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ON THE NON-EXISTENCE OF SYMPATHETIC LIE
ALGEBRAS WITH DIMENSION LESS THAN 25

A. L. GARCÍA-PULIDO† AND G. SALGADO‡

Abstract. In this article we investigate the question of the low-
est possible dimension that a sympathetic Lie algebra g can attain,
when its Levi subalgebra gL is simple. We establish the structure
of the nilradical of a perfect Lie algebra g, as a gL-module, and
determine the possible Lie algebra structures that one such g ad-
mits. We prove that, as a gL-module, the nilradical must decom-
pose into at least 4 simple modules. We explicitly calculate the
semisimple derivations of a perfect Lie algebra g with Levi sub-
algebra gL = sl2(C) and give necessary conditions for g to be a
sympathetic Lie algebra in terms of these semisimple derivations.
We show that there is no sympathetic Lie algebra of dimension
lower than 15, independently of the nilradical’s decomposition. If
the nilradical has 4 simple modules, we show that a sympathetic
Lie algebra has dimension greater or equal than 25.

1. Introduction

A Lie algebra g is sympathetic if its centre is trivial, if g is perfect and
if g has no outer derivations; that is,

(1) Z(g) = 0,
(2) g = [g, g]
(3) Der(g) = ad(g).

It is well known that any semisimple Lie algebra satisfies properties (1),
(2) and (3). Sympathetic Lie algebras were introduced to determine
if properties (1), (2) and (3) completely characterise semisimple Lie
algebras. In [1] the first non semisimple Lie algebra satisfying the
above properties appears; it has dimension 35. This was followed by
an example in dimension 48 [2], where the term sympathetic was first
used. The lowest known dimension of a sympathetic Lie algebra is
25 and can be found in [3]. This algebra has much smaller dimension
that the previous examples due to the careful construction with Levi
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subalgebra equal to sl2(C), which is the lowest dimensional simple Lie
algebra.

In [3] and [2], Benayadi develops theory describing structural properties
of sympathetic Lie algebras. However, the existing results do not lead
to a classification, or even showing existence, of these algebras in low
dimensions. Indeed, the non-existence of sympathetic Lie algebras of
dimensions less than 10 is attributed to J. Simon in [3] and it remains
an open problem to determine if 25 is the smallest dimension possible
in a sympathetic Lie algebra. The lack of progress could be due to two
factors. Little was known of the classification of Lie algebras at that
time and the available computational resources and power were very
limited.

In this paper we give a solution to the problem of dimension minimality
of sympathetic Lie algebras which are not semisimple. To do this, we
restrict our attention to the class of algebras whose Levi factor is a
simple Lie algebra.

By taking full advantage of the representation theory of simple Lie
algebras, we find very precise necessary conditions that a Lie algebra
g = gL ⋉ Rad(g) must satisfy in order to be sympathetic. In Corol-
lary 3.10, Theorem 3.12, we show that if g is perfect and Rad(g) de-
composes into 1, 2 or 3 simple gL-modules, then g is not sympathetic.
Then Rad(g) must decompose into at least 4 simple gL-modules.

This condition completely characterises sympathetic Lie algebras where
Rad(g) decomposes into 4 representations. In Theorem 3.14 we show
that, up to isomorphism, there are only 6 possible algebra structures.
We are therefore able to determine that the smallest possible dimen-
sion such a sympathetic Lie algebra can have is 25, see Theorem 3.32.
Moreover, we show there is only one such algebra in dimension 25 and
it is the example given in [3]. The proof of the non-existence in dimen-
sions smaller than 10 follows easily from our results. These results are
independent of the choice of simple Levi subalgebra.

We now describe the techniques used to prove our main theorems. We
make systematic use of each of the properties that define a sympathetic
Lie algebra g = gL⋉Rad(g) to derive necessary conditions on its algebra
structure. Recall that Rad(g) admits a gL-module structure induced
by the Lie bracket and therefore can be decomposed into a direct sum
of simple gL-modules.

A crucial point of our argument is to use the fact that the product
between any two simple gL-modules V,W is completely determined by
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bilinear gL-equivariant morphisms V ⊗ W → U , where U is one of
the simple gL-modules appearing in the decomposition of Rad(g). In
other words, the multiplication is completely determined by the spaces
HomgL(V ⊗W,U), where V,W, U are simple gL-modules appearing in
the decomposition of Rad(g). In addition, the nilpotency of Rad(g)
enables us to derive a general form of the multiplicative structure of
Rad(g). This process further highlights how, when working under the
assumption that g is sympathetic, one would construct such an algebra.

Combining the above multiplicative structure and Clebsh-Gordan-type
theorems for simple gL-modules, we obtain explicit forms of the possible
multiplication tables in terms of the number of simple gL-modules in
the decomposition of Rad(g). The final step is to verify the (non)
existence of sympathetic Lie algebras with this explicit multiplication
tables in the case of at most 4 modules.

The outline of the paper is as follows. For completeness, we begin
Section 2 with preliminary notions of classical Lie algebras. In Section
3, we prove our main theorem Theorem 3.1: if g is a sympathetic Lie
algebra such that its Levi subalgebra gL is simple and its nilradical
decomposes into four simple gL-modules, then dimC(g) ≥ 25. From
this point, we work with Lie algebras which Levi subalgebra is simple.
In Section 3.1, we show that the nilradical of any sympathetic Lie
algebra decomposes into at least four simple modules and determine
the possible multiplicative structures for this case Theorem 3.14. In
Section 3.2 and Section 3.3 we investigate whether any of these possible
algebras are sympathetic Lie algebras. For part of this analysis, we
designed algorithms that enable us to do explicit calculations to this
end. In Section 4, we include these algorithms and show in a concrete
example how to put to practice our theoretical results and use our
algorithms. An implementation of our algorithms can be found in
https://github.com/winsy17/Sympathetic_Lie_Algebras.

2. Preliminaries

Throughout this article we only consider finite dimensional vector spaces
over C.

Definition 2.1. A Lie algebra g, is a vector space together with a
bilinear map [, ] : g× g→ g satisfying:

(1) [x, y] = −[y, x] for every x, y ∈ g,
(2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for every x, y, z ∈ g.

https://github.com/winsy17/Sympathetic_Lie_Algebras
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Equation (2) is known as the Jacobi identity. Notice that (1) is equiv-
alent to [x, x] = 0 for every x ∈ g.

One of the typical examples of a Lie algebra is the following. Consider
a vector space V and the associative algebra of endomorphims of V
denoted by EndC(V ). Define the commutator on EndC(V ), by [T, S] :=
T ◦ S − S ◦ T for every T, S ∈ EndC(V ). The resulting Lie algebra is
denoted by gl(V ) and called the general linear algebra associated to V .

Let g and h be two Lie algebras. A Lie algebra homomorphism, is a
linear transformation ρ : g→ h such that ρ([x, y]g) = [ρ(x), ρ(y)]h. An
isomorphism of Lie algebras is a bijective homomorphism. A linear
representation of a Lie algebra g on a vector space V is a Lie algebra
homomorphism ρ : g→ gl(V ).

Let α : g → gl(U) and β : g → gl(W ) be two linear representations of
g on U and W , respectively. The space of equivariant homomorphisms
from U to W is

Homg(U,W ) := {T ∈ HomC(U,W ) | T ◦ α(x) = β(x) ◦ T, x ∈ g}.

We can induce a new representation α ⊗ β from g on U ⊗W defined
by (α ⊗ β)(x)(u ⊗ w) := α(x)(u) ⊗ w + u ⊗ β(x)(w) for every x ∈ g,
u ∈ U and w ∈ W . This representation is the tensor product of α and
β.

Given any Lie algebra g the Lie bracket induces a natural linear rep-
resentation ad : g → gl(g) defined by adx(y) := [x, y] for any x, y ∈ g.
We call this representation the adjoint representation. Notice that
Ker(ad) = Z(g) = {x ∈ g | [x, y] = 0, ∀y ∈ g}.

A derivation on g is a linear transformation D : g → g which satisfies
the Leibniz rule with respect to the Lie bracket, D([x, y]) = [Dx, y] +
[x,Dy], for every x, y ∈ g.

Lemma 2.2. Let g be a Lie algebra. The following statements are
equivalent.

(1) D is a derivation in g,
(2) D([ei, ej ]) = [Dei, ej ] + [ei, Dej] for every ei, ej ∈ β,
(3) [D, ad(ei)]− ad(Dei) = 0 for every ei ∈ β.

Where β = {e1, . . . , en} is a basis of g.

Remark 2.3. Item 3 shows that obtaining a basis for the vector space
Der(g) = {D ∈ End(g) | D([x, y]) = [Dx, y] + [x,Dy]} is equivalent to
finding the solutions of a homogeneous system of linear equations.
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Given a linear representation of g on V ρ : g → gl(V ), we say that a
subspace W ⊂ V is invariant if ρ(x)W ⊂W for any x ∈ g. The trivial
subspaces {0} and V are invariant subspaces. We call a representation
ρ : g → gl(V ) irreducible if the only invariant subspaces of V are the
trivial ones. We say that the representation is completely reducible if
every invariant subspace W admits an invariant complement U such
that V = W ⊕ U .

