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Abstract  1 

Aim 2 

We compare patterns of diversity and their environmental correlates across nine clades of 3 

ecologically distinct groups of animals and plants co-existing in a single rainforest domain. We 4 

ask whether there are common correlates of diversity patterns, despite ecological differences 5 

across clades, to enable a unified platform to predict changes in the distribution of biodiversity in 6 

these groups. We focus on predictions of species richness, phylogenetic diversity, and 7 

phylogenetic endemism. 8 

Location 9 

Brazilian Atlantic Forest 10 

Methods 11 

Using carefully curated occurrence localities and phylogenetic data, we generated maps of (i) 12 

species richness, (ii) phylogenetic diversity, (iii) residuals of phylogenetic diversity regressed on 13 

species richness, and (iv) phylogenetic endemism for nine groups of plants and animals in the 14 

Atlantic forest. We also compiled a set of 30 potential environmental descriptors including 15 

records of current temperature and precipitation, climatic stability over time, and topography. 16 

Through a machine learning framework, we then explored the environmental correlates of each 17 

of these diversity measures for each group.  18 

Results 19 

The environmental variables used in this study were strong predictors of diversity for all studied 20 

groups. However, models for phylogenetic endemism had a lower predictive power. Although 21 

patterns of diversity are different among groups, correlates of diversity are very much consistent 22 

across taxa. For both species richness and phylogenetic diversity, current precipitation and 23 

precipitation stability over time were constantly ranked among the variables that most strongly 24 

correlate with diversity patterns. Differently from species richness and phylogenetic diversity, 25 

the correlates of phylogenetic endemism were less homogenous across groups. The results also 26 

suggest that the inclusion of climate stability over time, along with current climatic descriptors, 27 

is important when predicting diversity measures that reflect historical components, such as 28 

phylogenetic diversity and endemism.  29 

Main conclusions 30 

https://doi.org/10.1111/jbi.14083


 

 

Investigating environmental correlates of diversity for multiple co-existing clades and diversity 31 

measures in a single geographic area allows for a better understanding of common patterns 32 

across taxa. In this study, we identified common environmental correlates of the patterns of 33 

species richness and phylogenetic diversity, but not of phylogenetic endemism, across different 34 

Atlantic Forest groups. This information can now be used to improve predictions of biodiversity 35 

changes at broad taxonomic and geographical scales in the Atlantic Forest. 36 

 37 

Keywords 38 

Biodiversity correlates, precipitation, climate stability, phylogenetic endemism, phylogenetic 39 

diversity, species richness 40 
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Introduction 42 

Over the last decade, stakeholders from governmental, academic, and conservation organizations 43 

have shown a growing interest in the creation of systems that remotely monitor biodiversity over 44 

broad spatial scales (Scholes et al., 2008, 2012). A call for the establishment of a Global 45 

Observation Network (GEOBON) followed, along with a proposal to establish standardized 46 

measurements of essential biodiversity variables (Scholes et al., 2012; Pereira et al., 2013). With 47 

the increasing amount of satellite data being now freely available to the public, direct near-real 48 

time monitoring of some components of diversity has become a reality (Turner, 2014). Examples 49 

include global estimates of forest cover change (Hansen et al., 2013), plant functional diversity 50 

(Jetz et al., 2016), and penguin population locations and sizes in Antarctica (Fretwell & Trathan, 51 

2009). However, many of the world’s diverse groups of organisms cannot be directly observed 52 

through satellites, including most animals and non-canopy plants (Turner, 2014). Indirect 53 

estimates of diversity would be valuable for more inaccessible organisms. For instance, 54 

environmental variables that can be obtained from remote sensing sources (e.g., temperature, 55 

precipitation) and correlate with diversity patterns, can be used as proxies to predict the patterns 56 

of diversity themselves (Paz et al., 2020). Despite that, the utility of remote sensing tools for 57 

indirect biodiversity monitoring remains underexplored. 58 

One potential caveat of indirect sensing of biodiversity is that little consensus exists 59 

regarding the environmental variables that represent good predictors of the many different 60 

dimensions of biodiversity, especially in megadiverse and threatened tropical ecosystems. 61 

Furthermore, the selection of input variables is important and often different between studies 62 

(Williams et al., 2012). While species richness (SR) and endemism have been widely used as 63 

biodiversity metrics, and broadly employed to describe its spatial patterns, phylogenetic diversity 64 

(PD) and phylogenetic endemism (PE) are increasingly used to explicitly quantify the amount of 65 

evolutionary uniqueness of a region (Vane-Wright et al., 1991; Faith, 1992; Rosauer et al., 66 

2009). Both PD and PE reflect how combinations of more distantly related species will 67 

encompass higher percentages of the overall evolutionary history than combinations of closely 68 

related species (Forest et al., 2007; Devictor et al., 2010). Yet, measures of phylogenetic 69 

diversity are often positively correlated with species richness. In other words, areas where these 70 

two measures of diversity (taxonomic and phylogenetic) are decoupled, have been shown to 71 

include more or less evolutionary history than expected given their species richness (Forest et al., 72 



 

 

