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• SDM is an effective tool for predicting plant invasions24 

• An integrative PAB approach to explain Acacia saligna distribution in Sardinia25 

• Combined action of propagule pressure, abiotic, biotic factors promotes the invasion26 

• iSDM largely benefits from the use of high resolution and dedicated thematic layers27 

• iSDM is an effective tool for decision-making to prevent the invasion risk28 

29 

Abstract 30 

The present study aimed to investigate the role of propagule pressure (P), abiotic (A), and biotic (B) factors 31 

(collectively indicated as PAB) on the suitability of the Mediterranean island of Sardinia (Italy) to be 32 

invaded by the tree Acacia saligna, recently included in the list of invasive alien species of European Union 33 

concern. 34 
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To this aim, a binomial Generalized Linear Model was applied for disentangling the relationship between 35 

432 A. saligna occurrence records and 10 thematic layers, at high-resolution (10 x10 m), used as proxies 36 

for the 3 categories of PAB variables. The 432 occurrence records of A. saligna were periodically monitored 37 

(period 2000-2018) to check the persistence of the populations and their invasive status. The predictive 38 

power of the model was evaluated by computing the mean of the AUC scores, through cross-fold validation. 39 

The model adequately described how the PAB factors influence the presence of A. saligna which is mainly 40 

shaped by abiotic factors such as topography, and biotic factors such as the presence of woody dune 41 

vegetation, and to a lesser extent by other predictors. The projection of the model to the whole island clearly 42 

shows that suitability varies at the landscape level due to the variation of the PAB across the territory. The 43 

probability of A. saligna occurrence near the coast is higher in sand dunes. In the internal areas of the island 44 

it occurs close to the roads and urban areas. This study and the tested methodology could represent a suitable 45 

tool to prioritize areas for the monitoring of A. saligna to meet the requirements of the Regulation (EU) No. 46 

1143/2014 on Invasive Alien Species (the IAS Regulation). 47 

 48 

Keywords Conservation planning, Generalized Linear Model, Invasive Alien Species Regulation, invasive 49 

Species Distribution Model, Sardinia. 50 

51 
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1. Introduction 52 

In 2002 the Conference of the Parties to the Convention on Biological Diversity (CBD) adopted the Guiding 53 

Principles on Invasive Alien Species (IAS Decision VI/23) as a basic policy response. The first CBD 54 

guiding principle states that prevention is generally far more cost-effective and environmentally desirable 55 

than measures taken after IAS introductions. Therefore, the identification of the major pathways of 56 

introduction and secondary spread, the areas and land uses more prone to invasion, and the implementation 57 

of early warning-rapid interventions are all key actions to be included in a national strategy for preventing 58 

IAS introduction, establishment and spread (Genovesi and Shine, 2004; Early et al., 2016). Predicting the 59 

risk from IAS establishment and negative impacts is of great importance for policy makers, land managers 60 

and other stakeholders, to delineate specific action plans and to choose or prioritize measures against IAS 61 

(Venette, 2015; Bazzichetto et al., 2018a). Therefore, invasive alien species distribution models and habitat 62 

suitability maps (iSDM) are a very useful tool producing reliable and repeatable information with which to 63 

inform decisions (e.g., Guisan and Thuiller, 2005; Broennimann and Guisan, 2008; Jiménez-Valverde et 64 

al., 2011; Petitpierre et al., 2012; Guisan et al., 2013). Nevertheless, application of iSDMs may have several 65 

limitations as a result of the invasion process, e.g. violation of the equilibrium assumption and 66 

underestimation the potential climatic niche of the species (e.g., Fournier et al., 2017; Barbet-Massin et al., 67 

2018; Chapman et al., 2019). 68 

The unified framework proposed by Blackburn et al. (2011) suggests that the invasion process can be 69 

divided into a series of stages from introduction to successful establishment until invasion. Many studies 70 

have addressed the interactions between alien species’ invasive capacity and the susceptibility of habitats 71 

or communities to invasion (e.g., Pyšek and Richardson, 2008; Mathakutha et al., 2019). In their review of 72 

invasion ecology hypotheses, Catford et al. (2009) suggest considering each stage of invasion as a function 73 

of propagule pressure (P), abiotic environment (A) and biotic relationships (B) (PAB hypothesis). The 74 

propagule pressure, i.e. the number of introduced propagules, is a prerequisite for invasion (Colautti et al., 75 

