of dissolved CO2 concentrations and fluxes between the
water and atmosphere and ecological data. Although the rates of CO2 emission by flooded forests are lower
than other aquatic habitats, such as open waters in rivers and lakes, the combination of high CO2

concentrations and a large area results in an appreciable regional out gassing of carbon dioxide from flooded
forests. These fluxes can represent about half of the net primary production of flooded forests in the
central Amazon basin.

1. Introduction

Recent syntheses of carbon processing and evasion to the atmosphere from inland aquatic ecosystems have
revealed the disproportionately large contribution, relative to their area, that these ecosystems make to car-
bon cycling and the importance of outgassing of carbon dioxide (Cole et al., 2007; Lehner & Döll, 2004;
Raymond et al., 2013). Tropical freshwater systems are underrepresented in these analyses, and seasonally,
inundated forests are seldom considered. Within the lowland Amazon basin, seasonally inundated and
riparian forests cover approximately 750,000 km2, 15% of the whole lowland area, and are important to
the ecology and biogeochemistry of the region (Junk et al., 2010; Melack & Hess, 2010). Floodplain forests
occur in an aquatic terrestrial transition zone (ATTZ; Junk et al., 1989) and are inundated for varying por-
tions of the year depending on water level and local topography (Wittmann et al., 2010). Inundated forests
and other floodplain habitats add organic carbon and dissolved CO2 to floodplains and rivers (Melack &
Engle, 2009; Melack & Forsberg, 2001; Worbes, 1997) and contribute to evasion of CO2 and methane from
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these aquatic environments (Abril et al., 2014; Melack, 2016; Melack et al., 2004; Pangala et al., 2017; Richey
et al., 2002). However, almost all studies of CO2 outgassing from Amazon floodplains have been restricted to
open water areas.

CO2 exchanges with the atmosphere are determined by the gradient of water–air CO2 concentrations and by
the gas transfer velocity (k), a function of turbulence at the air–water interface (MacIntyre et al., 1995; Zappa
et al., 2007). Most computations of carbon fluxes from lakes and wetlands use simple wind‐based equations
of k, though other mechanisms are recognized as important in tropical, temperate, and arctic lakes
(MacIntyre et al., 2002; MacIntyre et al., 2018; MacIntyre & Melack, 1995; Tedford et al., 2014), as well as
wetlands (Poindexter et al., 2016). Vegetated aquatic habitats, such as flooded forests, are likely to experience
lower wind speeds than open water areas. However, diel variations in cooling or heating of surface waters
and associated horizontal water motions and convective mixing can enhance gas exchange even at low wind
speeds (MacIntyre et al., 2019). Direct measurements of k, water–air CO2 concentration gradients, and
meteorological parameters in flooded forests are needed to better understand the mechanisms associated
with CO2 outgassing from these aquatic habitats and to evaluate their role in the carbon cycle.

The first regional estimate of CO2 outgassing for the aquatic habitats of the Amazon basin (Richey et al.,
2002) reported CO2 outgassing of 830 ± 240 Mg C·km−2 yr−1. Subsequent measurements conducted in lakes
(Polsenaere et al., 2013; Rudorff et al., 2011), reservoirs (Kemenes et al., 2011), and rivers (Alin et al., 2011; de
Rasera et al., 2013; Sawakuchi et al., 2017) reported higher k values compared to the values used by Richey
et al. (2002). Although seasonally flooded forests can cover large areas, data on k and CO2 concentrations
and fluxes in these habitats are lacking and likely are different from the conditions in the lakes, reservoirs,
and rivers.

Our study contributes to understanding of Amazon floodplains and regional carbon cycling.We provide new
information on CO2 dynamics in inundated forests, the largest aquatic habitat in the Amazon basin, but the
one least studied. We report CO2 concentrations, evasion rates, and gas transfer velocities measured in
flooded forests fringing a floodplain lake along the Solimões River as function of seasonal changes in water
depth and day to night differences over the course of two distinct hydrological years. Contrasting exposure to
wind is considered in our analysis, and we test the following hypotheses: (1) The proximity and the extent of
open water areas close to flooded forest sites will lead to different CO2 fluxes in the forests. (2) Wind‐
protected forests will have lower k values and consequently lower CO2 fluxes than wind‐exposed sites. (3)
Flooded forests have high rates of CO2 evasion to the atmosphere and make a large contribution to regional
CO2 evasion in the Amazon basin.

2. Methods
2.1. Site Description and Sampling

Measurements over 2 years were made in two contrasting flooded forest sites in Lake Janauacá (3°23′S,
60°18′W; altitude 32 m), located on the southern side of the Solimões River in the central Amazon basin
(Figure 1). The sites differed in wind exposure and fetch of adjacent open water areas and are called
wind‐exposed flooded forest (WE; 3°23′19.0″S, 60°15′14.8″W) and wind‐protected flooded forest (WP;
3°24′20.6″S, 60°14′48.8″W). The WP site is in an embayment with a fetch of 50 to 100 m for typical wind
directions. The WE site is located on the edge of the main lake and had a fetch varying from 1 to 4 km
depending on wind direction and water level.

The forests investigated are influenced by sediment and nutrient rich water from the Solimões River and are
called várzea forests (Wittmann et al., 2002). Trees on these floodplains respond phenologically, morpholo-
gically, and physiologically to periodic flooding that varies as a function of the water level of the Solimões
River and the topography of the ATTZ (Parolin et al., 2010; Worbes, 1997). Phenological behavior is largely
associated with the time and extent of inundation, and evergreen, semideciduous, and deciduous species
shred their leaves at different times (Parolin et al., 2010). Piranhea trifoliata and Vitex cymosa are common
tree species (Worbes et al., 1992). The Janauacá floodplain and nearby systems have been the focus of prior
studies of hydrology and limnology (Bonnet et al., 2017; Melack et al., 2009; Melack & Forsberg, 2001).

