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Abstract

Problem: Aquatic animal health data is often stored in unstructured for-
mats like text and medical images, making large-scale analysis challenging
due to the complexity of processing such data.

Objectives: In this thesis, we aim to develop text mining, signal process-
ing, image processing, andmachine learning techniques to analyse unstruc-
tured data effectively. These methods will enable the aggregation of infor-
mation across large datasets of unstructured aquatic animal health data.

Methodology:
• For text analysis, we have designed an ontology-based framework for
extracting and storing information from aquatic animal post-mortem
reports, with a focus on gross pathology reports. While we initially ap-
plied this framework to marine mammal stranding reports, it can be
adapted for various species and report types.

• For medical image analysis, we have created methods for identifying
and analysing lesions in whole-slide images (WSIs) of Atlantic salmon
gills. Our approach includes a novel feature extraction technique utilis-
ing the empirical wavelet transform, andweenhance context-awareness
by employing a variational autoencoder to identify regions of interest
within histology images.

Achievements: The research resulted in thedevelopment of anontology-
based framework for systematic text extraction and storage from marine
mammal gross pathology reports. We showcased our framework’s perfor-
mance by using it to analyse bottlenose dolphin attacks on harbour por-
poises. Additionally, we created innovative methods for lesion detection in
Atlantic salmon gill whole-slide images, incorporating advanced techniques
such as the empirical wavelet transform, deep learning, and a variational au-
toencoder for context-awareness. These achievements collectively advance
the analysis of unstructured aquatic animal health data, enablingmore com-
prehensive and efficient data processing. At the time of writing, the project
is the only one to apply data-driven approaches to marine mammal post-
mortem reports and gill WSIs.
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Key Terms and Abbreviations
• Pathology- The study of disease.
• Histology- The microscopic study of the cells, tissues, and organs.
• Histopathology- The microscopic study of the disease in cells, tissues,
and organs.

• Lesion- A region of damaged tissue.
• Hyperplasia- Increase in the amount of tissue due to cell proliferation.
• Hypertrophy- A lesion involving an increase in the size of individual cells.
• Epithelium- One of the basic types of tissue. It provides a thin layer of
protection on the surface of many organs.

• Mucous Cells- Cells which produce mucus which protects tissue from
abrasion.

• Capillary- The smallest type of blood vessel that connects arterioles
with venules.
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Abbreviation MeaningAI artificial intelligenceAUC area under curveBDA bottlenose dolphin attackCAD computer-assisted diagnosisCDC Centre of Disease ControlCGD complex gill diseaseCNN convolutional neural networkDT determinerEMD empirical mode decompositionEMR electronic medical recordEWT empirical wavelet transformFCNN fully connected neural networkFFT fast fourier transformFN false negativeFP false positiveGLCM gray-level co-occurrence matrixGMM Gaussian mixture modelGSA grey seal attackH&E hematoylin and eosinJJ adjectiveLBP local binary patternsLP Littlewood-PaleyML machine learningNAD no abnormalities detectedNE not examinedNLTK Natural Language ToolkitNN neural networkNP noun phraseOCR Optical Character RecognitionOD optical densityPCB polychlorinated biphenylsPDF probability density functionPM post-mortemPMI pointwise mutual imformationROC receiver operating characteristicROCO Radiology Objects in ContextROI region-of-interestSMASS Scottish Marine Animal Strandings SchemeSVM support vector machineTN true negativeTP true positiveUMLS Unified Medical Language SystemVAE variational autoencoderVB verbWSI whole slide image
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1 Introduction

1.1 General Context and Motivation

Themedical domain has seen significant advancements in recent years with
the rise of automated analysis methods, particularly machine learning (ML)
[5]. ML has revolutionised how medical data is analysed and interpreted,
improving accuracy and efficiency in diagnosis and treatment planning. This
has paved theway for developing innovative applications and tools that have
significantly improved patient outcomes and revolutionised the healthcare
field [6].

Although artificial intelligence (AI) technologies have been widely imple-
mented in the human medical field [5], there is an opportunity to leverage
its potential in veterinary medicine. By using machine learning algorithms
to analyse legacy data, including post-mortem reports and patient records,
pathologists can gain new insights into animal health and behaviour. These
new insights could lead to interventions or policy changes which could sig-
nificantly impact animal health and welfare, and ultimately benefit the vet-
erinary industry as a whole. [7]

Observing andmonitoring the health andwell-being of a population is es-
sential for identifying factors that may have a significant impact on it. How-
ever, such tasks can be challenging, especially for aquatic animals. Unlike
land animals, observing aquatic creatures in their natural habitat is often
unfeasible, making it harder to keep tabs on their current state of being.

Thankfully, post-mortem (PM) analysis can provide a rare and valuable
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insight into the condition of animals. This is the case for both wild and cul-
tured animals. Monitoring their living state is a difficult task in both cases,
however, PManalysis allows researchers to obtain valuable information that
can help build a greater epidemiological understanding of the population.
By aggregating the data produced from this analysis, researchers can gain
deeper insights into the health and well-being of aquatic animals, even in
the absence of live observation.

Two of the most prevalent methods for storing post-mortem data are
through text, often used for reporting findings and medical images of sam-
ples. By incorporating unstructured modalities such as gross pathology re-
ports andmedical images into epidemiological analysis, a better understand-
ing of the population can be obtained. PM analysis of marine mammals,
such as cetacea and pinnipeds, has already been shown to give an epidemi-
ological understanding of marine mammal populations. Williams et al. [8,9],
for example, have extensively monitored the levels of toxic polychlorinated
biphenyls (PCBs) in harbour porpoises. Human pollution directly affects PCB
levels due to the compound’s use in some manufactured goods. Similarly,
Nelms et al. [10] analysed the presence of microplastics found in stranded
cetacea using PM examinations. These examples show that PM examina-
tions can be used to observe the human impact on marine ecology.

Such analysis methods have also been used to improve the field of aqua-
culture, with PManalysis being used to study phenomena such as antimicro-
bial resistance inmarine-farmed salmon [11] and the impacts of dietary and
environmental changes [12].

Such insights have a significant impact providing several clear motiva-
tions. Some benefits are common to both the marine mammal and aqua-
culture domains:

• EpidemiologicalUnderstanding: The ability to aggregate unstructured
data sources is crucial for effective disease profiling. By collecting and
organising data from various sources, researchers can gain a more
comprehensive understanding of the disease, its progression, and the
factors contributing to its development. The quantification of patho-
logical features can allow for analysing trends and patterns that would
otherwise bedifficult to identify. By examining these trends, researchers
can improve their epidemiological understanding of the disease and
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gain insights into potential treatments or preventative measures. This
analysis can be a powerful tool to help identify risk factors and develop
strategies to reduce disease prevalence, ultimately improving health
outcomes. Thus, these methods can potentially impact disease pre-
vention and management significantly.

• Pathological Understanding: Quantifying the level of pathology in
unstructuredmodalities, particularlymedical images, can offer numer-
ous benefits for pathological understanding, including standardisation,
objectivity, and pathological profiling. Such an approach can provide
a consistent and objective approach to evaluating tissue samples, mak-
ing results comparable and reproducible across different research stud-
ies. Additionally, quantification reduces the potential for subjective in-
terpretations that can be influenced by personal biases.

• Animal Welfare: By analysing unstructured modalities data, stake-
holders can develop targeted interventions to improve environmental
conditions, such as reducing pollutant levels. These interventions can
enhance animal welfare and overall quality of life. For marine mam-
mals, this understanding will typically surround the impact of human
activity on the animal’s health and outcomes, allowing researchers to
study phenomena such as entanglement and bycatch [13].

Some benefits are more specific to the field of aquaculture due to the
field’s commercial nature:

• Sustainability: Improvements to animal welfare and environmental
conditions in aquaculture canpositively impact the surrounding ecosys-
tem. By ensuring that animals are kept in healthy and sustainable
conditions, aquaculture operations can reduce the risk of disease out-
breaks and the need to use antibiotics or other chemicals that can neg-
atively impact the environment [14]. Providing animals with optimal
conditions for growth and health can reduce the amount of waste pro-
duced, leading to more efficient utilisation of time and resources.

• Food Security: By analysing trends and patterns in the health of an-
imal populations, stakeholders can identify potential risks and imple-
ment interventions to prevent disease outbreaks or other health-related
events that could disrupt the supply chain. This is especially pertinent
given the impact that climate change will have on food security across
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the board [15], and the important role that aquaculture is going to play
in ensuring food security, given that 178 million tonnes of aquatic an-
imals was produced globally in 2020 and has been steadily increasing
over the last 50 years [16].

1.2 Aim and Objectives

The main objective of this project is to develop data-driven methods to ex-
tract and aggregate information from unstructured data and develop novel
methods that allow for statistical analysis across multiple data modalities.
The primary aim is to develop tools that support understanding aquatic an-
imals’ health and condition by considering various data sources, including
unstructuredmodalities such as medical images and free-text pathology re-
ports, which may be used alongside structured fields such as date and loca-
tion in future. Data produced by these methods can provide a comprehen-
sive and accurate analysis of animal health, which could provide valuable
insights for researchers and stakeholders in animal health domains.

This project has two primary objectives:
• Todevelop an information retrieval framework for aquatic animal gross
pathology free text reports to demonstrate the value of automating the
analysis of pre-existing necropsies.

• To create novel computer vision methods to extract lesion data from
aquatic animal medical images.

1.3 Contributions

The main contributions of this work are:
• The analysis of literature relating to information retrieval techniques
for biomedical texts.

• The analysis of literature relating to automated analysis of histology
slide images, particularly those relating to fish tissue.

• The development of an ontology-driven information retrieval frame-
work known as Ir-Man.
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• A demonstration of Ir-Man’s performance by applying the framework
to harbour porpoise gross pathology reports.

• The development of an automated approach for quantifying a lesion
knownashyperplasia in Atlantic salmon in gillWhole-Slide Images (WSIs).

• The development of a novel empirical wavelet-based method for fea-
ture extraction, which uses probability density functions to generate
features.

• A proof-of-concept tile-based dataset produced using a sliding window
approach for hyperplasia severity classification.

• A region-of-interest classification component that utilises variational
autoencoder (VAE) based anomaly detection.

• Metrics for hyperplasia prevalence in gill histology images.
• Heatmap visualisations based on the metrics provided by our models.
• A comparison of the metrics generated by our approach to manually
annotated scores generated by expert histopathologists.

1.4 Research Questions

To fulfil the aims and objectives of this project, several research questions
have been identified:

• How should we develop robust text mining techniques for extracting mean-
ingful information from aquatic animal post-mortem texts?

• What methods already exist for the automated analysis of aquatic animal
histology images?

• What image processing techniques should be developed for the automated
analysis of aquatic animal histology images?

• How well do the models developed in this project perform compared to
expert histopathologists?

1.5 Thesis Organisation

Chapter 2provides background information on themarinemammal strand-
ings and aquaculture domains, with an initial focus on the current states of
the domains and some context information on the domain terms used in
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the project. The latter section of the chapter discusses how AI and other
automated methods are currently used to analyse aquatic animal health.

Chapter 3 is a state-of-the-art analysis of automated information retrieval
methods in text and imaging. This involves a comprehensive study of tech-
niques such as text mining and its application in biomedical texts, particu-
larly those in clinical settings and in the context of post-mortem analysis.
The chapter then discusses how anomaly detection methods are currently
applied in medical imaging, particularly those which incorporate variational
autoencoders. Lastly, the state-of-the-art chapter discusses signal decom-
position methods and their application in the medical imaging domain.

Chapter 4 describes the framework developed to extract relevant infor-
mation frommarinemammal gross pathology reports. We describe the lan-
guage used in these reports before outlining how we use tailor-made on-
tologies as a guideline for extracting observations pertaining to anatomical
entities. We then demonstrate the effectiveness of our approach on a use
case involving bottlenose dolphin attacks on harbour porpoises.

Chapter 5 lists and describes the image datasets used in Chapters 6, 7,
and 8.

Chapter 6 provides an overview of our strategy for hyperplasia analy-
sis in Atlantic salmon gill whole-slide images. We formulate the problem
as a classification task and outline our preprocessing steps, which include
stain normalisation techniques. Next, we describe our innovative approach
to feature engineering, which involves generating parametric features from
subband images generated via Empirical Wavelet Transforms. Additionally,
we cover the training and evaluation of multiple models, incorporating both
this method and established deep learning techniques.

Chapter 7 improves upon the context-agnostic approach introduced in
Chapter 6 by eliminating irrelevant regions that do not contribute to the hy-
perplasia analysis task. We achieve this by treating these irrelevant regions
as anomalous tissue, thereby enabling the utilisation of anomaly detection
techniques based on variational autoencoders.

Chapter 8 assesses the efficacy of various elements within our image
processing pipeline by contrasting the scores it generateswith those derived
fromexpert histopathologists, which serve as representations of globalwhole-
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slide imagehyperplasia scores. We investigate potential aggregationmetrics
and create visualisations to facilitate a detailed discussion of our model’s
performance.

In Chapter 9 begins with a discussion of the key findings from our re-
search and their implications for industry, policy, and future research. We
then address the limitations of our methods and analysis, providing recom-
mendations for further research in the field.

Chapter 10 offers a summary of the thesis’ work and formally presents
the recommendations for future research in the domain, building upon the
suggestions outlined in the preceding chapter.
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2 Background

Post-mortem analysis has been a valuable tool in supporting our under-
standing of anatomy and pathology for centuries. The practice dates back to
ancient times, with the earliest recorded autopsies performed by the Greek
physician Galen of Pergamon (131-200 BC) [17]. Galen was a pioneer in
anatomy and pathology research and made significant contributions to our
knowledge of the human body. He was the first to establish a connection
between the ailments described by patients and the diseased organs discov-
ered during post-mortem observations. Galen’s findings provided essential
insights into the causes of disease and helped shape the development of
medical knowledge. In the centuries that followed, post-mortem analysis
became an increasingly common practice in medicine, providing valuable
information on the structure and function of organs and the effects of dis-
ease on the body [18].

Post-mortem analysis of animals (also known as a necropsy) was likely
first performed for practical purposes, such as determining which organs
of an animal were safe for consumption. Later work by Galen and other
physicians, such as Herophilus and Erasistratus, would lead to significant
advances in comparative anatomy and helped establish the basic principles
ofmodern veterinarymedicine [18]. Performing necropsies and aggregating
the findings has also provided valuable information on the prevalence and
spread of diseases in animal populations, allowing for improved diagnosis
so that stakeholders can better mitigate disease and protect both animal
and human health.