2006; Malavasi et al., 2014), while alien species establishment depends on the physical environment 76 

(abiotic filter; e.g., Malavasi et al., 2018) and on the biological features of the hosting community (biotic 77 

filter; e.g., Broennimann et al., 2012). 78 

We decided to apply the PAB hypothesis to the well-known globally invasive plant Acacia saligna, an 79 

evergreen tree native to Western Australia (Maslin, 1974). It is a fast-growing tree that propagates both 80 

vegetatively and sexually, is well adapted to semiarid landscapes and quite resilient to fire (George et al., 81 

2008). The current wide invasive range occupied by A. saligna is due to a combination of characteristics 82 

such as the adaptability to different environmental conditions, the large seed production and easy 83 

germination, the establishment of a rich seed-bank in the soil (Maslin and McDonald, 2004). Acacia saligna 84 
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is at the same time one of the most planted non-timber woody species used for soil protection, reforestation, 85 

ornamental purposes, and for many other uses (Maslin and McDonald, 2004; Kull et al., 2011). In the 86 

Mediterranean, many Acacia species were introduced and planted mainly for stabilizing sand dunes and for 87 

preventing soil erosion (Del Vecchio et al., 2013). At present, A saligna is widespread in Mediterranean 88 

climates in its native range (Australia) and as an invasive non-native species (e.g., Algeria, Chile, Cyprus, 89 

Israel, Italy, Morocco, Portugal, South Africa and Spain, Thompson et al., 2015) as well as in other areas 90 

with seasonally dry conditions (e.g. Kenya) where it invades a great variety of habitat types (Le Maitre et 91 

al., 2000; Lorenzo et al., 2010a b; Boudiaf et al., 2013; Hernández et al., 2014; Lazzaro et al., 2014; Celesti-92 

Grapow et al., 2016). 93 

Invasion of A. saligna has detrimental effects on biodiversity and ecosystem functioning. Acacia saligna 94 

invaded areas are characterized by dense thickets (Lehrer et al., 2013) in which natural biodiversity is 95 

significantly modified (Del Vecchio et al., 2013). In addition to this, A. saligna invades several habitats of 96 

conservation value (Stanisci et al., 2012) and protected areas (Pinna et al., 2015; Acunto et al., 2017). 97 

Furthermore, it alters the runoff on slopes, modifies nutrient cycles and soil properties and decreases the 98 

aesthetic and recreational value of invaded landscapes (Brundu et al., 2019). For these reasons, in the 99 

European Union, A. saligna has been recently included in the list of invasive alien species of Union concern 100 

(Regulation (EU) No. 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the 101 

prevention and management of the introduction and spread of invasive alien species, hereafter, IAS 102 

Regulation). In addition to a ban on trade, planting and use A. saligna, member states are committed to 103 

surveillance to record occurrence in the environment and prevent its spread into or within the Union 104 

(Beninde et al., 2015).  105 

A few iSDM studies on A. saligna have been done for Europe (e.g., Gutierres et al., 2011; Brundu et al., 106 

2019) and for the Italian mainland (Marzialetti et al., 2019). However, further modelling studies are 107 

particularly urgent for the Mediterranean islands that are very well-known hotspots of biodiversity (Vilà et 108 

al., 2006b; Fenu et al., 2015; Peruzzi et al., 2015) highly threatened by invasive alien species (Hulme, 2004; 109 

Brundu, 2013; Malavasi et al., 2018). In addition, A. saligna is a neophyte in Sardinia (Galasso et al., 2018) 110 

and has probably not yet invaded all potentially suitable areas. Thus, identifying the unoccupied areas at 111 

risk of invasion provides crucial information for surveillance, management and prevention of impacts 112 

across the entire island. Therefore, this study aims to disentangle the role of propagule pressure, abiotic and 113 

biotic factors on the occurrence of A. saligna in the Mediterranean island of Sardinia. Our results provide 114 

an approach for prioritization of prevention, monitoring and control efforts towards areas more susceptible 115 

to be invaded, which would optimize the costs and time devoted to managing alien species.  116 

 117 
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2. Materials and methods 118 

2.1. Study area 119 

This study was conducted on Sardinia (Italy), the second largest island of the Mediterranean basin (24,100 120 

km2) (Fig. 1). The elevation ranges from 0 to 1,834 m a.s.l. (Punta la Marmora, Gennargentu massif). The 121 

climate is characterized by two main seasons, a hot-dry season and a cold-humid one. Annual mean 122 

temperature ranges from 17-18 °C on the coast to 10-12 °C on the inland mountains (Arrigoni, 2006). 123 

