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SUMMARY

i II

The work reported here is an investigation of various forms 
of independence in identification and similarity judgement 
tasks for auditory stimuli.

Experiment 1A and IB tested various independence properties 
(single factor and joint factor independence) on similarity 
data. Both experiments
suggested that not only v/as a dimensional representation 
appropriate, but also that the 'differences' between two 
stimuli were combined additively.

0 )
The second sets of experiments (2A and 2B) explored dimensional 
independence in identification tasks for auditory stimuli 
presented in noise. It was found that for both pairs of 
dimensions tested (pitch and duration; and pitch and loudness) 
there was a lack of independence. Specifically, it was found, 
that the identifiability of a value on one dimension varied 
over different levels of the other. In other words there were 
interaction effects.

Another group of experiments (3A, 3B, 3C, and 3D) investigated 
both independence and metric properties or. data derived 
from similarity judgements of auditory tones. Here the data 
was required to satisfy simultaneously, not only the dimensional 
requirements tested in experiments 1A and IB but the various 
ordinal conditions which would allow it to be represented by 
a Minkowski metric. The four experiments established, for 
the particular values of pitch, duration, and loudness tested >

m + * » 1 4 l tl M  *\ . f i j l .Ik, <



(iii )
SUMMARY

The work reported here is an investigation of various forms 
of independence in identification and similarity judgement 
tasks for auditory stimuli.

Experiment 1A and IB tested various independence properties 
(single factor and joint factor independence) on similarity 
data. Both experiments
suggested that not only was a dimensional representation 
appropriate, but also that the 'differences' between two 
stimuli were combined additively.

>
The second sets of experiments (2A and 2B) explored dimensional 
independence in identification tasks for auditory stimuli 
presented in noise. It was found that for both pairs of 
dimensions tested (pitch and duration; and pitch and loudness) 
there was a lack of independence. Specifically, it was found, 
that the identifiability of a value on one dimension varied 
over different levels of the other. In other words there were 
interaction effects.

Another group of experiments (3A, 3B, 3C, and 3D) investigated 
both independence and metric properties or. data derived 
from similarity judgements of auditory tones. Here the data 
was required to satisfy simultaneously, not only the dimensional 
requirements tested in experiments 1A and IB but the various 
ordinal conditions which would allow it to be represented by 
a Minkowski metric. The four experiments established, for 
the particular values of pitch, duration, and loudness tested,
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Perceptual Independence is a notion that has enjoyed a fitful 
currency for some twenty years. Since Erikson and Hake (1955) 
first invoked it to predict multidimensional identification 
performance from a subject's unidimensional performance on 
the separate dimensions composing the complex stimulus, its 
meaning has undergone a variety of changes. To see this, one 
has only to consult Corcoran (1966), Corcoran (1967), Garner 
and Morton (1969), Garner (197*0, and Kaufman and Levy (1971). 
The original notion was tied explicitly to the ideas of stimulus 
dimensions and their independence. This original notion was 
never explored very adequately and the work which followed 
Erikson and Hake's was mainly experimental and little attempt 
was made to clarify its conceptual basis.

Some exploratory work, in this direction, was attempted by 
Garner and Morton (1969) but in their treatment the original 
idea of stimulus independence had all but vanished only to 
be replaced by terms such as process interaction, state 
independence, integral dimensions, non-integral dimensions, 
process parity and a host of other technical terms. One 
theoretical paper which did continue the original theme was 
that by Kaufman and Levy.

The vicissitudes of Perceptual Independence in the hands of 
experimental psychologists are reminiscent of the recent past 
preoccupations in British philosophy. Gellner (1959) wrote 
that philosophers never tackled the 'big traditional'



questions - or to lapse into the then current jargon 'the 
first order problems'. Instead, it was alleged, they 
concentrated exclusively on the second order problems.
These philosophical practitioners who subsequently became 
known as 'ordinary language philosophers' viewed their work 
as merely preliminary - a sharpening up of the linguistic 
tools with which one might eventually be able to tackle the 
traditional "first-order" problems.

The recent career of experimental psychology is the reverse 
of that noticed in philosophy: there has been much speculation, 
the increase in technical terms testifies to this. Consider 
for instance: short term memory, working memory, process 
parity, and so on. With these terms
go experiments, which, on close examination do not bear too 
much comparison with the original speculation. In psychology, 
it is true to say, that there has been an almost complete 
absence of the 'ordinary language approach' and a dearth of 
effort devoted to clarifying the concepts used in experimental 
work. In practice this has lead to the introduction of 
explanatory constructs and definitions which are tied not 
only to a particular small area in psychology but to a specific 
experimental design. A distressing consequence of the 
excessive preoccupation with the 'first-order' problems is, 
that although the same notions seem to reappear in different 
areas of psychology, very little effort is taken either to 
identify these recurring themes, or to place them in a broader 
context. It is argued here, that one such instance is
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Independence: it appears and reappears so often in experi­
mental psychology, and in different forms, that it inspires 
the hope that a thorough examination of these instances 
might reveal some similarities in the psychological processes, 
or in any event make some of them more apparent.

It is a temptation when embarking on an enterprise devoted to 
semantic and conceptual hygiene to adopt solely the style of 
the ordinary language philosopher: to attempt to clarify, or 
articulate the second order problems without recourse to the 
tiresome experimental work. If you like, to stand to 
experimental work much as the accountant does to the business­
man: not to actually do the work, or make the money, or to 
otherwise engage in disagreeable trade, but simply to explain 
some of the rules which have to be observed before it can be 
said with any certitude whether or not a profit has been made.
The temptation to become simply a probation officer for errant 
experimentalists is easily resisted. Indeed it will be seen 
that a conceptual approach in fact suggests new experiments; 
many of which should have been done long ago.

In this treatment some of the machinery employed to analyse 
independence will consist of measurement theory (Krantz, Luce, 
Suppes and Tversky 1971). In Chapter 2 a brief introduction 
will be given, and various types of independence which arise 
in conjoint structures will be discussed. Additive conjoint 
measurement - the two factor case (Luce and Tukey 196*4), - is 
described, together with the various types of significant 
interaction effects, both ordinal and disordinal (Lindquist 1993),
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which arise in Analysis of Variance. Two experiments are 
then introduced both of which employ conjoint measurement 
techniques. The first study tests an additive difference 
model for similarity judgements of pure tones which vary in 
duration and loudness. This experiment is in reality a 
disguised test for additive independence. The second 
experiment is a disguised test for both single factor 
and joint factor independence of similarity data, for a set of 
auditory stimuli which vary on three dimensions: duration, 
loudness and pitch.

The main concern of Chapter 3 is independence in identification 
experiments i.e. perceptual independence. Some of the ideas 
derived from the measurement theoretic analysis in Chapter 2 
are used to make distinctions between various types of 
independence. Briefly, two stimulus dimensions are said to 
be perceptually independent if the identifiability of particular 
levels of one dimension is independent of the levels of the 
other dimension. The experimental and theoretical work of 
this chapter relies fairly heavily on uncertainty analysis or 
information theory. This type of analysis is employed because 
it allows the logic of Analysis of Variance to be employed on 
data from single subjects.

Chapter continues the theme of Chapter 2 with its emphasis 
on similarity judgements. However, independence in similarity 
judgements is now placed within the framework of the foundations 
of multidimensional scaling. (Beals, Brants and Tversky 1968, 
Tversky and Krantz 1970). The 'additive difference' model



tested in experiment 1A is examined for some possible 
composition rules when the additional constraints of represent­
ing the similarities by a distance metric are added. Two 
particular properties are discussed, and examined in the 
experiments - interdimensional additivity, and intradimensional 
subtractivity (Beals et al 1968). Beals, Krants and Tversky 
showed that interdimensional additivity is implied by a kind 
of ¡'context" independence property of the distances; which 
further implies that the dimensions do not interact in their 
effects. This kind of non-interaction or independence, 
while probably not being a necessary condition for a reasonable 
psychological metric,does seem like a desirable one. In view 
of this, and because of the close analogy with independence in 
similarity tasks to independence in identification experiments, 
non-interaction of the stimulus dimension provides the basis 
for an operational definition of independent perceptual 
dimens ions.

Because of the importance attached to 'psychological metrics' 
by for instance: Shepard (1964), Torgerson (1958, 1965),
Cross (1965), Garner (1970, 1971, 1974), Garner and Morton
(1969), Lockhead (1970), and Levy and Hagbloom (1971), the 
two experiments reported in this chapter also attempt to diagnose 
whether the particular stimulus dimensions, duration, pitch 
and loudness fulfil those qualitative (i.e. ordinal) require­
ments which allow the similarity judgements to be represented 
by a distance metric.



The aim of the final chapter is not unlike the intention 
which usually animates the final scene of a restoration comedy, 
in which the confused lovers are disentangled from accidental 
unions and placed with their rightful partners. So, here, a 
meeting will be arranged between identification tasks and 
similarity judgement tasks. First, the use of distance 
metric terms like integral dimensions and nor.-integral 
dimensions to describe results in identification experiments 
(Garner and Felfoldy 1971) are disentangled and deprecated.
In particular it is argued that 'stimulus integrality' and 
non-stimulus integrality,which are said to correspond to the 
Euclidean and City block metric respectively (Garner 1971 )> 
have been used to describe results in stimulus identification 
tasks in a quite objectionable manner. These terms when 
used to describe results in similarity judgement tasks, under 
certain circumstances (provided certain of the ordinal and 
qualitative conditions discussed in Chapter 3 are met) capture 
the psychological processes fairly well. In such cases, it 
seems sensible and even illuminating to discuss the type of 
distance metric which may correspond to particular methods of 
information processing (Garner 1971> Garner and Felfoldy 1971). 
However to employ concepts derived from theoretical work on 
similarity judgements to explain results in identjfication 
experiments seem to be quite illegitimate. Another consequence 
of the proposed meeting is to suggest that the notion of 
independence for both identification and similarity tasks 
serves to underpin similar psychological processes. In 
particu?nr it is suggested that some of the results in sorting 
tasks ( Egeth (1967) Lockhead (1966), Egeth and Pachella (1969))
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are explained not as a result of whether the dimensions are 
integral,or non-integral as suggested by Garner and Felfoldy 
(1971),but simply because there is a lack of perceptual 
independence - in our treatment state independence - between 
the dimensions. In particular,the identifiability of dif­
ferent levels of one dimension depends on the levels of the 
other dimensions. Hence sorting speeds depends crucially on 
the particular levels of the dimensions being sorted and on 
the levels of the other dimensions not being sorted. The 
chapter closes with a 'sorting' or 'categorisation' tasks 
involving auditory stimuli, which illustrate these points.
The results strongly suggest that the conflicting findings 
in sorting experiments cannot be explained simply by invoking 
concepts like integral stimuli and non-integral stimuli; 
instead,they can be more easily resolved by examining whether 
the stimulus dimensions are independent.
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INDEPENDENCE IN SIMILARITY DATA

2.00 The Representational Theory of Measurement.

Measurement Theory is a logical analysis of the measurement 
process and one influential point of view of this enter­
prise has been referred to as the Representational Theory 
of Measurement (Adams 1966). In essence this outlook 
considers measurement to consist in assigning numbers to 
objects in such a way that certain operations on and 
relations among the assigned numbers come to correspond 
to or represent observable operations and relations on 
the things to which they are assigned. Much of the 
recent work on measurement in psychology has taken the 
representational view as its point of departure, for 
example, Suppes and Zinnes (1963), Luce and Tukey (1964), 
and Krantz, Luce, Suppes and Tversky (1971).

It is a commonplace observation that all of the quanti­
tative laws of physics depend on the prior measurement of 
mass, length, and duration. However even these funda­
mental measurements are based on qualitative (non- 
numerical)laws which must hold before numbers can be 
assigned to these quantities.

2.10 The Representational Theory of Measurement may be 
summarised:



2.11 Measurement is the assignment of numbers to objects 
or phenomena according to some rule.

2.12 In the case of fundamental measurement certain empirical 
operations and empirical relations among objects come to 
correspond to, or be represented by, operations and 
relations among numbers.

2.13 The problem of the foundations of measurement is to 
"determine the conditions under which measurement is 
possible". This requires determining the empirical or 
qualitative laws which the objects must satisfy in order 
that it should be possible to assign numbers to them, 
such that the empirical operations and relations can be 
made to correspond to numerical operations and relations.

In practice representational measurement theorists require 
an empirical structure, a corresponding numerical structure, 
a Representation Theorem which states that if certain 
conditions hold in the empirical structure then this 
can be mirrored in the numerical structure, and a 
Uniqueness Theorem which defines the level of measurement 
obtained, that is, either nominal, ordinal, interval or 
ratio.

It might be as well to formalise these last remarks 
slightly. First there is the idea that measurement is 
the linking of mathematics represented as numerical systems 
with the world of empirical systems. Secondly three 
definitions are in order:
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2.14 An Empirical System; If E is a non-empty set of
observed or empirical elements and Hi (i = 1, ... N) is 
a relation on ExE then the ordered (N + 1) tuple:

sH = < E>Ri • • • kn >
is cabled an empirical system.

As an example: Sp might consist of a set of occupational 
statuses; might be the relation "has greater prestige 
than" H2 "has more tenure than".

2.15 Numerical System (or numerical relational system)

If A is any non-empty set of real numbers and
FL(i = 1 ... M) is a relation on AxA then the ordered
(M + 1) tuple

SM = < A1’R1 '* * RM ’ >
is a numerical system.

2.16 Measurement Function. If E is any non-empty set of 
observable elements and A is a subset of the real numbers, 
then a measurement of E is any function, f, on E to A and 
f is called a measurement function.

To illustrate this last definition suppose a set of 
voters V, are partitioned into 3 equivalence classes 
labelled Tory, Labour and SNP (T, L, and S respectively) 
then to establish a measurement f on these elements of V:
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let f be given by the following:

(1) if E e T
f(x) = (2) if E e L

(3) if E e S

2.20 Fundamental Measurement of Length and Mass.

■ Fundamental measurement in Physics is based on certain 
empirical observations which are made prior to the assign­
ment of numbers. Moreover these observations are always 
of an ordinal nature. Consider, for example, the 
procedures involved in the fundamental measurement of 
length. They are based on the following empirical 
considerations:

A weak order relation, k, "as least as long as" 
which can be empirically established by placing 
a rod A alongside a rod B.

An empirical concatenation or "addition" operation 
which can be empirically realised bj placing rods 
end to end which can be signified by the symbolQ.

Suppose there are rods A, A', B, B'

Suppose that Hod A extends beyond rod B 
i.e. A i> B 

Similarly A' h B'

One of the sufficient qualitative conditions for 
fundamental measurement of length is that the following 
empirical observations hold:

Br- t »», viAiu r<
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If A i> B 
and A 1 f> B'

2.21 Then A a A' ¡> B □ B' (the combination length A with A ! 
is greater in length than the combination of lengths 
B and B')

Similar qualitative laws for weight measurement can be 
obtained which are based on having a large collection of 
objects on an idealised equal arm pan balance. If a 
finite collection of objects is placed in each pan, and 
the pan which drops is noted, it is possible to 'order' 
by weight all finite collections of objects. Holder (1901) 
obtained a number of empirical conditions sufficient to 
establish weight measurement.

One of these conditions is formally equivalent to the one 
noticed for the fundamental measurement of length. Holder 
considered a weak ordering relation, 'as least as heavy as', 
t , and an empirical concaternation operation, ®, which 
can be empirically realised by placing two objects in the 
same pan:

Suppose A, B, C and D are mutually disjoint objects such 
that:

if A ~ C (A is at least as heavy as C)
and B ~ D (B is at least as heavy as D) 

then one of the sufficient conditions for the fundamental 
measurement of weight is that:
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2.221 A ® B ~ C ® D. (The combinati0n of A and B is as least 
as heavy as the combination of C and D. )

Holder in a classical theorem showed that if the behcviour 
of objects in a pan balance satisfied certain empirical 
conditions then numbers i.e. weights, can be assigned to 
these objects to represent their behaviour in the scale 
pan. Prom an abstract point of view the procedures for 
assigning numbers as measures of objects are identical 
for length, mass, and duration: the procedure is to 
concatenate many identical objects (metre lengths, grams, 
or pendulum periods) and then count how many identical 
objects are required to match approximately the object 
to be measured. Measurement based on an empirical 
concatenation operation is called extensive measurement. 
Many instances of measurement are like the measurement of 
mass, length, or duration inasmuch as they involve the 
construction of a real valued function that preserves 
the order and additive structure of an empirical system. 
All such structures are based ultimately on Holder's 
theorem. In the measurement of mass for example, 
positive real numbers are assigned to objects so that 
the order of numbers reflects the order of objects as 
determined by a pan balance and the addition of real 
numbers corresponds to the combining of objects in a pan.

2.23 Extensive and Intensive Measurement.

Campbell (1920) distinguished between extensive properties 
or quantities and intensive properties or qualities.
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Quantities were defined as properties for which there 
is an empirical combining operation analogous to the 
arithmetical operation of addition. Qualities however 
are characterised by an absence of an empirical combin­
ing or additive operation. Weight, length, and duration 
are examples of extensive quantities, whereas utility, 
response strength, and similarity are examples of 
intensive qualities. Campbell argued that only extensive 
properties - those for which there exists an empirical 
concatenation operation - can be measured on an interval 
or ratio scale. Since psychological attributes - for 
example, loudness, intelligence and thirst - have no 
empirical concatenation operation, interval scale measure­
ment is not possible. So according to Campbell despite 
the fact that comparison relations like 'greater than' 
or 'as similar as' abound in psychology, because there 
is an absence of binary operations like ®, or □  , then 
at most only ordinal measurement is possible.

Recently the view that the absence of an empirical 
'addition' operation for intensive properties precludes 
anything stronger than ordinal measurement has been 
questioned by Luce & Tukey (1964). They have shown, 
as did Krantz (1964) also, that an empirical concatenation 
operation is not the only possible source of additional 
structure sufficient for interval measurement. Various 
other kinds of structure can combine with a comparison 
relation and if appropriate qualitative laws are 
satisfied interval or ratio scaled measurement results.

f



Structure

One particular non-extensive structure v/ith a correspond
which leading system of empirical or qualitative law;

to interval or ratio scaled measurement can be character
ised as follows

The existence of a comparison relation which
orders objects with respect to some attribute

The objects to be compared can be regarded
as elements of a cartesion product

Such a structure is called an empirical conjoint structure
and the ordering of any object with respect to the 
comparison relation depends on the value of two or more 
independently controllable factors. Luce and Tukey
showed that measurement based on an empirical conjoint
structure requires the simultaneous construction of scales

the ordered variable (the independent variable) and
the contributions of each of the factors to thi
ordering

Luce and Tukey referred to this type of measurement as
simultaneous conjoint measurement

Example of an Empirical Conjoint Structure

In order to present a reasonably concrete introduction to 
empirical conjoint structures an example provided by
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Krantz ot al. (1971) will be considered. This had to 
do with the measurement of response strength in rats 
(Hull 1952) and its dependence on three factors: drive, 
incentive, and habit strength labelled as u, K and H 
respectively.

The drive, D, in a rat was manipulated by varying the 
amount of food deprivation, in practice indexed by 
percentage decrease in body weight. Habit strength, or 
previous experience H, was manipulated by varying the 
amount of previous training. Incentive or food reward 
was varied by altering the concentration of sucrose 
solution offered to the rate at the end of the alley. 
Response strength was measured by the running speed of 
the rat.

Consider an actual experiment in which there are two 
levels each of habit strength, drive, and deprivation 
giving rise to a 2x2x2 factorial design - or an empirical 
conjoint structure. Two ways of representing this scheme 
of things are shown in Fig 2.5l. . The two levels of drive, 
(D) habit strength (H) and incentive (H) have been 
labelled by the lowercase letters d, d'; h, h' and 
k, k'; respectively. This experimental arrangement 
results i:i 8 different treatment combinations. For 
instance, each of the cells could, typically, contain the
median running speed for four rats, at a particular level 
of drive, habit strength, a.d incentive. The particular 
treatment combination can be labelled in the general case



by an ordered triple. For example. (d' h k'), 
represents the response strength at the corresponding 
levels of the independent variables.

Although the psychological attributes, drive, habit 
strength, incentive, and response strength are all 
'defined' in terms of some physical quantity - loss in 
body weight, number of previous trials, volume of sugar, 
and running speed respectively - they do not constitute 
a definition of these attributes. All that can be said 
is that there is a monotonic relation between the 
physical measure and the level of the psychological 
attribute. These definitions of the psychological 
attributes in terms of the physical dimensions are 
operational definitions.

2.30 Additive and Non-Additive Independence in Conjoint Structures

Krantz et al (1971) (Chapter 6 page 246) in their discussion 
of independence in conjoint structures introduced two 
subsidiary ideas about the components or factors contri­
buting to the ordering of an object. These were:

2.301 The Independent Realisation of the Components or factors.
The idea being that the components or factors are separate 
entities.

2.302 Decomposability: The two or more components in the 
empirical conjoint structure contribute their effects 
independently to the attribute in question.



andFor the twc-component case with dimensions A2, A*, 
an ordering relation i, the above remarks prompt the 
question: Are there any qualitative ’laws' or conditions
for the two-component conjoint structure generated by the 
triple (Ai, A2, > ) which are sufficient to permit the 
construction of real valued functions $1, $2 on A|, A2 
respectively together with a function, F, from Re x Re 
such that:

(a,p) > (b,q)
if and only if

F [i>i (a), 4>2 (P) ] 1 F (b)> ** fa)] 
where (a, p), (6, q), is some ordinal measure of the (a, p), 
(b, q) treatment combinations and

a, b e Ai 
p, q e A2

In words: Are there numerical scales $i, $2 on the two 
components Aj, A2, respectively and a rule F for combining 
them such that the resultant measure preserves the 
qualitative ordering of the attribute? If such a 
representation exists the structure ( Ai, A2 £ ) is 
decomposable> F is a composition rule specifying the 
manner in which the dimensions of the stimulus are combined 
by the subject.

The form of the composition rule, F, determines different
types of independence which it is convenient to
classify broadly as additive and non-additive independence.



Additive Independence - The Two Component Case

tructure, theSuppose that in a two-component conjoint
composition rule, F, specifies that the two dimensions
are combined additively

Then (a, p) è (b, q) implie

Non-Additive Independence

possible for the conditions expre
302 to hold, and for F to be a non-additive

composition rule. For example consider a 'multiplicative
composition rule

implies that

Procedures to determine the form of ome simple composition
rules for conjoint structures have been outlined by Krantz
and Tversky (1971)

Additive Independence: Two Factor Case

Suppose Ai x A2 is a weakly ordered product set obtained 
for example from a two way factorial design with typical
elements

Lt;j RTïrm :^ñ
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Suppose the following qualitative conditions obtain:

(i) A = Ai x A* has a weak order relation imposed 
on it.

(ii) A Solvability condition: any change in one 
factor can be exactly compensated by changes 
in another.

(iii) A cancellation condition. For all a, b, c e Aj

if (a, q) j (b> P)
and (b, r) 2 (c, q)
then (a, r) 2 (c, p)

Luce and Tukey (196if) showed that these four conditions 
are sufficient to generate the following Representation 
Theorem which maps the empirical conjoint structure into 
a numerical relational system which allows measurement up 
to at least an interval scale.

. 3*1 Theorem

If (Aj, A2, >) satisfy the above four qualitative 
conditions then there are real valued functions:

(i) 4>i on A)
(ii) 4>2 on A2

and (iii) $ on A
such that for all a, b e Aj and p, q e A2 
<h (a) + $2 (p) 1 (tO + 2̂ (q)
if an only if 
(a, p) 2 (a, q)
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Furthermore $1 and <J>2 are interval scales with a common 
unit.

By considering simultaneously the contribution of two 
factors, the Luce-Tukey model allows each factor to be 
measured separately. The important feature of the 
conjoint measurement 'axioms' or conditions is that these 
assumptions are stated entirely in terms of the observable 
properties of the data.

The four conjoint measurement 'axioms' or conditions do 
not explicitly contain the concatenation operation(as do 
the axioms for extensive measurement. In fact the four 
qualitative conditions postulate only a single observable 
binary relation on the ordered pair of factors or objects. 
The first condition assumes that the observable binary 
relation weakly orders the objects, whilst the cancel­
lations condition is a form of transitivity condition.
Luce and Tukey showed that the four conditions are 
sufficient though not necessary to establish the 
representation theorem whereby the effects of the two 
factors appear in a simple additive way.

? .k 0 Data Matrices

It is often the case that experimental work with conjoint 
structures give rise to a data matrix so that (a, p) 
again is an ordinal measure of the (a, p) treatment 
combination where





A, P, are two independent factors and D = A x P.

A data matrix D, is said to be additive or to have an 
additive representation if there are functions:
$1, $2» defined on A, P and D = A x P respectively, 
such that

(i) <S> (a, p) = $1 (a) + (p)
(ii) 4> (a, p) >_ 4> (b, q) 

if and only if 
(a, p) J (b, q)

where a, b e A
p, q £ P

Hence a data matrix is said to be additive if
(a) Its cell entries can be rescaled such that 

their order is preserved.
(b) Every rescaled entry is expressed as the 

sum of the row and column components.
If such a representation exists the two factors A and P
can be regarded as independent in the sense that they 
contribute independently and additively to produce the 
joint effect.

Monotonic Data Matrix. A data matrix is said to be 
monotonic if all its entries are such that

(i) each row is monotonic and the rank order 
of the cell entries is the same for each
row



FIG. 2.2 • CONSTRUCTING AN ADDITIVE DATA MATRIX BY RANK ORDERING 
THE ORIGINAL CELL ENTRIES.

Factor  A b

6- 5 8 - 2 5 3 0

4 - 5 6 • 0 7 - 5

4 - 0 5 - 2  5 7 - 2  5

A 3 X 3 MONOTONIC DATA 
MATRIX WHICH SATIFIES THE 
CANCELLATIONS CONDITIONS 
AND THEREFORE HAS AN 
ADDITIVE SOLUTION.

P Q

Factor  P

FIG. 2.2 b CONSTRUCTING AN ADDI VI VE DATA MATRIX BY RANK ORDERING THE 
ORIGINAL CELL ENTRIES.

F a c t o r  A b

5 8 9

2 4 7

1 3 6

p Q r 

F a c t o r  P

FIG. 2.2 .c CONSTRUCTING AN ADDITIVE DATA MATRIX BY RANK ORDERING THE 
ORIGINAL CELL ENTRIES.

flic)

FACTOR A gl(b) 

$!<•>

6 1 0 13

1 5 8

0 4 7

¡ 2 ( p )  52I<») J2<r>

FACTOR P

IN THE liiANSFORMED DATA MATRIX

THE TRANSFORMED 'ADDITIVE' DATA 
MATRIX. EACH CELL ENTRY IS NOW 
AN ADDITIVE COMBINATION OF THEIR 
ROW AND COLOUMN COMPONENTS.

THE TRANSFORMED SCALES ARE:- 
(j)I (a ) S o <t>2(p) - 0
$I(b) = I 02(q) - 4
$I(c) = 6 <>2(r) ■ 7

r̂JLKĵ r&-yrr̂  /[P
fir all »,b 6 Q o-vj.§ (»,f) » {X-) t i iC f )

BECAUSE IT IS MERELY REQUIRED 
TO DERIVE SCALES WHICH REPRODUCE 
THE ORDER OF THE CELL ENTRIES 
THE MATIRX ON THE LEFT SHOWS 
THE RANK ORDERING OF EACH OF 
THE CELLS OF THE ORIGINAL 
DATA MATRIX.
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and (ii) each column is monotonic, the rank 
order of each column is identical.

Tversky (1967) showed that any data matrix satisfying the 
cancellation and solvability conditions has an additive 
representation that is unique up to a positive linear 
transformation. Hence if these two qualitative 
conditions hold there are functions $1, such that for 
all

a, b, e A, p, q, e P
$1 (a) + i>2 (p) > $1 (b) + $2
if and only if
(a, p) k (b, q)

1)1 An Example of an Additive Data Matrix

Since data matrices and additive representations will 
figure in the experiments included in this chapter, a 
method of rank ordering the cell entries of the data 
matrix in order to obtain an additive representation is 
shown in Fig 2.kb. This method was used by the author 
in Experiment 1A. The transformed matrix of Fig 2.2c 
is such that each cell entry is an additive combination 
of their row and column components. Note that if the 
entries of this additive data matrix are rank ordered 
the matrix of Fig 2.2b will be obtained.

1)2 Two definitions are in order here;
Additivity A cell entry is additive in A and B
(the factors) if its value can be reconstructed by adding



OUTCOME OF A FACTORIAL ANALYSIS OF VARIANCE

U C 2

EACH CELL ENTRY IS THE MEAN 
OF SIX DIFFERENT SUBJECTS.
IF THERE ARE NO INTERACTIONS. 
THEN EVERY CELL MEAN IN THE 
POPULATION I" DETERMINED BY 
ITS ROW AND CwLUMN MEANS.

0

WHERE Urc » U r  + U c - U .  (Urc REPRESENTS THE CELL MEAN) 

FIG. 2.3. ADDITIVITY IN ANALYSIS OF VARIANCE.

Dl FFERFNT TYPES OF SIGNIFICANT INTER ACTIONS IN ANALYSIS OF VARIANCE. 

S I G N I F I C A N T  O R D I N A L  I N T E R A C T I O N

[13
Here i ,  t .  -o r . e ffec tiv e  then Bj. and i .  -o r . . f f . c i v .  rh.n the B, tr .a t- .n t . t  level A,. This r - k

ordering of the "e ffectiveness" o f the B treatments p‘>rV * ‘ *7 ® rd* J | t r e a t m e n t  effects 'havc the sai 
e ffec tiv e  at d ifferen t l . v . l .  o f A. In ordinal interaction th. d ifferent B tre.t-ent

ffe ren tta lly

S I G N I F I C A N T  D I S O R D I N A I  I N T E R A C T I O N

Uc 2 0 2 0 2 0

i rank order for each level of the

CD
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a row number and a column number and perhaps an extra 
constant. There is nothing new in this definition, 
the additivity assumption of analysis of variance is 
usually couched in these terms.

Monotonic Transformations: A transformation is called 
(monotonic) increasing if as in y = log x; y gets larger 
as x gets larger. Data transformation of interest to 
the psychologist are almost always either increasing or 
decreasing but not mixed. The term 'monotonic' covers 
both cases.

2. A3 Data Matrices, Analysis of Variance and Significant 
Interaction. Additivity in Analysis of Variance

Consider the outcome of a 3 x 3 factorial analysis of 
variance as shown for instance in Pig 2.3a where each 
of the cell entries represent the mean of the scores of 
6 persons. Such an experiment yields 3 sets of means:

i the row mean
ii the column mean ^r
iii the cell mean "r

2.1)31

If there is no interaction, then every cell mean in the 
population is determined by its row and column means in 
the following manner

u = u + p - uMrc Hr c
where y represents the population mean. If this 
equality holds for every cell of the factorial experiment,



all of the Interaction effects are zero and the row and 
column effects are additive. If the equality does not 
hold for all cells the row and column effects are non­
additive.

Significant Interations: Ordinal and Disordinal

Lindquist (1953) and Lubin (1961) have both distinguished 
between two classes of significant interaction effects: 
ordinal and disordinal interaction.

In ordinal interaction the rank order of the treatments 
is constant. Although a particular level of one factor 
is differentially effective at various levels of the other 
factor, that level of the first factor maintains its rank 
order of effectiveness at all levels of the second factor. 
Fig 2.4a shows an example of this case. The cell entries 
again can be considered as the means of six subjects scores 
(i.e. six different subjects to each cell).

However with disordinal interaction whether one level of 
the first factor is more effective than another level of 
that same factor depends on which level of the second 
factor is being considered. Fig 2.4b illustrates such 
a case.

Transformations Additivity and Interaction

Box and Cox (1964) and Box (1967) have classified signi­
ficant interactions as transformable versus





non-transformable. They showed that some significant

interactions can be removed by an appropriate trans
formation, however these authoi'
distinguish between disordinai and ordinal interation

A significant ordinal interaction can sometimes be 
eliminated or reduced by a suitable monotonic transformation 
Pig 2.5 gives an example of such a case. Table I shows 
a significant ordinal interaction where a monotonic 
transformation (taking the square root of the cell entries)

If the doubleyields Table 2, which is additive
cancellation axioms are applied to Table 1 this does
suggest that an additive representation is possible

A significant disordinai interaction can never be removed 
by a monotonie transformation. The rank order of the
cell means is invariant under a monotonie transformation
and therefore the rank order of each of the 'B' effects
would still differ. It is also obvious that double
cancellation in this case would fail

2.It6 Analysis of Variance and Conjoint Measurement

A significant ordinal interaction term in Analysis of 
Variance may possibly be eliminated by a monotonic 
transformation of the data but there is no systematic
procedure to determine how tnis is done, or what significant 
ordinal interactions are transformable. Nor can testing
the double cancellation conditions stipulate whether a

{ t, * > j
l i i  ;

♦ ;
, i i m>

1 11 » >1 
1 A ; • Uv
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significant ordinal interaction can be removed because 
the conjoint measurement 'axioms' are not both necessary 
and sufficient for establishing a simple additive 
representation; they are only sufficient. This means 
that rejection of the axioms for a particular data matrix 
does not necessarily imply that an additive representation 
does not exist.

In analysis of variance an additive representation is 
related to the absence of significant ordinal interaction 
and when testing for addivity the question is: Can the 
given scale values or cell means be described as an 
additive combination of their row and column components.
In the additive conjoint measurement model the question 
becomes: Can the given scale values be monotonically
transformed so that additivity would be satisfied by the 
transformed cell entries.

