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provides one example of the fact that those whose livelihoods depend on controlling or predicting21 
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Abstract: In this article we first describe briefly how, like other ectotherms, wild fish promote 26 

effective functioning (for example, digestion and reproductive maturation) by moving through the 27 

temperature gradients that they experience in their natural habitats (showing behavioural 28 

thermoregulation). We then look in more detail at one particular example of behavioural 29 

thermoregulation in fish, specifically the phenomenon of behavioural fever; this refers to an acute, 30 

reversible increase in preferred water temperature in response to pathogen recognition. 31 

Behavioural fever promotes survival by stimulating an effective immune response to the responsible 32 

pathogen. An on-going project is described that explores the possibility of using this capacity for 33 

behavioural fever to promote disease resistance in fish in Nile tilapia farms.  This project involved 34 

intensive discussion with experienced tilapia farmers, during which it emerged that a number of 35 

these farmers already knew how their fish make use of thermal gradients.  Using this observation as 36 

a pivot, we then switch to consideration of the extensive non-scientific, traditional knowledge of fish 37 

ethology possessed by experienced fish farmers and fishers and discuss possible implications for fish 38 

culture.    39 
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1. Introduction 40 

This article addresses two separate but linked issues concerning the behaviour of fishes; both were 41 

covered in presentations at the International Society for Applied Ethology 2019 conference in 42 

Bergen, Norway (FH Wood-Gush lecture:  Synergy between fundamental and applied behavioural 43 

science: lessons from a lifetime of fish watching. FH, SR and colleague: Symposium on fish behaviour 44 

and welfare: Using thermal choices as indicators for fish welfare). By chance, the points we discuss 45 

relate to and develop some made by Temple Grandin in her opinion piece arising from the previous 46 

ISAE meeting, in which she calls for more training in ethology for students of animal sciences and 47 

veterinary medicine (Grandin, 2019; Crossing the divide between academic research and practical 48 

application of ethology and animal behavior information on commercial livestock and poultry farms).  49 

 50 
The first of our two topics, both expanded in later sections, concerns the fact that, given access to a 51 

temperature gradient, fish in the wild and in captivity use behavioural choices to control their body 52 

temperature in such a way as to promote effective functioning. The second issue for consideration 53 

here is the fact that those whose livelihoods depend on controlling or predicting the behaviour of 54 

fishes often have a great wealth of knowledge about their behaviour; one might call such people the 55 

ultimate applied fish ethologists. The link between these two topics lies in the fact that some 56 

farmers already know from their own experience that fish make adaptive thermal choices and use 57 

this knowledge to improve the health of their stock.   58 

 59 
2. Thermal choices, behavioural fever and the health of cultured fish 60 
 61 
2.1 Thermal stratification in the aquatic environment 62 

In nature, fish experience gradients in water temperature on a variety of spatial scales, for example 63 

in relation to depth and horizontal position. To give just one of thousands of possible examples, 64 

temperatures recorded on the same specific days in a large freshwater body in Malaysia varied at 65 

four offshore locations. On one representative day (in June 2014), temperatures varied from ca 31oC 66 

at the surface to ca 25oC at a depth of 20m, while at a particular depth (for example, 10m) it varied 67 
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between ca 27oC and 31oC at different stations (Ling et al., 2018). Cultured fish also experience 68 

temperature gradients, from local areas of higher temperature around aquarium equipment, to 69 

horizontal and depth-related temperature variation within ponds and depth-based variation in 70 

cages. Again, by way of illustration, Atlantic salmon (Salmo salar) in sea cages (160m circumference 71 

X ca 17m depth) in Tasmania in February 2016 experienced temperatures ranging from ca 22oC at 72 

the surface to ca 14oC at 12m (Stehfest et al., 2017).  73 

2.2 Adaptive thermal choices in fish 74 

It is well known that, depending on ontogenetic stage, wild fish of many species move through the 75 

temperature gradients to which they are exposed in such a way as to promote effective functioning 76 

(see review by Huntingford et al., 2012). Again, to illustrate briefly,  dogfish (Scyliorhinus canicula) 77 

lower their daily energy costs by adopting a ‘hunt warm-rest cool’ strategy, catching prey in warm, 78 

shallow water at night and digesting their meal in cool, deep water during the day (Sims et al., 2006).  79 

