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African forest elephant movements
depend on time scale and individual
behavior

Christopher Beirne', Thomas M. Houslay?, Peter Morkel?, Connie J. Clark®, Mike Fay*,
Joseph Okouyi*, Lee J. T. White*>® & John R. Poulsen'™

The critically endangered African forest elephant (Loxodonta cyclotis) plays a vital role in maintaining
the structure and composition of Afrotropical forests, but basic information is lacking regarding the
drivers of elephant movement and behavior at landscape scales. We use GPS location data from 96
individuals throughout Gabon to determine how five movement behaviors vary at different scales,
how they are influenced by anthropogenic and environmental covariates, and to assess evidence for
behavioral syndromes—elephants which share suites of similar movement traits. Elephants show
some evidence of behavioral syndromes along an ‘idler’ to ‘explorer’ axis—individuals that move
more have larger home ranges and engage in more ‘exploratory’ movements. However, within these
groups, forest elephants express remarkable inter-individual variation in movement behaviours.
This variation highlights that no two elephants are the same and creates challenges for practitioners
aiming to design conservation initiatives.

Movement is a fundamental characteristic of animal biology, and the movement decisions animals make have
profound implications across individual, population and ecosystem-levels. At the individual-level, movement
behaviour influences fitness through the ability to find resources, survive and reproduce?. At the population-
level, movement characteristics can influence interactions with competitors, predators and disease®*. At the
ecosystem-level, animal movement can determine the location of dispersed pollen, seeds and nutrients and
the spatial intensity of herbivory, predation and disturbance®. Conserving species and functioning ecosystems,
therefore, depends on understanding how and why animals move and the consequences of such decisions.

There is increasing recognition of the importance in quantifying the role of, and variation associated with,
individual movement patterns. This change is assisted by the increasing availability of high quality animal track-
ing data and the associated development of powerful analytical frameworks which can quantify movement behav-
ior at sufficiently fine temporal scales'. Where explored, individual-level variation in movement behaviors is often
a typical feature of movement data sets®® and can translate into individual variation in resource acquisition, body
mass, reproductive output, and survival’. Individual variation can facilitate coexistence of multiple individuals
through reductions in competition for resources'®!! and has profound implications for management of human-
wildlife conflict through identification of problem individuals'?. Characterizing multiple movement behaviors
at the individual-level can also reveal behavioral syndromes—correlated suites of behaviors that can constrain
or enhance how individuals and populations respond to anthropogenic disturbance or novel environments'. As
GPS tracking typically involves following multiple individuals across ecologically meaningful time periods, it is
perfectly suited for assessments of behavioral syndromes. To date, studies with a sufficient number of tracked
animals over a large enough spatial area to assess heterogeneity in movements with environmental and anthro-
pogenic factors are rare, even in large mammals®, but see®”!*. Ultimately, identification of factors governing
animal movement and behavioral syndromes could lead to targeted regional- or syndrome-specific management
recommendations, resulting in more effective conservation and resolution of human-wildlife conflict.

The African forest elephant (Loxodonta cyclotis) plays a pivotal ecological role in seed dispersal, nutrient
recycling and herbivory, ultimately influencing the structure and functioning of Afro-tropical forests'>. However,
research into forest elephant movement behavior has been limited to small sample sizes and small temporal
and spatial scales, as direct observations of forest elephants are largely restricted to non-forest, open habitats
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that compose a small fraction of their extant range. Given the rapid rate of decline of forest elephant popula-
tions across their range (60-80% within ten years:'®'7), landscape-scale characterization of the drivers of move-
ment, and its associated individual variation, is vital for the design of effective conservation and management
strategies'®, forecasting how forest elephants will cope with future environmental change'®'?, and determining
how their absence will transform tropical forest ecosystems".