2007; Devictor et al., 2010; Safi et al., 2011; Fritz & Rahbek, 2012; Tucker & Cadotte, 2013). 73 

Importantly, however, both species richness and evolutionarily informed measures of diversity 74 

appear to be highly correlated to environmental variation - particularly temperature and 75 

precipitation. Still, the specific contribution of the individual climatic or landscape descriptors 76 

appears idiosyncratic when different taxa or different measures of diversity are compared across 77 

regions (Rompré et al., 2007; Laurencio & Fitzgerald, 2010; Peters et al., 2016; Zellweger et al., 78 

2016).  79 

One possible reason for the observed mismatch across systems and taxa is that few 80 

studies have evaluated the correlates of species richness for multiple taxa occupying the same 81 

ecosystem. For example, while local temperature has been flagged as a main predictor of species 82 

richness in different groups of plants and animals along elevational gradients on Mount 83 

Kilimanjaro (Peters et al., 2016), a similar transect study in Switzerland identified precipitation, 84 

temperature, and topography as better predictors of the bird, plant, and butterfly species 85 

diversity, respectively (Zellweger et al., 2016). In the tropics, herpetological surveys throughout 86 

Costa Rica (Laurencio & Fitzgerald, 2010) indicated that topography is an important predictor of 87 

richness, while a study of terrestrial vertebrates in Papua New Guinea recovered the same pattern 88 

for all organisms studied, except for reptiles (Tallowin et al., 2017). The latter exemplifies the 89 

importance of considering several groups when exploring environmental correlates of diversity. 90 

Studies of evolutionarily-informed measures of diversity also result in contrasting 91 

inferences. Humidity and precipitation are related to phylogenetic diversity in amphibian 92 

communities in Brazil (da Silva et al., 2012). However, patterns of phylogenetic diversity of 93 

northern Europe beetles are related to maximum temperature (Heino et al., 2015). Furthermore, 94 

evolutionarily informed measures might be influenced by historical climates and, in particular, 95 

by how much climatic variation an area has experienced. For example, long-term climatic 96 

stability has been flagged as an important predictor of avian phylogenetic diversity at a global 97 

scale (Voskamp et al., 2017). On the other hand, phylogenetic endemism of African frogs 98 

appears to be related to Quaternary climatic stability (Barratt et al., 2017). Consensus is even 99 

harder to achieve when including different dimensions of diversity such as richness and 100 

phylogenetic diversity in the equation. 101 

To provide a controlled comparison in the same area and inform the ability to indirectly 102 

monitor tropical biodiversity as a function of climatic conditions in a biological hotspot, we 103 



 

 

compare patterns of diversity and their environmental correlates across nine clades of 104 

ecologically distinct groups of animals and plants in the Brazilian Atlantic Forest (AF). This 105 

domain is a known biodiversity hotspot, harboring one of the highest levels of diversity and 106 

endemism in the world (Ribeiro et al., 2009). It spans a region of complex topography and 107 

environments, making it an excellent location to study the potential drivers of diversity in 108 

dissimilar groups. We specifically ask if there is a set of environmental predictors that work 109 

sufficiently well across different dimensions of diversity and taxa in the Atlantic Forest, which 110 

could be useful in community-level prediction and indirect biodiversity monitoring.  111 

We combine geo-referenced locality data with phylogenetic information for nine target 112 

clades: five groups of plants and four groups of animals. We used these data to map species 113 

richness, phylogenetic diversity, phylogenetic endemism, and the mismatch between 114 

phylogenetic diversity and species richness (i.e., the residuals of their regression analysis). Using 115 

a machine learning framework, we then investigated how well these patterns are predicted by 116 

each one of 30 abiotic correlates obtained from weather-station data and remote sensing sources 117 

(Vermote et al., 2015; Karger et al., 2017; Title & Bemmels, 2018), which describe spatial shifts 118 

in temperature, precipitation, humidity, and topography, as well as climatic stability over the last 119 

120,000 years. 120 

 121 

Methods 122 

 123 

Phylogenetic information  124 

To generate maps of species richness (SR), phylogenetic diversity (PD), and phylogenetic 125 

endemism (PE) for each target clade, we first obtained phylogenetic information and species 126 

distribution data for nine biological groups (five plant clades and four animal clades). Two of the 127 

plant datasets and all animal data were downloaded from Brown et al. (2020), including vetted 128 

occurrence points and maximum likelihood phylogenies based on mitochondrial DNA for 129 

animals and chloroplast DNA for plants. This dataset included a clade with 18 species (3,774 130 

occurrence points; ca. 67% of the AF species included in this lineage) of tank-forming plants 131 

belonging to the Bromelioideae subfamily (Aguirre-Santoro et al., 2016; Aguirre-Santoro, 2017), 132 

a clade with 177 species (25,645 sampling points; ca. 70% of the AF species included in this 133 

lineage) of shrubs and small trees from the Miconieae tribe in the Melastomataceae (Goldenberg 134 



 