Annual precipitation varies greatly from the coast to the inland, from around 433 mm y-1 in the southern 124 

coast to 1,412 mm y-1 in the North at 1000 m a.s.l. (Arrigoni, 2006). In addition, a summer period of aridity, 125 

with low precipitation, marks the Sardinian climate typical Mediterranean pluviseasonal-oceanic (Rivas-126 

Martinez and Rivas-Saenz, 1996-2019). 127 

The coastal dunes of Sardinia harbor many ecosystems of priority conservation concern in Europe, listed 128 

by the “Habitats” Directive 92/43/EEC (e.g., HD 2250* - Coastal dunes with Juniperus spp., HD 2130* - 129 

Grey dunes, HD 2270*- Wooded dunes with Pinus pinea and/or P. pinaster). Importantly, the wooded 130 

dunes with P. pinea and/or P. pinaster in Italy and Sardinia are planted forests established for land 131 

reclamation and to protect agricultural areas and roads from sand (Falcucci et al., 2007; Malavasi et al., 132 

2013). Besides invasive alien species, Sardinian and Mediterranean coastal ecosystems are jeopardized by 133 

a number of anthropogenic pressures (Falcucci et al., 2007; Malavasi et al., 2013) and widespread erosion 134 

(Drius et al., 2013; Camarda et al., 2015; Acosta et al., 2007; Malavasi et al., 2018). 135 

 136 

2.2. Study species  137 

Acacia saligna (Labill.) H.L.Wendl (Fabaceae) is an alien species that invades a large number of natural 138 

ecosystems in Sardinia and in the Mediterranean such as sand dune vegetation (e.g., Arrigoni, 2010; 139 

Gutierres et al., 2011; Meloni et al., 2013), and riparian plant communities (Lorenzo et al., 2010a; Del V 140 

ecchio et al., 2013; Lazzaro et al., 2014; Celesti-Grapow et al., 2016).  141 

In Sardinia and in other regions in Italy, A. saligna was massively planted in the 1950’s (Pavari and de 142 

Philippis, 1941; Del Vecchio et al., 2013) to stabilise sand dunes and protect Pinus spp. plantations from 143 

wind and sea spray (Maniero, 2000; Celesti-Grapow et al., 2009; Del Vecchio et al., 2013) and as an 144 

ornamental plant. In the invaded areas A. saligna forms dense thickets, including within wooded pine dunes 145 

(HD 2270*) and Mediterranean scrublands (HD 2260; Del Vecchio et al., 2013; Marzialetti et al., 2019). 146 

In addition, A. saligna outcompetes many Sardinian endemic species, in particular Anchusa crispa Viv. 147 

subsp. maritima (Vals.) Selvi & Bigazzi (Farris et al., 2013) typical of fixed coastal dunes with herbaceous 148 

vegetation (grey dunes - HD 2130*) and invades coastal dunes with Juniperus spp (HD 2250*) (Pinna et 149 
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al., 2015; Acunto et al., 2017). Through nitrogen-fixation, A. saligna thickets promote the establishment of 150 

ruderal and nitrophilous species, simplifying and homogenising native plant communities (Caruso, 2012; 151 

Calabrese et al., 2017). 152 

Under a Mediterranean climate, A. saligna can grow with mean annual temperature ranging from 11 to 23 153 

°C and with annual precipitations from 240 to 1160 mm (Maslin and McDonald, 2004). Its persistence in 154 

the invaded sites is promoted by vegetative propagation (suckering) and by the establishment of a large 155 

persistent seed bank characterized by physical dormant seeds (Mehta, 2000; Strydom et al., 2012; Abd El-156 

Gawad and El-Amier, 2015, Cohen et al., 2018). 157 

 158 

2.3. Acacia saligna occurrence data 159 

We used 432 georeferenced presence records of A. saligna collected around the invaded areas in Sardinia, 160 

and all these sites were periodically monitored (period 2000-2018), every two years, to check the 161 

persistence of the populations and their invasive status, i.e. whether only planted, casual or naturalised 162 

