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Abstract  12 

The reference model underlying the UK phytobenthos (diatom) tool for Water Framework Directive 13 

assessments is revisited and a new approach is proposed which uses quantile regression to predict 14 

the lowest values of the Trophic Diatom Index (equating to the best available condition) at any level 15 

of alkalinity to be predicted. Whilst a reference model based on least disturbed or minimally impacted 16 

conditions would be preferable in theory, in practice the absence lowland high alkalinity streams in a 17 

minimally impacted condition in the UK precludes the use of these approaches. Having proposed a 18 

revised reference model for phytobenthos, we then go on to examine the relationship between 19 

phytobenthos and macrophytes. These two groups respond to nutrients and other stressors in 20 

different ways with phytobenthos being more sensitive to nutrients whilst macrophytes better reflect 21 

the extent to which secondary effects are likely. We argue that averaging the two sub-elements of the 22 

“macrophytes and phytobenthos” biological quality element is a more realistic option than the 23 

current approach of taking the lower of the two assessments. It is, however, possible, to predict the 24 

value of the combined quality element from either sub-element, though we recognize that this also 25 

risks misclassifications. 26 

Keywords: diatoms, phytobenthos, reference concept, Water Framework Directive, macrophytes, 27 

rivers 28 

  29 
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1. Introduction 30 

The central objective of managing Europe’s aquatic environment is to ensure sustainable water 31 

resources (Water Framework Directive (WFD) Article 1; European Union, 2000).   “Sustainable” is a 32 

difficult notion to encapsulate in objective terms so a practical understanding has evolved that 33 

assumes that water bodies in a natural or near natural state possess sufficient resilience to ensure 34 

availability of the resource to future generations.   The WFD therefore sets a target (“good ecological 35 

status”) for water bodies to show no more than slight differences from their physical, chemical and 36 

biological condition at the natural or near natural state. 37 

The concept of “good ecological status” raises two philosophical challenges, along with a host of 38 

methodological issues related both to its measurement (Borja & Rodríguez, 2010; Birk et al., 2012; 39 

Kelly, 2013) and to the harmonization of concepts between 28 (now 27) countries of varying 40 

biogeographical characteristics operating within a federal union (Birk et al., 2013; Poikane et al., 41 

2015).  The philosophical challenges are, first, achieving a practical understanding of the natural or 42 

near natural state and, second, developing a meaningful understanding of a “slight change” from this 43 

state that ensures that key structural and functional aspects are protected.  The first of these, a 44 

workable notion of the natural or near-natural state, so-called ‘reference conditions’, is the subject of 45 

this paper.   46 

An understanding of ‘reference conditions’ firstly requires an appreciation that there are natural 47 

differences in ecological communities that relate to landscape and climatic factors. It also has to 48 

recognize that the European environment is constantly changing in geological time (Flannery, 2018) 49 

and that, for the past seven millennia, also shows evidence of alteration due to human activities 50 

(Behre, 1988). This alteration is profound, but also varies geographically in its severity. It is against this 51 

reality that we need to establish a reference point against which future change is measured. In some 52 

water body types (e.g. lakes) it is possible, in theory at least, to use sediment records to establish 53 

historical baselines that could serve as reference points (Bennion et al., 2004); however, such 54 

opportunities are rare and a more profitable option is to seek out contemporary locations which, by 55 

way of low population density and an absence of significant human activity in the catchment, are 56 

close to their natural state (Stoddard et al., 2006; Pardo et al., 2012).    57 

Stoddard et al. (2006) proposed four different views of the reference state: “minimally disturbed 58 

condition” refers to the absence of significant human disturbance and “historical condition” is a point 59 

in the past when this state was achieved (relevant in lakes, for example, where palaeolimnology can 60 

be used to define the reference state).  “Least disturbed condition” refers to contemporary sites that 61 
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do not conform to “minimally disturbed condition” but where human disturbance is deemed to fall 62 

below thresholds likely to impact ecological condition.  Finally, “best attainable (or “best available”) 63 

condition” recognizes situations where none of the other criteria are met but “where the impact on 64 

biota of inevitable land use is minimized” (Stoddard  et al., 2006).   The WFD itself does not specify in 65 

detail which of these is most appropriate for defining the “expected” condition of the biota, and 66 

differences in assumptions about the reference state complicate comparisons between national 67 

approaches to WFD implementation and harmonizing ambitions (Birk et al., 2013).  For this reason, a 68 

common approach to defining reference conditions for rivers was developed (Pardo et al., 2012), 69 

roughly aligned to the “least disturbed condition” of Stoddard et al. (2006).   This was a valuable step 70 

towards ensuring a harmonized implementation of the WFD in those regions where there are still 71 

catchments with relatively low population densities but, for many other regions, this European 72 

reference concept only served to highlight the impaired nature of the landscape. 73 

A further complication in the WFD is that ‘macrophytes’ and ‘phytobenthos’ are treated as a single 74 

‘Biological Quality Element’ (BQE), meaning that information about the condition of two ecosystem 75 

components which respond to change on very different spatial and temporal scales has to be 76 

combined when reporting outcomes.  In practice, most Member States (UK included) developed 77 

separate methods for macrophytes and phytobenthos (the latter often using diatoms as a proxy), 78 

combining outputs only at the final stage before reporting.   However, there is no reason, in theory, 79 

why two such different ecosystem components should respond similarly along a stressor gradient.  80 