We derive five individual-level movement behaviors from forest elephant GPS tracking data: movement
distance, home range size, site fidelity, diurnality and exploratory behavior—each of which captures an impor-
tant aspect of movement ecology. ‘Movement distance’ represents the sum of all movements across a temporal
period of interest, reflects individual activity levels and energy use, and is influenced by social interactions, such
as mating and competition, and forage quality and distribution®. ‘Home range size’ reflects the amount of space
that forest elephants require to satisfy their dietary, social and reproductive requirements in a given time step?'.
Home range is an important parameter for designing wildlife management strategies—how much area does a
forest elephant require in a given period of time? ‘Site fidelity’ reflects the degree to which individuals remain
in one location or move freely around the landscape and has been shown to govern survival and reproductive
success in multiple taxa?>**. Temporal variation in site fidelity of large herbivores can arise through temporal and
spatial heterogeneity in forage quality or predation risk** and is important for understanding human-elephant
conflict. ‘Diurnality’ reflects the diel pattern of movement activity. Diurnal anthropogenic disturbance may
cause individuals to become more nocturnal®*-?. Finally, ‘exploratory movements’ are long, directionally per-
sistent movements to new locations. The relative amount of time individuals spend in exploratory movements
versus resting/foraging (shorter movements with low directional persistence) is important for understanding
individual foraging decisions, social interactions and responses to anthropogenic disturbances?”*. Character-
izing these movement behaviors and the factors that influence them is important for effective conservation; for
example, to ensure that reserves or corridors are large enough, properly configured, and allow for seasonal and/
or anthropogenically-induced behavioral changes.

The factors that influence how individuals move are varied and complex®!, but can be broadly classified as
either ‘intrinsic’ or ‘extrinsic’*. Intrinsic factors reflect the physiological state of the individual, such as sex or
body condition. Sex may have a marked influence on forest elephant movement behaviors through sex-specific
life history requirements, physiology or sexual-size dimorphism?. Forest elephants have manifested some sex-
related differences in movement behavior**. Extrinsic factors are external environmental (e.g., habitat quality) and
anthropogenic (e.g., poaching) pressures on individuals. In terms of environmental factors, savannah elephants
track rainfall related changes in vegetation dynamics® and forest elephants exhibit seasonal differences in habitat
use driven by precipitation®. In terms of anthropogenic factors, forest elephants outside protected areas tend
to have smaller home ranges than inside protected areas®® and typically avoid large roads and other human
infrastructure®-*. The extent to which these factors influence movement characteristics is likely to vary with
temporal scale®’, as different drivers may operate at different temporal and spatial scales*'. To date, the relative
importance of intrinsic and extrinsic factors on forest elephant movement, and how it varies with temporal scale,
remain largely unknown.

Here, we employ data from the largest forest elephant GPS collaring program to date to explore how the
movement behaviors of 96 individuals in Gabon are influenced by both intrinsic (sex) and extrinsic factors (rain-
fall, temperature seasonality and anthropogenic disturbance). We evaluate five important movement attributes
(movement distance, home range size, site fidelity, diurnality and exploratory behavior) across two temporal
scales (annual and monthly). Specifically, we address three key questions: (i) What are the key drivers of elephant
movement behavior? (ii) Does the relative importance of drivers vary depending on temporal scale? (iii) Is there
evidence of repeatable inter-individual differences in behavior responses (inter-individual variation) and/or
individual-level covariance between the different movement behaviors (behavioral syndromes)? We discuss the
results in terms of how they influence our understanding of the ecological role forest elephants play in shaping
Afrotropical forests, and how this information can be used to improve elephant management and conservation
strategies.

Methods

Study area. Gabon is the second most forested country in the world, with 88% of its area (~ 267,000 km?)
covered by tropical rain forest* and the largest extant population of forest elephants'’. The annual mean tem-
perature of Gabon is about 25.0 °C (1901-2015). On average, temperatures are highest in March (26.2 °C)
and lowest in July (23.1 °C). Average annual precipitation is about 1800 mm, with a dry season from June
through August (mean=25.4 mm month™) and a bimodal wet season with peaks from March to May
(mean=203.3 mm month™') and October to December (mean =239.2 mm month™") (http://sdwebx.worldbank.
org/climateportal/index.cfm, verified on Jul. 18, 2017). Annual precipitation varies along a west-to-east gradient,
declining from 2650 mm along the Atlantic coast to 1400 mm in the southeast of the country.

