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Abstract: Most of the recent research in the field of marine target detection has been concentrating on
ships with large metallic parts. The focus of this work is on much more challenging targets represented
by small rubber inflatables. They are of importance, since in recent years they have largely been
used by migrants to cross the Mediterranean Sea between Libya and Europe. The motivation of this
research is to mitigate the ongoing humanitarian crisis at Europe’s southern borders. These boats,
packed with up to 200 people, are in no way suitable to cross the Mediterranean Sea or any other big
water body and are in distress from the moment of departure. The establishment of a satellite-based
surveillance infrastructure could considerably support search and rescue missions in the Mediterranean
Sea, reduce the number of such boats being missed and mitigate the ongoing death in the open ocean.
In this work we describe and analyze data from the InflateSAR acquisition campaign, wherein we
gathered multiple-platform SAR imagery of an original refugee inflatable. The test site for this campaign
is a lake which provides background clutter that is more predictable. The analysis considered a sum of
experiments, enabling investigations of a broad range of scene settings, such as the vessel’s orientation,
superstructures and speed. We assess their impact on the detectability of the chosen target under different
sensor parameters, such as polarimetry, resolution and incidence angle. Results show that TerraSAR-X
Spotlight and Stripmap modes offer good capabilities to potentially detect those types of boats in distress.
Low incidence angles and cross-polarization decrease the chance of a successful identification, whereas a
fully occupied inflatable, orthogonally oriented to the line of sight, seems to be better visible than an
empty one. The polarimetric analyses prove the vessel’s different polarimetric behavior in comparison
with the water surface, especially when it comes to entropy. The analysis considered state-of-the-art
methodologies with single polarization and dual polarization channels. Finally, different metrics are
used to discuss whether and to which extent the results are applicable to other open ocean datasets.
This paper does not introduce any vessel detection or classification algorithm from SAR images. Rather,
its results aim at paving the way to the design and the development of a specially tailored detection
algorithm for small rubber inflatables.

Keywords: SAR satellite; remote sensing; disaster mitigation; vessel identification and detection;
refugee crisis
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1. Introduction

All over the world, refugees risk their lives when crossing seas in overcrowded, non-seaworthy
watercraft. According to the the UN Refugee Agency (UNHCR), this happens in the Bay of Bengal,
the Malacca Strait, the Andaman Sea, the Mozambique Channel around Mayotte, the Gulf of Aden
and in the the Caribbean between Florida and Cuba to name just a few. In recent years, the geopolitical
situation in Africa and the beginning of the civil war in Syria in 2011 contributed to the increase of this
humanitarian disaster at Europe’s southern borders. The busiest routes to date are the Aegean Sea and
the eastern and central Mediterranean Sea. Exorbitant numbers of refugees lose their lives when trying
to cross the Mediterranean towards Europe. Large rubber inflatables are the vessels which are the
most vulnerable and have been the most commonly used throughout the past few years. These very
simply-built outboard engine propelled boats are packed with up to 200 people. Insufficient reserves of
fuel and supplies and the lack of any navigation gear aggravates the passengers’ situation even more.
Boats of said kind are frequently used across the main known routes between northern Africa and
Italy. Unfortunately, there is no known case of a successful crossing with said kind of rubber inflatable.
This work is an effort to find those boats in distress and pursues two goals: first, to support civilian
search and rescue operations in this humanitarian crisis, and second, to gather and disseminate more
accurate numbers of lives lost at sea.

The ongoing development of synthetic aperture radar (SAR) satellite missions has made this
systems very useful for remote sensing of the environment and artificial targets. Disaster monitoring
and damage assessment are among the most important applications of SAR, due to the almost
all-weather and day-and-night imaging capability ([1,2]). The spatial resolution of some of the satellite
systems, for example, the TerraSAR-X (TSX) with one meter resolution, enables the detection of small
objects. Additionally, the considerable number of existing (and future) SAR missions theoretically allow
for a reasonable temporal resolution for surveillance of the main exodus routes in the Mediterranean
Sea. In the case of TerraSAR-X, the very short delivery time, which is for ascending orbits less than
20 min, additionally increases the effectiveness.

Ship detection, classification and monitoring have become some of the first operational services
of civilian space-borne synthetic aperture radar satellites ([3–5]). It has been observed that usually,
the main feature of maritime vehicles in SAR images is a bright backscatter. In most cases, this can be
explained by the presence of several metallic structures and corners [6]. Unfortunately, rubber boats
do not have metallic features at all, except the small outboard engine.

Semi-automatic detection and classification of large, metal-made maritime vessels has been a
popular research topic in recent decades. State-of-the-art high resolution SAR data and methods
from Polarimetry (e.g., [7–9]), sublook analysis (e.g., [10,11]), along-track interferometry (ATI;
e.g., [12–14]), displaced phase center antenna (DPCA; e.g., [13,15]) or moving target indication
(MTI; e.g., [16–18]) were tested with success in a broad variety of projects and applications. A number
of recent international high-level research projects, such as SAGRES [19], Space Shepherd [20] and
NEREIDS [21] included the objective of automatically detecting small, non-metallic maritime targets.
SAGRES especially deserves attention, since a seven meter long rubber boat was successfully identified
with SAR imagery from RADARSAT-2, leading to the rescue of 38 in-distress migrants.

Objects in a SAR image can be represented by their ability to backscatter radar energy, the so-called
radar cross section (RCS). The RCS depends on the target’s shape, size, orientation, velocity and
(the material’s) dielectric property (which is connected to humidity). Different frequencies and scene
configurations can result in generating different scattering mechanisms over the same target. We here
define as “detection mechanism” a physical process that returns a backscattering strong enough to
allow identification in defined conditions. It is clear that the right choice of sensor and acquisition
scene settings can largely increase the probability that a detection mechanism will succeed.
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It has been observed that the backscatter from ships is generally dominated by the double
reflection occurring between the vertical walls or structures of the ship and the sea surface (e.g., [22,23]).
Polarimetric decompositions can be used to identify such scattering mechanisms, although double
reflections do not always appear as the Pauli double bounce. Polarimetry can also be used to indicate
surface conditions, such as roughness, shape, orientation and material properties [24]. Speed and
heading of the vessel relative to the sensor’s line of sight (LoS) are used in ATI for detection (as in [25]).
Phenomena on the water surface, such as wakes of a moving ship, can be visible under certain
conditions (for example, [26]).

Geophysical processes generally have a high special variability and they produce variations in
ocean backscatter, even within small areas. Under some conditions (e.g., very high winds), the water
backscattering can be extraordinarily bright, covering less bright vessels. Especially small waves
in the dimension of the radar beam’s wavelength generate a spatially periodic structure or a rough
water surface which dominates the mean backscatter intensity. This phenomenon appears stronger
for frequencies higher than 5 GHz (C-band) and under incidence angles smaller than 25◦ [6], and the
Bragg model was proven to be a reliable scattering model [27]. A sound understanding of ocean clutter
and its statistical characteristics forms the basis of designing high-performance detection algorithms.