Differences in growth rates, in their use of sediment nutrient pools and susceptibilities to other 81 

stressors will all contribute to differences in assessment outcomes even before differences in the 82 

tools themselves are considered.   The UK macrophyte tool, for example, uses two different measures 83 

of diversity as well as a direct measure of the impact of nutrients on the macrophyte community 84 

(Willby et al., 2009) whereas the UK phytobenthos tool, like most European methods, depends solely 85 

on a measure of nutrient impact (Kelly et al., 2008; Kelly, 2013).   Indeed, the use of diatom diversity 86 

as part of a status/condition assessment is questionable (Denicola & Kelly, 2014) and rarely insightful 87 

(e.g. Blanco et al., 2012).  There are, in other words, both theoretical and methodological issues 88 

besetting the combination of macrophytes and phytobenthos into a single BQE.   Whether or not this 89 

is relevant will depend upon how the two sub-elements are combined (either the average or the 90 

more stringent – the latter accords to the ‘one out, all out’ principle that is used when comparing 91 

BQEs).  In the UK, because the first iteration of the phytobenthos tool was consistently more stringent 92 

than the macrophyte tool, particularly in high alkalinity rivers, a decision to apply the ‘one out all out’ 93 

rule within the BQE effectively made the macrophyte tool redundant.    94 
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This, in turn, exposed methodological differences between the two approaches, particularly in the 95 

way that expectations (i.e. “reference conditions”) were calculated.   In brief, many high alkalinity (> 96 

125 mg L-1 CaCO3) lowland sites (especially chalk streams) that failed to achieve good status for 97 

phytobenthos supported rich macrophyte floras as well as (in many cases) good quality invertebrate 98 

and fish faunas.   The initial response to this divergence between macrophytes and phytobenthos 99 

involved recalibration of the phytobenthos reference model to bring it in line with the approach used 100 

to define reference conditions for macrophytes, along with rules about how the tools should be used 101 

(Kelly et al., 2014).   However, subsequent experience suggests that these administrative and 102 

methodological ‘fixes’ really need to be underpinned by (i) a better theoretical understanding of how 103 

both sub-elements respond to the abiotic variables from which “expected” metric values (reference 104 

values) are calculated, and (ii) how  the respective tools reflect target stressors.   105 

This paper presents an alternative approach to determining reference metric values , but also 106 

addresses the fundamental differences between phytobenthos and macrophytes that need to be 107 

considered when using the two groups as part of a combined ‘macrophytes and phytobenthos’ 108 

assessment for the WFD.   Though based around UK experiences, the lessons we describe are 109 

appropriate for any country within the EU that is currently revising methods, as well as for those 110 

countries wishing to join the EU.   In particular, we discuss the limitations of using the concept of 111 

”least disturbed condition” to select sites from which the denominator for ecological status estimates 112 

can be calculated, especially in regions of high population density and intensive agriculture.  We 113 

revisit the possibility of using ‘best available’ sites as an alternative.   Whilst the limitations of this 114 

approach identified by Stoddard et al. (2008) still apply, the availability of larger datasets and better 115 

knowledge of the limitations of the other possible approaches means that we now have the 116 

information necessary to use the ‘best available’ concept to produce  valid predictions of the 117 

expected condition that will, in turn, inform better management of the UK’s rivers.  The more realistic 118 

phytobenthos assessments that result then form the basis for a robust comparison with macrophyte 119 

assessments. Finally, we argue the case for taking the average of the two assessments rather than the 120 

most stringent of these.   121 

More specifically, the objectives are: 122 

1. To test the performance of the phytobenthos reference model currently used in the UK, with a 123 

particular focus on how it responds to variations in non-stressor variables such as alkalinity; 124 

2. To develop a new reference mode using the conceptual approach described above; 125 
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3. As the WFD requires macrophyte and phytobenthos assessments to be reported together, we 126 

also examine the consequences of the new phytobenthos reference model on combined 127 

macrophyte and phytobenthos assessments; and, 128 

4. To explore the potential for using a single sub-element (e.g. macrophytes or phytobnethos) to 129 

predict the EQR of the combined biological quality element. 130 

2. Methods 131 

2.1 Dataset 132 

The datasets used in this report consist of 1505 benthic diatom samples from 843 locations 133 

throughout the UK, all of which are linked to hydrochemistry data and 443 of which are also linked to 134 

macrophyte survey data.   Environmental variables included are PO4-P, NO3-N, alkalinity, conductivity 135 

and pH. Hydrochemistry data are expressed as annual means using either the arithmetic mean 136 

(alkalinity and pH) or geometric mean (all other variables) of all available data for the period 2012-137 

2017. Determinations less than the detection limit were taken as half the detection limit. This may 138 

overestimate actual values at low concentrations but water chemistry data was used primarily to 139 

validate diatom metrics and only used as a guide to modify the indicator values of a few, rare taxa 140 