2. *17 Measurement and Model Testing

Measurement concerns itself with assigning numerical 
values to objects so that laws relating the measured 
variables describe the empirical relations among the 
objects. Model testing has to do with whether a 
particular set of assumptions can account for a set of 
observed relationships.

Measurement as described hc”e dealt with the case in 
which the response depends on the combined effect of two



A typical situation has been the case where the 
physical stimuli x, and y with psychological values 
<5>(x), i> (y) are combined under a composition rule F.
This rule represents the psychological law or model whicn 
describes how the subjective values combine to form an 
overall index, A, of a psychological construct; for 
example, response strength, Hull (1932), or subjective 
expected utility Tversky [1967J , or similarity Torgerson 
(1958). The overt response Rxy is assumed to be a 
monotonic function (labelled D), of this psychological 
index A.

A psychological model on this scheme, then, resolves 
around three issues:

(i) Scaling
(ii) A theory of Composition or Combination, F

(iii) A Response Model D

Scaling: this has to do with finding an appropriate
stimulus representation. This is a measurement problem, 
for in practice it requires the determination of the 
subjective values $(x), 4>(y).

The Composition Theory: this involves determining the
composition rule P where:

The Response Model: this necessitates finding the
response function D between A and the response Rxy
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2.1)8 Psychological Models and Ordinal Tests

Algebraic models permit the simultaneous evaluation of 
a proposed composition rule and the scaling of stimuli.
By considering the contribution of two or more factors 
simultaneously, it is possible to measure each factor 
separately. The resultant scale values are based upon 
a theory of composition ana have a meaning with respect 
to the theory. Conjoint measurement for instance 
describes the conditions that ideal data would have to 
satisfy to be ordinally consistent with the composition 
theory P. As already noted, significant disordinal 
interactions would be ordinally inconsistent with additive 
models, for no monotonic transformation could mame the 
data fit an additive model. However, ordinal violations 
of additivity will show up as significant interactions in 
analysis of variance; the problem arises when significant 
interactions occur in the absence of ordinal violations.

When this occurs there seem to be two strategies:

(i) assume the composition model to be valid and 
in keeping with the ordinal requirements of 
the data.

(ii) attempt a more fine grained analysis of the data, 
e.g. Anderson (1970), Birnbaum and Veit (197*1).

If the additive composition rule is assumed to be valid 
despite the significant interactions then analysis of

/



variance in essence, tests the linearity of D, the 
response function. A non-linear response function will 
of course produce significant interactions even though 
the underlying composition rule is additive. In the 
absence of ordinal violations of the composition rule 
it is possible to find a monotonie transformation D 1 
which rescales the data to additivity. This is 
essentially the strategy of Krantz et al [Ï971] 'who 
take the view that when discrepancies from additivity 
can be removed by a monotonie transformation these 
discrepancies should be attributed to non-linearity in 
the response function D, rather than to non-additivity of 
the composition rule.

This strategy of model testing is a cause for uneasiness: 
whenever a monotonie transformation brings otherwise 
contradictory data into line with a proposed model the 
status of that model must always remain unclear, because 
this procedure simply assumes the validity of the 
composition rule. The existence of a transformation that 
removes interactions away cannot mean that the model 
is validated, yet this is what Krantz et al [l$71, 
page ^15] seem to suggest. These authors reanalysed 
the data of Sidowski and Anderson [1967^ and they 
concluded that since the interactions could be eliminated 
by a monotonie transformation of the data the original 
authors were incorrect in attributing psychological 
significance to their findings. However Birnbaum and 
Veit [i974J have shown that if an experimenter had
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followed this same rescaling procedure with the data 
of their experiment they would have erroneously 
concluded that the additive model was an appropriate 
description.

2.50 Independence in Conjoint Structures

In section 2.30 additive independence in the two component 
case was examined. Since experiment ID investigates 
various independence conditions for the three factor 
case involving similarity judgements of auditory tones, 
this section develops the theme, but in a more informal 
manner than that provided by Krantz et al. Moreover some 
consideration will be given to the possible forms of the 
various composition rules discussed in 2.30. Composition 
rules, it will be recalled, are theories that describe 
the relationships among several dimensions or factors. 
Conjoint measurement analyses provides methods for decid­
ing among such rules using ordinal information only.
The form of the composition rule, P, - whether additive, 
multiplicative, distributive, or dual distributive - 
imply certain testable properties that are not implied 
by the others. By examining the qualitative orderings 
of the independent variable in a 3 factor conjoint 
experiment it is possible to diagnose which, if any, of 
these four composition rules is applicable.

2.51 Consider the 3 factor conjoi.it structure discussed in 
2.25. Suppose that eight matched groups of four rats

• !

A





are tested In each of the 8 treatment combinations shown

in Fig 2.51. Each group then is subjected to different 
combinations of the 2 levels of drive (D), habit strength
(II) and incentive (K). Suppose also that median running 
speed of the four rats in each of the treatment combin­
ations is taken as a measure of the response strength.

Hull (1952) proposed a multiplicative composition rule 
(Krantz and Tversky 1971) to describe the effect of D, H, 
and K on response strength; that is to say, the ordering 
of the response strength is decomposable into the effect 
of 3 factors: D, H, and K.

If the ordered triples

corresponds to the observation that the response strength 
in treatment combination dhk is greater than that in ■ 
treatment combination d'h'k’ then the decomposition 
condition of the independence hypothesis (section 2.30)

If the following qualitative observation is trueIn word

then there exists numerical
measuring drive, incentive and habit strength respectively 
together with a composition rule, F, for combining ti.em



such that the ordering of the scale values is identical 
to the empirical ordering. Hull's suggestion was that 
the rule was multiplicative.

The Composition Rules in Conjoint Structures

Krantz and Tversky (1971) and Krantz et al (1971) contain 
discussions and details of four different composition 
rules or models. These are set out here and illustrated 
with reference to Hull's formulation of response strength:

(1) The Multiplicative Model
Here (dhk) > (d'h'k')

if and only if
<J>D(d). <l>}[(h). 4>K(k) > 4>D (d ' ). Í’jjíh'). $K(k')

(2) The Distributive Model
(dhk) 5 (d'h'k')
if and only if

U D(d) + *K(k)] IH (h) > [ V d,) + V 1*'2 * * 5] • V h,)

This model has been considered by Spence (1956) and more 
recently by Evans (1967) using statistical methods. Both 
authors were unable to decide between the two composition 
rules. Krantz and Tversky (1971) showed, however, that 
if it is assumed that the scale values are positive, more 
orderings are compatible with a distributive model than 
with a multiplicative one, and the multiplicative model 
implied testable ordinal properties which are not implied 
by the distributive rule (and vice versa). As yet, no
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empirical work employing measurement theoretic notions 
has yet been reported which decides the controversy 
between Hull and Spence.

(3) Additive Independence Model

(dhk) > (d'h'k')
if and only if

4>D(d) + i>H (h) + 4>̂ (k) > $D(d’) + 0H(h') + $K(k')

This composition rule corresponds to additive conjoint 
measurement for the case N > 3 (N is the number of factors). 
Luce and Tukey (1964) and Krantz (1964) both dealt with 
the ordinal requirements for additive conjoint measurement 
for the case N = 2. (See section 2.33*)

(4) Dual Distributive Model

(dhk) 5 (d'h'k')

if and only if

i>D(d) . $K(k) + 4>H(h) > i>D(d' ). i>K(k' ) + $H(h')

2.53. Independence in Conjoint Structures

In this section, the notation used to discuss independence 
is almost identical to that used in the two experiments 
reported at the.end of the Chapter

The upper case letters F, A, and L denote variables <I>p(F), 
$.(A), (L) denote the scales.A  li

The lower case letter



f, f ,  a, a', and 1, 1' denote values (nominal) or 
levels on the 3 factors F, A, and L respectively.
Fig 2.52 shows the 2x2x2 factorial structure so described.

dingle Factor Independence

F is independent of A and L whenever 
(f a 1) ï (f a 1)

if and only if 

( f a 1 1') 5 (f' a' 1' )

The single factor independence of A from F and L, and 
L from A and F is similarly defined.

Single factor independence holds when the ordering of 
the effects of one factor is the same no matter what 
fixed levels are chosen in all other factors. The type 
of independence is really a fairly weak condition: it 
means, simply, that each factor can be ordered in such a 
way as to contribute monotonically to the overall effect. 
In other words, scales can be constructed, such that the 
rule of combination of the factors is monotonie in each 
variable, but no other constraint on the composition rule 
is imposed.

Violations of Single Factor Independence

One class of violations of single factor independence 
suggests a multiplicative combination of factors with
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positive, zero, and negative multipliers. A reversal 
in the sign of a multiplier reverses totally the ordering 
of the products. A zero multiplier produces a degenerate 
ordering. When the only violations of independence 
involve reversals of orderings or degenerate orderings 
we speak of sign dependence. This generalises very 
substantially the notion of independence,and McClelland 
(1972) has reported experimental work in which he has 
very thoroughly exploited the notion of sign dependence 
to explain the results from studies in impression 
formulation.

2.55 Joint Factor Independence

Independence can be applied to pairs of factors as well 
as to single factors. F and A are jointly independent 
of L whenever: [see Fig 2.52]

(f a 1) > (f' a' 1) 

if and only if 

(f a 1') > (f ’ a' 1»)

Joint independence of the pairs of factors is defined 
similarly.

To gain some intuitive feel for joint independence consider 
Hull'3 experiment again and Fig 2.51.
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Joint independence of D and K over H holds whenever

In the first pair of observations the two treatment 
combinations have the same second component ('h ': all
rats have same amount of prior learning). If the effect
of the d k combination is always greater than the effect of
thed' k' combination whatever the fixed level of the H
component ('h' in the second pair of observations) then
D and K are jointly independent of H

In contrast to single factor independence, joint factor
independence is a very strong condition. When all
possible joint factor independence laws hold for an
empirical conjoint structure additive conjoint measurement
is obtained. In the two factor case the only possible
independence Jaws are the single factor ones

2.56 Geometrical Interpretation of Single Factor and Joint
Factor Independence

F i g2.52Aand Fig 2.52B illustrate the identical 2x2x2
factorial structure. In Fig2.52Bthe vertices represent
treatment combinations, whereas in Fig2.52Athe cells do 
Fach vertex in Fig 2.53 is labelled by the appropriate 
lower case letter and numbered from 1 to 0.

HÉ



Single Factor independence corresponds to the condition 
that end points of parallel edges are ordered in the same 
way for example

(0) > (6) 

if and only if 

(3) > (1)

Joint Factor independence correspond to the condition 
that end points of parallel diagonals are ordered in 
the same way.

e.g. (4) > (1)

if and only if 

(8) > (5)

Information Processing Strategies and Conjoint Structures 
The Anatomy of Similarity Judgments

Suppose two candidates have applied for a job and an 
interviewer has drawn up a list of attributes or 
dimensions required for the post: intelligence, humour, 
sociability, efficiency, and so on. How is the inter­
viewer to choose between the two candidates?

One way would be to devise a series of role playing tasks 
that tap each of these attributes separately. The inter 
viewer then would consider each aopiicant in turn and
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score this performance on each task. If this is done 
for both the candidates the one with the highest total 
score for all the tasks gets the job. Consider another 
interviewing technique: instead of seeing each candidate 
separately,suppose both are presented the same tasks as 
before but at the same time. For example the task 
designed to 'measure' sociability is presented to them 
both, followed by the task which taps efficiency, and so 
on. In this situation the interviewer probably employs 
a different evaluation strategy. Very likely he would 
evaluate the differences in scores on each of the 
attributes measured, and the person whom these 
differences favouredthe most number of times would get the 
job.

The first method of processing information is an inter- 
dimensional strategy: each object's dimensions are 
processed separately and each object is dealt with 
sequentially. The second processing strategy is a 
component-wise or intradimensional method: both objects 
are considered simultaneously and or. each dimension a 
component-wise comparison is made.

Which is the best strategy to employ? There are a number 
of considerations:

(i) If the candidates are about equal in performance 
on all the relevant attributes but one, this 
will be immediately obvious using the intra-
dimensional or component-wise strategy.



If the two alternatives are evaluated 
independently this dominance relation 
between the two will be obscured.

(ii) Intradimensional Evaluations are simpler 
than interdimensional ones because the 
compared quantities are expressed in terms 
of the same units. It is much simpler to 
evaluate the difference in intelligence 
between two people than to evaluate the 
combined effect of intelligence and 
sociability.

(iii) Suppose the two candidates are scored on N
attributes or dimensions; if the applicants 
are judged independently then 2N inter- 
.dimensional evaluations have to be made, 
wnereas only N intradimensional comparisons . 
have to be made if the second interviewing 
technique is adopted.

Similarity Judgment Tasks

The two accounts of information processing provide alter­
native models for similarity judgments. In such tasks 
the S is typically presented two stimuli and required to 
state how similar they are to one another; usually by
assigning a number via a rating scale. Another method 
widely employed for making similarity judgments is the 
method of paired comparisons; here, one pair of stimuli



is presented followed by another pair, and the S is asked
The techniquewhich of the two pairs is more similar

allows pairs of stimuli to be ordered with respect to thoir
similarity to one other

2.62 An informal sketch of a simple additive model for
similarity judgments using the method of paired
comparisons

of multidimensional stimuli with typical elements of the
form x, y ’..'nose co-ordinates in the N dimensional space
are given by

N) is the level of the physicalwhere x
stimulus on dimension i

fN be psychophysical functions; then
the subjective value of stimulus x

ubjective value of the stimulus onwhere fi(x.) is the
the ith dimension

It is now assumed that in a paired comparison task the
subjective values of x and y are computed separately and



that these values on the dimensions are combined additively. 
According to the model of additive conjoint measurement we 
have

N
2.621 --- f(x) = £ r i  (Xi) ,

i=l

N
2.623. .... f(y) = £ f£ (yA) , 

i = l

where f(x) and f(y) are defined to be the subjective 
values of the stimulus x and y respectively.

It is further assumed that after a pair of stimuli is 
presented the subject subtracts the larger value from the 
smaller value to obtain a dissimilarity index (6(x,y). 
¡JThe more similar x is to y the less will be the 
dissimilarity index.J

2.62'J i• e. 1 f \

f(x) > f(y)
then [f(x) - f(y)] = <5(x,y),

where 6(x,y) is the dissimilarity index of the stimuli 
x, and y and f(x), f(y) are their respective values.

For the second pair of stimuli p, q in the paired comparison 
task another dissimilarity index is computed 6(p,q).

f .r



The pair x,y is judged to be more dissimilar than the 
pair p,q if and only if:

6(x,y) > 6(p3q'

So according to the simple additive model the stimulus 
pair x,y is more dissimilar than the stimulus pair p,q 
if and only if:

N N N N
2.62 5 E ffiXf) - E > £ ^(Pi) " 1

i=l i=l i=l i=l

This simple additive model for similarity judgments 
captures the assumed psychological processes underlying 
the paired comparison method without the added compli­
cation of considering the 'distance' and metric assumptions 
of multidimensional scaling (MDS).

2.63 An informal sketch of an Additive Difference Model for 
similarity judgments in a paired comparison task.

An alternative strategy for assessing the similarity of 
pairs of stimuli in a paired comparison task is based on 
comparisons of component-wise differences on the respective 
dimension of the two stimuli.

Consider a quantity Â  defined by:

2.631 Ai = f,(x.) ~ f^yj) where f^Xj) > f^y*)

f^(Xj) is the subjective value of stimulus x on the ith 
dimension [i = 1 ... n ]

1)5;



i.e. Ai, corresponds to the subjective differences in

value of the two stimuli x and y, on dimension i
Ai > 0, and f. is a psychophysical function as before

Consider now a similarity function $. such that

that is, $. determines the contributions of the subjective
differences on the ith dimension to the over-all evaluation
of similarity between the stimulus pairs in a paired
comparison task

If the quantities of the form 2.632 are summed over all 
the N dimensions and the index of dissimilarity 6(x,y) i
obtained for each stimulus pair

additive difference model if there
exists real valued functions

f„ such that



The first experiment is a test of the additive difference 
model of similarity judgments for a restricted range of 
stimuli. No attempt is made to examine the ordinal 
assumptions behind multidimensional scaling because 
the issue of the metric representation of similarity data 
is independent of the question of its dimensional represen­
tation. Indeed Tversky & Krantz (1970) and Beals, Krantz, 
and Tversky (1968) discuss both these aspects independently, 
and they moreover show that the metric requirements of 
MDS impose rather severe restrictions on the additive 
difference model. This experiment then is concerned 
to examine only the dimensional assumptions of similarity 
judgment tasks and in particular the additive difference 
model discussed in Section 2.60.

The heart of the general additive difference model for 
similarity judgments lies in three properties.’

1. Decomposability
2. Intradimensional Subtractivity
3. Interdimensional Additivity

Decomposability requires that there is no interaction 
between the subjective dimensions; that is, each dimension 
contributes independently to the overall impression of 
dissimilarity. Intradimensional subtractivity specifies 
that on each subjective dimension the absolute value of 
the difference between corresponding 'co-ordinates'

EXPERIMENT 1A: A test of the additive difference model
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£>r levels) is computed. These contributions are then 
combined adaitively after a monotonic transformation 4k 
is applied to each of these differences; by so doing, inter- 
dimensional additivity is satisfied. Each of these 
requirements was discussed in detail in Section 2.60.

Before the discussion assumes a more fornal tone, a few 
remarks will be in order to highlight some of the 
intuitions which generated the experiment.

Suppose x and y are two stimuli which vary on just two 
dimensions, and suppose just two values on each of these 
discussions are considered:

i.e. x = (x1,X2)
y = (yi , y2)

the corresponding 'psychological' values on these 
dimensions are

f ( x)  = ( f ,  ( X, ) ,  f 2 ( X , ) )

f ( y )  = ( f ,  ( y i ) ,  f* ( y2) )  ,

where fiand f2 are psychophysical functions, f(x), f(y) 
are the corresponding psychological values of x and y.

According to the additivity - difference model the 
dissimilarity between x and y, 6(x,y) becomes:

6(x,y)  = « ,  [ f , ( f , ( y x) -  f j ( x i ) ] + [f2(y2) - f,<*,)]
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duration. It is from this population of 18 tones that the stimulus 
pairs ihtwn in Pig. 2.91 are drawn.
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The quantities

(i) (fi(y») - fi(xi))
(ii) (f2(y2) - fzi-z))

constitute the intra-dimensional subtractivity elements 
because each component-wise contribution to the dis­
similarity score is the absolute value of the subjective 
scale difference■

In the first experiment this intra-dimensional element 
was incorporated in the design and this can be verified 
from 2.91 which summarises the two conditions of the 
experiment. Both of these constitute a 4x1) factorial 
design: each cell contains a pair of tones which vary 
on two parameters: duration (in milliseconds) and 
loudness (decibels). The frequency remained constant 
throughout the experiment at 1200 Hz. Pig 2.92 shows 
values of the 18 different tones from which the pairs 
of stimuli were formed.

The two factor experimental arrangement is in fact a 
<4xiJ factorial design in disguise. The two factors are 
the ^differences' on one of the two dimensions. The 
first factor,labelled 'duration differences', is ordered 
with respect to differences in duration; from a zero 
difference to a 750 m sec difference between pairs of 
tones in the cells. Each of the *1 rows has been so 
constructed that the duration differences between pa^-s 
of stimuli for every cell in that row is constant.



For example, all the pairs of stimuli in the cells of 
row 3 have a difference of 500 m secs duration between 
them. Likewise the second factor, labelled 'loudness 
differences', is ordered with respect to differences in 
loudness between pairs of tones, the size of difference 
again increasing monotonically. This means that all 
the cells of a particular column contain pairs of stimuli 
for which the differences in loudness between the pairs 
is constant: the cells of column 3, for instance, of 
condition 1 contain pairs of tones for which the loudness 
difference is 20db.

To summarise: each cell contains a pair of tones for 
which the subject is required to make a similarity judgment, 
the aim being to rank order all the pairs of stimuli 
presented to the subject in order of their dissimilarity 
to one another. Secondly, it is a two-factor experiment 
with four levels or values on each; each of these levels 
corresponds to the 'physical' differences between the 
stimuli of the pairs on just one of the dimensions.

Consider now a paired comparison task in which the pairs 
of tones in each cell of Fig 2.91 are presented to a 
subject. If these stimulus pairs are ordered with 
respect to the magnitude of their dissimilarities then 
a weak ordering relation can be obtained for the iJxll
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51.I
factorial design to yield an empirical conjoint 
structure. If the resulting data matrix can be shown 
to possess an additive representation it will strongly 
support an additi\e difference model for similarity 
judgments in a paired comparison task.

Consider a finite set of loudness differences, AA,

2.701 AA = {p,q,r,s}
and a finite set of duration differences, AL, where

2.702 AL = {a,b,c,d}

Let the cross product AL x AA denote the set of all pairs 
of differences in loudness and duration generated by the 
'differences' in 2.801 and 2.802. Pig 2.93 shows a AxA 
factorial arrangement where

AA = {p,q,r,s} set of A loudness differences (dbs), and 
AL = {a,b,c,d} set of A duration differences (m secs).

Let 6 (c,r) be a measure of the dissimilarity between the 
stimuli of a pair of tones which have a physical difference 
of r decibals in loudness and a physical difference of

The intuitive content of the previous section will now
be formalised:

c m secs in duration

where r e AA
and c e AL
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The additive-difference model of similarity judgments 
asserts that:

(i) tf (c,r) = i>j (c) + 4>2(r) and ®2 are similarity
functions

(ii) 6(c,r) > 6(b,q) 

if and only if

^i(c) + 0,(r) > i>) (b) + 4>2(q)

for all c, b e AA 
and p, q, e AL

2.71 Procedure

The double cancellation condition was used to test for
additivity. The experiment had two conditions in wnich 

Stimulithe shown in Fig 2.91 were presented to the
subject. The principal aim of the study was to order 
these stimulus pairs with respect to their dissimilarity 
by giving the pair which was the most dissimilar (least 
similar) the highest rank and the least dissimilar pair 
the lowest rank. Such an ordering was obtained by the 
method of paired comparisons from which a data matrix 
was generated for each of the two conditions for each S.

2.72 Stimuli and Conditions

Each S was tested in two conditions (Fig 2.91). The tones 
used are shown as Fig 2.92. Altogether there were 
8 loudness difference levels and 'I duration difference 
levels.





difference levels wereThe loudne

db - Condition 1
db - Condi tion 2

For each of the two conditions the duration differences
were

The frequency of the tones vías constant throughout th
experiment at 1200 Hz

For each condition the number of paired comparisons for
16 stimulus pairs is 256 if self comparisons are
omitted this reduces to 2̂ )0. To control for order
efiects, however, each experimental condition demanded 
f|80 paired comparisons.

Each experimental session took 3l hours with two breaks
of 20 minutes. Each subject replicated each of the
2 conditions four times except for the third subject
who completed four trials for condition 1 but only one 
for the second condition. Fig 2.9*) summarises this.

Three Ss took part in the experiment, all of whom were
highly practiced - each having spent 7 one-hour session;
in a similar auditory task reported in Chapter

Equipment and Method

The h30 stimulus pairs in each of the two conditions were
recorded on the two tracks of a tape recorder. The
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stimuli were delivered through earphones. Each 
experimental trial consisted of the following sequence 
of events:

(i) The first stimulus pair was presented to the S
(ii) A 2\ second delay
(iii) The second stimulus pair was presented
(iv) 10 second silence

After both the stimulus pairs had been presented,
Ss responded by noting down on a prepared response sheet 
whether the first pair of tones or the second was the 
more similar.

Analysis of Results

For each of the conditions and replications the data for 
each subject was transformed into a dissimilarity order­
ing of the 16 pairs of tones. To aid understanding 
consider the second subject (S2), condition 1, (4th 
replication).

Fig 2.95 shows the result of the paired comparisons of 
the 16 pair of tones. If the pair of stimuli in the 
column was judged to be less dissimilar than the corres­
ponding row pair a 1 was entered,otherwise a zero.
Since each pair was presented twice to all other pairs 
(to control for order effects) the highest number that 
could appear in a row or a column was a 2. If the ■ ow

are added the total for each row can be consideredcores
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as a dissimilarity score for each row pair
gives a Dissimilarity Data Matrix for this subject.
Fig P.97 shows the end result of ranking the dissimilarity 
scores of Fig 2.9C where the ties are treated in the usual

Tests for Additivity & Results

The double cancellation test was carried out on each of
the transformed Dissimilarity Matrices (the data matrix
with the ranked dissimilarity scores). Because the data 
matrices for both conditions were all 4x4 matrices and
since the test for double cancellation involves 3 levels
each of the L and F factors the total number of possible
tests for double cancellation that have to be made are

ible tests for each data matrix

Each test can have one of 3 outcomes (Krantz & Tversky 1971)

(a) Acceptance : the antecedents and conclusion hold
the antecedents hold but the conclusion

the antecedents do not hold

Ties sometimes occur in the ordering of pairs of stimuli 
with respect to similarity,and this can lead to the 
situation where there is an equality in the antecedents 
with the conclusions still holding. Levelt et al (1971)
called this case a weak rejection
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Table 2.7Q Results of Experiment 1A

SUBJECT 1 
Condition 1 Condi tion 2

Replication : 
Acceptance

Replication
Acceptance

Replication
Acceptance

1 2 3 4 o,
0 1 2 3 4 %

13 16 16 4 65.93 16 16 16 12 93. ;

3 0 Ü 0 4.66 0 0 0 0 0.1
0 0 Ü 0 0.0 0 0 0 0 Ü. 1
0 0 □ 0 0.0 0 0 0 0 0.1

SUBJECT 2

1 2 3 4 1 2 3 4 o
o

6 13 14 16 76.56 16 12 16 16 93.

0 0 Q 0 0.0 0 0 0 0 0.0
1 0 Q 0 1.56 0 0 0 0 0.0
9 3 2 0 21.87 0 s 0 0 6.3

SUBJECT 3
1 2 3 4 % 1 2 3 4 \

14 16 16 16 96.91 10 “ _ “ 62 .

0 0 0 0 0.0 0 - - - 0.0
0 0 0 0 0.0 2 - - - 12 .
2 0 0 0 3.13 4 - - - 25.

i •* ; *,:rr LIA. I
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Results

Table 2.70 shows the results of the double cancellation 
tests on the 21 data matrices. The justification for 
the demand that the hypothesis be accepted, i.e. that 
the matrices have an additive representation is a fairly 
powerful one for all Ss, except for S3 in condition 2 
where there was only one replication. Hence the additive 
difference model for similarity judgments (using the 
method of paired comparison) is upheld, for these three 
subjects and for this particular population of auditory 
stimuli.

Appendix 2A gives the dissimilarity data matrices for 
each of the conditions and each of the replications. 
Examination of these matrices shows them to be in general 
monotonic data matrices: the ordering of the dissimilarity 
between pairs of stimuli depends on the particular levels 
of duration and frequency difference.

A more thorough analysis of the additive difference model 
for similarity data will be made in Chapter 4 but this is 
the first experiment, as far as the author is aware, in 
which the psychological processes underlying similarity 
judgments is spelled out and tested without the added 
complications of a metric representation.
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EXPERIMENT IB: Single Factor and Joint Factor Independence 
in a Similarity Judgment Task of Auditory 
Tones using the Method of Paired Comparisons

This study examines single factor and joint factor 
independence in a similarity judgment task involving 
paired comparisons of auditory stimuli.

In this experiment, as in the last, the strategy is to 
order the differences between tones of a pair, monotonically 
along the different factors. Only this time a three 
factor design was employed, the factors being AF, AA, 
and AL respectively, where:

AF corresponds to differences in frequency between 
the tones of a pair. This factor has two levels 
which represent differences of zero Hz and 250 Hz 
between tones. These will be denoted for 
convenience by the lower case letters f and f* 
respectively.

AA, corresponds to the factor in which the two 
levels represent the difference between tones of 
a pair in loudness of zero db and 20 db respect­
ively. These two levels of difference along 
the AA factor are denoted by the lower case 
letters a and a' respectively.

AL corresponds to the factor in which the 3 
levels represent the differences in duration 
between the tones of a pair of zero m secs,
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250 m secs, and 500 m secs respectively.
These three levels of duration-difference 
along the AL factor are denoted by the lower­
case letters, 1, 1' and 1" respectively.

In summary, AP, AA, and AL represent the factors of a 
3 factor experiment. The levels correspond to the 
differences in frequency, loudness, and duration between 
the tones of a pair, thus generating a 2x2x3 factorial 
design.

The Stimuli generating these differences in Frequency, 
Loudness and Duration.

The 12 auditory stimuli used to generate the differences in 
frequency (0 Hz and 250 Hz); loudness (0 db and 20 db) and 
duration (0 m secs, 250 m secs and 500 m secs) between the 
tones of a pair varied on 3 dimensions: frequency, loudness 
and duration. The 12 tones are shown in Pig. 2.80
together with a number to identify them. The following
notation is used:

(i)

(ii) Aq, A1

(ill) Lq , L^,

refer to the two values on the
frequency dimension - 1,000 Hz and
1250 Hz respectively
refer to the two values on the
loudness dimension - 20 db and
1)0 db respectively
refer to the 3 values on the
duration dimension







Each tone is of the form F. A

where

The 12 tones formed from these stimulus parameters are
shown in Fig 2.80. The numbers serve to identify each 
tone. Thus for example, 7 refers to the tone Fi Aj Li

which are used to generate the12 tone
difference along each of the 3' dimensions between the

most easily understoodThis will bstimuli of
by consulting Fig 2.81 which depiits a 2x2x3 factorial 
design whose 3 factors are AF, AA, and AL respectively
Each of the vertices indicates, by a pair of numbers
the stimulus pair presented to the subject in the experi 
ment. Consider the front panel of the factorial design

with the stimulu;

The notation (1,3), for instance,indicates that the pair
for whichof tones presented was F A L , and Fi Ai L

d was required to make a similarity judgment
differences in frequency, loudness, and duration between
these tones is 250 Hz, 20 db and zero m secs respectively
This pair is denoted by (f a 1 1): the f  indicating a 
250 Hz difference in frequency between the tones, the a
indicating a 20 db difference in loudness, and the 1



60.

a zero difference in duration between the stimuli. It 
is easy to see that the triple (f1 a' 1) defines a treat­
ment combination in a factorial experiment. Consider 
again Fig 2.81, and the vertex which is labelled both 
by the number pair (1, 7) and the trip]e f' a' 1".
This again corresponds to a treatment combination, where 
the differences in frequency, loudness and duration 
between the stimuli denotea by (1,7) are 250 Hz, 20 db, and 
250 m secs respectively.

Thus Fig 2.8l which summarises the experimental design 
in reality illustrates a factorial structure whose 
vertices represent treatment combinations that are 
labelled by letters which denote the levels of the 
difference along the dimension between the two stimuli 
presented to the subject. These stimuli, of course, 
are denoted by the pair of numbers at each vertex.

2.81 TESTING FOR SINGLE FACTOR INDEPENDENCE

What does single factor independence mean in this case? 
Consider single factor independence of AF, (differences 
in frequency between tones of a pair) over AA, and AL.

Suppose it is true that:

f' a' 1" > f a ’ 1"

which means that the dissimilarity generated by a pair 
of tones on the left hand side of the inequality is 
greater than that generated by the pair of tones on the

M  ♦ *:!.1 ■; ir



right hand side i.e. the effect of a 250 Hz difference 
between two tones exceeds that of a zero difference in 
frequency between two other tones when the difference in 
the other components Qoudness and duration) between both 
pairs is the same. If this is generally true, that is, 
the effect of a 250 Hz difference in frequency always 
exceeds that of a zero difference in frequency whenever 
the differences on the other components is fixed then 
there exists single factor independence of AF, over AA 
and AL.

For single factor independence to hold in this case,

then f' a 1 > f a 1 
if and only if 
f' a' 1' > f a' 1» 
if and only if 
f' a ]" > f a 1"

and so on.

(a) Single Factor Independence of AA over AF and AL. 
(From Fig 2.81 or 2.82)

If (1,2) - (1,1)
then (1,3) -*• (1,4)
and (1,6) -*• (1,5)
and (1,7) -*■ (1,8)
and (9,6) ■*■ (9,5)
and (9,7) - (9,8)
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where (1,2) •» (1,1) means for example that if the 
dissimilarity between the pair (1,2) is greater 
than between the pair (1,1) or vice versa then 
the dissimilarity between the pair (1,3) will 
be greater than that between (1,4) or vice versa 
and so on. The ordering is consistent between 
all pairs.

(b) Single Factor Independence of AF over AA and AL: 
If (1,4) (1,1)

(1.8) - (1,5)
(9.8) - (9,5)
(9.7) - (9,6)
(1.7) * (1,6)
( 1, 3) -  ( 1 , 2 )

I

.2.82 TESTING FOR JOINT FACTOR INDEPENDENCE
!

What does joint factor independence mean in this context? 
Consider the factors AF and AA; then these are jointly 
independent of AL whenever:

(f a 1) > (f’ a' 1)
implies that
(f a 1') > (f' a' 1’) (see Fig 2.81 or 2.82)

The same order of the joint effects of AF and AA must 
hold for any fixed third component. In this context it 
means that if the dissimilarity produced by some combin­
ation of differences on two factors (AF, AA, in this

I
♦ • * * *•



example 1 exceeds that produced by some other combination 
of differences on these same two dimensions - the 
difference on the third dimension (here AL) remaining 
constant - then the same ordering holds as the constant 
difference on the third dimension varies.