Elephant GPS location data. The forest elephant collaring program commenced in October 2015 with
the collaring of 12 elephants in the Wonga Wongué presidential reserve. An additional 84 elephants were col-
lared during five collaring events: April 2016 (n=22); January 2017 (n=16); December 2017 (n=24); March
2019 (n=12); and October 2019 (n=10) in and around five national parks (Ivindo, Loango, Moukalaba Doudou,
Minkébé, and Mwagne; Fig. 1; Supplementary Table 1). The field team attempted to collar a balanced sample of
males and females; however, males were scarce in some locations (e.g., Moukalaba Doudou). For a full descrip-
tion of capture and collaring protocols see*. All collars were set to 1-h GPS fix intervals. For a short time after
the collars were deployed and after each collar had functioned for two years, a 4- or 12-h interval was used. To
preclude the possibility that collar interval influenced the analyses below, we only used data with fix intervals
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Figure 1. Map of the study area. The inset denotes the location of Gabon (green) within Africa; the main map
shows mainland Gabon (grey); the distribution of protected areas (green); and the first GPS location of each
elephant by sex in the dataset (black points; n=96). The map was generated with R version 4.0.3 (https://www.r-
project.org/).

of one hour. To remove possible fix errors, we pre-filtered the data, removing points that exceeded a threshold
speed of 7 km/h in the ‘Save the Elephants’ application. The final dataset contains 1,219,344 GPS locations from
96 unique individuals. To ensure that results from statistical models were not driven by systematic variation in
missing fixes, we verified that GPS locations were temporally regular between individuals and regions: 95.1% of
fixes occurred within 2 h of the previous fix, and 99.0% occurred within 3 h with negligible between individual,
sex and regional variation (Supplementary Fig. 1).

Movement behaviors. For each elephant at each temporal scale, annual or monthly, we quantified the fol-
lowing behaviors: ‘home range’—the area of the 95% kernel density estimate using the ‘adeHabitatHR’ package®®
with a fixed smoothing parameter, h, which represented the mean of all h parameters when it was allowed to
vary at each time step for each temporal scale (annual =1220; monthly =920); ‘movement distance —the sum
of the Euclidian distance between all GPS fixes for each given temporal scale; ‘site fidelity’—the % overlap in
home ranges between one time step () and the preceding time step (¢-1); ‘diurnality’—following Hoogenboom
et al. (1984), the sum of all movement distances during day time (06:00 to 18:00) minus the sum of the move-
ment during night time (18:00 to 06:00) divided by the total movement distance (00:00 to 24:00) in each given
day, averaged across the time step of interest (monthly or annual) (+1=exclusively diurnal movement and
— 1 =exclusively nocturnal movement); ‘exploratory behaviour’—the proportion of time spent in an explora-
tory state across the time step of interest. We used hidden Markov models in the package ‘momentuHMM™* to
classify each movement step as either ‘encamped’ (small movements with high turning angles—resting or for-
aging) or ‘exploratory’ (longer movements with directional persistence—movement between patches). Hidden
Markov models use time series analysis to classify movement tracks into behavioral modes—they account for
the high degree of autocorrelation in telemetry data and are robust when observational error is low and homog-
enous across individuals (as in this study: Supplementary Fig. 1). They have recently been used to elucidate
spatial memory*, detect musth-related movement behavior®> and explore crop raiding decisions in savannah
elephants®. We used a gamma distribution to describe the step lengths, a von Mises distribution to describe
turning angles, and the Viterbi algorithm to estimate the most likely sequence of movement states to have gener-
ated the observations.

Temporal scales. We estimated 100 annual home ranges, movement distances, activity ratios and explora-
tory behaviors from 72 unique elephants (including 28 individuals with 2 years of data); the 24 excluded ele-
phants did not have a full calendar year of GPS fixes. We estimated annual displacement distance for the 28
elephants with two or more years of GPS fixes. We estimated 1254 monthly home ranges, movement distances,
activity ratios and exploratory behaviors from 96 individuals (average per individual = 18; min = 3; max=33). At
least two successive months of data are required to estimate monthly displacement, thus the sample size for the
site fidelity dataset reduced to 1198 observations (average per individual = 18; min =2; max=32).