(see below). 141 

Diatom samples were collected and analysed following Kelly et al. (2008) using methods that conform 142 

to EN13986 and EN14407 (CEN, 2014a,b); minor modifications to the Trophic Diatom Index of Kelly et 143 

al. (2008: TDI3) are described in UK TAG (2014a: TDI4) and in Kelly et al. (2018: TDI5).   Macrophytes 144 

were surveyed and evaluated following UK TAG (2014b) which corresponds to EN14184 (CEN, 2014c).  145 

In both cases, to comply with WFD criteria, results are expressed as observed metric values divided by 146 

expected metric values, so-called Ecological Quality Ratios (EQRs). For diatoms, EQR is calculated as 147 

(100 – Observed TDI) / 100 – Expected TDI), as the TDI increases as ambient nutrient availability 148 

increases).   EQR = 1 indicates observed = expected condition, suggesting little or no anthropogenic 149 

impact on the biota.  150 

2.2 Statistics 151 

In order to aid comparisons between diatoms and macrophytes, EQR scales were normalized so that 152 

status class boundaries occurred at regular intervals (0.2, 0.4, 0.6 and 0.8) along the EQR scale.  153 
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Analyses were performed with the R software package (R Development Core Team 2012) with the 154 

following packages: mgcv (Wood, 2017) for generalised additive modelling (GAM) and quantreg 155 

(Koenker, 2017) for quantile regression.  The GAM models were fitted using thin plate splines, with 156 

the number of knots set at 7. This value was chosen as the main purpose of the model was to provide 157 

a general indication of a non-linear trend. We checked the models using the gam.check function to 158 

examine the distribution of residuals and to ensure that the basis dimension was adequate. 159 

2.3 Development of reference models 160 

The phytobenthos reference model currently used in the UK  was developed by building a linear 161 

regression model of the response of the biological metric to abiotic properties of a site, using a sub-162 

set of sites deemed to have no or minimal levels of anthropogenic pressure (Table 1).  For the first 163 

iteration of the UK phytobenthos tool, only alkalinity and season made significant contributions to the 164 

relationships (Kelly et al., 2008) in contrast to the situation for macrophytes where distance from 165 

source, source altitude and slope also play a significant role (Willby et al., 2009):  166 

TDIexp = (56.83*log10(alkalinity) – (12.96*(log10(alkalinity)2 + 3.21(season) – 25.36    [1] 167 

Where: “TDIexp” = expected value of TDI and “season” is 0 for samples collected in January to June and 168 

1 for samples collected from July to December.  169 

A shortcoming of the above approach was that for the phytobenthos there were very few sites from 170 

high alkalinity rivers that passed the screening criteria for reference sites and thus the expected TDI of 171 

such sites was determined by extrapolation.  This reference model produced relatively low TDI values 172 

in rivers of high alkalinity resulting in very few of these sites achieving better than moderate status. 173 

Due to the divergence between macrophyte and phytobenthos assessments, a second version of the 174 

equation for phytobenthos was derived using a larger subset of sites that met the screening criteria 175 

used for macrophytes, which included additional sites from high alkalinity rivers that still contained a 176 

range of sensitive macrophyte taxa (Table 1).   This yielded the following equation: 177 

TDIexp = 9.933  exp(log10(alkalinity)  0.81)       [2] 178 

This equation, however, also performed poorly in high alkalinity sites, effectively preventing 179 

phytobenthos from being used in status assessments in such situations.  These two approaches 180 

demonstrate the difficulties of using the small data sets available at the time along with an 181 

incomplete understanding of reference conditions.  182 
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In this paper, rather than use a subset of data from “least disturbed sites” we have applied Stoddard 183 

et al. (2008)’s concept of “best attainable (available) sites”.  Such sites do not necessarily equate to 184 

the WFD’s definition of reference sites as having “no or minimal anthropogenic [alteration]” so care is 185 

needed when using values derived from these sites as the denominator in EQR calculations. However, 186 

where true reference conditions no longer exist the approach provides a more robust method of 187 

providing the benchmark that the WFD requires.  This issue will be dealt with in greater length in the 188 

Discussion. 189 

 190 

Table 1.  Screening criteria applied in selection of reference sites for original (equation 1: Kelly et al., 191 

2008) and revised (equation 2) diatom reference models.   The screening criteria for the revised 192 

reference model were also used to define expected values of metrics within the UK macrophyte tool 193 

(Willby et al. 2009).  194 

Original reference model (Kelly et al., 2008) Revised reference model (Willby et al., 2009) 

Alkalinity < 50 mg L-1 CaCO3:  

20 μg L-1;Soluble reactive phosphorus (SRP): 2 

mg L-1 Nitrate-N 

alkalinity  50 mg L-1 CaCO3:  

30 μg L-1 SRP: 4 mg L-1 

Samples with TDI >50 removed 

 

Filamentous algal cover <5% 

Number of macrophyte taxa >4 

Predictions of number of invertebrate taxa or 

average score per taxon > middle of good 

status 

Total oxidised nitrogen: type specific: 

Low alkalinity (upland and lowland): ≤ 1mg L-1 

High alkalinity: ≤ 2 mg L-1 

SRP type specific: 