From now on, we say that V is a g-module if there exists a linear
representation ρ : g → gl(V ). We will say that the g-module V is
simple if ρ is an irreducible representation and, semisimple, if ρ is
completely reducible.

The very well known classification of simple Lie algebras over C is given
as follows.

Theorem 2.4 (See [5], [6], [7]). If g is a finite dimensional simple
Lie algebra over C, then g is isomorphic to one of the following Lie
algebras.

(1) An := sl(n+ 1), n ≥ 1 ,
(2) Bn := so(2n+ 1), n ≥ 2 ,
(3) Cn := sp(2n), n ≥ 3,
(4) Dn := so(2n), n ≥ 4,
(5) E6, E7, E8,
(6) F4,
(7) G2.

The corresponding dimensions in each case are given by

(1) dim(sl(n+ 1)) = n2 + 2n,
(2) dim(so(2n + 1)) = 2n2 + n,
(3) dim(sp(2n)) = 2n2 + n,
(4) dim(so(2n)) = 2n2 − n,
(5) dim(E6) = 78,
(6) dim(E7) = 133,
(7) dim(E8) = 248,
(8) dim(F4) = 52,
(9) dim(G2) = 14.

The only existing isomorphisms between semisimple Lie algebras are
the following.

A1 ≃ B1 ≃ C1 ≃ D1,

B2 ≃ C2, D2 ≃ A1 ⊕A2, A3 ≃ D3

Theorem 2.5 (Weyl). Let g be a semisimple Lie algebra. Then, any
finitely dimensional linear representation of g is completely reducible.
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Theorem 2.6 (Schur’s Lemma). Let g be a Lie algebra and let

ρV : g→ gl(V ) and ρW : g→ gl(W )

be two irreducible representations. Let T ∈ HomC(V,W ) be such that
T ◦ ρV = ρW ◦ T .

(1) If ρV 6∼ ρW then T = 0,
(2) If ρV = ρW then T = λ IdV .

3. Main Theorem

We divide this section in two parts. In the first part we assume that
g = gL ⋉ Rad(g) is a Lie algebra such that its Levi subalgebra gL
is simple and its radical Rad(g) is nilpotent. We show that, if g is
sympathetic, the decomposition of Rad(g) into simple gL-modules must
contain at least four non-trivial modules.

In the second part, we fix a simple Lie algebra gL and determine all the
possible multiplicative structures that a sympathetic Lie algebra g can
have assuming that Rad(g) decomposes into four simple gL-modules.
These possible Lie brackets significantly reduce the candidate sympa-
thetic Lie algebras. We verify if any of the remaining candidates is a
sympathetic Lie algebra.

The main result of this work is the following.

Theorem 3.1 (Main Theorem). Let g be a sympathetic Lie algebra
with simple Levi subalgebra gL, then dimC g ≥ 25.

From now on, we will only consider Lie algebras g with a simple Levi
subalgebra gL and we will denote the radical Rad(g) by h. By The-
orem 2.5, h can be decomposed, with respect to the gL-action on h

induced by the Lie bracket, into a sum of simple gL-modules:

h = Vn1
⊕ · · · ⊕ Vnk

.

Denote by s(g) := k to the number of simple gL-modules in the decom-
position of h. Throughout this work we denote by Vni

to the irreducible
representation of gL with highest weight ni.

Now assume that g is perfect. It is well known that if g is perfect
then Rad(g) is nilpotent (see [6] (Chapter 3, Section 9 Corollary 2))
and therefore Rad(g) = NilRad(g). Since h is a nilpotent subalgebra,
0 6= Z(h) ⊂ h and Z(h) inherits a decomposition as a gL-submodule of
h:

Z(h) = Vz1 ⊕ · · · ⊕ Vzr ,

where {z1, . . . , zr} ⊆ {n1, . . . , nk}.
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Proposition 3.2. Let g = gL ⋉ h be a Lie algebra with simple Levi
subalgebra gL. Given the decomposition h = Vn1

⊕· · ·⊕Vnk
into simple

gL-modules, then

(1) dim(Vni
) = 1 if, and only if, [gL, Vni

] = 0,
(2) if dim(Vni

) > 1, then [gL, Vni
] = Vni

,
(3) if [Vni

, Vnj
] 6= 0, then there exists a gL-module Vnp

, 1 ≤ p ≤ k,
such that Vnp

⊂ Vni
⊗ Vnj

; and a unique gL-equivariant mor-
phism Γp

i,j : Vni
⊗Vnj

→ Vnp
such that πp([Vni

, Vnj
]) = Γp

i,j(Vni
, Vnj

),
where πp : Vni

⊗ Vnj
→ Vnp

is the natural projection to Vnp
. If

i = j, then Vnp
⊂ Λ2(Vni

) and Γp
i,i is skew-symmetric.

Proof. The proof of Item 1 and Item 2 is straightforward.

The fact that any triple x ∈ Vni
, y ∈ Vnj

, z ∈ gL satisfies the Jacobi
identity is equivalent to the existence of a gL-equivariant morphism
[, ] : Vni

⊗ Vnj
→ h. As a gL-module, there is a decomposition

Vni
⊗ Vnj

= Vm1
⊕ · · · ⊕ Vml

.

By Schur’s lemma, {m1, . . . , ml}∩{n1, . . . , nk} = ∅ implies [Vni
, Vnj

] =
0. �

Corollary 3.3. Let g = gL ⋉ h be a Lie algebra with simple Levi
subalgebra gL. Given the decomposition h = Vn1

⊕ · · · ⊕ Vnk
into sim-

ple gL-modules, if [Vni
, Vnj

] 6= 0, then there exist simple gL-modules
Vm1

, . . . , Vmr
⊂ Vni

⊗ Vnj
and unique gL-equivariant morphisms Γs

i,j :
Vni
⊗ Vnj

→ Vms
such that

[Vni
, Vnj

] = Vm1
⊕ · · · ⊕ Vmr

, and [x, y] =
r

∑

s=1

Γs
i,j(x, y),

for every x ∈ Vni
, y ∈ Vnj

. In the case when i = j, Vm1
, . . . , Vmr

⊂
Λ2(Vni

) and we have a skew-symmetric gL-equivariant morphism Γs
i :

Vni
⊗ Vni

→ Vms
.

Remark 3.4. Given g = gL ⋉ h, the Lie algebra structure of h is
uniquely determined by a collection of gL-equivariant morphisms, when
considering h as a gL-module. Conversely, in order to construct a Lie
algebra h from a gL-module, one first needs to determine the possible
equivariant morphisms which define an algebra structure on h. In fact,
any scalar multiple of such morphisms defines a multiplicative structure
on h. Therefore, h is a Lie algebra when there exist an appropriate
choice of multiples for which the Jacobi identity holds.
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Proposition 3.5. Let g = gL ⋉ h be a finite dimensional sympathetic
Lie algebra with simple Levi subalgebra gL. Suppose D : g → g is a
derivation such that D|gL = 0 and D|Vni

= λni
IdVni

for any simple
gL-module in the decomposition of h. Then D is an inner derivation
of g if, and only if, D|h = 0.

Proof. LetD be an inner derivation. WriteD as the sum of its semisim-
ple and nilpotent parts D = adg(s+ h) for some s ∈ gL and h ∈ h. By
definition of D, for any y ∈ gL,

0 = D(y) = [s+ h, y] = [s, y] + [h, y].

Since [s, y] ∈ gL and [h, y] ∈ h, this implies [s, y] = 0 and [h, y] = 0 for
every y ∈ gL. Thus s ∈ Z(gL) and hence s = 0 because gL is a simple
Lie algebra. Consequently, D is nilpotent and this implies λni

= 0 for
every i. The converse is straightforward.

�

Proposition 3.6. Let g = sl2(C)⋉h be a finite dimensional Lie algebra
and Vm, Vp, Vk simple sl2(C)-modules in the decomposition of h such
that [Vm, Vp]g = Vk, or [Vp, Vp]g = Vk. For any semisimple derivation
D ∈ Der(g) there exist λ, α, β, γ ∈ F such that

α + β − γ = λ(m+ p− k), or

2β − γ = λ(2p− k).

Proof. Since sl2(C) is a subalgebra of g, there exists λ ∈ F such that

D|sl2(C) = λ adsl2(C)(H).

Suppose that Vm = 〈ei〉, Vp = 〈fi〉 and Vk = 〈gi〉, where the basis
for Vm, Vp and Vk are as in Proposition 3.19 Since D is a semisimple
derivation, we assume without loss of generality that D is of the form

D(ei) = αiei, D(fi) = βifi, D(gi) = γigi.

Given any element ei ∈ Vm, we have

D([E, ei]) = αi−1[E, ei],

and
[DE, ei] + [E,Dei] = 2λ[E, ei] + αi[E, ei]

= (2λ+ αi)[E, ei].

Using the fact that D is a derivation we obtain

αi−1 = 2λ+ αi.

Equivalently,

[D|Vm
] = Diag(α0, α0 − 2λ, · · · , α0 −m(2λ)).
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Analogously,

[D|Vp
] = Diag(β0, β0 − 2λ, · · · , β0 − p(2λ))

[D|Vk
] = Diag(γ0, γ0 − 2λ, · · · , γ0 − k(2λ)).