Covariates. We constructed rasters of environmental factors as follows: ‘annual temperature seasonality’
(the standard deviation in monthly temperature) and ‘total annual rainfall’ were obtained from the WorldClim
database (http://www.worldclim.org/); mean daily rainfall for each month (October 2015-December 2018)
was produced by averaging across interpolated daily rainfall Climate Hazards Group InfraRed Precipitation
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(CHIRPS) data; and the monthly normalized difference vegetation index (NDVI), consisting of 16-day MODIS
composite imagery averaged across 2000 — 2018, was extracted from Google Earth Engine. Where cells lacked
average NDVI data (typically due to cloud cover), they were assigned the NDVI score from the previous month.
We averaged all monthly NDVT scores to derive the annual NDVT score for each raster cell. The anthropogenic
disturbance factor, referred to as the Human Footprint Index (HFI), represents the Global Human Footprint
Dataset of the Last of the Wild Project, Version 2 (2005). This layer is derived from nine data layers reflecting
three key elements: human population (population density); human land use and infrastructure (built-up areas,
nighttime lights, land use/land cover); and human access (coastlines, roads, railroads, navigable rivers). We
extracted the mean raster value of each covariate within the home range of each individual (defined above) for
each time step (monthly and yearly).

Statistical modelling. We used a hierarchical modelling approach to (i) determine the key drivers of
elephant movement behaviors in univariate models while controlling for individual, regional and temporal
non-independence of the data, and (ii) assess the among-individual structure of behavioral (co)variation using
multivariate models. All models were fit using the bayesian ‘MCMCglmm’ package*” within the R statistical envi-
ronment V3.6.1*%. Each behavioral response term was scaled to standard deviation units prior to analysis, facili-
tating comparisons of effect sizes across different traits in univariate models and assisting model convergence
and interpretation in multivariate models. The continuous observed predictors were also standardized**°. We
consider fixed effects to be statistically significant if the 95% credible interval (95% CI) does not cross zero and
discuss them in terms of their relative effect size. We ran all models for 850,000 iterations with a 50,000 burn-in
and a thinning interval of 400, using the ‘coda’ package to determine the effective sample sizes®'. All models fitted
assumed (multivariate) Gaussian error structures, and we visually assessed residuals to verify this was reasonable
(after data transformation in the case of home range size). We also visually assessed posterior distributions for
stable model convergence and lack of autocorrelation, and checked that models were robust to different prior
specifications on the random effects and that multiple runs converged to similar results. Individual-level repeat-
ability in each behavioral trait and corresponding credible intervals were estimated using the formulation in®.
We consider there to be support for non-negligible variance components and repeatability when the 95% ClIs are
distant from zero (variances cannot be negative, so their CIs cannot cross zero).

We ran separate univariate models for each behavioral trait at both the annual and monthly scales. To account
for non-independence of repeated measures of individuals, we included individual identification (n=96) and
region (n="7; defined as the protected area where elephants were originally collared) as random intercept terms.
Monthly models also included ‘month’ as a random intercept to account for seasonal variation in movement
behaviors. Given that correlation between candidate explanatory variables was low at both annual (mean r=0.20;
min=0.04; max=0.48) and monthly scales (mean r=0.07; min=0.03; max=0.13), we constructed a global model
with all candidate covariates as additive terms (sex, NDVI, human footprint index, temperature seasonality
and rainfall) for each behavioral trait. We used the default inverse-gamma prior for residual variation (R: V=1,
v=0.002) and an uninformative, parameter-expanded prior for each random effect (V=1, nu=1, aV =625).
Conditional and marginal R? was calculated for each model following®? and presented in Supplementary Table 3.

To determine the among-individual relationships between different behaviors, we fit multi-response hierarchi-
cal models that enable us to partition multivariate behavioral (co)variation at multiple levels®. Because annual
data have repeated measures for a small number of individuals, we performed this analysis on the monthly data
only and included only those traits with significant among-individual variance as estimated in the univariate
models. We fit all covariates as fixed effects on each response trait separately. We also fit unstructured covariance
matrices at the individual, region, month, and residual (within-individual) levels, with priors on the variances as
described for the univariate models above. We calculated correlations from the among-individual (co)variances
as Ty = COVyp/ V (Vi X Vi) and used the posterior distribution of derived correlations to estimate 95% Cls.
Finally, we subjected the among-individual covariance matrix to eigen decomposition to assess whether a single
major axis could explain most of the multivariate among-individual behavioral (co)variation®*. We also used
eigen decomposition of posterior draws to estimate 95% CIs on the trait loadings of these principal components.