Low alkalinity lowland: ≤ 20 µg L-1 

Low alkalinity upland: ≤ 15 µg L-1 

High alkalinity lowland: ≤ 40 µg L-1 

High alkalinity upland: ≤ 30 µg L-1 

Very high alkalinity: ≤ 50 µg L-1 

Notes:  195 
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1 Low alkalinity: < 50 mg L-1 CaCO3 (based on long-term average at site); high alkalinity: ≥50 mg L-1 196 

CaCO3; very high alkalinity: > 150 mg L-1 CaCO3. 197 

2 Upland: >80 m above sea level; lowland: ≤ 80 m 198 

3 Predictions of invertebrate status were based on practice current at time of site selection, using 199 

approaches described in Wright et al., 1989) 200 

 201 

3. Results 202 

3.1 Overview of data 203 

A total of 525 non-planktonic diatom taxa were identified in the 1505 samples.   These samples 204 

covered a wide range of water quality (Table 2) within which both PO4-P and NO3-N were correlated 205 

with alkalinity and with each other (Fig. 1a., b., c.).  There was also a significant correlation between 206 

pH and alkalinity (Fig. 1d).  207 

Table 2: Summary statistics of selected environmental variables for the dataset.  208 

Variable N Mean Median Min Max 

PO4-P (µg L-1) 1505 81.18 28.23 1.0 3600 

NO3-N (mg L-1) 1505 2.47 1.45 0.05 27.33 

Conductivity (µS cm-1) 1357 320 238 26 2162 

Alkalinity (mg L-1 CaCO3) 1505 79.9 56.2 1.7 382 

pH 1373 7.70 7.78 5.77 8.44 
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 209 

Figure 1. Relationships between hydrochemical variables within the dataset used for this study.   210 

3.2 Evaluation of existing reference model 211 

TDI values generated by both the original (equation 1) and revised (equation 2) phytobenthos 212 

reference models hug the lower edge of the data cloud (composed of all samples, whether or not 213 

they fulfil reference screening criteria) at low and moderate alkalinity (Fig. 2).  However, they diverge 214 

at high alkalinity, with equation 1 levelling off when TDI = ~40 whilst equation 2 continues to increase, 215 

so that “expected” TDI values of 60 or more are possible in very high alkalinity water.  Both predicted 216 

lines lie within the data cloud; however, at higher alkalinity values equation 1 returns values greater 217 

than many of the observed TDI values, meaning that a large number of sites would have a diatom EQR 218 

value exceeding 1 and thus be classified at high status.  219 

The limitations of the reference model can clearly be seen when the TDI values are converted to EQRs 220 

and modelled using a multivariate GAM with soluble nutrients (PO4-P and NO3-N) and alkalinity as 221 

independent variables. TDI EQR has a clear response to phosphorus (Figure 3a) and a weaker 222 

response to nitrate-nitrogen (Figure 3b), as expected, but there is also a marked increase of EQR at 223 

higher alkalinity values (Figure 3c). By comparison, the same relationships for macrophytes (Figure 3f) 224 

show a much smaller EQR response to alkalinity. The consequence of this on EQR values for these two 225 

BQEs is shown in Figure 4, with diatoms generally providing more stringent classifications (negative 226 

differences) at lower alkalinity (< 50 mg CaCO3 L-1), but less stringent classifications (positive 227 

differences) at very high alkalinity (> 125 mg CaCO3 L-1).   A further complication is that high 228 

“expected” values mean that five status classes have to be compressed into less than half of the total 229 
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TDI scale and, as a result, phytobenthos could not be used for ecological status classification in high 230 

alkalinity rivers in the UK.  The rest of the paper, therefore, is focused on developing a more effective 231 

reference tool for diatoms.   232 

 233 

Figure 2 Modelled reference TDI values overlain on scatter plot of observed TDI.  Blue line = original 234 

reference equation (equation 1: spring dashed, autumn solid); black line = current reference equation 235 

(equation 2); red line = new reference equation (equation 4: spring dashed, autumn solid)  236 
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  237 

Figure 3: Relationship between TDI5 (light microscopy) EQR (a-c), macrophyte final EQR (“Mac EQR”, d-238 

f), and TDI using the new reference TDI equation (with season) (g-i) and soluble reactive phosphorus, 239 

nitrate-nitrogen and alkalinity, showing GAM smooths. EQR values are expressed as an anomaly, i.e. the 240 

values are relative to the overall mean EQR (the zero dotted line) , points show distribution of residuals.   241 

 242 

Figure 4: Difference between diatom (TDI5) and macrophyte EQR values plotted against alkalinity. Blue 243 

lines show regressions fitted to 90th, 50th and 10th quantiles, dotted lines mark an EQR of ±0.1 (a WFD 244 

class) and the zero value (no class difference). 245 
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3.3 Development of new diatom reference model 246 

It is clear that selecting reference sites in rivers is a difficult process and, inevitably, very few sites 247 

from lowland higher alkalinity rivers survive the screening process. An alternative strategy is to fit 248 

regression models to a sub-set of sites that have the lowest observed TDI values for a given alkalinity, 249 

the so-called “best available” approach. This can be done by fitting a regression to a lower quantile of 250 

the relationship between observed TDI and alkalinity. As alkalinity is correlated with the soluble 251 

phosphorus concentration (Figure 1a), fitting a regression between alkalinity and a lower quantile of 252 