Measurements of carbon dioxide partial pressure (pCO2) and CO2 emissions were made when the sites were
flooded and accessible at multiple times of the day and night. Measurements were made on 12 occasions
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between August 2014 and September 2016, representing different hydrological phases. The following periods
were sampled: August 2014 (falling water—FW), February to April 2015 (rising water—RW), May to July
2015 (high water—HW), August 2015 (FW), September 2015 (FW), July 2016 (HW), and August and
September 2016 (FW). The WP site was sampled in all campaigns, while the WE site only in 2015
(Figure S1 in the supporting information).

2.2. Analytical Methods

pCO2 was measured with an off‐axis integrated cavity output spectrometer (Ultraportable Greenhouse Gas
Analyzer, Los Gatos Research) connected to a marble‐type equilibrator (Frankignoulle et al., 2001), through
which water from different depths was pumped (3 L min−1). CO2 fluxes across the air–water interface were
measured using floating chambers connected in a closed loop to the Ultraportable Greenhouse Gas
Analyzer. All measurements were made in replicate as ~10‐min deployments from a moored boat. The
chambers had an internal volume of 15 L and an internal area of 0.11 m2. Fluxes were calculated from
the slope of partial pressure versus time, which was linear with r2 greater than 0.9. The detection limit of
our fluxes measurements was calculated as 0.22 mmol m−2 hr−1 of CO2. Further details of the

Figure 1. (a) General location of the study site showing the watershed (yellow line; Background: ESRI World Imagery). (b) Composite high‐water Landsat 8 image
showing the upper Janauacá floodplain (red dashed). (c) Location of the sampled flooded forest sites: wind‐exposed site (WE) and wind‐protected site (WP). Red
dashed lines indicate the boundaries of the following figure panel. Janauacá lake basin delimited by Pinel et al. (2015).
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equilibrator setup and gas analyzer accuracy are given in Amaral et al. (2018) and for the chamber design in
Barbosa et al. (2016).

We estimated gas transfer velocity (k) from the formulation F = k[ΔCO2] using our measurements of CO2

fluxes (F) and the difference between observed and equilibrium gas concentrations (ΔCO2) derived from
the pCO2 measurements in water and air and using Henry's constant. To estimate the gas concentrations
in water and air, we first corrected the dry air in the instrument to wet air using the water vapor computed
from temperature measured at lake surface (Weiss & Price, 1980), and then used the Henry's constant for
CO2 from Wiesenburg and Guinasso (1979) to calculate concentration. Estimated k values were normalized
to 20 °C (k600) for which 600 is the Schmidt number for CO2 at 20 °C and Sc at other temperatures were
obtained from Wanninkhof (1992).

Near‐surface pH (Orion Star, Thermo Scientific; precision of 0.1, calibrated with 4.0, and 7.0 standards),
maximum depth measured with a weighted graduated line, and depth profiles of conductivity and tempera-
ture measured with a profiler (Castway, Sontek Inst. Co) at 0.3 m intervals were obtained during each sam-
pling period. Time series measurements of temperature and dissolved oxygen (DO) were obtained at each
site using thermistors with 0.002 °C accuracy (RBRsolo) recording every 0.5 s, and with optical DO sensors
(PMEMiniDOT loggers) recording every 10min (accuracy of 5% of measurement or 0.3 mg L−1, whichever is
larger, and resolution of 0.01 mg L−1). Wind speed and direction sensors (Onset, Inc.) were deployed at a
height of 2 m on a floating buoy at open water sites close to flooded forest sites. Average wind speeds were
calculated for the hour before the flux measurements.

Samples from ~0.3 m for chlorophyll (Chl‐a), dissolved organic carbon (DOC), total suspended solids (TSS),
total nitrogen (TN), and total phosphorus (TP) analyses were collected once on each campaign at both sta-
tions. Chl‐a samples were filtered through glass fiber GF/F filters (Whatman) and kept frozen in the dark
until analysis. Chl‐a was determined spectrophotometrically, following filter maceration and extraction in
90% acetone, using the trichromatic equations of Strickland and Parsons (1972). TSS was determined by
weighing particulates collected on pre‐weighed Millipore HA filters (0.45 μm pore size), following the
method of Kasper et al. (2018). DOC samples were filtered through pre‐combusted (450–500 °C for 1 hr)
glass fiber GF/F filters (Whatman), collected in pre‐cleaned (10% HCl wash, deionized water rinse) and
pre‐combusted (450–500 °C for 1 hr) borosilicate vials, and then stored at 4 °C until analysis. DOCwas deter-
mined using a total organic carbon analyzer (TOC‐V Shimadzu). TN and TP were determined by
simultaneous analysis on unfiltered samples after persulfate digestion (Valderrama, 1981) followed by
nitrate and phosphorus assays (Strickland & Parsons, 1972).

We estimated flooded forest area for the northern portion of Janauacá for each sampling date using an image
classification method to discriminate floodable forest habitats and other land covers and a digital elevation
model derived for the lake (Pinel et al., 2015). Forest vegetation (including trees and shrubs) was classified
using all bands of a Landsat 8 OLI image acquired in April 2016, when all floodable shrubs and trees were
emergent. We used eCognition software to perform multiresolution image segmentation, delineating homo-
geneous land cover units within the image. We then developed classification rules to discriminate forest and
shrub areas based on the Normalized Difference Vegetation Index and the Normalized Difference Water
Index (Gao, 1996). We used the digital elevation model and daily observations of water surface elevation,
made at a differential GPS calibrated gauging station on the lake (Pinel et al., 2015), to estimate inundated
area for each sampling occasion. Finally, we used the classified image together with the inundation maps to
estimate the total area of flooded forest for each sampling period.