In this chapter, we will first describe the domains of marine mammal
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strandings and gill health with a focus on applications in aquaculture. The
selection of these two groups is based on their distinctive features, includ-
ing the challenges they present regarding epidemiological surveillance and
the availability of underutilised post-mortem data. By exploring these sub-
domains, this study seeks to advance our knowledgeof aquatic animal health
and contribute to developing novel techniques for both images and texts
as tools to support diagnosis. We will then explore the current challenges
facing aquatic animal health and the traditional methods for gaining epi-
demiological understanding. These conventional methods include study-
ing disease prevalence and mortality rates in wild populations and under-
lying causes of premature death in aquaculture. We will also address recent
technological advances and the increasing availability of high-quality data
that have led to the development of state-of-the-art methods for studying
aquatic animal health. Lastly, we will identify new potential areas where ap-
plying state-of-the-art techniques (including datamining andmachine learn-
ing) could significantly impact.

2.1 An Overview of Aquatic Animal Health

The primary focus of this research is to explore the potential of automation
in enhancing pathological and histological analysis in aquatic animal health.
The study will utilise advanced computational tools and cutting-edge tech-
nologies to investigate how automation can revolutionise these critical do-
mains. This research’s findings will help enhance our ability to monitor and
diagnose aquatic animal diseases in real time, leading to better disease con-
trol and prevention.

It is essential to note that the techniques developed and described in this
thesis are not limited to marine mammals and farmed fish but can be ap-
plied in other areas of medicine and fisheries contexts. Thus, this study has
the potential to contribute to the broader field of animal health by introduc-
ing innovative approaches to pathological and histological analysis.
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2.1.1 Marine Mammal Strandings

The collection andorganisation of data frommarine animal stranding events
in Scotland are carried out by the Scottish Marine Animal Stranding Scheme
(SMASS). A stranding event iswhenoneormoremarine animals beach them-
selves on a shore or in shallow waters. These events can occur for various
reasons, such as illness, injury, disorientation, or confusion caused by noise
pollution or changes in the ocean’s temperature, among other factors. In
many cases, stranding events are fatal for the animal(s) involved. One of
SMASS’s primary focuses is the post-mortem (PM) analysis of stranded ma-
rine mammals. Although SMASS documents many species, including bask-
ing sharks andmarine turtles, theirwork predominantly dealswith cetaceans
(such as harbour porpoises, bottlenose dolphins, andwhales) and pinnipeds
(seals).

When a deceased, stranded animal is subjected to PManalysis, a detailed
report is produced which provides an in-depth description of the analysis
carried out and the animal’s condition. Typically, these reports contain con-
clusions about the animal’s cause of death. PM reports are semi-structured,
with both structured and unstructured free text fields. In this work, the
terms unstructured text, and free text are used synonymously. The struc-
tured fields are described in Tables 2.1 and 2.2. Figure 2.1 shows the first
page of an example PM report.

Current Data Science Applications in Marine Animal Health

As with many other fields, analysis of marine mammal health is seeing a
significant rise in the development of data science-based methods due to
the advancements in, and increasing availability of deep learning and other
computer vision techniques.

Aditya Jyoti Paul et al. conducted an in-depth analysis of recent advance-
ments in the detection and identification of several sea turtle species using
cutting-edge computer vision techniques. They identified a number of CNN
methods employing a variety of imaging types, including those obtained by
aerial drones and autonomous underwater vehicles [19].

In 2019, Fretwell et al. performed a case study where they used satellite
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Field Description

NATIONAL REFERENCENUMBER
A national referencing system is used across theUK.Each stranding PM report has a unique referencenumber.

POST MORTEM NUMBER A unique reference number used within the SMASSsystem.
HISTOLOGY NUMBER A unique reference number identifying ahistopathology report (where one exists).
SPECIES Taxonomic to which the animal belongs. May be inEnglish or Latin.
SEX The sex of the animal. May also identify if the animalis pregnant.
AGE GROUP A general description of the animals age (e.g. ’juve-nile’, ’adult’)DATE FOUND The date that the animal is reported to SMASS
LOCATION FOUND The name of the approximate location that the ani-mal was found.
NATIONALGRIDNUMBER A national grid reference coordinate identifying theanimal’s exact location.DATE OF POST-MORTEM The date that PM analysis was performed.
PATHOLOGIST The investigator(s) responsible for analysis and pro-duction of the PM report.
MORPHOMETRIC MEA-SUREMENTS

Multiple fields which describe different morphome-tric features of the animal, including length, girthand blubber thickness. Also includes the animal’sweight and whether the animal was frozen for PManalysis.
BODY CONDITION CODE A code which describes the overall carcass condi-tion. This is impacted by the level of autolysis andthe presence of scavenger damage.CAUSE OF DEATH The likely ultimate or proximal cause(s) of death.

Table 2.1: Structured fields used in SMASS PM reports.
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Figure 2.1: The first page of an example SMASS PM report. General struc-tured information is shown, while unstructured and semi-structured text isshown on later pages.
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Field Description

GROSS PATHOLOGY REPORT A report describing the characteristics of thebody as a whole, as well as different anatomi-cal parts of the carcass.
BACTERIOLOGY REPORT A report of the results of a bacteriological ex-amination of any samples taken.
HISTOPATHOLOGY REPORT

A report of the histopathological examinationof tissue samples taken from the carcass. Eachtissue region tends to be described in isola-tion.
OBSERVATIONS/COMMENTS A general summary of the findings of the PManalysis.

Table 2.2: Unstructured fields used in SMASS PM reports.
imagery to detect stranded whales in Chile. They evaluated both manual
and automated methods and recommended that future work in the field
should involve machine learning methods.

Despite the recommendations of Fretwell et al., a review in 2022 found
that there are still significant gaps in the fieldwithmost automated detection
methods focussing on baleen whales and pinnipeds [20].

With regard to text mining of marine mammal data, very little work cur-
rently exists. A 2021 study by Coram et al. analysed facebook posts using
simple keyword search-based methods to analyse the impact of litter on
cetaceans in Southeast Asia [21]. This work was later criticised by Peter et al.
for only using a few keywords on one socialmedia platform, and for focusing
on English text, meaning that the conclusions reachedwere flawed [22]. This
highlights the need for more advanced data analysis methods and careful
text selection from which we gain our conclusions.

2.1.2 Aquaculture

Aquaculture is the practice of growing aquatic organisms under controlled
conditions, including fish, shellfish, algae, and plants. Aquaculture is a signif-
icant and growing sector in Scotland that produces food, jobs, and exports.
The main aquaculture product in Scotland is Atlantic salmon, the with Scot-
land being the third largest producer in the world and the country’s top food
export [23]. Other finfish species in Scotland, such as rainbow trout, halibut,
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and cleaner fish, are farmed in the sea, whereas shellfish, such as mussels,
oysters, and scallops, are cultivated along the coastline. There is also poten-
tial for seaweed farming, which can offer various benefits such as biofuels,
pharmaceuticals, and fertilisers [24]. This section describes the challenges
currently faced by the domain and provides context for some of the domain
terminologies and concepts used throughout this thesis. Lastly, a brief de-
scription of the data sources is provided.

Current Challenges for Aquaculture

As with many industries associated with food security, aquaculture in Scot-
land and globally, faces a wide variety of challenges:

• Environmental impacts: Aquaculture can impact the freshwater and
marine ecosystems’ health, biodiversity, and water quality. [25] For in-
stance, finfish farms’ waste, chemicals, and parasites can harm wild
fish and other organisms. Shellfish farms can also change the physical
and biological characteristics of the seabed. Stakeholdersmust adhere
to strict regulations and guidelines to minimise and manage their en-
vironmental effects.

• Climate change: Due to factors like rising ocean temperatures, acidi-
fication of the ocean, extreme weather, and disease outbreaks, aqua-
culture is susceptible to the effects of climate change [26]. These in-
crease the dangers of escapes and interactions with wild populations
while also impacting aquaculture species’ growth, survival, and health.
Aquaculture also adds to greenhouse gas emissions through its use of
energy, feed, and transportation. Aquaculture must adapt to climate
change and reduce carbon emissions to ensure its sustainability. [27]

• Social and economic factors: Providing a skilled and sufficient work-
force, adequate infrastructure and services in rural areas, upholding
high standards for animal welfare and product quality, satisfying con-
sumer demandandpreferences, competingwith other sectors for space
and resources, and adjusting to market fluctuations and uncertainties
are just a few of the challenges faced by aquaculture [28].
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Histology Overview

Aswithmany other image processing and computer vision tasks, automated
histology analysis usually consists of classification, detection and segmenta-
tion tasks. Classification tasks typically involve Computer Assisted Diagnosis
(CAD) of pathologies such as tumours. Detection tasks in the context of his-
tological analysis are generally concerned with the counting and isolation
of certain types of cells or nuclei. Lastly, segmentation tasks are concerned
with creating superpixels of cell types or tissues [29].

Creating histology images is essential to medical research and diagnos-
tics, as it allows scientists and pathologists to examine themicroscopic struc-
ture of tissues and cells. These images provide valuable insights into an an-
imal’s health or disease state and play a crucial role in understanding the
underlying mechanisms of various medical conditions.
1. Tissue Sample Collection: The first step in creating histology images

involves obtaining a tissue sample from a patient. Depending on the
specific diagnostic or research objectives, this can bedone through var-
ious methods, such as biopsy or surgical excision. Handling the tissue
sample carefully is essential to preserve its integrity andminimise arte-
facts.

2. Tissue Fixation: Immediately after collection, the tissue sample is fixed
to preserve its cellular and structural components. Formalin, a solution
of formaldehyde, is commonly used for fixation. Fixation helps prevent
decay and autolysis, maintaining the tissue’s cellular structure for anal-
ysis.

3. Tissue Processing: Once fixed, the tissue sample goes through pro-
cessing steps, including dehydration, clearing, and embedding in paraf-
fin wax.
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Figure 2.2: A cassette, which is used to hold the sample through tissue pro-cessing next to a £1 coin for scale.

The tissue is mounted in a “cassette", shown in Figure 3.1, before be-
ing placed in a tissue processor, such as the machine shown in Figure
2.3. These steps remove water from the tissue and make it suitable
for sectioning. Dehydration is typically done using a series of alcohol
solutions of increasing concentrations.
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(a) Tissue Processor (b) Cassette.
Figure 2.3: Figure (a) shows a SHANDON Citadel 2000 tissue processor, and(b) shows a cassette held in it. This process involves dehydration, clearing,and embedding in paraffin wax.
4. Tissue Sectioning: The processed tissue is then sliced into thin sec-

tions, typically 5 micrometers thick, using a microtome (shown in Fig-
ure 2.4 alongside other crucial equipment such as a water bath, hot
plate, and a cold plate). These sections are so thin that they are trans-
parent to visible light. The quality of sectioning is crucial to obtaining
clear and informative histology images.

5. Mounting: The thin tissue sections are mounted onto glass slides. A
small amount of adhesive, such as a gelatin-based solution, affixes the
tissue to the slide.
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Figure 2.4: A workstation containing a water bath, microtome, hot plate,and cold plate. Many of the slides used in this work have been produced ina similar setting.
6. Staining: Histological staining is a critical step that contrasts the tissue

sections, making cellular and structural features more visible under a
microscope. An example of the final slide can be seen in Figure 2.5. In
Hematoxylin and Eosin (H&E) staining which is the focus of this work,
nuclei and ribosomes are stained in shades of blue and purple, while
cytoplasm and collagen tend to be stained in shades of pink and red.
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Figure 2.5: Completed gill slides after H&E staining. Gill tissue is fixed informulin before being sectioned, thenmounted on glass slides before goingthrough the staining process.
7. Image Capture: Modern histology labs often use digital imaging sys-

tems to capture high-resolution images of the stained tissue sections.
These digital images canbe stored, analysed, and shared electronically.
Figure 2.6 shows a Zeiss Axio Scan.Z1 as an example of these digital
imaging systems.
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Figure 2.6: Zeiss Axio Scan.Z1 imaging system and a display showing a gillWSI.

Gill Tissue Morphology

Surface gill tissue is predominantlymadeupof branches, knownas lamellae.
An example of a gill whole slide image (WSI) can be seen in Figure 2.7.

The purpose of the lamellae is to increase surface area to aid in respi-
ration. Each large branch, known as the ‘Primary’ lamellae, also has many
smaller ‘Secondary’ lamellae branching from it. This can be seen in the im-
age in Figure 2.8.

Secondary lamellae are composed of capillaries surrounded by a thin
layer of epithelium. Mucous cells can also be found on the surface of the
lamellae. Figure 2.9 shows examples of the cells and tissues described.
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Figure 2.7: An example of a gill tissue slide whole slide image. The tissue hasbeen stained using H&E staining. This example is a relatively healthy gill.

Figure 2.8: A labelled image showing the morphology of the primary andsecondary lamellae. This tile is 1024x1024 pixels in size.
Current Applications of Data Science in Aquatic Animal Health

In a recent study by Gladju et al. in 2022, the authors conducted a com-
prehensive review of the applications of data mining and machine learning
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Figure 2.9: A 1024x1024px labelled image showing some of the cells andtissues present on the lamellae. Red cells are surrounded by a thin epitheliallayer. Other cell types are also common, such as mucous cells.
techniques in aquaculture and fisheries. One of the key findings was the use
of automation to enhance production environment monitoring, focusing on
water quality parameters like temperature, pH, water levels, and overall wa-
ter and waste management. Additionally, the review identified other valu-
able applications, such as optimising feed utilisation and assessing stock us-
ing various structured parameters, including gender, species, biomass, and
product quality. Notably, the study by Rohani et al. in 2019 [30] was high-
lighted, where they employed traditional image processing features such
as GLCM and utilised support vector machine (SVM) and multi-layer percep-
tron classifiers to separate live and dead rainbow trout fish eggs intelligently.
However, it’s worth noting that this method required the eggs to be taken
out of the water for analysis, indicating the early stage of many machine-
learning applications in aquaculture.

An earlier review in 2016 by Saberioon et al. [31] specifically delved into
vision applications in aquaculture. Much of their review centred on utilis-
ing computer visionmethods for behaviour analysis, employing various sen-
sors, including acoustic, stereovision, and LiDAR. They also explored imag-
ing applications for tasks such as fish sorting and assessing fish quality and
attributes using X-ray, thermal, and hyperspectral imaging systems.