(Brundu et al., 2003; Camarda et al., 2016; Galasso et al., 2018). Field observations were georeferenced by 163 

means of a portable GPS (Garmin GPS 12 channels) and crosschecked on Google Earth imagery. For 164 

modelling these presences, 1000 pseudo-absence records were randomly generated across the entire study 165 

area excluding the areas occupied by the patches of A. saligna. Pseudo-absences were located at least 100 166 

m apart from each other and the presence records were masked using a buffer with a radius of 150 m. The 167 

procedure was implemented in QGIS environment (3.2. “Bonn” version 2018).  168 

 169 

 170 
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 171 

Figure 1. The study area and the distribution of the 432 Acacia saligna records (red crosses). The coordinate 172 

reference system is UTM (WGS84) zone 32 N. 173 

 174 

2.4. Predictor variables 175 

We selected a set of predictors for the presence of A. saligna acting as proxy variables for propagule 176 

pressure (P), abiotic (A) and biotic factors (B) (see Table 1 for detailed description). 177 

The following variables have been used as measures of propagule pressure: (i) the locations in which A. 178 

saligna was planted for afforestation purposes in the past; (ii) the distance from roads (Le Maitre, 2004; 179 

Drake et al., 2015; Bazzichetto et al., 2016; Bazzichetto et al., 2018; Malavasi et al., 2018); and (iii) the 180 

extension of artificial surfaces (from CORINE land cover, CLC 2012). It is widely agreed that one of the 181 

main sources of propagule pressure for forest trees are tree nurseries and plantations (Malavasi et al., 2014), 182 

therefore, we classified the presence and pseudo-absence records as being inside or outside plantations of 183 

A. saligna. The locations of A. saligna afforestation were achieved from the published official maps of the 184 

Sardinian forest services (EFS, 2013), which at the moment are updated until 2013. We calculated the 185 

Euclidean distance of A. saligna wild populations from highways and primary roads due to the role of 186 

communication infrastructures in favoring alien species dispersal and the presence of planted individuals 187 

along the roads. Finally, in order to account for the dual role of urbanisations in providing new propagules 188 
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from gardens, in which A. saligna is frequently planted (Carranza et al., 2010) and creating disturbed and 189 

bare areas more prone to invasion (Bazzichetto et al., 2018b) we considered the percentage of artificial 190 

surfaces (hereon ART; including urban fabrics; industrial and commercial units; mine, dump and 191 

construction sites, as defined in the Corine Land Cover CLC 2012 map for Italy) converted into a raster 192 

layer by a moving window of 11 x 11 pixels (see Marzialetti et al., 2019). 193 

The following abiotic factors (A) were considered: (i) slope; (ii) average temperature; (iii) the distance from 194 

coastline, and (iv) frequency of wild fires. We included in the model a slope map in degrees extracted from 195 

a 10 x 10 m digital elevation model (resampled from 1 x 1 m Lidar data) because it is generally considered 196 

a good surrogate of water accumulation in the soil (MacMilland and Shary, 2009) affecting the suitability 197 

for A. saligna (Le Maitre, 2004; Gutierres et al., 2011). The thematic layer on the mean annual temperature 198 

for Sardinia for the period 1971-2000 was provided by the Agenzia Regionale per la Protezione 199 

dell'Ambiente della Sardegna (ARPAS - http://www.sardegnaambiente.it/arpas/). The sea-inland stress 200 

gradient that drives invasion on coastal areas (Carranza et al., 2011; Bazzichetto et al., 2016, 2018) was 201 

measured as the Euclidean distance to the nearest seashore. Then, as A. saligna successfully colonizes 202 

burned areas in the Mediterranean region (Bell et al., 1993) we included in the analysis a raster layer with 203 

the total number of wild fire events from 2005-2016. 204 

Concerning biotic factors (B) facilitating or avoiding A. saligna invasion (Marzialetti et al., 2019) we 205 

considered the abundance of different natural and seminatural vegetation types. We calculated the 206 

percentage of cover of the following categories: coastal dunes with Pinus spp. plantations (AFF); dunes 207 

with woody vegetation, and degradation stages (WDH) and dune vegetation (DUN) using a moving window 208 

of 11 x 11 pixels (supplementary Table 1). 209 

For all 18 variables, raster grid maps for the whole island of Sardinia were produced at 10 x 10 m resolution 210 

using the WGS84 datum and UTM 32N projection system (EPSG code: 32632) (supplementary Table 2) . 211 

However, to minimize collinearity only 10 were used in the final model (Table 1) selected according to 212 