 

et al., 2008; Michelangeli et al., 2008; Caddah, 2013; Reginato & Michelangeli, 2016), a clade 135 

with 55 species (3,269 occurrence points, ca. 100% of the AF species included in this lineage) of 136 

clearwing butterflies of tribe Ithomiini in the subfamily Danainae (Nymphalidae), a clade of 19 137 

species (227 occurrence points; ca. 76% of the AF species included in this lineage) of treefrogs 138 

from the genus Boana from the family Hylidae, a clade of 19 species (2,065 occurrence points; ~ 139 

67% of the AF species included in this lineage) of the horned frogs of the Proceratophrys genus 140 

in the Odontophrynidae family (Brown et al., in press; Vasconcelos et al., 2014), and a clade of 141 

22 species of birds (8,501 occurrence points; ca. 100% of the AF species included in this lineage) 142 

from tanagers belonging to the subfamily Thraupinae (Burns et al., 2014). In addition, we 143 

gathered three plant datasets (including species presence data and maximum likelihood 144 

phylogenies produced with alternative markers): the Fridericia and allies group of the tribe 145 

Bignonieae, in the plant family Bignoniaceae (hereon referred to as "bignones," Kaehler et al., 146 

2019), and two clades of melastomes, the Bertolonia genus (Bacci et al., 2020), and the 147 

Cambessedesieae tribe (Bochorny et al., 2019). The bignones dataset includes 65 species (ca. 148 

72% of the AF species included in this lineage), 5,115 presence points, and a phylogeny built 149 

from one plastid marker (ndhF) and one nuclear marker (PepC). The Bertolonia dataset contains 150 

31 species (ca. 88% of the AF species included in this lineage), 744 points, and a phylogeny built 151 

from nine nuclear, ribosomal and plastid markers (nrITS and nrET, atpF-atpH, ndhF, psbK-152 

psbL, rbcL, rpl16, and trnS-trnG, ADH, and PCRF1). The Cambessedesieae dataset contains 54 153 

species (ca. 81% of the AF species included in this lineage), 1,167 presence points, and a 154 

phylogeny built from six ribosomal, plastid, and nuclear markers (nrITS, nrETS, atpF-atpH, 155 

psbK-psbL, trnS-trnG, and waxy).  156 

 157 

Mapping species richness, phylogenetic diversity, and phylogenetic endemism  158 

 159 

To assess which environmental variables (reflecting both past and present conditions) and 160 

landscape descriptors best explain diversity patterns in the target clades, we first superimposed 161 

distribution maps for every species in each clade. To avoid circularity in testing for 162 

environmental predictors of biodiversity, we did not use correlative species distribution models 163 

for this step. Instead, we created alpha hulls (Burgman & Fox, 2003) using all occurrence data 164 

available for each individual species with more than three locality points (we added all others as 165 



 

 

individual points). All occurrence data were vetted by the co-authors, who bring expertise in the 166 

systematics and natural history of each of the groups sampled here. The alpha hulls were built 167 

using the R package rangeBuilder (Rabosky et al., 2016) and a dynamic selection of alpha for 168 

each species with alpha varying in steps of 1 (Meyer et al., 2017). Once done, those distribution 169 

maps were rasterized to match the spatial resolution of the predictor variables (~10 km). We 170 

acknowledge that this method might overestimate individual species distributions (or omit 171 

unsampled populations), but such problems are more limiting at finer spatial scales (Peterson, 172 

2017; Peterson et al., 2018).  173 

Maps of species richness, phylogenetic diversity, and phylogenetic endemism were then 174 

built for all nine groups, following the methods described in Brown et al. ( in press). In brief, 175 

input data consisted of community composition matrices based on the superimposed maps of 176 

species ranges (alpha hulls and points when <= 3 points). For each group, the species maps were 177 

stacked and converted to a composition matrix in R. For phylogenetic diversity and phylogenetic 178 

endemism, we compiled phylogenetic trees, including branch lengths. For each of the nine 179 

groups, we imported the community composition matrix and the phylogeny to Biodiverse 180 

(Laffan et al., 2010). We then used the spatial analysis tab to calculate species richness, Faith’s 181 

PD index (Faith, 1992), and phylogenetic endemism (Rosauer et al., 2009) for every pixel in the 182 

AF (Figure 1). Species richness was estimated by summing all species present in each pixel. 183 

Phylogenetic diversity was computed by summing branch lengths leading to all species present 184 

in a given pixel. Phylogenetic endemism, which combines endemism (estimated from the range 185 

of the species and the fraction contained in a given cell), and phylogenetic diversity, to estimate 186 

its level of restriction (Rosauer et al., 2009). 187 

 188 

Concordance between measures: Mapping the residuals of phylogenetic diversity 189 

Because measures of PD are highly correlated with SR, particularly Faith’s PD (Forest et al., 190 

2007), we regressed those two maps (PD onto SR) and mapped the residuals of the regression for 191 

each clade. The mapped residuals highlight areas where the information from these two diversity 192 

measures is different. In the residual maps, values higher than 0 represent areas in which PD is 193 

higher than expected given SR. Negative values depict areas with less PD than expected given 194 

SR. Hereon, we refer to this variable for each clade as the PD residuals. 195 

 196 



 

 

Environmental variables  197 

To assess how much of the spatial patterns of SR, PD, and PE are explained by 198 

environmental descriptors, we compiled environmental data for the entire extension of the forest. 199 