Since thepublication of these reviews,more advanceddeep-learning tech-
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niques have gained popularity. For example, Fernandes et al. in 2020, [32]
applied deep learning-based image segmentation to estimate the size and
weight of tilapia carcasses. Many subsequent reviews have emphasised the
wide range of computer vision applications in fish behaviour analysis. How-
ever, it is noteworthy that none of the reviews available at the time of this
writing has highlighted the potential impact of applying machine learning
methods to aquatic animal medical images [33–38]. This omission is sur-
prising, considering the significant advancements in human medical imag-
ing, some of which we discuss in Chapter 3.

In Chapter 3, we explore someparallel advancements inmedical imaging,
which could potentially offer valuable insights for applying machine learn-
ing methods to aquatic animal medical images. As technology continues
to evolve, there is a compelling opportunity for cross-disciplinary collabora-
tion and knowledge transfer between human and aquatic animal medical
imaging. Such collaboration could usher in a new era of innovation, unlock-
ing novel solutions to challenges in aquaculture and fisheries and ultimately
contributing to the sustainable growth of these vital industries.

2.2 Technical Background

This section serves as a technical foundation for the thesis, offering anoverview
of fundamental concepts which will be referred to later in the thesis, laying
the groundwork for understanding the main ideas andmethods used in the
research.

2.2.1 Mining Free Text

Extracting useful and meaningful information from free text can be done
in many ways. These techniques can involve basic analysis, such as word
frequencies and collocations.

• Word/Term Frequencies Identifying themost commonly used terms across
a text or texts. This can be done at the unigram, bigram, trigram or n-
gram level.
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• Collocation Identifying sequences of words frequently appearing near
each other. A common method for this task is Pointwise Mutual In-
formation or PMI score. [39] The formula for the PMI score is defined
in Equation 2.1, where the PMI score is the log probability of words
co-occurring divided by the product of the single probabilities of each
individual word occurring.

pmi(x; y) ≡ log p(x, y)
p(x)p(y) (2.1)

More complex methods may involve text classification tasks, including
topic modelling, intent detection and sentiment analysis. Text extraction
methods are particularly important to this work, involving keyword extrac-
tion, feature extraction and named entity recognition. [39]

Text Extraction

Common methods of extracting information from text include regular ex-
pressions, part-of-speech tagging, chunking and negation detection [39].

• Regular expressions- A syntax that allows one to define pattern rules for
searching in text.

• Part-of-speech tagging- A process involving tagging each word in a text
with its relevant part-of-speech.

• chunkingGrouping part-of-speech taggedwords basedonapredefined
grammar. The grammar can incorporate regular expressions to make
complex pattern rules.

• Negation detection Establishing if a term used in a sentence has been
negated based on the context of its usage.

2.2.2 Empirical Wavelet Transform

In traditional wavelet-based approaches for image decomposition, the im-
age is processed through a series of filters, typically a combination of high-
pass and low-pass filters, to create a set of subband images. These sub-
band images represent different frequency components of the original im-
age. The process is iteratively repeated by applying additional high-pass or
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low-pass filters to these subband images until the desired representation is
achieved. This approach has been widely used for various image-processing
tasks.

In 2014, Gilles et al. revisited and enhanced several well-known tradi-
tional 2D transforms commonly used in image processing. Their work pro-
posed empirical versions of four important transforms: Curvelets, Ridgelets,
the Tensor approach, and the 2D Littlewood-Paley (LP) transform [40].

The traditional 2D Littlewood-Paley (LP) transform filters images in the
Fourier domain using 2D wavelets with annuli supports centred around the
origin. These annuli supports serve as the basis for dividing the scales, and
their radii are determined based on the dyadic decomposition of the Fourier
plane. Gilles et al. [40] proposed an empirical approach to detect the radii
of these annuli.

In our methodology, we employ the 2D LP-EWT (Littlewood-Paley Empiri-
calWavelet Transform), denoted asWELP , to generate subband images from
the input image f . The following equation describes the 2D LP-EWT:

WELP
f (n,x) = F∗

2

(
F2(f)(ω)F2 (ψn) (ω)

)
. (2.2)

where F2 denotes the 2D Fourier boundary detection function, F2∗ rep-
resents its inverse, ψ represents the wave function, x = (x1, x2) representsthe position in the 2D plane, and ω = (ω1, ω2) represents the position in thefrequency domain.

We empirically choose n = 20 in our specific implementation, generating
20 subbands. The central panel of Figure 6.3 illustrates the frequency do-
main image, the boundaries generated by the 2D LP-EWT, and the resulting
subband images.

The boundary detection method used to construct the filter bank, de-
noted as B, plays a crucial role in the LP-EWT approach. To achieve this, we
employ a Pseudo-Polar Fast Fourier Transform (FFT), denoted as F̃P (|ω|), on
the original image, taking into account the specified number of filters.

The first step in the boundary detection process involves performing the
Pseudo-Polar FFT on the image, resulting in a transformed spectrum F̃P (|ω|).
This transformation is performed in a manner that emphasises the radial
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frequency components.
Next, we calculate the average within each discrete angle θ in the 1D

Fourier spectrum, where the number of angles is determined by Nθ. Thisaveraging process is carried out to capture the information across different
angles in the frequency domain.

Mathematically, this process can be described as follows:

F̃P (|ω|) = 1
Nθ

Nθ−1∑
i=0

|FP (f) (θi, |ω|)| . (2.3)
where F (|ω| , θ) represents the 2D Fourier transform of the image at the

radial frequency |ω| and angle θ.
By applying this boundary detection method, we effectively capture the

relevant frequency information across different angles, which is essential
for constructing the filter bank B used in the subsequent steps of the LP-
EWT. This process allows us to extract meaningful features from the image
that can further contribute to the accurate classification and analysis of hy-
perplasia in Atlantic Salmon gill whole-slide images (WSIs).

The filter bank is then constructedusing the spectral radii obtained, shown
in Eq. (2.4). More details can be found in Gilles et al.’s 2014 paper on 2D em-
pirical wavelets [40]. The outcome of this process are the boundaries shown
in the central panel of Fig. 6.3.

B =
{
ϕ1(x), {ψn(x)}N−1

n=1

}
. (2.4)

27



3 State-of-the-Art

This chapter explores state-of-the-art information retrieval and data mining
applications in relevant medical texts, histology image processing, empirical
wavelet transforms, and artificial intelligence (AI) in medical imaging. Our
objective is to provide a clear overview of recent advancements and trends
in these specific domains, which form the foundation of our research. We
will critically examine existing literature, highlighting the gaps and opportu-
nities that have informed our research agenda. This contextualisation will
set the stage for a detailed examination of our own research contributions
and their significance within these specialised fields.
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Figure 3.1: A diagram which describes the relationships between differentcomponents of the project. Technology components, highlighted in blue,are associatedwith twwmain tasks in this project, which can both contributeto multimodal understanding of cases.

3.1 Medical Record Information Retrieval

Information retrieval is important for automated data extraction from free-
text medical records. Various methods exist, mostly consisting of text min-
ing and text classification approaches. While current literature extensively
covers information retrieval approaches in the biomedical domain (partic-
ularly on human health), fewer attempts have been made in the veterinary
domain.

Related approaches for information extraction in the biomedical domain
are numerous. Chapman et al. [41] proposed NegEx, a tool for determining
the presence or absence of clinical findings in discharge summaries. Their
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approach was used to analyse 76, 049 screening and 17, 656 diagnostic mam-
mography reports. Even though this approach extracts conclusions rather
than observations – which are the focus of our work - the applications are
similar. More recently, Gao et al. [42] extracted several features from mam-
mographic reports: mass, calcification, asymmetry and architectural distor-
tion.

Friedlin et al. [43] developed Medical Exploratory Data Analysis over Text
(MEDAT), a text analytics system for medical domains and demonstrated
their system on radiology reports. Comelli et al. [44] also applied text min-
ing to radiology reports. They leveraged the entity relationships represented
in their radiology ontology to extract relevant medical terms frommammo-
graphic reports. While their approach was exhaustive within the mammo-
graphic domain, the texts were in Italian, and the application domain is quite
narrow.

Gong et al. [45] developed a biomedical information retrieval approach
for terminologies related to breast cancer. Their approach involved entity
extraction, entity relationship identification, and visualisation. Entities were
extracted based on conditional random fields, while co-occurrence statistics
extracted entity relationships. Sudeshna et al. [46] aimed to identify symp-
toms and treatments of heart disease using a machine learning-based ap-
proach. Based on suggested identified symptoms, texts would be classified
into treatments. Zhao et al. [47] created CausalTriad, an approach toward
discovering pseudo-causal relationships between entities. They evaluated
their approach on HealthBoards message board and Traditional Chinese
Medicine data. Yang et al. [48] used an ontology-based textmining approach
to extract data from Chinese Electronic Medical Records (EMR). This work
focused on the mining of stroke cases. Gero and Ho [49] proposed Named-
Keys, a keyphrase extraction approachwhich they evaluated on PubMed ab-
stracts. They also describe a benchmark dataset for biomedical keyphrase
extraction.

While various clinical text types have been the subject of much research,
there is also a wide body of research into automated biomedical literature
reviews. Navathe [50] used UMLS (Unified Medical Language System) [51]
and a gene ontology to represent biomedical concepts, and a Support Vec-
tor Machine (SVM) to classify literature from the Centre of Disease Control
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(CDC) based on relevant keywords. Mala et al. [52] researched the use of on-
tology in semantic medical text mining with WordNet. Gong et al. [53] used
a dictionary-based approach to extract biomedical concepts from literature.
This was done using an algorithm called the Variable-step Window Identi-
fication Algorithm (VWIA), which matched terms to biomedical entities us-
ing POS tagging and organisation based on phrasing. Their technique was
applied to 10 Medline abstracts and produced promising results. Mate et
al. [54] focused on creating a process of extraction, transformation and load-
ing (ETL) of electronic medical records.

Although not used in the approach described in Chapter 4, it should be
noted that emerging deep learning has become popular in the biomedical
domain with neural network-based methods being used to enhance text
mining techniques [55,56].

All of the reports listed above applied information retrieval techniques
to biomedical text about humans. In the veterinary domain, Bollig et al. [57]
used machine learning-based approaches to extract different pathologies
from free text. Furrer et al. [58] built a text mining tool for veterinary surveil-
lance by linking terms identified in necropsies to existing ontologies. Küker et
al. [59] later used this tool to analyse pig and cattle necropsies and found
that free text necropsy reports are a valuable resource for animal health
surveillance.

At the beginning of this project, no work existed on information retrieval
from marine mammal necropsy reports.

In recent years, natural language processing has witnessed a monumen-
tal shift marked by the emergence of robust large language models. Among
these, ChatGPT, introduced by OpenAI in 2022 [60] as an evolution of GPT-
3.5 [61], stands as a prominent example. This pivotal development set the
stage for a rapid succession of similar models, including Bard by Google [62]
and LLaMA by Meta [63], among others.

This disruptive technology has sparked extensive discussions regarding
its potential impact across various domains, with medicine being a particu-
larly noteworthy area of interest. For instance, Liévin et al. demonstrated
that GPT-3.5 achieved human-level performance on three biomedical re-
search question-answering datasets [64], highlighting its promising appli-
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cations in biomedicine.

3.2 Multimodal Vision and Language Tasks

In recent years, machine learning techniques have widely applied to han-
dling text and image data separately. However, integrating both modalities
in tandem has received considerably less attention. Multimodal sentiment
analysis, nevertheless, represents a promising field where such integration
has been explored. Research in this domain primarily focuses on three key
areas: the analysis of vlogs and spoken reviews, the examination of interac-
tions between humans and machines, as well as computer-computer inter-
actions, and the analysis of tagged images sourced from social media plat-
forms [65].

Document classificationhas benefited significantly frommultimodal anal-
ysis, with recent approaches demonstrating its potential [66–68]. Thesemeth-
ods leverage Optical Character Recognition (OCR) to extract text from doc-
ument images, utilising both the visual content and the in-document text to
classify documents into various types. Many of these approaches rely on
open-source OCR software like the Tesseract OCR library [69] for accurate
text extraction.

The methodologies employed in this task could potentially find applica-
tion in processing histology images and reports. However, the necessity
for OCR methods would depend on the accessibility of textual information
within the histology data.

In the biomedical field, Pelka et al. introduced the Radiology Objects in
Context (ROCO) dataset [70]. This dataset includes diverse medical imaging
modalities, captions, keywords, and tags. While ROCO has predominantly
served as a resource for tasks such as image tagging and concept detec-
tion [71–73], its richness, encompassingmultiple textual modalities, also po-
sitions it for potential applications in multimodal visual and textual classifi-
cation.
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3.3 Histology Image Analysis

Numerous organisations and stakeholders within the aquaculture indus-
try accumulate a substantial volume of histology Whole Slide Images (WSI).
However, it is noteworthy that while an extensive body of research focuses
on automated analysis of human anatomical specimens, comparatively lit-
tle attention has been directed towards the analysis of fish. Developing spe-
cialised and efficient techniques for analysing gill WSI can significantly en-
hance the efficiency and depth of analysis for conditions like Complex Gill
Disease (CGD) in fish populations.

A diverse range of approaches exists for WSI analysis, spanning both tra-
ditional image processing techniques and neural network (NN)-basedmeth-
ods. In non-NNapproaches, the preprocessing ofWSIs usually encompasses
image transformations and extracting relevant features. In contrast, many
deep learning-basedmethods leverage convolutional andpooling layerswithin
neural networks for comprehensive image analysis.

In histology, tissue samples are often treated with dyes, a common prac-
tice being the application of Hematoxylin & Eosin (H&E) stain, which is the
primary focus of our work. Stain normalisation plays a pivotal role in most
analysis pipelines. It addresses the challenge of inconsistent colour inten-
sities between WSIs due to variations in stain application. Such inconsis-
tencies can hinder the effectiveness of image transformation and feature
extraction techniques. Stain normalisation techniques like Vahadane [74],
Reinhard [75], and Macenko [76] are commonly employed to mitigate these
issues.

In the realm of human anatomy, pathologies such as breast cancer [77],
lung cancer [78–81], and brain tumors [82] have garnered significant re-
search interest. Applications encompass carcinoma classification, blood cell
detection [83], nuclei detection, and cell segmentation. In recent years, Con-
volutional Neural Networks (CNNs) have gained popularity as a prevailing
approach for tackling these tasks [29,84–86].