Upstream-migrating chum salmon track water temperatures that reduce the metabolic costs of 80 

swimming (Tanaka et al., 2000), while migrating sockeye salmon track temperatures that are optimal 81 

for sexual maturation (Newell and Quinn, 2005).  Free-ranging common carp held in a pond (area: 70 82 

X 20m) raise their body temperature above ambient by as much as 4oC  by periodically basking in 83 

sunspots; the longer the time spent basking in this way, the faster the fish grow (Nordahl et al., 84 

2019). 85 

2.3 Behavioural fever in fish 86 

Given the opportunity, cultured fish also move between areas of different temperatures to the 87 

benefit of their health, illustrated strikingly by their thermal responses to infection. In this context,  88 

while endotherms respond to infection with physiological fever (facilitating recovery), ectotherms 89 

may respond behaviourally, moving temporarily to places with a higher water  temperature (Rakus 90 

et al., 2017a).   Such an acute change in thermal preference following pathogen recognition is 91 

referred to as behavioural fever. Physiological fever in endotherms and behavioural fever in 92 

ectotherms depend on similar underlying pathways (Rakus et al., 2017a; Boltano et al. 2018), details 93 
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of which are beyond the scope of this short article. Behavioural fever has been well documented in 94 

lizards (for example Vaughn et al., 1974), but until relatively recently has not been much studied in 95 

fishes (though see Reynolds et al., 1976; Covert and Reynolds, 1977 and Grans et al., 2012).  96 

It is perhaps worth noting that behavioural fever, in which an increase in preferred temperature 97 

occurs in response to pathogen recognition, is distinct from stress-induced hypothermia (or 98 

emotional fever emotional fever as it is sometimes called. e.g. Cabanac and Gosselin, 1993), in which 99 

preferred temperature increases in response to a stressor, though both are examples of behavioural 100 

thermoregulation. Whether fish show stress-induced hyperthermia is an important but controversial 101 

topic (Rey et al. 2015; Key et al., 2017; Rey et al., 2017; Jones et al. 2019) that certainly requires 102 

resolution. However, our focus here is on pathogen-induced (behavioural) fever in fish, a few 103 

examples of which are given below.  104 

Cultured zebrafish (Danio rerio) are normally housed at a fixed temperature within a narrow range of 105 

26-28oC, identified as optimum for this species. When housed in tanks that provide a choice of 106 

temperatures, they make frequent visits to compartments above and below this recommended 107 

temperature. Zebrafish in tanks with a temperature gradient (ca18oC to 37oC)  given a simulated viral 108 

infection spend more time at higher temperatures over a period of ca 24h (Figure 1a), thereby 109 

raising their body temperature; untreated fish and sham treated fish (handled and given an injection 110 

of phosphate buffered saline) show no such dramatic change (Boltana et al., 2013).  An increase in 111 

preferred temperature in response to infection has been found in common carp (Cyprinus carpio) 112 

infected with Cyprinid herpes virus 3, the behavioural change appearing at a relatively advanced 113 

stage in the infection (ca 6 days post infection. Figure 1b. Rakus et al., 2017b).  One interesting 114 

feature here is that the possibility of behavioural fever in infected fish was first identified by 115 

researchers by observing such fish congregating around their aquarium heaters. (Rakus et al. 2017b).  116 

Nile tilapia (Oreochromis niloticus) also show an increased temperature preference following 117 

infection with Streprococcus iniae (Cerqueira et al., 2016).  118 
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2.4 Behavioural fever and recovery from infection 119 

When zebrafish infected with the highly virulent Spring viraemia virus are allowed access to a 120 

temperature gradient, as opposed to being held at a fixed temperature of 22 oC or 28oC, they are 121 

able to protect themselves against the disease, showing zero mortality, no external signs of infection 122 

(Figure 2a) and with no viral particles remaining in their body after a week. This enhanced protection 123 

in fish given the opportunity to express behavioural fever is associated with a major upregulation of 124 

anti-viral genes that is absent in control fish (Boltana et al., 2013). Similarly, in common carp infected 125 

with Cyprinid herpesvirus 3, no mortalities were reported in fish held in a thermal choice tank (with 126 

access to tanks at 24 oC, 28 oC and 32oC) and so able to move to warmer temperatures and express 127 

fever.  Good survival was also found in carp given no thermal choice but held at 32oC (Figure 2b). The 128 

appearance of behavioural fever was associated with upregulation of inflammatory cytokines (Rakus 129 

et al., 2017). Similar results have been found in Atlantic salmon (Boltana et al., 2018). 130 