Set α = α0, β = β0 and γ = γ0. Notice that the product [Vm, Vp]g =
Vk is completely determined by an sl2(C)-equivariant morphism which
leaves weights invariant. In consequence, if

(1) [ei, fj] = Ci,jgl(i,j), Ci,j ∈ F,

then ei⊗ fj ∈ Vm⊗ Vp and gl(i,j) ∈ Vk have equal weights for every i, j.
A direct calculation shows that l(i, j) = i+ j− 1

2
(m+p−k). Applying

D to both sides of Equation (1) and using the previous expression for
l(i, j), we can conclude that

α + β − γ = λ(m+ p− k).

Similarly, when m = p one obtains

2β − γ = λ(2p− k).

�

Remark 3.7. Let g = gL ⋉ h be a Lie algebra with simple Levi subal-
gebra gL. Recall that g is a sympathetic Lie algebra if g does not admit
any outer derivations. We use Proposition 3.5 and Proposition 3.6 as
criteria to show the existence of outer derivations for certain Lie al-
gebras g as follows. When gL = sl2(C), Proposition 3.6 enable us to
describe semisimple derivations in terms of a system of homogenous
linear equations, which we use to construct outer derivations. When
gL 6= sl2(C), we construct outer derivations of the form described in
Proposition 3.5.

Remark 3.8. Solving the system from Proposition 3.6 requires solving
a homogenous system of at most k equations with k + 1 unknowns,
where s(g) = k. This has a huge computational advantage to calculating
directly Der(g), which requires solving a system of (dimC g)

3 equations,
for dimC g = n1 + · · ·+ nk + k + 3.

Proposition 3.9. Let g = gL ⋉ h be a perfect Lie algebra such that its
Levi subalgebra gL is simple and [h, h] ⊂ Z(h). Then g is not sympa-
thetic.

Proof. As gL-modules, h, [h, h] and Z(h) are completely reducible. This
implies that there exists a gL-submodule V such that h = V ⊕ Z(h).
Define D : g→ g by

D|gL ≡ 0, D|Z(h) = IdZ(h), D|V =
1

2
IdV .
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A straightforward calculation shows that D is a derivation and by
Proposition 3.5, D is an outer derivation. �

3.1. The radical of a sympathetic Lie algebra.

3.1.1. Case s(g) = 1, 2.

Corollary 3.10. Let g = gL ⋉ h be a perfect Lie algebra with simple
Levi subalgebra gL is simple. If s(g) = 1, 2, then g is not sympathetic.

Proof. If s(g) = 1, 2, then [h, h] ⊂ Z(h) and Proposition 3.9 implies
that g fails to be sympathetic. �

3.1.2. Case s(g) = 3.

Convention 3.11. From now on, we assume that if [Vni
, Vnj

] 6= 0,
there exists a unique p, 1 ≤ p ≤ k, such that [Vni

, Vnj
] = Vnp

. Under
this convention we will prove that if s(g) ≤ 4, then Z(h) is a simple
gL-module. For simplicity, we assume that Z(h) is a simple gL-module
whenever s(g) ≥ 5.

In this subsection we show the following

Theorem 3.12. Suppose that g = gL ⋉ h is a Lie algebra, with simple
Levi subalgebra gL, satisfying [g, g] = g, Z(g) = 0 and s(g) = 3. Then
g is not sympathetic.

Proof. We determine the multiplication table for h using that h is nilpo-
tent. Suppose that h = Vm⊕Vp⊕Vk. Since h is a nilpotent subalgebra,
Z(h) = Vm ⊕ Vp ⊕ Vk or Z(h) = Vp ⊕ Vk imply [h, h] ⊂ Z(h) and, by
Proposition 3.9, the conclusion of Theorem 3.12 holds.

Assume that Z(h) = Vk and notice that h2 = [h, h] 6= h. Now, by
Proposition 3.9 if h2 = Z(h) = Vk then g is not sympathetic. As a
result, h2 must be equal to exactly two simple gL-modules

h2 = [h, h] = Vp ⊕ Vk, and h3 = Vk = Z(h).

The first equation implies that [Vm, Vm] = Vp whereas the second im-
plies that [Vm, Vp] = Vk. From this follows,

0 = [Vm, [Vm, Vp]] + [Vm, [Vp, Vm]] + [Vp, [Vm, Vm]]

= [Vm, Vk] + [Vm, Vk] + [Vp, Vp]

= [Vp, Vp].
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Therefore the only possible multiplication is given by

[, ] Vm Vp Vk

Vm Vp Vk 0
Vp Vk 0 0
Vk 0 0 0

Notice that, by Proposition 3.5, the derivation D|gL ≡ 0, D|Vm
=

1
2
Id |Vm

, D|Vp
= Id |Vp

and D|Vk
= 3

2
Id |Vk

is an outer derivation. �

3.1.3. Case s(g) = 4. A consequence of Theorem 3.12 is the following.

Theorem 3.13. If g is a sympathetic Lie algebra, then s(g) ≥ 4.

Now we are interested in determining all the possible multiplicative
structures of nilpotent Lie algebras h in the case when s(g) = 4, i.e.
h = Vn ⊕ Vm ⊕ Vp ⊕ Vk.

Theorem 3.14. Suppose that g = gL ⋉ h is a perfect Lie algebra with
simple Levi subalgebra gL, h = Vn ⊕ Vm ⊕ Vp ⊕ Vk and Z(h) = Vk. The
algebra structure of h is completely determined by one of the following

(1) [h, h] = Z(h) or,
(2) if [h, h] = Vm ⊕ Vp ⊕ Vk, then

[, ] Vn Vm Vp Vk

Vn Vm Vp Vk 0
Vm Vp Vk/0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

(3) or if [h, h] = Vp ⊕ Vk, then

[, ] Vn Vm Vp Vk

Vn Vp/Vk/0 Vp Vk 0
Vm Vp Vp/Vk/0 Vk 0
Vp Vk Vk 0 0
Vk 0 0 0 0

[, ] Vn Vm Vp Vk

Vn Vp/Vk/0 Vp Vk 0
Vm Vp Vk/0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0
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[, ] Vn Vm Vp Vk

Vn Vp 0 Vk 0
Vm 0 Vk 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

[, ] Vn Vm Vp Vk

Vn Vp Vk Vk 0
Vm Vk Vk/0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

Proof. Suppose that [h, h] 6= Z(h). Since g is perfect, h is nilpotent and
therefore

h ) [h, h] = h2 ) h3 ) · · · .

As a consequence, [h, h] must be the sum of at most 3 simple modules
and, by hypothesis, [h, h] can only contain 2 or 3 simple modules.

(1) First suppose that h2 = Vm ⊕ Vp ⊕ Vk and h3 = Vp ⊕ Vk y h4 =
Vk = Z(h).

From

Vm ⊂ h2, Vm 6⊂ h3 = Vp ⊕ Vk

follows that [Vn, Vn] = Vm. Using that

[h, h2] = [Vn ⊕ Vm ⊕ Vp, Vm ⊕ Vp] = Vp ⊕ Vk

together with

[h, h3] = [Vn ⊕ Vm ⊕ Vp, Vp] = Vk = Z(h)

we conclude that

[Vp, h
2] = 0 and [Vn, Vp] = Vk

Hence the possible multiplicative structure of h is described in the

following table.

[, ] Vn Vm Vp Vk

Vn Vm Vp/Vk/0 Vk 0
Vm Vp/Vk/0 Vp/Vk/0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

(1.a) Assume that [Vn, Vm] = Vp. Then

0 = [Vm, [Vn, Vm]] + [Vn, [Vm, Vm]] + [Vm, [Vm, Vn]] = [Vn, [Vm, Vm]]
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and thus [Vm, Vm] ⊆ Vk. In this case, the possible multiplication table
is given by

[, ] Vn Vm Vp Vk

Vn Vm Vp Vk 0
Vm Vp Vk/0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

(1.b) By a similar argument to the previous case, if [Vn, Vm] = Vk, then
[Vm, Vm] = Vk/0.

[, ] Vn Vm Vp Vk

Vn Vm Vk Vk 0
Vm Vk Vk/0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

However, this is impossible as we are assuming h2 decomposes into 3
simple modules.

(1.c) Now suppose that [Vn, Vm] = 0. In this case the possible multi-
plication table is

[, ] Vn Vm Vp Vk

Vn Vm 0 Vk 0
Vm 0 Vp/Vk/0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

Since we are assuming that h2 = Vm ⊕ Vp ⊕ Vk, we have [Vm, Vm] = Vp.

Therefore

0 = [Vn, [Vm, Vm]] + [Vm, [Vm, Vn]] + [Vm, [Vn, Vm]]

= [Vn, [Vm, Vm]] = Vk = Z(h),

and, in consequence, this case is impossible.
(2) Now suppose that h2 = Vp⊕Vk. Since h is nilpotent and Vp 6= Z(h),
we have [h, Vp] 6= Vp, 0 and therefore

h3 = [h, h2] = [h, Vp] = Vk.

Hence we may assume [Vn, Vp] = Vk without loss of generality.
Since Vp ⊂ [h, h], Vp = [V,W ] for some V,W = Vn, Vm.