Sensor-related parameters influencing the backscattering over the sea are geometric and
radiometric resolution, surface roughness, polarization, incidence angle and frequency ([28–33]).
Generally, a calm water surface will scatter away the electromagnetic radiation (surface scattering) and
it will appear relatively dark. Metallic vessels call for a number of different scattering mechanisms
and their radar signal is generally stronger, and appears as a bright spot in SAR intensity images.
For this reason, many vessel detection systems (VDS) aim at the identification of small, strong scatterers
over a clutter background ([2,34–49]). In this context, the contrast between the backscatter of the sea
surface and the target (target to clutter ratio, TCR) is a crucial factor when using intensity-based
detectors [50]. It was established that the TCR should at least be larger than 10 dB to enable a reliable
identification [51].

A common way to apply thresholds on intensity images uses statistical tests on the clutter intensity
trained with local information. This method keeps the probability of false alarm constant across the
entire image and is called the constant false alarm rate (CFAR) [52]. To adapt to changing levels of
brightness, several local estimators can be used. The cell averaging CFAR (CA-CFAR) uses the mean
pixel values for the clutter and the region of interest (ROI) window after using a guard window to
reject contamination from the target under analysis ([53–57]). Other detectors try to implement speckle
noise reduction [58], using the Gabor wavelet correlator [59] or the tensor robust principle component
analysis ’tensor RPCA’ [7].

Much work has been done on modeling and simulations, and when polarimetric data are
available, decomposition techniques can contribute to vessel detection systems, as described
in [60–64]. Other approaches consider different statistical methods (e.g., the probability distribution
function) [3,62].

Apart from the exploration of differences in intensity values, there are sub-look detectors
(as in [6,10,11,65]), polarimetric detectors ([66–69]) and approaches that exploit the phase coherence
instead of the intensity [70].

The polarization and the incidence angle have been proven to be important factors in defining the
detection capabilities. Studies aimed at detecting large metallic vessels revealed that HH polarization
is in comparison to VV polarization less sensitive to waves and water roughness, has less clutter and
has a better TCR [3]. A stronger radar return of the water surface at high sea states has been reported
under higher incidence angles in [36]. The combination of HH polarization with high incidence
angles reduces water surface backscatter and enhances the detectability of (big, metal-made) ships.
The contrast between boat and clutter in the HH polarization channel is weaker with medium and low
incidence angles [71]. The cross-polarized channels (HV, VH) provide a better TCR with moderate and
low incidence angles [67,72]. They also allow for more accurate calculation of ship size in the case of
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big metallic vessels. In principle, the cross channels exhibit a lower ocean backscatter and they are
much less affected by the presence of bright sea features than co-polarized data. It can be observed
that the ships’ backscattering is weaker compared to co-polarized channels, but the TCR is higher,
especially for low angles. The combination of both co- and cross-polarization, is beneficial and offers
higher potential for the detection and classification of vessels [51,73].

In this paper we describe the outcomes and analysis of the InflateSAR campaign. SAR data were
collected over the Müggelsee in Berlin where we placed an original refugee inflatable. Acquisitions
lasted a period of five months and they gathered SAR data with ground measurements and surveillance.
SAR acquisitions include the TanDEM-X (TDX) and TerraSAR-X missions from the German Aerospace
Center (DLR) with the High-Resolution Spotlight (HS) and Stripmap (SM) modes and the European
Space Agency’s (ESA) Sentinel-1 (S1) with Interferometric Wide Swath mode (IW). Multispectral data
from Sentinel-2 were collected as well, but were not used in this study. We will illustrate the data
processing and data quality analysis, including ab evaluation of sea clutter and its implications for
ship detection. The results give a comprehensive picture of the inflatable’s backscattering with these
two sensors and its behavior under different scene and sensor settings. Finally, we investigate the
usability of such SAR data for mitigation of the ongoing humanitarian crisis on the open sea with
a special focus on the central Mediterranean Sea, where rubber boats like ours do frequently show
up. The study’s findings are the basis for further developments of a vessel detection system specially
tailored for inflatable boats.

2. A Scattering Model of an Inflatable Refugee Boat

The inflatable vessel used in the InflateSAR experiment is 12 by 3.5 m in size (Figure 1).
The volumes rise about half a meter over the water surface. Inflatable of this kind are not ready
to cross any bigger water body and they cannot withstand high seas. Therefore, they can be declared as
in a state of distress from the moment of disembarkation. The construction materials used were rubber
(mainly PVC) and wooden floor plates as stabilizing inlays. Excluding the outboard engine and small
rings and bits, there are no metallic components. The small size of the engine and the absence of other
large metallic parts results in a small radar cross section. This was expected to impede detection efforts.

Figure 1. The inflatable rubber boat used for this study. (Source: Peter Lanz).

When microwaves impinge on a surface, the energy backscattered depends on many physical
factors. A very prominent one is the dielectric constant ε. ε is an intrinsic characteristic of the material
and varies due to a number of factors, such as the material’s moisture, temperature and salinity. It can
be used for the identification of specific materials, for example, metals [74]. Plastic exhibits a low
dielectric constant, which makes the material relatively transparent to the radiation in C and X bands.
However, the situation changes if the plastic is covered by a thin layer of water (even just a few
millimeters, brought about by dew or spray). This is because the dielectric constant of water is very
high in C and X bands.
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Figure 2 should give an idea about the appearance of the different scattering mechanisms expected
on the rubber inflatable. They are shown in an example scenario of low sea state, under an incidence
angle of 57◦ with the boat broadside facing the sensor’s LoS at 90◦. The model shows how in theory
the dominant mechanisms change depending on wetness and the presence or absence of passengers.
Refraction of the electromagnetic wave is expected when passing through media of different refraction
indices n at TerraSAR-X’s carrier bandwidth (λ = 9.65 GHz), such as air (n ≈ 1), polyurethane (n ≈ 1.6)
and the wooden floor (n ≈ 1.5). The resulting changes of direction before and after the optical thicker
mediums are expected to level each other out. Layover shadows prevail at the faces and objects
facing away from the sensor. Possible complementary phenomena, such as constructive reflection,
destructive reflection, frustrated total internal reflection and the phase jump of λ

2 as a function of the
incidence angle φ should be mentioned here but are not addressed in Figure 2. The same is true for the
polarization, which also affects the scattered wave.

(a) Dry, empty boat. (b) Wet, empty boat.

(c) Dry, full boat. (d) Wet, full boat.

Figure 2. Expected scattering mechanisms of the vessel depending on wetness and superstructure.