To account for the influence of forests with different wind exposure on CO2 fluxes, we separated the flooded
forest into two categories: (1) sheltered flooded forest (WP), representative of flooded forests at the WP site,
and (2) WE, similar to that found at the WE site. To define the WE forest area, we delimited the perimeter of
the largest open water area in the lake and then selected a 100 m band of forest immediately adjacent to this
region. All remaining flooded forest was defined as WP. All analyses were done with ArcGIS version 11.0
(ESRI, Inc.).

To combine measurements of fluxes and estimates inundated forest areas to calculate annual fluxes (F,
Gg C yr−1) from the flooded forests in the northern region of Janauacá, an expression similar to that in
Melack et al. (2004) was used:
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F ¼ ∑
2

j¼1
∑
8

i¼1
f ij·Aij·t

� �
;

f is the mean daily flux of CO2 for each month and site (g C·m−2 d−1), A is flooded forest area for each month
(km2), t is the number of days per month, i is the index for eachmonth (from February to September), and j is
the index for each site (WP and WE).

To estimate the uncertainty of the estimates, we conducted a Monte Carlo error analysis using the measure-
ments obtained each month and for data lumped into RW, HW, and FW periods. To do so, we randomly
resampled with repetition the measurements for each period to create 100 artificial data and computed
the arithmetic mean (m) and standard deviation (std) of these data using the bootstrp function in Matlab.
We then computed themaximum likelihood estimators asMLE= exp(m+ std2/2) and 95% confidence inter-
vals (CI; Dixon, 1993).

2.3. Statistical Analyses

CO2 concentration, k600, and CO2 fluxes were compared between WP and WE sites for only the first year as
WE sites were not accessible in the second year. Tests for normality and homoscedasticity indicated that CO2

concentrations were normally distributed, but k600 and CO2 fluxes were not unless log transformed.
Parametric tests were used in all comparisons, using log transformed data, as required. The student t test
was used for comparisons between WP and WE sites. A one‐way analysis of variance (ANOVA) followed
by post hoc pair‐wise t tests, with correction for multiple tests done by the Benjamin–Hochberg method,
was used to compare hydrological periods. We separated measurements conducted over 24 hr into categories
of day (6:00 a.m. to 6:00 p.m.) and night (6:00 p.m. to 6:00 a.m.) to evaluate the implications of sampling time
for CO2 fluxes, variability of k600, and CO2 concentrations. We compared day and night values using all data
and data separated by site by paired t test.

To assess the potential influences of environmental variables on CO2 concentrations measured in flooded
forests with contrasting wind exposure, we applied a multimodel selection and averaging approach
(Grueber et al., 2011) of linear mixed‐effects models with maximum likelihood using the lme4 package in
R. The model was structured with CO2 concentration as a response variable, site (WP and WE) as random
factors, and the total area of flooded forest for each sampling period, surface temperature, TSS, DO, TN,
TP, DOC, and Chl‐a as fixed variables. We generated and evaluated the small‐sample corrected Akaike infor-
mation criterion (AICc), ΔAICc, and AICc model weights (wi) using the dredge function within theMuMIn
package (Barton & Barton, 2018). The final model sets were simplified from all possible models by retaining
only the top models within two units of ΔAICc of the “best”model. We calculated a daily geometric mean of
CO2 concentration for each site and sampling occasion and used these values in the models, as wemade only
one measurement in each campaign for some environmental predictors: Chl‐a, TP, TN, DOC, and TSS.
Before model selection, we first tested for outliers among explanatory variables (one exclusion was made).
Second, we identified and excluded from the full model colinear predictors. For these steps, we use the
outlierTest and vif function, respectively, both within the package car (Fox et al., 2012).

To estimate parameter coefficients in the final model set, we calculated conditional values using the mean of
regression coefficients weighted by the AICc weight (wi) from each model including that variable (Burnham
& Anderson, 2002). Predictor relative importance or variable weights were calculated for each term in the
models via the natural average method for the coefficients, that is, by summing the weights of models where
each variable appears (Galipaud et al., 2014; Grueber et al., 2011). Using z tests, individual parameters in
model‐averaged sets were tested for statistical significance as the deviation of coefficients from zero.
Parametric assumptions of linear models were verified using plots of residuals for normality and homosce-
dasticity. Statistical analyses and graphics were done with R Studio Version 1.1.456.

3. Results
3.1. CO2 Concentrations and Fluxes

Surface CO2 concentrations ranged from 19 to 329 μM (pCO2 = 664 to 11,006 μatm); the overall geometric
mean was 134 μM, and the mean and standard deviation were 155 ± 71 μM (pCO2 = 4,465;
5,117 ± 2,326 μatm; Table 1). One hundred seventy measurements of CO2 flux were made at the two
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flooded forests sites, and fluxes ranged from −0.8 to 55 mmol m−2 hr−1 with an overall mean and standard
deviation of 7.8 ± 10.1 mmol m−2 hr−1 (Table 1). Gas transfer velocities derived from these measurements
ranged from 0.2 to 17 cm hr−1 with an overall geometric mean value of 2.6 cm hr−1 and mean and
standard deviation of 3.8 ± 3.6 cm hr−1 (Table 1). Mean CO2 concentrations were similar at the two sites
(WE, 175 ± 65 μM and WP, 178 ± 60 μM; Welch two sample t test, t(58) = 0.2, p = 0.84; Figure 2). CO2

fluxes and k600 were greater at the WE site (16 ± 14 mmol m−2 hr−1 and 6.7 ± 4.6 cm hr−1) compared to
the WP site (5 ± 3 mmol m−2 hr−1 and 2.4 ± 1.7 cm hr−1) based on Welch two sample t test (t(82) = −5.4,
p < 0.001 and t(112.2) = −7.9, p < 0.001, respectively).