(a) Joint Factor Independence of AL from AA and AF. 
In Fig 2.81 this corresponds to diagonals having 
the same ordering; in particular, joint factor 
independence of AL from AA and AF means the 
following orderings hold:

if (1.2) - (1,4) similarly (1,3) ♦ (1,1)
then (1,6) - (1,8) (1,7) - (1,5)
and (9,6) - (9,8) (9,7) - (9,5)

In words :
If the dissimilarity between the tones (1,2) is greater 
than between (1,4) then this same ordering holds for 
(1,6) and (1,8), and (9,6) and (9,8). Fig 2.82 shows 
this more clearly by bringing out the factorial implications 
fa' > f  a,irrespective of the level of AL (the difference 
in duration between tones).

(b) Joint Factor Independence of AA from AF and AL 
(from Fig 2.81 or 2.82)

If (1,4) - (1,5) If (1,8) - (1,1)
then (1,3) - (1,6) then (1,7) - (1,2)
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If (1,8) -> (9,5) If (9,8) a- (1,5)
then (1,7) -* (9,6) then (9,7) - (1,6)

If (i,4) ->• (9,5) If (9,8) - (1,1)
then (1,3) -> (9,6) then (9,7) a- (1,2)

Joint Factor Independence cif F over A
(from Fig 2..81 or 2.82)

If (1,2) ->• (1,5) (1,6) - (1,1)
then (1,3) (1,8) (1,7) -* (1,4)

-*■
If (1,6) -> (9,5) (9,6) (1,5)
then (1,7) -> (9,8) (9,7) •> (1,8)

If (1,2) (9,5) (9,6) -> (1,4)
then (1,3) -> (9,8) (9,7) -> (1,4)

Procedure

The method of paired comparisons was used to obtain a 
complete ordering of all the 12 stimulus pairs with 
respect to their dissimilarity to one another.

This means that 144 paired comparisons were required and 
omitting the self comparisons this reduced to 132. However3 
to control for order effects 26h paired comparisons are 
needed. In each experimental session this was repeated 
twice for each S, making 5 •' paired comparisons in all.



Subjects. 4 male undergraduates, all of whom had had 
extensive practice in making similarity judgments in a 
previous experiment. All subjects viere paid. The 
complete experimental session of 528 presentations ,took 
about *1 hours to complete, including a short rest of 
10 minutes on every hour.

Presentation of Stimuli. A pair of tones was presented 
via earphones to the subject followed by a second pair.
The subject was required to indicate whether the first 
or the second pair were the most dissimilar. The 
presentation of stimuli followed the exact sequence 
reported in experiment 1A.

Apparatus. This was the same as that reported in the 
first experiment.

2.83 RESULTS
Tables 1B1, 1B2, 1B3, 1B4 appendix 2B
gives the ranking of the stimulus pairs with
respect to dissimilarity for each of the four subjects.
The more dissimilar the stimuli of the pair are to each; 
other the higher the ranking. The paired-comparison 
tables for each subject from which Table 2.80 was generated 
are shown in the appendix. It Vías from Table 2.80 that 
the ordering of the stimulus pairs was established.





TABLE 
2.81







6 6 .

Single Factor Independence

The results of the tests for single factor independence 
are shown in tables 2.81, 2.82 and 2.83.

In these tables the + sign indicates, (see table 2.81) 
that if the pair (1,2) is considered to be more dissimilar 
than the pair (1,1) then this ordering of dissimilarity is 
maintained between (1,3) and (1,4); (1,6) and (1,7) and
so on. A'-'sign indicates that the ordering is reversed 
for this pair. The ordering was found to be consistent 
for all possible cases of single factor independence viz

(i) single factor independence of A over F & L
(ii) single factor independence of F over A & L
(iii) single factor independence of L over A & F

Since the tests of single factor independence does hold 
for all the factors then neither negative nor zero values 
are required. If it had failed for any of the factors 
then no composition rule with positive scales would have 
been compatible with the data i.e. either no composition 
rule is available or the composition rule must include 
some zero or negative scale values, Krantz & Tversky (1973 ) .

Joint Factor Independence

The results of the test for joint factor independence are 
shown in tables 2.84, ?.8fj and 2.86. In tables 2.84 and



TABLE 2 . H 4  R E S U L T S  J O I N T  FACTOR t ^D E P E N D E N C E  FOR 4 S U B JE C T S

JOINT FACTOR INDEPENDENCE OF A  A FROM A F  AND A

S I S2 S 3 S4

0 ,4  ) — > -  (1,5) + + 4 - 4-

(1.3) — > -  (1,6) + + 4- 4-

(1,8) ----------( 1 , D + + 4- 4*

(1,7) — (1,2) + + 4- 4-

(1.8) ---------- > -  (9.5) + + + 4-

(1.7) — ► -  (9.6) + + + 4-

(9.8) — ■ > -  ( 1, 5) + + + 4-

(9,7) -----(1,6) + 4* 4-

(1.4) ►  (9.5) + + + 4-

(1.3) ------------(9.6) + + 4* 4-

(9.8) —  > -  (1,1) + + 4- 4-

(9,7) -----------(1.2) ■f + 4- 4-

N.B. THE + SIGN INDICATES. THAT FOR A SUBJECT^0RDER1NG IS 

CONSISTENT WITHIN PAIRS OF ORDERING. FOR EXAMPLE THE PAIR 

( 1 , 4 ) IS LESS DISSIMILAR THAN THE PAIR ( 1, 5) .  FOR JOINT 

INDEPENDENCE. THIS MEANS THAT (1,3)  MUST BE LESS SIMILAR 

THAN THE PAIR ( 1, 6) .  JOINT FACTOR INDEPENDENCE IS 

SATISFIED FOR ALL SUBJECTS.
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2.85 the orderings are broken up into pairs. For example 
in table 2.84 we have:

(1,4) - (1,5)
(1,3) - (1,6)

which are orderings broken up into pairs. Also we have
(1 ,8 ) - (1 ,1 )
(1,7) - (1,2)

which is another ordering broken up into pairs. The + 
sign indicates that within these pairs the orderings are 
consistent. It can be seen from tables 2.84 and 2.85 
that the joint factor independence of A and F holds.

Table 2.86 gives the result of the test of joint factor 
independence of L from A and F. Here the + sign 
indicates that the ordering within the 2 triples is 
consistent. Thus joint factor inedpendence is satisfied 
for all three pairs of factors.

84 DISCUSSION

Again this is the only experiment of which the author is 
aware which applies conjoint measurement methods directly 
to look at single factor and joint factor independence in 
similarity data. The only other experiments seem to be 
those which test some of the axioms of multidimensional 
scaling, Tversky and Krantz (1969) and Wender (1971). 
However both these authors are essentially testing the 
requirements of a metric representation of similarity data, 
the two experiments reported here concentrate on the

A



As well as vindicating to somedimensional aspects, 
extent the additive-difference model for similarity 
judgments this approach prompts come questions about the 
nature of psychological dimensions. In psychology, the 
term dimension is used inter changeably with the word 
attribute. Any set of mutually exhaustive event classes 
defines a dimension. Dimersion can be classified in any 
number of ways, for example, in psychology, the term 
dimension is often used to denote a variable which can 
be manipulated experimentally, one use of the term 
dimension is a variable that can be manipulated experimen­
tally, such as the frequency of a tone. This use of 
the term dimension simply refers to the way in which the 
stimuli are specified or generated physically and does not 
say anything about the way they are perceived.

Another common use of the term dimension is a trait or 
variable that cannot be observed directly, but can be 
expressed in terms of other measurable variables. The 
factor analytic definition of extraversión is an example 
of a dimension that is defined as a linear combination of 
some measurable variables such as test scores. The 
scaling of these dimensions does not depend on any testable 
psychological assumption: the attempt rather, is to 
express a large number of correlated variables in terms 
of a smaller number of uncorrelated ones. A third use 
of the term dimension refers to the factors along which 
stimuli are perceived and structured. In speaking of 
pitch, loudness, and duration as dimensions of auditory



G 9 .

stimuli it is implied that'they serve an organising principle 
in the perception of auditory structure. To accept such 
an interpretation, however, it is necessary to demonstrate 
the role played by these dimensions in the perception of 
tones. One way to do this is to construct a dimensional 
model and then to test whether any variable (specified 
physically e.g. frequency, loudness, duration etc.) acts 
like a dimension as defined in the model. In this approach, 
therefore, a psychological dimension is defined in terms 
of its formal characteristics. Consequently one can test 
which of several variables, if any, can be regarded as a 
dimension by studying its formal properties.

In the two experiments reported here this was precisely 
what was done. The formal characteristics of the model 
were, in the first experiment, that the ’difference’ along 
the two dimensions should have an additive representation.
In the-second experiment these considerations were general­
ised: single factor independence and joint factor indepen­
dence were added as further formal requirements of the 
model. Since, at least, for this small population of 
stimuli and subjects the physical dimensions frequency, 
loudness, and duration fulfilled the formal requirements 
of the model (the additive difference model) then thus 
far they can be considered as psychological dimensions as 
far as similarity judgments are concerned.
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The notions of independence, and lack of interaction of 
dimensions, as defining attributes of a psychological 
dimension will be carried over to our consideration of 
independence in identification experiments.
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Introduction

Independence in Identification Tasks 
Correlated Inputs 
Erikson & Hake Experiment

Characterisation of Perceptual Independence for correlated 
Dimensions in terms of Response and Sensory Processes 
State Independence, Calculations of Erikson & Hake 
predictions
State Independence, Independent Dimensions and Psychological 
Dimensions

STATE MODELS: State Independence, Sensory and Decision 
Processes for Correlated Dimensional Presentation

Independence in Identification Tasks Involving the 
Orthogonal presentation of the Stimulus Dimensions. 
Corcoran's (1967) experiment and the assumptions. 
Difficulties with Corcoran's assumptions, interaction 
between dimensions.

Uncertainty Analysis and Dimensional Combination.
Uncertainty Measures derived from the unidimensional and 
Bidimer.oional Stimulus Response Matrix. Interactions on 
the Dimensions. State Independence, Selective Dimensional 
Attention and the Independent Realisation of the Dimensions. 
Composite Responses, Inferring Identifiability of the 
Component Dimensions, and Selective Dimensional Attention.



71. \

3.60

3-70

3.80

Further Methodological Points: The practice of ’normalising' 
confusion matrices and inferring independence from them.

The experiments
EXPERIMENT 2A (Pitch and loudness)

EXPERIMENT 2B (Pitch and Duration)

3.90 General Conclusions



71. \

3.60

3-70

3.80

Further Methodological Points: The practice of 'normalising' 
confusion matrices and inferring independence from them.

The experiments
EXPERIMENT 2A (Pitch and loudness)

EXPERIMENT 2B (Pitch and Duration)

3 . 9 0  General Conclusions



3.00 INTRODUCTION

In this chapter three experimental procedures which have 
been used to investigate independence in identification 
tasks are examined. The first two procedures have 
employed 'correlated' and orthogonal stimulus presentations 
respectively. The third method relies on testing for 
independence on confusion matrices which are themselves 
derived from larger ensembles of confusion data.

3.01 Correlated Dimensions

One method to investigate independence has been to arrange 
that the separate stimulus dimensions presented to the 
subject are correlated. An example will help explain 
this: if there are 10 values on one stimulus dimension
to be identified and they are paired with 10 values of a 
second dimension in a perfectly redundant fashion there are 
still 10 stimuli which now vary on two dimensions and there 
are still 10 responses. This addition of redundant or 
correlated information from a second dimension can be 
effective in reducing the number of errors in an identi­
fication task compared with judging values on either uni­
dimensional stimulus set (Erikson and Hake 1955).

One technique for introducing redundancy or correlated 
stimulus dimensions is as follows: a set of N distinct 
stimuli is selected from a unidimensional continuum and 
assigned a set of identification responses. A second set 
of N distinct stimuli is selected from another unidimensional



continuum and is assigned the same set of identification 
responses as set 1. These'stimuli are now paired, one 
to one with the first set to create a set of N distinct 
stimuli with a perfect 1:1 correlation between the two 
stimulus dimensions.

If identification performance is better with the correlated 
stimuli than with either of the separate sets of stimuli 
there is said to be a redundancy gain. Theoretical 
attempts to account for redundancy gains have assumed that 
the two dimension are psychologically independent (Erikson 
and Hake).

Orthogonal Combinations of Stimulus Dimensions

Another procedure used to investigate independence is to 
present orthogonal combinations of the values of the com­
ponent dimensions for identification (Corcoran 1967, 1968). 

Those workers who have employed this paradigm, although 
invoking independent perceptual dimensions, have not 
always been clear as to the exact status of a dimension.
The consequence is that these methods,when used to infer 
independence,raise questions of a methodological and 
theoretical nature. This issue is discussed in section 3.40.

Normalising Submatrices obtained from a Master Matrix

A third method has to do with the common practice of 
testing for independence, of one kind or another, on data
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derived from a 'master confusion' matrix by normalising 
the obtained submatrix (Smith 1972, Corcoran 1968).
The actual procedure, itself, of normalisation in fact 
assumes independence and the practice of testing 
•normalised' data for it therefore confuses the issue.
This problem is discussed in section 3.60.

3.10 Independence in Identification Tasks: Correlated 
(or Redundant) Dimensions Presentations.

Probably the first mention of 'perceptual' independence 
was by Erikson and Hake [l955]. They were attemtping 
to predict a subject's identification performance in a 
multidimensional task from their performance on the 
component dimensions in an absolute judgment experiment. 
These authors employed the size, hue, and brightness of 
coloured patches as the three component stimulus dimensions 
with twenty levels or values on each. The response scheme 
was an arbitrary code number from 1 through 20. Each of 
the separate component dimensions was presented to the 
subject for identification in an absolute judgment task 
and the average value of the information transmitted, or 
contingent uncertainty, (Garner 1962) was found to be 2.75 
bits. That is to say, the subjects could typically only 
make 7 different discriminations in the unidimensional 
presentation condition.



The second experimental condition consisted of a correlated 
bidimensional presentation of the component dimensions.
That is, each level of the colour dimension was paired 
with another - fixed level - of the size dimension. Hue 
'1', with size '1', hue '2' with size ’2* and so on. The 
following pairs of component dimensions were presented in 
a correlated manner two at a time:

(i) hue and size
(ii) hue and brightness

(iii) size and brightness •

In the bidimensional condition the subjects were again 
required to identify the stimulus by assigning them a 
number from 1 through 20. The average amount of infor­
mation transmitted for these three pairs of dimensions 
was found to be 3.43 bits - an improvement of 0.68 bits 
over the unidimensional judgments.

In the third condition, all component dimensions were 
presented simultaneously, again in a perfectly correlated 
manner, so for instance, size 1, hue 1, brightness 1 were 
always presented together as was:

size i, hue i, and brightness i 
where 1 < i ( 20

In the tridimensional correlated condition nearly perfect 
discrimination was achieved by the subjects. The authors 
reported, that on average, 4.11 bits of information were 
transmitted that is, about 17 or 18 discriminations could
be made.



Erikson and Hake argued that the critical factor responsible 
for the improvement in discrimination as the number of 
correlated dimensions increased was the perceptual 
independence of the component stimulus dimensions. They 
said:

" ... Improvement could only be expected in the compound 
situation if Ss can judge simultaneously the stimuli on 
more than one of the component dimensions, and that his 
judgments along these different dimensions were not 
completely determined by his judgments of values along 
any one of them ... "

The authors used this model of independence to predict 
discrimination performance in both the bidimensional and 
tridimensional correlated conditions from a knowledge of 
the subject's identification performance in each of the 
three unidimensional conditions.

3.11 The Erikson and Hake Model of Perceptual Independence.

Erikson and Hake (1955), couched their notion of perceptual 
independence in terms of response tendencies in the follow­
ing way:

3.111 "At any given moment in time the response tendency or
rating evoked by a level on one dimension is independent 
of the response tendency evoked by the levels on the other 
dimensions."
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3.112 "The distribution of response frequencies or ratings to a 
level on a stimulus dimension is a measure of the relative 
strengths of the response tendencies elicited by that 
magnitude."

3.113 "In the case of competing response tendencies the stronger 
tendency will be evoked as a response."

Tables 3.1A and 3.IB illustrate the varying proportions 
of responses which were given when the two component 
dimensions (size 8 and hue 8 respectively) were presented 
to the subjects. The response could be any number from 
1 to 20 in both the unidimensional conditions. Table 3.12 
shows the proportion of the responses which were elicited 
by presentation of the bidimensional correlated stimulus 
’hue 8 - size 8*. The final column of table 3.12 gives 
the predicted values of these proportions assuming 
perceptual independence.

3.20 A characterisation of Perceptual Independence for correlated 
dimensions in terms of a Response Process and a Sensory 
Process.

It is quite clear that Erikson and Hake's model involves two 
distinct components: a sensory and a response process.
In what follows, the intuitions outlined in 3.Ill, 3.112 
and 3.113 will be more explicitly characterised in terms 
of the implied sensory and response processes.
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The simple model to be considered postulates that the 
observable stimulus response relations are a product of 
two processes: an activation process and a decision (or 
response) process. The activation process specifies the 
relation between the external stimulus event and the 
sensory states of the subject. The decision process 
specifies the subject's response in terms of his sensory 
state. To briefly summarise, the correlated stimulus 
dimensions are fed into the activation process, which 
converts external energy changes into sensory information 
giving rise to a sensory state; the decision process 
then operates on the sensory information to determine 
the response. We can now specify Erikson and Hake's model 
in terms of these two independent processes.

3.21 A model of the Sensory Process - State Independence

3.211 In the unidimensional presentation condition each level 
of any 'independent' stimulus dimension gives rise to a 
distribution of possible internal perceptual states.

In the experiment, we have been considering, each of the 
20 levels of any one of the three component dimensions, has 
associated with it one of the internal perceptual states

> D 2 ,  . . .  D 2 0

Where is associated with level i, and

1 < i Í 20



79.

3.212 If level i of any one of the component independent 
dimensions is presented to the subject, then the most 
probable internal perceptual state that will be invoked 
is D^; but in general the possible internal states that 
will occur follows a probability distribution, such that the 
states associated with the levels closest to the presented 
level will be more likely to occur than those states 
associated with levels more remote than the level presented.

3.213 In the bidimensional correlated condition, each of the 
component dimensions give rise to a separate internal 
perceptual state. The probability distribution of these 
two separate perceptual internal states which each of the 
levels of the correlated dimensions give rise to are 
completely unaffected by the presence of the other dimensions. 
This, in essence, is the assumption of perceptual 
independence, but from now on it will be referred to as
the state independence assumption for obvious reasons.

3.23 The Decision or Response Model.

3.231 Associated with any internal state D^, there is a unique
response R^ . The responses in the Erikson and Hake exper- 
ment are any one of the numbers 1 to 20.

3.232 In the bidimensional presentation condition two internal 
perceptual 3tates occur - one from each of the component 
dimensions - which have associated with them two responses.

7TTT .-Ml
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Associated with each of the two internal states is the

probability that level i of each of the stimulus dimensions
will elicit that particular internal state. The internal
perceptual state with the highest probability of occurrence
of the pair is called the dominant state. On a
bidimensional trial, since only one response can be made 
the response that is made,is the one associated with the 
most dominant perceptual state for that trial.

This model of state independence merely makes more explicit bot 
Erikson and Hake's (1955) model and Erikson's [1966I state-
ment. To briefly summarise, the model assumes that when
a combination of two perceptual states occur in a correlated
bidimensional trial the probability of a given response

associated with it' (Erikson 1966)

The characterisation just presented has some empirical
content. For instance, 3.212 can be checked by glancing

most likely perceptual state to be elicited will be D
is given

Moreover, it can be seenof the unidimensional trials
that the possible internal states that do occur follow a 
probability distribution, such that, the states associated 
with the levels closest to level 8 are more likely to occur
than those states associated with levels more remote than

For instance, it can be seen that it
Is that the internal state D
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occurs so producing a response 11 whereas the state 
occurs on 2^.0^ of the trials in the unidimensional 
condition when 'size 8' is presented.

The Calculation of Erikson & Hake's Predictions of 
Responses to Multidimensional Correlated Stimuli from 
the Responses to the Component Stimulus Dimensions.

The more complete characterisation of the Erikson-Hake 
model presented here makes the task of calculating 
predictions based on their model relatively easy. Consider 
the problem of finding the predicted proportion of '7' 
responses when the correlated stimulus 'size 8 - hue 8' 
is presented.

Probably the simplest strategy is to list all the possible 
pairs of perceptual states that can occur with the 
state 'dominant'. When this is accomplished it is a 
trivial matter to calculate the proportion of predicted 
*7' responses. Table 3.3 shows all the possible pairs 
that fulfil this requirement. Hence the probability 
that a '7' is given in the bidimensional condition is 
0.021, that is, this response can be expected on 2.1J5 
of the trials.

This model of state independence, in essence, assumes that 
an increase in identifiability or detection in the 
correlated condition results from a kind of 'multiple 
observation' in a single trial, and each of the indepen­
dent dimensions represents an additional opportunity for aiM



clearer perceptual state (i.e. a more 'dominant' state) 
to occur. The subject's decision on any trial is deter­
mined solely by the observation associated with the 
clearest perceptual state.

State Independence, Independent Dimensions, and Psychological 
Dimensions

In section 2.84 some questions were asked about the nature 
of psychological dimensions. It was suggested there, 
that if pitch, loudness and duration are to be urged as 
candidates for possible psychological dimensions in 
hearing it was necessary to demonstrate the role played 
by these variables in perception. One way to do this is 
to construct a dimensional model and to test any variable 
to see if it acts like a dimension defined in the model.
This was done for the similarity data in experiment 1A 
and IB which had been given a dimensional representation.
This is also done for similarity judgments in chapter 4 
on the same stimuli as these two previous experiments.

This same strategy is adopted here; in identification 
tasks 'independent' dimensions, it is suggested, correspond 
to the notion of 'the independent realisation of the 
components or factors' mentioned in 2.301. Further, 
two ’physical’ dimensions are independent if, and 
only if, state independence exists between them. If 
state independence does not exist, then the two proposed 
dimensions do not have any independent realisation.



STATE MODELS, State Independence Sensory and Decision 
Processes (for the case of correlated dimensions 
presentation).

Most of the theories of signal detection postulate models 
of both a sensory and a decision process (Swets et al 1961, 
Norman 1964, Atkinson 1963). Some theories have assumed 
a continuum of sensory states (Swets et al 1961), others 
a discrete, but large number of internal perceptual 
states (McGill 1965), and others also, a set of two or 
three sensory states (Luce 1963i Krantz 1969). The 
Erikson-Hake model, although not a model of signal detection, 
has many formal similarities to one, in particular to those 
classed as two-state high threshold models.

It was noticed in section 3.20 that a complete character­
isation of the state independence hypothesis demands an 
account of both the decision process and the sensory 
process. In this section a brief investigation of a model 
of state independence for the correlated presentation of 
two independent stimulus dimensions will be undertaken, 
and in particular an explanation will emerge as to why, 
in such a task, identification is enhanced compared to 
when either of the component dimensions is presented 
singly.

Suppose P and A are two independent stimulus dimensions 
which have only one value FQ and Aq. Consider the 
following two experimental conditions:
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84.

(a) The control condition. This consists of a 
unidimensional presentation of each of the 
component dimensions Aq and F . The subject's 
responses to each of these component dimensions 
is recorded.

(b) A bidimensional correlated presentation of 
the stimulus. Here the dimensions Aq3 F ,
are presented together as a single stimulus, and 
detection of only one of the independent 
dimensions will suffice to identify the 
stimulus.

Unidimensional Presentation (Control) Condition

The stimulus-response (S-R) matrices for each of the 
component independent dimensions are:

Aq (stimulus) Fq (stimulus)

Response

pa, and pf,

— — —  —1
Yes Pa Yes Pf

No 1 - pa No 1 " Pf-

are the probabilities of detection of

3.301

the
A and F dimensions in the control condition.
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Sensory Model

D D
(stimulus) A„ r- 1

[-a ?aJ
3.302

D D
(stimulus) F^ IV 1 - Pf]

These two matrices summarise the sensory process.

For example when stimulus AQ is presented either one of 
two perceptual states occur:

(i) State D (a detect state) which occurs with a 
probability of pcL

or

(ii) State D (the non-detect state) which occurs 
with a probability 1 - p

CL

The second matrix, involving the F dimension, similarly 
summarises the sensory process for this component.

The Response Process.

This can be represented by the following decision matrix

Sensory States

Yes 1.0
D

o.o'
Response

No 0.0 1.0
3-303
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For both the independent dimensions F and A, in the 
control condition,whenever a D perceptual state occurs 
the subject reports he has detected or identified the 
dimension, whereas if a D state occurs the subject does 
not report a detection. This model is a threshold model 
which allows for no guessing.

Independent Dimensions presented in a Correlated manner.

When F0A0 are presented together in a Yes-No detection 
experiment, table 3.40 gives a listing of all the possible 
perceptual states which can arise. Columns 3 and 4 show 
the probability of the indicated perceptual state arising 
from the given F and A dimensions respectively. The last 
but one column gives the probability of this combination 
of perceptual states occurring on any given trial assuming 
state independence. The final column - the decision 
column - gives the subject's answers:

"Yes" (a detection) 
or

"No" (no detection)

The decision rule is:

If on any trial a particular dimension gives rise to a 
D state then the subject reports 'yes' (he saw the signal) 
otherwise he does not (see 3.303).



3.305

Assuming state independence, the probability of a 
detection in the bidimensional correlated condition is:

pa + Pf - pa * pf

The probability that there will be n£ detection is

1 " pa ' pf + pa ' pf

The probability of no detection is

The probability that there will be a detection for 
2 correlated dimensions in one trial is:

Similarly if there are N independent dimensions and these 
are presented in a correlated manner (that is detection 
of any one of the dimensions suffices to achieve correct 
detection of the composite stimulus) the probability of 
a detection is

Consider a simple example: a stimulus is composed of four 
independent but correlated dimensions and the probability 
of detection of any one of the component dimensions is 
0.5. What is the probability of detection of the 
composite stimulus?
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This is clearly equal to:

1 -  (1 ~  i ) '4

= .9375

Hence the stimulus will be detected on 93-75% of the 
trials. It is easy to see that each of the independent 
dimensions affords an 'additional opportunity' for a 
detect state (D) to occur.

3.40 Independence in Identification Tasks Involving the 
Orthogonal Presentation of the Stimulus Dimensions,

In the previous section, we have examined independence 
of the stimulus dimensions in experimental conditions 
where the values on the component dimensions have been 
presented in a correlated manner. The main thrust of 
this section, however, is to investigate independence in 
experimental paradigms in which there is an orthogonal 
presentation of the stimulus dimensions. In such a 
paradigm,it is assumed,at the very least that a number 
of perceptual dimensions have been isolated and that any 
combination of values on all dimensions is possible. 
Moreover it is assumed that it is possible to fix all but 
a given dimension A (say) and to vary the stimulus along 
the dimension A, generating the unidimensional values

Ai* ......... a n * *

and similarly for F and L we would have the following 
unidimensional values
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<Fo’ F1......

(L0> li > .... .... LN> •

In the orthogonal bidimensional situation the following 
values make up the stimulus sets

(i) The F and A bidimensional stimulus set:

{Fo V  Fi V  V o *  ....... w

(ii) The F and L bidimensional stimulus set:

<FoLo’ FoLl’ FoL2’ ••• FlLo’ ....... . PNAN>

(iii) The A and L bidimensional stimulus set:

<AoLo’ AoLl’ AoL2* ••• AlLo’ ....... . ANLN*

In a typical experiment, the set of stimuli is specified, 
each stimulus is labelled, and then presented for identi­
fication a large number of times with the order of 
presentation randomised. Corcoran's (1967) study provides 
an example of this mode of presentation. The stimuli were 
a combination of frequency and rate of interruption,and 
their 'independence' was under investigation. In the 
bidimensional presentation condition four stimuli were 
presented, F^^, F^j, P2I1’ and F2I2* wh*ch differed on 
two dimensions F (frequency) and I (rate of interruption). 
The F and I dimensions were able to assume one of two 
values: 1 or 2. In the stimulus presentation each of 
the four stimuli were equally likely.

v.f
L».'“-' 1 £



In the actual experiment each

spense to each of the 'two-dimensional
convenience we

.es in a no-noise condition until they were
each sound without error

luli were then presented randomly in noise for

this condition could be attributed
o errors in perception rather than memory

As Corcoran's experiment is one of the very few which have
investigated independence in identification tasks involving
an orthogonal presentation of the stimulus dimensions, it
will be discussed rather thoroughly. This experiment
has been criticised for inaccuracies in arithmetic
(Smith 1972), but the design has many merits. One of the 
most important of these is the labelling of the stimuli; 
Corcoran avoided the problem of using a response scheme 
which depended on the subject identifying each of the 
levels of the component dimensions. For as Kaufman and
Levy (1971) pointed out, to do so,is to assume that the 
dimensions are perceptually distinct and independent.
What will be shown later, is, that Corcoran's response
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The associated responses to each of these four stimuli 
are labelled: FTT1, F^I^, ^2^1* F2I2 where the bar 
over the upper case letters indicates a composite response 
to the appropriate stimuli. In the actual experiment each 
of the four tones had the labels A, B, O’ and D respectively - 
one composite response to each of the 'two-dimensional 
stimuli'. However for notational convenience we will use 
F ^ ,  F1I2, ^ 2 ^ 1 1 and F2I2’ The subJects were trained
on the four tones in a no-noise condition until they were 
able to name each sound without error.

The four stimuli were then presented randomly in noise for 
identification. Because the subjects had learned the 
tones, any errors in this condition could be attributed 
to errors in perception rather than memory.

As Corcoran's experiment is one of the very few which have 
investigated independence in identification tasks involving 
an orthogonal presentation of the stimulus dimensions, it 
will be discussed rather thoroughly. This experiment 
has been criticised for inaccuracies in arithmetic,
(Smith 1972), but the design has many merits. One of the 
most important of these is the labelling of the stimuli; 
Corcoran avoided the problem of using a response scheme 
which depended on the subject identifying each of the 
levels of the component dimensions. For as Kaufman and 
Levy (1971) pointed out, to do so,is to assume that the 
dimensions are perceptually distinct and independent.
What will be shown later, is, that Corcoran's response



Fig 3.41

RECORDED AND PREDICTED VALUES IN THE CORCORAN (1967) EXPERIMENT. 
STIMULUS

F1 X1 F I 1 ±2 F2 h
F I 2 2

0.771 0.063 0.104 0.000
(0.316) (0.103) (0.107) (0.012)
0.177 0.0864 0.031 0.115
(0.113) (0.841) (0.018) (0.112)
0.052 0 000 0.781 0.115
(0.057) (0.006) (0.735) (0.067)

0.000 0.073 0.083 0.771
(0.009) (0.056) 0.146) (0.806)

The probabilities obtained in Corcoran's experiment are the
non bracketed values. The bracketed values are the probabilities
predicted by "independence" considerations.

Fig 3.42

The calculation of the Predicted Values in Corcoran's (1967) 
Experiment.

(a) f_l I1 [_Stimulus_[ (b) Fl F2 P timulu!] 
T7 t : /0.771 0.052 0.823 *1 0.063 O.OOO- 0.063

0.177 0.000 0.177 T 2 0. 864 0.073 0.937— — —
0.948 0.052 0.927 0.073

• i
F2 h [stimulus] (d) F2 *2 [stimulus ]

_ F1 F2 F1 F2_
0.104 0.781 0.885 *1 0.000 0.115 0.115 |
0.031 0.083 0.114 *2 0.115 0.771 0.886 U
0.135 0.864 0.115 0. 886

The empirical response-response matrix for the stimuli 
F.I., F.I., FI., F I  respectively. Each submatrix has as

•L X X & & x  2

its entries four column values, for the appropriate stimulus, 
obtainable from Tabi! 3.41.

\

a M V i  x v COX

-v. 
y-V



Fig 3.43

'Revised' Analysis of Corcoran's (1967) Data. Estimates of Uni­
dimensional Performance from the Empirical Bidimensional Matrix 
(Fig 3.41).

(a) F1 F2 (a') _ h Z2

F. 0.948 “ I. 0.813 -
1 0.9*8 1 1.000 -

_ 0.052 — 0.187 -
F2 0.052

—
Z2 0.000 —

Estimates obtained from response-response matrix (a) Fig 3

(fc) F1 F2 _ (b') X1 h

— 0.927 - — — 0.068
F1 0.927 - l l - 0.000
__ 0.927 - _ - 0.932
F2 _0.92 7 - I2 __ 1.000
Estimates obtained from response-response matrix (b) Fig 3

(c) F1 F2 _ (C) J2■ ——
__ - 0.135 — 0.770
F1 - 0.136 h 0.903
— - 0. 865 __ 0.229 -
F2 — 0.864 I2 0.096 _
Estimates obtained from response-response matrix (c) Fig 3

(d) F1 F2 .(d') h I
2 __

— - 0.115 __ - 0.000
F1 - 0.114 - 0.129

- 0.885 - 1.000
T 2 - 0. 886 ~ 2 - 0.870

Estimates obtained from response-response matrix (d) Fig 3.42



f e

¡ i

Fig 3.44 F dimension I dimension 
I, I„

__
0.938 0.125 *1 0.872

0.062 0.875
Z2

0.128

Estimates Unidimensional Performance Using Corcoran's data. 
Each entry is the mean of 4 estimates of the theoretical 
probabilities shown in Fig 3.43A.

Fig 3.45
The prediction of a theoretical bidimensional matrix 
from an estimate of the unidimensional performance assuming 
state independence.