Variance Inflation Factor (VIF). 213 

 214 

Table 1. Predictor variables selected for building the iSDM, serving as proxies of propagule pressure (P), 215 

abiotic (A) and biotic (B) factors, along with their detailed description, the data source and the original 216 

scale. For a detailed explanation of the land cover types see supplementary materials, Table 2. 217 

 218 

PAB factors Predictor variables Detailed description of the predictor variables  Source of the predictor variables 
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P
r
o

p
a
g

u
le

 p
r
es

su
r
e 

(P
) Artificial areas (ART)  

Percentage of artificial areas (CLC 2012 class 1) 

within a 100 m radius circular buffer  

Corine Land Cover (CLC) 2012 vector map 

(scale 1:100000) (https://land.copernicus.eu/pan-

european/corine-land-cover)  

A. saligna afforestation Euclidean distance (m) from Acacia plantations  
EFS (Ente Foreste della Sardegna 2013) (10 m 

spatial resolution) 

Road distance  
Euclidean distance (m) from highways and primary 

roads 

Regional geodatabase (scale 1:25000) 

(http://dati.regione.sardegna.it) 

A
b

io
ti

c
 (

A
) 

Coastline distance Euclidean distance (m) from the coastline 
Regional geodatabase (scale 1:2000) 

(http://dati.regione.sardegna.it) 

Slope  
Degrees, thematic layer produced by GIS analysis 

from a DEM with 10 x 10 m geometric resolution 

Regional topography geodatabase 

(http://www.sardegnageoportale.it)  

Temperature  Annual mean temperature (°C) 

Original raster layer produced by Agenzia 

Regionale per la Protezione dell'Ambiente della 

Sardegna - ARPAS (250 m spatial resolution) 

Fire frequency Number of wildfire events in the period 2005-2016 

Regional wildfire geodatabase (vector format) 

(scale 1:25000) 

(http://www.sardegnageoportale.it) 

B
io

ti
c 

(B
) 

Afforestation(AFF) 
Percentage of Pinus plantations (CLC 2012 class 

3.12) within a 100 m radius circular buffer 

Corine Land Cover (CLC) 2012 vector map 

(scale 1:100000) (https://land.copernicus.eu/pan-

european/corine-land-cover) 

Dune vegetation (DUN) 
Percentage of dune vegetation (CLC 2012 class 

3.31) within a 100 m radius circular buffer 

Corine Land Cover (CLC) 2012 vector map 

(scale 1:100000) (https://land.copernicus.eu/pan-

european/corine-land-cover) 

Woody dune habitat 

(WDH) 

Percentage of dunes with woody vegetation, and 

degradation stages (CLC 2012 class 3.2) within a 

100 m radius circular buffer 

Corine Land Cover (CLC) 2012 vector map 

(scale 1:100000) (https://land.copernicus.eu/pan-

european/corine-land-cover) 

 219 

2.5. Invasive alien species distribution model iSDM 220 

We modeled the relationship between A. saligna occurrence and the PAB predictor variables (Table 1) 221 

using a Generalized Linear Model (GLM, dismo R package 1.1-4, Hijmans et al., 2017). We first extracted 222 

the PAB values at the presences and pseudo-absence records. We set the presence/pseudo-absence of the 223 

invasive alien plant as response variable and PAB predictors as covariates. Then we computed the Variance 224 

Inflation Factor (VIF, usdm R package, Babak, 2017) in order to exclude multi-collinearity between PAB 225 

http://www.sardegnageoportale.it/
http://www.sardegnageoportale.it/


10 
 

proxy variables (Guisan and Thuiller, 2005). A predictor was excluded for VIF values higher than 3 (see 226 

supplementary Table 3 for collinearity analysis and variables selection). We fitted the GLM implementing 227 

when necessary polynomial transformations for non-linear responses (Venables and Ripley, 1994).  228 

 229 

2.5.1. Model evaluation and predictions 230 

We evaluated the performance of the model by the area under the receiver operator curve (AUC) (Pearce 231 

and Ferrier, 2000). AUC represents the probability that a randomly selected presence has a higher model-232 

predicted suitability than a randomly selected background location (Manel et al., 2001). Specifically, for 233 

cross-validating the model we randomly partitioned the data and fitted the GLM 100 times, each time 234 

selecting 75% of points for model training and the remaining 25% for testing prediction accuracy. The 235 

iSDM predictive performance was summarized by averaging the cross-validated AUC values (LeDell et 236 

al., 2015). In addition, we obtained the goodness-of-fit of the model using the Nagelkerke R2 237 