Surface CO2 concentrations differed seasonally at the WE site based on one‐way ANOVA (F(2,24) = 4.9,
p = 0.02). Values were higher during high water (HW; 218 ± 36 μM, n = 19) relative to rising water (RW;
143 ± 89 μM, n = 14), but similar (pairwise t test, p = 0.14) to concentrations during FW (173 ± 39 μM,
n = 25; Figure 2). Seasonal differences also occurred at the WP site (F(4,48) = 9.9, p < 0.001). In Year 1,
the CO2 concentrations measured at the WP site were higher during HW (203 ± 20 μM, n = 18) and FW
(193 ± 71 μM, n = 32) compared to RW (154 ± 47 μM, n = 20; pairwise t test, p = 0.03 and p = 0.05, respec-
tively). In Year 2, no differences were found between HW (81 ± 38 μM, n= 21) and FW (96 ± 64 μM, n= 21),
but mean surface CO2 concentrations measured in those periods were consistently lower than the values
measured in HW and FW periods of the first year of study (pairwise t test, p < 0.001; Table 1).

CO2 fluxes and k600 for both sites varied with the phase of the hydrological cycle based on one‐way ANOVA.
At the WE site, CO2 fluxes (F(2,55) = 19, p < 0.001) and values of k600 (F(2,55) = 17, p < 0.001) tracked
changes in the water level, with greater mean values observed during high water (29 ± 14 mmol m−2 hr−1

and 11 ± 4 cm hr−1, n = 19) relative to rising (9 ± 8 mmol m−2 hr−1 and 5 ± 2 cm hr−1, n = 14) and FW

Table 1
Near‐surface CO2 Concentrations, Flux and Gas Transfer Velocities (k600) Measured in Wind‐exposed (WE) and Wind‐protected (WP) Flooded Forests

Period Month

CO2 (μM) CO2 flux (mmol m−2 hr−1) K600 (cm hr−1)

WP WE WP WE WP WE

Mean, SD Mean, SD Mean, SD Mean, SD Mean, SD Mean, SD
(min/max, n) (min/max, n) (min/max, n) (min/max, n) (min/max, n) (min/max, n)

Falling water Aug 2014 158 ± 43 2.8 ± 1.2 1.5 ± 0.7
(112/216, 5) (0.9/4.6,13) (0.4/2.6, 13)

Rising water Feb 2015 166 ± 53 61 ± 37 5.2 ± 3.2 1.4 ± 1.8 2.5 ± 1.1 4.1 ± 2.5
(106/244, 5) (19/89, 3) (0.5/10.1, 13) (−0.8a /3.9, 5) (0.3/4.2, 13) (1.7/8.0, 5)

March 2015 90 ± 17 100 ± 16 3.4 ± 2.1 3.2 ± 1.0 3.3 ± 1.4 2.9 ± 1.1
(81/110, 3) (87/118, 3) (1.6/5.7, 3) (2.3/4.3, 3) (1.8/4.5, 3) (1.8/4, 3)

April 2015 156 ± 24 237 ± 19 8.5 ± 5.8 17 ± 4.0 5.3 ± 4.0 6.4 ± 1.8
(137/184, 3) (226/259, 3) (3.4/14.6, 4) (11/22, 6) (1.8/9.5, 4) (3.7/8.3, 6)

High water May 2015 202 ± 17 236 ± 15 7.7 ± 1.7 36 ± 10 3.2 ± 0.6 12.8 ± 3.5
(186/221, 3) (219/246, 3) (5.4/10.5, 6) (18/48, 7) (2.3/4, 6) (6.8/16.8, 7)

June 2015 217 ± 27 227 ± 57 6.9 ± 4.9 30 ± 19 2.6 ± 1.8 10 ± 4.8
(189/243, 3) (177/289, 3) (4.4/16.7, 6) (13/55, 6) (1.6/6.2, 6) (4.9/16, 6)

July 2015 190 ± 7 187 ± 14 4.6 ± 2.6 30 ± 8.5 2.1 ± 1.2 9.7 ± 4.2
(182/196, 3) (174/202, 3) (1.7/9.1, 6) (13/33, 6) (0.8/4.2, 6) (5.6/15, 6)

Falling water Aug 2015 265 ± 70 180 ± 22 5.4 ± 2.5 16 ± 8.3 1.6 ± 1.1 7.4 ± 4.7
(177/329,4) (163/213, 4) (2.7/9.7, 10) (8/31, 8) (0.7/4.3, 10) (2.9/16, 8)

Sept 2015 157 ± 66 172 ± 49 2.6 ± 1.8 6 ± 2.1 2.1 ± 1.9 3.3 ± 2.3
(83/244, 4) (123/250, 5) (1.4/7.3, 9) (3/10, 17) (0.7/6.9, 9) (1.3/8.3, 17)

High water July 2016 111 ± 36 3.6 ± 1.2 3.1 ± 1.6
(80/164, 5) (2.1/5.4, 10) (1.8/5.9, 10)

Falling water Aug 2016 55 ± 13 1.0 ± 0.3 1.7 ± 0.3
(41/70, 5) (0.5/1.3, 11) (1.4/2.3, 11)

Sept 2016 94 ± 66 1.7 ± 1.3 1.9 ± 1.4
(24/203, 10) (0.1/4.8, 21) (0.2/6, 21)