(a) - F^ 1^ stimulus - - F I1 1 stimulus -

|—  F1 
.938 x
= .818

. 872
F2

.062 x 
= 0.054

.872
Z1

r  Fi.938 x .049 
= .046

F2 ~  .062 x .019
= .003

.9 38 x 
= .120

.128 .062 x 
= .008

.128
X2

• 93G x .531 
= .892

.062 x .951 1 
= .059 J

- F2 1^ stimulus - - F^ I2 stimulus -

F1 
.125 x 
= .109

.872
F2

.875 x 
= .763

.872
X1

F1
.125 x .049 
=■• .006

F2
.875 x .049 
= .04 3

.125 x 
= .016

.128 .875 x 
= .112

.128
I2

.125 x .951 
= .119

.875 x .951 
= .832

* *»"*■*

v.



scheme allows us to infer the identifiability of the 
different levels of the component stimulus dimensions 
from a knowledge of the subject's identification response 
in the bidimensional situation. However, before this is 
done it would be well to look at Corcoran's experiment in 
more detail and the assumptions which generated them.

3.41 The Assumptions Generating the Predicted Value of 
Corcoran's (1967) Experiment

Although Corcoran's (1967) is the study explicitly dealt 
with here, the same assumptions of that study are those 
which motivated some other experiments: Corcoran (1966) 
and Corcoran, Dorfman and Weening (1968).

Table 3.41 gives the recorded and predicted values (on 
the assumption of independence) for Corcoran's (1967) 
experiment.

From this table, a set of 4 sub matrices - the empirical 
response - response submatrices - have been derived.
These are shown in Fig 3* *12.

Consider Fig 3*42 submatrix (a); it can be seen that 
each of the 4 entries are the same as those of column 1 
of the bidimensional matrix of table 3,41. It was 
effectively from these four response - response submatrices 
that Corcoran derived estimates of the identifiability of 
the unidimensional values of each of the two dimensions.
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This point is in fact crucial: his procedure was one of 
estimating responses to unidimensional from responses to 
multidimensional stimuli and NOT 'prediction of responses 
to multidimensional from responses to unidimensional 
stimuli' as Corcoran (1966) stated.

Fig 3*43 gives these estimates whilst Pig 3.44 shows the 
mean estimated identifiability of the F and I dimension 
in the unidimensional situation. Prom these estimates 
the theoretical values in the stimulus - response matrix 
of table 3.41 are derived.

3.M2 The Construction of The Theoretical or Predicted Values
of The Bidimensional Matrix from the Response-Response 
Submatrices.

Consider Pig 3.42 which gives the four response-response 
matrices obtained from Corcoran's empirical bidimensional 
matrix.

If state independence of the two stimulus dimensions is 
assumed we have from the response-response submatrix (a) 
in Fig 3.42:

3.421 P C F ^  / F1I1)2D = P(FX / P1)1I) x P(TX / .771

The subscripts 2D and ID indicate whether the response 
is assumed to arise from the bidimensional experimental 
condition or the unidimensional situation.
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In words 3-^21 states:

The probability that the composite response P1I1 is 
given to the bidimensional stimulus F^I^, is equal to 
the probability that the response F̂  is made when the 
stimulus F-̂ is presented in the unidimensional condition 
times the probability that the response T-̂  is made when 
the stimulus I1 is presented in the unidimensional 
situation.

Similarly:

The two estimates of the hit rate of the stimuli F^ and 
1^ in the unidimensional situation is:

From this same submatrix (a) (Fig 3.42) two more estimates 
of unidimensional identifiability can be obtained:

3-422 P(F1I2 1 PlIl)2D = P(F1 '  P1)1D X P(I2 n i \ l f ,1771X1;2D '

P(F1 '  F1)1D = -9li8; thuS P(F2 / F1)1D = 0,052

P(T1 '  I1)1D = ,8l3i thUS P(I2 '  I1)1D = 0,187

= p(p2 / )1D • PUj. / h h v  « 0.0523-423



whence

this response-response submatrix two estimates ofFrom

Also

These are shown in Fig 3.43 in 
(a1) respectively.

been obtainedhave
submatrices (a) and

that each of the response-responseIt can be seen now
submatrices give 2 estimates each of the appropriate 
unidimensional performance. In Fig 3.43 submatrices

c, c' and d, d' are the estimates obtained
from the corresponding submatrices in Fig 3.^2

Corcoran (1967) and (1971) argued that it is possible to
obtain eight estimates of each of the theoretical 
probabilities. It is argued here, on the contrary, that
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only POUR independent estimates of the theoretical 
probabilities can be obtained. Furthermore, if it is 
recognised that these estimates are in fact estimates 
of unidimensional performance it is easy to see why.

3.43 It will be as well to spell out very clearly Corcoran's 
assemptions.

(a) The method, implicitly involved deriving an 
estimate (assuming independence) of the 
identifiability of the component dimensions 
in a unidimensional situation. See Pig 3.42
3.43 and 3.41).

(b) From these estimates of unidimensional 
performance, a theoretical bidimensional 
matrix was generated - assuming state 
independence. See Pig 3.44 and 3.45*
The assumption of state independence 
guarantees that the identifiability of a 
level or a value on a component dimension 
is unaffected by the presence of the other 
stimulus dimensions.

3.44 Difficulties

Corcoran's experimental procedure is logically unsatis­
factory: by initially assuming state independence, he 
derived from the empirical bidimensional matrix theoretical 
estimates of unidimensional performance of the component



i

dimensions. He then again assumed state independence; 
this time of these unidimensional estimates to obtain a 
theoretical bidimensional matrix. The illogicality of 
the procedure was further compounded because the theoretical 
and empirical bidimensional matrices were compared to see 
how far one deviated from the other.

if4 |T

Such an experimental paradigm is circular and can surely 
never test independence. The unidimensional performance 
matrices for the component dimensions should not be 
estimated - this is an empirical matter and they should 
be obtained experimentally. It is only these empirically 
obtained empirical unidimensional performance matrices 
which should be used to generate - assuming state indepen­
dence - the theoretical bidimensional matrix.

Another difficulty resides in the 'statistical' definition 
of independence - a definition which most writers seem to 
adopt (Garner and Morton 1969, Corcoran 1967, Erikson and 
Hake 1955, Broadbent 1971) • This is, strictly speaking, 
an operational definition and corresponds to the procedure 
for generating the theoretical bidimensional matrix from 
assumed unidimensional performance matrices (see Pig 3. ¿44 
and 3.1(5). However this concept is not rich enough to 
tell us what to look for, when and if, independence breaks 
down. In this treatment we have preferred to use the 
notion of state independence which although operationally

■~
*S

r
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corresponds to independence or perceptual independence has 
a definite psychological content. First it has to do with 
the independent realisation of the dimensions, and this 
has many implications for selective dimensional attention 
(see section 3-58). Second, state independence means that 
the identifiability of a particular level on one dimension 
is completely independent of the level of the other 
dimension. That is, there are no interaction effects 
between dimensions if state independence holds between them.

In the next section, we will develop some machinery which 
will help clarify these two notions.

3.50 Uncertainty Analysis and Dimensional Combination

The identification of the values of the two orthogonally 
presented stimulus dimension in Corcoran's experiment 
is really a classification problem involving discrete 
stimuli, and so uncertainty analysis therefore, can 
provide a natural non-metric measure of correlation.

- Moreover Garner & McGill (1962) and Hake and Rodwan (.I^Q o) 

have drawn attention to the close parallel that uncertainty 
analysis has to analysis of variance.

It is advantageous then to analyse the orthogonal stimulus 
response matrix using uncertainty analysis, because it 
allows the underlying logic of analysis of variance to be 
applied to the data from a single subject. This is 
especially desirable because the pooling of data over



many subjects, which is typical of so many studies 
testing independence in identification tasks,(Corcoran 
1967, Miller and Nicely 1955» Conrad 1964, Smith 1973) 
very possibly swamps out individual subject effects.
It is not the individual differences per se, that is of 
interest, but the possibility that the identifiability 
of different values of one stimulus dimension varies 
over different values of the other: in other words there 
is an interaction effect. However, it is conceivable 
that different subjects exhibit different patterns of 
interaction. A dimension, for instance, may have dif­
ferential identifiability for different subjects due, 
possibly, to attentional factors. Therefore these very 
real interactional factors or lack of independence of the 
dimensions for each subject might very well be masked 
when data is pooled over many subjects.

Uncertainty analysis enables an experimenter to partial 
out the different stimulus effects and,like analysis of 
variance, it can be tailored to a particular experimental 
design so extracting the maximum amount of information.

Before embarking on a very brief overview of uncertainty 
analysis a digression as to why the choice of the word 
"uncertainty" as opposed to "information theory". The 
word "uncertainty" was finally used - in line with 
Garner (1962) - because "information" theory carried 
with it certain echoes and connotations particularly 
of the information theory industry which burgeoned in



Fig 3.51 Results of an Identification Experiment

CONTROL EXPERIMENT.

(a) F dimension

Fo 1
Fo
48

F1
1

F2
0

F1 2 44 0

*1 0 5 50
150

u [F:F]1D = 1.2986 bits

(b) A dimension

Ao A1 A2
r o 44 5 0

F1 6 35 18

A2 0 10 32
150

U [A:Aj1D = 0.6956 bits

Orthogonal Presentation
(c) THE F A bidimensional matrix

F A 0 0 Vi V 2 F1A0 F1A1 F1A2 F2A0 F2A1 F2A2

FoAo 19 - 2 1 - - - - -

F0A1 3 14 1 . - - - - - -

F0 A2
- 8 20 - - - - - -

F1A0 3 - - 16 3 1 - - -

F7 l
- 2 - - 15 5 - - -

F1A2
- 1 2 - 3 18 - - -,

F2A0
- - - 8 1 1 23 4 2

¥ i
- - - - 3 1 2 17 11

F2A2
- - - - - - - 4 12

25 25 25' 25 25 25 25 25 25

u [fA:Fa J = 1.9405 bits

225



Fig 3.52. The Derivation of a theoretical bidimensional
stimulus-response matrix from the unidimensional performance 
matrices in the control condition assuming state independence. 
The one dimensional matrices of Fig 3.51 have been changed into 
conditional probability matrices for convenience.

Control Condition
(a) F dimension

'ID 1.2986 bits

(b) A dimension
F F. F A,. A, A.,r0 1 2 0 1 2
~96 .02 .o6~ Ao .88 .10 .ocT
.04 .88 .00 A1 .12 .70 .36
.00 .10 1.00 A2 .00 .20 .64

ID 0.6956 bits

Theoretical Response-Response Matrices for each of the dimensional 
combinations assuming state independence.
(c) F

F 0 
^ 4 0

A (stimulus) (d)
.096

.(stimulus) (e) -Fo A (stimulus)

*0
n.035 F 2 -, .000 \>

Fi.004 F 2 — i .000 A0 7000 .¿00 2̂ —  .000

A1 .120 .005 .000 h .6 70 .028 .000 A1 . 350 .014 .000

*1 .000 .000 .000 A2 .190 .008 .000 A2 .610 .026 .000
U„ . [I:a ]= 0.000bits 
l0A0

U„ . [f :a] = 0.000 bits U 
0 1

(f) F1Aq (stimulus) (g) F^A^ (stimulus)

[f : a | = 0.

(h) (stimulus)
W OOObits

Fo F1 F 2 _ T o T 1 T 2 _ T o F1 F2

.018 .774 .088 A o .002 .088 .01 0 A o .00 0 .000 .000 1

.002 .106 .012 A i .014 .616 .070 ■*i .00 7 .316 .036 j

.000 .000 .0 0 0 A 2 .004 .176 .002 X 2 .01 3 .564 .064 ,k ;

UF0A0 (f :a]= 0.OOObits UFqA =0.OOObits UF0A2[T:aJ= O.OpObits

The values in each of these submatrices are obtained by using the 
same procedure used to generate the submatrices in Fig 3.45



Fig 3.52 (continued)
(i) F2A0 (stimulus)

Fo F1 F2

Ao .000 .000 .880

r l .000 .000 .120

1 ™ 
K .000 .000 .000

UF2A0 [f :a]]= O.OOObics

(j) F2A1(stimulus)

0 1 2
.000 .000 .100
.000 .000 .700
.000 .000 .200

UF2A1 ¡F:a3= O.OOObits

(k) F2A2 (stimulus)

Fo F1 p2
.000 .000 .000

A1 .000 .000 .360

A2 .000 .ooc .640

UF P 2 i |J:a ] = 0.000bits

Fig 3.53(a) The theoretical conditional probability matrix 
generated from tne 2 unidimensional matrices in the control condition 
assuming state independence.

F A 0 0 F0A1 F A. o 2 >
o F1A1 F1A2 F2A0 F2A1 F2A2

FoAo .840 .096 .000 .018 .002 .ooo .ooo .000 .000

FoAi .120 .670 .350 .002 .014 .007 .000 .100 .000

F0A2 .000 .190 .610 .000 .004 .013 .000 .000 .000

F1A0 .035 .004 .000 .774 .083 .000 .000 .000 .000

F1A1 .005 .028 .014 .106 .616 .316 .000 .000 .000

F1A2 .000 .008 .026 .000 .176 .564 .000 .000 .000
F2 0 .000 .000 .000 .088 .010 .000 .880 .100 .000

F2A1 .000 .000 .000 .012 .070 .036 .120 .700 .360

F2A2 .000 .000 .000 .000 .002 .06̂ .000 .200 .640

e« 1.0 1.0 1.0 1.0 1.0 1.0 . 1.0 1.0 1.0

and "Theoretical" u (?A:FA] = 2.03695 bits

Each column of the theoretical bidimensional matrix is derived 
one of the theoretical response-response matrices. For example 
the third column is obtained from submatrix (e) Fig 3.52.



Fig 3.53B. The theoretical performance bidimensional matrix 
obtained from 3.53A - assuming state independence.

F A 
o 0 FoAi F0A2 Fi Ao F1A1 F1A2

F„A„ 
2 0 F2A1 F2A2

FoAo
21 2 - 1 1 - - - -

V i 3 17 9 - - 2 — — —

F0A2
5 15 - - -

f7 o
1 - -  ' 19 2 - “

f i ai
- 1 - 3 15 8 - - -

F A
2

- - 1 - 4 14 - - -

*2 A0'
- - - 2 - - 22 2 -

f7 i
- - - - 2 - 3 18 9

F2A2
- - - - 1 1 - 5 16

25 25 25 25 25 25 25 25 25

Again "theoretical" U [fA:Fa J = 2.03695 bits

Fig 3.54 Uncertainty Measures obtained from the Empirical
VBidimensional Matrix the A and F dimensions derived from the 

two dimensional matrix in Fig 3.51c.

(a) F dimension
Fo F1 F2

Fo 67 (73) 1 (4) °(0)
*1 ®(2) 62 (65; °(0)
*2 _ > ) 12(6, 75(75)

u[j:F] = 1.1738 bits 
2D

(b) A dimension
0 1 __

7 T o (66; 7 (7) 5(0)
AT 5 (9) 51 (53)18(28)

°(0) 17 (15)82(47)

u (a :a J = 0.6255 bits 
2D

The numbers in bracket are the values which would be obtained 
if the dimensions were independent.



Fig 3.55- Dimensional Interaction. The interaction Submatrices 
have all been taken from the data presented in the bidimensional 
matrix in Fig 3.51(c).

(a) Submatrix for Ar 
derived from 
Fig 3.51(c)

0 (b) Submatrix for A^ (c) Submatrix for A
derived from derived from
Fig 3.51(c) Fig 3.51(c)

FoAo F1A0 F2A0 FoAi F1A1 F2A1 F0A2 F1A2 F2A2

Fo 12 (24) xa) °(0) Fo ”22 (24) ° (1) °(0) Fo _23(24) °(1) °(0)

F1 3 d) 16(2?) °(0) 'h 3(1) 22(22) °(0) F7 2(1) 24 (22) °(0)

F2 ^(0) 8 (2) 25 (252 F2 °(0) 3(2) 25 (25)f7 °(0) 1 (2) 25 (25)

X .9950 bits UA [f :0  = 1.2248 bits 
A1 J °A2

(?:#]= 1.3675 bits

(d) Submatrix for FQ 
derived from 
Fig 3.51(c)

(e) Submatrix for F^ 
derived from 
Fig 3.51(c)

(f) Submatrix fcr F2 
derived from 
Fig 3.51(c)

F A 0 0 F o A i F0A2 F i A o F1A1 F1A2 F2A0 F A 2 1 F2A2

Ao 22(22) ° (2) 2(0) *0 "*(22) 3(2) \o ) *b 23(2?> 4 ( 2 ) 2(0)
h 3 (3) 16(16) X(9) ° (3) 18(18) 6(9) A1 2 (3) 17(18)
T2 % » 9 (5) 22(16, h _^(0) 4 (5) h-*

_c
o A2 ° (0) 4 (5) ■flC)

». M  = 0.8595 bits Up = 0.8583 bits UF ¡_A:a ]=- 0.5524 bits

Fig 3.55. Submatrices a,b, and c show the identiflability of FQ,
F ,̂ F2 over different values of the A dimension. Similarly submatrices 
d, e, and f show the identifiability of A , A1 and A2 over different 
values of the F dimension. The entries in brackets in each of the cells 
cf these submatrices give the expected value, derived from Fig 3.53B, 
assuming state independence. Notice, if there is state independence 
then there is no interaction.



psychology in the early 1960s. Information theory 
still seems to sustain, at least for me, a definite 
metaphor or an image of psychological processes, whereas 
the term uncertainty analysis is relatively neutral.

Uncertainty Analysis and Perceptual Dimensions

The Experimental Paradigm (Pig 3*53) shows the data and 
conditions of an actual experiment, reported in the study 
at the end of the chapter. The two experiments 2A and 2B 
have exactly the same design, and the data shown in Pig 3*51 
is from a single subject (I.S.) in experiment 2A.

There are two experimental conditions

(a) A control condition in which the separate 
component dimensions Frequency (F), and 
Loudness (A) are presented in noise. The 
two dimensions are labelled P and A with 
values :

(i) AQ, A^, A2 > on dimension A 
(ii) F0, F1, F 2 , on dimension F.

(b) The bidimensional condition: In this 
situation, the subject was presented one or 
other of:

V o *  V l *  F o A 2* V o ’ V l >  F 1A 2*

P 2Ao * F 2A 1*
F 2 ^ 2  (orthogonal stimulus presentation).



psychology in the early 1960s. Information theory 
still seems to sustain, at least for me, a definite 
metaphor or an image of psychological processes, whereas 
the term uncertainty analysis is relatively neutral.

Uncertainty Analysis and Perceptual Dimensions

The Experimental Paradigm (Pig 3-53) shows the data and 
conditions of an actual experiment, reported in the study 
at the end of the chapter. The two experiments 2A and 2B 
have exactly the same design, and the data shown in Pig 3.51 
is from a single subject (I.S.) in experiment 2A.

There are two experimental conditions

(a) A control condition in which the separate 
component dimension Frequency (F), and 
Loudness (A) are presented in noise. The 
two dimensions are labelled F and A with 
values :

(i) Aq, A^, A2, on dimension A 
(ii) FQ, Flf F2, on dimension F.

(b) The bidimensional condition: In this 
situation, the subject was presented one or 
other of:

F~A«> V i- P o A 2 ’ PlV P1A1> P1A2’o 0

P 2A o * P 2A 1 j
F2A2 (orthogonal stimulus presentation).



In both conditions, the set of stimuli was specified 
and each stimulus was labelled and learnt in the no 
noise trials. When they had been learnt the stimuli 
in both conditions were presented for identification 
a large number of times with the order of presentation 
randomised.

I
From this experimental set-up 3 sets of stimulus response 
matrices can be collected.

(i) Two sets of stimulus response (S-R) matrices 
for the control condition Fig 3.51(a) and (b).

(ii) The bidimensional S-R matrix Fig 3.51(c).

The super posed bar indicates the response to the stimulus. 
Each S-R matrix has as its entries p(S, R) the probability 
of identifying the Sth stimulus with the Rth response.

The Control Condition

When the first dimension, say F, is presented the value 
of the second dimension (here A) is constant across all 
values of unidimensional variation.

From the data derived from the control condition the 
following uncertainty measures can be obtained:

(1) U (F:F)1D, and U (A:ff)1D. Both are 
measures of the identifiability of the 
dimensions in the unidimensional (control)
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condition. The subscript "ID" indicates 
this measure is obtained from the control 
condition (see Fig 3.51(a) and (b)).

(2) U„. (F:A). This is the quantity whichFA
Garner and others refer to as a measure of 
perceptual independence. It is regarded 
here as a measure of state independence.
See Fig 3.52 a, b, c, d, e, f, g, h.

Uncertainty Measures obtainable from the Control Condition
(1) U(F:F)1D and U(A:A)1D .

Garner (1962), Attneave (1959) both show that

U(F:F) = U(F) + U(F) - U(F,F) 3.531

Both authors demonstrate very clearly how to obtain this 
measure in an actual instance. Garner (1962) refers to 
U(F:F) as a contingent uncertainty term, it is a measure 
of the amount of correlation rather than degree of 
correlation.

(2) UpA (F:A) - The quantity usually identified as perceptual 
independence

Fig 3.52 shows the two control S-R matrices of Fig 3.51 
cast in a different form (as conditional probability 
matrices) for convenience. From these two unidimensional
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matrices the submatrices c, d, e, f, g, h, i, j, and k 
are generated on the assumption of state independence.
Prom these submatrices a theoretical bidimensional S-R 
matrix can be generated (Fig 3.53(a))and also a performance 
matrix (Pig 3.53B) It was noted, for instance, that 
Corcoran obtained estimates of the unidimensional S-R 
matrices from the empirical bidimensional matrix and 
then generated a theoretical bidimensional matrix. It 
was also noted that it is, in fact, a matter of empirical 
investigation as to whether the "estimated" unidimensional 
S-R matrices were the same as the actual unidimensional 
S-R matrices.

Now, UpA (F: A) = 0 if state independence exists. That 
is, the identifiability of particular values on a stimulus 
dimension is completely unaffected by the values on the 
other dimensions. Note also, that UpA (F:A) can only 
properly be obtained from data obtained from the uni­
dimensional conditions.

3.53 Uncertainty Measures Derived from the Bidimensional 
Stimulus Response Matrix

From the bidimensional stimulus-response matrix the 
following uncertainty measures can be derived:
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3-531 (i) U(F:F)2D and U(A:A)2D

3-532 (ii) U(FA:FA)

3-533 (iii) Ua (F:F) and Up (A:A)

U(A:A)2D is a measure of the identifiability of the A 
dimension ignoring the effects of F. Similarly U(F:F)2D 
is a measure of the identifiability of the F dimension 
ignoring the effects of A. (Kaufman & Levy 1971»Garner 
1962).

Fig 3.54(a) and (b) give an example of this, the numbers 
in the bracket give the expected value of these two 
submatrices on the assumption of independent dimensions 
(state independence).

It is instructive to compare:

U ( F : F ) 2D = 1.1738 bits U ( A : A ) 2D = 0.6255 bits

U ( F : F ) 1D = 1.2986 bits U ( A : A ) 1D = 0.6956 bits

The identifiability of both the F and A dimension is 
better in the unidimensional context than in the bidimen-
sional context.
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U(FAiFA) This is a measure of the total amount of 
information transmitted in the bidimensional context, 
and in our example

U(FA:FA) = 1.9405 bits Fig 3.51(c)
I

If state independence held we would have 

U(FA:FA) = 2.03695 bits Fig 2.53(a)

It does seem that the dimensions are not independent.

3.54 Interaction on the Dimensions

Fig 3.55 illustrates dimensional interaction: the way
in which the identifiability of the values of the F (say)
dimension varies over different values of the A dimension.
Each of the submatrices have an uncertainty measure
associated with it, for example from submatrix 3.55b we
have: _

UA1(F:F) = 1.2248 bits

This gives a measure of the identifiability of the F 
dimension when the A dimension is constant at level A^.
The weighted mean of the measures U.q (F:F), Ua1(F:F), 
and Ua 2(F:F") signified by UA(F:F) reflects the effects 
of the A values on the overall identifiability of the F 
component (Kaufman & Levy 1971). If there is state 
independence there is no dimensional interaction: the 
identifiability of particular levels of one dimension is

i'ii



the same irrespective of the levels of the other dimension 
A similar analysis for ordinal data is made in experiments 
3A, 3B and 3C in chapter H.

Independence, Selective Dimensional Attention, and the 
Independent Realisation of the Dimensions

Experiments on selective dimensional attention typically 
have two conditions:

(1) A control Condition

(2) Selective Attention Condition

(1) The Control Condition: The control experiment
is always one which requires the subject to perform 
some task with a single information source. How 
well he does in this case provides the base measure 
by which to compare performance on other tasks.
The performance measures are usually either time 
or accuracy in identification performance (measured 
for instance by information transmitted). The 
experiment illustrated in Fig 3.51 has such a 
control condition. Here the single information 
sources are the dimension F and A and the baseline 
measures are provided by quantities U(F:F)1D and 
U(L:L)1d.

/ A
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(2) Selective Attention Condition: Here a set of 
stimuli is generated from an orthogonal 
combination of the two or more stimulus dimensions 
of the control condition. In the experiment just 
mentioned, the set of stimuli correspond to the 
nine stimuli presented, randomly, in the bidimen- 
sional condition. In the usual dimensional 
selective attention experiment (Garner & Felfoldy 
1970, Egeth and Pachella 1969» Imai and Garner 
1965, Morgan and Alluisi, 1967) the subject, in 
this condition, is required to respond differen­
tially to just the levels on one dimension while 
ignoring the other dimension. The identifiability 
of the dimension,or some other performance measure, 
taken from this condition is then compared with 
the base line performance for that same dimension 
in the control condition. This comparison is 
usually taken as an index of selective attention; 
of the ability of the subject to treat the two or 
more dimensions as separate and independent. If 
baseline performance and experimental condition 
performance are the same,then perfect selective 
attention is possible and the two dimensions are 
independent - i.e. there is an independent 
realisation of the dimensions.

To clarify the preceding remarks consider a card sorting 
task reported by Imai & Garner (1965)• Thi3 experiment 
corresponded logically to the requirements of a selective
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attention experiment: a set of stimuli was generated 
from orthogonal combinations of two or more stimulus 
dimensions. The subject was required to respond 
differentially to just the two levels on one dimension by 
sorting a deck of cards. The dimension by which sorting 
or responding was to be done was the relevant dimension 
and the other dimensions were irrelevant. The experimental 
question usually concerns whether the existence of irrelevant 
dimension slows performance compared to that when there is 
no irrelevant dimension (control condition).

Imai & Garner used a card sorting task with stimuli 
generated from three dichotomous dimensions. The stimuli 
were two dots on a card and these dots varied on the 
3 "dimensions"

(i) horizontal position
(ii) orientation
(iii) and distance between the dots

They found no interference due to the addition of 
irrelevant dimensions compared to the control condition, 
that is, these dimensions were independent.

3*56 Composite Responses, Inferring Identifiability of the
Component Dimensions, and Selective Dimensional Attention

In the response scheme used by Corcoran (1967) and the 
one employed in the experiment illustrated in Pig 3.51 
a composite response in answer to a stimulus was demanded.



Each of Corcoran's four stimuli were labelled A, B, C 
or D respectively whilst in the experiments reported here 
(Experiment 2A and 2E) each stimulus was labelled by a 
number. The subject was never required to identify a 
particular level of a dimension as were Imai and Garner's 
subjects. On the face of it, it appears then, that the 
experimental paradigm illustrated in Fig 3-51 does not 
allow us to measure selective attention with respect to 
the stimulus dimensions.

Fortunately, the uncertainty analysis we have employed 
gives a procedure whereby the identifiability of both 
the A and F dimensions in the bidimensional situation can 
be inferred and is given by the quantities:

(i) U(F:F)2D

(ii) U(A:A)2D

These two quantities, it will be remembered, are measures 
of the identifiability of the F and A dimension in the 
bidimensional condition. Also these two measures can 
be compared with the baseline measures U(F:F)1D, and 
U(A:A)1D obtained from the control condition. Hence if

inferred U(F:F)2D = U(F:F)1D

and inferred U(A:â )2D = U U ^ I D

then, as far as these two dimensions are concerned there 
exists an independent realisation of dimensions, that is
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perfect selective attention is possible, and as there 
is no interference due to "irrelevant" dimensions-state 
independence exists.

3.57 Analysis of Variance and Uncertainty Analysis

The contingent uncertainty term which we have used should 
be interpreted with some caution. It has for example 
been suggested as a measure of the amount of information 
about stimulus events that have been transmitted through 
the subject (Hake and Garner 1951). The general finding 
has been, in experiments on absolute judgments, that as 
the number of categories increases the number of erroneous 
judgments also increases. The information transmitted 
(contingent uncertainty) however reaches a maximum level 
which is maintained as the set of stimulus categories is 
made larger. MacRae [1970] has pointed out that this 
is partly an artifact of experimental design: the number 
of presentations per stimulus did not increase sufficiently 
rapidly in these experiments with increases in the number 
of stimuli. The result is an overestimation of U(X:X) 
by an amount that increases with U(X). MacRae modified 
some of the earlier studies by correcting them for bias. 
This corrected data exhibited a falling off in transmission 
as the number of stimulus categories increased beyond an 
optimum.

Garner [1962] suggests an analogy between contingent 
uncertainty and a main effect variance in analyses of
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c-V\.<\ffc«r
variance. Indeed Garner (1.962)» -Ghapt- 5, and Kaufman &

Levy 0-971) have expressed a term l ik e  U (F A :F A )2p in  

terms of 'main e ffe c ts '  and inte ra ctio n s  where

U[FA:M]2D = U[A:I]2D ♦ u [f :f]2D ♦

( in te ra c t io n  terms of the sort we have discussed)

See Kaufman & Levy 0.971)» equation 1.

The terms u [a :a ]2D, and u [f :F]2D correspond to the two 
main effect terms. The interaction terms referred to 
above have to do with the amount of FA response predictable 
from unique combinations of F and A stimuli.

3.60 Testing for Independence from Data derived from Master 
Matrices

Before the experimental work is discussed one final 
methodological point. Much empirical investigation to 
do with independence has been carried out on data which 
derives from experiments having the same logical structure 
as Conrad's (1964) study. Conrad obtained a confusion 
matrix for the letters B, C, P, T, V, F, M, S, X, presented 
auditorily through noise to 300 subjects. A good deal of 
the work on independence has involved constructing a sub­
matrix of confusions from the 'master matrix' (Corcoran 
et al 1968, Smith 1972). This is achieved by selecting 
a subset of stimuli and responses from the master matrix 
and normalising the resulting submatrix to yield estimates 
of the confusion between the stimulus subset. A submatrix,
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derived from a master matrix, by normalising is implicitly 
making use of the constant ratio rule (CRR) first proposed 
by Clarke 1957 • The CRR when employed on Conrad's 
data, for example, predicts the acoustic confusions between 
letters when only a fraction of the original stimulus set 
is being presented and when the confusions between the 
letters for the master matrix is known.

In the general case, Clarke's CRR is an empirical law 
which states that the predicted and observed confusability 
of any particular submatrix are identical and that both 
are independent of the other members of the stimulus set. 
This implies, for example, that if a specific submatrix 
was embedded in master matrices of different sizes then 
the derived confusabilities would be invariant with the 
size of the master matrix.

The CRR is also known as Luce's choice axiom (Luce 1959) 
and the operation of normalising boils down to the use 
of one of the several equivalent forms of Luce's axiom - 
the one known as the law of irrelevent alternatives - 
which states that preferences between objects do not 
change when others are added to or subtracted from the 
overall set of objects.

The propriety of normalising submatrices obtained from a 
master matrix in order to test for independence is suspect. 
Conceptually it has the same status as Corcoran's procedure 
for testing independence. It will be remembered, that 
independence was assumed in order to obtain estimates of
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unidimensional performance. Further, these estimates 
were then used to generate a theoretical bidimensional 
matrix, or. the assumption of independence. This theor­
etical bidimensional matrix was then employed as a base­
line by which to compare the original confusion matrix in 
order to assess whether the component dimensions were 
independent.
The use of the CRR to predict confusions in submatrices 
from the data of a master matrix and then testing these 
obtained confusions for independence is similarly vulnerable 
to logical circularity. This is because the CRR is, 
itself, a statement about independence and its use on a 
master matrix to produce a submatrix of confusions 
accordingly makes strong 'independence' assumptions on the 
very data which is itself being tested for independence.
The use of the CRR in such cases then, is quite objectionable; 
the assumption behind the CRR that a submatrix embedded in 
master matrices of different sizes would have identical 
confusabilities is an empirical matter and therefore is 
the concern for experimental verification. The employment 
of the CRR and then the subsequent investigation of 
independence on a subset of the same data serves only at 
the very least, to confound different forms of independence.

3.70 THE EXPERIMENTS

The two experiments reported here attempt a fairly fine 
grained investigation of the independence of the dimensions 
of auditory stimuli. The dimensions are examined two at 
a time and they are:



Expt 2A : Pitch and loudness (constant duration)
Expt 2B : Pitch and Duration (constant loudness)

The design is fairly similar to Corcoran's (1967) study 
but there are some differences which were introduced in 
the light of the criticisms advanced in section 3.40:

(i) In each of the two experiments there is a 
control condition in which each of the two 
component dimensions is presented to the 
subject. The data from the two resulting 
confusion matrices is used to generate the 
predicted bidimensional matrix on the 
assumption of state independence. This 
enables the predicted value of u[FA:FAjto be 
compared with the 'empirical' value from the 
subject's actual bidimensional performance.

(ii) Each of the component dimensions vary on three 
values, instead of only two as in Corcoran's 
experiment. If there are interaction effects 
theyshouLd be more obvious on dimensions which 
vary along 3 levels.