Another important factor is the target’s and the water surface’s roughness. X-band (TSX) and
C-band (S1) radar sensors have very limited penetration in liquid water. Since satellite SAR is
side-looking, a flat and calm water surface is particularly smooth and scatters very little energy back
to the sensor, which is why it appears black in SAR images; the energy is reflected away in the
specular direction, as for a mirror. In most of the cases, water surfaces have waves (e.g., capillary and
gravity, swells, etc.). Waves and spray induce surface roughness which produces complex scattering
interactions, such as Bragg scattering [75]). The sea state is subject to wind speed and wind direction
and always is the combination of wind waves from local winds and swell generated by distant
weather systems.
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Apart from the scene characteristics, sensor parameters such as wavelength, polarization,
incidence angle and radiometric and geometric resolution largely affect the pixel backscattering.
These in return influence the capability to detect vessels. In conclusion, a better understanding of
scattering mechanisms for water and target connected to scene conditions and system parameters is
essential for our undertaking. This is not only for evaluating the detection capabilities, but also for
inverse modeling approaches and the design of future data acquisition campaigns.

In terms of polarimetric richness, we can separate data into single, dual and quad (or full)
polarization data which respectively include one, two or four polarization channels. Quad-pol
data yields better results compared to single-pol or dual-pol data due to its increased information
including more independent images, but it suffers from the trade-off a decreased spatial resolution,
a smaller swath width or a higher noise level [74,76,77]. Advanced methods based on quad-pol
data and polarimetric decomposition methods can be applied. They enable the identification of
scattering mechanisms such as surface, volume and double-bounce scattering. The exploration based
on different combinations of those add a viable layer of information to ship detection approaches
(e.g., [22,69,78,79]).

3. Data

3.1. Data Collection Campaign

In this work we acquired a unique SAR dataset with the ground-truth of a refugee inflatable.
Data are from the DLR mission Tandem-X and from ESA’s Sentinel-1. The five-month data collection
campaign was implemented in 2017 at the Müggelsee, a lake near Berlin. In this experiment we were
concerned with investigating the backscattering from the inflatable with the minimum disturbance
possible from the surrounding water surface’s clutter. A lake was selected due to the reduced presence
of large waves and absence of breaking waves, spray and sea foam. The backscattering from a small
lake was expected to be very low and the radar backscattering produced by the inflatable was meant
to be easier to delimit. Further, it allowed us to identify more easily the polarimetric scattering
mechanisms occurring at the vessel and to gain a deeper understanding of their influences on the
vessel’s radar cross section and the inflatable’s detectability. Ground measurements were accomplished
using a standard GPS receiver with an average accuracy of about five meters.

The acquisition campaign was designed to cover a broad variety of the main sensor settings
which are polarization, resolution and incidence angle. It resulted in 53 TSX, five TDX (within this
paper, they are used and listed as TSX “movingR”) and eight S1 SAR images, collected during
45 data gathering sessions (Table 1). In this study, “low angles” cover incidence angles between
20◦and 36◦, whereas the category of “high angles“ represents those between 37◦and 53◦. The nominal
spatial resolution varies depending on incidence angle and polarization. The pixel shape and size
underwent reconfiguration due to pre-processing, including geocoding where we primarily tried
to maintain the spatial resolution. Most HS mode data has around one meter pixel size, for SM
mode values vary between one to two meters, and S1 data used for this study reaches about 8.5 m.
Some polarization channels, such as full polarized data, were not available. Therefore, the study is
limited to co-polarized single (HH, VV) and co/cross-dual polarized (HH+VV, HH+HV, VH+VV,
VV+VH) channel combinations.

Table 1. SAR data collection according to acquisition mode, polarization and incidence angles
(low angles “L”, high angles “H”).

Mission Acquisition
Mode

Single
pol HH

Single
pol VV

Dual
cross-pol

Dual
co-pol

High-Res. Spotlight (HS) 1L, 7H 1L, 4H n.a. 2L, 12HTerraSAR-X (TSX) Stripmap (SM) 1L, 4H 1L, 2H 1L, 5H 3L, 9H
TanDEM-X (TDX) High-Res Spotlight (HS) 1L, 2H n.a. n.a. 0L, 2H
Sentinel-1 (S1) Interferometric Wide Swath (IW) n.a. n.a. 2L, 6H n.a.
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Table 2 lists the average pixel size for different acquisition modes in square meters, for which
Figure 3 provides a visual overview. The image to the right illustrates the size ratios between the
various data’s pixels and the the boat. HS mode and SM mode are assumed to have satisfactory spatial
resolution for a successful identification. In S1’s IW mode the pixel area is about two times the vessel’s
area, hampering detection efforts. Therefore, it is very likely that S1 data do not reach the minimum
resolution needed for a successful identification of our target and more S1 data would be necessary to
finally prove this.

Table 2. Pixel size in m2 of available acquisition modes after resampling.

TSX-HS TSX-SM S1-IW

Single-pol 0.79 1.52 -
Dual-pol 1.45 2.57 71.74

Figure 3. Comparison of the vessel’s size and the available data’s pixel sizes.

During the campaign we covered different combinations of the inflatable’s superstructure
(full/empty boat), movement and orientation relative to the sensor’s LoS by six setups called
“experiments“ (Table 3). It was the goal of these experiments to examine the impacts of selected
scene settings on the boat’s radar backscattering pattern and its detectability. The main ideas behind
the experiments’ designs are:

• The superstructures of said open-top inflatables are shaped by the cargo, in our case the passengers.
A boat fully loaded with people is expected to change scattering mechanisms (e.g., modeled as
adding volume scattering and multiple reflections). To investigate these influences, four data
takes had 30 passengers occupying the vessel.

• To test the influence of the inflatable’s orientation compared to the radar wave’s path, the vessel
faced different parts toward the sensor: prow or stern side orthogonally (“parallel”), the broadside
orthogonally (“orthogonal”) or the broadside at an angle of 45◦ (“inclined”). This should add
to an analysis of the backscattering behavior of specific parts of the boat, such as the outboard
engine, double bounce caused by its passengers and double bounce and volume scattering at the
broadside or at the prow of the boat. In principle, electromagnetic waves, impinging on the vessel
at 45◦, are expected to be scattered away, whereas orthogonal or parallel vessel orientation should
lead to a situation wherein the backscattering should be higher.

• Two of the experiments include a moving inflatable at its highest possible speed (∼10 km/h),
where “movingAZ” has a boat moving in azimuth and “movingR” relates to movement in ground
range. Movement is expected to provide the possibility of detecting the position and orientation
of its wakes. However, movement involves smearing effects and azimuth displacement which
may impede the detection.
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Table 3. Data collection: available datasets per experiment type.

# ImagesExperiment Movement Orientation Superstructure TSX S1

orthogonal static 90◦ empty 27 8
inclined static 45◦ empty 10 0
parallel static 0◦ empty 4 0
full static 90◦ 30 passengers 4 0
movingAZ moving 90◦ empty 8 0
movingR moving 0◦ empty 5 0

Apart from the described sensor and scene settings, the morphology of the data is subject to a
number of additional scene settings which are not controllable. Amongst them are the inflatable’s
surface humidity and the wind situation. The latter was quite stable throughout most acquisitions
(Table 4). In the great majority the wind speed is below 5 ms−1 and the prevailing winds were westerly,
deviating no more than 30◦ from the LoS (Table 4).