Note. SD is the standard deviation; min/max indicates the minimum and maximum values among the n measurements on each date.
aThe ingassing value was measured when Chl‐a concentrations were high (18 μg L−1 in the flooded forest and 25 μg L−1 in associated open water), suggesting
that Chl‐a enriched water was advected from the openwater into the flooded forest site. One replicate measurement was negative, and one was positive; both had
high r2 (>0.95). When replicates were averaged, the value was slightly negative.
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(9 ± 7mmolm−2 hr−1 and 5 ± 4 cm hr−1, n= 25; pairwise t test, p< 0.001;
Figure 3). At the WP site, mean CO2 fluxes (F(4,107) = 16.2, p < 0.001)
were also higher during high water (6 ± 3 mmol m−2 hr−1, n = 18)
compared to FW (4 ± 2 mmol m−2 hr−1, n = 32) but similar to mean
values encountered during rising water (6 ± 4 mmol m−2 hr−1, n = 20)
of Year 1 (pairwise t test, p = 0.001; Figure 3). Differences in mean k600
between periods of the hydrological cycle (F(4,107) = 4.6, p = 0.002)
were higher when comparing the rising water (3 ± 2 cm hr−1, n = 20)
and high water periods (3 ± 1 cm hr−1, n = 18) against the FW period
(2 ± 1 cm hr−1, n = 32) in Year 1 (pairwise t test, p = 0.01 and p = 0.02,
respectively). In Year 2, mean CO2 fluxes for a given period of the
hydrological cycle were consistently lower than the mean values
measured in all periods of Year 1 at the WP site (pairwise t test, p < 0.001;
Table 1). For k600, the FW period of Year 2 was similar to the FW period of
Year 1 (pairwise t test, p= 0.99) and also lower than high water (pairwise t
test, p = 0.03) and rising water periods (pairwise t test, p = 0.02) of Year 1
(Table 1).

Day–night differences were statistically different for CO2 fluxes when
comparing all measurements at both sites (paired t test, t(11) = 3.8,
p = 0.003). When differentiating between WP and WE sites, mean CO2

concentrations were numerically lower during the day
(WP = 128 ± 68 μM, n = 33, and WE = 166 ± 56 μM, n = 13) compared
to the night (WP = 172 ± 72 μM, n = 20, and WE = 183 ± 74 μM,
n = 14) at both sites, although they were not statistically different (paired
t test, WP: t(11) = −0.63, p = 0.54; WE: t(7) = −0.4, p = 0.7). CO2 fluxes
and k600 were statistically different only for theWP site. CO2 fluxes (paired
t test, t(11) = 2.7, p = 0.02) and k600 (paired t test, t(11) = 2.7, p = 0.02)
were lower during the night (3.6 ± 2.6mmolm−2 hr−1 and 2± 0.5 cmhr−1,
n= 42) compared to the day (3.9 ± 3.3 mmol m−2 hr−1 and 3 ± 2 cm hr−1,
n = 70; Figure 4) and consistent with day–night differences at this site for
wind speeds that were also higher during the day compared to the night
(unpaired t test, t(51) = 3.5, p = 0.0009). Although not significantly differ-
ent, we found numerically higher mean values for CO2 fluxes and k600
during the night (20 ± 17 mmol m−2 hr−1 and 8 ± 5 cm hr−1, n= 29) com-
pared to the day (12 ± 9 mmol m−2 hr−1 and 6 ± 4 cm hr−1, n = 29) at the
WE site. Wind differences at this site followed the same trend as for the

WP site with higher wind speeds during the day (unpaired t test, t(24) = 2.2, p = 0.04), but the higher fluxes
during the night were associated with vertical mixing (Figure 5).

3.2. Environmental Variables and Relationships with CO2 Concentrations

Environmental variables varied with water level. When depths were low during rising and FW, Chl‐a, DO,
TN, TSS, conductivity, and temperatures were higher compared to high water. Average hourly wind records
prior to CO2 flux measurements varied from below detection to 2.2 m s−1 at the WP site and from 0.3 to
5.1 m s−1 at the WE site (frequency distributions are given in Figure S2). Environmental variables for both
sites are summarized in Table S1.

DO was strongly inversely correlated to CO2 concentrations (n = 80, r2 = −0.86, p < 0.001). We identified
one outlier among our environmental variables. The outlier was high Chl‐a and high CO2 concentrations
that occurred at the WP site during the FW in 2015. At that time, the thermocline deepened causing upwel-
ling of nutrient‐enriched waters that caused an increase in Chl‐a, and water enriched in CO2 concentration
was upwelled that raised CO2 concentrations. DO was the only environmental predictor that was retained
from the multimodel selection procedure. It has an AICc value of 149.9 and explained around 90% (marginal
R2) or 97% (conditional R2) variability in surface CO2 concentration.

Figure 2. CO2 concentrations measured at the wind‐exposed site (WE,
upper panel) and wind‐protected site (WP, lower panel) for hydrological
phases: rising water (RW), high water (HW) and falling water (FW).
Horizontal bars represent the mean per sampling date, open circles repre-
sent each observation in a 24 hr period.
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3.3. Spatial and Seasonal Integration of CO2 Fluxes

The WP forests in the northern Janauacá floodplain had a total area of
94 km2, which corresponds to 88% of the total area of floodable forest esti-
mated for this part of the lake. The remaining 12% is attributed to areas
with WE forests.

The maximum likelihood estimator of the flux for all inundated forests in
the Janauacá floodplain is 45 Gg·C yr−1 with CI of 31 to 69 Gg·C yr−1.
Emissions from sheltered forests represent 31 Gg·C yr−1 with CI of 21 to
49 Gg·C yr−1 and those from wind‐exposed forests 14 Gg·C yr−1 with CI
of 10 to 20 Gg·C yr−1. These values were almost the same based on calcu-
lations per month and for data lumped into hydrological periods.

We obtained a regional estimate based on the area of flooded vegetation
and open water during high and low water for a sequence of reaches along
the Solimões and Amazon rivers in the central Amazon basin using data
in Melack and Hess (2010). From Marañón to Gurupá, their high water
area of flooded forests, woodlands, and shrubs (52,700 km2) combined
with our high water estimates of CO2 flux, using the proportional areas
of wind‐sheltered and wind‐exposed forest calculated for Janauacá, yields
a total high water flux of 133 + 65 Tg·C for these reaches. When extrapo-
lated to the total high water area of flooded forests, woodlands, and shrubs
for the lowland basin (630,000 km2; Melack & Hess, 2010), the total high
water flux is 1,590 + 780 Tg·C.