0 = [Vp, [V,W ]] + [V, [W,Vp]] + [W, [Vp, V ]] = [Vp, Vp].
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In summary, the possible multiplication table of h is of the form,

[, ] Vn Vm Vp Vk

Vn Vp/Vk/0 Vp/Vk/0 Vk 0
Vm Vp/Vk/0 Vp/Vk/0 Vk/0 0
Vp Vk Vk/0 0 0
Vk 0 0 0 0

(2.a) Suppose that [Vm, Vp] = Vk. In this case we have that [Vn, Vm] =
Vp. Otherwise, [Vn, Vm] = Vk/0 implies

0 = [[Vn, Vm], Vn] + [[Vm, Vn], Vn] + [[Vn, Vn], Vm] = [[Vn, Vn], Vm],

and

0 = [[Vm, Vn], Vm] + [[Vn, Vm], Vm] + [[Vm, Vm], Vn] = [[Vm, Vm], Vn].

Hence [Vn ⊕ Vm, Vn ⊕ Vm] ⊂ Vk, contradicting the fact Vp ⊂ [Vn ⊕
Vm, Vn ⊕ Vm].
In this case, the multiplication table is

[, ] Vn Vm Vp Vk

Vn Vp/Vk/0 Vp Vk 0
Vm Vp Vp/Vk/0 Vk 0
Vp Vk Vk 0 0
Vk 0 0 0 0

(2.b) Now suppose that [Vm, Vp] = 0. Then

0 = [[Vm, Vn], Vm] + [[Vn, Vm], Vm] + [[Vm, Vm], Vn]

= [[Vm, Vm], Vn].

This implies that [Vm, Vm] = Vk/0. Since Vp ⊂ [h, h], either Vp =
[Vn, Vm] or Vp = [Vn, Vn]. In the first case, the following possible multi-
plication table is given by

[, ] Vn Vm Vp Vk

Vn Vp/Vk/0 Vp Vk 0
Vm Vp Vk/0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0
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If Vp 6= [Vm, Vn], then using the fact that Vm 6= Z(h), we obtain two
possible multiplicative structures

[, ] Vn Vm Vp Vk

Vn Vp 0 Vk 0
Vm 0 Vk 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

[, ] Vn Vm Vp Vk

Vn Vp Vk Vk 0
Vm Vk Vk/0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

�

Corollary 3.15. Let g = gL ⋉ h be a perfect Lie with simple Levi
subalgebra gL and such that h = Vn ⊕ Vm ⊕ Vp ⊕ Vk, Z(h) = Vk. If
[h, h] = Vm ⊕ Vp ⊕ Vk, then g admits semisimple outer derivations.

Proof. By Proposition 3.5, any derivation of the form

D|gL ≡ 0, D|Vn
=

λ

4
IdVn

, D|Vm
=

λ

2
IdVm

,

D|Vp
=

3λ

4
IdVp

, D|Vk
= λ IdVk

,

with λ 6= 0 is an outer derivation. �

Corollary 3.16. Let g = gL ⋉ h be a perfect Lie such that h = Vn ⊕
Vm ⊕ Vp ⊕ Vk, Z(h) = Vk and [h, h] = Vp ⊕ Vk. Then g has semisimple
outer derivations, if the multiplicative structure of h is isomorphic to
one of the following.

(1)
[, ] Vn Vm Vp Vk

Vn Vp/0 Vp Vk 0
Vm Vp Vp/0 Vk 0
Vp Vk Vk 0 0
Vk 0 0 0 0

(2)
[, ] Vn Vm Vp Vk

Vn Vp/Vk/0 Vp Vk 0
Vm Vp 0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0
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(3)

[, ] Vn Vm Vp Vk

Vn Vp 0 Vk 0
Vm 0 Vk 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

(4)

[, ] Vn Vm Vp Vk

Vn Vp Vk Vk 0
Vm Vk 0 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

Proof. To show the existence of outer derivations, we now define deriva-
tions satisfying Proposition 3.5 in each of the above cases. As in Propo-
sition 3.5, we will take D|gL ≡ 0 in each of the cases.

For the first case consider

D|Vn⊕Vm
=

λ

2
IdVn⊕Vm

, D|Vp
= λ IdVp

, D|Vk
=

3λ

2
IdVk

with λ 6= 0. In the second case, define D as before if [Vn, Vn] = Vp.
Otherwise, set

D|Vm
≡ 0, D|Vn⊕Vp

=
λ

2
IdVn⊕Vp

, D|Vk
= λ IdVk

with λ 6= 0. For the third case define

D|Vn
=

λ

2
IdVn

, D|Vm
=

3λ

4
IdVm

, D|Vp
= λ IdVp

D|Vk
=

3λ

2
IdVk

with λ 6= 0. Finally, set

D|Vn
=

λ

2
IdVn

, D|Vm⊕Vp
= λ IdVm⊕Vp

D|Vk
=

3λ

2
IdVk

with λ 6= 0 for the fourth case. �

Proposition 3.17. Suppose that g = gL⋉h is a Lie algebra with simple
Levi subalgebra gL such that h = Vn⊕Vm⊕Vp⊕Vk, as a gL-module. If
g is sympathetic, then there exist two gL-modules, say Vp and Vk, such
that [h, h] = Vp ⊕ Vk and Z(h) = Vk. Moreover, up to isomorphism,
the multiplicative structure of h must be given by one of the 6 following
tables.
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(1)

[, ] Vn Vm Vp Vk

Vn Vp Vp Vk 0
Vm Vp Vk Vk 0
Vp Vk Vk 0 0
Vk 0 0 0 0

(2)

[, ] Vn Vm Vp Vk

Vn Vk Vp Vk 0
Vm Vp 0 Vk 0
Vp Vk Vk 0 0
Vk 0 0 0 0

(3)

[, ] Vn Vm Vp Vk

Vn Vk Vp Vk 0
Vm Vp Vk Vk 0
Vp Vk Vk 0 0
Vk 0 0 0 0

(4)

[, ] Vn Vm Vp Vk

Vn Vp Vp Vk 0
Vm Vp Vk 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

(5)

[, ] Vn Vm Vp Vk

Vn Vk Vp Vk 0
Vm Vp Vk 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

(6)

[, ] Vn Vm Vp Vk

Vn Vp Vk Vk 0
Vm Vk Vk 0 0
Vp Vk 0 0 0
Vk 0 0 0 0

Proof. First notice that if Z(h) = h or if Z(h) = Vm ⊕ Vp ⊕ Vk, then
[h, h] ⊂ Z(h) and by Proposition 3.9 g is not sympathetic. If Z(h) =
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†
AND G. SALGADO

‡

Vp ⊕ Vk, then similar arguments to those in Theorem 3.12 show that g
is not sympathetic.

Since g is sympathetic, then g is perfect and therefore the Lie alge-
bra structure of h is one of the multiplications given in Theorem 3.14.
Proposition 3.9 implies that, either [h, h] = Vp ⊕ Vk, or [h, h] = Vm ⊕
Vp ⊕ Vk. Given that g does not contain any outer derivations, Corol-
lary 3.15 implies that [h, h] = Vp⊕Vk. For the same reason, the possible
multiplicative structures of h in Theorem 3.14 (Item 3) must exclude
those listed in Corollary 3.16. �

3.2. Sympathetic Lie algebras with simple Levi subalgebra
gL 6= sl2(C).

Theorem 3.18. Suppose that g = gL ⋉ h is a sympathetic Lie algebra
with simple Levi subalgebra gL, gL 6= sl2(C) and h does not contain any
trivial gL-modules. Then dim(g) > 25.

Proof. In this proof we use several standard results from representa-
tion theory, which can be found for example in [4]. A simple cal-
culation shows that, if gL 6= sl3(C), sl4(C), so(5), then dim(g) ≥ 21.
By Theorem 3.13, the decomposition of h into simple gL-modules has
at least 4 modules. By Proposition 3.2, since h does not contain
any trivial modules, we obtain a lower bound dim(h) ≥ 8. Hence,
dim(g) ≥ 21 + 8 = 29, as required.

Next we prove the statement for the 3 remaining cases. First suppose
that gL = sl4(C), so(5). In this case, dim(gL) = 15 and any non trivial
simple gL-module has dimension at least 4. Using Theorem 3.13 we
get a bound on the dimension of g,

dim(g) ≥ 15 + 4 · 4 = 31.

Finally, suppose that gL = sl3(C). Let V(a1,a2) denote the simple sl3(C)-
module of highest weight (a1, a2). It is a standard result that

dim(V(a1,a2)) =
1

2
(a1 + 1)(a2 + 1)(a1 + a2 + 2).