2.5 Potential applications in fish culture  131 

The beneficial effects of holding fish at high temperature for protection against disease has already 132 

been noted and used in fish culture. For example, aquaculture researchers in Israel studying the 133 

lethal Koi herpes virus of common carp have shown  that fish exposed to the virus for a few days 134 

within the virus’s permissive temperature range (18 oC to 25oC) and then moved them to a higher, 135 

non-permissive temperature of 30oC developed resistance to subsequent infection, associated with 136 

high plasma levels of virus-specific antibodies. At a farm level, such ‘naturally resistant’ carp have 137 

significantly reduced mortalities (from 80-90% to ca 40%. See Ronen et al., 2003). Asian seabass 138 

(Lates calcarifer) farmers in Vietnam have discovered that, when they notice signs of a specific viral 139 

disease, holding fish at hotter temperature reduces disease prevalence and mortality levels (Dr. Sean 140 

Monaghan, fish immunologist at the Institute of Aquaculture, University of Stirling, UK. Pers. 141 

comm.). 142 

The potential significance of behavioural fever in this context lies in the fact that access to a 143 

temperature gradient would potentially allow fish to dose themselves to increased temperature if 144 
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required, rather than their needing to be moved by farm workers. This forms the basis of a recent 145 

project by SR and colleagues on farmed Nile tilapia in Egypt, funded by the British Council and the 146 

Newton Institutional Links programme (Behavioural prophylaxis informing improved culture system 147 

design and management for enhanced fish health and sustainable intensification of the Egyptian 148 

tilapia industry). Tilapia farming, which is typically carried out by traditional, semi-intensive methods 149 

in large earthen ponds, is of considerable social and economic importance. The project started with 150 

intensive discussion between researchers and experienced farmers about, among other things, 151 

temperature gradients within their ponds and ways in which these might be manipulated by 152 

changing the pond design. The most promising and feasible methods have been implemented and 153 

the behaviour of the tilapia in response to such gradients is being monitored, as is resistance to a 154 

range of diseases (including Streptococcus, Aeromonas and Vibrio spp).  The data from this study 155 

have still to be analysed, but some of the farmers involved are of the clear opinion that final 156 

production is better in the modified ponds (Ahmed Hamza, veterinary partner in the project; pers. 157 

comm.). 158 

3. Non-scientific and traditional ethological knowledge: what farmers and fishers know 159 

3.1 Ethological knowledge and good stockmanship 160 

All of the tilapia farmers who took part in the project described above know and understand the 161 

temperature profiles of their rearing ponds. Some farmers already place greenhouses in the ponds 162 

for wintering, to benefit fish health, and some report that their fish congregate in warmer locations. 163 

Such knowledge by farmers of how fish respond to temperature gradients provides a specific 164 

example of the second point we wish to make in this article, namely that (under the right 165 

circumstances) those whose livelihoods depend on being able to control or capture fish (in effect 166 

those who need to be able to predict what fish will do) often have extensive knowledge about 167 

aspects of their ethology. This relates to a point made by Grandin (2019) about the importance of 168 

good stockmanship for the welfare of farmed terrestrial animals; she suggests, for example,  that 169 
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experienced stock people are often highly skilled behavioural observers, for example being alert to 170 

early behavioural signs of fear.  171 

In another context, FH and MMQ have recently carried out a review of behavioural knowledge held 172 

by fishers (both for food and for sport), using literature published in academic journals (for example 173 

from the fields of sociology, geography and anthropology) and books written by anglers for anglers. 174 