Results

Distance moved. The mean forest elephant movement distance was 2463 km annually (min=1420 km;
max=3436 km). There was support for annual precipitation and temperature seasonality influencing annual
movement distance (Fig. 2A). Annual rainfall most strongly increased annual movement distance with an
effect size double that of rainfall seasonality (Fig. 2A; Supplementary Table 2). On average, movement distance
increased by 59% from low to high rainfall and by 18% from low to high temperature seasonality (Supplemen-
tary Fig. 2). At the monthly scale, there was support for NDVI, HFI, and temperature seasonality influencing
movement distance (Fig. 2A). Of the covariates with support, temperature seasonality and human disturbance
had the largest, negative effects, on average decreasing movement distance 56% from low to high seasonality and
by 58% from low to high human disturbance. NDVI weakly increased movement distance by 23% from low to
high productivity (Fig. 2A; Supplementary Table 2; Supplementary Fig. 3).

Home range. Forest elephants had average annual home range sizes of 195 km? Of all predictors, there was
only support for sex-specific home range sizes (Fig. 2B). Males were predicted to have average home ranges 80
km? larger than females (males=238 km?, 95% CI 161-332; females=135 km? 95% CI 109-220; Fig. 2B; Sup-
plementary Fig. 4). At the monthly scale, elephants had an average home range size of 67 km? Sex most strongly
predicted monthly home range size, with average male home ranges 16 km? larger than female home ranges
(males=76 km?, 95% CI 65-89; females =60 km?, 95% CI 53-68; Fig. 2B; Supplementary Fig. 5), followed by
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Figure 2. Relative effect size estimates (points) and 95% credible intervals (lines) for the predictors of elephant
movement behavior (A =distance moved; B=home range size; C =diurnality; D =site fidelity; E = proportion
exploratory behavior) at two different scales (annual and monthly). Where: HFI = Human footprint Index;
NDVI=Normalized Difference Vegetation Index; Temperature = temperature seasonality; Rainfall = mean
annual rainfall in the annual models and monthly average rainfall in the monthly models; black = credible
intervals which do not overlap zero; grey = credible intervals which do overlap zero.
human disturbance (predicted to reduce home range size by 63% from low to high disturbance; Supplementary
Fig. 5) and NDVI (predicted to increase home range size by 50% from low to high productivity) (Fig. 2B; Sup-
plementary Fig. 5).
Diurnality. Forest elephants had a weak tendency to move farther during daylight hours than night at the
annual scale (mean annual diurnality =0.064; min =-0.08; max =0.30), with males tending to be less active dur-
ing the day than females (Fig. 2C; Supplementary Fig. 6). Although the means were similar, there was greater
variation in monthly than annual diurnality (mean monthly diurnality=0.076; min=-0.41; max=0.30). Only
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Annual Monthly
Behavior Ry 95% CI R.g 95% CI
Movement distance 0.695 0.491-0.835 0.095 0.016-0.177
Home range size 0.916 0.598-0.994 0.269 0.189-0.350
Site fidelity - - 0.000 -
Diurnality 0.847 0.733-0.934 0.213 0.120-0.312
Exploratory movement 0.658 0.431-0.843 0.203 0.061-0.329

Table 1. Individual repeatability from the best supported univariate models of each movement behavior at
each spatial scale (annual and monthly). Where: individual repeatability (R,;) is the proportion of variance
attributable to among-individual differences after controlling for the fixed effects; 95% CI is the 95% credible
interval calculated from the posterior distribution around the individual repeatability estimate. For conditional
and marginal R? from each univariate model see Supplementary Table 3.

Distance Home range Diurnality Exploratory behaviour
Distance 0.20 (0.13, 0.28) 0.41 (0.22, 0.5) -0.03 (-0.46,0.17) | 0.87 (0.83, 0.88)
Home range 0.09 (0.03, 0.16) 0.25(0.17,0.36) | 0.21 (=0.09,0.34) | 0.32 (0.06, 0.43)
Diurnality -0.01 (-0.06,0.05) |0.05(-0.01,0.11) | 0.21(0.13,0.29) -0.05 (- 0.49, 0.16)
Exploratory behavior 0.20 (0.12, 0.27) 0.08 (0.01, 0.15) -0.01 (-0.07,0.05) | 0.25(0.16, 0.34)

Table 2. Among-individual variance-covariance matrix for movement behaviors at the monthly level.
Among-individual variances (V| analogous to repeatability over the full range of behavioral measurements)

are given on the italicised diagonal (top-left to bottom-right), with among-individual between-trait covariances
(COVy) below and the corresponding correlations (7;) above. 95% credible intervals are provided in
parentheses and bolded numbers highlight between-trait covariances and correlations that do not overlap 0.

temperature seasonality influenced monthly diurnality, with increasing temperature variation shifting activity
towards nocturnality (Fig. 2C; Supplementary Fig. 7).