(iii) Analysis is performed on the data from 
individual subjects.

In experiment 2A the values selected for the dimensions
of pitch (F) and Loudness (A) are known a priori, to be

i t
non-independent (Riesz, 1928, Stevens 1937). It seems
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probable that there will be interaction effects for 
individual Ss - the identifiability of pitch will vary, 
very likely, over different levels of loudness. It is 
postulated that for individual subjects the deviation 
between the empirical and theoretical values of u[FA:FA] 
will be larger in most cases than the deviation between 
the two quantities for the data pooled over all the 
subjects. This is predicted because the interaction 
effects are thought to vary from subject to subject and 
the net effect of pooling is to eliminate interactions 
and so induce a spurious independence of dimensions which 
are already known not to be so.

Another and related motivation behind the experiments is 
to suggest that a reasonable defining property for 
psychological dimensions in an identification task if 
that they should exhibit state independence: in particular 
that the identifiability of a value on one dimension should 
be independent of the values of the other dimension.

3.71 Experiment 2A

Method: In this experiment the two stimulus dimensions
investigated were pitch (F) and loudness (A). There were 
three levels on each of these components with values 
F0, Fĵ and F2 and AQ, A1, A2 respectively.
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3-72

The data for each subject was collected from two conditions

(i) The two control conditions in which each of the 
component dimensions F and A were presented 
randomly in noise for identification.

(ii) The bidimensional condition. In this condition 
the orthogonal combination of the three values 
of each of the two component dimensions was 
presented to the S for identification on noise.
Again the presentation was randomised and the 
9 stimuli were:

Vo* Vl* P o A 2 *  F 1 A o * Vl- F1A2*

P 2 A o * P 2 A 1 *  F 2 A 2 ‘

Procedure

The two experimental conditions were divided into two 
parts :

Control Condition (a) Training in identification
(b) Noise presentation

Bidimensional
Condition

(a) Training in identification
(b) Noise presentation

The data for each subject was collected in the noise 
presentation situation from both conditions.
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The tones were delivered through headphones to the subject 
who was sitting in a sound proof booth. In front of him 
was a response panel with 9 'button-light' pairs. Each 
of the 9 tones was paired to a particular response button 
with a light just above it. The task was essentially to 
learn the appropriate button for the tone. As soon as 
the response button was pressed a light lit up for 500 m secs, 
above the correct response button giving instant feedback 
as to the correctness of the response. Each subject was 
trained to identify the values on each of the component 
dimensions, until they reached a criterion of 100? correct 
identification over 60 randomised stimulus presentations.

When this was achieved, the component stimuli was presented 
in noise, the level of which was adjusted for each S so 
that in the unidimensional condition they achieved a hit 
rate of around 70?. The noise level was kept constant 
for all subsequent conditions for that particular subject.
Each of the levels of the component dimensions was 
presented to the S fifty times in a randomised presentation,
i.e. there were 150 stimulus presentations.

In the bidimensior.al condition exactly the same procedure 
was followed. First the subject was trained to identify 
the bidimensional stimulus by pressing the appropriate 
response button in the no noise presentation. This 
constituted a composite response to the compound auditory 
stimulus. When the subject had learned the 9 stimuli 
(according to the same criteria as before) they were 
presented each one randomly twenty-five times at the same
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TABLE 3.71 
Frequency and loudness (EXPT 2A). 

Identifiability of
stimulus dimensions in the control and bidimensional conditions.





noise level as in the two control conditions, i.e. for 
9 stimuli there were 225 stimulus presentations.

Subjects: The subjects were 6 first year psychology 
students. The subjects volunteered for this experiment 
in return for -dr-edifc-s necessary to fulfil course require­
ments. Each S required about seven hours to complete 
the experiment and in view of the time, they were exempted 
from any further calls from the psychology department subject 
pool for the whole year. Each of the seven experimental 
sessions lasted a little over the hour.

Stimuli & Equipment

The stimulus values were

Ao = 20 db
'Loudness' A1 s 30 db

A2 = HO db

Fo s 300 Hz
'Pitch' F1 a 700 Hz

F2 = 1000 Hz

The duration of each of the tones was 750 m secs.

3-73 Results

Table 3.71 summarises the data from the six subjects who 
took part in the experiment. The first four columns
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compare the identifiability of the P and A dimensions in 
the control condition with that of the bidimensional 
condition.

For all subjects (except D.V), U [f .f J2D the inferred 
identifiability of the F dimension in the bidimensional 
condition - was found to be less than U[F.f]1d.

Also it was found that u [a :a ]2D < U [A:A]1D i'or a11 
subjects.

Hence on this criteria the dimensions do not appear to 
be independent.

The last two columns of table 3-71 compare, for each 
subject, the theoretical value of u(FA:FA]with the 
empirical value. This theoretical value is obtained 
by generating the theoretical or predicted bidimensional 
matrix from the unidimensional stimulus-response matrix 
on the assumption of state independence. This procedure 
is illustrated in Fig 3.52. The theoretical and predicted 
values would be equal if state independence held.

F ig  3.71  shows the value obtained fo r  u [F A :F A ] -  both 

em pirical and th e o re tic a l  -  for the data pooled over s ix  

subjects.



i n nxly.

The theoretical value was obtained from the two control 
conditions for the data pooled over the six subjects.
The theoretical value was obtained as before. The 
empirical value of U[FA:FA]was obtained by pooling all 
the bidimensional stimulus response matrices.

The difference between the theoretical value and the 
empirical value is O.O587 bits. This is smaller than 
any of these differences obtained for individual subjects. 
It seems then, that pooling data, even only over six 
subjects, has the effect of making the dimensions 
'independent'.

Reference to Fig 3.71 and table 3.72 provides a clue as to 
why on an individual subject basis independence breaks 
down. The graphs in Fig 3.71 illustrate how the identi- 
fiability of the different levels of pitch varies over 
different levels of loudness (and vice versa). It is 
obvious that all the subjects were able to identify the 
value of pitch better than loudness; and moreover, the 
identifiability of loudness over different pitch values 
displays more variation for most subjects than the identi­
fiability of pitch over different values of loudness.
Table 3.72 shows how the identifiability of one of the 
dimensions varies with the level of the other.

Pig 3*73  and table  3 . 7f ( a )  gives the same dimensional 

inte ra ctio n a l e ffects pooled over 3 ix  subjects. F ig  3*73

-
I





graphs the 'pooled' dimensional effects and this should 
be compared with Fig 3*71 which shows shere the inter­
actions occur on an individual basis. It is patently 
clear that pooling over six subjects acts to 'wipe' out 
interaction effects. This is seen if, for instance, the 
identifiability of F over A is considered: the largest 
variation in identifiability of F over A is for subject
N. F.B. where the largest range - the difference between 
the smallest value and the largest value of identifiability 
measured in bits - is 1.0194 bits. The smallest variation 
in identifiability is for subject L.F. and is 0.0000 bits.

The way pooling eliminates interactions is just as dramatic 
for the identifiability of A over dimension F. For the 
pooled data the greatest range in identifiability is
O. 0981 bits whereas the largest range for an individual 
subject is O.398I bits (T.Mcc).

Conclusions

The dimension pitch (F) and loudness (A) do not appear 
to be independent on any of the criteria advanced. When 
the individual subject is considered:

(a) The theoretical and empirical valuesof
u[pA:FAj should be the same if state independence 
exists (the theoretical bidimensional matrix 
is obtained from S's confusion matrices in the 
two control experiments. These confusion



matrices are used to generate the th e o re tic a l  

bidimensional matrix assuming state independence).

(b )  For independent dimensions

u [A:JT]1d = U [A :£ j 2D

and u [ p : F ] 1D = U [A :A l2D

However i f  the data is  pooled the c r i t e r i a  contained in  

paragraph (a) above, shows that the pooled data gives 

a better approximation to independence. Moreover th is  

appears to be achieved by the pooled data masking the 

in te ra c tio n  e ffe c t .

Th is  is  quite a curious r e s u lt :  a p r i o r i  i t  is  known 

that fo r  these p a r t ic u la r  values of frequency and loudness 

the dimensions are not independent (Geldard 1953> page 192) 

yet pooling the data appears to render these dimension 

'independent' .

Experiment 2B: P itch and Duration

The procedure fo r  obtaining the responses was exactly as 

in  experiment 2A except the s t im u li  were d if fe r e n t .

The Control S t im u li  were tones which varied  only in :

( i )  duration LQ, L^, L2 (3 le v e ls )

( i i )  loudness AQ A^ A2 (3 le v e ls )
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Bidiemnsional Presentation 9 tones:

AoLo* A o L 1 * ' A o L 2 *  A 1 L o * A1L1’ A1L2’ A 2 L o ’  A2L1’ 

randomised presentations.

A2L2

Subjects: 6 undergraduate subjects from Stirling 
University subject pool.

Stimuli :

Ao — 20 db

Loudness A1 = 30 db

A2 = i)0 db

Lo = 500 m secs

Duration L1 * 750 m secs

L2 = 1.00 see

Frequency was constant throughout at 1200 Hz.

Procedure: Exactly as before.

3.81 Results

Table 3.73 summarises the data from the six subjects.





KIT*
uld(F=F)
Uu (F:F)
uL2(F=f )

1.1B83 bits 
1.3678 bits 
1.3713 bits

su 6T«cr
Í.M.

L2

uf q (L:L) ■ .9111 bits
UF1(L:L) - .9550 bits
UF2(L:Ü - .6600 bits

F i g  3 .72 (Con t lnuo (J j  I d u n t i f l a b l l l t y  o f  P i t c h  I F )  o v e r  d i f f e r e n t  v a lu e s  u f  

D u ra t ion  I L )  (and v i c o  v e r s a ) .
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On average,the inferred identifiability of P in the 
bidimensional condition, U(F:F]2D, is nearer to the 
identifiability of F in the control condition, u[P:T']1D 
than was the case in experiment 2A.

The inferred identifiability of L in the bidimensional 
condition, U(L:l ]2D deviated fairly considerably from 
the identifiability of L in the control condition, 
U[L:L]iD.

It does not seem then, that the dimensions F and L are 
independent on this criterion.

When the theoretical and empirical values of U [FA:FA] 
are compared for each subject they deviate fairly 
considerably - the smallest deviations being 0.1508 bits 
above the corresponding predicted value. When the data 
is pooled the theoretical and empirical values are 1.696*1 
and 1.5663 bits respectively and the deviation from the 
theoretical value is .1300 bits. On the basis of pooled 
data the dimensions are 'independent'.

Fig 3.72 and Table 3.7** show the identifiability of F 
over L and vice versa.

The identifiability of F is better than L for all subjects.



Secondly if the data for the six subject is pooled and 
the interactions examined (Fig 3.73b and table 3.7  ̂
bottom row), it is again clear that pooling the data 
acts to eliminate interactions.

3.82 Conclusions

The interaction effects - the variation in identifiability 
of pitch for different values of duration and vice versa - 
are not nearly so marked as with the stimuli tested in 
experiment 2A.

3.90 Discussion

Both experiments were attempts at a 'fine grained' 
analysis of independence in identification tasks 
for the case when the stimulus attributes are presented 
in an orthogonal manner. The principle criticism 
of the operational definition of perceptual independence 
which corresponds to the procedure outlined in 
Fig 3.45 “ is that it is devoid of psychological 
content: if independence does fail it offers no 
reason why it does so.

The suggestion that two dimensions are independent only 
when they do not interact in their effects, seems a 
reasonable one. For if the identifiability of one 
of the dimensions varied with different values of the 
other then the notion of a control experiment would 
be a curious one.



Secondly if the data for the six subject is pooled and 
the interactions examined (Fig 3.73b and table 3-74 
bottom row), it is again clear that pooling the data 
acts to eliminate interactions.

3.82 Conclusions

The interaction effects - the variation in identifiability 
of pitch for different values of duration and vice versa - 
are not nearly so marked as with the stimuli tested in 
experiment 2A.

3.90 Discussion

Both experiments were attempts at a 'fine grained' 
analysis of independence in identification tasks 
for the case when the stimulus attributes are presented 
in an orthogonal manner. The principle criticism 
of the operational definition of perceptual independence 
which corresponds to the procedure outlined in 
Fig 3*^5 - is that it is devoid of psychological 
content: if independence does fail it offers no 
reason why it does so.

The suggestion that two dimensions are independent only 
when they do not interact in their effects, seems a 
reasonable one. For if the identifiability of one 
of the dimensions varied with different values of the 
other then the notion of a control experiment would 
be a curious one.





12b.

A control experiment in which for example, we 
determine the identifiability of the levels of 
one dimension, must necessarily involve keeping all the 
other (irrelevant) dimensions of the stimulus constant. 
If the performance in the control condition depended 
on the levels of the irrelevant background dimensions 
then this condition ceases to be a control, in any 
accepted sense of that word. It seems reasonable then, 
when embarking on experiments of selective dimensional 
attention in which the identifiability of the levels 
of a stimulus are compared with a control condition 
performance, to check whether there are interaction 
effects. If there are, we cannot logically talk of 
a control condition, nor can we compare performance 
in this spurious control condition with any other.
In Chapter 5, an experiment is reported which tends 
to reinforce this suggestion. Experiments 2A and 2B, 
in essence, outlined a logically correct procedure 
to determine whether in fact two dimensions are 
independent for the case where the stimuli are presented 
orthogonally. We summarise this below!

(i) Obtain, for each dimension, a unidimensional
performance matrix (see for example Fig 3-51 a and b); 
this is the 'control' experiment, where all other 
irrelevant dimensions are kept constant.

(ii) Obtain the appropriate empirical bidimensional 
matrix.

(iii) From the two empirical unidimensional performance 
matrices generate a theoretical bidimensional 
matrix - on the assumption of state independence.
This of course is tantamount to saying that the



dimensions do not interact in their effects: 
that is, the identifiability of a particular 
level of one dimension does not vary for 
different values of the other. This procedure 
is illustrated in Fig 3. 45 and Fig 3-52.

(iv) Compare this theoretical bidimensional matrix 
with the empirical one, to determine if state 
independence exists. If not, look at the 
dimensional interaction effects in the manner 
suggested in Fig 3.55* Such an examination 
might establish that not only are the dimensions 
not independent but might also diagnose why not. 
The submatrices in Fig 3.55 show how the identi­
fiability of particular values of one dimension 
vary over different values of the other.

(v) One other indirect measure of independence, which 
is psychologically meaningful, had to do with 
selective dimensional attention discussed in 
Section 3-55. Selective dimensional attention has 
to do with the ability or inability of treating 
two physical attributes as separate or independent 
sources. It was suggested that if, for example:

inferred U(A:A)2D = U(A:A)lD

then the A dimension is independent of the other 
dimension (say F).
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Introduction

In multidimensional scaling (MDS) similarity is 
assumed to relate to some form of distance defined 
on psychological dimensions. Similarity is taken as 
a primitive relation on pairs of stimuli and this 
relation is assumed to admit of degrees, that is, it 
is orderable. Thus similarity is defined at least 
on an ordinal scale.

MDS methods (Shepard,1962, Kruskal, 1964 and Torgerson, 
1953) are designed to find the dimensions given the 
similarities. The typical input consists of an NXN 
matrix whose cell values indicate the similarity 
or dissimilarity between pairs of the N stimuli. These 
similarities or dissimilarities are assumed to measure 
the psychological distance between the stimuli.

The central idea underlying MDS models for perception 
is that stimuli are coded internally in terms of 
continuously varying parameters or dimensions and 
the task of the MDS techniques is to discover:

(i) The number of dimensions relevant to the perception 
of the stimuli under consideration.

(ii) The stimulus co-ordinates on each of these dimension

The problem of interpretation consists in identifying 
these physical correlates of the psychological dimensions

INDEPENDENCE IN SIMILARITY JUDGEMENTS AND THEIR
GEOMETRIC REPRESENTATION



Beals, Krantz, and Tversky(1968) and Tversky and 
Krantz (1970) have specified the qualitative (non- 
num.erical) properties of ordinal similarity under 
which certain metric and dimensional representations 
of stimuli can be made. Both these theoretical 
papers discussed the metric and dimensional 
representation problems separately. They showed 
that each of the ordinal conditions sufficient for 
either a metric or dimensional representation 
can be satisfied without the other.

The strategy the authors adopted in both these papers 
was :
(a) First to describe the ordinal conditions for a 

very general type of geometric model which embodied 
the notion of distance.

(b) Independently of the above, to describe two 
defining properties of psychological dimensions - 
interdimensional additivity and intradimensional 
subtractivity together with the associated ordinal 
constraints.

(c) Given the constraints imposed by (a) and (b), 
to look for certain distance functions 
which would simultaneously satisfy both these 
conditions i.e. the metric and dimensional ones. 
They claim (Beals et al 1968, Tversky and Krantz 
1970) that only one class of distance functions 
satisfy the constraints imposed by both (a) and (b) 
and this is one known as the Minkowski r-metric
of which the Euclidean, City Block and Dominance 
metric are special cases.



4.10 METRIC REPRESENTATION OP SIMILARITY DATA

A metric is a scale that assigns to every pair of points 
x and y a number d(x,y) called their distance.

Consider a set X,and a function assigning a unique 
number d(x,y) to every pair (x,y) e X x X (the 
Cartesian product). This function is called a 
distance function and the number it assigns, the 
distance between x and y, if and only if, d(x,y) 
satisfies the following conditions:

it. 101 d(x,y)^- 0 The distance between two points 
is never negative.

4.102 d(x,y) = 0  If and only if x=y. The 
distance between any two identical points 
is zero.

4.103 d(x,y) = d(y,x) Distance is symmetric: the 
distance between x and y is the same as between 
y and x.

4.104 d(x,y) + d(y,*)£. d(x,z). The sum of the 
distances between any point (x and z) and 
a third point (y) is always greater than the 
distance between these points.
This condition is known as the triangle inequality.

These fc t  conditions are cal]ed the metric axioms. 
Since the similarities are assumed to be measured only
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ordinally, it seems quite reasonable to assume 
that among the class of permissable monotonic functions, 
there is at least one that will transform them into 
distances (i.e. act as distance functions).

One class of distance function that not only satisfies 
all the metric axioms but the other constraints noted 
in section 4.00 is known as the Minkowski r-metric. 
This metric is a one parameter class of distance 
functions defined as follows.

As the parameter, r, varies three special cases are 
encountered:

(i) When r=l. This is the city block
metric, so called because of the analogy 
of effective distance between points of a 
city laid out in a rectangular lattice of 
streets and blocks.

The city block metric takes the simple 
form

4.12 The Minkowski r-metric

4.121 r 1/

N

(ii) When r=2. This corresponds to the ufm.i1 
Euclidean metric:
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N 2d2(x,y)

(iii)When r = oo This gives rise to the Dominance X 
metric in which the distance is given by the 
largest co-ordinate difference.

Coombs, Dawes, and Tversky (1970) rationalise these 
three different metrics in terms of assumed psychological 
processes. For instance they follow many other authors 
(Jones 1962, Butter 1963, Cross 1965) by suggesting 
that the Dominance metric can be justified psychologic­
ally by invoking attentional factors; if the subject 
can attend to only one dimension at any one time, and 
if further he attends to that dimension on which the 
two stimuli are most different the resulting metric 
is the Minkowski dominance metric so called because 
the dimension with the largest difference dominates 
all others. Cross (1965 page 81) argues that the 
dominance model was implicitly employed by Erikson 
and Hake (1955) to explain their data. This is a con­
clusion very difficult to sustain in view of the analysis 
in section 3.20. Moreover, Erikson and Hake's data 
arose from an identification experiment, whereas the 
Minkowski r-metric model and hence the Dominance 
metric is derived from considerations of similarity 
data.

4.13 Equidistance Contours

One property of interest about any particular metric 
is the set of equidistance contours it induces 
(Beckenback and Bellman, 1961) Equidistance contours
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This straight line property does not hold for all 
metrics, Blumenthal (1953)> in fact there are some, 
in which there may be no point 'between' two artibrary 
points i and k.

" M M ? ? ;■* i My t h

If the two different values of d are d^ and d2 the 
contour for the first will be

-r̂  x (the contour of the second curve.)ap See Beckenback and Bellman (1961).

4.14 Segmental Additivity

This 'constant ratio' rule for the contours implies 
that if three points i, j, and k (say) fall in a 
straight line (with j between i and k) then:

are the loci of equal distances from a particular 
point. Each point in the space has its own set of 
contours (see Pig 4.10). The Minkowski family of 
metrics also have the property that members of the 
family of Equidistance contours for a particular 
point are mutually similar. This means that contours 
for two different values of d,(distance) have the same 
shape although they have different sizes. If the 
origin is translated to the point whose contours we 
are considering,the curves for two different values of 
d are related by a multiplicative constant.
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4.20

The point j is defined as being between i and k if 
and only if:

dik dij + d.. Jk

Beals et al use the term metric with additive segments 
to refer to a metric where there is always a point 
between every pair of points and they argue that 
only metric spaces with this segmental additivity 
property should be considered as candidates for 
perceptual spaces.

Beals et al continue the discussion of the metric 
representation of similarity data by describing the 
ordinal properties required to justify a very general 
type of geometric model. They showed that if six 
conditions hold their(Pl to P6) then it is possible 
to represent similarity measures by distance. In 
particular they demonstrated that one of these conditions - 
their P6 - is a necessary condition for similarity to 
be represented as a distance. This ordinal condition 
(P6), boils down to a kind of empirical constant ratio 
rule mentioned in section 4.13. It was noted then, 
that this property implies segmental additivity of the 
space (Blumenthal, 1953).

THE DIMENSIONAL REPRESENTATION OF SIMILARITY DATA

Beals, Krantz and Tversky (1968) and Tversky and Krantz
(1970) have isolated two basic properties of subjective

r i f e

dimensions :



(i) interdimensional additivity
(ii) intradimensional subtractivity

To formulate these properties consider x, y, where

denote two stimuli which vary along N dimensions, and 
let 6(x,y) be an ordinal scale measure of dissimilarity 
between x and y.

It is assumed that for any x^y

Using this index, interdimensional additivity asserts 
that the contribution of different dimensions to the 
overall dissimilarity between x and y are combined 
so that 6(x,y) is monotonically related to the sum 
of terms i^Cx^y^) where x^, y^ are the nominal scale 
values of x and y on the ith dimension and 5^ is a 
symmetric real valued function taking the value 0, 
when x^ = y^ and positive values otherwise. That is:

6(x,y) = 6(y,x) > 6(x,x) = 6(y,y)

N
6(x,y) = F l 2.(x.y.)

i=l 1 1 1

(Where F is a strictly increasing function of one 
variable).



Intradimensional subtractivity says that the 
contribution of any one dimension to dissimilarity 
depends on the absolute difference of the rescaled 
(interval scale) measures on that dimension. That is:

¿1.202 6 ( x , y )  = F (xn ) ~ (y-i  )|* • *|fj| ( x ) n -  f M( y )'N N' 'N

F is function of N variables, strictly increasing in 
each variable and the f's are psychophysical functions
that rescale the nominal variables x^, x2....x^;
interval scale variables ^  (x.̂ ), f2 (x )...fN (x)N

to

The above equations describe two 'natural algebraic 
properties of subjective dimensions;

■Vi

and
(i) additivity across dimensions

(ii) subtractivity along each dimension

Both properties are assumed in practically all MDS 
models of similarity judgement. On this basis, therefore, 
it seems natural to regard them as defining properties 
for subjective dimensions. This is essentially the 
position of Tversky and Krantz (1970).

4.21 Joint Factor Independence and Interdimensional 
Additivity

Equation 4.201 leads to joint factor independence 
laws: if the dissimilarity produced by some combination

|4
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of difference on N-l dimensions exceeds that produced 
by some other combination on those same dimensions 
(the difference on the Nth dimension remaining 
constant) then that same ordering holds as the 
constant difference on the Nth dimension is varied.

Hence, interdimensional additivity is simply a 
restatement of joint factor independence in a 
disguised form and Experiment IB was not only a test 
for joint factor independence, but also for inter­
dimensional additivity.

h.22 The Additive Difference Model of Similarity Judgements

According to this model (section 2.60 Chapter 2) 
dissimilarity judgements are described in terms of 
two sets of scales that apply to each one of the 
dimensions!

(a) The first set of scales f^,....f^, applies 
directly to the physical input and describes 
its psychological counterpart along each one 
of the dimensions. These were called psycho­
physical functions

(b) The second set of scales ¡5̂ ....... 5^,
applies to the perceived component-wise 
differences along the dimensions, and 
describe their contribution to the overall 
dissimilarity between the stimuli. These 
were called similarity functions in Experiment 1A.

uiil



In the additive-difference model (a direct 
test was provided in Experiment 1A for two 
dimensions) dissimilarity judgements are 
deemed to be decomposed into two independent 
processes:

(i) A 'perceptual1 process satisfying 
subtractivity.

(ii) An evaluative process satisfying 
interdimensional additivity.

Ordinal Conditions for Dimensional Representation of 
Similarity Data.

Beals et al (1968) and Tversky and Krantz (1970) in 
the light of the definitions implied by Equations 
4.201 and 4.202,broadened their discussion of the 
dimensional representation of similarity data by 
describing ordinal properties (their Al to A6) sufficient 
to characterise similarity measures by a dimensional 
representation. They argued that these six 
conditions yield additive difference measurement of 
dissimilarity between multidimensional objects. One 
of the most important of these - their A3 - implies 
a kind of context independence property of the 
similarities and leads directly to interdimensional 
additivity. This property can be stated verbally as 
follows:

If 2 stimuli x and x'have equal values on 
dimension i and two other stimuli y and y'also 
have equal values (not necessarily the same as



x and x') on that dimension then the order of 
6(x,y) and 6(x' y') is dependent only on the value 
of the stimuli on the N-l dimensions (in particular 
this order is not dependent on the pair of values 
on dimension i)

This says is a rather general way that dimensions do 
not interact in their effect.

Psychological Arguments for Interdimensional 
Additivity and Intradimensional Subtractivity

Interdimensional Additivity was adopted by Tversky 
and Krantz (1970) as one of the defining properties 
of a subjective dimension. The kind of non-interaction 
or independence of the dimensions which it implies, 
does seem a reasonable condition for a psychological 
dimension, and certainly this was the view pursued 
in Chapter 3 when discussing independence in identifi­
cation experiments. But, it would probably be very 
difficult to defend it as being a necessary condition 
for a psychological dimension. However, in this treatment 
this 'non-interaction property' is used as a basis for a 
definition of independent perceptual dimensions 
(Chapter 3).

Beals's et al's argument for intradimensional 
subtractivity as a defining property of a psychological 
dimension does on the face of it seem to be more 
direct. In the one-dimensional case intradimensional 
subtractivity is the natural one. Even if the stimul
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are multidimensional, if all but one of the dimensions 
are held constant we are back to the one-dimensional 
case (implying the need for subtractivity). Also, 
this one dimensional subtractive 'measure' should, 
it would seem be independent of the constant values 
on the other dimensions and in fact must be,if there 
are no interaction effects in the dimensions. If this 
is so, then intradimensional subtractivity must hold 
at least for cases in which only one dimension is 
varied. While this does not imply that subtractivity must 
hold overall, it can be shown,however, that it does 
so if interdimensional additivity is also assumed.

4.3O Distance Functions that Simultaneously satisfy both 
the Metric and Dimensional Qualitative Conditions.

In the additive different model for similarity judgements, / 
the stimuli are represented in a dimensionally organised 
space (this fact was exploited in Experiments 1A and IB 
and Tversky and Krantz demonstrate this) but the 
dissimilarity ordering need not coincide with any 
metric. Tversky and Krantz (1970) showed that the 
assumption that an additive difference model is 
compatible with a metric impose strong conditions on 
the measurement scales. Beals et al (1968) showed 
that a metric that has both the interdimensional 
additivity and intradimensior.al subtractivity properties 
must be of the form:
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with S a super additive function

that is, S (u+v) = 2 (u) + S (v) for all u, and v

The Minkowski r-metric is of this form with:

4.302 a (u) = ur

Tversky and Krantz (1970) furthermore, established 
that of the distance functions of this form, the only 
one satisfying segmental additivity are the 
Minkowski r-metrics with r>l.

This is a surprising result, for if the premises 
of Beals et al (1968) and Tversky and Krantz (1970) 
are accepted; that is, that all three of the properties 
(interdimensional additivity, intradimensional 
subtractivity, and segmental additivity) are necessary 
for a psychological metric, it means that the only 
permissable metrics are of the Minkowski r-type.

4.31 Decomposability

Tversky and Krantz (1970) analysed a more general 
model in MDS called decomposability (see section 2.3O) 
which requires that there be no interaction between 
the dimensions of the subjective space (the dimensions 
contribute independently to the overall distance.)

The most general equation of psychological distance 
embodies only decomposability.





The power metric is a special case of the additive 
difference model.

If both decomposability and subtractivity are assumed 
we obtain the following equation for these properties:

4.315 d(x,y) = F S1 < lfl<xl> “ f2(X2)|)..aN(|fN (xN)-fN(YN)|)

Experiment 1A (see section 2.702 in particular) constitutes 
a test of decomposability and subtractivity. The three 
experiments (3A, 3B and 3C) reported here are also 
directly concerned with decomposability and subtract­
ivity.

4.40 Introduction to the Experiments Testing Intradimensional 
Subtractivity and Interdimensional Additivity.

Experiments 3A, 3B and 30 are all concerned with 
testing intradimensional subtractivity and decompos­
ability for the dimensions, pitch, duration, and loudness 
of auditory stimuli. Each experiment considers two 
dimensions at a time:

(i) Pitch and Duration
(ii) Pitch and Loudness

(iii) Loudness and Duration

Experiment 3A 
Experiment 3B 
Experiment 3C

i



Experiment 3D, tests the interdimensional additivity 
condition for these three stimulus dimension taken 
together.

Tversky and Krantz (1969) have reported a study which 
tested interdimensional additivity for stimuli which 
consisted of schematic faces varying on the three 
dimensions:

(1) Shape of face (long versus wide)
(2) Eyes (empty vs filled)
(3) Mouth (straight vs curved)

The data showed that the overall dissimilarity between 
faces can be decomposed into three additive components - 
one for each attribute, and generally their data found 
strong support for interdimensional additivity.

Wender (1971) tested intradimensional subtractivity 
for rectangles varying in area and shape. The 
findings show that subtractivity was violated by most 
subjects. In particular he reported that the same 
area interval produces more dissimilarity as the 
shape level becomes more extreme - this being the 
case whether the dissimilarity was measured using 
rating scales or paired comparisons methods. This 
suggests that decomposability was being violated.
Krantz in an as yet unpublished paper, showed in a 
study of colour similaiicy, using lightness and 
chromaticity as dimensions that decomposability 
(and hence both additivity and subtractivity) is
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violated.

However, as yet, no published study reports a test of 
both interdimensional additivity and intradimensional 
subtractivity for the same stimulus dimensions. It 
will be recalled that the additive difference model 
of similarity judgements (section 2.63 and 4.22) 
postulates a two stage process.

(i) A 'perceptual' process satisfying 
intradimensional subtractivity.

(ii) An evaluative process satisfying inter­
dimensional additivity.

This two stage property should be useful in diagnosing 
the locus of a breakdown,if one should occur, of 
either subtractivity or additivity, because subtractivity 
can be tested for pairs of stimulus dimensions. If 
intradimensional subtractivity and decomposability is 
violated for any pair of dimensions, then of course 
additivity is also violated. Thus, subtractivity for 
every pair of dimensions is a necessary (but not 
sufficient) condition for the additive difference 
model.

The first three experiments then, are concerned with 
both decomposability and subtractivity of the stimulus 
dimensions taken two at a time.



EXPERIMENT 3A Fig 4.41

Physical Values of Stimulus Dimensions:

Fo ■ 300 Hz Lo " 0.5 secs

F1 * 700 Hz 4  “ 1.0 sec

F2 ‘ 1000 Hz L2 1.5 sec

-
400 Hz

(Lo 4 )
= 0.5 sec

( F 1F 2 )  "
300 Hz (LlL2) = 0.5 sec

( F o F 2 )  ■
700 Hz

( L o L 2 )
-  1 . 0 sec

(F F )denotes physical difference between
F° and F, irrespective of value of L o 1
[L. L ) denotes physical difference between
I °and i, irrespective of value of F o 1

A dimension

INTRADIf.cNSIONAL SUBTRACTIVITY: Let 1, 2, 5, and 6 be stimuli such that 1 
and 2 have the same value on the F dimension, and 5 and 6 also have equal 
values on the F dimension (but different from 1 and 2). Also, suppose 2 
and 5 have the same value on the A dimension and 6 and 1 also have equal 
values on the A dimension (but different from 2 and 5) then intradimensional 
subtractivity asserts: 6 (FgÂ .F̂ Â ) = ® ^l^o' Fl4^

Decomposability. Since (F^^) > > F̂1F2̂  *-̂en:
6 (F F_) > 6(F F,) >6 (F F ) over a11 thB thrsB o 2 ol 1 ^levels of duration.

For example:

Æ
and



EXPERIMENT 3A Fig 4.41

Physical Values of Stimulus Dimensions:

0 300 Hz Lo

unO secs

700 Hz 4  * 1.0 sec

2 1000 Hz L2 1.5 sec

(F F)denotes physical difference between
F° and F. irrespective of value of L o 1
(L L ) denotes physical difference between
L °and L-, irrespective of value of F o 1

lFoFlJ ■ 400 Hz
(LoLlJ = 0.5 sec

(piF2) = 300 Hz (L1L2} = 0.5 sec

" W  “ 700 Hz tL0L2J = 1.0 sec

A dimension

A

2L1 ]

v

.
F o L 2

•

V  M

Fi S  ’' F 2 L 2

/ \

l 1- » 1

1

FoLl > F 2 L .