Notice that V(0,1) and V(1,0) are the non-trivial simple gL-modules with
lowest dimension and dim(V(1,0)) = dim(V(0,1)) = 3. We show that if
the gL-module decomposition of h is of the form h = V r

(1,0)⊕V s
(0,1), then

g cannot be a sympathetic Lie algebra. Assume h = V r
(1,0) ⊕ V s

(0,1) as
gL-modules, and set h(1,0) = V r

(1,0) and h(0,1) = V s
(0,1).
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From the tensor product decompositions

V(1,0) ⊗ V(1,0) = V(2,0) ⊕ V(0,1)

V(0,1) ⊗ V(0,1) = V(0,2) ⊕ V(1,0)

V(1,0) ⊗ V(0,1) = V(1,1) ⊕ V(0,0),

we see that

[h(1,0), h(1,0)] ⊂ h(0,1), [h(1,0), h(0,1)] = 0, [h(0,1), h(0,1)] ⊂ h(1,0).

For any two simple modules A,B ⊂ h, [A,B] = C 6= 0 if, and only
if, A,B ⊂ h(1,0) or A,B ⊂ h(0,1). Let A,B ⊂ h be simple modules
satisfying [A,B] = C 6= 0 and suppose, without loss of generality, that
A,B ⊂ h(1,0) and thus C ∈ h(0,1). Since [B,D] = [A,D] = 0 for any
D ∈ h(0,1), we have

0 = [[A,B], D] + [[B,D], A] + [[D,A], B] = [C,D].

Therefore C ⊂ Z(h) and, more generally, we have [h, h] ⊂ Z(h). By
Proposition 3.9, g is not a sympathetic Lie algebra. As a consequence
of this, h must contain at least one simple gL-module with dimension
strictly greater than 3. The smallest possible such simple modules are
V(1,1), V(2,0) and V(0,2) with dim(V(1,1)) = dim(V(0,2)) = dim(V(2,0)) = 6.
Using this and Theorem 3.13 we obtain a lower bound

dim(g) = dim(gL) + dim(h) ≥ 8 + 3 · 3 + 6 = 23.

In particular, if s(g) ≥ 5 and g is a sympathetic Lie algebra, then
dim(g) > 25. Hence a Lie algebra g with dim(g) ≤ 25 is sympathetic
if, and only if, h decomposes exactly into 4 simple modules: one of
dimension 6, and three of dimension 3. We will show that g cannot
have this structure.

We will only prove the case where V(1,1) is contained in the decomposi-
tion of h, as the other cases are similar. Recall that the algebra struc-
ture of h is one of the multiplications determined in Proposition 3.17.
We use the following decompositions of tensor products

V(1,1) ⊗ V(1,1) = V(2,2) ⊕ V(3,0) ⊕ V(0,3) ⊕ V(0,0)

V(1,1) ⊗ V(1,0) = V(2,1) ⊕ V(1,0) ⊕ V(0,2),

V(1,1) ⊗ V(0,1) = V(1,2) ⊕ V(0,1) ⊕ V(2,0).

Notice that

V(1,0) ( V(1,1) ⊗ V(1,1), V(0,1) ( V(1,1) ⊗ V(1,1),

implies [V(1,1), V(1,1)] = 0. Therefore, if the multiplicative structure of
h is isomorphic that of tables 1,3-6, then V(1,1) = Vp, Vk; and V(1,1) =
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Vm, Vp, Vk otherwise. The fact that

V(1,1) ( V(1,0) ⊗ V(1,0), V(1,1) ( V(0,1) ⊗ V(0,1),

implies V(1,1) 6= [V(0,1), V(0,1)] and V(1,1) 6= [V(1,0), V(1,0)]. In consequence,
V(1,1) 6= Vk and the algebra structure of h cannot be isomorphic to
tables 1,3,4,6. In tables 2 and 5, V(1,1) = Vp = [Vn, Vm] implies that
Vn 6∼= Vm. If Vn = V(1,0) then [Vn, Vp] = [V(1,0), V(1,1)] = Vk implies Vk =
V(1,0). However Vk = [Vn, Vn] but this contradicts V(1,0) ( V(1,0)⊗ V(1,0).
Similarly, V(1,1) 6= Vm. �

3.3. Sympathetic Lie algebras with Levi subalgebra gL = sl2(C).
For completeness, we begin this subsection with standard results of the
representation theory of sl2(C).

3.3.1. Irreducible representations of sl2(C). Let

sl2(C) = {A ∈ Mat(2× 2,C) | Tr(A) = 0}

and let
{H = ( 1 0

0 −1 ) , E = ( 0 1
0 0 ) , F = ( 0 0

1 0 )}

be a basis of sl2(C). Notice that sl2(C) is a simple Lie algebra equipped
with the commutator [, ]. Moreover, this choice of basis satisfies

[H,E] = 2E, [H,F ] = −2F, [E, F ] = H.

Denote by Vn to the n+1 dimensional vector space with basis {e0, e1, . . . , en}.
Set e−1 := en+1 := 0. We now recall classical results, which can be
found in [4], [5], [6] or [7].

Proposition 3.19. Let n ∈ N and ρn : sl2(C) → gl(Vn) be the linear
representation given by

• ρn(H)(ei) = (n− 2i)ei,
• ρn(F )(ei) = ei+1,
• ρn(E)(ei) = i(n+ 1− i)ei−1,

for every 0 ≤ i ≤ n. Then

(1) ρn is an irreducible representation of sl2(C),
(2) if ρ : sl2(C) → gl(V ) is an irreducible representation of sl2(C)

with dimV ≥ 1, then there exists n ∈ N such that V = Vn

We will write V0 = C and ρ0 : sl2(C)→ gl(V0) for the trivial represen-
tation ρ0(x) = 0 for every x ∈ sl2(C).

Given any finite dimensional linear representation ρ : sl2(C) → gl(V )
of sl2(C) there is a unique decomposition

V = Vn1
⊕ · · · ⊕ Vnk

.

with dimC V = (n1 + 1) + · · ·+ (nk + 1) for some n1 ≤ n2 ≤ . . . ≤ nk.
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Theorem 3.20 (Clebsh-Gordan). For any n ≥ m,

(2) Vn⊗ Vm ≃
m
⊕

i=0

Vn+m−2i ≃ Vn+m⊕ Vn+m−2⊕Vn+m−4⊕ · · ·⊕Vn−m.

Corollary 3.21. For n = m,

(1) Λ2Vn ≃
⊕[(n+1)/2]

i=1 V(2n+2)−4i,

(2) S2Vn ≃
⊕[n/2]

j=0 V2n−4j,

(3) Vn ⊗ Vn ≃ Λ2Vn ⊕ S2Vn.

Given a Lie algebra g with Levi decomposition g = sl2(C)⋉ h and an
sl2(C)-module decomposition h = Vn1

⊕ · · · ⊕ Vnk
, we define

h0 :=
⊕

{ni| ni≡0 mod 2}

Vni
h1 :=

⊕

{ni| ni≡1 mod 2}

Vni
.

We show that the product in h is Z2-graded:

Lemma 3.22. Let g be a Lie algebra, with Levi decomposition given
by g = sl2(C) ⋉ h and h = h0 ⊕ h1. Then h0 is a subalgebra of h and
[h1, h1] ⊂ h0 and [h1, h0] ⊂ h1. In particular, if [Vni

, Vnj
] = Vnl

then
ni + nj ≡ nl mod 2.

Proof. By the Theorem 3.20, the decompositions

V2n+1 ⊗ V2m+1 = V2(n+m)+2 ⊕ · · · ⊕ V2(m−n)

V2n ⊗ V2m = V2(n+m) ⊕ · · · ⊕ V2(m−n)

only contain simple sl2(C)-modules with p ≡ 0 mod 2.
�

Lemma 3.23. Let g be a Lie algebra with Levi decomposition given by
g = sl2(C)⋉ h. If h = h1, then the radical h is abelian. In particular,
g is not sympathetic.

Proof. Combining Lemma 3.22 with Schur’s Lemma 2.6 we conclude
that any bilinear sl2(C)-equivariant morphism Γ: V2n+1 ⊗ V2m+1 →
V2l+1 is trivial. In particular, the Lie bracket [ , ] : Vn ⊗ Vm → h is
zero for every n,m ∈ {n1, . . . , nk}. By Proposition 3.9, g is not a
sympathetic Lie algebra.

�

Corollary 3.24. Let g be a Lie algebra with Levi decomposition g =
sl2(C)⋉ h and h = h0 ⊕ h1. If h0 ⊂ Z(h), then g is not a sympathetic
Lie algebra.
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Proof. From Clebsh-Gordan’s Theorem 3.20 follows that [h, h] ⊂ Z(h).
By Proposition 3.9, g is not a sympathetic Lie algebra.

�

Corollary 3.25. Let g be a sympathetic Lie algebra with Levi decom-
position given by g = sl2(C)⋉ h and with h = Vn ⊕ Vm ⊕ Vp ⊕ Vk and
Z(h) = Vk. Then n ≡ m ≡ p ≡ k ≡ 0 mod 2. Furthermore, in each
case of Proposition 3.17 the following additional conclusions hold.

(1) p ≡ k ≡ 2 mod 4,
(2) k ≡ 2 mod 4,
(3) p ≡ k ≡ 2 mod 4,
(4) k ≡ 2 mod 4,
(5) p ≡ k ≡ 2 mod 4.

Proof. The fact that n ≡ m ≡ p ≡ k ≡ 0 mod 2 follows directly by
applying Lemma 3.22 on each of the possible multiplicative structures
of h from Proposition 3.17.