Site fidelity. Annual home ranges overlapped by 85% from the first to the second year (min=0.48%;
max=0.98%), suggesting strong inter-annual site fidelity. Males showed weaker site fidelity than females (79%
vs. 90%) and fidelity decreased with increasing HFI (Fig. 2D; Supplementary Table 2; Supplementary Fig. 8). At
the monthly scale, home range overlap declined to 61% (min=0%; max=100%). At the monthly scale, sex had
the largest relative effect size, with males showing lower site fidelity than females, whereas HFI and rainfall both
had weaker positive effects on fidelity (Fig. 2D; Supplementary Fig. 9). However, the results of the site fidelity
models must be interpreted with caution due to their low effective sample sizes (suggesting poor model conver-
gence, Supplementary Table 2).

Exploratory behavior.  Annually, forest elephants spent 56% of their time in exploratory states (min =23%;
max =82%). Rainfall most strongly predicted exploratory behavior, with higher rainfall increasing exploration,
followed by sex, with males exploring less than females. The effects of rainfall and sex were similar in magni-
tude (Fig. 2E; Supplementary Table 2; Supplementary Fig. 10). HFI also had a weak, negative effect on explora-
tory behavior. At the monthly scale, sex, HFI and rainfall influenced exploratory behavior (Fig. 2E). As in the
annual model, males engaged in less exploratory behavior than females and increasing HFI was correlated with
decreased exploration. Exploratory behavior also increased with increasing monthly rainfall (Fig. 2E; Supple-
mentary Table 2; Supplementary Fig. 11).

Variance components. Inspection of variance components from annual models suggested that all behav-
iors are highly repeatable (Table 1). However, only a small proportion (28/72) of individuals had annual repeated
measurements, thus these results are likely driven by an inability to separate among- from within-individual
variance. At the monthly scale, all 96 individuals had multiple observations, and we found low to moderate
repeatability for 4 of the 5 behaviors (Table 1). There was no individual repeatability in site fidelity, with 95% of
the phenotypic variation (after accounting for fixed effects) apportioned to the residual variance component,
suggesting that this trait is highly variable within individuals. At both monthly and annual scales, and across all
traits, ‘region’ typically explained little to no variation (Supplementary Table 3).

Between-individual behavioral correlations. Examination of the among-individual correlations
between traits (Table 2, upper-diagonals) showed several significant pairwise relationships, namely between
distance, home range and exploratory behavior. Our eigen analysis identified a large major axis of individual
behavioral variation in forest elephants, explaining almost double the variation as the second axis (Fig. 3). The
first major axis loaded heavily on distance, home range and exploratory behavior (in the same direction). The
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Figure 3. Trait loadings on the first two eigenvectors (PC1, left; PC2, right) from the among-individual
covariance matrix of four movement behaviors at the monthly scale. Points represent estimates, and lines
represent 95% credible intervals calculated from posterior distributions. The arithmetic sign of the loading
denotes the grouping of behaviors (i.e., PC1 represents an axis where one extreme features individuals that travel
long distances, show high rates of activity, and have large home ranges and the other extreme features elephants
that travel short distances, show low activity, and have small home ranges).

second axis explained more than a quarter of the total among-individual variation, suggesting an association
between home range and diurnality among individual elephants.

Discussion

Using the largest dataset of forest elephant movements to date, we assessed the factors influencing elephant
movement behavior at a landscape scale in Gabon. Several of the key drivers of elephant movement are scale
dependent—the factors influencing annual movement differ from those that influence monthly movement. We
also found evidence for consistent differences in monthly movement behaviors among individual elephants and
correlations between behaviors that suggest the existence of behavioral syndromes. Our results highlight the
challenges facing practitioners trying to understand fine-scale elephant movement behaviors and suggest future
avenues to mitigate human-wildlife conflict. We discuss each of the drivers of elephant movement below and
their implications for conservation and management.