We opted to use 30 variables, each one describing a climatic or landscape feature that has the 200 

potential to correlate with local biodiversity metrics (Table 1). Twenty-one of those were directly 201 

obtained from public databases. The variables include a 90m Digital Elevation Model (DEM) 202 

from the Shuttle Radar Topography Mission (SRTM, Farr et al., 2007), the Topographic wetness 203 

index (TWI) from Envirem (Title & Bemmels, 2018), and 19 bioclimatic variables reflecting 204 

temperature and precipitation, downscaled to a 30” (~ 1km) resolution, using climatologies at 205 

high resolution for the Earth’s land surface algorithm (CHELSA; Karger et al., 2017) and the 206 

ANUCLIM method (Xu & Hutchinson, 2010).  207 

We generated the remaining nine Atlantic Forest specific layers, two describing terrain, one for 208 

cloud cover, and six reflecting climatic stability over the last 120,000 years. The map of Atlantic 209 

Forest Domain was created in a GIS environment based on the Vegetation Map of Brazil at a 210 

1:5,000,000 scale (IBGE, 2004). Through an interactive discussion with experts having wide 211 

experience in the field, known Atlantic Forest areas were selected and combined into a multi-212 

polygon vector geometry. The map is referenced to the WGS84 datum with geographic 213 

coordinates and is available in the Dryad repository associated to this manuscript. The first two 214 

variables, Slope and Rugosity (calculated as the standard deviation of Slope, Grohmann et al. 215 

2011), were derived from the DEM (SRTM, Farr et al., 2007). Mean cloud coverage was derived 216 

from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS 09GA, Vermote et al., 217 

2015) based on satellite data collected from 2000 to 2017, using Google Earth Engine (Gorelick 218 

et al., 2017). To determine whether historical climates were important in predicting present-day 219 

patterns of diversity, we built six layers to reflect climatic stability over the last 120,000 years. 220 

For that, we used existing bioclimatic descriptors available every 4,000 years for the past 221 

120,000 years and obtained through the Hadley Center model (HadCM3, Singarayer & Valdes, 222 

2010; Carnaval et al., 2014). We summarized long-term variation in three temperature attributes 223 

[i.e., Annual Mean Temperature (bio 1), Mean Temperature of the Warmest Quarter (bio 10), 224 

and Mean Temperature of the Coldest Quarter (bio 11)], and three precipitation attributes [i.e., 225 

Annual Precipitation (bio 12), Precipitation of the Wettest Quarter (bio 16), and Precipitation of 226 

the Driest Quarter (bio 17)]. For each one of the six variables, we computed the coefficient of 227 



 

 

variation over the past 120,000 years. For downstream analyses, all variables were resampled to 228 

a 5’ resolution (~10km) using the resample function of the R package raster 3.0-7 (Hijmans, 229 

2019).  230 

The complete dataset of environmental descriptors (30 layers; Table 1) reflected variables 231 

that may be highly correlated in the Atlantic Forest area. We thus ran a Variance Inflation Factor 232 

(VIF) analysis to reduce collinearity, using the R package usdm 1.1-18 (Naimi et al., 2014), and 233 

keeping only those variables with VIF<5. After eliminating the highly co-linear variables, we 234 

were left with a dataset including 13 environmental descriptors, which were used in all machine 235 

learning analyses. Together, these variables represent present-day climate (Mean diurnal range 236 

(bio 2), Mean temperature of the wettest quarter (bio 8), precipitation of the wettest month (bio 237 

13), precipitation of the warmest quarter (bio 18), and precipitation of the coldest quarter (bio 238 

19)), climatic stability over the past 120,000 years (CV bio 1, CV bio 10, CV bio 16 and CV bio 239 

17), topography (Altitude, Rugosity and TWI), and cloud cover (Table 1).  240 

 241 

Correlates of biodiversity  242 

To determine which of the environmental descriptors are the best predictors of SR, PD, PE, and 243 

the residuals of the PD, we used four machine learning algorithms to generate correlative models 244 

of each biodiversity metric. We then combined the four resulting models in an ensemble 245 

prediction for each metric. The machine learning algorithms were Random Forests (rf from Liaw 246 

& Wiener, 2002), Neural Network (nnet from Venables & Ripley, 2002), Support Vector 247 

Machines (svmRadial from Karatzoglou et al., 2004), and Generalized Linear Models. While 248 

running each algorithm, we randomly split each dataset (each map of a given diversity metric for 249 

a given group) into two sets: one containing 70% of the pixels (for model training), and one 250 

containing 30% of the pixels (completely withheld for model testing). For the training of each 251 

model, we randomly split the training data into 10 subgroups (folds). We used each fold in turns 252 

as an internal validation dataset, utilizing the others for training. We repeated this procedure 253 

three times (repeat crossvalidation). All models were built with the R package caret 6.0-84 254 

(Kuhn, 2016). A final ensemble model, built from a linear combination of the four algorithms 255 

based on the RMSE values, was built with the caretEnsemble function in R. Finally, we used the 256 

withheld 30% of pixels for model testing. To obtain an estimate of variable importance in the 257 

ensemble model, we computed a weighted average of the variable contributions estimated from 258 