L
F L 

0  0 V o F 2 L o

4 ------------ Í F / i 1----------------- > ÍF1F2í ------- >  F

.1

INTRADir.ENSIONAL SUBTRACTIVITY: Let 1, 2, 5, and 6 be stimuli such that 1 
and 2 have the same value on the F dimension, and 5 and 6 also have equal 
values on the F dimension (but different from 1 and 2). Also, suppose 2 
and 5 have the same value on the A dimension and 6 and 1 also have equal 
values on the A dimension (but different from 2 and 5)̂ then intradimensional 
subtractivity asserts: 6 (F A ,F A.) o o o 1 6 (F.A , F.A ) 10 11
Oecomposability. Since (FqF2) > ^ 0F1̂  ÿ F̂1F2̂  then!

levels of duration. 
For example:

6 (FoF2) > 6(F0F1î > 6 (FlF2) over all the three

5 tFoLo*F2Lo) > 6 (FoLo 'Fl Lo) > 5 (F1Lo ' F2Lo )

and

Î t t ü Ë



F i g u r e  4 .4 1  c o n t i n u e d

5 (FoL]*F2Ll3 > 5iFoLl'FlLir > 6 (F1L1’F2L1)
and 6 (fol2,f2l2) > «<FoL2*F1L2J > 6 tFlL2'F2L21 ie no interaction between
the dimensions.

/
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Experiment 3A (Frequency and Duration)

Introduction

In this experiment 9 tones which varied in pitch
(3 levels F , F1, ?2) and duration (3 levels
L , L , L_) were tested for interdimensional sub- 
0 1 d
tractivity and decomposability. The values on the 
pitch (F) and duration (L) dimensions are shown in 
Fig 4.41 along with some of the notation used in 
the three experiments (3A, 3B, and 3C).

Intradimensional subtractivity and decomposability is 
also depicted Fig 4.41, but the general case follows from 
application of Equation 4.315 : If x,y, x', y* are 
stimuli such that:

x'i = y.

for some i ,
and with 

»(iii) X .  = X .J J
(iv) yj = xi

for all j | i then 6(x,y) = 6(x',y')

Intradimensional subtractivity leads to the following 
equalities in ordering between pairs of tones with 
respect to dissimilarity (see Fig 4.41 and table 4.40).

j  ■

I * t i’r
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(a) 6<FoLo’ Pl V si(FoLl> F1L1)=6(FoL2’ FlV
(b) «(pi V W i{(Fi V F2L1)=6(P1L2> f2l2)(c) 6(FoLo’ W <(poli- F2L1)=6(FoL2’ F2L2)

further

(d) 6<FoLo’ FoLl)=6<FlLo’ P1L1)=6(P2Lo> HC\J(e) fi(FoLl* FoL2)=6(F1L1> F1L2)=6(F2L1’ P2V(f) 6 (P L , 0 o’ FoL2)=6(piLo, F1L2)=6(F2Lo« W

Or.e test for subtractivity then, is that the
dissimilarity scores for the single pair of tones 
within the triples(a),(b),(c)> etc., should be equal.

4.4 3 Ordinal Interactions in Similarity Data (Decomposability).

This is not to be confused with ordinal interaction 
mentioned in Section 2.40, but there are of course 
very close conceptual similarities.

There is another consequence of subtractivity and 
decomposability which needs to be exploited - and 
indeed was tested in a restricted way in experiment 
1A - and it concerns the ordering of 'differences'.

i
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Prom Fig 4.41 is can be seen that:

(f’o V  >(PoFl) >(FiF2)

In words this means that the physical difference in 
frequency between Fq and F^ is greater than that 
between Fq and F^ which in turn is greater than that 
between Fx and F2 (Fig 4.41 explains this). This 
implies providing there are no interactions (i.e. 
we have decomposability)

4.431 6<Fo V  F2Lo)>6<FoLo’ FlLo)>6(FlLo’ W

6(FoLl* F2L1)>6(FoL1* F1L1)>6(F1L1’ W  

6(FqL2, F2L2)>6(FqL2, F1L2)>6(F1L2, F ^ )

or 6(FoF2)>5(FoF1)>6(F1F2) for all values of L.

Where the notation 5(FqF2) etc denotes the 
dissimilarity between two tones with a common 
duration but with frequencies Fq ana F2. This ordering, 
then, must be maintained over all values of the L dimension 
for decomposability.

If the ordering differed (or is not consistent) over- 
different values of L we would get a 'cross over' effect 
as sometimes occurs in analysis of variance, see Section 
2.43 Chapter 2. Moreover, if there are interactions 
of this nature it woul ’ be impossible to obtain an 
additive representation.



In the experiments (3A, 3B, and 3C) both these tests 
are made on the data.

Method

Since exactly the same procedure is followed in the 
first three experiments the description of the method 
will suffice for all the studies.

Dissimilarity judgements were obtained by presenting 
a single pair of tones to a subject who rated their 
dissimilarity by marking a point on a scale from 
1 (minimal dissimilarity) to 20 (very dissimilar).
Since there were 9 different tones the number of pairs 
of stimuli was 36. Each of these 36 pairs was presented 
four times in one experimental session. So as to 
minimise order effects the tones of a single pair 
was reversed in order of presentation twice, but of



the 36 pairs of stimuli presented to the subject only 
18 pairs were necessary for the analysisjthese are 
indicated in Table 4.40.

Each subject took part in 5 experimental sessions and 
the analysis was carried out on the data from the final 
two sessions. This means, for instance, that the 
dissimilarity scores for the 18 pairs of stimuli in 
Table 4.40 are the means of 8 dissimilarity judgements. 
Ss were tested two at a time. Each of the five sessions 
lasted just over the hour.

SUBJECTS 10 undergraduate students, all of 
whom were paid for their services.

4.45 Apparatus and Stimuli

The stimuli consisted of 9 pure tones varying in 
duration and pitch at a level of loudness of 98.5 db.
The values of the parameters are indicated in Fig 4.41.

The Ss were run two at a time and were sat in a 
sound proof room. The tones which were prerecorded were 
delivered via a tape recorder over a loudspeaker. First 
one tone was presented, followed 2 seconds later by 
another. Ss simply rated the dissimilarity between 
the tones.

4.46 Direct Test of Subtractivity

/;

■I i



TABLE 4.40: EXPERIMENT 3A (RESULTS) Pitch and Duration
Mean dissimilarity Ratings between Pairs of Tones

(F F,) = 4Q0HZ SI 32 S3 S4 S5 S6 S7 S8 S9 S10

(F L ,F,L ) 11.0 8.8 5.2 10.9 12.3 12.8 16.3 13.0 12.0 18.40 0 1 0
(FoLl*FlLi) 11.8 7.6 5.6 12.2 12.1 14.2 12.8 12.8 13.7 16.0

iFoL2'FlL2J 13.0 8.6 5.91 12.7 12.5 15.0 14.3 15.1 13.5 18.3

( F x F 2 ) = 300Hz

(F,L ,F„L ) 8.7 8.4 5.8 12.0 9.8 8.4 13.0 11.3 12.5 7.31 o 2 o
r̂lLl’F2LÎ 7.9 8.0 7.0 12.2 10.3 9.3 12.5 9.9 13.5 6.3

tFlL2*F2L2J 8.9 7.7 6.5 12.6 9.9 11.9 15.8 9.6 12.5 7.9

(FF) = 700Hz o 2
(F L F L Ï 12.8 14.4 7.7 18.0 15.9 14.5 17.0 15.0 14.3 18.1oo 2 o
(F0L1 F2L1 5 13.6 13.4 7.5 18.3 14.6 15.0 16.6 13.4 14.0 17.5
(F L, F L ) 12.8 14.5 8.0 18.3 16.9 14.4 17.5 15.9 14.8 18.8o 2 2 2

(L l. ) = 0.5 sec o 1

(FoLo' FoLl> 1.4 3.4 1.8 1.9 1.6 3.3 3.0 2.8 1.3 2.5
(FlLo*FILl) 1.8 5.9 1.5 2. 0 1.9 4.1 3.6 2.8 3.8 2.3
« V - o - W

2.4 3.0 1.6 2.0 1.8 3.4 3.3 2.7 4.5 2.0
1------

(LjL̂ ) * 0.5 sec
r

lFoLl*FoL21 1.3 2.7 1.8 1.7 2.5 3.1 2.9 2.0 1.8 2.1
tFlLI*FlL2I 1.9 1.6 1.8 1.8 1.9 3.1 3.4 2.0 3.5 1.6
(r2Ll,F2L2î

r----------------
2.0 1.8 1.8 1.4 2.1 2.5 2.8 1.9 4.0 1.6

(LqL2) = 1.0 sec

lFoLo*FoL2J 1.6 4.3 2.6 2.9 3.C 3.9 4.0 2.6 1.3 2.9
trlLo,FlL2) 1.8 4.2 2.9 2.5 2.9 4.6 4.6 3.1 4.0 4.1
(F2Lo'F2L2) 2.2 3.6 2.5 2.8 2.6 3.1 4.1 2.9 4.0 3.6

L

1M I t M U



EXPERIMENT 3A ORDERING OF DISSIMILARITIES (Ordinal Interaction)

L constant (0.5 pecs) 0 F cor o

—
stant (300 Hz)

L constant 0 6 (FqF2) 6 (F F,) o 1 6 (FaF2) 6(L L_) o 2 6 (LgLj) 6 (LlL.2)

Sl
(12.6)

1
(11.0)

2
(8.7)

3
(1.6)

1
(1.4)

2
(1.3)

3 1

62

(14.4)
1

(8.8)
3

(8.4)
2

(4.3)
1

(3.4)
2

(2.7)
3

S3
(7.7)

1
(5.2)

3
(5.8)

2
(2.6)

1
(1.8)

2.5
(1.6)

r.5 | 
(

S4
(1B.0)

1
(10.9)

3
(12.0)

2
(2.9)

1
(1.9)

2
(1.7) 1 

3 1

S5
(15.9)

1
(12.3)

2
(9.8)

3
(3.0

1
(1.6)

3
(2.5)

2

S6
(14.5)

1
(12.0)

3
(8.4)

2
(3.9)

1
(3.3)

2
(3.1) 1 

3 1

S7
(17.0)

1
(16.3)

3
(13.0)

2
(4.0)

1
(3.0)

2 3 i

SB
(15.0)

1
(13.0)

3
(11.3)

2
(2.6)

2
(2.8)

1
(2.0)

3

S9
(14.3)

1
(12.0)

2
(12.5)

3
(1.3)

2.5
(1.3) 

2.5 •
• (1.8) 
1

S10
(18.1)

1
(18.4)

3
(7.3)

2
(2.9)

1
(2.5)

2
(2.1)

3

Table 4.41 RESULTS. Ranking of Dissimilarity Scores for pairs of tones.
Thf bracketed numbers refer to the dissimilarity between pairs of tones and 
the unbracketed refer to the ranking.
The above rankings of the dissimilarity scores was obtained from Table 4.40.
The notation (F F_) refers to the dissimilarity between the tones F L > and
f2lo.
Thus for SI (above) the two tones which are the most dissimilar are ranked 1, 
the next most dissimilar, 2, and so jn. The ordering, for SI with respect to 
dissimilarity is «(F^.F^) > 6 (F^.F^) > 6 CF^.F^) or: 6 (F^) > ¿(F^)
> 6 This notation is used in all the tables.

/



EXPERIMENT 3A ORDERING OF DISSIMILARITIES

» ’1 L̂  constant (1.0 secs) F̂  constant (700 secs)

! Lj constant w (7 V w (Lo V (Li V
h—
1 S1 1 2 3 2.5 2.5 1 -J
S2 1 3 2 2 1 3

S3 1 3 2 1 3 2

S4 1 2 3 1 2 3

S5 1 2 3 1 2.5 2.5

S6 1 2 3 1 2 O

S7 1 2 3 1 2 3

SB 1 2 3 1 2 3

S9 1 2 3 1 2 • 3

S10 1 2 3 1 3

TABLE 4.42 RESULTS. Ranking of Dissimilarity scores for pairs of tones.
The above rankings of the dissimilarity scores was obtained from table 4.40.
The notation (F̂ F ) refers to the dissimilarity between the tones F̂ L̂ , and F^^.
The hypothesis was tlr't the dissimilarity rankings between (F^F^, (F̂ F̂ ) anĉ ^1^2^ 
with L̂  held constant would be:
6(FdF2) >6(FqF1) > 6CF1F j because (FQF ) > (F^) > (F^) (Fig 4.41).
Also (L2LQj > (L1LQj ■ (L^^) Hence the predicted ordering of these
differences (assuming decomposability) is 6 (L2Lq)>6(L̂ Lq) and 6 (L2L^)>6(L2L̂ ) and

^L]Lq)= <5>L2Li). These predictions were upheld.



EXPERIMENT 3A QkDERING ur DISSIMILAR! i itti

( L̂  constant (1.0 secs) • F? constant (720 sees)

L̂  constant
w w W (L0L2) W <LiS>

L-----—------
S1 1 2 3 2 1 3

\~

S2 1 2 3 1 2 3

S3 1 3 2 1 3 2
1—
S4 1 2 3 1 2 3

S5 1 2 3 1 3 2

S6 1 2 3 2 1 3

S7 1 3 2 1 2 3

SB 1 2 3 X 2 3

S9 1 2 3 2 1 3

S10 1 2 3 1 2
I

3

TABLE 4.43 RESULTS. Ranking of Dissimilarity scores for pairs of tones.

These rankings were obtained from Table 4.40. The experimental hypothesis 
was that the dissimilarity ranking between (FqF2), (F̂ F̂ ) and wlth L2
held constant would be: 6(FqF2)> ^̂ 0^1^'* ^^1^2^"
Likewise the dissimilarity ranking of (L̂ L̂ ), (L̂ Lj) and (LjL2) with ^
held constant would be since6(L-,L0) >6(L L,) andfi(LnL_)>6(L,L_) and also sinceU 2 o l  u i 1 4
(LqLi) = (L1L2) then 6tLQL2)> (L^) andfiCL̂  }.

This prediction of the ranking was upheld, and thus constituted a tBst of 
decomposability (no interactions between the dimensions).

/
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Table 4.40 gives the dissimilarity scores for each of 
the 10 Ss for the 18 pairs of stimuli listed in the 
subclasses (a), (b), (c), (d), (e), and (f) (section 
4.42).

For each set of 3 pairs within the six subclasses of 
Table 4.40 the dissimilarity scores for a particular 
S should be equal. The data strongly suggests that 
even for rating data these scores are very consistent 
for each S, within each of the subclasses.

As a further test the Friedman two-way analysis of 
variance by ranks for related samples was carried out 
on the 6 sets of subclasses. Again, none of the scores 
within subclasses showed significant differences in 
dissimilarity (p < 0.005) for any one subject.

4.45 Testing predicted orderings for Decomposability

Tables 4.41, 4.42 and 4.43 are all obtained from Table 
4.40. The numbers in brackets refer to the dissimilarity 
rating given by the S to a pair of tones. To see this, 
consult Table 4.41. SI, rated (FQF2) " that is (FqLo, 
F2Lq) as 12.8,tones(FoF1)as 11.0 and so on. The rank 
ordering for SI; with respect to dissimilarity for these 
intervals is as shown and is in the direction predicted.
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as to ordering, but with L„ and F constant respectively.

These 3 tables then,give the ordering of the differences

(FoP2)’ (PoV( P „ F _ ) ,  (F „ F n) ,  and ( F ^ )

(LqL^), (LqL^), and (L^L^)

for different values of the other dimension (either 
L or F).

4.46 Ordering of Pitch differences

The hypothesis is that since:

(F F_)> (F Fn) >(F-F ) see Fig 4.41 
O d  o -L 1 t

then 6(F F_)>6(F F )>6(F.F_) o 2 o 1 1 2
This prediction of the rank ordering for the 10 subjects
for each of L , L^, and L2 was tested by using Page's
test (Page, 1963), which is a trend test for related 
samples.

It was found that the predicted ranking occurred 
for all values of L and the prediction was upheld 
beyond the .001 level of significance.

4.46 Ordering of Duration Differences

I

! i

4
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n

Since (LqL2  ̂ = 1,0 secs 

and (LqL-̂ ) = (L̂ L,,) =0.5 secs i,

The prediction is that:

6(LqL2) > 6(LoL1) H

and 6(LqL2) > 6 ( 1 ^ )

for all levels of F *,

Also 6(L Ln) = 6 (L, L_) over all levels of F. tO J- X c

All these predictions were upheld beyond the .05 level 
of significance.

V.
-

f l.
■ \! «1 

Conclusions ;

I"
Intradimensional subtractivity, for the dimensions
pitch and duration, seems to be upheld and no S ¿7

’ yseemed to seriously violate it. Moreover for no S 
was decomposability violated, because the ordering
of differences in pitch between tones for all levels 
of duration were the same.



FXPFRTMFNT 3R Fig 4.51

Physical Values of Stimulus Dimensions

F o  “
300 Hz A0 = 92 dbs

F 1 ■
700 Hz

A i
- 95 dbs

IICM
LL. 1 0 0 0 Hz

A 2
= 96 dbs

w = 400 Hz (a a ,) 0 1 = 3 dbs

( F 1F 2 J
300 Hz (a1a2) =  3 dbs Stimulus Differences

( F o F 2 )
- 700 Hz

( A o V
= 6 dbs

Fig 4.51 4  tFoF2)
700 Hz

If there is no interaction between the dimensions [decomposability)

Since
( F o F 2 ) >  ‘ W  >  ( F 1F 2 )

then f i C P o f V > 6CFqF )̂ > 6(F1F2 irrespective of the level of A

dimension





Experiment 3B Pitch and Loudness

Direct Test for Subtractivity

If the interdimensional subtractivity condition holds 
for pitch and loudness then the following equalities 
hold between pairs of tones with respect to dissimilarity 
(see also Fig 4.51 and Table 4.50).

(a)6 (Vo* Vl> = 6 (Vo* FiV = «<P2Ao*P2v

(b)6<Vl* PoV = «(F-̂ , F1A2)= 6(P2A1,w

(c) 6 (F A , ' 0 o ’ FoV = 6(Vo* F1A2> = 6(P2Ao*P2A2 )

(d)6 (Vo* FiV = fi(Vi* Vl> " 5(PoA2* FlV

(e) 5 (Vo* Vo> = «(F̂ , F2Ai ) = «(F̂ , P2A2>

(f) ô (F A , ' 0 0 *Vo> = 6(F A. , ' 0 1’ F2Ai ) = 5(PoA2>F2A2)

The results of these tests are shown in Table 4.50, where 
again each of the 18 scores from each S are grouped in 
subclasses of three shown by (a), (b), (c), etc. above.

Ordering of Differences

Again referring to Fig

(FF ) > (F F ) > (F. F ) 0 2 o i  1 2

(Testing decomposability).

4.51 we have since:

[where again (FQF2) for example



Experiment 3B Pitch and Loudness

Direct Test for Subtractivity

If the interdimensional subtractivity condition holds 
for pitch and loudness then the following equalities 
hold between pairs of tones with respect to dissimilarity 
(see also Pig 4.51 and Table 4.50).

(a) 6<Fo V w = 6(F. A , ' 1 o’ w = {(P2Ao* V i >

(b) 6(F0V Fo V = ¿ ( P ^ , V 2) = 5(P2A1, P2V

(c) 6 (P A , ' o o’ v 2) * 6(V o * V 2) = 5 ( V o * w

(d) 6 ( V o * Fl V = 6( V i * w = 6( V 2* v 2>

(e) 6 ( V o * W = 6(F1A1, w = « ( F ^ , v 2)

(f) 6 (F A , • 0 o’ V o > = 6( V i * w " 5(FoA2* p2a2 )

The results of these tests are shown in Table 4.50, where 
again each of the 18 scores from each S are grouped in 
subclasses of three shown by (a), (b), (c), etc. above.

Ordering of Differences (Testing decomposability).

Again referring to Pig 4.51 we have since:

(P F ) >(F F ) >(F.F 0 2 o i  ' 1 -) Jwhere again (Fo V for example



TABLE 4.50: EXPERIMENT 3B (Results) Pitch and Loudness

Mean Similarity Ratings between pairs of Tones

(W = 3 db » S2 S3 S4 S5 S3 S7 SB S9 S10

(Fo V

I 
<

I 
-° 1.0 1.0 1.0 2.5 1.0 1.0 1.0 1.0 1.0 1.0

(F1A0* W 1.0 1.3 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0
(F,,A . 

iI 0 W 1.0 1.5 1.0 2.0 1.0 1.0 1.3 1.0 1.0 1.0

(A^) = 3 db

tFoA1' W 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
lFi V Fl V 1.0 1,5 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0
(F2A1* W 1.0 1.0 1.0 1.5 1.0 1.0 1.1 1.0 1.0 1.0

(AoA2) = 6 dbs

tFoAo' w 3.1 4.1 3.4 3.7 3.3 4.4 4.4 4.3 5.2 2.1

iF1Ao' Fl V 3.2 4.7 3.5 3.4 3.2 4.7 4.3 4.9 5.C 2.3

<Vb- f2a2) 3.1 4.4 3.3 3.9 3.7 />, ÇI 4.5 3.9 5.4 2.4

( F F . )O 1 = 400 Hz

(F A ,0 0 F1AoJ 15.3 14.1 14.0 1B.0 9.5 9.3 12.1 11.9 13.3 12.4
(F A . F A 1 15.3 14.1 14.0 15.8 10.9 9.5 13.8 is.n 15.0 13.1

tFoA2' Fl V 15.8 14.6 14.0 15.9 9.0 10.3 12.8 12.5 15.4 12.9

CF1F2) = 300 Hz

(F.A . F0A ) 5.4 4.3 9.0 13.0 9.0 4.4 10.6 6.9 10.9 6.01 0 2 0
tFi V  w 5.9 6.0 9.0 15.0 9.5 4.8 10.6 9.4 12.0 7.9
(F1A2, f2a2) 6.0 6.0 10.0 18.0 9.0 4.3 13.0 9.6 11.1 8.0

(FoF2) = 700 Hz

(F A . F.A ) 17.1 15.9 15.1 16.9 13.0 10.6 13.9 11.9 16.1 13.90 0  2 0
(FoAr  f2ai} 16.8 15.7 15.1 16.3 13.3 10.8 13.9 12.7 16.1 14.9
(FoA2' F2A2) 16.7 15.3 15.4 16.4 12.4 10.7 12.9 12.8 15.9 j 14.3 U



EXPERIMENT 3B Ordering of Dissimilarities obtained from Table 4.50

F Constant (300 0 Hz) rt(J Constant (95db)

(A A ) 0 2 (A A ) 1 2 (A A )0 1 (F F )o ?. (F F ) 0 1 (F F )1 2

(3.1) (1.0) (1.0) (17.1) (15.3) (5.4)
SI 1 2.5 2.5 1 2 3

(4.1) (1.1) (1.0) (15.4) (14.1) (4.3)
S2 1 2.5 2.5 1 2 3

S3
(3.4)
1

(1.0)
2.5

(1.0)
2.5

(15.1)
1

(14.0)
2

(9.0)
3

S4
(3.7)
1

(1.0)
3

(2.5)
2

(16.9)
£.

(16.0) 
1

(13.0)
3

S5
(3.3)
1

(1.0)
2.5

(1.0)
2.5

(13.0)
1

(9.5 )
2

(9.0)
3

S6
(4.4)
1

(1.0)
2.5

(1.0)
2.5

(10.R ) 
1

( 9.3) 
2

(4.4)
3

S7
(4.4)
1

(1.0)
2.5

(1.0)
2.5

(13.9 ) 
1

(12.1) 
2

(10.6)
3

Sd
r /i
i

m  n> 
2.5

ft rn

2.5
r-. - r }

1.5
j

1.5 2

S9
(5.2)
1

(1.0)
2.5

(1.0)
2.5

(16.1 )
1

(13.3 > 
2

(10.9)
3

S10
(5.1)
1

(1.0)
2.5

(1.0)
2.5

(13.9 > 
1

(12.4 )
2

(8.0)
3

Table 4.51. The bracketed numbers in each cell of the last three 
columns refer to the dissimilarity between (F0F2), (F0F,), (FjF2) with 
A „constant. The unbracketed numbers are the rank orders of these dissimi­
larities for each S. The bracketed numbers in the first three columns refer 
to the dissimilarieits between (A0A2), (A2A2) and (A^). The unbracketed 
numhors refer to the rank orders of the dissimilarities of these three tones 
for each S. Fig 4.51 give the predicted ranking of these differences assuming 
decomposability. /



EXPERIMENT 3B Ordering of Dissimilarities Obtained from table 4.50

Fj Constant (7UC Hz) A1Constant (97.5db)

<o< (AjA2) (A„A,) (f„f2) "V.J (f xf2)

SI (3.2) (1.0) (1.0) (17.1) (15.3) (5.9)
1 2.5 2.5 1 2 3

(4.7) (1.5) (1.3) (15.9) (14.1) (6.0)
S2 1 2 3 1 2 3

(3.5) (1.0) (1.0) (15.1) (14.0) (9.0)
S3 1 2.5 2.5 1 2 3

(3.4) (2.0) (2.0) (16.9) (15.8) (15.0)
S4 1 2.5 2.5 1 2 3

(3.2) (1.0) (1.0) (13.0) (10.9) (9.5)
S5 1 2.5 2.5 1 2 3

(4.7) (1.0) (1.0) (10.6) (9.5) (4.8)
S6 1 2.5 2.5 1 2 3

(4.3) (1.0) (1.0) (13.9) (13.8) (10.6)
S7 1 2.5 2.5 1 ? 3

(4.9) (1.0) (1.0) (11.9) (15.0) (1.4)
S8 1 2.5 2.5 2 1 3

(5.6) (1.0) (1.0) (16.1) (15.0) (12.0)
S9 1 2.5 2.5 1 2 3

(2.3) (1.0) (1.0) (13.9) (13.1) (7.9)
S10 1 2.5 2.5 1 2 3

Table 4.52. The bracketed numbers in each cell of the last three column 
refer to the dissimilarity between (FoF2),(FoFi ),(FiF2 ) with Aj constant. The 
■nbracketed nuntjers are the rank orders of these dissimilarities for each 
S. The bracketed nunbers in the first three columns refer to the dissimi­
larities between (A0A2),(AjA*)» and (A0A1). The unbracketed numbers refer to the 
rank order of the dissimilarities of these three tones for each S. Fig 4.51 gives 
the predicted rankings of these differences if there are no interactions between 
the dimensions. /



EXPERIMENT 3 B Ordering of dissimilarities obtained from table 4,50

h2 constant (1000 Hz) Constant (98. 5db)

(AiA2) (AlA2) (A0A1) (F0F2) (F0F,) (FiF2)

(3.1) ti.10) Cl.o) (iG.7) (15.6) (C.O)s1. 1 2.5 2.5 1 2 3

(4.4) (1.0) (1.5) (15.3) (14.6) (6.0)
S2 1 3 2 1 2 3

(3.3) (1.0 ) (1.0) (15.4) (14.0) (10.0)
S3 1 2.5 2.5 1 2 3

34 (3.4) (1.5) (2.0) (16.4) (15.4) (18.0)
1 3 2 2 3 1

(3.7) (1.0) (1.0) (12.4) (9.0) (9.0)
S5 1 2.5 2.5 1 2.5 2.5

(4.8) (1.0) (1.0) ( 10.7) (10.3) (4.9)
S6 1 2.5 2.5 1 2 3

(4.5) • (1.1) (1.3) (12.4) (12.0) (13.0)
S7 1 . 3 2 2 3 1

(3.9) (1.0) (1.0) (12.8) (12.5) (9.8)
S8 1 2.5 2.5 1 2 3

(5.4) (1.0) (1.0) (15.9) (15.4) (11.1)S9 1 2.5 2.5 1 2 3

S10 (2.4) ( 1.0) (1.0) (14.3) (12.9) (8.0)
1 2.5 2.5 1 2 3

Table 4.53 The bracketed numbers in each cell of the last three columns 
refer to the dissimi larity between CF0F2)» (F0Fx J, (FjF2) with A2constant. 
The unbracketed numbers are the rank orderings of thse dissimilarities 
for each S. The bracketed numbers in the first three columns refer to
tho dissimilarities between (A A ),(A A ) and (A A ) with F constant.0 2 1 2 0 1 2
The unbracketed numbers are the rank orders of the dissimilarities of these 
three tones for each S.



refers to the physical difference between two tones 
of frequency F , and but with a common duration 
between themfl

then if decomposability holds:

6(FoF2)>6(FqFi )>6(FiF2) irrespective of the level 

of duration (Lq, L^,L2)

Again referring to Fig 4.51 we have that 

<Ao V  = (Ai V

this means that for any constant level of duration 
between tones if there is no interaction

« ( A ^ )  = 6(AxA2)

Similarly since:

(AqA2) >(a xa2)

and (AqA2) >(A0A1)

then 6 (AqA2)>6 (Â Âg)

and 6(A A.)>6(A A.)o 2 o 1

The results of these tests for 'non-ordinal' 
interaction appear in tables 4.51, 4.52, and 4.53.



RESULTS :

Direct Test for Subtract.ivity. From table 4.50 a 
direct test of subtractivity revealed that the 
hypothesis of intradimensional subtractivity was 
upheld (beyond the .05 level of significance).

Test for Decomposability for the predicted 
rankings of differences: all the predicted orderings 
were upheld beyond the .001 level of significance. 
Again these orderings were all consistent for 
different levels of the other dimension, implying no 
interaction between the dimensions.

CONCLUSIONS

The hypothesis of intradimensional subtractivity and 
decomposability for pitch and loudness was upheld for
the values tested.



EXPERIMENT 3C Fig 4.61

Physical Values of Stimulus Dimensions:

0 = 0.5 secs > o it 87 UD

1 = 1.5 secs Ai = 102 db

= 2.0 secs A = 106 db2 2

W = 1.0 secs (Ao V = 19 ribs

(L1L2> = 0.5 secs (A0Ai) = 15 dbs

tL0L2) = 1.5 secs (aiV = 4 dbs

Constant FQ throughout 
the experiment [700 Hz).

A dimension

Fig 4.61 For decomposability:
Since (AqA2) > (A^) > (A^)
then 6(AqA2) > 6(AQA1)> StA.^) irrespective of the level of L 

also since (Lgl̂ ) > (LgL̂ ) > CL̂ L2)
then 6 (LgL2)> 6(LgL1)> 6tL1L2) This is irrespective of the level of

This tests decomposability.
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¿4.60 Experiment 3C (Duration and Loudness)

The dimensions are the same as those used in 
Experiment 1A. Indeed this experiment was carried 
out before experiment 1A and it is readily seen that 
if subtractivity and decomposability were violated 
(i.e. ordinal interaction occurred with respect to 
the ordering of differences) then the results of 
Experiment 1A would not have been possible.

(1) If interdimensional Subtractivity holds for 
duration and loudness then the following 
equalities hold between pairs of tones with 
respect to dissimilarity (see also Fig 4.61 and 
Table 4.60).

(a).5 (Vo* Ai V = « < V i * V i > = «(AoL2* V 2)

(b)<5 (Vo* V o > = 6(A101> A2Ll) = 6(A^Lg > a 2l 2)

(c)<5 (A L , 0 o’ V o > = «(*0L1* A2Ll) = 6(V2*A2L2)

Also

(d) 6 (Vo* V i > = «(Vo’1 A1L1) = «(Vo* A2L1)

(e) ‘( V i * w = «(AjO^’ Al V = 6(A2L1, a 2l2)

(f) «(Vo* w = «(Vo’i a xl2) = «(Vo* a 2l2)

J

i r r



Table 4.60 RESULTS EXPERIMENT 3C

‘V i 1 = 15 db SI S2 S3 S4 i S5 S6 S7 SB

tAoLo' AiLo] 3.3 4.3 8.0 4.0 7.8 7.4 6.4 8.3

tAoLi' Ai V 3.3 4.8 8.3 4.5 9.5 8.6 7.3 10.8

(A0L2' A1L2J 2.9 4.3 7.3 3.6 10.4 7.8 7.3 10.4

(A^) = 4 db

tAlL0’ A2L0] 2.2 3.7 6.4 2.0 7.4 6.8 5.1 11.5

(A1L1' W 2.8 5.0 6.9 3.5 8.3 7.6 3.9 7.3
(A L . A L ) 1.7 6.4 6.1 2.9 9.8 7.2 4.0 8.51 2 2 2

(AQA ) = 19 db

(A„L„ A„L„) 2.3 5.5 8.5 5.1 10.0 10.1 9.4 16.60 0, 2 0
(A_L,, AL) 2.3 6.0 7.6 7.3 12.4 10.4 B. 8 15.90 1 2 1
(A„L A L ) 4.2 4.0 10.7 8.6 16.0 11.1 11.1 16.50 2, 2 2

) = 1.0 sec.

iA0L0' aqlij 4.8 6.9 6.3 7.6 5.0 8.0 7.9 8.0

‘v„- v,> 5.9 7.5 5.6 7.1 7.1 8.3 9.5 11.9

(A2L0. A2L1J 5.3 6.3 5.4 7.4 6.9 7.6 10.1 11.4

(L̂ L̂ ) = 0.5 sec.

lA0Ll' A0L2] 4.6 7.3 3.5 5.6 4.3 3.6 2.5 4.8

tAlLl* Al V 2.6 6.9 6.0 2.4 5.8 4.3 3.6 5.8

■V,- W 4.6 7.2 5.1 6.3 2.9 7.5 4.4 7.4

(LqL2) (1.5 sec]

(AoLo- V z 1 8.6 13.6 4.4 8.0 4.5 9.0 10.6 11.3

(A1L0* A1L2] 8.6 12.0 5.9 10.0 8.3 10.8 11.0 15.8
(A L A L ) 8.8 12.3 6.5 9.8 10.5 10.5 11.4 15.42 0 2 2

___ _ _

/



Experiment 3C Ordering of Dissimilarities
constant (0.5 secs) Â  constant (87db)

lAn V  ! (Ao V lAl V W (L0L1> ! CLlS3
SI 2 (2.3) x (3.3) 3 (2-2) 1 (B.6) 2 (4.8) 3 t4-6)

S2_ _ . . . x (5.5) 2 (4.3) 3 (3-7) 1 (13.6) 3 (6’9) 2 (7.3)

S3 j (8.5) 2 (8.0) 3 (B‘4) 2 (4.4) x (6.3) 3 t3‘5)

S4 1 (5.1) 2 (4.0) 3 (2-03 1 (8.0) 2 (7.6) 3 (5-6)

S5
. (10.0) 1 2 (7.8) 3 (7-4) 2 (4.5) 1 (5.0) 3 t4-3)

1 S6 1
a uo-ii 2 (7.4) 3 (6-QJ 1 (9.0) 2 (8.0) 3 t3-0)

i
S7

1 __
x 0.4) 2 (6.4) 3 (5-13 1 (10.6) 2 (7.9) 3 t2’5)

S8
1 __ .