Sex was a key driver of elephant movement behavior in four of five behavioral traits. Males generally pos-
sess larger home ranges, show lower site fidelity, are slightly more nocturnal, and spend less time in exploratory
movements than females. Such sex-based differences likely reflect differences in energy budgets: adult males
are typically larger than females and may need to spend more time foraging (less time in directed movements)
over a wider area than females®. That said, as observed in savannah elephants, there is considerable overlap in
home range size between the sexes (Supplementary Fig. 4), potentially reflecting behavioral changes in males
associated with their age or reproductive status™. The slightly higher degree of nocturnality in males is consistent
with stronger poaching pressure on them for ivory?, potentially causing males to avoid diurnal anthropogenic
disturbance through shifted activity patterns. Longer movement distance, larger home range size and weaker
site fidelity of male elephants than females potentially bring them into greater contact with poachers. Consist-
ent with this, by the end of 2019, three male elephants in our study population had been killed by poachers.
Incorporating spatially explicit poaching information (threat, extent) may help explain the magnitude of sex
differences observed.

Anthropogenic disturbance, based on the human footprint index, influenced four of five movement behav-
iors: distance moved, home range size, diurnality and proportion of directed movements. In agreement with
a multi-taxonomic assessment of the effect of anthropogenic disturbance on animal movement®, increasing
anthropogenic disturbance generally reduced elephant movement (shorter movement distances, smaller home
range sizes and fewer exploratory movements). These results suggest that forest elephants act consistently with the
’landscape of fear’ hypothesis, altering their behavior in response to human activity. Ironically, these differences
could also signal reliance on humans: elephants living near humans might raid plantations, heightening human-
wildlife conflict. Both mechanisms would cause forest elephants to use smaller home ranges than in protected
landscapes®. However, the direction of the effect of anthropogenic disturbance on diurnality changed at different
time scales: diurnality decreased with higher anthropogenic disturbance at the annual scale and increased at the
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monthly scale, perhaps capturing behavioural differences between elephants which are consistently exposed to
human disturbance versus those which experience it transiently. Forest elephants might modify their behavior
due to direct interactions with humans and anthropogenic features (e.g., roads or farmland) or indirect responses
to changing habitat structure (e.g., changing species composition of logged/disturbed forests). Consideration
of the factors influencing elephant movement at smaller time scales (e.g., diel) will be required to examine the
mechanisms driving these patterns.

Forage availability has been highlighted as a key factor influencing forest elephant habitat selection®®, but we
found little support for effects of NDVI on most movement behaviors. When NDVI was retained in our models,
it had very small positive effects on home range and movement distance relative to sex and anthropogenic dis-
turbance. NDVI might be a more reliable indicator of habitat selection rather than movement behaviors within
habitats, as in*%. Forest elephants have remarkably broad diets, consuming the leaves and bark of hundreds of
plant species'>**. Therefore, NDVI, a coarse remotely-sensed vegetative density, is unlikely to reflect the true
diversity, abundance and quality of forage available at any given time-step, particularly at large spatial scales with
high habitat heterogeneity. NDVT also does not capture the availability of ripe fruit, a key factor mediating forest
elephant movement behavior®, which may explain why home ranges appear to increase as NDVI increases at
the monthly scale. Thus, adapting approaches which facilitate fine temporal and spatial-scale fruit availability,
through the use of drones®! or intensive in-the-field follows®’, may improve the explanatory power of resource
availability in movement models.

Despite inhabiting rainforests, forest elephants are often limited by water availability***°. Consistent with
earlier studies, this work suggests increased rainfall leads to longer movement distances and more directed
movements, suggesting that individuals can take prolonged excursions away from perennial water sources when
rainwater is abundant and ephemeral streams and ponds have water. The positive relationship between high
temperature seasonality, movement distance and nocturnality might also reflect water-stress if elephants reduce
the distance they travel and/or shift to nocturnal activity when temperatures are high. The links between elephant
movement behavior and rainfall/temperature seasonality highlight the need to explicitly consider water avail-
ability for the designation of elephant corridors: elephants may be reluctant to use habitat too far from perennial
water sources or do so only in the wet season. Although the effects of climate change in central Africa are under-
studied, some projections predict lower future rainfall®?, which might strengthen the effects of water limitation
on elephant distribution and movement. Long term reductions in rainfall have also been linked to dramatic
reductions in fruit availability and corresponding declines in forest elephant body condition®®, which will likely
act synergistically with water availability to influence forest elephant movement behaviors®.