The surge in popularity of Convolutional Neural Networks (CNNs) can
be partially attributed to the substantial advancements in hardware per-
formance over recent years. This progress has rendered training machine
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learningmodels with large datasets a practical and effective strategy. CNNs,
equipped with their convolutional and pooling layers, have become the pre-
ferred choice over traditional feature extraction methods reliant on statis-
tical colour and texture representations. The adaptability and efficiency of
CNNs in handling complex visual data have made them a formidable tool in
modern machine-learning applications.

Despite thewidespread adoption of CNNs inWSI analysis, traditional tex-
turemetricsmaintain their prominence and effectiveness as valuablemeans
of feature extraction. Notable texture feature sets applied in WSI analysis
encompass local binary patterns (LBP), Haralick’s texture features (derived
from a grey level co-occurrence matrix or GLCM), and Gabor filters [82]. Ad-
ditionally, both lower-order and higher-order histograms have found utility
in this context.

An illustrative study by Kather et al. [87] underscores the continued rel-
evance of texture analysis techniques. In their investigation of colorectal
cancer classification, they discovered that lower-order texture measures,
GLCM, and LBP emerged as the most effective texture representations for
their specific use case, showcasing the enduring value of these methods in
certain medical imaging applications.

Machine learning (ML) has found increasing application in aquaculture to
optimise fish growth and performance, as noted by Zhao et al. [88]. Surpris-
ingly, there has been limited development in automated histological analysis
of fish gill tissue despite its critical role in the field. Existing methods have
predominantly relied on traditional image preprocessing steps and alterna-
tive staining techniques, such as quantifyingmucous cells in salmon skin [89]
or assessing gill health [90]. Jayasuriya introduced a tool for evaluating mor-
phological changes in salmon gills, generating descriptors automatically in-
dividually [91]. While beneficial for in-depth analysis of single gill WSIs, there
is a growing need for data-driven approaches capable of efficiently handling
large numbers of WSIs.

Developing template-based computer vision pipelines for such tasks can
be challenging, prompting interest in data-driven machine learning-based
approaches. Sveen et al. successfully applied deep learning to automati-
cally segment Atlantic Salmon skin tissue [92], but there has been limited
progress in automating the analysis of gill histology images. Notably, Swee
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et al. [93, 94] used coloured histogram and Gabor wavelet transform fea-
tures in conjunction with Support Vector Machines (SVM) to detect water
pollution, albeit on WSIs of Tilapia liver samples. Similarly, Silva et al. [95]
employed image processing and segmentation techniques to assess Atlantic
Salmon intestinemorphology, including smoothing, noise removal, edge de-
tection, thresholding, and region filling. Although their work was limited to
the intestines, similar approaches could be applied to other fish tissues.

Considering the dearth of research in gill histology image processing, the
development of a method for automated analysis of WSIs holds significant
promise and potential impact.

3.4 EmpiricalWavelet Transform for ImageAnal-
ysis

Automating biomedical image classification tasks can be achieved through
frequency domain texture analysis. However, traditional image decompo-
sition methods typically fall into two categories: fixed template-based ap-
proaches (e.g., wavelets) or data-driven methods (e.g., Empirical Mode De-
composition or EMD [96]). The former can lack flexibility due to their reliance
on rigid template structures, while the latter may lack a well-defined math-
ematical foundation. In an effort to bridge this gap, a recent development
by Gil and others [40,97] introduced the empirical wavelet transform (EWT),
which offers adaptability to the input signal, providing a more versatile ap-
proach to texture analysis in the frequency domain.

Traditional wavelet-based techniques typically entail the decomposition
of an image into a collection of subband images by applying various filters,
typically a combination of high-pass and low-pass filters. In 2014, Gilles and
colleagues revisited several well-known traditional 2D transforms, introduc-
ing empirical variants of Curvelets, Ridgelets, the Tensor approach, and the
specific method employed in this study—the 2D Littlewood-Paley (LP) trans-
form [40]. This development aimed to enhance the adaptability and perfor-
mance of these transforms in image analysis tasks.

The EWT has found application in glaucoma classification using Fundus
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Imaging, although it’s important to note that the morphological structure
of glaucoma cases tends to exhibit more consistency compared to the vari-
ability seen in gill Whole Slide Images (WSIs). In gill WSIs, primary and sec-
ondary lamellae can vary in structure based on their location, and overlap-
ping branches can further complicate the analysis. Moreover, the tissue sec-
tioning process often introduces irrelevant artefacts.

In the context of glaucoma classification, Maheshwari et al. utilised 2-D
empirical Littlewood-Paley (LP) wavelet subband images to extract corren-
tropy features for the identification of glaucoma cases in fundus images [98].
Similarly, Kirar et al. developed an EWT-based approach that combined tra-
ditional discrete wavelet transforms with 2D LP-EWT to derive features from
subband images, including Zernike moments, Hu’s Invariant Moments, chip
histogram, and grey-level matrix approaches [99]. Chaudhary et al. [100]
applied a Fourier-Bessel series expansion-based EWT (2D-FBSE-EWT) and
transfer learning using pre-trained ResNet-50 models to evaluate subband
images. Additionally, they employed their 2D-FBSE-EWT technique for de-
noising biomedical images [101]. These studies showcase the adaptability of
EWT in different image analysis tasks, albeit in contexts with different struc-
tural characteristics compared to gill WSIs.

Other notable imaging applications of EWT include gastrointestinal ab-
normality analysis in endoscopic images [102], oral cancer histology image
classification [103], COVID-19 detection using chest CT images [104], lung
disease diagnosis [105], andmelanomadetection in skin images [106]. These
studies demonstrate image analysis techniques’ versatility andwide-ranging
impact in diverse medical contexts.

These approaches utilise traditional feature extraction techniques and
CNNs to analyse the subband images generatedby the EWT transform. While
CNNs have gained popularity for various histology tasks, it’s important to ac-
knowledge their inherent weaknesses, which include their black-box nature
and lengthy training times. These drawbacks can pose challenges in terms
of interpretability and computational efficiency, particularly in the context
of histology image analysis.
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3.5 Anomaly Detection in Images

Anomaly detection involves the identification of outlier entrieswithin a dataset
[107]. This task has found application across various domains, particularly
computer vision and medical imaging. In medical imaging, Alloqmani et
al. [107] identified several notable use cases, such as detecting irregular tis-
sue in mammographic images from the INbreast dataset [108,109], screen-
ing for viral pneumonia in chest x-rays [110], tumor detection in brain MRIs
[111], and anomaly detection in retina images [112,113], among others.

Traditionally, image anomaly detection relied on "shallow approaches,"
which involved extracting features from images andpassing them to a classi-
fier. These methods often encompass techniques like principal component
analysis [114], support vector machines (SVMs) [115], and nearest neigh-
bour models [116]. In contrast, contemporary "deep" methods, including
autoencoders [117], variational autoencoders (VAEs) [118], and generative
adversarial networks (GANs) [119], have gained prominence. Deep anomaly
detection methods operate on the principle that anomalies can be detected
by assessing a model’s ability to reconstruct an image accurately.
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4 Information Retrieval for
Marine Mammal Necropsy

Analysis

4.1 Overview

In this chapter, I describe Ir-Man (Information Retrieval for Marine Animal
Necropsies), an advanced framework designed to extract information from
post-mortem reports concerning marine mammals [3]. When a deceased
marine mammal is discovered stranded along the shores of Scotland, the
Scottish Marine Animal Strandings Scheme (SMASS) conducts a thorough
examination to investigate and determine the cause of death. A comprehen-
sive “post-mortem” or necropsy report is generated as part of this examina-
tion, providing a detailed account of the carcass, including observations of
lesions and other relevant findings. These observations play a critical role in
identifying the cause of death and may even offer significant insights from
a pathological and epidemiological standpoint when analysed collectively.

Unfortunately,manually extracting this vital information from the reports
is arduous, time-consuming, and error-prone. Consequently, there exists
a need for an automated information retrieval system that can effectively
handle the diverse array of terms encountered in these reports. The Ir-Man
framework has been developed to address this challenge, encompassing
three key components: an ontology, a lexicon of observations and anatom-
ical terms, and an entity relation engine.

The ontology component is a structured framework that defines and or-
ganises the domain-specific knowledge required for information retrieval
from necropsy reports. It establishes a systematic and consistent represen-
tation of the concepts and relationships related to marine animal necrop-
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sies, enabling efficient data retrieval and analysis.
The lexicon of observations and anatomical terms forms an extensive

collection of terminology relevant to marine mammal pathology. It encom-
passes a wide range of descriptors, ensuring that the Ir-Man framework can
effectively identify and extract specific information from the reports, regard-
less of the variations in descriptions, pathologies, and species encountered.

The entity relation engine, a vital component of the Ir-Man framework,
enables extracting and correlating information from a pool of necropsy re-
ports. By leveraging advanced techniques and algorithms, this engine iden-
tifies the relevant entities and their relationships within the reports, facili-
tating comprehensive information retrieval and statistical analysis.

To showcase the effectiveness of the Ir-Man framework, we conducted a
specific case study focusing on identifying bottlenose dolphin attacks (BDA)
in gross pathology reports of harbour porpoises. Using a rule-based binary
classifier developed within the Ir-Man framework, we achieved an accuracy
rate of 83.4% in detecting BDA cases.

4.2 Framework Structure

While developing the Ir-Man framework, we carefully considered several
steps involved in extracting observations frommarine mammal necropsies.
These steps ensure a systematic and accurate information retrieval from the
necropsy documents.

The first step involves extracting the free text from the necropsy docu-
ments. This includes pulling the relevant sections, such as the gross pathol-
ogy report section and, if applicable, the histopathology and bacteriology
report sections.

Once the text is extracted, it is further processed by dividing it into sen-
tence and word-level tokens. This division enables us to analyse the text at a
granular level and facilitates subsequent tagging of individual words based
on their part of speech. The tagging process helps identify the role and func-
tion of each word within the context of the text.

To establishmeaningful relationships betweenentities, we employ a feature-
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based grammar approach. This technique groups related entities and cap-
tures the connections and associations between them. By structuring the
information based on these relationships, we enhance the coherence and
organisation of the retrieved data.

Next, each identified entity is compared against our comprehensive anatom-
ical, pathological, and observational lexicon. This lexicon is generated using
our ontology, which provides a structured framework for organising and cat-
egorising the relevant domain-specific knowledge. By leveraging this lexi-
con, we ensure the accuracy and consistency of the extracted information.

Considering the presence and absence of described features in the re-
trieval process is important. Thus, we explicitly record negative occurrences
or absences of identifiers in addition to positive occurrences or presences.
This comprehensive approach allows us to leverage both types of informa-
tion in developing a deterministic classification system.

To provide a visual overview of the retrieval process, we outline it in Fig-
ure 4.1. The accompanying pseudo-code in Algorithm 1 further illustrates
the implementation steps. Each component of the Ir-Man framework plays
a crucial role in achieving accurate information retrieval, and we provide de-
tailed descriptions of these components below.

By meticulously considering and implementing these steps, the Ir-Man
framework ensures a robust and reliable process for extracting and organ-
ising observations from marine mammal necropsies, enabling comprehen-
sive analysis and valuable insights.

4.2.1 Marine Mammal Stranding Reports

The data utilised in this project was derived from post-mortem (PM) reports
of cetaceans, specifically generated by the Scottish Marine Animal Strand-
ing Scheme (SMASS) from 2012 to 2019. These reports document various
features of the carcass, including its condition, morphology, pathological le-
sions, and observations. Assessing the body’s condition typically encom-
passes factors such as the extent of autolysis or physical damage. Addi-
tionally, morphometric measurements, such as blubber thickness and body
length, are recorded. These features contribute to the pathologist’s under-
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Algorithm 1: Information retrieval pipeline. Output of the entity-relationship extraction engine is used to identify observations, at-tributed anatomies and detect negation.
Result: relationshipssentences = sentenceTokenisation(text);observations;
while not at end of sentences doRELChunkedSentence = preprocess(sentence);identifyNamedEntities(RELChunkedSentence);

while not at end of sentences do
if No Observational Entities thenbreak to next relationship;
end
if Observational Entity AND No Anatomical Entity thenobservations <- ‘unattributed’ observation;break to next relationship
end
if Observational Entity and Anatomical Entity thenobservations <- anatomy, observation;
end

end
end
while not at end of observations donegatedObservation <- mark_negated(observation) ;

if observation == negatedObservation thenpresence <- True;
elsepresence <- False;
end

end

standing of the probable cause of death. PM reports consist of detailed
gross pathology reports, providing comprehensive descriptions of the over-
all characteristics of the body, as well as specific anatomical details. The final
PM report comprises several sections, including basic information (such as
sex, date, and location), morphometric data, gross pathology findings, bac-
teriology and histopathology reports (if applicable), and a conclusion that
encompasses comments, cause of death, and the level of confidence in the
diagnosis.

For this study, we analysed a dataset consisting of 193 gross pathology re-
ports specifically focusing on harbour porpoises (Phocoena phocoena). This
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species was chosen for several reasons: SMASS has produced a relatively
high number of reports on harbour porpoises, making it an easily acces-
sible dataset; the anatomy of the harbour porpoise is transferable to other
cetacean species, enabling potential future integration of additional species;
and the prevalence of bottlenose dolphin attacks (BDAs) listed as the cause
of death, which allows us to evaluate the effectiveness of our framework in
detecting the pathologies associated with such attacks. Bottlenose dolphins
exhibit violent behaviour towards harbour porpoises, often leaving distinct
parallel incisions known as “rake marks.” These rake marks serve as a pri-
mary indicator of a BDA, and the consistent usage of this term facilitates the
evaluation of our approach’s efficacy.

Although the language employed in these gross pathology reports is spe-
cialised, a certain degree of structure can be leveraged. Typically, a heading
indicating the anatomical region of interest is followed by a description in
free-text format. This structure can be observed in Figure 4.2. Furthermore,
acronyms such as NAD (no abnormalities detected) and NE (not examined)
hold particular significance and are distinct in their meaning. The absence
of abnormalities can rule out certain pathological conditions, while the lack
of examination in a specific region does not provide the same level of infor-
mation.