TDI allows for the effect of increasing background (natural) phosphorus along this gradient. However, 253 

alkalinity is also correlated with nitrate-nitrogen (Figure 1b).  Although background phosphorus is 254 

likely to be correlated with alkalinity as sources of both are related to catchment geology, this is 255 

unlikely to be true for background nitrogen, which should be low across the range of alkalinity. To 256 

allow for this, nitrate-nitrogen concentration has also been included as a predictor variable in a 257 

quantile regression equation. 258 

A regression model was fitted to the 25th quantile using the log10 of alkalinity and nitrate nitrogen as 259 

predictor variables (Equation 3). In addition, sample season was included as a categorical variable 260 

(spring = 0, autumn = 1) with season split before/after July (Equation 4), as this was found to be a 261 

significant variable in the original diatom reference equation. 262 

Both models show highly significant effects of alkalinity and nitrate-nitrogen, and model 2 showed a 263 

just significant effect of season (p = 0.03). The resulting equations are shown in Table 3 and Fig. 2. 264 

These parameters were then used to predict reference TDI values, taking a nitrate-nitrogen 265 

concentration of 0.5 mg NO3-N L-1, a conservative value less than the threshold of 1 mg L-1 used by 266 

Willby et al. (2009) and thus assumed to be consistent with reference conditions across the range of 267 

alkalinity.  268 

269 
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Table 3: Quantile regression equations for revised reference model. 270 

term estimate std. error statistic p.value 

Equation 3     

(Intercept) 7.216 2.025 3.563 0.0004 

Log10 Alkalinity (mg L-1 CaCO3) 18.9 1.231 15.35 <0.0001 

Log10 NO3-N (mg L-1) 15.15 1.013 14.95 <0.0001 

Equation 4     

(Intercept) 5.061 2.105 2.404 0.0163 

Log10 Alkalinity (mg L CaCO3) 19.69 1.239 15.89 <0.0001 

Log10 NO3-N (mg L-1) 14.95 1.008 14.83 <0.0001 

Season 1.856 0.8629 2.151 0.0317 

 271 

The EQR for TDI5 was calculated using the new reference equation, including season as a predictor; 272 

Fitting GAM models including nutrients and alkalinity demonstrates that the new reference equation 273 

results in EQRs that still respond to nutrients (Figure 3g.,h.) but where the effect of alkalinity on EQR 274 

has been removed (Figure 3i, Table 4) and should thus give a more reliable reflection of the ecological 275 

response to the nutrient stressor gradient.   276 

 277 

278 
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Table 4: GAM model for TDI5 EQR using new reference TDI model against nutrients and alkalinity. 279 

Parametric coefficients: 280 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.616 0.003 179.115 < 0.001 

Approximate significance of smooth terms (df = degrees of freedom): 281 

 Estimated df Reference df F p-value 

s(LogP) 4.761 5.494 56.824 < 0.001 

s(LogN) 5.820 5.983 18.000 < 0.001 

s(LogAlk) 3.839 4.632 1.722 0.122 

 282 

3.4 Implications for combining macrophytes and phytobenthos 283 

The current rule for combining macrophytes and diatoms in the UK is that the lowest of the two EQR 284 

values determines the overall macrophyte and phytobenthos BQE classification (in effect, applying 285 

the “one-out, all-out” rule within the BQE).  Using the current UK TDI reference model (equation 2), 286 

diatoms tended to be more stringent at low alkalinity and macrophytes at high alkalinity (Figure 5a). 287 

However, the new diatom reference equation shifts this balance, leading to consistently more 288 

stringent classifications being obtained using diatoms across the entire alkalinity range (Figure 5b). 289 

This means that, in effect, macrophytes will rarely determine final classifications so will have less 290 

direct relevance to the river basin management process. There is a case, therefore, for re-examining 291 

the manner in which results from macrophytes and diatoms are combined and, in particular, to 292 

consider whether averaging the metrics might provide a better approach.    293 
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 294 

 295 

Figure 5: Difference between diatom (Diat) and macrophyte (Mac) EQR values using (a) current TDI 296 

reference and (b) new TDI reference, split by alkalinity type (L =  < 75 mg CaCO3 L-1, M = 75 - 125 mg 297 

CaCO3   L-1, >125 mg CaCO3 L-1). Horizontal lines mark ±0.1 EQR units i.e. 1 WFD class.    298 

Comparing the relationships between each of the metric EQRs, the average and the lowest of either 299 

metric EQR with PO4-P concentration (Figure 6) clearly demonstrates that the new diatom reference 300 

equation has a better relationship with phosphorus gradient than the current equation (linear 301 

regression: r2 0.372 compared to r2=0.123) and somewhat outperforms macrophytes (r2=0.313), 302 

whilst the average of the new diatom EQR and macrophyte EQR gives the strongest relationship of all 303 

(r2=0.453), although only slightly stronger than that using the lowest of diatom and macrophyte EQRs 304 