In addition to environmental and anthropogenic drivers of elephant movement, we identified consistent
significant differences among individuals in their movement behavior: individuals behave differently from one
another. Crucially, these differences cannot be attributed to ecological context, as the ‘region’ (the national parks
or general geographic area to which an elephant belonged), explained very little variation across both scales
and all traits (Supplementary Table 2). Our multivariate analysis also provided evidence for consistent indi-
vidual differences in the relationships between movement behaviors, consistent with the concepts of ‘behavioral
syndromes’ or ‘personalities. A large proportion of this (co)variation loaded on a single axis that varies from
individuals with smaller home ranges, shorter movement distances and less exploratory behavior to those with
larger ranges, longer movement distances and who are more exploratory. Therefore, elephants seem to exhibit
personalities along an ‘idler’ to ‘explorer’ axis. Such information could be used to identify “problem individu-
als”'? whose suite of behavioral traits could bring them into frequent human-wildlife conflict or poaching risk.
Clearly, anthropogenic, climatic and resource availability metrics are insufficient to capture the variation both
between and within individuals. This is not surprising given the complex social and environmental cues to which
elephants are known to respond. The significant variation between individuals suggests the possibility for herit-
able and/or learned variation in movement behaviors®. Movement behaviors are likely under selection due to
human-wildlife conflict, and so there is the potential for an evolutionary response in movement behaviors with
further downstream effects. For example, if far-ranging males are more frequently poached than more stationary
males, poaching could select for elephants with higher site fidelity, changing the population genetic structure
and potentially limiting their role in long distance seed dispersal'>*.

Elephant movement behavior is more consistent at annual than monthly time frames: elephants behave simi-
larly from year to year. Other species similarly manifest scale-dependent behavioral repeatability®. However, the
high repeatability in annual behaviors in our study may be driven in part by low sample size (n=28). Elephants
are very long-lived, thus assessing the long-term repeatability of movement behaviors requires a multi-year
dataset. The strong heterogeneity in month-to-month behavior highlights the difficulty in predicting elephant
movement behavior at finer temporal scales. Interestingly, anthropogenic disturbance influenced 4 of 5 behaviors
at the monthly scale and only 2 of 5 behaviors at the annual scale. The influence of anthropogenic disturbance
on movement behaviors may be further magnified at diel scales when elephants face decisions like whether to
approach or escape areas with high anthropogenic activity. Furthermore, the effect directions of some drivers of
elephant movement were generally, but not always, consistent across temporal scales, underscoring the danger
of extrapolating inference beyond the temporal scale of analysis.

Our analyses represent the first standardized, national-scale synthesis of forest elephant movement. Both
extrinsic environmental and anthropogenic drivers and intrinsic individual variation strongly affected move-
ment behaviors of forest elephants, highlighting the complexity of modelling their movement. If the aim is to
create models that can predict human-wildlife conflict with high spatial and temporal accuracy, then future
models should include additional intrinsic attributes (e.g., age, body condition), finer extrinsic information (e.g.,
fruit and forage availability, poaching pressure) and finer scale movement data (e.g., 15-min intervals). In this
study, we demonstrate evidence for generalities in the drivers of elephant movement behavior, of which sex and
rainfall had the most consistent effects: compared to females, males had large home range size, low site fidelity,
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high nocturnality and more frequent encamped behaviors and higher rainfall increased exploratory movements
and annual home range size. Other drivers, such as anthropogenic disturbance, had scale specific effects that
differed between annual and monthly timeframes. Moreover, we identified movement-related behavioral syn-
dromes: individuals who move more typically have larger home ranges and engage in more exploratory behavior
(‘explorers’). We also found marked, repeatable, among-individual variation in movement traits, suggesting that
elephants have personalities and that no two elephants behave the same. This variation among individuals could
complicate the development of general strategies for conservation if elephants differentially respond to manage-
ment (e.g., McDougall et al., 2006) but it also accentuates the importance of conserving such a wide-ranging,
intelligent and socially-complex species.
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