 

 

the individual models, using the weight of the models in the ensemble. For that, we used the 259 

varImp function of the caret package for R. 260 

 261 

Results 262 

Patterns of SR, PD, and PE are different among groups (Figure 2). Bignones and 263 

Cambessedesieae show a concentration of SR and PD in the interior forests from Bahia to Minas 264 

Gerais, a result even more striking in the phylogenetic diversity maps (Figures 1, 2). Both the 265 

Miconieae and tanagers have higher diversity (both SR and PD) in the Serra do Mar coastal 266 

forest (coastal mountains, Figures 1, 2). On the other hand, the butterflies show peaks for both 267 

PD and SR in the coastal forests from São Paulo to central Bahia. Bertolonia shows the opposite 268 

pattern, with higher SR and PD both south (from São Paulo state to Santa Catarina) and north-269 

east (Bahia coastal forest) of the high diversity areas for the butterflies. The bromeliads have 270 

their peak diversity for both PD and SR in the north-east of the Bahia coastal forest, with the 271 

Proceratophrys frogs showing peak diversity in the north of Bahia and in part of the Serra do 272 

Mar coastal forest. Frogs of the genus Boana have two peaks of higher SR, one in the Serra do 273 

Mar coastal forest, and a second one in the Bahia interior forests; with the highest PD mainly in 274 

the Serra do Mar coastal forest. 275 

In the case of PE, we detected two different general patterns with either small 276 

concentrations of high PE or more widespread areas of high PE values (Figure 2). Two groups, 277 

the butterflies and the tanager birds, show a pattern of widespread high PE, inland to the north of 278 

Rio de Janeiro for the butterflies and in the Serra do Mar coastal forest for the tanager birds. 279 

Both the bromeliads and the Bertolonia have very small areas of high PE in the north of the 280 

Bahia state. The Miconieae, the Proceratophrys frogs, and the Cambessedesieae, all show high 281 

PE in small areas of Espírito Santo and the border between Rio de Janeiro and São Paulo states. 282 

The Cambessedesieae also shows a small area of high PE in the forests of inland Bahia. Finally, 283 

frogs of the Boana genus and bignones show no apparent areas of high PE. 284 

All groups show spatial concentration of residuals (positive or negative, Figure 3). Most 285 

groups have areas where PD is higher than expected given species richness, with Proceratophrys 286 

frogs showing this pattern along the entire mapped distribution (Figure 3). Butterflies have 287 

higher PD than expected given the number of species in the coastal region that extends from 288 

Alagoas to Paraiba, and in the southern interior region of the forest (red and dark orange areas in 289 



 

 

Figure 3). We found a spatial concentration of higher PD than expected in the southern Atlantic 290 

Forest for another three groups: (i) the tanagers in the Paraná, Santa Catarina, and part of São 291 

Paulo states, (ii) both the Boana frogs, and (iii) bignones from the Serra do Mar Coastal Forest 292 

and the Santa Catarina and Parana states. The bignones, Miconieae, and Cambessedesieae also 293 

showed higher PD than expected in the north, around the Bahia Interior Forests region. Negative 294 

residuals, differently from positive residuals, are more spread out in geographical space (Figure 295 

3, green and blue respectively). The few exceptions, with a concentration of negative residuals, 296 

are observed in tanager birds, butterflies, and the plant tribe Miconiae. For the tanagers, areas 297 

holding less phylogenetic diversity than expected are concentrated in the north, mostly north of 298 

Minas Gerais state, including the states of Espírito Santo and Bahia. In the butterflies, these areas 299 

are found in the state of Bahia but also in small clusters in the southern portion of the forest. In 300 

the Miconieae, they are mostly found in the Serra do Mar Coastal Forests (Figure 3, blue areas).  301 

Of all biodiversity metrics, SR PD (R2 0.86-0.98) and the residuals of PD (R2 0.86-0.98, 302 

Figure 4) are best predicted by the environmental models. This metric is followed by SR (R2 303 

0.79-0.98. Model predictions of PE were more heterogeneous and generally lower (R2 0-0.96, 304 

Figure 4), with three main exceptions: the bignones, the tanager birds, and the butterflies (R2 of 305 

0.94,0.95 and 0.96 respectively). Two other groups, the Proceratophrys frogs and the Miconieae 306 

(R2 of 0.36 and 0.49 respectively), showed some predictive power. 307 

The ability of the models to predict SR, PD, and PE also varied across clades. For 308 

instance, they were consistently high in butterflies (R2>0.96), bignones (R2>0.93), and tanager 309 

birds (R2>0.95), but lower in the plants of the Bertolonia genus (lowest R2 for all but PE and 310 

second to last for PE; Figure 4), and Proceratophrys frogs (which had one of the lowest R2 311 

values for predictions for SR, PD diversity and residuals; Figure 4). 312 

Climatic variables, reflecting both present-day and past conditions, contributed highly to 313 

predictions of SR, PD, and phylogenetic residuals. In particular, precipitation-related variables 314 

were consistently identified as those of higher importance to predict SR and PD (blue in Figure 315 