By considering these unique characteristics and leveraging the structured
elements within the reports, our framework aims to effectively extract and
analyse the specialised language used in gross pathology reports. This ap-
proach enables us to identify important anatomical regions and associated
descriptions and interpret acronyms that carry specific diagnostic implica-
tions.
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Body condition: Fat
External examinationBody orifices: NADEctoparasites: NAD – None seenFins and flukes: NAD – Intact, no rake marks
IntegumentEpidermis: Rake marks over left flank/tailstock. Severe scavengerdamage at right side of headBlubber: NAD – Good layer, not jaundicedSubcutaneous tissue: Bruising over lateral spinous processes andright side head regionMammary glands: NE

Figure 4.2: A gross pathology extract from a harbour porpoise necropsy re-port. Observations are attributed to anatomical regions. Accronyms suchas NAD and NE are used to highlight when there are “no abnormalities de-tected", or if a region is “not examined".

4.2.2 Gross Pathology Report Extraction

Thepost-mortem reports from the ScottishMarineAnimal Stranding Scheme
(SMASS) were stored in Microsoft Word Open XML Format (DOCX) files. We
parsed these documents tomanage andaccess the data efficiently and stored
the extracted fields in a non-relational MongoDB 1 database.

We implemented a search mechanism for specific text fields to identify
field names indicative of their presence within the reports. For instance,
when extracting the species field, we used the string “SPECIES:” as the in-
dicator and captured the string following it on the same line as the corre-
sponding field value (e.g., “delphinus delphis”). In cases where a field was left
blank, indicating no value, we did not store any information in the database
for that field.

We applied normalisation techniques to the extracted fields to enhance
data consistency and ease of analysis. Synonymous terms were grouped

1https://www.mongodb.com/
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together to ensure standardisation. For example, in the case of the species
field, we paired scientific names (e.g., “delphinus delphis”) with their corre-
sponding common names (e.g., “short-beaked common dolphin").

In addition to structured fields, we also obtained free text sections such
as the gross pathology reports. We accomplished this by identifying relevant
section headers and extracting the text situated between them. In cases
where the space between section headers contained only white-space or
short strings like "Not examined," we decided not to extract that particular
section, as it lacked significant information.

All the extracted fields and sections were securely stored in a local Mon-
goDB database. This database allowed for efficient storage, retrieval, and
manipulation of the data, enabling further analysis and exploration of the
post-mortem reports in a structured manner.

4.2.3 Ontology Development

Our framework utilises custom-built ontologies to organise and provide con-
textual information otherwise unavailable. While there are existing multi-
species ontologies like Uberon [120] (a cross-species anatomy ontology cat-
egorising entities by traditional anatomical criteria), we opted for a smaller
and more manageable ontology specifically tailored to our task. We iden-
tified three primary branches of relevant terminologies that align with our
objectives.

The first branch focuses on representing anatomy. In this ontology, dif-
ferent anatomical regions are represented as classes. These classes allow us
to categorise and identify specific areas of interest within the marine mam-
mal carcasses.

The second branch is the pathology ontology, which serves as a means
to record various conditions found in post-mortem (PM) reports. By refer-
encing this ontology, we can systematically capture and categorise different
pathological conditions described in the reports.

The third branch is the observation ontology. This ontology organises
terms into classes and sub-classes, enabling a hierarchical observation struc-
ture. The sub-classes provide an additional level of specification that may
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not apply universally to all entities within the parent class. This hierarchical
organisation allows for a more precise and detailed representation of the
observations made in the PM reports.

For all classes within the ontologies, we store representative labels in
the “rdfs:label” annotation. Additionally, manually generated synonymous
terms are stored in our own “synonym” annotation. These annotations fa-
cilitate better understanding and interpretation of the ontological terms and
ensure consistency in data representation.

We utilised Protégé [121], a popular ontology development tool, to de-
velop the ontologies. Figure 4.3 illustrates the visualisation of the ontolo-
gies within the Protégé interface. Once created, the ontologies are stored
in the RDF/XML format, which allows for standardised representation and
interoperability.

By employing these bespoke ontologies, our framework gains a struc-
tured foundation that enables effective organisation and classification of
terms. The ontologies enhance the retrieval and analysis of information
from the PM reports, leading to more accurate and meaningful results.

Observation Ontology

The observation branch of our ontology takes advantage of semantic re-
lationships between terms to enhance the specificity and granularity of the
data. When terms are semantically similar, but one provides a higher degree
of specification, we establish a parent-child relationship between them. This
hierarchical relationship allows for precise distinctions and categorisation of
different types of observations in the post-mortem (PM) reports.

For example, consider the presence of fluid described in the reports.
Some reports may simply mention “fluid,” while others may specify “brown
fluid.” Since not all fluid is brown, we create a parent-child relationship be-
tween these terms. This relationship enables us to differentiate and clas-
sify various types of fluids and their specific descriptions, such as mucoid,
protein-rich, or amniotic fluids.

To populate the observational ontology, we conducted amanual process.
We generated lists of terms based on frequent unigrams, bigrams, and tri-
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grams extracted from the reports. Additionally, we utilised collocations us-
ing Pointwise Mutual Information (PMI) to identify relevant terms. We fil-
tered previously established anatomical and disease-related terminologies
to expedite the process, focusing specifically on terms relevant to observa-
tions.

Figure 4.4 provides an overview of the structure of the observational on-
tology, illustrating the hierarchical relationships between different terms.
This structure allows for a comprehensive representation of observations
made in the PM reports, facilitating accurate classification and analysis of
the data.

We ensure that the observational ontology captures the nuances and
variations in the reports by employing semantic relationships and utilising
statistical approaches such as pointwise mutual information (PMI) to iden-
tify salient terms. Our ontology enhances the precision and accuracy of our
framework, enablingmore robust retrieval and analysis of information from
the PM reports.

Pathology Ontology

The pathology ontology, as depicted in Figure 4.5, plays a crucial role in rep-
resenting different conditions and their semantic relationships. To construct
this ontology, we initially utilised the diseases or conditions listed as causes
of death within the SMASS database. Additionally, we extracted relevant
information from the reports by identifying known target strings that com-
monly precede the causes of death. These extracted conditions were then
categorised based on their semantic similarity.

For instance, within the ontology, wehave a class named “physical trauma”
that encompasses cases where there is evidence of blunt force or penetra-
tion to the skin, which have had a detrimental impact on the animal’s health.
This category specifically includes conditions such as boat strikes, bottlenose
dolphin attack trauma, and entanglement, where the animal has become
wrapped in rope, line, or netting.

By organising these conditions into classes and defining their relation-
ships within the ontology, we create a structured framework that compre-
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hensively represents the pathologies observed in the post-mortem reports.
This ontology facilitates accurate classification and analysis of the reported
conditions and identifies semantic connections and similarities between var-
ious pathologies.

Thepathology ontology’s development greatly enhances our framework’s
effectiveness in extracting and interpreting information from the reports. It
provides a standardised and systematic approach to categorising and un-
derstanding the pathological conditions affecting marine mammals. With
this ontology in place, our framework can accurately identify and analyse
the different pathologies recorded in the post-mortem reports, contributing
to a deeper understanding of the factors influencing the mortality of these
animals.

Anatomy Ontology

The anatomy ontology was developed by examining the anatomical terms
used in the reports to convey observations. At the highest level of the on-
tology’s “anatomical region” tree, classes represent different organ systems
within the body or anatomical regions that are semantically related. For in-
stance, the “integument region” refers to the skin, while the “external region”
primarily encompasses external observations beyond the scope of the in-
tegument class.

Subclasses at the next level generally represent different types of these
regions. A distinction is made between a parent-child relationship and using
the “isPartOf” attribute. For example, it would not be accurate to classify “the
left valve of the heart” as a subclass of “heart.” However, it is still important
to capture the relationship between these two regions.

To represent such relationships accurately, the “isPartOf” object prop-
erty is utilised, which is transitive and asymmetric. This property allows for
amore precise representation of instances like the duodenum, which is part
of the small intestine, and the small intestine, in turn, is part of the intestines.
Therefore, we can deduce that the duodenum is also part of the intestines.
This hierarchical structure and using the “isPartOf” attribute ensure the on-
tology accurately captures the relationships between anatomical regions.
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Figure 4.6 illustrates the anatomy ontology’s structure, showcasing some
example anatomies within the alimentary system. The ontology was man-
ually populated and structured based on the headings used in the sections
of the gross pathology reports, as shown in Figure 4.2.

By employing the anatomy ontology, our framework gains a deeper un-
derstanding of the anatomical context in the post-mortem reports. It allows
for amore accurate and structured representation of the observed anatom-
ical regions, facilitating precise retrieval and analysis of the data. The on-
tology provides a standardised framework for organising and interpreting
anatomical observations, contributing to the overall effectiveness of our in-
formation retrieval system.

4.2.4 Information Retrieval

Information retrieval consists of several individual components within the
framework, including (a) lexicon, (b) entity-relationship extraction engine, (c)
anatomy, observation and presence recognition and (d) formatting to ex-
tract anatomical features, observations and pathologies. This pipeline is
shown in the flowchart in Figure 4.1 as well as Algorithm 1.

Lexicons

To facilitate the identification of entities within the post-mortem reports, we
generate two lexicons of key terms based on our anatomy, pathology, and
observation ontologies, as described in Section 4.2.3. These lexicons play
a crucial role in information retrieval by providing a comprehensive list of
relevant terms.

The first lexicon, the observation lexicon, is created by parsing the obser-
vation and pathology ontologies. We extract the “rdfs:label” and “synonym”
attributes from these ontologies’ XMLfiles. The observation lexicon captures
terms related to observations made in the reports, including both general
observations and specific pathological conditions. This is because patholog-
ical terms can be used to represent the overall pathology of the specimen
and the condition of specific anatomical regions. For instance, if a report
mentions a case of physical trauma caused by entanglement, the term "en-
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tangled" can be treated as both an observation and a pathology based on
its representation within our ontology.

The second lexicon, the anatomy lexicon, is createdbyparsing the anatomy
ontology. Again, we extract the “rdfs:label” and “synonym” attributes to pop-
ulate the lexicon. The anatomy lexicon focuses specifically on terms re-
lated to anatomical regions within the reports. It enables us to accurately
identify and analyse observations pertaining to different organ systems and
anatomical regions in a standardised manner.

By incorporating pathological and anatomical terms in the observation
lexicon, we ensure that our framework can capture and analyse awide range
of observations, providing a comprehensive understanding of the post-mortem
reports. These lexicons serve as valuable resources for entity identifica-
tion, enabling effective retrieval of relevant information from the reports
and supporting subsequent analysis and statistical processing.

Entity-Relationship Extraction Engine

The processing of the reports begins with segmenting the text at the sen-
tence level. Figure 4.2 demonstrates that sections in the reports may not
always be clearly delineated by a full stop. Therefore, we also consider new
line characters (“\n”) as potential sentence delimiters. After sentence seg-
mentation, we perform word-level tokenisation to break the text into indi-
vidual words and punctuation marks. We utilise NLTK’s POS Tagger library
[123] to assign part-of-speech tags to these tokens.

Next, we apply “Noun Phrase Chunking” (NP-chunking) to group words
intomeaningful nounphrases. For this purpose, wehavedeveloped a feature-
based grammar consisting of tag patterns representing entities and entity
relationships. This grammar is passed to NLTK’s Regexparser library to cre-
ate chunks corresponding to entities and entity relationships. The regular
expression-based grammar we have defined for this task is provided below:
NP: {<DT>?<JJ>*<VB.*>*<JJ>*<NN.*>+}
NP: {<NP><CC><NP>}
NP: {<VBD|VBN>}
NP: {<CD><RB>}
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NP: {<NP><NP>}
IN: {<IN>}
REL:{<NP><IN><NP>}
REL:{<NP><TO><NP>}
REL:{<NP><:><NP>}

Entity chunks are grouped as noun phrases (NP). The first rule captures
cases where there is at least one noun preceded by adjectives (JJ) or verbs
(VB), and optionally, a determiner (DT) such as “the” or “a”. Additionally,
past tense or past participle verbs used alone are also considered as noun
phrases. This ensures that phrases like “right eye: scavenged” are correctly
chunked. Furthermore, nounphrases canbe linked into a single nounphrase
when separated by coordinating conjunction terms such as “and”.

Noun phrases (NPs) are then linked into relationship (REL) chunks based
on certain conditions. The first relationship is established when two NPs are
adjacent since proximal entities are likely to be related. Prepositions (e.g.,
“in”) are particularly interesting as they indicate a relationship between the
preceding and following entities. Theword “to” is also considered a good link
between NPs, as phrases like “damage to the left flank” are common. Lastly,
we use the colon to capture cases where an anatomical entity is stated fol-
lowed by observations. Figure 4.2: “Blubber: NAD” shows an example of
this.

This grammar is designed to capture relatively simple expressions found
in the reports, but it can be expanded to incorporate more complex entity
relationships. By applying this grammar, we can effectively identify and ex-
tract entities and their relationships from the text, enabling further analysis
and processing of the information contained in the reports.

Anatomy, Observation and Presence Recognition

In the processing pipeline, each sentence in a report is examined, and each
relationship (REL) chunk is parsed and compared against the anatomical and
observational lexicons. If a noun phrase (NP) chunk contains a substring
that appears in either lexicon, it is classified as an anatomical entity or an
observation, depending on the matching lexicon.
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To maintain accuracy in identifying negated terms, the implementation
deliberately includes only NP-NP relationships, as defined in our grammar.
This approach reduces the occurrence of falsely negated terms. Conse-
quently, a relatively straightforward process can be employed to identify
negated words with high accuracy.

For marking negations, we utilise the NLTK mark_negated package. This
package appends the suffix “_NEG” to any word between a negation term
and certain punctuation marks. A negated statement version is generated
for each REL chunk containing an identified observation. The NP chunk that
represents the free text observation is then compared to the same chunk
after negated terms are marked. If an observational term is negated, it
is considered to be absent. For example, in the phrase “no obvious rake
marks on the flank," the term “rake marks” would be identified as an ob-
servational entity. However, when compared to the negation-marked ver-
sion of the text ("there are no obvious_NEG rake_NEG marks_NEG on_NEG
flank_NEG"), the negation of the observation becomes apparent. In this
case, “rake marks” would be classified as “absent.” The advantage of this
approach is that negated terms are marked only at the relationship level,
avoiding incorrect classification of absence due to unrelated negated terms
at the sentence level.