(r2=0.430). The uplift in sensitivity from considering both macrophytes and diatoms together rather 305 

than in isolation is, however, quite clear.  306 

 307 
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 308 

Figure 6: Relationship between EQR and SRP concentration, with linear model (LM) and GAM model fits. 309 

3.5 Prediction of average EQR from single metrics 310 

The average EQR of the new diatom and macrophyte EQRs will be lower than one of the two 311 

individual metrics (typically macrophytes, as diatoms are now, on average, more stringent). The 312 

extent to which either sub-element departs from the average of the two can be estimated by 313 

modelling the average EQR from the individual metric EQRs and alkalinity (Tables 5 & 6, Figure 7). On 314 

average the Diatom EQR values are increased by 0.06 EQR units and the macrophyte EQR values are 315 

decreased by 0.06 EQR units (slightly more than a quarter of a class), though the extent of the change 316 

depends upon the position along the gradient. 317 
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 318 

Figure 7: Conditional regression plots, showing relationship between Average EQR and TDI5-EQR (left) 319 

and Macrophyte-EQR (right)) at median alkalinity for models listed in Tables 4 and 5.   Red line = 1:1 fit. 320 

Table 5: Linear model predicting Average EQR from Diatom TDI5 EQR and log10 Alkalinity. 321 

  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.3426 0.0258 13.25 < 0.001 

TDI5_EQR 0.6988 0.0233 30.05 < 0.001 

Log10_Alkalinity -0.0545 0.0090 -6.024 < 0.001 

Table 6: Linear model predicting Average EQR from Macrophyte final EQR and log10 Alkalinity. 322 

  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.2694 0.0266 10.13 < 0.001 

Macrophyte_EQR 0.6849 0.02162 31.67 < 0.001 

Log10_Alkalinity -0.0533 0.00871 -6.122 < 0.001 
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4. Discussion 323 

4.1 Combining macrophyte and phytobenthos assessments 324 

The WFD presents some genuine scientific challenges, as well as frustrations such as the decision to 325 

include both macrophytes and phytobenthos as a single BQE, which makes little logical sense. 326 

“Macrophytes and Phytobenthos” includes photosynthetic organisms with a wide range of growth 327 

strategies. Trying to reconcile differences in classifications produced by macrophytes and 328 

phytobenthos needs some recognition of how these respond at different spatial and temporal scales. 329 

“Macrophytes” encompass a range of growth forms, including filamentous algae, mosses, free 330 

floating and rooted vascular plants, the latter including species that are wholly-submerged and 331 

emergent. There is also a range of sizes, from a few millimetres to several metres in length. 332 

Macrophytes exploit a range of habitats within a stream, some growing directly on rocks, whilst 333 

others are rooted in fine or coarse sediments. Life-cycles range from a few weeks (in the case of some 334 

of the algae) to a year or longer, in the case of vascular plants. This means that the macrophyte 335 

assemblage as a whole is exposed to a variety of sediment and water column nutrient pools, and 336 

responds to change at different temporal scales. 337 

“Phytobenthos”, on the other hand, is sampled from a single habitat (biofilms on rocks and/or plant 338 

surfaces). The assemblage is dependent primarily on water column nutrients, and individual 339 

organisms are smaller and shorter-lived. Studies have shown that diatom assemblages are shaped by 340 

in-stream nutrient and flow conditions over the preceding two to three weeks (Lavoie et al., 2008; 341 

Snell et al., 2014). 342 

It is important to acknowledge these differences in order to develop a robust approach to dealing 343 

with the combined “Macrophyte and Phytobenthos” BQE. They also help to explain the problems 344 

encountered with the present approach, in which high alkalinity reference sites for phytobenthos 345 

were selected using expert judgement based on an understanding of the macrophyte communities. 346 

Well-developed and species-rich macrophyte communities will be better-buffered against 347 

consequences of occasional nutrient pulses than phytobenthos and we believe that using 348 

phytobenthos from such sites may have led to inflated predictions of expected TDI in high alkalinity 349 

rivers. 350 

This leaves the problem of how reference conditions for phytobenthos should be set in high alkalinity 351 

rivers. Having exhausted other options, we have adopted a new approach based on the “best 352 

available” results obtained from ongoing monitoring. The lower edge of the data cloud produced 353 
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when TDI is plotted against alkalinity, regardless of stressor state, should indicate the best possible 354 

conditions that are encountered. That the current reference model follows a line closer to the 355 

median, particularly at high alkalinity, suggests a problem with this model. We have, therefore, fitted 356 

a new relationship to this data cloud using quantile regression. The result is a model that is more 357 

stringent than the current one, particularly at high alkalinity, but is a better reflection of the 358 

distribution of the data.   Our experience of UK conditions is that, at low and moderate alkalinity, 359 