In what follows we combine these various sources with information from aquaculture to illustrate 175 

the breadth and depth of such non-scientific, sometimes traditional, ethological knowledge and how 176 

it is used.  By way of a disclaimer, our aim in this brief commentary is to highlight and appreciate the 177 

detailed ethological knowledge held by many farmers and fishers and not to discuss fish sentience 178 

and its implications for the rights and wrongs of fish farming and fishing. These are very important 179 

topics, but complex and beyond the scope of this commentary. 180 

3.2 Pervasive general knowledge of fish behaviour among farmers and fishers 181 
 182 
It is recognised by those familiar with practices on well-run fish farms, where good husbandry is 183 

allowed to inform decision making, that experienced  farmers make use of a number of behavioural 184 

cues when monitoring the well-being of their fish; these include early signs of loss of appetite and 185 

changes in swimming patterns that relate to stress or sickness. Such cues were picked up by farm 186 

staff in a study carried out by FH and colleagues on stocking density and welfare in Atlantic salmon 187 

held in sea cages, who became concerned about the status of fish in some of the higher-density 188 

cages and took appropriate action. Retrospective analysis using a complex scientific multivariate 189 

welfare indicator (based on indices of fin and body condition and several blood biochemistry 190 

variables) showed that the fish in cage identified as problematic by farm staff did indeed have 191 

significantly lower-than-average welfare scores (Turnbull et al., 2005). It is also noteworthy that FH 192 

and colleagues first started studying the behaviour of farmed fish in response to an approach from 193 

the (then) Scottish Salmon Farmers Association (now the Scottish Salmon Producers Organisation). 194 

The Association was responding to concerns expressed by members, based on their own 195 

observations, that aggressive interactions seemed to be causing unequal distribution of food within 196 



9 
 

sea cages. Systematic ethological studies showed that they were correct (Kadri et al. 1996), 197 

resonating with Grandin’s identification of aggressively maintained dominance hierarchies in 198 

terrestrial livestock as an important training topic (Grandin, 2019).  199 

 200 

The detailed knowledge that good, experienced farmers have of fish behaviour is illustrated 201 

indirectly by their role in a recent study in which Qualitative Behavioural Assessment (QBA) was 202 

applied to farmed salmon (Dunn, 2017). QBA is a method developed by social scientists that is 203 

increasingly used in animal welfare science to reach an informed consensus about affective 204 

(emotional) states in animals of a given species held in particular circumstances (Wemelsfelder and 205 

Millard, 2009). The basis of QBA is that human observers can form reliable judgements about such 206 

states from fine details of an animal’s behaviour and body language. The first step is for experienced 207 

observers to formalise the behaviour of the species concerned into an agreed set of qualitative 208 

descriptors (e.g. relaxed, anxious), with associated behavioural symptoms.  In Dunn’s (2017) 209 

application of QBA to salmon, discussion with and among experienced fish farmers generated 20 210 

such descriptors (Table 1). A panel of observers then used these descriptors to characterise the 211 

status of salmon from a sample of video clips. The choices of different panellists were then 212 

compared statistically and, where there was good agreement among panellists, scores based on the 213 

QBA descriptors were compared with the results of a classical quantitative ethological analysis of the 214 

videoclips (i.e. using ethograms). In some cases (for example, the distinction between the tense and 215 

calm descriptors) there was good agreement between to the two approaches. Such results suggest 216 

that QBA could be used to provide sensitive, objective, low-tech indicators of the affective state of 217 

these fish from a knowledge of their behaviour (Dunn, 2017). The fact that experienced salmon 218 

farmers were able to use their behavioural observations to generate clear descriptors that 219 

successfully encapsulated the affective state of their stock speaks for the breadth and depth of their 220 

knowledge of fish ethology.  221 

 222 
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Extensive general ethological knowledge also exists among indigenous fishers, epitomised by the 223 

fact that they often identify and name fish species with reference to by their behaviour. For 224 

example, artisanal coastal fishers from north-eastern Brazil identify more than 16 species of fish, 225 

based on various aspects of behaviour. These include movement and migration, activity rhythms, 226 

feeding, predator avoidance, social interactions (aggression and communication) and reproductive 227 

behaviour (Table 2). Their classification agrees well with those of scientific fish taxonomists (Costa-228 

Neto, 2000).   229 

 230 

3.3 Knowledge about learning in fish  231 

 232 

Grandin (2019) identified animal learning as one of the topics that veterinary and agricultural 233 

science students need to be taught about to manage terrestrial livestock effectively. Certainly, many 234 

procedures carried out on fish farms depend on the ability of fishes to learn from experience; for 235 

example when young fish are being weaned from live prey onto unfamiliar pelleted food they need 236 

to learn that these are nutritious (Raubenheimer et al., 2012). Here we concentrate on of what 237 

fishers know about fish learning, giving just a few examples from a large, if diffuse, literature.  238 