1 (16.6) 3 (B-3) 2 (11.5) j (11.3) 2 (8.0)

L______
3 (4-03

Table 4.61
The bracketed numbers in each cell of the first three columns refer to the
dissimilarity between (AQÂ 1, (AqAj), and (A,A ) with L,. constant. The In U
unbracketed numbers nr3 the rank orders of these dissimilarities for each S. The
last three columns refers to the dissimilarity between (L̂ L̂ ), 
with A constant.
m -P rH c c ■? m

Vi1'(L1L23
The prediction is that with respect to the rank ordering

• ¡■ M o .- , f f a  0 "  ' > C  f "  0 1 '■nr* C ' 1 I 1 1U*0 2 78 O  I 8 1 1  * o ¿ o L 1 2
This prediction was upheld in both cases. Hence the lack of interaction 
between these dimensions implied decomposability. The results of this experiment 
could have been anticipated from those of Experiment 1A.



Experiment 3C Ordering of Dissimilarities obtained from
Table 4.GO

r
i

i constant (1.5 secs)
[ ‘ 

Aj constant (102 db)

(Ao V (Ao V (Al V (L0L2J W (L1L2)

j si 3 (2-3) J (3.3) 2 (2.6) 1 (6.6) ,, (5.9) 2 3 (2-6)

S2 1 (6.0) 3 (4-S) 2 (5.0) x (12.0) 2 (7.5) 3 (6'9)

S3 2 (7.6) 1 (0.3) 3 (6-9] 2 (5.9) 3 [5-6) 1 (6.0)

S4 1 (7.3) 2 (4.5) 3 (3-5J 1 (10.0) 2 (7.1) 3 (2-4)

1
S5

L - .
2 (12.4) 2 t9-5) 3 (0-3) x (8.3) 2 (7.1) 3 t5‘8)

1
S6 1 (10.4) 2 (8.6) 3 (7-6) 1 (10.0) 2 (8-3) 3 (4-3)

S7 1 (6.8) 2 (7.3) 3 (3-9) 1 n ‘° 2 0.5) 3 (3-6)

L - — .
x (15.9) 2 (10.6) 3 (7-3) 1 (15.6) 2 (11.9) 3 (5-0)

Table 4.62. The bracketed numbers in each cell of the first three columns 
refer to the dissimilarity between (Â Â ), (Â Â ) and (Â Â ) with constant.
The unbracketed numbers are the rank orders of these dissimilarities for
each S. The last three columns refer to the dissimilarity between
(LqLj) and t ) with Â  constant. The prediction is, that with respect
to the rank ordering of dissimilarities,: ¿(AgA^J^tAgA^J^tA^A^] and
6 (LgL^^SCLpL^) >6 (L̂ L̂ ). This prediction was upheld in both cases, 
implying decomposability or lack of interaction between these dimensions.

r{

*  H * k

l \

? < 1

! M

-4-rf



Experiment 3C Ordering of Dissimilarities obtained from
Table 4.60

L2 constant (2.0 secs) A2 constant (106 db)

(aqa2) ‘W tAl V w ^ o V W
►----- ----- -------

SI (4.2) 2 (2-5 3 (1*7) j (8.0) 2 (5.3) 3 (4-6>

S2 3 2 (4.3) 1 ( S . 4 ) ! (12.3) 3 (6.3)
I

2 (7.2)

S3 1 (10.7) 2 (7.3) 3 (6.1) x (6.5) 2 (5.4J 3 (5-1)

S4 a (0.6) 2 (8-6) 3 (2.9) 1 (9.8) 2 (7.4) 3 (6.3)

S5 a (16.0) 2 (10.4) 3 (9.8) ! (10.5) 2 (6.9) 3 (2.9)

S6 ! (11.1) 2 (7.8) 3 (7-2) 1 (10.5) ? (7.6) 3 (7.5)

S7 1 (11.1) 2 (7.3) 3 (4.0) 1 (11.4) 2 (10.1) 3 (4.4)

S8 1 06.5) 2 (10.4) 3 (8.5) x (15.4) 2 (11.4) 3 (7.4) ,

Table 4.63. The bracketed numbers in each cell of tho first three columns refer 
to the dissimilarity between (A^), (AQA ), (A^) with l_2 constant. The 
unbracketed numbers are the rank orders of these dissimilarities for each S.
The last three columns refer to the dissimilarity between (Lgl_2), 
with A0 constant. The prediction is- ■♦■hat. with rprnopt to

"ilarj-tioSi J  > 4  IAq A ij ^ S i A ^ j  andilLQ L2 J>6lLQ L 1 J >6(1-.^).

ILqLi] and (L^)
r a n k  o r d v r i n a  e (

..... This
prediction was upheld in both cases implying decomposability or lack of 
interaction between the dimensions.



The results of this test are shown in Table 4.60 

(2) Ordering of Differences (Decomposability Test) 

From Fig 4.6l

Since (aqa2)> (AoAl);> (AiA2)

Then ô (AoA2)>6(AoA1)>ô (A1A2)

Further, Since

(LoL2}> ( L o L 1 ) >  ( L 1 L 2 )

Then 6(LqL2)>6(LoL1)>6 ( L ^ )

The results of this test appear in tables 4.6l, 4.62, 
and 4.63.

RESULTS

Subtractivity (from Table 4.60) - a direct test of 
subtractivity revealed that the hypothesis of 
intradimensional subtractivity was upheld beyond 
the .001% level of significance.

DECOMPOSABILITY: for the predicted difference ordering 
all the predictions were upheld beyond the .001% level 
of significance. Moreover these orderings were 
consistent for different levels of the other dimension: 
thus, these two dimensions exhibited lack of inter­
actions and the hypothesis of decomposability was 
upheld.
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CONCLUSIONS:

The hypothesis of intradimensional subtractivity 
and decomposability for these two dimensions loudness, 
and duration, was strong upheld.

¿1.70 Conclusions for Experiments 3A, 3B and 3C.

Each of the three experiments constituted tests of 
intradimensional subtractivity and decomposability for 
the dimensions; pitch, duration and loudness taken 
two at a time. The diagnoses was two fold

(i) A test for decomposability in which the
predicted orderings in differences along a 
dimension was compared with the actual ordering 
over different levels of the second dimension.
This was really a test for ordinal interaction 
effects.

(ii) A direct test for subtractivity.

In a very real sense the first mentioned test was 
fundamental: if this had failed - that is the ordering 
of the difference depended on the level of the other 
dimension - then both subtractivity and the additive 
difference model would have been violated. So if 
subtractivity had failed in this experiment it may well 
have been due to failure of decomposability.
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For all three experiments, for the dimensions 
tested, both decomposability and subtractivity were 
strongly confirmed. In particular Experiment 3C was 
of interest because it was for these two dimensions (see 
Experiment 1A) that it was discovered that dissimi­
larity judgements could be represented by an additive 
process.
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/).70 Experiment 3D Interdimensional Additivity

This experiment constitutes in part, a replication, 
of Krantz and Tversky's (1969) study which examined 
interdimensional additivity for schematic faces 
varying on three binary attributes. This experiment 
was discussed in section 4.40. In the experiment 
reported here, there are again three attributes:

M

pitch (F), loudness (A) and duration (L) all of 
which vary on two levels so as to make up 8 different 
tone combinations varying in these 3 parameters.

4.71 Notation and values

The two levels of pitch are denoted by Fq and F where:

Fq = 300 Hz ( V V  = 400 Hz
F 1 = 700 Hz

Where (FqF-,) denotes the difference in the physical 
values of frequency between the tones with a common 
value of all other attributes.

The two levels of duration L , and L, are :o 1

LQ = 0.5 sec and ( L ^ )  = 0.5 secs

L1 - 1.0 sec



EXPERIMENT 3D INTEND I MENS I ONAt. ADDITIVITY

FoAo L1
( 2)

LENGTH L

(1) F R E Q U E N C Y  (4)

REPRESENTATION OF 8 SIGNALS EACH COMPOSED OF THREE PARAMETERS 
F, A, AND L WHICH VARY ON TWO LEVELS AS VERTICES OF A RECTANGULAR 
SOLID.
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The two levels of loudness Aq and are:

Ao 95.0 db and ( A ^ )  = 2.5 db

4.72

A1 = 97-5 db

The 8 tones are shown in  F ig  4 .7 1 , as v e rt ic e s  of a 

rectangular s o l id .

Using the same notation as before and applying Equation 
4.201 which summarises the interdimensional model 
we have:

N = number of dimensions.
6 (x,y) is a measure of the dissimilarity 
between x and y.
F a strictly increasing function of one variable.

a symmetric function of two (nominal scale) 
variables.
i. = 0 if two variables are equal 
5^ > 0 otherwise
x^ is the value of stimulus x on the ith dimension.

For our case, where N=3 we can rewrite the above 
quotation as

N
6(x,y) = F I a. (x.,y.); - i J- x ±L = 1

5(x,y) = F yx) + 2  ̂ + a3( » y3)4.721
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4.722

4.723

4.724

1

shown on the left hand side and labelled A(l),
A(2)...B(l)...etc. Within each of these sets the 
4 dissimilarities should be the same for each subject.

The first prediction then, is that the dissimilarities 
between pairs within any of these 7 subclasses should 
be the same. This was one of the predictions tested 
and upheld by Krantz and Tversky with their stimuli.

Another prediction which Krantz and Tversky derived 
from equation 4.201 was that the dissimilarity between 
stimuli increased as the number of attributes in which 
they differed increased. This is easily appreciated 
at an intuitive level. For example according to 
Equation 4.201 the following statement must be true 
for any one subject:

6 (F A L , F. A L )>6(F A L , F A,L1)>5(F A L , F A. L. ) ' o o o’ l o o  ' o o o’ o i l '  ' o o o’ 1 1 1 '

The first pair only vary with respect to one attribute; 
the second pair varies on two attributes, and the third 
pair varies on three attributes.

A third prediction which follows from the Equation of 
Interdimensional Additivity is that joint factor 
independence should hold - this was discussed in 
Section 4.21. This was not a prediction made by 
Krantz and Tversky (1969) and their design in fact 
did not allow it to be tested. Joint factor independence 
has already been applied to dissimilarity data in

i  'rm ^ £ ,
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Experiment IB, where it was tested for a small subset 
of stimuli. Briefly, for dissimilarity orderings, 
joint factor independence asserts: if the dissimilarity 
produced by some combination of difference on N-l dimensions 
exceeds that produced by some other combination on those 
same dimensions the difference on the Nth dimension remainin 
constant, then that same ordering holds as the constant 
difference on the Nth dimension is varied. See Fig 4.72, 
which should be also compared to Fig 2.52A and B in 
Chapter 2.

METHOD

A single pair of tones was presented successively 
to the subject who rated the dissimilarity between 
them by marking a point on a rating scale from 
1 (identical) to 20 (extremely dissimilar).

The stimulus set consisted of:

(i) 28 non identical pairs of tones. These are
shown in Table 4.71A, with their numbers 
(see Fig 4.71).

(ii) 4 identical pairs of tones:
(F A L ,x 0 0 0 F A L ) 0 0 0 (1,1)

<FlAoLo’ V o V (4,4)

( W v F1A1L1> (7,7)

< V i Li’ V l V (6,6)



f , a V T °  EXPERIMENT SP ( Infordimensione I Addi 11 v I ty)

Dissimilarity matrix derived for S7 in a slinilarHy rating 
experiment between pairs of tones presented successively. 
Each of the tones is composed of 3 physical dimensions: 
Frequency, Amplitude, and Length which vary on 2 levels.

F0A0L0 FoAl Lo Fl Al'-o Fl AoFo W i FoAl Fl F1A1L1 Fl AoFl

FoAoLo - 5.7 11.5 9.1 5.8 10.6 16.7 11.3

W o
- 8.7 13.3 10.2 5.4 11.2 16.5

Fl Al Lo 5.4 15.6 12.4 6.2 9.5

Fl AoLo 11.1 17.2 8.1 5.6

W i “ 5.1 13.2 8.7

FoAl Ll
— 9.1 12.0

W i
*“■ 6.2

—1 o 
cLi- -



The complete stimulus set, consisted of 32 stimulus 
pairs; 28 non identical and 4 identical pairs, 
all of which are generated- from the 8 tones shown in 
Fig 4.71.

Each experimental session consisted of four blocks 
of these 32 stimulus pairs, so each stimulus pair was 
presented four times in one session for a dissimilarity 
rating. On two of these presentations the order was 
reversed to counteract order effects. Altogether each 
subject took part in 7 sessions. All subsequent 
analysis was performed on the data from the last 2J 
sessions.

SUBJECTS
7 undergraduate students* all from the Stirling 
University Subject Pool. Each session of 128 pair 
presentations took about an hour to complete.
Most of the sessions had two (at most three) subjects 
present.

EQUIPMENT

Recorded and presented in exactly the same manner 
as the three previous experiments. (See Appendix 3)

167.
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4.74 * Results

The data from the last 2J sessions are summarised in 
Tables 4.71 A and B. Fig 4.70 shows a typical 
dissimilarity matrix derived from Subject This



This can be checked with S J ’ s performance in the 
table of results (Table 4.71A). Each of the entries in 
Table 4.71 A and B are the means of the ratings (N=10) 
for each of 28 pairs of non-identical tones, and 4 pairs 
of identical tones respectively. Table 4.71 A illustrates 
how each of the 28 pairs of non-identical tones can be 
grouped into 3 classes A, B, and C. Moreover A and B 
both contain three subclasses, containing 4 pairs of 
tones.

Class A: consists of all pairs of tones in which 
there is only one attribute varying between pairs.
These pairs can be further subdivided into the following 
subclasses.

A(l) A subclass of four pairs in which only frequency 
varies between tones - this is labelled

A(2) A subclass in which only loudness varies between

A(3) A subclass in which only duration varies between

|f'a f|

tones

labelled

tones

labelled Jf a V j

Class B: consists of all pairs of non-identical tones 
wuch that there are two attributes varying between



Fig 4.72

A A A A
a a'

f ■ f' a 1 f’ a 1* f’ f* a 1 f’a’l’
A F

f f a 1 f a 1’
A F

f f a’ 1 f a' 1'

A L Al

Interdimensional Additivity as a Joint Factor Independence Condition 

(Experiment 3D).

In this design, there are three factors, which correspond to the differences 
between tones in frequency duration, and loudness denoted by AF, A l_,and AA 
respectively: f and f' correspond to two levels of difference in frequency 
between tones of a pair (zero and 400 Hz respectively). Also 1 and 1* 
correspond to two levels of duration differences between tones (zero 
seconds and 0.5 seconds). Likewise a and a’ correspond to two levels 
of loudness difference between tones (zero and 2.5 db). Fig 4.73 shows 
the same factorial structure in the context of Experiment 30.

For joint independence: If f' a 1 > f a 1' then f'a'l > f a’l*. In words: 
If the dissimilarity produced by a combination of a difference in frequency 
(400 Hz) and non zero difference in duration is greater than the 
dissimilarity produced by zero difference in frequency and a non zero 
(0.5 seconds) difference‘in duration then this same ordering holds 
as the constant difference in loudness is varied.

/



All possible pairs of stimuli in Experiment 3D can be assigned to one 
of the 8 cells of a 2x2x2 factorial structure in which each cell 
corresponds to a particular combination of differences in frequency 
duration, and loudness between tones of a pair. The factors are 
these Differences' between tones and are denoted by AF, AL, and AA 
respectively. Since this is a conjoint structure we may test for 
joint factor Independence which is one of the consequences of inter- 
dimensional additivity. For instance if f'a 1 > f a 1' then 
f'a’l > f a’l*. This means, that if .

6(1,4) > 6 (1,2) 
then 6(1,8) > 6 (1,6)

N.B. The labels AC1), 0(6), etc identify the subclasses in Table 4.71 
to which each of the groups of 4 pairs belong.



i6y.

tones. These pairs may be further subdivided into 
the following subclasses:

B(4) A subclass in which only frequency and loudness 
(amplitude) vary between tones:

labelled ¡f'a' lj

B(5) A subclass in which only duration and loudness 
vary between tones:

labelled (f a'lH

B(6) A subclass in which frequency and duration vary: 

labelled |f'a lj]

Class C: In this class are all non-identical pairs 
which vary in three attributes. There is only one 
such subset, labelled

Class D: Table 4.71 B gives a subset of 4 identical 
pairs, labelled

[fa a

It should be noted that each of these 8 subsets contain 
only four pairs of tones and more over, each of these 
subsets can be represented by a cell in the 2x2x2 
factoral structure shown in Fig 4.73.(Fig 4.72 clarifies
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the above also)

Testing the Three Predictions

The first prediction then, (see 4.722) is that the 
dissimilarities for any one subject, should be constant 
within any one of the subclasses A(l), A(2), A(3), B(4), 
B(5), B(6), C(7), and D(8).

The differences among the four means within any 
one class, for any one S, are so small as to be 
insignificant. This first prediction then, is strongly 
upheld.

The second prediction(see 4.723)is also strongly 
confirmed, there is hardly any overlap between the pairs, 
differing in one attribute, two attributes and three 
attributes for any one subject. So the prediction 
that dissimilarity increases if new differences between 
stimuli are added is strongly confirmed. The only 
exception to this was S3. The third prediction(see 4.724) 
concerns joint factor independence. Pig 4.72 and 
Pig 4.73 show how each of the 8 subclasses of four 
stimulus pairs - covering all the possible stimulus pairs 
in the experiment can be assigned to one or other of 
the eight cells of the 2x2x2 factorial structure, where 
the factors are differences in frequency, duration, and 
loudness denoted by AF, AL, and AA respectively. Each 
of these factors have two levels denoted by:

(i) f and f' - the two levels of AF

(ii) 1 and 1' - the two levels of AL
’ 1 * 1 * -T-

m n

1 1



Fig 4.74 Experiment 3D

(a) Joint Factor Independence of AA over AF and AL 

a a'

f • A(1) 
f’a 1

B(6) 
f'a 1*

f' B(4) 
f'a'l

C(7) 
f'a'l'

f
□ (0) 
f a 1

A(3) 
f a 1’ f

A(2) 
f a'l

B(5) 
f a ’ 1'

1 1 '  1 1 ’

For any one S, the ordering of dissimilarities between any of 
the four pairs in subclass A(1) and A(3) must be the same as that 
between any of the four pairs in B(4) and B(5).

Example: Consider S1 (Table 4.71). The dissimilarity between 
pairs in A(1) is greater than the dissimilarities between pairs in 
A(3). This same ordering must hold between B(4) and B(5). It 
does, because the dissimilarity between any of the pairs in B(4) 
is greater than for any of the dissimilarities between pairs in B(5).

Likewise the ordering of dissimilarities between any of the four 
pairs in B(6) and D(8) must be the same as that between C(7) and A(2).

(b) Joint Factor Independence of AL over AF and AA.
1 1’

f'
A(1) 
f'a 1

B(4) 
f'a'l f1

B(6) 
f’a 1'

C17) 
f’a’l'

f
D(8) 
f a 1

A(2) 
f a'l f

A13 J 
f a 1'

B(5) 
f a'l'



(Fig 4.74 Continued)

For any one S, the ordering between any one of the four pairs in 
subclass A[1) and A(2) must be the same as the ordering between 
any of the four pairs in subclass B(6) and B(5). Likewise the 
ordering of dissimilarities between any of the four pairs in B(4) 
and D(0) must be the same as that between C(7) and A(3).

(c) Joint Factor Independence of AF, over AL and AF.

f f ’

a’
A(2) 
f a ’ 1

B(5) 
f a’ 1* a*

B (4) 
f'a’l

C (7) 
f’a’l’

a
0(0) 
f a 1

A(3) 
f a 1’ a

A(1) 
f'a 1

B (6) 
f'a 1’

1 1 ’ 1 1 *

For any one S, the ordering between any one of the four pairs in 
A(2) and A(3) must be the same as the ordering between any of the 
four pairs in subclasses B(4) and B(6).

Likewise the ordering between any of the four pairs in B(5) and DCS) 
must be the same as that between C(7) and AC3).



(iii) a and a' - the two levels of AA

Fig ¡1.72 and 4.73 give further details of this 
empirical conjoint structure.

Figure 4.74 explains in detail the requirements 
of joint factor independence and suggests how joint 
factor independence may be tested. This we do for 
each subject, in conjunction with Table 4.71.

(a) Joint Factor Independence of AA over AF and AL. 
From Fig 4.74(a) it can be seen that this means 
that the ordering of dissimilarities between 
any of the four pairs in subclass A(l) and A(3) 
must be the same as that between B(4) and B(5)- 
There is only one violation and that is for S3-

Likewise the ordering between B(6) and D(8) 
must be the same as that between C(7) and A(2). 
This was found to be so for all Ss.

(b) Joint Factor Independence of AL over AF and AA. 
From Fig 4.74 (b) this amounts to saying that 
the ordering of dissimilarities between any
of the four pairs in subclass A(l) and subclass 
A(2) must be the same as that between B(6) 
and B(5). Both S3 and S2 violated this 
restriction. The ordering between all pairs 
in B(4) and D(8) msut be the same as those 
between C(7) and A(3). This was found to be



(c) Joint Factor Independence of AF over AL and AF. 
From Fig 4.7^ (c) joint factor independence of 
AF over AL and AF means that the ordering between 
A(2) and A (3) is the same as that between B(4) 
and B(6). This restriction was violated by S^ 

only. Likewise the ordering between B(5) and 
D(8) must be the same as that between C(7) and 
A(l). This was found to be true for all S.

4.75 Conclusions

The three predictions of the interdimensional additivity 
equation (4.201) have all been fairly strongly confirmed. 
The last prediction,that of joint factor independence 
which is really the crux of interdimensional additivity, 
is really a very strong condition, and its consequence 
have been spelled out in detail in section 2.55.
Joint factor independence was confirmed (except for 
some 'minor' violations) for all subjects except for 
S3 who displayed some very strong and idiosyncratic 
violations.

Equations 4.201 includes as special cases the Euclidean,
and Dominance metric and rejection of 4.201City block

for these dimensions would have ruled out the applicability
of any of these three distance models for similarity
judgements

Experiment 3D in a sense worked in reverse; from a
given model to a test of the predictions. Experiment
IB, however, was an exploratory foray into the
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applicability of the additive difference model for 
similarity judgements assuming a dimensional represent­
ation only, and bereft of any metric constraints. 
Experiment 3D although it tested both the metric 
and dimensional requirements was set up in such a 
way as to exploit its latent conjoint structure.
There are indeed other ways of testing the implied 
ordering predictions of Equation 4.201 - which Krantz 
and Tversky (1969) attempted - but it can involve 
(as it did with those authors) some truly hair- 
raising and messy non-parametrie statistical work.
The advantages of testing the ordering predictions 
in the manner attempted are two fold: First, the
design pointed to the measurement theoretic basis 
of Beal's et al's original speculations. Second, it 
urges, that if possible, experiments should be designed 
so as to lay as bare and as transparent as possible 
the underlying psychological theory.

Discussion

It now seems worthwhile to consider experiments 1A and 
IB together with 3D. Experiments 1A and IB investigated 
various independence conditions for similarity data.
The data indeed showed that some fairly stringent 
independence conditions were satisfied for the dissimilarity 
judgement tasks, in fact, stringent enougn, to assert 
that the dissimilarity judgements could be represented 
by some type of additive independence model. It was
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shown in 1A, that this form of additive independence 
satisfied all the requirements of the additive 
difference model for similarity judgements for the 
two attribute case, N = 2. This is an interesting 
result because Krantz et al (1971) and Tversky (1967) 
have shown that additive conjoint measurement can be 
applied co both the case when Nj-3 and N=2. However 
the case N=2 presents problems, because the ordinal 
requirements of additive conjoint measurement are 
slightly different than for the case when N>3. This 
finding is reflected in Beal's et al (1968) and 
Tversky and Krantz (1970) discussions on the metric 
requirements of the additive difference model and they 
give an axiomitisation only for N^3- However in 
experiment 1A, where N=2, the additive nature of 
dissimilarity judgements was handled by using the 
double cancellation condition (Luce and Tukey, 1964).

Experiment IB investigated both single factor and joint- 
factor independence for a three factor dissimilarity 
judgement experiment in which the factors were 
differences of varying magnitudes along the three 
dimensions, pitch (AP), loudness (AA) and duration (AL) 
between tones. Because both single factor and joint 
factor independence was satisfied it again suggested 
that these three dimensions combine additivity, (and 
hence there are no interactions between them) to 
determine dissimilarity.

Both experiments 1A and IB demonstrated the plausibility 
then, of the additive difference model for similarity 
judgements for the case N=2, and N = 3 respectively.

I J i k U f l t t t i
» i'i l T
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Tversky (1965) was the first to recognise that additive 
conj measuremen t coulu appropriately he applied to
metric representations of dissimilarity orderings.
Ke showed that the distance equation (4.121):

dr(x,y)
N
£

H=i'
r>,l

could be generalised in two ways:

4.313 d(x,y) = F [5i(Xi,yij]

4.312 d(x,y)

(The numbers 4.313 and 4.312 refer to the sections where 
these were first mentioned).

Equation 4.313 says that the dimensions combine 
additivity to determine dissimilarity and 4.312 
specifies that the contribution of any one dimension 
can be represented by the absolute difference on the 
scale values (intradimensional subtractivity). If 
d(x,y) is not required to be a metric then 4.313 is 
simply the equation for additive conjoint measurement, 
in N variables (see section 2.31 Chapter 2). It was 
this realisation then,that animated Experiments 1A 
and IB.

Experiment 3D constituted a test for interdimensional 
additivity, a condition, which has embedded in it,
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both dimensional and metric requirements. The 
dimensional requirements include the twin conditions 
of the additive combination of the dimensions and lack 
of interaction between them. The most important 
metric requirement is segmental additivity. Experiments 
1A and IB merely tested the dimensional requirements 
of the additive difference model. One last 
methodological point to do with the strategy of model 
testing adopted here. All the experiments involved 
the same dimensions. Thus the following pattern of 
results could have emerged:

Either (1) For all subjects, there was widespread 
violations of the various independence 
conditions for Experiment IB i.e. dimensional 
requirements not satisfied. If this had 
occurred, interdimensional additivity would 
have failed anyhow since it has the dimensional 
requirements built into it.

or (2) No systematic violations in Experiment IB, i.e.
dimensional requirements are intact but widespread 
violations for interdimensional additivity.
This would mean that whereas the dimensional 
requirements are met the metric ones are not.

or (3) No violations in Experiment IB or 3D, both the 
metric and dimensional requirements are intact, 
as was in fact the case.



177.

CHAPTER 5

INFORMATION PROCESSING AND THE STIMULUS METRIC : AN 

ALTERNATIVE EXPLANATION

5.00 Introduction

5.10 Metric Properties of the Stimulus in Information Processing. 
Attneave's [l95CQ experiment. The Euclidean and City 
Block Metric. Shepard's study. Hyman and Well.
Lockhead's distinction between integral and non-integral 
stimuli.

5.20 Rqdundancy Gains and Interference Effects in Absolute 
Judgement Tasks.

5.30 Speeded Classification Tasks. Garner and Felfoldy's 
Experiment.

5.40 Explanations of Redundancy Gains in Absolute Judgement 
and Speeded Classification Tasks. The Independent 
Dimensions Model. The Psychological Distance Hypothesis. 
Difficulties with 'Metric' explanations of Redundancy 
Gains. An Alternative Dimensional Account for Redundancy 
Gains based on the Independent Dimensions Model.

5.00 Experiment 4A. Testing the Independent Dimensions Model.
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5.00 Introduction

1 7C

In Chapter A it was seen that the distance function which 
embodied both dimensional and metric properties involved

(i) Becomposability: The distance between objects can be
decomposed into contributions from each of the dimensions 
or components of the space.

(ii) Intradimensional Subtractivity: Each contribution to 
the distance measure between two points is based upon 
the absolute difference in scale values within any one 
dimension between the points.

(iii) Interdimensional Additivity: The distance measure 
conbines additively from each dimension.

(iv) Metric: All the differences in (ii) are transformed 
by the same power function or Minkowski metric.

Recently, there have been experimental psychologists,(Garner,

the following four assumptions:

that the type of information processing which takes place
within an organism depends upon particular properties of the
stimulus, in particular, on its metric properties

\



5.00 Introduction

In Chapter 4 it was seen that the distance function which 
embodied both dimensional and metric properties involved 
the following four assumptions:

(i) Decomposability: The distance between objects can be
j decomposed into contributions from each of the dimensions 

or components of the space.

(ii) Intradimensional Subtractivity: Each contribution to 
the distance measure between two points is based upon 
the absolute difference in scale values within any one 
dimension between the points.
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(iii) Interdimensional Additivity: The distance measure 
conbines additively from each dimension.

(iv) Metric: All the differences in (ii) are transformed 
by the same power function or Minkowski metric.

Recently, there have been experimental psychologists,(Garner, 
1974, Lockhead, 1972, Hyman and Well, 1967, 1968, Handel, 
1968, Shepard, 1964, Rabbitt, 1971), who have suggested 
that the type of information processing which takes place 
within an organism depends upon particular properties of the 
stimulus, in particular, on its metric properties.
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5.10 Metric Properties of the Stimulus and Information Processing

It was Attneave (1950) who first suggested that attentional 
phenomena could interact with the metric of the stimulus 
space. His study of similarity judgements of geometrical 
stimuli (parallelograms) gave some empirical support for 
his belief that the City Block or Minkowski 1-metric might 
provide a better explanation of judgemental behaviour than 
the usual Euclidean distance, or Minkowski 2-metric 
The important feature of his stimuli seemed to be that the 
dimensions could easily be isolated perceptually, and attended 
to independently of one another, Attneave 's suggestion was 
that in the case of such dimensions the sum of absolute 
differences formula of the City Block metric was more 
appropriate than the square-root of the sum of squared 
differences Euclidean formula. The City Block metric, it 
was suggested is the one which would be used if subjects 
judged the interstimulus distances for each dimension 
independently, and then combined them additively to derive 
an overall subjective distance. However for stimuli such 
as colour where the dimensions could not be easily isolated 
Attneave proposed that the more wholistic Euclidean metric 
was still appropriate.

5.12 Shepard (1954) followed Attneave by making a similar distinction 
between analysable and unitary stimuli, and he wrote of these 
two types:

__ Jig
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'.... there are those that are related as homogenous
unitary wholes, and those that tend to be analysed into 
perceptually distinct components or properties . .. 
(Shepard, 1964 page 80).

The first sort of stimulus he called unitary and the second 
analysable. Moreover he suggested that a metric somewhere 
between the Euclidean and City Block was required to account 
for similarity judgements involving analysable stimuli and 
the Euclidean metric for unitary stimuli.

In one experiment, Shepard used highly analysable geometric 
stimuli. These were a series of circles of different 
sizes with inscribed radii varying in angle of inclination. 
This series was so constructed that one of the stimuli 
exactly matched a standard stimulus on just one of the two 
dimensions (diameter and inclination of the radius).
Another circle in the same series matched the standard on 
the second dimension. All the remaining stimuli in the 
series were compromises on these two dimensions. The task 
for each subject was to select the stimulus in the series 
that was closest to the standard.

Shepard's argument was, that if the psychological space 
had the same structure as the physical space and if its 
metric was Euclidean then neither of these two special 
stimuli (the two that matched the standard on one or other 
of their dimensions) would be picked as closest to the 
standard, but rather a compromise stimulus which was 
moderately close to the standard on both dimensions . The
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date showed, on the contrary, that subjects did not choose 
the compromise nor any of the intermediate stimuli. Instead, 
the distribution of choices (across subjects) was bimodel 
with the two modes corresponding to the two special stimuli 
which differed from the standard on only one of the two 
relevant physical dimensions. This tendency of the subjects 
to match the standard stimulus on just one of the two 
dimensions was interpreted by Shepard as implying that the 
perceptual metric was non-Euclidean and in particular it 
deviated toward the City Block metric.

5.13 Hyman & Well (1967, 1968) collected the complete similarity 
data on three types of stimuli and employed multidimensional 
scaling to obtain the best fit in a Euclidean space. They 
used the Euclidean metric as the baseline by which to study 
the pattern of similarity judgements of the following sets 
of stimuli:

(i) Munsell Colour patches, (9 different ones varying in 
Chroma and Value)

(ii) Geometrical Figures, (7 parallelograms varying in 
size and tilt)

(iii) Circles with radii (8, varying in diameter and angle 
of radius)

The same Munsell Colour patches were used by Torgerson (1952), 
the parallelograms were those studied by Attneave (1950) and 
the circles9of course(were the same as those considered by 
Shepard (196H).