Table 4. Wind speed and wind direction during the data collection.

(a) Wind speed (ms−1).

<2.5 2.5–5 5–7.5 7.5–10

# TSX
datasets 24 21 6 2

# S1
datasets 6 0 2 0

(b) Wind direction (in degrees relative to the LoS).

<30◦ 31–60◦ 61–90◦

# TSX
datasets 27 20 6

# S1
datasets 4 2 2

The vessel’s surface moisture was recorded during each acquisition, since especially in the
morning, chances were good that the volumes of the inflatable were covered by water drops due to
rain or dew. In about 60% of attempts the boat could be identified when it was dry compared to 40%
in case of wet conditions. The influence of the boat’s moisture on the detection capabilities or its radar
backscatter behavior could not be proven statistically, though. For that, a much more comprehensive
data basis would be necessary here.

3.2. First Inspection of the Backscattering of Inflatable Boats

The preliminary processing includes radiometric calibration, geometric calibration and
georeferencing. Pre-processing steps are slightly different for each satellite platform. For instance,
S1 data require additional processing steps, such as applications of an orbit file, removal of thermal
noise and debursting. This was done using the Sentinel Application Platform (SNAP) in combination
with the Sentinel-1 Toolbox from the European Space Agency.

After the pre-processing, the image pixels represent the normalized radar cross section expressed
as scattering coefficient or Sigma Nought (σ0). Speckle filtering or multilooking was tested, but due
to the very small size of the boat they reduced the maximum backscattering and decreased its TCR.
Therefore, multilooking was not applied to preserve the data’s full spatial resolution at the expense
of speckle reduction. Figure 4 shows a part of two of such scenes after pre-processing and projecting
into the geodetic reference system WGS84. The corresponding snippets further down are Figure 5g for
Figures 4a and 6g for Figure 4b. The lake can be clearly recognized as the dark area with relatively
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low radar response and bright dots representing buoys and maritime vehicles; amongst them there is
our inflatable at the tip of the white arrow. Most of the surroundings are forest with a residential area
in the north-east. Figure 4b was taken on a descending orbit with the sensor viewing from the east
receiving strong backscatter from the first treeline on the lake’s western shores. The ascending orbit of
Figure 4a brightens up the treeline on the eastern shore.

(a) VV polarization, ascending orbit, dual-pol
TerraSAR-X Spotlight scene ( c©DLR 2017).

(b) HH polarization, descending orbit, dual-pol
TerraSAR-X Stripmap scene ( c©DLR 2017).

Figure 4. Subsets of two examples of dual-pol TerraSAR-X Stripmap scenes showing the lake Müggelsee
and its surroundings.

The water surface clutter and the inflatable’s radar signal were statistically analyzed in a consistent
way and its backscatter behavior was classified throughout the different datasets. The main purpose
was to assess the detection capabilities under different sensors and scene settings. To identify the
vessel and to define its extent, we used pixels with noticeably higher intensity values compared to the
water surface clutter. All further analyses were computed based on this intensity-based definition of
the vessel.

The galleries in Figures 5–7 show the intensity (σ0 in dB) of the vessel’s radar pattern of all positive
identifications after pre-processing. The 100 by 100 m sized cut-outs center the boat and are grouped
by acquisition mode. The colour ramps use each individual image’s mean value as the minimum
(dark) and the maximum value for strong radar response. The subtexts indicate the polarization plus
one important scene or sensor parameter. Images with no further description were acquired under
a “standard” set of parameters: high incidence angle; stationary; empty boat oriented orthogonally
to the LoS. That is also true for Figures 9–10, below which we come up with the 3D-representations
of the same data of σ0 values in dB-scale. Here, each color scale covers the full range of values.
They illustrate that the vessel’s radar signatures differ a lot in terms of size and contrast between the
images. That challenges any attempt at developing automatic identification techniques.
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(a) low angle, HH (b) low angle, VV (c) inclined, HH (d) inclined, VV (e) inclined, HH

(f) full, HH (g) full, VV (h) full, HH (i) full, HH (j) parallel, VV

(k) parallel, HH (l) parallel, HH (m) movingAZ, VV (n) movingAZ, HH (o) movingAZ, HH

(p) HH (q) VV (r) HH (s) VV (t) HH

(u) VV (v) HH (w) VV (x) VV (y) Legend

Figure 5. The vessel’s radar footprint in TSX-HS mode ( c©DLR, 2017) with indications for polarization
and special scene or sensor settings.
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(a) low angle, VV (b) low angle, HH (c) low angle, HH (d) low angle, VV (e) inclined, VH

(f) inclined, VV (g) inclined, HH (h) inclined, VV (i) inclined, VV (j) parallel, HH

(k) movingAZ, HH (l) movingAZ, HH (m) movingAZ, HH (n) HH (o) HH

(p) VV (q) HH (r) VV (s) VV (t) Legend

Figure 6. The vessel’s radar footprint in TSX-SM mode ( c©DLR, 2017) with indications for polarization
and special scene or sensor settings.

(a) VV (b) VV (c) Legend

Figure 7. The vessel’s radar footprint in S1 Interferometric Wide (IW) swath mode ( c©ESA, 2017).
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(a) low angle, HH (b) low angle, VV (c) inclined, HH

(d) inclined, VV (e) inclined, HH (f) full, HH

(g) full, VV (h) full, HH (i) full, HH

(j) parallel, VV (k) parallel, HH (l) parallel, HH

(m) movingAZ, VV (n) movingAZ, HH (o) movingAZ, HH

Figure 8. Cont.
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(p) HH (q) VV

(r) HH (s) VV

(t) HH (u) VV

(v) HH (w) VV

(x) VV

Figure 8. 3D representations of the vessel’s radar footprint in TSX-HS mode ( c©DLR, 2017) with
indications for polarization and special scene or sensor settings.
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(a) low angle, VV (b) low angle, HH (c) low angle, HH

(d) low angle, VV (e) inclined, VH (f) inclined, VV

(g) inclined, HH (h) inclined, VV (i) inclined, VV

(j) parallel, HH (k) movingAZ, HH (l) movingAZ, HH

(m) movingAZ, HH (n) HH (o) HH

Figure 9. Cont.
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(p) VV (q) HH (r) VV

(s) VV

Figure 9. 3D representations of the vessel’s radar footprint in TSX-SM mode ( c©DLR, 2017) with
indications for polarization and special scene or sensor settings.

(a) VV (b) VV

Figure 10. 3D representations of the vessel’s radar footprint in S1 Interferometric Wide (IW) swath
mode ( c©ESA, 2017) with indications for polarization and special scene or sensor settings.