(Nagelkerke,1991), which estimates the proportion of variance explained by the iSDM. 238 

Finally, in order to schematically summarize the main trends and areas of invasibility in the island of 239 

Sardinia we projected the probabilities of invasion in the study area, and we classified them into five classes 240 

ranging from very low to very high (very low = suitability < 0.1, low = suitability ≥ 0.1 and < 0.3, 241 

intermediate = suitability ≥ 0.3 and < 0.5, high = suitability ≥0.5 and < 0.7, very high = suitability ≥ 0.7). 242 

Then for each A. saligna suitability class we calculated the respective percentage relative to the island 243 

extent. 244 

 245 

3. Results 246 

PAB predictors and Acacia saligna occurrence 247 

The fitted GLM explained 75% of the variation in occurrence (Nagelkerke R2 = 0.75) and had excellent 248 

predictive power (cross-validated mean AUC = 0.94 ± 0.007 sd). The model underlined the specific role of 249 

propagule pressure, abiotic and biotic factors in determining A. saligna occurrence across the island of 250 

Sardinia (Fig 2; Tab. 2).  251 

Among propagule pressure (P) proxy variables, A. saligna tends to preferentially occur in areas with higher 252 

levels of urbanisation, close to roads and close to areas in which it has been planted (Fig. 2, Table 2). Among 253 

abiotic factors (A), A. saligna has a significant relationship with coastline distance and slope, indicating its 254 

preference for coastal and flat areas with moisture accumulation. A. saligna also preferred areas with low 255 

fire frequency and warmer conditions (Fig. 2, Table 2). All the biotic factors (B) showed a significant 256 
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relationship with A. saligna occurrence. In relation to Pinus spp. plantation cover (AFF), A. saligna 257 

exhibited a parabolic trend with maximum suitability at around 40% AFF cover. A. saligna also prefers 258 

areas with woody vegetation (WDH) and semi-natural dune vegetation (DUN) (Fig. 2, Table 2). 259 

The suitability map for Sardinia produced from the model (Fig. 3) yielded suitability classes for the whole 260 

island in the following proportions: 4.8 % very high, 4.7 % high, 5.8 % intermediate, 10.4 % low, and 74.3 261 

% very low. Higher probabilities of A. saligna occurrence are located close to urban areas and roads, in 262 

coastal areas and on flat slopes (Fig. 3). 263 

 264 

 265 

 266 

Figure 2. Regression plots along with confidence intervals (CI, grey shadowed area) showing the 267 

relationship between Acacia saligna occurrence (grey dots) and the PAB predictor variables: a) percentage 268 

of artificial areas, b) A. saligna afforestation distance, c) road distance, d) coastline distance, e) slope, f) 269 

annual mean temperature, g) fire frequency, h) percentage of Pinus sp. afforestation, i) percentage of 270 

herbaceous dune natural vegetation and j) percentage of dunes with woody vegetation, and degradation 271 
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stages (see Table 1). Predictor values are shown on the x-axes while partial suitability values are plotted on 272 

the y-axis (fitted value (f) of predictor variables).  273 

 274 

Table 2. Results of the GLM analysis of Acacia saligna presence/pseudo-absence, modelled using 275 

predictors relating to propagule pressure (P), abiotic (A) and biotic (B) factors. Significance codes: 0 ‘***’ 276 

0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’. 277 

 278 

Predictors  Estimate  Std. Error  Z value  p-value 

Intercept  -1.63E+01 2.95E+00 -5.519 3.41 10-8 *** 

Propagule pressure (P)         

ART  1.74E+00 4.07E-01 4.288 1.80 10-5 *** 

A. saligna afforestation -3.07E-05 5.36E-06 -5.728 1.02 10-8 *** 

Road distance  -3.29E-03 3.23E-04 -10.172 < 2 10-16 *** 

Abiotic (A)         

Coastline distance  -3.77E-05 1.35E-05 -2.797 0.00515** 

Slope  -8.67E-02 1.66E-02 -5.21 1.89 10-7 *** 

Temperature 1.09E+00 1.76E-01 6.228 4.73 10-10 *** 

Fire -2.74E+00 6.83E-01 -4.014 5.96 10-5 *** 

Biotic (B)         