Hyman and Well, then, used the Euclidean metric as a yard­
stick to study the pattern of judgements for all three types 
of stimulus material. They reasoned that if subjects made 
their judgements according to the City Block metric then 
relative to their one dimensional judgements (Hyman and Well 
1967, page 23*1),they would judge bidimensional differences 
as being larger than would be predicted from the Euclidean 
distance model.

Thus, when Hyman and Well examined the pattern of deviations 
from the Euclidean model, they expected to find in the case 
of the City Block model, that the average deviation of the 
bidimensional comparisons to be relatively positive, and the 
average deviation of the unidimensional comparisons to be 
relatively negative. So if subjects were truly 'City Block' 
the difference between the average deviation of the bidimen­
sional comparison should be positive. Conversely if subjects 
deviated from the Euclidean model toward the Dominance model 
then the difference (average deviation from bidimensional 
minus average deviation from unidimensional comparison) should 
be negative. Hyman and Well concluded that their results 
confirmed that the Euclidean metric was appropriate for 
judgement of colour patches but that the City Block was more 
appropriate for describing similarity judgements of geometrical 
stimuli.
The Hyman and Well study is vulnerable on logical grounds.
Their EDS procedure assumed a Euclidean metric in order 
to investigate systematic deviations. Usually MDS is 
employed to 'discover' the minimum number of dimensions 
necessary to describe the similarity data. This, Hyman 
and Well did not do; they assumed the identity and number



of the component dimensions a priori. Their procedure 
had embedded in it,strong dimensional assumptions 

which they used to study the deviations from a Euclidean 
baseline. Before physical attributes - such as value and 
chroma for colour - can be offered as candidates for 
psychological dimensions, they must fulfil certain rigorous 
qualitative criteria: decomposability, intradimensional 
subtractivity, and interdimensional additivity. In fact, 
it is known that for colour dissimilarity judgements 
(involving hue and saturation) decomposability breaks down 
thereby ruling out any of the Minkowski r-metrics, (Krantz; 
personal communication).
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5.lit Lockhead (1966, 1970, 1972) has also made a similar distinc­
tion between stimuli:

'.. .. the similarity space which results from the 
combination of some dimensions produces a Euclidean 
metric while others produce a different perhaps a 
City Block metric.' (Lockhead 1970).

However Lockhead used the term integral to describe those 
stimuli which give rise to a Euclidean metric and non-integral 
for those that give rise to a City Block metric in direct 
distance scaling.



.20 Redundancy Gains and Interference Effects in Absolute 
Judgement and Speeded Classification Tasks

Lockhead (1966), Garner and Felfoldy (1970), and Garner
(1971)) have all used the notion of integral and non-integral 
stimuli to explain results arising from two types of 
information processing experiments: absolute judgement 
and speeded classification tasks. Indeed Garner and 
Felfoldy (1970) on the basis of their experiments and 
from the work of Hyman and Wells (1968) and Torgerson (1958) 
offer the following operational definition of an integral 
stimulus:

(i) An integral stimulus gives rise to a Euclidean metric 
in direct distance scaling

(ii) An integral stimulus gives rise to a redundancy gain 
when the dimensions are correlated for both absolute 
judgement and speeded classification tasks

(iii) An integral stimulus gives rise to interference effects 
when the dimensions are added orthogonally in both 
absolute judgement and speeded classification tasks.

Non-Integral Stimuli were likewise given an operational 
definition by Garner and Felfoldy:

(i) Non-integral stimuli give rise to a City Block metric 
in direct distance scaling



(ii)

( Ü i )

There is no redundancy gain when the dimensions are 
correlated for either absolute judgement or speeded 
classification tasks

Non-integral stimuli do not give rise to interference 
effects when the dimensions are added orthogonally 
in either absolute judgement or speeded classification 
task.

V/e shall refer to the above definitions as the Garner - 
Felfoldy hypothesis.

The Logical Structure of Absolute Judgement and Speeded 
Classification Tasks for testing the Garner - Felfoldy Hypothesi

5.21 Absolute Judgement Tasks

Suppose we consider two stimulus dimensions A and L with 
two values on each dimension AQ, A^; LQ and L^.In practice 
we need not think of only two values, for each dimension but we do so here, 
just to make the logical structure of an experiment testing 
the Garner - Felfoldy hypothesis apparent.

In such an experiment there are three modes of stimulus 
presentation

JaÜüfcm iHIT m ut
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The Logical Structure of an Absolute Judgement Experiment to Test the Carner-Felfoldy Hypothesis
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(ii) Correlated Dimension Presentation. Here a redundant 
dimension is added. For example AqLo, A^L^ always 
appear together, identification of one dimension 
suffices to identify the complete stimulus. The S 
is asked to attend to one of the dimensions and 
identify its value.

(iii) Orthogonal Stimulus Presentation. Here each of the 
two values of each of the dimensions occur with both 
values of the other dimension, with a resultant four 
different stimuli. Ss are required to identify each 
of the dimensional values and suppress the irrelevant 
second dimension. In our example the orthogonal 
stimulus set would be:

A L , o o’ A L, , o 1’ A1L0’A1 L1

The subject would be required to identify Aq and A , 
ignoring different values of L and then in another 
condition to identify Lq and and ignore different 
values of A.

Each subject appears in six experimental conditions see 
(Fig. 5.21). There are two control conditions, two 
correleated conditions and two orthogonal conditions for 
each subject. Fig. 5.22 illustrates the possible outcome 
for each S (or for the averaged results of many subjects 
taking part in all six conditions). The measure is the amount 
of information transmitted in each of the six conditions.
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(ii) Correlated Dimension Presentation. Here a redundant 
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The subject would be required to identify Aq and A^, 
ignoring different values of L and then in another 
condition to identify Lq and and ignore different 
values of A.

Each subject appears in six experimental conditions see 
(Fig. 5.21). There are two control conditions, two 
correleated conditions and two orthogonal conditions for 
each subject. Fig. 5.22 illustrates the possible outcome 
for each S (or for the averaged results of many subjects 
taking part in all six conditions). The measure is the amount 
of information transmitted in each of the six conditions.



The Garner - Felfoldy hypothesis states that in absolute 
judgement experiments, stimuli which have integral dimensions 
would result in:

(a) Increase in information transmission in both the 
correlated presentation conditions compared with 
either base line performance : redundancy gain.

(b) In both the orthogonal presentation conditions a 
decrease in identifiability of either of the 
component dimensions compared with base line performance. 
That is to say there is interference: and selective 
dimensional attention breaks down.

For non-integral stimuli however the Garner - Felfoldy 
hypothesis asserts :

(c) ffo increase in information transmission in the 
correlated presentation condition; i.e. no redundancy 
gain.

(d) The identifiability of the component dimensions in 
the orthogonal presentation conditions are the same 
as the base line identifiability, that is 'perfect' 
selective dimensional attention is possible, and there are 
interference effects.

Fig. 5.21 and Fig. 5.22 summarises the above remarks 
for an absolute judgement task.
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Erikson and Hake's (1955) study did not coincide with the 
above structure in all details - there were two control 
conditions, but not two 'correlated' conditions and of 
course there was no orthogonal presentation. They did 
report a redunency gain however. Lockhead (1966) used 
the dimensions of hue and value, and reported no redundancy 
gain, when the dimensions were separated but again there 
was only one correlated condition. Garner (1962) reports 
a few studies where dimensions were added orthogonally 
and judgements of all dimensions required - that is there 
were two orthogonal conditions for two dimensional stimuli 
the results seemed to indicate that there was some improve­
ment .

It is the case however, that there are no studies yet on 
absolute judgements which fit the logical requirements of 
a test for the Garner - Felfoldy hypothesis.

5.30 Speeded Classification Tasks

The structure of an experiment on speeded classification 
in order to test the Garner - Felfoldy hypothesis is 
exactly the same as the one for absolute judgements. The
subject is required to classify stimuli by one of two 
dimensions represented in a set of stimuli and speed of 
classification is measured. Suppose we consider two 
stimulus dimensions A and L with two values on each 
dimension AQ, An and LQ, respectively. Again there 
are three methods of stimulus presentation.



H* H*
i _

, > C/5 >M o r t M O□. r~ H* CL 1“
(D o 3 CD o
3 C 3
rt > »-» r t >H* 1 H* H* I—*
-h r~ -+> r~
< t—< “0 *< 1
r~ CD >o cn □

CDQ) 3 Q>
3 rt 3a CD □.ar~ >

> in ,— , >
M o rt n o
a r~ H* □ . r ~
CD o 3 0 □
3 * C 3 >•
r t > h-> r t >
H* o H* H* o
~h r ~ ~h r ~
< i—< “0 < t—<

3 *
(“ > 0 > >

O cn O 1—*
I- CD r~

Ql o 3 0) □
3 % f t 3 %
a > 0 Q . >

M 1 a »—•
r ~ > r ~

l—1 h-* h->
w •—•

and A. 
i 

Stimuli Presented 
I 

Stimuli Presented 
I Stimuli Presented



i Qq lw; •

(i) Unidimensional Presentation. Here S is required to 
sort (say) a deck of cards on the basis of just one 
of the two dimensions into two piles.

(ii) Correlated Presentation. Here the two dimensions 
appear in a perfectly correlated way. Again the 
subject is required to sort by each of two dimensions, 
by sorting into two piles.

(iii) Orthogonal Presentation. Each of the two values of 
each of the dimensions occur with both values of 
the other dimensions with a resultant four different 
stimuli. S is required to identify each of the 
dimensional values and suppress the irrelevant second 
dimension.

Again each subject appears in six experimental conditions 
(Fig. 5.31) with two correlated and two orthogonal conditions. 
Fig. 5.32 shows the possible outcome structure of such an 
experiment.

The darner - Felfoldy Hypothesis states that in speeded 
classification tasks, stimuli which have integral dimensions 
would result in

_____ i_____ 11MUil 1"»nitttttiiftaLitiI 1 a i M l ^ M J A k .
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(a) An increase in sorting time in both the correlated 
presentation conditions compared with either base 
line performance i.e. there is a redundancy gain

(b) A decrease in sorting time of either component 
dimension in the orthogonal presentation conditions 
compared with baseline performance.

For non-integral stimuli however the Garner - Felfoldy 
hypothesis asserts:

(c) No increase in sorting time in the correlated 
presentation conditions: no redundancy gain

(d) No decrease in sorting time in the orthogonal 
presentation conditions.

Garner and Felfoldy (1970) themselves provided a study, 
which in all experimental details fulfils the requirements 
of a test for their hypothesis. Their experiment involved 
four different types of stimulus but each involved the same 
experimental arrangement.

In each of the four experiments,subjects were required to 
sort a deck of 32 cards into two piles as rapidly as 
possible. Sorting time was the measure. Each experiment 
involved two stimulus dimensions with two levels or values 
per dimension. Thus four different stimulus values could 
exist. There were three different methods of presentation;
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control, correlated and orthogonal. For each type of 
stimulus presentation the subjects were required to sort 
by each of two dimensions, so for each subject there 
were six different edperimental conditions'. These were:

(i) Two unidimensional presentations, there were only 
two stimuli varying on a single dimension and 
subjects were required to sort by that dimension.
This condition provided a baseline.

(ii) Two correlated presentations. Here the two 
dimensions occurred in a perfectly correlated 
or redundant manner. There were still only two 
different stimuli but subjects were required to 
sort by each of two different dimensions separately.

(iii) Two orthogonal stimulus presentations. Here each cf 
the two values of each of the dimensions occurred 
with both values of the other dimension. The subject 
was required to classify or sort the stimuli separately 
by each dimension.

The four stimulus materials were:

1. Kunsell Colours. The two dimensions employed were 
value (or brightness) and chroma (saturation) of 
single Munsell chips. These were the same stimulus 
dimensions that Hyman and V/ell (1967) and Torgerson 
(1952) argued gave rise to a Euclidean metric in

M i f f  ir >]
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direct distance scaling. According to the Garner - 
Felfoldy hypothesis this is an integral stimulus 
so there would be facilitation for correlated 
dimensions and interference for orthogonal dimensions.

2. Separated Colours. The two dimension value (bright­
ness) and chroma (saturation) were made separable by 
having one colour chip varying in value and another 
colour chip on the same card varying in chroma.
Hyman and Well (1968) had in this case obtained a City 
Block metric. Lockhead (1966) using hue and value 
found no redundancy gain for this type of separable 
dimension. The Garner - Felfoldy hypothesis would 
predict for this non-integral stimulus that there 
would be no redundancy gain and no interference 
effects.

3. Dot location. The two dimensions were horizontal 
and vertical location (two values on each). This 
stimulus was thought to be integral and so the 
prediction was redundancy gain and interference 
when dimensions are presented orthogonally.

1). Diameter of a Circle and Angle of Radius. These
two dimensions were found by Shepard (1961*) and Hyman 
and 'Well (1969) to be non-integral and to yield a 
City Block Metric. Again the prediction was no 
redundancy gain and no interference effects in the 
orthogonal presentation conditions.

I JiiUttk.&itaMittMMunigt«’ '
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The predictions of the Garner - Felfoldy hypothesis were 
upheld for the first two stimulus materials. However 
for dot location they reported a barely significant 
redundancy gain and a barely significant interference 
effect (for Munsell colours it was five times as great!)

For the circles and diameters, they reported no redundancy 
gain when judging the size of the circle (and the diameter 
was redundant). However when classifying by diameter 
they reported some redundancy gain. For neither of the 
orthogonal presentation conditions did they find any 
interference.

5.40 Explanations of Redundancy Gains in Absolute Judgement 
and Speeded Classification Tasks

There are two approaches, one dimensional in its orientation, 
and the other metric which is not really an explanation 
but an operational definition, to account for redundancy 
gains in these two types of task. They will be referred 
to as the Independent Dimensions Model and the Metric 
Hypothesis respectively.

5.41 Independent Dimensions Model

This has already been extensively discussed in Chapter 3 
Section 3.10. This model assumes that the dimensions are 
psychologically independent and that errors in the identi-
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ficatior. of the values of one of the dimension are 
independent of errors in identifying the particular value 
of a second dimension: there are no interaction effects.
The Erikson Hake (1955) model postulated that independent 
dimensions,presented in a correlated manner;provide an 
additional opportunity for a clearer perceptual state 
and this provides an increase in identifiability. A
method of examining independence effects using a method of 
analysis inspired by Kaufman and Levy (1971) was demonstrated 
in Experiments 2A and 2B.

5.42 The Psychological Distance Hypothesis

This has already been spelled out in Section 5*20 
and as it is essentially an operational definition it 
provides no explanation for redundancy gains. Garner 
(1970) has gone a little way, however to explain what he 
means by an integral stimulus when he suggests:

'... that two dimensions are "integral" if in order 
for a level on one dimension to be realised there 
must be a dimensional level specified on the other. 
For example: a visual stimulus must have a bright­
ness and a hue and a saturation and a size and a 
form, that fact makes any pair of these dimensions 
integral.'

l inrirtmn ......... ^
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5.1*3 Difficulties with 'Metric' Explanations of Redundancy Gains

There are two major difficulties met when employing 
metric explanations toaccountibrredundancy gains in absolute 
judgement and speeded classification tasks. The first 
has to do with the fact that before a particular stimulus 
can be said to give rise to a Euclidean or a City Block 
metric certain rigorous non qualitative conditions must 
be met: interdimensional additivity, intradimensional 
subtractivity and decomposability. None of the stimuli 
used by Garner and Felfoldy have been investigated in a 
measurement theoretic way. An unpublished study
by Krantz of the colour dimensions value (brightness) and 
chroma (saturation) goes against the suggestion that these 
dimensions are Euclidean. Krantz
showed, however, that for these dimensions decomposability 
(and hence both additivity and subtractivity) is violated 
in a very systematic way and hence cannot possibly produce 
a Euclidean metric in direct distance scaling.

I

The second difficulty has to do with those circumstances 
in which Euclidean and City Block metrics can be legitimately 
invoked. The notions of metric and dimensional representa­
tions can properly only be applied to similarity data, 
and their use to explain results in identification 
experiments, whether absolute judgement, or speeded classi­
fication tasks p.s entirely unwarranted. In the experiments 
reported in the second and fourth chapters on similarity 
data, it was confirmed that various ordinal independence 
conditions held. In the identification experiments
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reported in chapter three on the same stimuli it was seen 
that there were interaction effects; and independence 
in this idenficiation task and for these stimuli did not 
hold. Identification tasks and similarly Judgement tasks 
therefore seem uodemand entirely different types of psychologic 
processing; and concepts like Euclidean or City Block 
metrics while appropriate for similarity data in some 
circumstances cannot be transplanted as aaexplanatory construct 
for identification experiments. It seems better then, to 
dispense with any 'metric' explanations of redundancy 
gains in absolute judgement and speeded classification tasks 
and to look for others.

5.^4 It is suggested instead, that we abandon the r.otionSof 
integral and non-integral stimuli with all its metric 
connotations and concentrate instead on the dimensional 
aspects of the stimulus. It is hypothesised then, that 
in identification experiments such as absolute judgement 
and speeded classification tasks that

(i) Dimensions which are perceptually independent give 
rise to redundancy gains (Erikson & Hake 1955).
This is because the correlated conditions (for 
independent dimensions) results in a type of multiple 
observation on a single trial, where each of the 
independent dimensions represent an additional 
opportunity for a clearer perceptual state to occur.
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(ii) Dimensions which are perceptually independent do not 
result in interference effects when the stimulus 
dimensions are presented orthogonally

(iii) Dimensions which are not independent can give rise 
to either redundancy gains or not depending on the 
interaction effects. In particular,whether the 
identifiability of one or other of the dimensions 
at a particular level is enhanced or not at a 
particular level of the other dimension.

(iv) For non independent dimensions. In the orthogonal 
presentation condition sometimes interference or 
lack of it arises depending on the specific inter­
action effects.

Results (iii) and (iv) are more likely to occur for stimuli 
like colour or sound which are "integral" except of course 
they probably do not give rise to a Euclidean metric. It 
is further argued that for 'attributes' like hue, or 
saturation it is not meaningful to describe them as 
psychological dimensions in the sense that they can be 
abstracted. To adopt a metaphor it is best to think of 
a 'raw plug' being removed. Some raw plugs when removed 
bring out some other parts of the wall with it. This 
could happen when attempting to selectively abstract an 
'integral' dimension like hue from a stimulus. This
dimension can be abstracted but with more or less of the 
other attributes. However with independent dimensions - 
dimensions which do not form an intrinsic stimulusvlike



Shepard's wheels and radii,)it is certainly possible to 
'abstract' the angle of radius from the size of the circle. 
However it is very difficult to visualise selectively 
abstracting a dimension like hue without at the same time 
extracting brightness. Neither brightness, nor hue can 
exist above in the same way that the size of a circle and 
tr.<- angle of one of its radii. Therefore to talk of 
colour dimensions like hue and saturation in the same way 
that we talk about dimension like dot location (the two 
dimensions being horizontal versus vertical) is clearly 
not comparable.
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EXPERIMENT 4A 

5.50 Introduction

This experiment is similar in design and conception to the 
Garner and Felfoldy (1970) study and the details of this 
present one are summarised in Fig 5.51.

There were 10 experimental conditions, each one correspond­
ing to a particular method of stimulus presentation and to 
a particular pair of dimensions for identification. The 
conditions comprise for each dimension

(i) two control presentations 
(ii) two correlated presentations

(iii) and one orthogonal presentation.

The task was an identification one, and the dimensions 
used were those of loudness (A) and duration (L) of 
auditory tones, both of which varied on two levels of the 
respective dimensions. The subject was required to 
identify either AQ and A-̂  or LQ and L-̂ . The measure was 
the time taken in milliseconds to identify each of the 
tones.

The aim of the experiment was two-fold. First to 
replicate the Garner-Felfoldy experiment; but using both 
auditory stimuli and more strictly controlled time measure­
ments. (Their measure was the time taken, in seconds,
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to sort 32 cards into two piles. In the present experiment, 
however, the measure used was the time taken, in milliseconds, 
to categorise one of two tones.) The other aim was to study 
baseline and correlated condition performance for each of 
the dimensions; so for each dimension there were two 
control conditions and two correlated conditions. 3aseline 
performances were compared to determine whether they 
varied significantly for different background values of 
the other dimensions. If they did so, then the use of a 
control or baseline condition by which to compare performance 
in all other conditions becomes problematical. For, 
supposing the time taken to categorise a tone as either 
A0 or A-̂  in the control condition depended on the duration 
of the tone. This would mean, there would be no one base­
line value by which to compare the latencies of AQ and A-̂  in 
either of the correlated or orthogonal presentations.
That is, the presence of an interaction effect so that the 
identifiability of AQ and A^ depends on a particular value 
of L renders the notion of a control or baseline condition 
meaningless. In experiments 2A and 2B, reported in 
chapter 3, it was established that the identifiability of a 
particular level of loudness depended on the particular 
level of pitch. Also, it was found, that the identi- 
fiability of a particular value of pitch depended on the 
duration of the tone. Moreover Scott (1974) in an (
unpublished undergraduate dissertation showed that the 
identifiability of a particular level of loudness (A) 
depended on the duration of the tone.

I 1
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It can be seen then, that to compare the two 'control' 
conditions for each stimulus is not at all trivial if 
there exists the possibility of interaction effects.
Moreover, if for each stimulus the performance in the two 
correlated conditions differ both between themselves and 
with respect to either of the control conditions then an 
explanation might more fruitfully be sought, by looking 
at possible interaction effects between the stimulus 
dimensions rather than by invoking the mediation of Euclidean oi 
City Block metrics.

5.51 Method

The tones were delivered to the subject (in a sound proof
booth) via earphones. In front of the subject were two
buttons labelled 'soft' (for responses to the Aq tone)
and 'loud' (for responses to the tone). In the
'Aq A^'stimulus conditions the subject was told to respond
only to the loudness or softness of the tone and ignore
all other attributes. In the'L L.'stimulus conditiono 1
the subject was seated in front of two similar buttons 
labelled 'long' and 'short', and again he was told to 
respond only to the duration and ignore all other aspects.

The identity of the delivered tone, the response to it, 
and the time taken to respond, were all recorded on a 
tape via a data transfer unit.

The 10 conditions were subdivided into two experimental 
blocks which were labelled



(i) The identification block, on which the
subject was required to identify AQ or A^ 
under different conditions of stimulus 
presentation (two control, two correlated, 
and one orthogonal).

(ii) The L L, identification block on which there o 1
were again five conditions of stimulus 
presentation.

Each subject served in all 10 conditions. Before going
on to a different block, a subject was required to complete
all the conditions within a block with the order being
randomised within that block. Eight subjects served in
each of the blocks three times. Four of them served in
the A A. block first and four of them served in the L L, o 1 o i
block first.

For each block and within each of the five conditions 
100 randomised tones were delivered for identification.
Only the data from performance in a block, the third time 
round, was eventually analysed, and within each of the 
five conditions only the results of the last 50 stimulus 
presentations were considered.

It was found that errors in each of these last fifty 
presentations were practically non existent. Indeed six 
of the eight subjects made no mistakes at all while the
other two made only 9 between them (an error rate of less 
than 2% over all 10 conditions). Hence these errors were 
ignored in the final data analysis.
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5.52 Stimuli

The apparatus used to generate the tones and record 
responses was the same as that used in Experiment 2A 
and 2B and is described in the appendix.

Each tone was of constant frequency (1000 Hz and

Aq = 87 db
A1 = 102 db 
Lq = 500 milliseconds 
Lj = 750 milliseconds

Fig 5.51 shows which stimuli were presented to the subject 
in each condition, and in all conditions the number of 
different stimuli presented to the subject in a randomised 
manner were the same.

5.53 SUBJECTS

The eight subjects were all sixth year pupils from Stirling 
High School and their ages ranged from about 16.5 years to 
18.5 years. The subjects were all paid for their services 
(30 pence per hour) and each subject took about six hours 
over three days to complete the experiment.

5.54 RESULTS AND DISCUSSION

The results are shown in Table 5.54. Each of the entries 
in each of the conditions represents the mean latency for 
the eight subjects. Moreover each of the '8' scores

* i' -4’r-r-rr
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5.52 Stimuli

5.53

The apparatus used to generate the tones and record 
responses was the same as that used in Experiment 2A 
and 2B and is described in the appendix.

Each tone was of constant frequency (1000 Hz and

Aq = 87 db
Ax = 102 db
L = 500 milliseconds o
L-̂ = 7 50 milliseconds

Fig 5-51 shows which stimuli were presented to the subject 
in each condition, and in all conditions the number of 
different stimuli presented to the subject in a randomised 
manner were the same.

SUBJECTS

The eight subjects were all sixth year pupils from Stirling 
High School and their ages ranged from about 16.5 years to 
18.5 years. The subjects were all paid for their services 
(30 pence per hour) and each subject took about six hours 
over three days to complete the experiment.

5.54 RESULTS AND DISCUSSION

The results are shown in Table 5.54. Each of the entries 
in each of the conditions represents the mean latency for 
the eight subjects. Moreover each of the '8' scores
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which make up this mean is, itself, the mean of 50 
latencies. These fifty latencies were each subjected to 
a logarithmic transform to stabilise the variances. It 
was found even after extensive practice in each of the 
conditions that there was a 'Mean' and 'Variance' drift: 
in a particular condition the mean latency seemed to 
increase with an increase in variance that is, the latency 
and variance estimates were correlated. Converting the 
latencies to logarithms removed this.

The means for each subject and for each of the 10 conditions 
were subjected to an analysis of variance (a repeated 
measures design). The two factors were

(i) Stimulus to be identified AQ and
and L and Ln. o 1

(ii) Mode of stimulus presentation
a-̂  &2 two control conditions
b^ b2 two correlated conditions

Cj orthogonal condition

A planned comparison was carried out (Hays page 459).
It was found in the A A. identification block:o 1

(a) There was a significant difference in latencies 
between the two control conditions. That is, 
the time required to identify AQ or A^ in the 
control condition depended on the background 
duration of the tones (p = 0.05).
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(b) No significant difference in identification 
times between the two correlated presentation
conditions was detected.

(c) For the AQLo , A^L^ (Correlated) versus A0Lq,
AiLq (control) conditions the differences
in latencies were just significant (p = .005).

(d) For the orthogonal presentation condition versus
the A L , A-.L control condition there is again o o 1 o
a significant difference between the latencies. 
However there is no significant difference in 
latencies between the orthogonal and the other 
control condition.

For the AQA^ block, then, whether there is 
interference or not in the orthogonal presentation 
condition depends on which control condition is 
being used as the baseline.

Further whether or not there is facilitation in 
the correlated condition compared with the control 
condition depends on which of the correlated 
presentations is considered and which correlated 
condition.

It seems clear then,that what is happening is 
some fairly complex interaction process between 
the stimulus dimensions. Within the AQA^ block 
there is no one value of duration (LQ or L-̂ ) 
which provides a typical estimate of the identi- 
fiability of A^ or Aq: that is, there is an

i
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interaction effect which makes the employment 
of a baseline condition from which to compare 
all other conditions within the block as not 
very helpful.

For the LqL^ block a planned comparison 
revealed

(e) No significant difference between the two control 
conditions.

Cf) No significant differences between the two correlated 
conditions, or any difference between these 
conditions or any of the controls.

(g) A significant difference between the orthogonal 
and both unidimensional conditions.

Result (g) is not very satisfactory for the Garner-Felfoldy 
hypothesis which proposes that facilitation in the correlated 
condition should lead to interference in the orthogonal conditi 
and vice versa.

It seems clear, then,on the basis of the experiments 
reported in chapter 3 on stimulus independence and the 
theoretical work reported in chapter 4, that a more 
parsimonious account for the results of Garner and his 
colleagues can be found in studies investigating the 
presence or absence of interaction effects of the stimulus 
dimensions rather than by invoking metric concepts like 
Euclidean, or City Block dimensions.



CONCLUSIONS

Mighty is the charm
Of those abstractions to a mind beset 
With images and haunted by himself,
And specially delighted unto me 
Was that clear synthesis built up aloft 
So gracefully; even then when it appeared 
Not more than a mere plaything, or a toy 
To sense embodied: not the thing it is 
In verity, an independent world,
Created out of pure intelligence.

William Wordsworth
The Prelude, (Book 6)

The attempt in tnis thesis has been to mount a sustained 
experimental and conceptual analysis of independence in 
similarity and identification data.

This investigation has led to an examination of psychological 
dimensions and their independence. In the first two 
experiments, various types of independence were tested on 
similarity data. It was found that a dimensional representation 
of a similarity judgement task was possible and that it 
accorded with the predictions of the Additive Difference 
Model. It was also seen that the measurement theoretic 
analysis employed, helped make the underlying psychological 
processes more apparent.



Chapter 3 examined the notion of independence in identification 
tasks. The main point of this Cuapter was to stress 
that perceptual independence if it is to be meaningful 
psychologically must be tied to the notion of a lack of 
interaction between the stimulus dimensions. This type of 
independence, - perceptual independence - was then scrutinised 
experimentally. It.was found that for auditory stimuli
delivered through noise there were indeed interaction effects, 
and that the identifiability of a particular level on one 
dimension varied over different levels of the other.

Chapter 4 constituted a generalisation of the work in 
Chapter I inasmuch as it reviewed and examined the 
theoretical literature on the foundations of multidimensional 
scaling. In this discussion, the plausability of a dimensional 
representation of the similarity data in Experiments 1A and 
IB was joined to a metric representation. With the auditory 
stimuli investigated, it was found that both a dimensional 
and metric representation was possible. Moreover the class 
of distance functions consistent with the metric representation 
were of the Minkowsxi r-type. This in turn meant that any 
one of the Euclidean, City Block and Dominance metrics 
was appropriate for describing the similarity judgement tasks.

Chapter 5 reviewed some of the studies which have suggested 
that the type of information processing possible depended on 
the metric properties of the stimulus. It was pointed out 
that none of these published studies had investigated in a 
measurement theoretic manner the dimensional or metric 
requirements. In particular it was noted that explaining 
results in Identification experiments by invoking Euclidean



or City Block metrics-was entirely unwarrented. These 
types of metrics certainly have some meaning when applied to 
similarity data, and then, only when very stringent ordinal 
conditions are satisfied. The final experiment suggested 
that a better explanation of some of the identification 
results in the published literature might be due to 
interactions on the dimensions rather than to their alleged 
metric properties.
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APPENDIX 2A

Dissimilarity Data Matrices for each of the 2 
conditions and 4 replications of Experiment 1A.



Experiment IA

pi ski mi 1 s r i t.v Data M atrices ( Scores ranked) SUBJECT 3

CONDITION I

Repli"ation 1

12 lU 15 1 6

7 9 11 13

5 6 8 10

1 2 3 1*

Replication 2

12 lU 15 1 6

8 10.5 10.5 13

5.5 5.5 7 9

1.5 1.5 3.5 3.5

Rep lication  3

12 lit 15 1 6

8 10 11 13

5 6 7 9

1 2 3 U

—  Replication

12 lU 15 1 6

e 10.5 10.5 13

5 6 7 9

i 3 3 3

CONDITION 2

Replication 1

11 1U 15 1 6

8 8 12 13

1» 5 8 8

1 2 3 8



EXFEREfcNT IA

Dissim ilarity Data Matrices (Scores ranked) SUBJECT 1

CONDITION 1
Replicat1' on 1 __

5 9 13 l6

1* 8 12 15

2 6 10 lU

1 3 7 11

Replicatior 3

12 15 15 15

8 10 12 12

1* 5 8 8

2 2 2 6

CONDITION 2
Replication 1

13 15 ll* l6

9 l l 10 12

5 7 6 8

1 3 2 1*

Replication 3

—

3 8 12 16

3 7 11 1U.5

3 6 10 1U.5

1 5 9 12

Rep lication  2

11 ■ ll* 15 1 6

9 10 12 13

1* 5 7 8

1 2 3 6

—  R ep lication  1*

11 ll*J ll*J l U

9 11 11 Uts

5 5 7 8

1 2 3 5

R ep lication  2

1* 8 12 16

3 7 n _L5-

2 6 10 11*

1 ___ 5__ __ 9___ __13

Replication  1*

5 8 12 1 6

- 3 7 12 15

2 5 .. 12 12 !

1 5 9

1

12 :



experiment IA

DISSIMILARITY DATA MATRICES (SCORES. RANKED)

SUBJECT 2

Replication 1

A 11 11 1 6

3 7 11 15

2 6 l l 11

1 5 11 11

Replication 3

11 Ï3.5 15.5 15.5

9 10 12 13.5

A 5 7 8

2 o 2 6

Replication 1

11 13 15.5 15.5

9.5 9.5 12 lit

3 5 7.5 7.5

1.5 1.5 k 6

Rep.1 ic tition 3
—

11 13 15.5 15.5

9.5 9.5 12 lit

3 5 7 8

1 2 1» 6

CONDITION 1

Replication 2

11 lit 1 6

9 10 12 13

it it 7 3

1 2- it 6

— Replication U —

11 lit 15 1 6

9.5 9.5 12.5 12.5

3.5 5 7 8

1 2 3.5 6

Z  Replication 2

11 13 15.5 15.5

9-5 9-5 12 lit

3 6 6 8

1 2 \ 6

Replication

11 13 15 16

9 10 12 lit

3 5 7.5 7.5

1 2 it 6



APPliNDIX 2D

Ranking of the stimulus pairs with respect to 
dissimilarity for four subjects.
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