5). In eight out of the nine clades, variables reflecting current precipitation are those of highest 316 

importance for predicting SR; in one clade (bromeliads), stability in past precipitation was 317 

ranked first, but closely followed by current precipitation (Figure 5). Current temperatures were 318 

the second or third predictors of SR. Conversely, historical stability in temperature contributed 319 

less to predictions of diversity, ranking fourth to last for SR (except from bignones, which 320 



 

 

ranked second) (Figure 5a). For PD, precipitation was of higher importance in seven out of the 321 

nine clades. In one clade, the Boana frogs, past precipitation closely followed current 322 

precipitation. For the bromeliads, current temperature was the most important variable, followed 323 

by both current and past precipitation. For the other groups, current temperature ranked second, 324 

third, or fourth, while temperature stability ranked third or fourth in importance (last for the 325 

bromeliads; Figure 5b). 326 

Variables related to precipitation also had higher importance to explain the residuals of 327 

PD in eight out of the nine target groups (Figure 5a, b), with a slightly higher contribution of 328 

climate stability as a correlate of the residuals relative to the other metrics (Figure 5a, b, d). The 329 

importance of current temperatures as predictors of PD residuals was mixed, being ranked first in 330 

the case of tanagers and butterflies, second in the case of Bertolonia, bromeliads and 331 

Proceratophrys, and third to sixth in all other clades (Figure 5d). Although generally low, cloud 332 

distribution was relevant to predicting the residuals for tanagers and Boana frogs, and slightly 333 

relevant for the bignones and the Cambessedesiae (Figure 5). 334 

Unlike the other biodiversity metrics, PE does not seem to be better predicted by one 335 

specific type of environmental variable. Variables with highest contributions to the model are 336 

related to current precipitation (five out of the nine groups), current temperature (one out of the 337 

nine goups), and terrain (three out of nine). Of the groups with some predictive power for PE, 338 

four out of five have current precipitation as the main predictor (bignones, birds, Miconieae, and 339 

Proceratophrys); in one, topography was closely followed by current precipitation. Only in this 340 

metric there is a more meaningful correlation with topography, which was recovered in at least 341 

four groups. Topography is the highest contributor for patterns observed in Cambessedesiae, 342 

bromeliads, and butterflies, but ranks second and third for Bertolonia and Miconieae, 343 

respectively (Figure 5c).  344 

 345 

Discussion 346 

 347 

Models based on environmental variables describing temperature and precipitation 348 

represented good predictors of different dimensions of diversity in the Atlantic Forest, based on 349 

the nine focal clades (Figure 4). Nevertheless, predictions of PE were poorer than those of SR or 350 

PD, a result likely associated to the spatial restriction of this biodiversity measure in relation to 351 



 

 

the broader environmental predictors used, other studies have indeed suggested endemism might 352 

be explained by variation within broader study regions (Rosauer et al., 2009; Crisp et al., 2011). 353 

However, predictions were still good in half of the cases, with R2 values ranging from 0.36 to 354 

0.96. In other words, to a certain extent, we can still predict PE based on our set of predictor 355 

variables for some groups, although not as reliably. Our sampling for the AF was fairly 356 

complete, however, some narrow endemics are missing in the datasets and thus PE can be 357 

underestimated in certain cells. We acknowledge our threshold of >3 points for creating alpha 358 

shapes might be considered small. However, we created the distribution maps with alternative 359 

thresholds of 10 and 30 and have changes in only few groups of restricted distributions 360 

(Appendix A). We also ran analyses with an alternative method for map building, through 361 

minimum convex polygons with very similar predictive power and environmental predictors 362 

selected (Appendix A). Sampling multiple clades within a single geographic space allowed us to 363 

identify variables that are consistently important (or not) predictors of diversity in the Atlantic 364 

Forest, highlighting the importance of precipitation (both past and present), but limited 365 

contribution of topography.  366 

Traditionally, temperature has been considered as the most important driver of diversity 367 

patterns, given the importance of this variable in the temperate zones (Rohde, 1992; Erwin, 368 

2009; Peters et al., 2016). However, our results point to precipitation as a main predictor of 369 

species richness and phylogenetic diversity, while contributing to the mismatch between those 370 

variables. This result is in line with other recent tropical clade-based studies that highlight the 371 

importance of rainfall as a driver of species richness in small mammals (Mason-Romo et al., 372 

2017), trees (Krishnadas et al., 2016), bats (Grimshaw & Higgins, 2017), fruit-feeding butterflies 373 

(Santos et al., 2020), and anurans (Vasconcelos et al., 2010). Here we show that studying several 374 

clades in the same area does improve our ability to find general patterns in the potential 375 

environmental drivers of diversity, highlighting the importance of precipitation.  376 

Contrary to our expectations of historical climatic stability and topography as strong 377 

predictors of evolutionary history, PD was not explained by any of those variables. However, 378 

climatic stability was an important predictor of the other two measures that reflect evolutionary 379 

history (i.e., PE and residuals), with topographic variables contributing to the explanation of PE. 380 

This result might be explained by the relative importance of evolutionary history in each 381 

measure. In this case, PD is highly correlated with SR, and thus the predictors may also be driven 382 



 