4. Methods

4.1. Water Surface Clutter

Although the main purpose of this work was the analysis of backscattering from inflatable vessels,
in this section we show a clutter analysis to understand its impact on our vessel identification and
analysis. In detection theory, the radar backscattering from the water surface is referred to as clutter.
In X-band, the water clutter can be very strong, leading to false alarms at all incidence angles [9].
Water clutter depends on wind speed and direction. As already stated above, we selected a small
lake as the test site so that the water clutter was less strong. Nevertheless, due to wind conditions,
five datasets have strong clutter and an additional five show moderate clutter. We defined the clutter
level through the degree of inhomogeneity of the whole lake surface’s radar response. The dispersion
is a suitable value to measure, since it combines the influences of the clutter’s standard variation
(σclutter) and the clutter’s mean values (µclutter).

Dispersionclutter =
σclutter × σclutter

µclutter
(1)

The higher the σclutter normalized by µclutter, the less homogeneous the water is in the radar image.
Here, images with a dispersion value smaller than two are classified as having weak clutter levels,
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greater than two are moderately cluttered and those with a dispersion greater than three are defined as
strongly cluttered. This convention corresponds well to the results of the visual image interpretation.

Wind speed and wind direction do trigger higher levels of water surface clutter that can be
modeled using Bragg scattering ([80,81]). Thanks to the friendly support of the Leibnitz-Institute of
Freshwater Ecology and Inland Fisheries (IGB), in situ weather data from the nearby observation
station “Georg Mothes” at 52◦26′46.3′′ N 13◦38′60.0′′ E were available for each acquisition.

Figure 11 compares wind speed and wind direction (the absolute difference to the sensor’s LoS in
degrees) with the water surface’s clutter strength and acquisition mode. Eight out of the ten acquisitions
showing “moderate” or “strong” clutter were collected when the wind direction was less than 30◦ with
respect to LoS. This produces waves moving mostly parallel to the LoS, which could contribute to a
stronger clutter response. Higher wind speed especially increases the chance of moderate or strong
clutter throughout the collected datasets.

Figure 12 examines the radar response of the 250 × 250 m sections of the surrounding water area
with the boat in the center. Low maxima and low dispersion values benefit a higher TCR and better
identification capabilities (bottom left areas). We labeled datasets finding themselves in the upper right
corner as biased by strong clutter.

Figure 11. Wind speed ( c©IGB Berlin): impact on ocean clutter.

Figure 12. The water surface’s maximum backscatter and dispersion and its relation to different
sensor parameters.

This label was taken into account for some of the following analyses. Cross-polarized data
deliver low dispersion values (low heterogeneity) from the water surface and at the same time a very
low maximum σ0. Low incidence angles are more affected by strong clutter and have high clutter
dispersion. Data acquired with a high incidence angle have lower water surface clutter and seem more
promising for better identification capabilities. The water surface in S1 data reach on average lower
mean and maximum σ0 by about 5 dB compared to TSX data. Images which are marked as affected by
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strong clutter are characterized by higher mean values (TSX: +7 dB, S1: +5 dB) and a higher clutter
maximum (+10 dB). In view of designing an automatic ship detector, it could be appropriate to adopt
multilooking and to apply different processing methodologies when the clutter is particularly strong.

4.2. Identification Scheme

This work was focused on analyzing the backscattering behavior of inflatable vessels.
The following methodology is heavily supervised and it is not proposed as an operational technique.
We used it here for the mere purpose of identifying the vessel pixel for the statistical analysis.
The inflatable identification approach uses intensity values and therefore follows the principles of a
simple intensity-based detector with adaptive thresholding. We calculated the TCR as the difference
(in dB) between the vessel’s maximum backscatter and µclutter where µclutter is a representative of the
clutter intensity in dB for the lake’s backscattering in each acquisition:

TCR = maximumvessel − µclutter (2)

To apply adaptive thresholding to our visual identification scheme, we compared the boat’s
maximum intensity value with the respective scene’s clutter dispersion by using the clutter’s mean
and standard deviation. Visual identifications are labeled reliable if:

maximumvessel > µclutter + 3× σclutter (3)

The selection of factor 3 in Equation (3) is a crucial decision which influences all further results.
According to literature, a TCR of at least 10 dB is acknowledged as being reasonable for reliable
detection and identification with automatic vessel detection systems [82]. Since all σclutter in our
data are between 3.2 and 5.9, using three times σclutter will lead us to thresholding similarly to the
one suggested.

Additionally, an automatic blob detection algorithm was implemented using Python and OpenCV.
The blob detector had limited success due to different clutter levels throughout the data. This shows
the importance of adaptive thresholds, even in such a homogeneous test bed as in our case. Please note
that these algorithms were supervised and were used only for providing a good delineation of the
vessel for the analysis of its backscattering. In the future, more work needs to be carried out ifor
finding an automatic detection methodology.

Our classification scheme enabled the analysis of the inflatable radar backscatter. Figure 13
illustrates two very different scenarios in false colors where dark blue pixels represent intensities
smaller than µclutter. All other colors have values bigger than µclutter with a class width of the standard
deviation σclutter. The inflatable in Figure 13a has a comparatively low TCR since most of the pixels
representing the vessel show intensity values similar to the some parts of the quite heterogeneous
surrounding sea clutter. In Figure 13b the boat has a clearly higher intensity than the water surface,
making this case more favorable for vessel identification. Moreover, the surroundings are of favorably
low dispersion. Wind speed and direction relative to the line of sight are influencing the water surface’s
radar response. In big water bodies the swell adds to the local sea state. Very calm water leads to
low or null surface scattering. In general, bigger waves produce stronger radar backscattering. In our
dataset, we observed different wind conditions. Since this was a lake, trees were also sheltering some
water areas with some wind directions. This explains the variability of water clutter in the images that
we acquired.
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(a) High clutter, weak boat radar
response, low TCR.

(b) Weak clutter, strong peak from the
vessel, high TCR.

Figure 13. Examples of the vessel’s radar footprint in TSX-HS mode ( c©DLR, 2017).

4.3. Estimation of the Inflatable’s Size

When assessing the capability to successfully identify a target, we can use both maximum TCR and
detected size, because larger targets are easier to detect than smaller ones. Moreover, exact estimation
of the detected inflatable’s size enables us to discriminate it from other marine objects. This is especially
true for the open sea far off the coast, where marine vehicles of such small dimensions are rather
unlikely, since the great majority of marine traffic consists of much larger vessels (>100 m in length
and at least several meters of freeboard).

We estimate the boat size by multiplying the number of pixels assigned to the vessel category by
the pixel area. Figure 14 shows the results in a box and whisker plot with the lower and upper hinges
corresponding to the first and third quartiles and the whiskers extending from the hinges to the largest
value no further than 1.5 times the inter-quartile range. TSX’s HS mode delivers quite good results
with an average of 93% of the real boat size (Figure 14a). However, with the spatial resolution going
down, the results deteriorate and the comparatively coarse spatial resolutions of TSX’s SM mode and
S1’s IW mode are not suitable for that simple approach.