To prove the remaining statements, it is sufficient to observe that if
two simple sl2(C)-modules Vr, Vs satisfy Vr = [Vs, Vs] then the skew-
symmetry of the Lie bracket implies that Vr ⊂ Λ2(Vs). Using the
decomposition from Theorem 3.20, we conclude that r ≡ 2 mod 4.

�

Corollary 3.26. Let g be a sympathetic Lie algebra with Levi decom-
position given by g = sl2(C)⋉ h, such that h = Vn⊕ Vm⊕ Vp⊕ Vk, and
Z(h) = Vk. Then dim g = 2N + 1.

Proposition 3.27. Let g be a sympathetic Lie algebra with Levi decom-
position given by g = sl2(C)⋉ h. Suppose that h = Vn ⊕ Vm ⊕ Vp ⊕ Vk,
as an sl2(C)-module, and that Z(h) = Vk, where n,m, p, k ∈ N. If
dim(g) ≤ 25 then one of the following cases must necessarily hold:

• the multiplication is given by one of the tables 1-6 and (n,m, p, k)
equals one of

(4, 4, 2, 6), (4, 6, 2, 6), (6, 4, 2, 6), (4, 4, 6, 2), (6, 4, 6, 2), (4, 6, 6, 2),

(2, 2, 2, 2), (2, 4, 2, 2), (4, 2, 2, 2), (4, 4, 2, 2)

• the multiplication is given by one of the tables 2,3,5 and (n,m, p, k)
equals one of

(4, 4, 4, 6), (2, 2, 4, 2), (2, 4, 4, 2), (2, 6, 4, 2), (4, 2, 4, 2), (4, 4, 4, 2),

(4, 6, 4, 2), (6, 2, 4, 2), (6, 4, 4, 2), (6, 6, 4, 2)
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• the multiplication is given by one of the tables 4,5,6 and (n,m, p, k)
equals one of

(4, 2, 6, 2), (4, 6, 2, 2)

• the multiplication is given by one of the tables 4,5 and (n,m, p, k)
equals one of

(6, 2, 6, 2), (8, 2, 6, 2)

• the multiplication is given by table 2 and (n,m, p, k) equals one
of

(4, 2, 4, 6), (6, 2, 4, 6), (4, 2, 6, 6)

• the multiplication is given by table 5 and (n,m, p, k) equals one
of

(6, 2, 8, 2), (4, 8, 4, 2).

Proof. Using the parity of n,m, k, p found in Corollary 3.25, we write
n = 2a, m = 2b, p = 2c and k = 4d + 2. Recall that the possible
multiplicative structure of h is one of the tables in Proposition 3.17.
Notice that dim(g) = 2(a+b+c+2d)+9 ≤ 25 if and only if a+b+c+2d ≤
8.
We only give the proof for d ≥ 1 as the case d = 0 is very similar. By
Clebsh-Gordan theorem, V4d+2 ( V2 ⊗ V2. In each of the above tables
we see that V4d+2 = [V2a, V2c] and hence a ≥ 2 or c ≥ 2. Similarly, in
tables 1,3,4,5,6,

V4d+2 = [V2b, V2b]

and therefore b ≥ 2. In particular, a+ b+ c ≥ 5. Further, in table 2

V4d+2 = [V2a, V2a] and V4d+2 = [V2b, V2c]

and so a+ b+ c ≥ 5 in this case too. Since we require a+ b+ c+2d ≤ 8
then d = 1 and hence

(3) 5 ≤ a+ b+ c ≤ 6.

In tables 1,4,6, c ≡ 1 mod 2 since [V2a, V2a] = V2c. By similar argu-
ments to before, c ≥ 3 and [V2a, V2a] = V2c imply a ≥ 2 and a+b+c ≥ 7.
Hence c = 1 so that Equation (3) is satisfied. Since [V2a, V2c] = V6, then
a ≥ 2. Then we have a, b ≥ 2, c = 1 and d = 1. In this case, the only
possibilities for h are

Multiplications 1,4,6, d = 1
a b c d h = V2a ⊕ V2b ⊕ V2c ⊕ V4d+2 dim(g)
2 2 1 1 V4 ⊕ V4 ⊕ V2 ⊕ V6 23
2 3 1 1 V4 ⊕ V6 ⊕ V2 ⊕ V6 25
3 2 1 1 V6 ⊕ V4 ⊕ V2 ⊕ V6 25



24 A. L. GARCÍA-PULIDO
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Using the same arguments than before in tables 3 and 5, we obtain
a, b ≥ 2. Therefore, the a, b, c that satisfy Equation (3) are

Multiplications 3,5, d = 1
a b c d h = V2a ⊕ V2b ⊕ V2c ⊕ V4d+2 dim(g)
2 2 1 1 V4 ⊕ V4 ⊕ V2 ⊕ V6 23
2 3 1 1 V4 ⊕ V6 ⊕ V2 ⊕ V6 25
3 2 1 1 V6 ⊕ V4 ⊕ V2 ⊕ V6 25
2 2 2 1 V4 ⊕ V4 ⊕ V4 ⊕ V6 25

For Table 2, we previously showed that a ≥ 2 and either b ≥ 2 or c ≥ 2.
In this case, the possible a, b, c, d are

Multiplication 2, d = 1
a b c d h = V2a ⊕ V2b ⊕ V2c ⊕ V4d+2 dim(g)
2 2 1 1 V4 ⊕ V4 ⊕ V2 ⊕ V6 23
2 3 1 1 V4 ⊕ V6 ⊕ V2 ⊕ V6 25
3 2 1 1 V6 ⊕ V4 ⊕ V2 ⊕ V6 25
2 2 2 1 V4 ⊕ V4 ⊕ V4 ⊕ V6 25
2 1 2 1 V4 ⊕ V2 ⊕ V4 ⊕ V6 23
3 1 2 1 V6 ⊕ V2 ⊕ V4 ⊕ V6 25
2 1 3 1 V4 ⊕ V2 ⊕ V6 ⊕ V6 25

�

Remark 3.28. Notice that any sl2(C)-module h = Vn ⊕ Vm ⊕ Vp ⊕ Vk,
with any choice of multiplicative structure in Proposition 3.17, is an
algebra but not necessarily a Lie algebra.

For the analysis of the remaining cases, we use Lemma 3.29 to show that
most of the cases from Proposition 3.27 are not Lie algebras. Indeed,
given a fixed value of (n,m, p, k), we consider the associated vector
space h and make a choice of gL-equivariant morphisms between the
simple modules of h which is compatible with the respective multipli-
cation prescribed in Proposition 3.27. Recall from Remark 3.4 that in
order to show that h with a prescribed multiplicative structure is not
a Lie algebra, it is necessary to prove that after any non-zero rescaling
of these morphisms, h does not satisfy the Jacobi identity. In other
words, it is necessary to show that any algebra in the family resulting
from the non trivial rescalings does not satisfy the Jacobi identity. The
following Lemma gives us a criterion to show no element of the family
is a Lie algebra.

Lemma 3.29. Let gL be a simple Lie algebra and h = Vn1
⊕ · · · ⊕ Vnk

be a gL-module with Vnj
simple. For every 1 ≤ i ≤ j ≤ k, suppose that
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there is 1 ≤ p ≤ k and a gL-equivariant morphism

Γp
i,j : Vni

⊗ Vnj
→ Vnp

,

such that Γp
i,i is skew-symmetric. Consider the resulting algebra g =

gL ⋉ h, which product [, ] is constructed from the Γp
i,j.

Suppose that

(1) there exist a, b, c ∈ g, such that

[a, [b, c]] = [b, [c, a]] = 0 and [c, [a, b]] 6= 0,

(2) or, there exist 1 ≤ i, j ≤ k and a, b ∈ Vni
c ∈ Vnj

such that

[a, [b, c]] + [b, [c, a]] 6= 0 and [c, [a, b]] = 0,

(3) or there exist 1 ≤ i ≤ k and a, b, c ∈ Vni
that do not satisfy the

Jacobi identity.

Then any algebra g̃ = gL⋉h obtained from non-zero rescaling Γp
i,j does

not satisfy the Jacobi identity.

Proof. The proof of Item 1 is straightforward. Let i, j and a, b, c as in
Item 2. The equation

0 = [c, [a, b]] = Γq
p,m(c⊗ Γp

n,n(a, b))

is homogeneous and therefore satisfied by any rescaling of Γq
p,m,Γ

p
n,n.

Similarly, by definition of [ , ] we have that

[a, [b, c]] + [b, [c, a]] = Γs
n,r(a⊗ Γr

n,m(b, c))− Γs
n,r(b⊗ Γr

n,m(a, c))

= Γs
n,r

(

a⊗ Γr
n,m(b, c)− b⊗ Γr

n,m(a, c)
)

,

is also homogeneous with respect to Γs
n,r,Γ

r
n,m and therefore non-zero

when rescaling.
The proof of Item 3 is very similar. �

Applying the previous lemma to each of the cases listed in Proposi-
tion 3.27 we obtain the following.