Not surprisingly, fishers have extensive knowledge of the abilities of fish to change their behaviour in 239 

response to the adverse experience of encounters with fishing gear. Anglers are well aware that fish 240 

often learn quickly to avoid both the places where they have experienced capture attempts and the 241 

bait and lures used for this purpose.  For example, in an early classic text about angling Isaak Walton 242 

(1653) writes of carp fishing: “After several days’ fishing, your game will be very wary and you shall 243 

hardly get a bite. Then your only way is to desist from your sport two or three days … (meanwhile 244 

providing worms without hooks) … Then you may enjoy your former recreation.”.  Responses of a 245 

group of coarse fishers in the UK to questions about the behaviour of their prey include comments 246 

such as: “The fish know where the fishermen are, so they go where the fishermen aren’t” and 247 

“…what I found was that the fish (carp) weren’t feeding during the day because they were being 248 
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pressured by all the anglers, so they’d wait until dark and they’d feed all night.”(Bear and Eden, 249 

2011).   250 

 251 
The fact that Atlantic salmon learn the smells of their natal stream and use these to direct their 252 

return migration is a classic example of (olfactory) imprinting (Hvidsen et al., 1994). Interestingly, 253 

Isaak Walton knew about this remarkable (learned) homing ability, writing as follows (using 254 

Walton’s spelling and grammar): “…it is said (of the Atlantic salmon) that after he is got to the sea, 255 

he becomes from a Samlet not so big as a gudgeon, to be a Salmon…Much of this has been 256 

observed by tying a riband or some known tape or thread to the tail of some young Salmons which 257 

have been taken in weirs as they have swimmed towards the salt water, and then by taking a part of 258 

them again, with the known mark, at the same place, at their return from sea…; and like the 259 

experiments that have been tried upon young swallows who have…been observed returning to the 260 

same chimney, there to make their nests…” (Walton,1653). 261 

There is good scientific evidence that young, naïve fish of many species learn traditional migration 262 

routes from older, experienced conspecifics. For example, Norwegian herring (Clupea harengus) 263 

move between traditional feeding and spawning grounds along population-specific routes. This 264 

involves using sequences of landmarks learned by younger cohorts from older schooling 265 

companions and transmitted between generations by social learning (e.g. Fernö et al., 1998; Corten, 266 

2001; Huse et al., 2010).  According to tradition among Norwegian fishers, the massive schools of 267 

herring migrating to spawning grounds were led by a larger fish species called the “herring king” 268 

(the giant oarfish, Regalecus glesne).  This is partly accurate, because as described above, the 269 

herring do indeed follow larger fish to the spawning grounds, but is also partially mistaken, because 270 

these leaders are older herring and not oarfish. The fishers had identified the phenomenon of 271 

socially-learned migration routes in fish (later reported by scientists), even though they were wrong 272 

about the ‘tutor’ species (Ferno et al., 2011).   273 

 274 

3.4 How traditional ethological knowledge is used  275 
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Such knowledge of the behavioural capacities of fish may be learned by individual experience, the 276 

reinforcement being more effective capture, but the knowledge is also often passed on from 277 

experienced to inexperienced fishers, along with broader traditional ecological knowledge (Ruddle, 278 

1993; Silvano and Valbo-Jørgensen, 2008). Thus, indigenous fishers of the Godavari River, India, use 279 

their extensive knowledge of the behaviour of the 12 most intensely fished species to target 280 

particular prey (Shivaji et al., 2014). In the case of feeding behaviour, for example, experienced 281 

fishers describe how two species of fish that they hunt (Notopterus kapirat and Channa marulius) 282 

construct rafts of air bubbles at the water surface; they lie below these and ambush the dragonflies 283 

that are attracted to the shining surface of the bubbles. Local fishers use the floating air bubbles and 284 

the presence of dragonflies to locate and capture these species (Shivaji et al., 2014). In the case of 285 

anti-predator behaviour, fishers in the Godavari River call the omnivorous Rhinomugil cephalus 286 

‘rocket fish’ because it escapes attack by jumping above the water surface for few feet. These fish 287 

feed in shoals in shallow water and fishers set one net across the water flow to catch the main shoal 288 

and another 3-4 feet beyond it, to catch the jumpers (Shavaji et al., 2014). 289 

Like the rocket fish, many fish that are targeted by fishers belong to shoaling or schooling species 290 

and there is extensive traditional knowledge of this form of social behaviour (some already 291 

exemplified in Table 2).  Fishers in the Marovo Lagoon, Solomon Islands, have at least 16 different 292 

terms for fish schools, characterised partly by behaviour of the schooling fish (Johannes and Hviding, 293 