(a) Boat size estimations without a resizing factor. (b) Boat size estimations with the resizing factor k.

Figure 14. Introducing a resizing factor (k) to improve the estimation of the boat size.

In order to produce more accurate estimations of the vessel silhouette, we can adjust the edges
by using what is sometimes called spatial hysteresis. This exploits vicinity conditions [83]. Here,
we used a scheme where we split boat’s radar signature into two groups. The first group are high
intensity pixels (intensity > µ + 3*σ) and we assigned them to the category areavessel ; the second group
are the adjacent, lower-valued pixels (µ + 3*σ > intensity > µ + 2*σ), associated with the category
areaambit (Equation (4a)). This gives us the opportunity to apply the now introduced resizing factor k
to parts of the estimation formulas. For our TSX SM mode data, we set k = 10 and for S1 data to k = 2
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and applied it for SM mode data to areaambit (Equation (4b)) and for IW mode to both, areavessel and
areaambit (Equation (4c)):

sizeHS
vessel = areaHS

vessel + areaHS
ambit (4a)

sizeSM
vessel = areaSM

vessel +
areaSM

ambit
kSM (4b)

sizeIW
vessel =

areaIW
vessel + areaIW

ambit
kIW (4c)

The results of that correction of the initial size estimations are plotted in Figure 14b. It can be seen
that the corrected estimations are much more accurate, but since the values for k deviate from our data,
they need to undergo testing and assessment with alternative data.

5. Results

5.1. Analysis of the Inflatable’s Backscattering

Before delving into the analysis of the backscattering with regard to sensors and scene parameters,
here we want to present a table summarizing the capability of seeing the inflatable in the SAR image.
This visibility test is at the base of all the other analyses and provides an overview that could inform
possible future data acquisitions.

Table 5 shows the probability of identification in our data collection. The figures in brackets
indicate the number of datasets available and the number of which suffer from stronger clutter.
The overall rates of true positive identifications reached 72% for TSX and 25% for S1. Some of the
sensor parameters (rows-wise) turned out to have impacts on the detection probability: cross-polarized
data clearly cause difficulties identifying the inflatable boat with the lowest sensor-bound rate of only
17%. That shows that the boat does not depolarize the wave and it is likely that single or horizontal
double bounce scattering mechanisms may be in place.

Table 5. Identification rate according to scene and sensor parameters: positive identification in %
(datasets available, which suffer from increased clutter).

Experiment Sum
(only TSX)Orthogonal Inclined Parallel Full MovingAZ MovingR

Polarization
HH 83 (12;4) 75 (4;0) 100 (3;1) 100 (3;0) 100 (5;1) 0 (4;1) 77 (31;7)
VV 83 (12;3) 100 (4;1) 100 (1;0) 100 (1;0) 50 (2;0) 0 (1;0) 81 (21;4)
HV/VH 0 (3;0) 50 (2;0) - - 0 (1;0) - 17 (6;0)

Incidence
Angle

high 88 (17;0) 80 (10;1) 100 (4;1) 100 (4;0) 75 (8;1) 0 (4;0) 79 (47;3)
low 50 (10;7) - - - - 0 (1;1) 45 (11;8)

Platform/
Acquisition
Mode

TSX-HS 77 (13;4) 100 (3;1) 100 (3;1) 100 (4;0) 75 (4;0) 0 (5;1) 72 (32;7)
TSX-SM 71 (14;3) 71 (7;0) 100 (1;0) - 75 (4;1) - 73 (26;4)
S1-IW 25 (8;1) - - - - - 25 (8;1)

Sum (only TSX) 74 (27;7) 80 (10;1) 100 (4;1) 100 (4;0) 75 (8;1) 0 (5;1) 72 (58;11)

It seems that low incidence angles are more likely to be affected by strong clutter, which decreases
the TCR and the chance of identification compared to high angles. Eight out of eleven low-angle
images have strong clutter, reducing the identification rate to only 45%. On the contrast, low incidence
angles with moderate clutter signature are highly suitable for identifying the inflatable with a rate
of 100%. The rather flat superstructure of the vessel and its small height do not expose much area
to the incoming radiation. This leaves double bounce scattering at the broadside of the vessel not
adding to the radar response as strongly as is usually expected in ship detection. That could hamper
the identification capability for all cases, but especially for higher incidence angles. To prove that
assumption, we need more data of that category without strong clutter.

TSX’s HS and SM modes show much higher identification rates than S1’s IW mode, since IW
mode’s spatial resolution is much lower. As a consequence, the energy of the vessel’s radar
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backscattering is spread over a larger area, reducing its normalized cross section. This reduces
the TCR and makes the identification of the boat impossible for most cases.

The scene parameters are listed as columns and do add some influences in this context as
well. If we only looked at images with moderate clutter, the category orthogonal would reach 100%.
That setup, when the stationary boat is oriented at 90◦ to the LoS, delivers the best results, as expected.
This is because the boat faces the radar, exposing the biggest side at a 90◦ orientation, and it is expected
to produce more single and double reflections. High detection rates are achieved as well for stationary
vessels oriented in a parallel way (parallel) to the LoS and for stationary vessels carrying 30 passengers
(full; oriented at 90◦). The parallel case also supports the occurrence of single and double bounce
mechanisms at the front where the bow rises from the water and at the counter stern. A full boat rises
about twice as high from the water’s surface due to the passengers sitting on top of the inflatable
volumes, triggering stronger multiple reflections.

Reduced identification capabilities are observed if the stationary vessel is orientated 45◦ to the
LoS (inclined), since the faces are oriented in a way that would reflect the energy away from the sensor.
Having an inflatable moving in azimuth direction (movingAZ) at a maximum speed of about 10 km/h
produces a smearing effect and reduces the TCR. We expect this to decrease the chance of identification.
MovingR represents interferometric TDX-acquisitions with an inflatable moving in range which brings
about azimuth displacement. We do not expect the misplacement to have a large impact due to the
moderate velocity and the quasi-real time nature of the detection. However, defocusing could impede
identification. Since we did not apply interferometric techniques up to now, a secure identification
with MovingR-TDX-data was not possible.

Summing up, the main reasons for an unsuccessful identification seem to be a combination of at
least two of the following factors: an inclined or a moving vessel, cross-polarization, a low incidence
angle and a coarse spatial resolution. When removing the movingR experiments from the statistics,
co-polarized data and high incidence angle data reach the best identification rate of about 86%.

5.2. Assessment of Acquisition Parameters

In Figure 15 we show the quality of all 44 positive identifications using the indicators TCR
(intensity values in terms of µ) and corrected vessel size estimation (Section 4.3 introduced the resizing
factor k applied). The most favorable results have high TCRs while being located near the 100% line.
The data were divided into five experiments representing different scene settings (boat orientation,
superstructure/cargo and movement).