“best available” equates to “least disturbed conditions” (sensu Stoddard et al., 2006) but diverges 360 

from this at high alkalinity where geological conditions have often resulted in situations well-suited to 361 

settlement and agriculture. 362 

However, this means that we now have different reference concepts for the two sub-elements within 363 

a single BQE. Can this be justified? Given the differences between macrophytes and phytobenthos, 364 

different responses to stressors are to be expected and this will extend to the appropriate variables 365 

used to screen reference sites. In particular, the sensitivity of phytobenthos to nutrients at a temporal 366 

scale finer than that used for routine monitoring raises issues about the use of a chemical screening 367 

threshold that cannot be supported by land use screening criteria. 368 

All of our work to date suggests that a ‘significant change’ in community composition occurs at lower 369 

nutrient concentrations for phytobenthos than it does for macrophytes. Therefore, the way in which 370 

the two sub-elements are combined into the final BQE is critical. Using the “one out all out” rule 371 

within the macrophytes and phytobenthos BQE with a stringent diatom model will lead to some high 372 

alkalinity sites (such as chalk streams) failing to achieve GES despite other, more conspicuous (and 373 

valued) elements of the biota (invertebrates, fish, macrophytes) being at high or good status. In 374 

particular, this does not acknowledge the key habitat structuring role of macrophytes, especially at 375 

higher alkalinities, or recognize the basic biological differences between the sub-elements. Averaging 376 

the sub-elements means that information from both sub-elements contributes to the final decision, 377 

and “one out, all out” still applies between BQEs.  378 

A possible problem with averaging is that this will reduce the likelihood of detecting ecological 379 

impacts in situations where macrophyte status is lower than that of diatoms due to non-nutrient 380 

stressors. A final possibility (not considered here) would be to introduce a more complex rule (e.g. to 381 

use the average of the two sub-elements in cases where macrophyte EQR > diatom EQR, but, 382 

otherwise, to use the worst case). This type of rule is already in use for lake phytoplankton analyses in 383 

the UK where cyanobacteria abundance is combined with the other constituent metrics by averaging 384 

when they are worse than the other metrics but are ignored when they are better (UK TAG, 2014b). 385 
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Applying a similar rule to macrophytes and phytobenthos could be considered but would require 386 

additional testing.    387 

Another possibility is that the observed differences are the result of different means of assessing the 388 

status of the two sub-elements.   The UK macrophyte tool uses a multimetric approach to compare 389 

sites against expectations that are based on several predictor variables (Willby et al., 2009) whilst 390 

phytobenthos relies on a single metric which is compared to predictions based on a single predictor 391 

variable, alkalinity (Kelly et al., 2008). These other predictors (slope, elevation, elevation of source and 392 

distance from source) are necessary due to the variation in size of macrophytes and their sensitivity 393 

to flow and substratum.  We have repeatedly tested a wider range of abiotic predictor variables on 394 

datasets of phytobenthos reference sites and always find alkalinity to be the only one with a 395 

significant response.   Developing multimetric models based on diatoms is also not straightforward: 396 

diversity, for example, is a problematic measure when applied just to diatoms (Denicola & Kelly, 2014) 397 

whilst metrics developed to evaluate other stressor gradients  (e.g. Diatom Acidification Metric; 398 

Juggins et al., 2016) will not necessarily buffer the response to the primary nutrient gradient.  The 399 

approach to phytobenthos assessment used in the UK is broadly in line with that elsewhere in Europe 400 

(Poikane et al., 2016), so we do not believe that the issues addressed here are unique to the UK.   401 

However, this does mean that phytobenthos is not well-equipped to detect “undesirable 402 

disturbances” (i.e. secondary effects arising from the impact of nutrients on the photosynthetic biota) 403 

so, again, a more nuanced means of interpretation than either averaging or taking the lowest might 404 

be appropriate, particularly at lower EQRs.  405 

4.2 Revisiting “reference conditions” 406 

The concept of ecological status, which is integral to the WFD, requires comparisons of the observed 407 

biota and supporting elements with those expected in conditions of no or minimal anthropogenic 408 

alteration (see Annex V, section 1.2).  Reference conditions, in other words, define an ideal situation, 409 

whilst “good ecological status” recognizes a condition where key ecosystem services are delivered, 410 

fulfilling the WFD’s ambition to “promote sustainable water use based on a long-term protection of 411 

aquatic resources” (Article 1).   412 

The issue of reference conditions has been controversial throughout the lifetime of the WFD, with 413 

purists arguing for a very high standard of reference screening (Moss, 2008; Demars et al., 2012) 414 

whilst pragmatists point out that very strict criteria reduces the pool of qualifying sites to the point 415 

where there are insufficient to provide a reliable baseline for assessments that form the basis of 416 

statutory regulation.   In practice, the definition of reference conditions is critical only if good 417 
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ecological status is defined in terms of the amount of species turnover (or change in an index value) 418 

from this baseline (about half of all ecological assessment methods developed for the WFD define 419 

status classes by dividing the scale below reference into five equally-spaced sections: Birk et al., 420 

2012).   Both phytobenthos and macrophyte assessment tools in the UK use a more nuanced 421 

definition of good status (Kelly et al., 2008; Willby et al., 2009), which, whilst still expressed as a 422 

distance from reference, does not depend directly on the value of the index at reference conditions.   423 

We argue that ensuring a definition of “good status” that is consistent with sustainable use of aquatic 424 

resources is, actually, more important than conceptualizing the “perfect” stream.   425 