Whenanobservational term is recognisedbut not attributed to an anatom-
ical entity, it is still recorded as either present or absent without being asso-
ciated with a specific anatomical region. Several reasons may explain why
an anatomical entity might not be identified: the term used is not included
in the anatomical ontology, the observation is unrelated to an anatomical
entity, or the chunking grammar fails to capture relevant NP chunks within
a relationship.

By employing these strategies, the systemcan accurately identify entities,
handle negations, and record observations as present or absent, even in
cases where a direct link to an anatomical region is not established.

Formatting Findings

The extracted information is consolidated and organised in a Python dictio-
nary, enabling its utilisation in analysis or classification systems. In the dic-
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tionary, the anatomical and observation terms are represented as strings,
while the presence or absence of an observation is stored as a Boolean
value. Here are a few examples illustrating the structure of the dictionary:
{

’anatomy’: ’right pectoral fin’,
’observation’: ’scavenger damage’,
’presence’: True

}
{

’anatomy’: ’epidermis’,
’observation’: ’rake marks’,
’presence’: False

}
{

’anatomy’: ’skull’,
’observation’: ’nad’,
’presence’: True

}

In this dictionary, the "anatomy" key holds a list of anatomical terms ex-
tracted from the reports, such as organs, body regions, or specific anatom-
ical features. The "observation" key contains a list of observation terms ex-
tracted from the reports, representing various findings or conditions. The
"observations" key further organises the information by mapping each ob-
servation term to its corresponding presence (True) or absence (False) value.

This dictionary structure provides a convenient format for further analy-
sis, classification, or processing of the extracted information within Python-
based systems.

4.3 UseCase: BottlenoseDolphinAttacks onHar-
bour Porpoises

To assess the effectiveness of our approach, we conducted an analysis that
focused on observations capable of either confirming or negating a specific
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Algorithm 2: Deterministic BDA classification process based onpresence or absence of observations.
Result: prediction
if Any observation is a BDA term then

if observation present thenprediction <- “BDA”;
elseprediction <- “Non-BDA”;
endreturn prediction;

else
if Any present observation is a GSA or claw mark term thenprediction <- “Non-BDA”;return prediction;
else

if Any present observation is a rake mark thenprediction <- “BDA”;return prediction;
endprediction <- “Non-BDA”;return prediction;

end
end

pathological finding. We employed the presence or absence of these obser-
vations as a basis for classification. In our evaluation, we concentrated on
cases involving Bottlenose Dolphin Attacks (BDA) on harbour porpoises, a
prevalent cause of death in our dataset. Out of the 193 cases in the SMASS
database, 50 listed BDA as the primary finding.

We created a deterministic classifier using the extracted empirical obser-
vations. The classifier’s classes were established based on explicit mentions
of BDA or strong indicators such as "rake marks." In cases where BDA was
explicitly mentioned, its presence or absence alone was sufficient to clas-
sify the case as either “Non-BDA” or “BDA.” However, the observation “rake
marks” could also indicate Grey Seal Attacks (GSA). Therefore, we filtered all
observations related to seal attacks and claw marks (an indicator of GSA).
We assumed that if both a GSA and a BDA were present, there should be an
explicit mention of BDA. If a document did not adhere to these classification
rules, the presence of "rake marks" would result in a “BDA” classification.
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Metrics Cumulative BDA Non-BDA
Accuracy 0.83 - -
ROC-AUC 0.77 - -
Recall - 0.64 0.90
Precision - 0.70 0.88
F1-score - 0.67 0.89
Weighted F1-score 0.83 - -
Support 193 50 143

Table 4.1: BDA classifier performance evaluation metric scores.
The sequential decision-making process of the deterministic classifier is de-
picted in Algorithm 2.

To evaluate the classifier’s performance, we used the cause of death in-
formation stored in the SMASS database as the ground truth. By comparing
the classifier’s classifications with the known causes of death, we could as-
sess the accuracy and effectiveness of our approach.

The results of the BDA use case are presented in Table 4.1. Our approach
achieved an overall accuracy of 83.4% and an F1-score of 0.83. Specifically,
for BDA classification, we achieved a precision of 0.70, recall of 0.64, and an
F1-score of 0.67. For Non-BDA classification, the precision was0.88, recall
was 0.90, and the F1-score was 0.89. Out of the 193 reports analysed, 50 were
classified as BDA cases, while 143 were classified as Non-BDA cases based
on the cause of death information from the SMASS database.

To evaluate the classifier’s performance, we generated a Receiver Oper-
ating Characteristic (ROC) curve Figure 4.7 using the precision and recall val-
ues for BDA classificationmentioned above. The area under the curve (AUC)
was calculated to be 0.77, indicating a reasonable level of performance. How-
ever, it is important to note that the labelling based on cause of death has
limitations, as there are instances where a BDA occurred, but another find-
ing was identified as the cause of death. This can lead to false positive (FP)
classifications, as BDA terms and indicators may still be mentioned in such
cases. The confusion matrix in Figure 4.8 visually represents the classifica-
tion results.
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Figure 4.7: ROC-AUC curve of BDA classifier predictions. AUC = 0.771
Due to the deterministic nature of our classifier, there are three possible

causes for incorrect classifications. First, there may be a separate and more
significant finding that caused death, even though a BDA occurred. Second,
a significant term may be used outside of its intended scope. Lastly, a sig-
nificant finding may not be successfully identified by the entity-relationship
engine, leading to missed classifications. These factors contribute to the
challenges of accurately classifying cases using our approach.

During the analysis of false positives (FPs), we observed incorrect de-
tections in cases where statements like “rake marks, assumed bird” were
present. This highlights the challenge of dealingwith varying terminology us-
age among pathologists. Some FPs were also attributed to instances where
BDA rakemarks were described as "healed" or “healing.” On the other hand,
false negatives (FNs) occurredwhen therewere no explicitmentions of BDAs,
despite statements such as “no obvious rake marks.” This suggests that
other indicators of BDA may present even when rake marks are absent.

The relatively low recall (0.64) and precision (0.70) scores in BDA classi-
fications can be attributed to the simplicity of the feature-based grammar
used and the underestimation of the total number of true positives (TPs).
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Figure 4.8: Confusion matrix of results from our deterministic BDA classifierpredictions.
Analysis of FPs and FNs also revealed cases where the feature-based gram-
mar in the entity-relationship engine did not capture significant phrases.
This indicates the need for further refinement and expansion of the gram-
mar to improve the classifier’s performance.

In contrast, the precision and recall scores for Non-BDAs (0.88 and 0.90,
respectively) were considerably higher. This was mainly due to excluding
Grey Seal Attacks (GSAs) in the deterministic classifier. An inclusion/exclusion-
based determiner effectively increased confidence in positive classifications,
making the insights obtained more robust. Despite minor shortcomings in
the grammar used, the results are highly promising for future work.

It is worth considering that a necropsy report contains additional fields
related to morphology, diagnostic confidence, and other free-text sections
like histopathology reports and conclusion sections. We can definemore ac-
curate, complex, and inclusive determiners by incorporating these relevant
fields and applying a similar information retrieval process to other sections.
This would result in higher confidence in positive or negative classifications.
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While using cause of death as a label led to lower performance metrics
than anticipated, it is important to note that without a manually labelled
dataset, we can still better understand the classifier’s characteristics. Future
work should explore incorporating additional report fields and refine the
methodology to improve the classifier’s accuracy and comprehensiveness.

4.4 Conclusions

This chapter presents our ontology-based textmining framework for analysing
marine mammal gross pathology reports, demonstrating its efficacy in a
case study involving BDAs on harbour porpoises. While our approach per-
formed well, there are weaknesses in problem formulation and the entity-
relationship engine, occasionally leading to incorrect classifications.

It’s worth noting that while we have applied this approach to marine
mammal gross pathology reports, the agnostic way in which we develop the
ontologies allows for the potential extension of similar techniques to reports
of different types, including histology and bacteriology reports, and even re-
ports on different species altogether. Further discussions on these findings
and their implications can be found in Chapter 9.
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5 Imaging Datasets

In this project, we have developed a range of datasets for various experi-
ments. This chapter provides a detailed description of each dataset and its
unique characteristics.

5.1 Salmon Gill Pox Virus Dataset

This dataset was acquired from a separate PhD project studying poxvirus in
Atlantic Salmon gills funded by Cooke Aquaculture and the University of Stir-
ling, with the former providing the samples. The dataset consisted of images
of freshwater Atlantic salmon, pre-smolt. It allowed us to begin the prelimi-
nary exploratory phase of this project. Comprising a total of fiveWhole Slide
Images (WSIs), it provided sufficient diversity in the severity of pathology to
develop machine-learning methods for our hyperplasia analysis. Addition-
ally, it was used to evaluate which techniques could best accentuate the fea-
tures necessary for accurate hyperplasia analysis.

EachWSI was divided into tiles of size 1024x1024 pixels before being pro-
grammatically evaluated as relevant or irrelevant. The first step involved
checking if a region contained any information, given that many WSIs con-
tain empty regions. Once the tile was converted to greyscale, this was done
by checking if any pixel in the image was not equal to 0. Tiles were blurred,
and a threshold was applied to segment tissue regions. Tiles that contained
at least 20% tissue were deemed to contain enough information for hyper-
plasia analysis and included in the dataset. This process is shown in Figure
5.2.
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Figure 5.1: Example WSI from the Salmon Gill Pox Virus Dataset. This smalldataset included images representing a diverse range of severity of epithe-lial hyperplasia. This example in this figure shows a relatively healthy H&Estained gill image.
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Figure 5.2: The processing pipeline for creating our tiled datasets.
Tileswere thenmanually labelled before being verifiedby an expert pathol-

ogist. Labelling was done based on the severity of hyperplasia exhibited in a
tile and classified as normal, mild, moderate, or severe. Our paper used this
dataset, which evaluated deep learning and signal processing-based meth-
ods for hyperplasia classification [4]. The final version of the dataset con-
sisted of 1465 tiles. The moderate class was slightly underrepresented, with
only 169 samples.

Category Train Counts Val CountsNormal 272 124Mild 319 139Moderate 122 47Severe 312 130
Total 1025 440

Table 5.1: Train and Validation Counts for Salmon Gill Pox Virus Dataset

5.2 Expanded Evaluation Dataset

An extended version of the dataset was developed using a further 13 WSIs
provided by the archive of the Institute of Aquaculture at the University of
Stirling. The same pipeline was used to include and exclude tiles before la-
belling. This dataset contained a much wider variety of pathologies and ad-
ditional signals such as varying Hematoxylin and Eosin staining intensities.
As well as the labelled version of the dataset, which was used for the classifi-
cation of hyperplasia, an unlabelled version was also developed to develop
the anomaly detection methods described later in the thesis. The number
of tiles associated with each class and the split between training and testing
sets can be seen in Table 5.2.
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Figure 5.3: Example WSI from the Expanded Evaluation Dataset. The ex-panded evaluation set included several images from the internal archive ofthe Institute of Aquaculture at the University of Stirling. This specific ex-ample shows more severe pathology, and has much darker staining whencompared to the image in Figure 5.1.
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Category Train Counts Val CountsNormal 2530 1024Mild 5425 1442Moderate 625 208Severe 501 460
Total 9081 3134

Table 5.2: Train and Validation Counts for Expanded Evaluation Dataset

5.3 Gill Health Project Dataset

Pharmaq Analytiq is an Inverness-based veterinary services and diagnos-
tic technology company. The company (previously Fish Vet Group) provides
aquaculture services in the United Kingdom and Ireland. One of the services
offered is the histopathological examination of tissue samples taken from
fish. Over time, they have amassed a sizable collection of histology Whole
Slide Images (WSIs), complete with free-text reports and, in some cases, le-
sion scores for each image in the collection. WSIs were collected as a result
of their inclusion in the SRUC’s “Gill Health Project". The samples used in this
work were from saltwater salmon which were sampled from sites periodi-
cally.

This dataset comprises 20 WSIs obtained from the SRUC’s Gill Health
Project [124]. Slides had been manually scored for a variety of lesions, in-
cluding hyperplasia. This whole slide score allowed us to evaluate and com-
pare the scores produced by pathologists and those produced by various
configurations of our framework. The number of slides associatedwith each
severity score is represented in Figure 5.5.
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Figure 5.4: An example slide from the Gill Health Project dataset. This ex-ample exhibits relatively little pathology, and the staining is paler than theexamples shown in Figures 5.1 and 5.3. This example shows areas of focalhyperplasia.
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Figure 5.5: The number of tiles associated with each level of severity in theGill Health Project dataset. 0 is healthy, 1 is mild hyperplasia, 2 is moderate,and 3 is severe hyperplasia.
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6 Empirical Wavelet Transforms
for Hyperplasia Score

Classification

Tissue samples obtained from fish during post-mortem provide valuable in-
sights into the animal’s condition at the time of death. Histopathology plays
a critical role in this analysis as it involves examining tissue changes at the
microscopic level. One particular lesion of interest is epithelial hyperplasia,
which signifies excessive cell proliferation and strongly indicates local irrita-
tion, infectious disease, or poor water quality. This chapter focuses on clas-
sifying the severity of hyperplasia in Atlantic Salmonwhole-slide image (WSI)
tiles. We propose a novel classification approach incorporating pathology’s
domain expertise into the image processing pipeline to achieve this, given
that Automating the classification of hyperplasia in WSIs can be achieved
through frequency domain texture analysis. We introduce a unique feature
engineering technique based on Empirical Wavelet Transform (EWT), which
involves analysing the subband statistics of the transformed images. The
feature representation obtained from EWT and a fully connected neural net-
work (FCNN) form the basis of our classification methodology.

A key aspect of our approach is the ability to identify the locally affected
regions within a WSI. We accomplish this using a tile-based method that al-
lows us to visualise and understand the specific regions contributing to the
overall classification. By extracting fine-grained information, our method-
ology enables a more comprehensive analysis and interpretation of the re-
sults. Figure 6.1 illustrates an example output of our proposed algorithm,
showcasing its effectiveness in identifying and characterising hyperplasia in
WSIs.