To take a closer look at differences in the quality of identification between horizontal and
vertical polarization we used dual co-polarized datasets (HH+VV). This allows a fair comparison
of polarization channels because all other sensors and scene parameters are equal for each pair of
acquisitions. Figure 16a lists representations of dual-pol datasets along the x-axis, where seven out
of eight cases show larger over-estimations of the boat size with the horizontal polarization channel.
The TCRs (Figure 16b) are of comparable quality for HH and VV. Therefore, there is no ground to give
a clear preference for either of the two polarization channels. For completeness, Figure 16a shows
dual-pol datasets where only one image allowed for a successful identification too.
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Figure 15. Impacts of scene and sensor settings on the quality of identification.

(a) Comparison of target size estimations (corrected). (b) Comparison of the target to clutter ratios (TCRs).

Figure 16. Using dual-pol acquisitions to compare the quality of identification between HH and VV
polarization. The incidence angle increases from left to right.

5.3. Analysis of Clutter Effects

Beside the scene and the sensor settings, the vessel identification throughout the experiments is
subject to a number of uncontrollable influencing factors, such as clutter. In general, a higher water
surface response decreases the TCR. For our data we define the clutter with intensity (σ0) values up to
the “maximum clutter” level of the median (µ) plus two times the standard deviation (σ). Intensities
above that threshold are assumed as coming from other objects than the water’s surface. We try to
explain strong clutter with a high µ (strong water surface response) and a high σ (high inhomogeneity).

Figure 17 searches for impacts of the sensor and scene settings on the TCR before the background
of a statistical analysis of the surrounding water surface’s clutter. Figure 17a,b show the sensor
settings, whereas Figure 17c,d focus on the scene settings. In Figure 17b,d we applied the standard
deviation of the σ0-values to the x-axis, and for Figure 17a,c the maximum clutter thresholds were
used. Unsuccessful identifications are represented with TCRs of zero. With the background color we
illustrate the idea that chances of a reliable vessel identification can be estimated with TCRs relative
to the surrounding water surface’s clutter behavior—here near or greater than µ plus three times σ,
a condition represented by the green area. True positive identifications within the white-reddish area
should be flagged with a lower reliability.
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(a) Sensor settings, TCR and maximum clutter.

(b) Sensor settings, TCR and the clutter’s
standard deviation.

(c) Scene settings, TCR and maximum clutter.

(d) Scene settings, TCR and the clutter’s
standard deviation.

Figure 17. Influences of selected scene settings and sensor settings on the TCR with respect to the water
surface’s clutter behavior.

The figures show that SM mode tends to have slightly lower values for maximum clutter and
standard deviation compared to HS mode, which is favorable for vessel identification. Clutter from
the S1 mission stands out with higher σs, lower µs and lower TCRs. The figures support the above
statement that cross-polarization and low incidence angles decrease identification capabilities. Further,
a vessel full of people is more visible in our data, whereas having the boat oriented at 45◦ to the LoS or
moving in azimuth decreases the TCR.

5.4. Polarimetric Analysis

When dual-pol HH/VV images were available, we carried out a polarimetric analysis using the
Cloude Pottier decomposition. The polarimetric interpretation of the entropy/alpha (H/α) space could
be done, since with HH/VV polarization channels we can change the coordinate system to the Pauli
one and the eigenvectors can be interpreted as in the quad-pol decomposition.

The comparison between the vessel and the water’s surface shows clear differences regarding
the polarimetric behavior: the results for the boat (Figure 18a,c) reveal a preference for dipole and
cylinder scattering, with entropy that can be relatively low. This is quite uncommon for ordinary
ship identification, where the entropy is generally high. This is due to the limited size and number of
structures over this inflatable vessel. The water surface (Figure 18b,d) presents relatively high values
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of entropy with an α that sits around 50◦. This is a sign that the clutter backscattering is close to the
noise floor.

Figures 18c,d show the scene settings. It can be observed that a vessel being full or moving in
azimuth has higher entropy. For our data, the characteristics of dominant scattering mechanisms
depend on vessel orientation and superstructure. The weather conditions at the moment of acquisition
were recorded as well. In Figure 18c wet indicates drops of water or a thin water layer on the surface
of the inflatable’s volumes, either from rain or dew. Apart from the tendency that wet inflatables have
rather low entropy, there is no explicit connection between the boat’s polarimetric parameters and its
wetness. A clear pattern of the influence of the wind conditions could not be observed. Adding the
sensor settings to Figure PolSensorSetta,b might lead to the assumption that a low incidence angle
sometimes drastically reduces both the water’s and the boat’s entropy and the mean alpha angle.

For completeness, Figure 19a–d shows the H/α space for cross-polarization data. A physical
interpretation here is not straightforward, nevertheless the decomposition can be used a signal
processing tool to show that the backscatter behavior of the boat and the water are different.

(a) The boat’s polarimetric behavior with
selected sensor settings.

(b) The water’s polarimetric behavior with selected
sensor settings.

(c) The boat’s polarimetric behavior with
selected scene settings.

(d) The water’s polarimetric behavior with selected
scene settings.

Figure 18. A comparison of the inflatable’s and the water surface’s entropy and mean α with sensor
settings and scene settings for co-polarized data.
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(a) The boat’s polarimetric behavior with
selected sensor settings.

(b) The water’s polarimetric behavior with selected
sensor settings.

(c) The boat’s polarimetric behavior with
selected scene settings.

(d) The water’s polarimetric behavior with selected
scene settings.

Figure 19. A comparison of the inflatable’s and the water surface’s entropy and mean α with sensor
settings and scene settings for cross-polarization data.

Figure 20 now compares the previous results and embraces the vessel’s particular behavior in
the H/α-space compared with the surrounding water surface. Additionally, selected sensor and
scene settings were added to the plot to leave more room for interpretation. Co-pol (Figure 20a) and
cross-polarization (Figure 20b) scenarios show that the entropy can be used to discriminate between
the two entities, as the vessel has lower values in all acquisitions, except for one case, in Figure 20a.
The limited amount of data does not support a sound assessment, but the very low incidence angle
and the vessel being wet could have made a difference. The α-angle does not seem to be useful at all to
differentiate the boat from the water body, since divergences do not show a uniform trend. We labeled
the one available dataset with a full boat in Figure 20a, since we wanted to especially emphasize the
most realistic scenario. The H/α-spaces change with increasing wave heights; these results relate to
rather calm sea states.
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(a) α-angle and entropy: the water’s subtracted from
the vessel’s for co-polarized data.

(b) α-angle and entropy: the water’s subtracted
from the vessel’s for cross-polarization data.

Figure 20. Distinguishing the vessel and the water surface in the H/α-space of co-polarized and
cross-polarization data.