AFF -1.53E+01 5.36E+00 -2.858 0.00426** 

DUN 1.41E+01 4.72E+00 2.99 0.00279** 

WDH 8.21E-01 3.48E-01 2.359 0.0183* 

 279 
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 280 

Figure 3. Suitability map for Acacia saligna in Sardinia based on the regional-scale invasive species 281 

distribution model (iSDM). Shading shows model predicted relative probabilities of occurrence. The 282 

coordinate reference system is UTM (WGS84) zone 32 N.  283 

 284 

4. Discussion 285 

This iSDM-based study explored whether 10 independent predictor variables explained the distribution of 286 

the invasive populations of A. saligna in the Mediterranean island of Sardinia and provided a high-287 

resolution suitability map as a tool for managing this highly invasive species. Strong modelled responses 288 

to the predictor variables demonstrated the importance of propagule pressure (P), abiotic (A) and biotic (B) 289 

factors in determining suitability for A. saligna invasion. The predictive performance of the model, 290 

according to the cross-validated AUC, was very high (mean AUC = 0.94), allowing us to produce a highly 291 

informative high-resolution suitability map from the model.  292 

Predictors relating to propagule pressure gave the strongest explanation of the occurrence of A. saligna in 293 

Sardinia. Specifically, our results show that proximity to A. saligna plantations, road networks and artificial 294 

or urbanised areas are important drivers of invasion. Indeed, we observed a higher chance of invasion close 295 

to past A. saligna plantations or roads and with medium coverage of built areas. The occurrence of A. 296 

saligna records close to the plantations established in the 1950s for stabilizing sand dunes and for other 297 

purposes (Pavari and De Philippis, 1941; Celesti-Grapow et al., 2009; Del Vecchio et al., 2013) suggests 298 
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the species has spread from those plantations and confirms the importance of enforcing the ban on A. saligna 299 

introduction and further plantation enshrined in the IAS Regulation. The preference we found for road 300 

infrastructure and urbanised areas also suggests these locations increase the chance of propagule dispersal 301 

and subsequent establishment of A. saligna, similarly to patterns reported for many other IAS (e.g., Alpert, 302 

2006; Hobbs et al., 2009, Wilson et al., 2011) including other Acacia spp. invasions in Europe (Gutierres 303 

et al., 2011; Marzialetti et al., 2019). Indeed, our results are consistent with previous results showing that 304 

invasive success of Australian acacias in general is correlated with propagule pressure and the extent of its 305 

use and dissemination within new regions (i.e. “human usage factors”) (Castro-Díez et al. 2011). 306 

Abiotic conditions were also very useful to explain the occurrence of A. saligna in Sardinia. The model 307 

shows that the invader thrives in warmer conditions with greater moisture accumulation and that are less 308 

fire prone (over the time period investigated). The model also found the species to be more common near 309 

to the coast. Overall, this is consistent with broader scale analysis showing that A. saligna has great potential 310 

to invade the Mediterranean area (Castro-Díez et al., 2011). However, previous findings showed that A. 311 

saligna avoids the highly stressful saline conditions found in immediate proximity to the seashore 312 

(Bazzichetto et al., 2016; Marzialetti et al., 2019) due to suppression of seed germination and seedling 313 

survival (Meloni et al., 2013). Concerning fire frequency during the investigated decade (2005-2016), we 314 

observed a higher suitability on non-burnt or burned only-once locations. Such apparent inconsistency with 315 

previous research that suggested an important role fires in explaining A. saligna distribution in the 316 

Mediterranean biome (Bell et al., 1993; Wilson et al., 2011) is probably related to the limited time interval 317 

for which mapped fires are available. The time series of fire occurrence might be not long enough to 318 

adequately describe the current invasion. Considering the observed preponderant role of propagule pressure 319 

and, that Acacia saligna afforestation dates back to the fifties, it is highly probable that also in Sardinia the 320 

fire have promoted invasions and favored germination from the seed bank (Richardson and Kluge, 2008) 321 

but in locations that have burnt before the analyzed decade (2005-2016). Our results suggest that, besides 322 

the utilization of high-resolution spatial data, the integration of temporal series data and landscape legacy 323 

could greatly help to further improve our knowledge on species invasions (Malavasi et al., 2014). 324 