Hyperplasia in the gills significantly impacts the microscopic anatomy of
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(a) Normal/Mild (b) Severe
Figure 6.1: A heatmap of our approach applied to gill WSIs. White indicateshealthy and red indicates severe hyperplasia. Grey areas indicate regionswhich have been elimated in the thresholding steps of preprocessing.
the tissue. Various factors, such as local irritation, infectious disease, or poor
water quality can trigger epithelial hyperplasia. The tissue forms a comb-like
structure in healthy gills, with primary lamellae resembling teeth on a comb.
These primary lamellae further branch into secondary lamellae, as depicted
in Figures 6.1 & 6.2. A healthy gill’s secondary lamellae consist of a linear
channel filled with red blood cells, surrounded by a thin layer of cells known
as the epithelium. In mild to moderate hyperplasia cases, the number of
cells in the epithelial layer increases, resulting in a reduction of space be-
tween the secondary lamellae. The secondary lamellae fuse completely in
severe cases, as illustrated in Figure 6.2. Severe hyperplasia severely impairs
the gill’s respiratory function and its ability to extract oxygen from water.
Therefore, accurately measuring and assessing hyperplasia in gills is crucial
for understanding the overall health of the fish.

Automating the classification of hyperplasia inWSIs canbe achieved through
frequency domain texture analysis. However, traditional image decomposi-
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tion methods have limitations. Fixed template-based approaches, such as
wavelets, lack flexibility due to their rigid template structures. On the other
hand, data-driven approaches like Empirical Mode Decomposition (EMD)
[96] lack a solid mathematical foundation. Gilles et al. address the lack of
mathematical foundation, proposing the empirical wavelet transform as an
adaptive signal decomposition method [40,97].

In this work, we have used the LP transform to decompose an image into
its different frequency components, capturing both local and global varia-
tions in the image data. Unlike conventional wavelet-based approaches, the
empirical 2D LP transform introduces adaptability in its filtering process, al-
lowing it to capture image features across a wide range of scales effectively.

Extraction methods such as CNNs and our approach enable us to create
a tile-based classification framework for the generation of statistics. Our ap-
proach quantifies the severity of various lesions within an individual whole-
slide image (WSI), thereby creating a model of the gill’s condition. The fine-
grained understanding of a gill’s health allows us to explore more sophis-
ticated methods of scoring lesions. Such a model can serve as a valuable
complement to other pathological or epidemiological data. As such, the fol-
lowing contributions are made in this chapter:

• We introduce a unique data-driven approach for measuring hyperpla-
sia in gill histology images, filling a gap in the existing literature. Our
approach not only provides a means to quantify hyperplasia but also
enables the generation of visualisations to aid in the understanding
and interpretation of the results. Our approach also allows us to dif-
ferentiate between cases of focal and diffuse hyperplasia at the WSI
level.

• We propose a novel parametric feature generation method, combined
with a fully connected neural network (FCNN), that translates expert
knowledge intomathematically explainable features. Thismethodutilises
both non-adaptive wavelets and Empirical Wavelet Transform (EWT),
capturing relevant information from the images. By incorporating ex-
pert knowledge into the feature engineering process, we enhance the
interpretability and explainability of the generated features.

• Our methodology introduces a scale and rotation-agnostic represen-
tation of image features, enabling the development of effective mod-
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Figure 6.2: Tiles extracted from gill WSIs. From left to right - Normal, Mild,Moderate, and Severe cases of hyperplasia. The epithelial layer surround-ing the red cells is very thin in the Normal case, but thicker in the Mild andModerate tiles. The secondary lamellae are indistinguishable in the severecase, except for the lines of red cells which are still visible.
els with small datasets. This approach overcomes limitations imposed
by variations in image scale and rotation, ensuring robust and reliable
analysis results.

By producing our method for lesion recognition in gill histology images,
we contribute to the understanding and characterisation of gill health. Our
data-driven approach, coupled with novel feature generation techniques
and scale/rotation invariance, opens avenues for improved analysis, inter-
pretation, andmodelling in the field. These contributions advance the state-
of-the-art in fish gill pathology and provide valuable tools for researchers
and practitioners in the domain.

6.1 Methodology

The core of our pipeline consists of threemain sections: preprocessing, sub-
band image generation using 2D LP-EWT, and parametric feature calcula-
tion, as illustrated in Figure 6.3. These steps form the foundation of our ap-
proach to incorporate expert knowledge as features in themachine learning
models.

To ensure the accuracy and reliability of our classification, we collabo-
rated closely with an expert pathologist to establish the ground truth for
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hyperplasia. Through consultations, the expert pathologist identified sev-
eral components of gill histology slides that serve as differentiators between
healthy/normal, mild, moderate, and severe cases of hyperplasia. Indicators
of hyperplasia included an increase in the overall tissue area, a decrease in
the space between secondary lamellae, and a shift in tissue colour.

To select themost relevant features that effectively represent these char-
acteristics, we evaluated potential features andmade inclusion or exclusion
decisions based on their ability to capture the desired attributes.

The first step in the pipeline, preprocessing, is concerned with accentu-
ating the morphological characteristics of the image while normalising non-
anatomical or pathological elementswhichmay vary from slide to slide, such
as stain intensity. The EWT is then applied to the separate RGB channels of
the tiles, allowing us to capture the image’s colour and overall texture in-
formation. We then use our parametric feature engineering technique to
extract subband statistics from the resultant subband images.

6.1.1 Preprocessing

We resized each image from its original size of 1024×1024 to a reduced size of
128 × 128. These dimensions were chosen due to the the massive reduction
in computational complexity, while still effectively representing themorpho-
logical features of the image. This resizing was achieved using pixel area re-
lation resampling, preserving the key details while reducing computational
complexity. Subsequently, we applied a low-pass 5×5 average blurring filter
to smoothen the image and reduce noise. This blurring operation helps to
enhance the overall image quality and improve subsequent analysis results.
Normalisation was another important step in our preprocessing pipeline.
By applying and evaluating a variety of stain normalisation techniques, we
standardised the intensity values across the image, ensuring that the data
distribution is consistent and facilitating fair comparisons between different
tiles.
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Figure 6.4: The 1024x1024 reference image used in the stain normalisationprocesses. All tiles have had coloursmatched to this image using the variousstain normalisation methods used in this project.
6.1.2 Stain Normalisation

Histology images stained with Hematoxylin and Eosin (H&E) are extensively
utilised in medical and biological research. However, variations in staining
protocols and imaging conditions can introduce inconsistencies in the colour
appearance of these images.

Several stain normalisation methods have been explored to ensure re-
liable and consistent analysis. We initially used Vahadane normalisation
[4, 125], however, we have since empirically established that other meth-
ods are more effective for our purposes. All methods discussed involve the
use of a representative image for all other images to be matched to. In this
context, we discuss three popular stain normalisationmethods used inH&E-
stained images:

Macenko et al. [76] assumed that every pixel represents a singular stain
vector. The first step involves converting the image to optical density, or OD
space, before using singular value decomposition to identify the vector as-
sociated with each stain component: hematoxylin and eosin. By estimating
stain concentration and colour vectors, Macenko’s method effectively nor-
malises the colour appearance of stained images.
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Figure 6.5: Stain normalisation methods demonstrated on three tiles fromdifferent slides with varying stain intensities. Tiles are all of size 1024x1024.Reference image in Figure 6.4 used for stain normalisation.
Reinhard et al. [75] introduced an approach to align the colour distribu-

tion of an image with a target image using a linear transform in a percep-
tual colourspace known as the lαβ colourspace developed by Ruderman et
al [126]. The goal is to ensure that the means and standard deviations of
each colour channel in both images are matched in that colour space.

Amodified version of Reinhard et al.’s algorithmwas presented by Roy et
al. in 2021 [127]. They aimed to address some of the known shortcomings
of Reinhard normalisation, namely that Reinhard normalisation does not
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preserve background luminance and that the method sometimes produces
a poorly contrasted image where the reference image has less contrast than
the target.

All three of these methods were applied using the torchstain python li-
brary [2].

Figure 6.6: Scatter plots of the 3 components of the GMM model fit to thetile image, the three dimensions being weight, mean, and co-variance. Thehistograms show how covariances produced from a Gaussian model varybetween classes.
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Figure 6.7: A tile taken from a WSI next to its LP EWT. Subband boundariesare shown in red.
6.1.3 Parametric Feature Engineering

Given that we identified colour and texture as relevant characteristics for
our approach to capture, the LP-EWT method described above was applied
to separate colour channels of each tile. We applied a parametric method
to the subband images generated by EWT to produce the features used for
model training and testing.

Our approach produces, n, subband images when we apply LP-EWT to
the tile. We then extract statistical features from each image by fitting be-
spoke probability distribution functions (PDF) to flattened representations
of the tiles’ pixels. A Gaussian Mixture Model (GMM) PDF is fit to the 1st
image, with a given number of, K, components. For each kth component, a
mean, µk, a variance, σk, and a weight, ϕk are produced. In our approach
we have empirically set K to be 3, meaning for the 1st subband image we
obtain 9 features. Equation 6.1 describe the GMM PDF-based feature gen-
eration process.

p(x) =
K∑

i=1
ϕiN (x | µi, σi) , (6.1)

where,
N (x | µi, σi) = 1

σi

√
2π

exp
(

−(x− µi)2

2σ2
i

)
,
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such that,
K∑

i=1
ϕi = 1.

For all subband images except the first, a Gaussian PDF is fit based on
the pixel values (shown in Eq. 6.2). The σ is kept and used for the feature
vector, while the mean, µ, is discarded as µ = 0 in all cases.

p(x;µ, σ) = 1
σ

√
2π
e− 1

2(x−µ
σ )2

. (6.2)
This process is applied to three different representations of the tile using

the red, green, and blue colour channels. Given that n=20 in this work, we
generate 29 features for each colour channel and 87 in total.

The features extracted from the 1st subband image using the GMM PDF
are concatenated and organised.

M = (µ0, ..., µk, σ0, ..., σk, ϕ0, ..., ϕk). (6.3)
The features extracted from the other subband images from each chan-

nel (Hr,Hg,Hb) are then also concatenated to produce the feature vector,
H:

H = (Hr,Hg,Hb), (6.4)
where,

Hr = (Mr, σr1, σr2, ...σrn),

Hg = (Mg, σg1, σg2, ...σgn),

Hb = (Mb, σb1, σb2, ...σbn).

The feature vector (H) is then passed to a fully connected neural network
(FCNN) with 3 hidden layers of 1024 neurons. We analysed the features gen-
erated from a 7 subband image EWT on a balanced subset of our Salmon
Gill Pox Virus Dataset dataset. The visualisation in Figure 6.6 shows scatter
plots of the components generated from parameters generated by fitting a
3-component GMM on the lowest subband image, and histograms gener-
ated from the co-variants of the other subband images. This visualisation
demonstrates a separation between classes that, when combined, can be
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leveraged for the purposes of classification.

6.2 Results

All experiments in this sectionwere runon anAMDX86_64with anRTX2080Ti.
The experiment evaluated the performance of different stain normalisation
approaches for the models: InceptionV3, LP-EWT, and ResNet18. Trans-
fer learning was not used. The loss function used was cross-entropy loss.
Stochastic GradientDescent (SGD)was the optimiser used. The results, shown
in Table 6.1, revealed that Reinhard stain normalisation was the best ap-
proach for all three models. When studying how the models performed
when classifying individual severity classes, it becomes quickly apparent that
the data imbalance has lead to difficulties in correctly classifying the mod-
erate class, given the poor performance across all models and metrics. It
is important to also highlight the limitations of representing a continuous
attribute such as hyperplasia as a discrete category. We discuss these find-
ings, their interpretations, and their implications further in Chapter 9. In its
current form, our model can effectively produce tile-level information re-
lating to the severity of hyperplasia, however, our approach does not yet
discriminate between relevant and non-relevant tissue, which we address
in Chapter 7.

6.3 Conclusions

We developed and evaluated a method of feature extraction which used
empirical wavelet transforms alongside probability density functions. Our
method utilised both Gaussian and Gaussian Mixture models to extract fea-
tures from subband images in order to train and test our neural network
model. We compared our model to several deep learning methods and
found that our approach achieved comparable performance. Furthermore,
we evaluated three stain normalisation methods across all models evalu-
ated: Macenko, Reinhard, and Modified Reinhard. We found that Reinhard
stain normalisation performed best among the methods evaluated. This
analysis supplements our previous work research, which showcases that
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our EWT-LPmethod not only achievesmuch faster training processing times
but also maintains comparable accuracy scores [4].
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7 Context-Aware Hyperplasia
Analysis using Variational

Autoencoders

The dataset used in the previous chapter consists of tiles of lamellar tissue
with varying degrees and types of pathology. This allowed us to train more
effectively and test models that can perform lesion-based analysis. How-
ever, the sliding window method used in the previous chapter to generate
metrics and visualisations lacks a contextual understanding of what is and
what is not lamellar tissue. This context-agnostic approach has limitations
as it evaluates non-lamellar tissue, which should not be considered when
generating a global metric for the level of hyperplasia in a slide. Similarly,
this approach’s visualisationsmay highlight irrelevant tissue areas as abnor-
mal. An example of this can be seen in Figure 6.1, where the normal/mild
case contains areas identified as severe. When analysed, it was found that
these anomalies were either excess tissue from the gill arch, or cells at the
tips of the primary lamellae, which resemble severe hyperplasia when con-
sidered out of context. Figure 7.1 shows how the tips of primary lamellae
lose the comb-like structure that is present in the rest of the lamellar tissue.

Varying quantities of excess tissue from the gill archmay also be included
and erroneously classified as severe hyperplasia. Figure 7.2 shows two re-
gions fromWSIs which may be mistakenly identified as severe based on the
methods developed in the previous chapter.

Given that tiles without contextmay be incorrectly classified, it is prudent
to include another step in our pipeline to evaluate whether tiles would be
included or excluded when quantifying the severity of hyperplasia in a WSI.
In this chapter, we outline how anomaly detection methods, namely varia-
tional autoencoders (VAEs) can be used to classify whether regions should
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(a) (b)
Figure 7.1: The tips of the primary lamellae from two different WSIs. Whenviewed in isolation, tiles of these regions often resemble severe hyperplasia.

(a) (b)
Figure 7.2: The base of the primary lamellae from two different WSIs. Excesstissue may often resemble severe hyperplasia.
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be considered for hyperplasia analysis of lamellar tissue.

7.1 Methodology

Weuse techniques originally developed for the closely related task of anomaly
detection, mainly because non-lamellar tissue can be deemed extraneous
when it comes to the hyperplasia analysis task. Our approach involves train-
ing a neural network designed to distil an image into a compact set of pa-
rameters. Subsequently, we employ a mirrored neural network to recon-
struct the original image. It’s essential to note that these neural networks
undergo training exclusively on lamellar tissue, which is directly relevant to
hyperplasia analysis.