Corollary 3.30. Suppose g = sl2(C) ⋉ h is an algebra where h =
Vn ⊕ Vm ⊕ Vp ⊕ Vk is one of the algebras listed in the conclusion of
Proposition 3.27. If g is a Lie algebra then one of the following cases
must necessarily hold

(1) the algebra structure of h is given by table 5 and (n,m, p, k) =
(2, 6, 4, 2), or,

(2) the algebra structure of h is given by table 6 and (n,m, k, p) =
(6, 4, 6, 2), (2, 2, 2, 2) or (2, 4, 2, 2).
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†
AND G. SALGADO

‡

Proposition 3.31. Suppose g = sl2(C) ⋉ h is an algebra where h =
Vn ⊕ Vm ⊕ Vp ⊕ Vk is one of the algebras listed in the conclusion of
Proposition 3.27. The following algebras admit outer derivations.

(1) the multiplication of h is given by table 6 and (n,m, p, k) =
(2, 2, 2, 2), (2, 4, 2, 2),

(2) the multiplication of h is given by table 5 and (n,m, p, k) =
(2, 6, 4, 2).

Theorem 3.32. Let g = gL ⋉ h be a sympathetic, non semisimple Lie
algebra, with simple Levi subalgebra gL and h = Vn ⊕ Vm ⊕ Vp ⊕ Vk, as
a gL-module. Then dim(g) ≥ 25. Moreover, dim(g) = 25 if and only
if (n,m, p, k) = (6, 4, 6, 2) and gL = sl2(C).

Theorem 3.33. Let g = gL ⋉ h be a sympathetic, non semisimple Lie
algebra, with simple Levi subalgebra gL. Then dim(g) ≥ 15.

Proof. The case gL 6= sl2(C) is an immediate consequence of Theo-
rem 3.18.
Suppose gL = sl2(C) and set h = Vn1

⊕ . . . ⊕ Vnk
. By Theorem 3.13,

s(g) = k ≥ 4. Theorem 3.32 gives us the bound for the case s(g) = 4.
Assume that s(g) = k ≥ 5. Since g is sympathetic, Lemma 3.23
implies that ni > 1 for at least one i = 1, . . . , k. In fact, there exist at
least two i, j such that ni, nj > 1. Otherwise, using the notation from
Lemma 3.22, either h0 = Z(h) or g admits an outer derivation similar
to those we constructed before. In consequence, we get the required
bound

dim(g) = 8 +

k
∑

i=1

ni ≥ 15.

�

Theorem 3.34. Let g be a perfect Lie algebra with Levi decomposition
g = sl2(C) ⋉ h and Z(g) = 0. Suppose that h = Vn ⊕ Vm ⊕ Vp ⊕ Vk,
Z(h) = Vk, as sl2(C)-modules, where n,m, p, k ∈ N. If dim(g) < 25
then g is not a sympathetic Lie algebra.

4. Appendix: Algorithmic Construction and Verification

of Sympathetic Lie Algebras

In this section we include the algorithms that we use to construct
and verify particular cases of Lie algebras with Levi subalgebra gL =
sl2(C). Our Python implementation of these algorithms can be found
in https://github.com/winsy17/Sympathetic_Lie_Algebras.

https://github.com/winsy17/Sympathetic_Lie_Algebras
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4.1. Algorithm to construct simple sl2(C)-submodules of Vn ⊗
Vm. This algorithm takes integers n ≥ m ≥ 0 and k as input, and
returns a basis of Vk as a simple submodule of Vn ⊗ Vm. We require
k = n+m− 2r for some 0 ≤ r ≤ m, in order to guarantee that Vk is a
simple submodule of Vn ⊗ Vm (see Theorem 3.20).

We use the notation ei ⊙ fj to indicate an element of the basis of the
respective vector space Vn⊗Vm, S

2(Vn) or Λ
2(Vn). In the case of S2(Vn),

when i 6= j, we use ei ⊙ ej = ei ⊗ ej + ej ⊗ ei and ei ⊙ ei = ei ⊗ ei.
For Λ2(Vn) we use the standard basis ei ⊙ ej = ei ⊗ ej − ej ⊗ ei, where
1 ≤ i < j ≤ n.

Algorithm 1 Finding a basis of Vk as a submodule of Vn⊗Vm, S
2(Vn)

or Λ2(Vn).

1: Input: n ≥ m, k, corresponding to Vn, Vm, Vk;
2: Output: Basis of Vk from decompositions Theorem 3.20, Corol-

lary 3.21
3: Wk := {ei ⊙ fj : (ρn ⊗ ρm)(H)(ei ⊙ fj) = k · (ei ⊙ fj)}
4: Wk+2 := {ei ⊙ fj : (ρn ⊗ ρm)(H)(ei ⊙ fj) = (k + 2) · (ei ⊙ fj)}
5: if Wk+2 = ∅ then
6: uk ←Wk

7: else
8: uk ← Ker(ρn ⊗ ρm)(E)|Wk

9: end if
10: B := {(ρn ⊗ ρm)

j(F )(uk) : j = 0, . . . , k}
11: return B

4.2. Algorithm to construct sl2(C)-equivariant morphisms. This
algorithm receives integers n ≥ m and k as input. If Vk is a simple sub-
module of Vn⊗Vm, then the algorithm returns a matrix corresponding
to a non trivial equivariant morphism Γk

n,m : Vn⊗Vm → Vk. Otherwise,
it returns the zero matrix.

We use [A] to denote the matrix which rows are the elements of an
ordered basis A; Or,s the zero matrix of dimension r×s. In steps 13-21
we construct the matrix I of dimension (n+1)(m+1)× (k+1). With
the exception of an identity submatrix of dimension (k+1)×(k+1), the
matrix I only contains zeros. These zeros correspond to the morphisms

Vr →֒ Vn ⊗ Vm
0
−→ Vk

when r 6= k and

Vk →֒ Vn ⊗ Vm
Id
−→ Vk.
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Algorithm 2 Constructing an sl2(C)-equivariant morphism Γ: Vn ⊗
Vm → Vk.

1: Input: n ≥ m, k, corresponding to Vn, Vm, Vk

2: Output: Matrix associated to Γ in terms of the standard basis of
Vn ⊗ Vm.

3: if Vk is not a simple submodule of Vn ⊗ Vm then
4: return O(k+1),(n+1)(m+1)

5: end if
6: if n = m and 2n− k ≡ 0mod 4 then
7: W = S2(Vn)
8: else if n = m and 2n+ 2− k ≡ 0mod 4 then
9: W = Λ2(Vn)
10: else
11: W = Vn ⊗ Vm

12: end if
13: B = ∅, I = []
14: for all Vr simple submodules of W do
15: B = B ∪ {ur, ρ(F )(ur), . . . , ρ

r(F )(ur)}
16: if r 6= k then
17: I = I + [Or+1,k+1]
18: else
19: I = I + [Idk+1,k+1]
20: end if
21: end for
22: Γ = [B]−1 · I
23: if W = Vn ⊗ Vm then
24: return Γ
25: else if W = S2(Vn) then
26: return Extension of Γ to Vn ⊗ Vm as a symmetric function.
27: else
28: return Extension of Γ to Vn⊗Vm as an antisymmetric function.
29: end if

To reduce the number of calculations when n = m, we use the fact that
Γ: Vn ⊗ Vm → Vk is either symmetric or skew-symmetric, depending
only on 2n− k mod 4. Therefore we restrict our construction of Γ to
the corresponding subspace S2(Vn) or Λ

2(Vn) and extend to Vn⊗Vn by
symmetry or antisymmetry, see Steps 6 -11.
A further optimisation of our algorithm is our implementation of step
22. In order to calculate [B]−1, we order the basis B by decreasing
weights to obtain a block matrix and then calculate the inverses of
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each block. With this process we invert n + m + 1 blocks of size at
most (m+ 1)× (m+ 1) instead of inverting the full matrix, which has
size (n+1)(m+1)×(n+1)(m+1). This gives a significant improvement
in complexity. Indeed, when using the Gauss-Jordan algorithm, which
has complexity O(N3) on the size of the matrix, our optimisation leads
to a complexity of O(m3n) in contrast to the direct calculation that
has complexity O(m3n3).

4.3. Algorithm to calculate Der(g). The input for this algorithm is
the set of adjoint matrices of the basis of g and its output is a matrix
containing a basis of Der(g).

Let e1, . . . , en be a basis for g and adei the associated adjoint to ei. A
linear map D : g → g is a derivation if and only if D = (dr,s)1≤r,s≤n

satisfies

D ◦ adei(ej) = [D(ei), ej] + adei ◦D(ej)

=

n
∑

k=1

dk,i[ek, ej] + adei ◦D(ej)

=

n
∑

k=1

dk,i adek(ej) + adei ◦D(ej)

for every 1 ≤ i, j ≤ n. This identity is equivalent to equality of linear
operators

D ◦ adei =
n

∑

k=1

dk,i adek +adei ◦D,

for all 1 ≤ i ≤ n. Using the adjoint matrices as an input, the above
identities allow us to define a system of linear equations, where D
is the unknown. We then use the isomorphism Cn × Cn ≃ Cn2

to
obtain a basis for the space of solutions of D. That is, we obtain a
set of generators of the vector space Der(g) and as a consequence, its
dimension.