4. Discussion
4.1. Diel, Seasonal, and Spatial Variability of CO2 Concentrations
and Fluxes

As we hypothesized, the WE site near a large area of open water had
higher CO2 fluxes and k values compared to the more sheltered WP site.
This result is related to the increased advection, mixing, and turbulence
occurring in sites near large open water areas. Daily fluxes measured in
our study are higher than or similar to the few other measurements in
waters within tropical and subtropical flooded forests (Table 2). This find-
ing supports our suggestion that flooded forests have high rates of CO2

evasion to the atmosphere and make a large contribution to regional
CO2 evasion in the Amazon basin.

While our time series data support previous studies that CO2 concentrations and fluxes vary seasonally, the
frequency of our measurements further illustrated that variability was high at each site and during each
measurement period. We corroborate previous studies reporting higher CO2 concentrations and fluxes dur-
ing the high water period for Amazonian rivers (Almeida et al., 2017; Amaral et al., 2019; Devol et al., 1995;
Richey et al., 1990) and floodplain lakes (Abril et al., 2014; Rudorff et al., 2011). The seasonal pattern can be
explained by (i) increases in water depth that increase depth integrated respiration (Devol et al., 1995;
Forsberg et al., 2017) and (ii) the extent of inundation of the floodplains. CO2 concentrations in floodplains
are positively related to the area of inundated vegetated habitats (Abril et al., 2014; Amaral et al., 2019;
Borges et al., 2015) that are greater during the high water period (Melack & Hess, 2010). The vegetated habi-
tats contribute particulate organic carbon and DOC to the floodplains that can be decomposed in situ, gen-
erating CO2 and CH4, buried in the sediments or transported laterally to the rivers (Engle et al., 2008; Melack
& Engle, 2009; Melack & Forsberg, 2001; Richey et al., 1988, 1990). Additionally, they contribute CO2 to
floodplain waters via root respiration (Hamilton et al., 1995; Piedade, Ferreira, et al., 2010).

Day–night differences were one source of the variability but were statistically significant only for CO2 fluxes
and k600 at the WP site with higher mean values during the day. Wind‐induced currents or internal waves
within the stratified waters of the flooded forests and neighboring habitats may have transported or mixed

Figure 3. CO2 evasion measured at the wind‐exposed site (WE, upper
panel) and wind‐protected site (WP, lower panel) for hydrological phases:
rising water (RW), high water (HW) and falling water (FW). Horizontal bars
represent the mean, open circles represent each observation in a 24 hr per-
iod. Note differences in scale of y axis between sites.
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water with elevated CO2 concentrations into the surface waters
within the flooded forest. Near‐surface turbulence in the forest may
have increased in the day due to advective flows generated outside
the forest and higher wind speeds resulting in higher gas transfer
velocities (MacIntyre et al., 2019). Values of k600 under these condi-
tions will be higher than those expected from convection at night
when winds are negligible. At theWE site, values were similar during
the day and night except on two occasions when fluxes at night were
nearly twice those in the day (Figure 4a). These occurred during high
water in May and June 2015 when water depths were 5 to 7 m, depths
where CO2 did accumulate, and anoxia developed because stratifica-
tion can persist. The actively mixing layer increased from 1.2 to 6 m at
night, as indicative of mixing, and surface CO2 concentrations
increased (Figure 5). Fluxes increased as a result.

The variability of k600 was higher at the WE site as were mean values
(6.7 + 4.6 SD) relative to the WP site (2.3 + 1.6 SD; Figure S3). The
higher k600 values are likely associated with increases in shear in
the surface waters of the flooded forest caused by wind‐induced water
currents from nearby open water (MacIntyre et al., 2019). Ho et al.
(2018) obtained similar results in the Everglades.

Between year variability in surface water CO2 concentrations
occurred at the WP site. Values were higher in Year 1, likely because
of more extensive and a longer inundation. Additionally, floating
macrophytes whose decay and root respiration contributes to CO2

in the water column (Hamilton et al., 1995; Mortillaro et al., 2016;
Waichman, 1996) were present in Year 1 but not in Year 2.
Advective flows can transport this water with higher gas concentra-

tion into the flooded forests. Thus, between year differences in the hydrological conditions contribute
to variability.

The interannual differences have implications for understanding possible impacts of climate change in
tropical floodplains. For example, extreme events are increasing in frequency in the Amazon basin
(Marengo & Espinoza, 2016), and projected climate change scenarios indicate reductions in the extent
of inundated areas during the low water period (Sorribas et al., 2016), similar to our observations in
Year 2. Our results support a reduction in CO2 concentrations and fluxes from flooded forests under this
scenario. However, we did not measure the fluxes from exposed sediments. Evidence from other studies
in flooded forests in tropical (Tathy et al., 1992) and temperate (Happell & Chanton, 1993; Pulliam, 1993)
zones reports positive CO2 fluxes from nonflooded sediments in the floodable forest. However, Dalmagro
et al. (2019) reported CO2 fluxes ingassing during flooded season and outgassing during dry season in a
study in seasonally inundated forests of the Pantanal floodplain. Additional measurements from exposed
sediments during the noninundated phase are needed to allow a better evaluation of the impacts of
variations in inundation periods.

4.2. Inverse Relation Between CO2 Concentrations and DO

An inverse relation between CO2 concentrations and DO was observed in this study as in many freshwater
ecosystems, including tropical floodplains along sub‐Saharan African rivers (Borges et al., 2015), the
Pantanal (Hamilton et al., 1995), and temperate swamp forests (Happell & Chanton, 1993). In the
Pantanal wetlands, the highest CO2 concentrations and fluxes occurred as flooding began because of decom-
position of freshly inundated soil and plant organic matter (Dalmagro et al., 2018; Hamilton et al., 1997). The
inverse relation between CO2 concentrations and DO suggests that aerobic processes are important for CO2

production. Sediment respiration (Cardoso et al., 2013), methane oxidation (Barbosa et al., 2018), and plank-
tonic respiration (Amaral et al., 2018; Waichman, 1996; Ward et al., 2013) are all processes that consume DO
and produce dissolved CO2.