2000). For example, they distinguish between schools of quiet, resting fish, perhaps under cover 294 

(Sakoto), large groups of actively swimming, non-feeding fish (Baini) and tightly packed schools that 295 

stop periodically to feed on the bottom (Uduma. Johannes and Hviding, 2000).  Knowing that fish 296 

often respond to predators by forming tighter schools, Marovo spear fishers tap their spears on the 297 

bottom of shallow sea areas where rabbitfish (Siganidae) are found, causing the fish to form tight 298 

clumps and making them easier to catch (Johannes and MacFarlane, 1991).  299 

To put some numbers on this, experienced beach seine fishers from Sri Lanka are able to predict in 300 

advance the size and species composition of the schools of fish captured at each seine deployment. 301 
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Over 74 seining events, a positive and highly significant relationship was found between fishers’ 302 

expectation (quantified from interviews prior to each throw) and the realised catch (R = 0.814, 303 

p<0.001). Predictions were based on a number of cues, some of which involved fish behaviour; 304 

informative cues include glimpses of fins, characteristic vortices on the water surface caused by 305 

species-specific swimming patterns, species-specific smells detectable in the water, the presence of 306 

floating objects (known to be attractive to particular fish species) and also by the presence of 307 

particular categories of predator (Deepananda et al., 2015).  308 

3.5 Traditional knowledge about how fish respond to temperature gradients  309 

Coming back to our initial topic of the thermal choices made by fish, there is a huge scientific 310 

literature on the effects of spatial variation in water temperature on fish distributions, often on a 311 

fine scale. For example, numerous studies show that mackerel distributions and behaviour are 312 

influenced by fine scale differences in water temperature and that fishing effort maps onto these 313 

distributions. An acoustic survey of mackerel during spawning migrations along the coastal shelf off 314 

the Shetland Islands (UK) found the majority of schools at temperature between 8.00 and 8.75oC, 315 

none being observed in waters below 7.75oC (Walsh et al., 1995). This distribution seems to arise 316 

because fish increase their swimming speed when they enter colder water, but decrease their 317 

swimming speed on entering warmer water; together these responses keep them in a core of warm 318 

water near a costal shelf (Reid et al., 1997).  Tracked fishing vessels also concentrate their activities 319 

within areas of relatively higher water temperature (Walsh et al., 1995).  320 

Where fishers use sonar to detect fish schools, as is the case for these two studies (Walsh et al., 321 

1995; Reid et al., 1997), this does not necessarily require them to know about the temperature 322 

preferences of the fish they capture. That fishers do have such knowledge is known but not well 323 

documented. It is reported, however, that Japanese nearshore fishers choose locations for fish 324 

aggregation devices on the basis on known habitat preferences of the fish species concerned, 325 

including preferred water temperature (Hamashima et al. 1969, cited in Parrish, 1999). Finally, to 326 
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cite an anonymous referee, capelin in the Barents Sea prefer cold water, and fishers tend to turn 327 

back when they enter waters that are too warm (anonymous, pers. comm). 328 

Taken as a whole, the examples described in this section, demonstrate that when the behaviour of 329 

fish is critical for their successful control or capture, even when such behaviour is complex, the 330 

knowledge of farmers and indigenous fishers can be both detailed and accurate.  331 

4. Conclusions.  332 

 333 

The existence of behavioural fever in fish and the beneficial effects for recovery from disease of 334 

being able to display this behaviour is of strong scientific interest. It is also of considerable applied 335 

importance, raising the interesting possibility that, given access to a temperature gradient, cultured 336 

fish could self-medicate, improving their health and reducing the need for medication.   337 

 338 
The authors were greatly intrigued by these examples of the detailed ethological knowledge 339 

possessed by both farmers and fishers, which is what promoted us to describe them here. This point 340 

resonates with Temple Grandin’s comments about the importance of good stockmanship and the 341 

need for students of veterinary medicine and animal science to learn about ethology (Grandin 2019). 342 