 

by the latter. The residuals, however, show areas of mismatch between the two, highlighting 383 

areas where evolutionary history is providing different information (Forest et al., 2007; Devictor 384 

et al., 2010), and might therefore give us better insights into predictors of evolutionary history. 385 

This relationship has been studied at a global scale for birds, where abiotic correlates of these 386 

residuals are spatially heterogeneous, suggesting that elevation is an important predictor of PD 387 

residuals in the tropics, along with contact among biomes (Voskamp et al., 2017). Here, we 388 

found relatively high importance of climatic stability as a predictor of PD residuals in the AF, a 389 

tropical realm that may point to further heterogeneity in the relative importance of environmental 390 

variables within realms. 391 

We found some discrepancies among study groups in the strength of predictions and the 392 

importance of variables. More specifically, Proceratophrys frogs showed the lowest predictive 393 

power in all models, which might be linked to the more restricted distributions of its species. 394 

Another example is the increased contribution of temperature stability (and sometimes 395 

precipitation stability) over the Quaternary to explain PE in bromeliads, tanagers, and frogs. This 396 

result is congruent with a previous study highlighting the importance of climatic stability for 397 

predicting PE in African frogs (Barratt et al., 2017). These discrepancies suggest that 398 

environmental correlates of diversity may be more similar among study groups with similar 399 

natural histories, rather than region dependent. Indeed, life-history traits have been proposed to 400 

explain differences in how shared barriers lead to different levels of intraspecific isolation (or 401 

gene flow) in co-distributed species, as well as differences in the impact of climatic changes in 402 

population history and demography (Pabijan et al., 2012; Paz et al., 2015; Zamudio et al., 2016; 403 

Carstens et al., 2018). 404 

By mapping diversity metrics of multiple taxonomic groups that co-occur in a single 405 

domain, our approach led not only to strong predictions of different dimensions of biodiversity 406 

based on past and present abiotic variables, but also highlighted the importance of precipitation 407 

in determining diversity patterns. In the face of global climatic changes, a similar framework 408 

may be useful as a biodiversity monitoring tool, particularly if tied to periodically retrieved 409 

remote sensing data (e.g., Vermote et al., 2015). Akin to near-real time snapshots of habitat 410 

change (Diniz et al., 2015), they can provide fairly accurate predictions of expected changes in 411 

diversity patterns driven by climatic shifts. Our analyses suggest that these near-time models, at 412 

least in the Atlantic Forest, and potentially in the tropics, will profit from the inclusion of 413 



 

 

climatic data describing current and past precipitation, replacing the need to include topography 414 

as an independent variable. Models may be refined for specific groups (or life-history 415 

characteristics) and diversity measures including, for example, stability measures to predict 416 

evolutionary history, or data on landscape configuration as an additional proxy to explain 417 

diversity distribution (Santos et al., 2020). 418 

 419 

  420 



 

 

Table 1. Thirty environmental variables compiled for this study. Grey shading indicates the 421 

thirteen variables used for Machine Learning analyses, after eliminating variable with high 422 

collinearity given the original 30-variable dataset. All variables were resampled at a ~10km 423 

resolution. The table depicts the source and the category of each variable. Acronyms: 424 

SRTM: Shuttle Radar Topography Mission (Farr et al., 2007); TWI: Topographic wetness 425 

index; Envirem: Environmental rasters for ecological modeling (Title & Bemmels, 2018); 426 

CHELSA: climatologies at high resolution for the Earth’s land surface algorithm (Karger et 427 

al., 2017); MODIS: NASA’s Moderate Resolution Imaging Spectroradiometer (Vermote et 428 

al., 2015); Hadley Center: Hadley Center model (HadCM3, Singarayer & Valdes, 2010; 429 

Carnaval et al., 2014). 430 

 431 

Layer Description Source Category 

Bio 1 Annual Mean Temperature CHELSA 

Current 

temperature 

Bio 2 Mean Diurnal Range CHELSA 

Bio 3 Isothermality (BIO2/BIO7) (* 100) CHELSA 

Bio 4 

Temperature Seasonality (standard deviation 

*100) CHELSA 

Bio 5 Max Temperature of Warmest Month CHELSA 

Bio 6 Min Temperature of Coldest Month CHELSA 

Bio 7 Temperature Annual Range (BIO5-BIO6) CHELSA 

Bio 8 Mean Temperature of Wettest Quarter CHELSA 

Bio 9 Mean Temperature of Driest Quarter CHELSA 

Bio 10 Mean Temperature of Warmest Quarter CHELSA 

Bio 11 Mean Temperature of Coldest Quarter CHELSA 

Bio 12 Annual Precipitation CHELSA 

Current 

Precipitation 

Bio 13 Precipitation of Wettest Month CHELSA 

Bio 14 Precipitation of Driest Month CHELSA 

Bio 15 

Precipitation Seasonality (Coefficient of 

Variation) CHELSA 

Bio 16 Precipitation of Wettest Quarter CHELSA 

Bio 17 Precipitation of Driest Quarter CHELSA 

Bio 18 Precipitation of Warmest Quarter CHELSA 



 

 