A second important role of reference conditions within WFD implementation has been to act as a 426 

benchmark for international comparisons.  The WFD required Member States to “intercalibrate” their 427 

high and good status boundaries in order to ensure a common level of ambition (Birk et al., 2013; 428 

Poikane et al., 2015) and a common understanding of “reference” was regarded as a necessary first 429 

step towards this goal (Pardo et al., 2012).   However, whilst some exercises profited from an agreed 430 

understanding of the reference state (Kelly et al., 2009; Bennett et al., 2011), many other exercises 431 

foundered because reference conditions simply did not exist for many types of water body within 432 

Europe, prompting the development of a range of alternative approaches to ensure that status class 433 

boundaries were consistent between countries (Birk et al., 2013; Kelly et al., 2014).   Time has, 434 

therefore, shown that the pursuit of a hypothetical ideal needs to be tempered by pragmatism if the 435 

long-term objectives of the WFD are to be secured.   436 

This is the background against which the present study unfolded.   “Best attainable condition” is, 437 

intrinsically, the weakest of the reference concepts discussed by Stoddard et al. (2008); however, by 438 

using a very large dataset and modelling lower quantiles of the relationship between biology and 439 

physico-chemical variables, we believe that it is possible to identify the lowest values of the biological 440 

metric that are achievable in practice.   Whether these should be considered as “reference 441 

conditions” is a moot point.  When a similar approach was applied to lowland Romanian lakes, there 442 

were concerns that the extent of degradation was such that the quantile approach should only be 443 

used to identify the high/good status boundary rather than reference conditions (Kelly et al., 2019).  444 

However, our judgment (based on knowledge of high alkalinity streams in the UK) is that this quantile 445 

can be treated as being close to “reference conditions” and can therefore serve as a denominator in 446 

EQR calculations.   Use of the 25th, rather than a more extreme, percentile, ensures that the quantile 447 

regression equation is “anchored” by a substantial quantity of data and is offset by the use of a 448 

stringent concentration of nitrate-N when estimating the expected value of metrics.   The decision 449 

about whether “best available” is good enough to ensure the sustainable use of water resources is, 450 

inevitably, a judgement call.  What is clear from our study is that setting “expected” conditions for 451 
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phytobenthos in this manner creates a substantial challenge for regulators, faced with a large number 452 

of sites which clearly still not meet the criterion of “good ecological status”.   453 

4.3 Conclusion: the “art of the possible” 454 

This work was performed at a time when UK environment agencies were working with reduced 455 

budgets due to a central government policy of fiscal austerity.  This has resulted in a “more with less” 456 

ethos in which all aspects of the organization were examined to ensure that the best possible use was 457 

made of limited resources. This scrutiny has extended to monitoring and assessment practice, and 458 

one question that naturally arises is whether assessments of both macrophytes and phytobenthos are 459 

necessary in order to make an assessment of the overall condition of “macrophytes and 460 

phytobenthos”.   In reality, poor performance of the current phytobenthos reference model had 461 

precluded its use in high alkalinity streams, even though there are situations (very small streams, 462 

ditches, canalized rivers etc.) where the macrophyte method cannot be applied or requires a bespoke 463 

approach (Willby et al., 2009).  However, budgetary circumstances do not necessarily mean that the 464 

UK statutory agencies will now be enthusiastic about adopting the new model (however convincing its 465 

performance) alongside macrophyte assessments as this will require additional monitoring effort. 466 

We have shown that it is possible to predict the value of the combined “macrophytes and 467 

phytobenthos” BQE from either of the sub-elements (Fig. 7; Table 5).  Whether it is always wise to do 468 

this is another matter.   Redundancy of phytobenthos assessments has been shown for lakes (Kelly et 469 

al., 2016; Schneider et al., 2019) though care is needed when extrapolating this conclusion to rivers as 470 

phytobenthos is often one of three elements of the photosynthetic biota (along with macrophytes 471 

and phytoplankton) evaluated in lakes, whilst only two are routine in all but the larger rivers.   In 472 

practice, phytobenthos and macrophytes together capture different aspects of ecosystem complexity 473 

and we would recommend that both should be used wherever possible, not least because 474 

macrophytes, especially, respond to stressors such as hydromorphological alteration to which 475 

phytobenthos is less sensitive (Schneider et al., 2012).   If decision-making is devolved to biologists 476 

who know the local context then we suspect that there will be situations where either macrophytes 477 

or phytobenthos alone will provide robust assessments and insights into key stressors.  Where 478 

decisions are taken at higher levels, or evidence gathering is driven by budget constraints, then 479 

misclassifications should be expected. 480 

The challenges presented by the WFD were large and, in the two decades since it was passed, much 481 

has been learned about the science underlying effective implementation.  It is, therefore, 482 

appropriate, that methods that were developed in the first years of the WFD should be revisited and 483 
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their performance reevaluated against the larger datasets now available.   This will, inevitably, lead to 484 

shifts in classifications which may not be popular with the bureaucrats responsible for water 485 

management. However, the greater risk is that poor decisions will result from the use of tools that, 486 

for perfectly understandable reasons, may not be as effective as they should be.   Compared to capital 487 

investment in wastewater treatment, for example, the cost of periodic “servicing” of WFD assessment 488 

tools is miniscule.   489 
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