Figure 4. Mean CO2 fluxes measured during the night versus measurements
made during the day for the (a) wind‐exposed and (b) wind‐protected sites.
Dashed lines represent the 1:1 lines.
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More CO2 was produced at our sites than expected by aerobic respiration within the water column
(Figure 6). If aerobic respiration and CO2 production were in balance, the excess of CO2 (Ex‐CO2, i.e.,
CO2 in the water subtracted from equilibrium CO2 saturation) and the apparent oxygen utilization (AOU,
i.e., atmospheric equilibrium O2 solubility subtracted from the O2 concentration measured in surface water)

would follow a 1:1 line. Processes that could cause increased CO2 pro-
duction or elevated Ex‐CO2 include methanogenesis (Bartlett et al.,
1988), groundwater CO2 inputs, and root respiration within the
flooded forest and associated herbaceous plants that use atmospheric
CO2 in photosynthesis and release respired CO2 through their inun-
dated roots (Abril et al., 2014; Abril & Borges, 2019; Melack et al.,
2009; Piedade, Junk, et al., 2010). The first two processes were not
likely to be important at our sites. Ex‐CO2 was not correlated with
methane measured at these sites (Barbosa, 2018; p > 0.05,
r2 = 0.0063, slope = 0.0019), and the contribution of groundwater
to the hydrologic balance is less than 1% in Janauacá (Bonnet
et al., 2017).

The Ex‐CO2 vs AOU relation in our study is similar to the relation
reported for the Solimões River and other Amazon waters (Devol
et al., 1995; Richey et al., 1988). These studies suggested the impor-
tance of lateral floodplains as sites for CO2 production and sources
to the rivers. This hypothesis was examined by Abril et al. (2014),
who used a one‐dimensional model for CO2 transport by the
Amazon River to demonstrate that CO2 from floodplains could be
transported downstream over hundreds of kilometers. Further evi-
dence of inputs of labile organic carbon to the rivers from floodplains
is provided by measurements in the eastern Amazon by Moreira‐

Figure 5. (a) time series of CO2 fluxes, (b) dissolved CO2 concentrations from discrete measurements at depths indicated
by white dots, and (c) 10 min averaged time series of dissolved oxygen in the wind‐exposed flooded forest in June 2015.
Hourly averaged isotherms at 0.3 °C intervals are shown as black contours with maximum and minimum isotherms
labelled.

Table 2
Average CO2 Diffusive Flux (FCO2) Measured Within Flooded Forests
From Different Studies

Location Forest type Method FCO2 mg C·m−2 d−1

Amazon basina Floodplain Chamber 343
Florida, USAb Swamp Chamber 973 + 599
Georgia, USAc Floodplain Chamber 115 − 1270
Congo basind Floodplain Chamber 2,640 + 1,370
Pantanal, Brazile Floodplain Modeled 320
Northern Australiaf Floodplain Chamber 1,260 + 1,258
Amazon basing Floodplain Chamber 2,182 + 2,954

aDevol et al. (1988).Mean value calculated fromninemeasurementsmade dur-
ing the high‐water period. bHappell and Chanton (1993). Mean value calcu-
lated from single daytime measurements once a month for 1 year. cPulliam
(1993). Range of mean daily fluxes obtained from ten transects with three mea-
surements done at a monthly frequency for a 2‐year period. dTathy et al.
(1992). Mean value from eleven daily measurements made in flooded for-
ests. eDalmagro et al. (2018). Mean value obtained using 40 measurements
of surface CO2 water concentrations and a wind‐based equation during the
flooded season (March to June). fBass et al. (2014). Mean value obtained from
seven sites with daily replicatemeasurements done eight times during the flood
season (February toMay). gThis study.Mean value from two sites withmulti-
ple measurements over diel cycles in 12 monthly campaigns distributed
through two hydrological years when the forest sites were flooded and
accessible.
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Turcq et al. (2013). Moreover, Richey et al. (1990) suggested that aquatic
and terrestrial macrophytes and flooded forests in floodplains were likely
sources of labile organic C for the mainstem river.

We also observed negative AOU values that represent times when photo-
synthetic oxygen production exceeded respiration within the flooded for-
ests. The negative AOU values occurred when water depths were 1.5 to
3.5 m and DO concentrations were 7.4 to 9.3 mg L−1 in the flooded forest
sites. These concentrations were similar to those observed in nearby
open water.

4.3. Implications for the Regional C Budget and Other
Forested Wetlands

To our knowledge, we provide the first multiseason study of CO2 concen-
trations and fluxes in flooded forests for the Amazon basin. The one prior

study reported nine CO2 measurements made in July and August 1985 in flooded forests fringing open water
areas, similar to our WE site (Devol et al., 1988). The range of values in that study, 466–2,400 mg C·m−2 d−1,
is lower than the range, 3,706–15,867 mg C·m−2 d−1, (n = 19) observed during a comparable period of our
study, high water at the WE site.

Mean daily fluxes measured in our study (2,182 + 2,954 SDmg C·m−2 d−1) are higher than or similar to the
few other measurements in waters within tropical and subtropical flooded forests (Table 2). The low CO2

efflux reported by Dalmagro et al. (2018) is likely related to their use of a wind‐based equation to estimate
the CO2 fluxes. While wind speeds in flooded forest sites are low, other processes can increase fluxes, as
noted above and in MacIntyre et al. (2019). The large range in our study indicates the need for a sampling
over diel cycles on a seasonal basis (Table 2).