For Sardinia, biotic predictors also helped to explain the distribution of A. saligna, demonstrating 325 

preferences for sand dunes with open vegetation (DUN), sand dunes with woody vegetation (WDH) and 326 

plantations with intermediate cover of Pinus spp. (AFF). In these habitats A. saligna is competitive and has 327 

very clear negative impacts. As a result, management activities are in progress in these priority habitats, 328 

aiming for local eradication or population control, as defined by the European Directive 92/43/EEC, and 329 

for protection of critically endangered endemic species (IUCN 2001, 2003, 2006; Domina and Mazzola, 330 

2008; Caruso, 2012; Del Vecchio et al., 2013; Brundu, 2013). Similar incidence of A. saligna on bare lands, 331 
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and sparsely scattered vegetation has been described for arid ecosystems with sandy substrate in other 332 

regions (e.g., South-African fynbos, coastal sand dunes of Israel; Mehta, 2000; Bar Kutiel et al., 2004), and 333 

it could be explained by low competition with native species and efficient water uptake by A. saligna 334 

(Witkowski, 1991; Yelenik et al., 2004).  335 

As well as providing understanding of the factors limiting A. saligna invasion, the model also allowed us 336 

to produce a high-resolution risk map for the whole island of Sardinia. The projected suitability map 337 

suggests a high risk of invasion in proximity to sand dunes, in the coastal plains and close to roads and 338 

other areas with strong human influence (see Angiolini et al., 2013). These results could help to optimize 339 

monitoring and prevention efforts, and to improve the existing management practice aimed at containing 340 

the invasion. For instance, we suggest directing early-warning monitoring campaigns along roads and 341 

railways as well cleaning and maintaining transportation infrastructure borders in order to reduce the 342 

presence of open disturbed areas in which seedlings can establish and spread. Wild fires or prescribed 343 

burning should also be limited as much as possible in any habitat where A. saligna is already established as 344 

occasional fires might strongly enhance seed germination from the soil seed-bank. In addition, we 345 

recommend the gradual removal of A. saligna from private and public gardens, botanic gardens or arboreta 346 

and other plantations from which they may escape and spread towards and establish within uninvaded 347 

habitats (Brundu et al., 2019). 348 

The high and unrealized invasion risk also supports the recent inclusion of A. saligna in the list of invasive 349 

alien species of European Union concern, banning its intentional introduction in the European Union under 350 

article 7.1 of the IAS Regulation. However, the expected efficiency of these prevention measures may be 351 

of moderate effectiveness as A. saligna is already present in most of the EU Member States (Brundu et al., 352 

2019). In fact, A. saligna could be declared a widespread species in several Member States (e.g., Cyprus, 353 

Croatia, France, Greece, Italy, Malta, Portugal and Spain). Under article 3 (point 16) of the IAS Regulation, 354 

a widespread species is an “invasive alien species whose population has gone beyond the naturalization 355 

stage, in which a population is self-sustaining, and has spread to colonize a large part of the potential 356 

range where it can survive and reproduce”. For such widespread species it is very likely too late to apply 357 

eradication, except in restricted and priority areas. The majority of Member States shall have to put in place 358 

effective management (art. 19 of the IAS Regulation), so that their impact on biodiversity, the related 359 

ecosystem services, and, where applicable, on human health or the economy are minimized. Nevertheless, 360 

prohibition measures should limit further entry and introduction of new genotypes or provenances, and 361 

limit spread and re-invasion in sites where removal or control intervention are taking place. Finally, these 362 

prevention measures should be accompanied as much as possible by informative campaigns aiming to 363 
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inform citizens, to increase public awareness, as unaware citizens frequently contribute to spread the 364 

invasive species (Brundu et al., 2019). 365 

5. Conclusion 366 

The iSDM developed based on high resolution thematic layers representing a range of PAB predictors 367 

explained the current distribution of A. saligna in Sardinia to a high degree of predictive accuracy. The 368 

model identified the important roles of propagule pressure, abiotic conditions and biotic factors in 369 

determining invasion risk and allowed the production of a suitability map for the Sardinian territory 370 

identifying locations at risk of further invasion. Such methodology could be further used for regional-scale 371 

modelling of other invasive species, including those listed in the IAS Regulation. We are convinced that 372 

our results and the chosen methodology match the demand of the Regulation for new early warning tools 373 

i.e. for predicting the location of new outbreaks, for establishing priorities for monitoring and control of 374 

widespread invasive species, and confirm the usefulness of predictive models for IAS management. 375 
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