5.5. Emulating the Detectability at Higher Sea States

We want to emphasize once more that the collected data originates from a lake. The findings
related to water scattering can only be translated to the real situation in which the refugee vessels
are in the open ocean at relatively calm sea states. To estimate the robustness of the identification
capabilities, the weather and wave conditions of such an environment has to be addressed. It can be
assumed that there are stronger winds and rougher sea states most of the time.

Therefore, we want to bridge the gap with open ocean data and provide an estimation of feasibility
for intensity-based identification methods in stronger wind conditions. To do this we used the
XMOD1 geophysical model function from [84] to estimate σ0 from U10 wind speed for different
wind directions relative to the LoS (cross-wind, up/down-wind) and for a range of incidence angles
(20◦–60◦). Wind speed estimations span the Beaufort scale from 4 (moderate breeze) to 8 (fresh gale)
covering a wide range of frequently occurring scenarios of winds in the central Mediterranean capable
of bringing severe problems to small refugee vessels.

Figure 21b shows the results for VV-polarization of an X-band radar sensor. To transfer these
results to HH-polarization (Figure 21a), we used the polarization ratio model from [85]. The dots
represent three times the respective image’s standard deviation subtracted from the maximum radar
response from all successfully identified vessels to ensure a decent TCR. The lines represent the
estimated intensities of the water surface’s radar response according to different wind scenarios.
All phenomenons are drawn with respect to incidence angle and polarization.
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(a) HH-polarization. (b) VV-polarization.

Figure 21. The vessel’s maximum σ0 (dots) for HH-pol and VV-pol compared to the water surface’s
radar return estimations according to different wind scenarios (lines).

6. Discussion

Looking at the high identification rates of our inflatable in this study, we have to bear in mind that
the data came from a test site which was designed to ease intensity-based identification. On the other
hand, most of our dataset shows an empty boat and our analyses revealed that a fully occupied boat
has a stronger radar return (and therefore a better TCR). In a maritime context, our results can only be
transferred to a very calm, open ocean with low wind (less than 5 m/s) and no swell. Nevertheless,
our findings about the backscattering behavior of small inflatable vessels do represent a basis for
further fruitful research in this field. The experiments to test the influences of different scene settings
and the polarimetric modes revealed valuable information for further research.

Our preliminary hypothesis of expecting the “wetness” of the boat’s volumes to have influence
on both its detectability and its polarimetric signature could not be proven at this stage.

We examined data from different platforms and acquisition modes to evaluate the effects of
resolution. It is known that for the current satellites, the higher the spatial resolution, the smaller
the areas that can be monitored per unit of time. In addition to this, adding polarimetric channels
decreases the image’s spatial footprint. It turned out that dual-pol Spotlight mode data are well usable
to identify our special target, whereas Sentinel-1’s Interferometric Wide Swath mode seems not to meet
the requirements. However, the use of more sophisticated detection algorithms may make the use of
Sentinel-1 feasible in the future.

For the future, it is vital to collect more data using different resolutions (e.g., RadarSAT-2) and
with different sea states in the open ocean. Test data or simulations of a fully occupied inflatable would
be very valuable to further converge towards the realistic scenario.

7. Conclusions

This article presented an analysis of the very first effective SAR data collection of a refugee
inflatable. It proves that using TerraSAR-X, the inflatable boats can be detected with high certainty,
despite their low dielectric constant and small size. This was true for the relatively calm weather
conditions (mostly less than 5 m/s) and water state prevailing at the test site. Simulations to get a
preview how this goal can be achieved in the maritime environment revealed the following:

• Higher incidence angles increase the detectability, since the sea has a lower backscattering,
whereas the target signal’s intensity remains relatively stable.

• Wind speed greater than 10 ms−1 dramatically reduces the detectability for most cases. That is
true for both HH and VV polarizations.
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• Above 15 ms−1, in almost all cases the TCRs get too low to ensure a reliable intensity-based
identification.

Unsuccessful vessel identification is in most cases caused by strong clutter. Moreover, specific
sensor and scene settings influence the quality of identification to a great extent, such as the vessel’s
movement and its orientation compared to the radar path. We observed that:

• A full vessel has comparatively larger footprint estimations of around 200% and strong target to
clutter ratios between four and five times the standard deviation of σ0. This category can be seen
as a reference group, since it represents the most realistic situation.

• Movement in azimuth triggers a smaller TCR due to the well-known smearing effect.
The consequence is a reduced identification capability. Size estimations are well around the
100% mark.

• Throughout the experiments, inclined and parallel, the size of the vessel was underestimated and
the target to clutter ratios had a tendency to be very low.

• The experiments with a stationary vessel orthogonally oriented (“orthogonal”) led to a quite
variable identification quality with boat size estimations mainly between 50% and 150% of the
real size and acceptable target to clutter ratios, mostly concentrated in between three and four
times of the respective image’s standard deviation.

• The acquisition mode played a role with Sentinel-1’s Interferometric Wide Swath mode
characterized by very low target to clutter ratios. TerraSAR-X’s Stripmap and Spotlight modes
show similar quality of identification throughout. However, this is driven by a combination of
many influencing factors and we cannot come to any conclusion without collecting more data.

• The incidence angle does not seem to play a role, but we cannot draw any meaningful conclusions
considering the limited availability of low incidence angle data not affected by stronger clutter.
However, it clearly is prone to the occurrence of increased clutter, which lowers the TCR due to a
stronger radar response from the water’s surface. Chances for automatic identifications for those
cases are expected to be lower.

• The majority of corrected boat size estimations are between 50% and 150% of the real vessel size.

In terms of polarization, co-polarized data allow for better object identification than
cross-polarized data. Low incidence angles tend to be more susceptible to strong clutter, decreasing the
TCR and the quality of identification. The spatial resolution of TerraSAR-X’s Stripmap and Spotlight
modes seems sufficient, whereas Sentinel-1’s Interferometric Wide Swath mode provides very low
identification rates.

Most of these findings relate to intensity-based identification and detection schemes which may
not be applicable to higher sea states in the open ocean. The polarimetric analysis shows that neither
the vessel’s superstructure nor its orientation seem to influence its bearing in the entropy-α-space
much. More importantly, we found that a clear distinction between the vessel and the water surface is
possible, which invites the development of polarimetric-based detectors.

The findings of our work show that SAR can be used for a satellite-based surveillance
infrastructure to (semi-)automatically identify small rubber inflatables, such as our test vessel in
a test bed like a small lake. The establishment of infrastructure like that could considerably support
search and rescue missions in the Mediterranean Sea, reduce the number of such boats being missed
and mitigate the ongoing death in the open ocean. For that, further research will aim at the comparisons
and testing of different detectors, and the development of specially tailored detectors. For validation it
is crucial to acquire more test data from the open ocean or to alternatively bridge the gap with a data
simulation approach.
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