If such behavioural knowledge is sufficiently important to form the basis of what might be called 343 

traditional applied ethology among fishers and farmers, it is also important enough to be taught to 344 

those who are training to be responsible for the care of cultured fish, as indeed it sometimes is. In 345 

general. we fully endorse Grandin’s thinking about the need for knowledge transfer between 346 

academia and practitioners and suggest that collecting, recognising and sharing the rich traditional 347 

ethological knowledge held by farmers and fishers could facilitate such transfer.   348 

 349 
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Figure legends    481 

Figure 1. Examples of behavioural fever in fishes a) Zebrafish (Boltano et al., 2013) Mean (+SE) 482 

frequency of occupation of chambers with different water temperature by individual adult zebrafish 483 

following either a simulated viral infection (dsRNA) or sham infection (sham). Asterisks indicate 484 

significant differences between infected and sham infected fish. b) Common carp (Rakus et al., 485 

2017b). Data from one representative replicate (of 3) in which fish infected with wild type (WT) carp 486 

herpovirus 3 on day 0 (broken vertical line). Y axis = mean no fish/compartment. Blue = 24o. Green = 487 

28oC. Red = 32oC.  488 

 489 

Figure 2. Beneficial effects of behavioural fever on recovery from infection. a)  Number of zebrafish 490 

with clinical signs of disease on successive days post infection with Spring viraemia virus and held 491 

either at a fixed temperature of 22oC (black diamonds), or a fixed temperature of 28oC  (black 492 

squares) or in a temperature gradient centred on 28oC (black triangles. Boltana et al., 2013) b) 493 

Survival rate in common carp in days following infection with wild type carp herpovirus 3 (day 0) 494 

under various temperature regimes.  SCT: fish held in a fixed temperature tank at 24°C, 28°C, or 495 

32°C. MCT: Fish held a multi chamber tank offering a choice of s chambers maintained at 24°C, 28°C, 496 

or 32°C.  MCT blocked: fish restricted to one of the 3 temps within MCT (Rakus et al., 2017b). 497 

 498 



Table 1. List of descriptors and agreed synonyms developed by experienced fish farmers for use in a 

Qualitative Behavioural Assessment (QBA) study of famed Atlantic salmon (Dunn 2017). 

 

QBA descriptor Agreed synonyms 

Content Satisfied, at peace, restful 

Stressed  Disturbed, upset, under pressure, mix of anxious and tense 

Energetic Active, lively, dynamic 

Anxious Worried, apprehensive 

Mellow Easy-going, tolerant, unphased 

Skittish Excitable, easily frightened 

Irritated Annoyed, frustrated 

Tranquil Still, quiet, serene 

Fearful Afraid, frightened 

Aggressive Hostile, assertive (violent) 

Calm Peaceful, undisturbed 

Crowded Claustrophobic, overwhelmed 

Tense On edge, strained 

Startled Spooked, surprised 

Listless  Lethargic, lifeless 

Flighty Erratic, volatile, unpredictable 

Relaxed At ease, no urgency (not necessarily motionless) 

Agitated Disturbed, unsettled 

Unsure Cautious 

Inquisitive Interested, curious, engaged 

 



Table 2. Behavioural ethnocategories of fish identified by coastal fishers from Northern Brazil 

(adapted from Costa-Neto, et al., 2000).  

 

Behavioural 
ethnocategory 

Behaviour used in classification Example 

MOVEMENT PATTERNS 

Jumping fish Predator avoidance Mullet 

 Reproduction Stingray 

 Play Mullet 

Whirling fish Predatory attack Eye-horse jack 

 Predator avoidance Mullet 

Travelling fish  Migration Armoured catfish 

ACTIVITY PATTERN 

Night walking fish Nocturnal activity Giant grouper 

SOCIAL BEHAVIOUR AND COMMUNICATION 

Schooling fish Social behaviour Mojarra 

Singing fish Communication Atlantic moonfish 

Snoring fish  Communication Barred grunt 

REPRODUCTIVE BEHAVIOUR 

Mouth-brooder fish Parental care Catfish 

Nest maker fish Courtship and parental care Piranha 

Bed maker fish Courtship and parental care Trahira 

Courageous / Fierce fish Competition/protection of young African cichlid 

GENERAL BEHAVIOURAL ‘STYLE’ 

Wild fish Aggression Atlantic tarpon 

Violent fish Predatory attack Eye-horse jack 

Stone answering fish Investigation Snook 

Playing fish Play Puffer fish 

 