Bio 19 Precipitation of Coldest Quarter CHELSA 

Altitude Digital elevation model (DEM) SRTM 

Topographic 
Slope Slope calculated from the DEM Based on SRTM 

Rugosity Rugosity calculated from the DEM Based on SRTM 

TWI TWI calculated from the DEM Envirem 

Clouds 

Average cloud coverage calculated from 

MODIS imagery Based on MODIS (2000-2017) 
Clouds 

CV Bio 1 

CV of Bio 1 (120,000  years, every 4,000 

years) Based on Hadley Center data 

Temperature 

Stability 

CV Bio 10 

CV of Bio 10 (120,000  years, every 4,000 

years) Based on Hadley Center data 

CV Bio 11 

CV of Bio 11 (120,000  years, every 4,000 

years) Based on Hadley Center data 

CV Bio 12 

CV of Bio 12 (120,000  years, every 4,000 

years) Based on Hadley Center data 

CV Bio 16 

CV of Bio 16 (120,000  years, every 4,000 

years) Based on Hadley Center data Precipitation 

Stability 

CV Bio 17 

CV of Bio 17 (120,000  years, every 4,000 

years) Based on Hadley Center data 

 432 

 433 
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FIGURES 435 

Figure 1. The study area, the Brazilian Atlantic Forest, including the Brazilian states 436 

encompassed by the Atlantic Forest domain. Lighter shades of gray indicate lower 437 

elevations, darker shades indicate higher elevations. 438 

 439 
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Figure 2. Maps of species richness (first column), phylogenetic diversity (middle column), and 441 

phylogenetic endemism (last column) for the nine study groups (rows), based on individual 442 

species minimum convex polygons around presence points, and molecular phylogenies. 443 

Warmer colors represent higher diversity, colder colors depict lower diversity; for all maps, 444 

values are stretched to maximum-minimum. Taxa represented from top to bottom are: five 445 

clades of plants: Bertolonia, Fridericia and allies (bignones), Bromelioideae, 446 

Cambessedesiae, Miconieae, and four groups of animals: the Ithomiini butterflies, the 447 

Boana and, Proceratophrys frogs, and the tanager birds of the Thraupinae subfamily. In the 448 

species richness maps, the number of species for each group varies as follows: Bertolonia 449 

(1-5), Fridericia and allies (bignones; 1-33), Bromelioideae (1-8), Cambessedesiae (1-8), 450 

Miconieae (1-81), Ithomiini (2-39), Boana (1-7), Proceratophrys (1-5), and Thraupinae (1-451 

19). For the phylogenetic diversity maps, the value of PD for each group varies as follows: 452 

Bertolonia (0.11-0.21), Fridericia and allies (bignones; 0.04-0.23), Bromelioideae (5.37-453 

15.48), Cambessedesiae (0.17-0.52), Miconieae (25.73-424), Ithomiini (0.14-1.52), Boana 454 

(0.74-1.86), Proceratophrys (0.41-0.72), and Thraupinae (39.64-345.69). For the 455 

phylogenetic endemism maps, the value of PE for each group varies as follows: Bertolonia 456 

(4.35*10-5-0.029), Fridericia and allies (bignones; 2.31*10-6-0.0013), Bromelioideae 457 

(0.003-0.54), Cambessedesiae (1.87*10-5-0.041), Miconieae (0.001-3.64), Ithomiini 458 

(2.69*10-6-0.0045), Boana (6.17*10-5-0.1), Proceratophrys (1.9*10-5-0.0074), and 459 

Thraupinae (0.00034-0.046). 460 



 

 

 461 



 

 

Figure 3. Maps of residuals of phylogenetic diversity regressed on species richness (PD 462 

residuals) for the nine study groups. Values of positive residuals are shown through a red scale; 463 

values of negative residuals are depicted through a blue scale. Taxa represented from left to right 464 

and top to bottom are: five groups of plants (Bertolonia, Fridericia and allies (bignones), 465 

Bromelioideae, Cambessedesiae, and Miconieae), and four groups of animals (the Ithomiini 466 

butterflies, the Boana and Proceratophrys frogs, and the tanagers of the Thraupinae subfamily). 467 



 

 

 468 



 

 

Figure 4. R2 of ensemble machine learning models for each studied group and measure of 469 

diversity. From top to bottom, diversity measures are species richness (SR), phylogenetic 470 

diversity (PD), phylogenetic endemism (PE), and residuals of phylogenetic diversity regressed 471 

on species richness (residuals). The study groups from left to right are Bertolonia, Fridericia and 472 

allies (bignones), Bromelioideae, Cambessedesiae, Miconieae, Ithomiini butterflies, Boana, 473 

Proceratophrys frogs, and the tanagers of the Thraupinae subfamily. 474 

 475 

 476 
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Figure 5. Relative importance of predictors of diversity for all studied groups and measures of 479 

diversity. Each panel corresponds to one measure of diversity a) Species richness (SR), b) 480 

Phylogenetic diversity (PD), c) Phylogenetic endemism (PE), and d) Residuals of the 481 

PD/SR regression. The 13 predictor variables are grouped in six categories, from top to 482 

bottom: clouds, current temperature, current precipitation, precipitation stability, 483 

temperature stability, and topography (more details in Table 1). 484 
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