Seasonally inundated and riparian forests are the main aquatic habitat within the lowland Amazon basin
(Hess et al., 2015; Junk et al., 2010; Melack & Hess, 2010). Most of these forests are likely to be more similar
to our WP site, as the open water areas in the lowland Amazon basin corresponds to only 8% of the total
basin area (Melack &Hess, 2010). Inundated forests vary in distribution and floristic composition depending
on fluvial geomorphology, flooding regimes, and soil and water qualities (Junk et al., 2010). CO2 fluxes
among these forest types are likely to vary.

We report a total high water flux, integrated to the area of flooded forests, woodlands, and shrubs during this
period, for the lowland Amazon of 1,590 + 777 Tg C. For comparison, Melack and Hess's (2010) estimate of
open water in rivers and lakes at high water (64,700 km2) and themean CO2 fluxes reportedmainly for rivers
by Amaral et al. (2019; 4.7 g C·m−2 d−1) and Richey et al. (1990; 5.2 g C·m−2 d−1) yields a total high water
flux from open water of 320 Tg C. Since fluxes from lakes are often less than from rivers (Melack, 2016;
Polsenaere et al., 2013; Rudorff et al., 2011), this estimate for open water is likely high. At low water,
Melack and Hess (2010) estimated that flooded forests, woodlands, and shrubs covered 17,270 km2 of the
mainstem reaches. To provide annual estimates will require time series of inundated habitats derived from
hydrological models and remote sensing analysis, such as those done by Arnesen et al. (2013) and Ferreira‐
Ferreira et al. (2015) that map the duration of inundation of flooded forests distributed throughout the
Amazon basin. Measurements of CO2 fluxes from other types of flooded forests are also essential.

Regional estimates of CO2 fluxes offered by Richey et al. (2002) and Melack (2016) did not include data from
flooded forests. Melack's (2016) estimate for floodplains and wetland habitats used an average pCO2 value
(335 μM; 10,900 μatm) from Richey et al. (2002) and k600 of 12 cm hr−1 from studies in lakes. Our lower
k600 values for flooded forests, a large component of floodplain and wetland habitats, clearly indicate a lower
overall flux than suggested in Melack (2016). Richey et al. (2002) selected a k600 of 2.7 cm hr−1 as a conser-
vative value for floodplains and lakes. Though low for lakes, this value is similar to our k600 values for shel-
tered flooded forests. As a consequence, their regional estimate, if expressed as mmol C·m−2 d−1 (189 + 55),
is similar to our mean value (182 ± 247) for flooded forests on the Janauacá floodplain. These new estimates
highlight the importance of flooded forests for the carbon budget of the Amazon basin and the need for more
studies in these aquatic habitats.

Figure 6. Excess of CO2 as function of apparent oxygen utilization (AOU) in
μM, calculated for near‐surface waters of inundated forests. Dashed line is
the 1:1 line, and solid black line is the regression line.
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Seasonally inundated forests in the Amazon and elsewhere occur in an aquatic–terrestrial transition zone
that includes other aquatic habitats such as open waters and macrophytes. Integration of C fluxes in the
ATTZ is challenging, as the aquatic habitats are interconnected and interact with each other. For compari-
son, we contrast our mean CO2 evasion with an estimate of net primary production (NPP) of
1,150 Mg C·km−2yr−1 for flooded forests in the central Amazon basin (Melack & Forsberg, 2001; Worbes,
1997). This rate is based on 30% of the live wood increment, fine litter, and large woody detritus inputs to
the aquatic system. Our mean CO2 evasion (590 Mg C·km−2yr−1) is about half of the NPP estimate, consid-
ering that these forests remain flooded for 270 days a year. The excess of C inputs from NPP corroborates
findings by other studies that argue for the mixed C sources to supply CO2 evasion rates in open waters of
the Amazon basin (Engle et al., 2008; Melack & Forsberg, 2001; Quay et al., 1992; Ward et al., 2013, 2016).

We suggest that C studies in aquatic habitats of ATTZ integrate C fluxes by weighting their relative areal cov-
erage in the floodplain. This practice will avoid overrepresentation of recent floodplain CO2 flux estimates
(e.g., de Rasera et al., 2013; Melack, 2016) that are based mainly on data obtained from open water habitats
but extrapolated to areas that encompass other aquatic habitats with different characteristics and typically
lower emissions, such as flooded forests and floating macrophytes. Future studies in flooded forests should
aim to improve estimates of tree stem CO2 fluxes as well as fluxes from soil when these forests are
not inundated.

Abril and Borges (2019) review the conceptual framework of carbon fluxes in the terrestrial aquatic conti-
nuum and highlight the need for including flooded land as a component in this continuum. They propose
that C fluxes from flooded lands should be treated as a transport term between upland and inland waters.
An example of their conceptual framework is provided by an organic carbon budget developed by Melack
and Engle (2009) for an Amazon floodplain lake. More C budgets studies in flooded lands are needed as
the basis for modeling studies as well as to provide correct comparisons between the terrestrial and aquatic
C fluxes.

The results from our study demonstrate the importance of combining gas measurements with meteorologi-
cal and limnological information to understand CO2 fluxes in flooded forests. Additional direct measure-
ments of k and studies of the mechanisms that generate turbulence and effects on k600 under low wind
speed conditions are needed. We recommend that further studies include measurements throughout the
day and night. The contrasting k and CO2 fluxes values observed in sheltered flooded forests versus wind‐
exposed forests should be considered in the integration of CO2 fluxes in forested wetlands.

Data Statement

Data were deposited in the KNB data repository operated by NCEAS and assigned a DOI:10.5063/
F1CR5RPD (https://doi.org/10.5063/F1CR5RPD.)

No authors have financial conflicts of interest.
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