4.4. Algorithm to verify if a vector space is a Lie algebra. Given
candidate structure constants as input, this algorithm verifies if these
are the structure constants of a Lie algebra. That is, it checks the
Jacobi identity.
Using candidate structure constants [ei, ej ] =

∑

k c
i
jkek for 1 ≤ i <

j ≤ n, we first construct associated adjoint matrices adei using the
antisymmetry of a Lie bracket. In our code we verify if the identity

ad[ei,ej ] = adei ◦ adej − adej ◦ adei
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holds for every 1 ≤ i < j ≤ n.

4.5. The sympathetic Lie algebra of dimension 25. In this sec-
tion we present how our algorithms construct, in practice, the isomor-
phisms given by the Weyl and Clebsh-Gordan theorems and Schur’s
lemma. We work with a concrete example: Benayadi’s 25-dimensional
sympathetic Lie algebra.

Consider the vector space V6, generated by {e0, e1, . . . , e6}, and its cor-
responding representation ρ6 : sl2(C) → gl(V6), defined in Proposi-
tion 3.19. By Corollary 3.21 we have a decomposition

Λ2(V6) ≃ V10 ⊕ V6 ⊕ V2. (1)

In order to define an sl2(C)-equivariant morphism between Λ2(V6) and
V6, we use that

Homsl2(C)(Λ
2(V6), V6) ≃ Homsl2(C)(V10 ⊕ V6 ⊕ V2, V6)

≃ Homsl2(C)(V10, V6)⊕ Homsl2(C)(V6, V6)

⊕ Homsl2(C)(V2, V6)

From Schur’s Lemma, it follows that

Homsl2(C)(V10, V6) ≡ Homsl2(C)(V2, V6) ≡ 0,

and hence

Homsl2(C)(Λ
2(V6), V6) ≃ Homsl2(C)(V6, V6) (2).

In order to construct this morphism, it is necessary to obtain the ex-
plicit decomposition from eq. (1), which can be achieved using stan-
dard representation theory: find a basis of highest weight vectors of
Ker(ρ̂6(E)), where ρ̂6 = ρ6 ⊗ ρ6.

Define ei ∧ ej := ei ⊗ ej − ej ⊗ ei. A straightforward calculation shows

Lemma 4.1. dimKer(ρ̂6(E)) = 3, and, Ker(ρ̂6(E)) = 〈e0 ∧ e1,−e0 ∧
e3 + 2e1 ∧ e2, 3e0 ∧ e5 − 5e1 ∧ e4 + 6e2 ∧ e3〉.

Corollary 4.2. Let u10 := e0 ∧ e1, u6 := −e0 ∧ e3 + 2e1 ∧ e2 y u2 :=
3e0 ∧ e5 − 5e1 ∧ e4 + 6e2 ∧ e3. Then

Vi ≃ 〈ui, ρ̂6(F )(ui), . . . , ρ̂6(F )i(ui)〉

for i = 2, 6, 10.

Corollary 4.3. The morphism in Eq. (2) is given by:

• ρ̂6(F )j(u10) 7→ 0, for j = 0, . . . , 10,
• ρ̂6(F )j(u6) 7→ ej for j = 0, . . . , 6,
• ρ̂6(F )j(u2) 7→ 0 for j = 0, 1, 2.
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Corollary 4.3 allows us to define a skew-symmetric sl2(C)-equivariant
morphism Γ6

6,6 : V6 × V6 → V6. To construct Γ6
6,6 : V6 × V6 → V6 we

solve the linear system of equations originating from Corollary 3.21.
For example, it is easy to verify the identities

u6 = −e0 ∧ e3 + 2e1 ∧ e2, and ρ̂6(F )2(u10) = e0 ∧ e3 + e1 ∧ e2.

Thus

−e0 ∧ e3 + 2e1 ∧ e2 7→ e0, e0 ∧ e3 + e1 ∧ e2 7→ 0

In terms of Γ6
6,6 this is equivalent to:

−Γ6
6,6(e0, e3) + 2Γ6

6,6(e1, e2) = e0

Γ6
6,6(e0, e3) + Γ6

6,6(e1, e2) = 0.

From these equations one can easily obtain Γ6
6,6(e0, e3) y Γ6

6,6(e1, e2).
Moreover,

Lemma 4.4. Up to scalar multiples, the only skew-symmetric sl2(C)-
equivariant morphism Γ6

6,6 : V6 × V6 → V6 is given by:

Γ6
6,6 e0 e1 e2 e3 e4 e5 e6

e0 0 0 0 −e0 −2e1 −2e2 −e3

e1 0 e0 e1 0 −e3 −e4

e2 0 e2 e3 0 −e5

e3 0 e4 e5 −e6

e4 0 2e6 0

e5 0 0

e6 0

Analogously, we conclude that Homsl2(C)(Λ
2V6, V2) ≃ Homsl2(C)(V2, V2)

and obtain:

Lemma 4.5. Up to scalar multiples, the only bilinear, skew-symmetric
sl2(C)-equivariant morphism Γ2

6,6 : V6 × V6 → V2 := 〈f0, f1, f2〉 is given
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by:
Γ2
6,6 e0 e1 e2 e3 e4 e5 e6

e0 0 0 0 0 0 f0 3f1

e1 0 0 0 −f0 −2f1 3f2

e2 0 f0 f1 −5f2 0

e3 0 6f2 0 0

e4 0 0 0

e5 0 0

e6 0

Lemma 4.6. Up to scalar multiples, there is a unique bilinear sl2(C)-
equivariant morphism Γ2

6,4 : V6 × V4 → V2 = 〈g0, g1, g2〉 and it is given
by:

Γ2
6,4 f0 f1 f2 f3 f4

e0 0 0 0 0 g0

e1 0 0 0 −g0 g1

e2 0 0 g0 −2g1 g2

e3 0 −g0 3g1 −3g2 0

e4 g0 −4g1 6g2 0 0

e5 5g1 −10g2 0 0 0

e6 15g2 0 0 0 0

One can then extend Γ2
6,4 to a unique bilinear skew-symmetric and

sl2(C)-equivariant morphism

Γ2
(6,4) : (V6 ⊕ V4)× (V6 ⊕ V4)→ V2,

by defining

Γ2
(6,4)|V6×V6

≡ 0, Γ2
(6,4)|V4×V4

≡ 0,
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and

Γ2
(6,4)|V6×V4

= Γ2
6,4 Γ2

(6,4)|V4×V6
= −Γ2

6,4,

where

Γ2
(6,4)(u, w) := −Γ

2
6,4(w, u),

for u ∈ V4, w ∈ V6.

Lemma 4.7. Up to scalar multiples, the only skew-symmetric sl2(C)-
equivariant morphism Γ2

4,4 : V4 × V4 → V2 is given by:

Γ2
4,4 e0 e1 e2 e3 e4

e0 0 0 0 −f0 −2f1

e1 0 f0 f1 −2f2

e2 0 3f2 0

e3 0 0

e4 0

We modified the notation used in Benayadi’s original construction, [3].
Here V6 = D(3), V4 = D(2) and V2 = D(1).

As a vector space, g = sl2(C)⊕ V6 ⊕ V4 ⊕ V6 ⊕ V2 and so dim(g) = 25.
The algebra structure of g is then defined as:

[, ]g sl2(C) V61 V4 V62 V2

sl2(C) [, ]sl2(C) ρ6 ρ4 ρ6 ρ2

V61 Γ62
61,61 Γ2

61,4
Γ2
61,62

0

V4 Γ2
4,4 0 0

V62 0 0

V2 0

Here Γc
a,b : Va × Vb → Vc denotes the unique, up to scalar multiples,

bilinear sl2(C)-equivariant morphism obtained from Schur’s Lemma.
For example, Γ6

6,6 is defined by Lemma 4.4 and we are using the notation
V62 to indicate that projection is onto the second copy of V6.
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Using the algorithm Section 4.1 we are able to explicitly calculate basis
for Λ2V6 and Λ2V4 and therefore establish Lemma 4.4, Lemma 4.6,
Lemma 4.6.

Given the structure constants that we obtained, the algorithm in Sec-
tion 4.4 then verifies that g is indeed a 25-dimensional Lie algebra.

Finally, we use the algorithm 4.3 to explicitly calculate Der(g) and ob-
tain its dimension dimC Der(g) = 25. In this case we know 0 = Z(g) =
Ker(adg) and so dimC ad(g) = 25. Since dimC Der(g) = dimC ad(g), we
can conclude:

Proposition 4.8. Let g be as in the previous construction. Then,

(1) Z(g) = {0},
(2) g = [g, g],
(3) Der(g) = ad(g).

That is, g is a sympathetic Lie algebra.

Proof. Notice that by construction (2) [sl2(C), Vi] = Vi and therefore
g = [g, g]. �

Acknowledgements. ALGP is a member of the Centre for Topolog-
ical Data Analysis funded by the EPSRC grant “New Approaches to
Data Science: Application Driven Topological Data Analysis” number
EP/R018472/1. For the purpose of Open Access, the authors have
applied a CC BY public copyright licence to any Author Accepted
Manuscript (AAM) version arising from this submission. GS would
like to acknowledge the partial support received by CONACyT grant
A-S1-45886 and by PRODEP grant UASLP-CA-228.

References
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