When an image that does not resemble lamellar tissue is passed through
this model, the resulting reconstruction is noticeably less accurate. By com-
paring the reconstructed image with the original, we can effectively discern
whether the image holds significance for the task of hyperplasia analysis.
This approach allows us to eliminate tiles that may skew the results of our
analysis.

7.1.1 Autoencoders

Autoencoders are a class of neural networks used for unsupervised learn-
ing tasks such as data compression, denoising, feature extraction, and in
our work, anomaly detection. Combining an encoder and a decoder, au-
toencoders capture the underlying structure of input data by reducing its
dimensionality while preserving essential features. Figure 7.4 shows this
structure.

The encoder takes the original input image and maps it into a lower-
dimensional representation known as the latent space. This process in-
volves successive layers of neurons that compress and transform the in-
put data into a compact form. The encoder essentially captures the most
salient features of the input, discarding less significant information. This la-
tent space representation serves as a compressed version of the input data.
It captures the key characteristics of the data, allowing us to abstract away
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Figure 7.4: Diagram showing the encoder-decoder structure of autoen-coders. The encoder takes information and reduces it to a much smallerlatent representation which can then be used to recreate the infiormationusing the decoder.
noise and redundancy.

The decoder then receives the latent space representation and aims to
reconstruct the original image from it. Through a symmetrical architecture
of the encoder, the decoder reverses the compression process, gradually ex-
panding the latent representation into a reconstruction of the initial input.
During training, the autoencoder minimises a reconstruction loss, quantify-
ing the difference between the input image and the reconstructed output.
This loss drives the network to learn representations that capture the most
important characteristics of the data, leading to more effective data com-
pression and reconstruction. Our work uses this reconstruction loss value
to identify anomalous tissue, essentially appropriating the anomaly detec-
tion process.

7.1.2 Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) extend the concept of autoencoders by in-
corporating probabilistic elements, enabling more sophisticated and versa-
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tile representations of complex data. Unlike traditional autoencoders that
map input data to a fixed latent space point, VAEs map inputs to probability
distributions in the latent space. This introduces uncertainty and flexibil-
ity, allowing the model to account for the inherent variability in real-world
data. To facilitate gradient-based training, VAEs employ a reparameterisa-
tion trick. Instead of directly sampling from the distribution produced by the
encoder, the model samples from a simpler distribution (typically Gaussian)
and then transforms the samples using the encoder’s learned parameters.
This enables efficient gradient propagation during training. This is described
in Formula 7.1, where a stochastic latent variable, z, within a standard Gaus-
sian distribution, ϵ ∼ N (0, 1) is sampled for each parametric feature of the
distribution, e.g. µ and σ, as predicted by the encoder.

z ∼ qµ,σ(z) = N (µ, σ2)

ϵ ∼ N (0, 1)

z = µ+ ϵ · σ

(7.1)

VAEs introduce a regularisation term in the form of the Kullback-Leibler
(KL) divergence for model training. This term encourages the learned latent
space to conform to a chosen prior distribution. This is described in Formula
7.2, where the divergence of the distributions, P and Q, can be thought of
as the similarity of the two distributions obtained from the original image,
and the VAE reconstructed image.

DKL(P∥Q) =
∑

x

P (x) log
(
P (x)
Q(x)

)
(7.2)

7.1.3 Reconstruction Loss

A comparison between the initial image, and the reconstructed image is per-
formed to evaluate the accuracy of the reconstruction. In this work, we use
binary cross-entropy loss to do this:

Binary Cross-Entropy Loss = −(y log(p) + (1 − y) log(1 − p)) (7.3)
Binary Cross-Entropy Loss is a commonly used loss function in machine
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learning for binary classification problems. It measures the dissimilarity be-
tween predicted probabilities and actual binary labels (0 or 1) and is par-
ticularly well-suited for problems where the goal is to predict one of two
mutually exclusive classes.

As mentioned previously, we can reuse the reconstruction loss value to
predict whether an image is a lamellar tissue relevant for hyperplasia anal-
ysis. We make the crucial assumption that tissue that does not exhibit the
characteristics of lamellar regions will be more difficult to reconstruct and,
as such, will produce a higher reconstruction loss value.

7.1.4 Model Training

We used transfer learning to train our VAE on the same training set de-
scribed in the previous chapter for hyperplasia classification. The encoder
consisted of a ResNet50 [128] baseline pretrained on ImageNet database
[129]. The decoder had the reverse structure. The model was trained over
50 epochs, with a batch-size of 64, and a learning rate of 0.001. Images went
through Reinhard stain normalisation [75] before being resized to 224x224,
as is standard for ResNet models. The encoder generates a latent represen-
tation with 256 dimensions, which serves as the input for the decoder.

7.2 Results and Visualisation

Using the dataset described in Chapter 5 for anomaly detection, we passed
both lamellar and anomaly images through our model and plotted the re-
construction loss values in the histogram shown in Figure 7.5. The histogram
clearly shows that the classes are separable.

7.2.1 Otsu Thresholding on Reconstruction Losses

In our analysis, we employ Otsu thresholding to automatically determine an
optimal threshold value for distinguishing between two classes within the
data. The Otsumethod, as depicted in Formula 7.4, systematically evaluates
a range of potential thresholds (t) to identify the threshold that minimises
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the intra-class variance. A random subset of 200 was used to systemati-
cally calculate the threshold value. 100 tiles exhibiting anomolous/irrelevant
were manually selected along with 100 tiles from the training set, with each
hyperplasia severity classification equally represented.

Figure 7.5: A histogram of the anomaly and lamellae class reconstructionlosses, with the value obtained from Otsu thresholding shown in red.
The intra-class variance, denoted as σ2

w(t), is calculated as aweighted sum
of the variances associated with the two classes. These weights are repre-
sented by ω0 and ω1, which respectively correspond to the probabilities of
occurrence of the two classes. The Otsu method effectively searches for the
threshold value that optimally separates these classes by minimising the
variance within each class.

σ2
w(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t) (7.4)

To demonstrate the effectiveness of this approach, we generated the vi-
sualisations shown in Figure 7.6 b, and c. Our anomaly detection approach
has successfully identified some regions of tissue that are abnormal for the
task of hyperplasia analysis, however, it has still failed to identify some of
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the regions classified as severe at the tips and base of the gill arch.

7.3 Conclusions

Our approach has demonstrated the ability to accurately identify certain ab-
normal tissue regions that may negatively impact the task of hyperplasia
analysis, allowing us to disregard them when considering the global slide
hyperplasia score.

Despite these promising results, it has still failed to detect anomalous
regions classified as severe at the tips and base of the gill arch. These areas
pose a unique challenge due to their similarity to severe hyperplasia, and
our approach has encountered difficulty distinguishing them accurately.

These preliminary results underscore the need for further refinement
and exploration in our anomaly detection methodology. Future work may
consider other neural networks for the VAE, other methods of threshold
analysis, and a larger dataset for analysing which threshold value is appro-
priate for this task.
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8 Lesion Score Aggregation in Gill
Histology Images

Up to this point, the assessment of our model’s performance has focused
on the individual tile level. However, in this chapter, we focus on evaluating
the model’s capability to generate global hyperplasia scores for entire WSIs.
We explore various techniques for aggregating the tile-level information and
examine how closely these aggregated scores align with those generated by
histopathologists.

8.1 Pipeline Overview

In this chapter, we evaluate the effectiveness of components of our pipeleine.
The three main stages under consideration are anomaly removal, hyperpla-
sia classification models, and metric aggregation methods. Some blocks of
our pipeline remain consistent across all experiments, such as using Rein-
hard stain normalisation and preprocessing methods and removing tiles
lacking sufficient tissue for analysis. Figure 8.1 shows a flowchart of our
pipeline.

8.2 Region of Interest Classification

In our analysis, we begin by discarding empty tiles and those with insuffi-
cient tissue area for meaningful analysis. We then employ the ResNet50-
based Variational Autoencoder (VAE), previously developed and trained in
Chapter 7. After reconstructing a tile, we calculate the reconstruction loss
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and compare it to the same Otsu-based threshold value to differentiate be-
tween anomalous and lamellar tiles.

8.3 Hyperplasia Classification Models

Tiles which have been deemed relevant are then considered for hyperplasia
classification. We employ the two classification models trained and evalu-
ated in Chapter 6: our EWT-LP approach and ResNet18.

8.4 Metric Aggregation

Tiles in our analysis fall into one of four categories: normal, mild, moderate,
or severe. Consequently, we explore three distinct methods for condensing
this information into a singular metric: mean averaging of scores, modal
aggregation, and median average.

In our 20 gill Whole Slide Images (WSIs) dataset, each has been assigned
a hyperplasia score ranging from 0 to 3. Here, 0 signifies the absence of
hyperplasia, while 3 indicates severe hyperplasia. Under the modal aggre-
gation metric, we link a WSI’s most frequently occurring severity class to its
respective hyperplasia score. The number ofWSIs associatedwith each class
is shown in Figure 5.5.

In the case of mean score averaging, we start by assigning each tile its
corresponding hyperplasia score value, as with the process used in modal
aggregation. Subsequently, we calculate the mean average of these hyper-
plasia scores. We round our final score to the nearest whole integer to facil-
itate a direct comparison with the ground truth dataset scores.

8.5 Results

For each of the 20 Whole Slide Images (WSIs), predictions were generated
using mean, modal, and median averaging, as presented in Table 8.1. The
colours within Table 8.1 correspond to the level of agreement between the
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developed methods and the expert score, where green signifies congru-
ence, yellow indicates a one-degree disagreement, orange represents a two-
degree disagreement, and red signifies complete divergence. Additional vi-
sualisations, both with and without the Variational Autoencoder (VAE) com-
ponent, can be found in Appendices 1 and 2. These appendices also include
bar charts illustrating the number of tiles associated with each class, both
before and after incorporating the VAE component.

Overall, our pipeline has yielded mixed results. The absence of congru-
ence inmost cases can be attributed to several factors. Firstly, the classifica-
tion component sometimes predicts tiles inaccurately. Additionally, relying
on a threshold value for the reconstruction loss to eliminate non-lamellar tis-
sue may introduce weaknesses. The use of averaging techniques can lead
to a drift in the global metric towards mild and moderate scores. Lastly, dif-
ferences may exist in the approaches employed by our method and expert
histologists when summarising hyperplasia into a singlemetric. While an ex-
pert may arrive at a final score based on a subjective impression shaped by
their extensive experience, the metric generated by our approach is funda-
mentally deterministic and explainable. This is in stark contrast to the sub-
jective scores which may be produced between different histologist from
different clinical settings. Our results also highlight the weakness of sum-
marising a characteristic such as hyperplasia in a single metric when the
reality may be more complex. We will discuss and expand upon the impli-
cations of these findings in Chapter 9.
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9 Discussion

In this chapter, we provide a comprehensive overview of the key findings
derived from this project, and where feasible, draw comparisons with ex-
isting research. We delve into a thorough analysis of the results presented
in the preceding chapters, aiming to explain how these findings contribute
to addressing the research questions posed in this thesis. Additionally, we
explore both the practical and theoretical implications of this research, with
a specific focus on its potential impact on policies, practices, and the direc-
tion of future research endeavours. To maintain transparency, we discuss
the limitations of our work and acknowledge the weaknesses in the meth-
ods developed. Following this, we discuss prospective avenues for future
research, offering recommendations informed by the challenges encoun-
tered during the course of this project.

9.1 InformationRetrieval forMarineMammalNecropsy
Analysis

In Chapter 4, we assessed the effectiveness of our information retrieval frame-
work through a use-case analysis - bottlenose dolphin attacks (BDAs) on
harbour porpoises. While the deterministic classifier was able to accurately
classify cases of BDA in most cases, we found a significant number of false
positives associated with deficiencies in our entity-relation engine. Further-
more, the ground truth labels used would only list the ultimate cause of
death, meaning that secondary contributing pathologies or lesions were not
represented.
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While applying text mining methods to marine mammal post-mortem
reports represents a novel approach, it’s important to recognise that within
the broader field of natural language processing, our method may be con-
sidered less complex compared to recent advancements in text generation.
Notably, some large language models (LLMs) have demonstrated the capa-
bility to automatically comprehend intricate specialised texts spanning var-
ious domains.

An intriguing avenue for future exploration lies in the potential replace-
ment of our ontology-driven entity-relation engine with a more advanced
model. This enhanced model could still retain the capacity to summarise
an animal’s condition in a format suitable for storage in a non-relational
database—a choice that still holds intrinsic value due to its ability to facil-
itate swift and efficient analysis rooted in specific anatomical observations.
Despite the evolving landscape of text analysis methods, there may still be
inherent advantages to preserving the simplicity and accessibility of our cur-
rent database structure. It should also be noted that a more sophisticated
model would allow for more rapid development of similar approaches in
new domains, given the time-consuming nature of developing entity recog-
nition engines, such as the one developed in this project.

Another limitation of this work is that all the reports we analysed came
from a single organisation. It’s unclear how reporting methods for marine
mammal strandingsmight differ among organisations in different countries.
Differences in language and terminology could be significant, potentially af-
fecting the applicability of the ontologies we developed to other datasets.
However, our method is adaptable and can accommodate the inclusion of
new synonymous terms, whichmay help address this limitation when work-
ing with diverse datasets from different sources.

We were also unable to demonstrate the potential of fusing information
obtained from pathology reports and corresponding image data, due to the
change in circumstances in data availability. It should be noted that changes
in the way that organisations store data could significantly improve data ac-
cessibility, allowing for complex pathological and epidemiological analysis
of populations without requiring information retrieval techniques such as
those used in this project. This can be done by storing findings in an aggre-
gable format, rather than text.
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9.2 Empirical Wavelet Transforms for Hyperpla-
sia Score Classification

We devised and assessed a feature extraction technique employing empiri-
cal wavelet transforms in conjunctionwith probability density functions. Our
approach used Gaussian and Gaussian Mixture models to extract signifi-
cant features from subband images for the training and evaluation of our
neural network model. We conducted a comparative analysis of our model
against several deep learning methods, revealing that our approach con-
sistently achieved comparable, and often superior, performance in terms
of both accuracy and training time. Additionally, we conducted an evalua-
tion of three stain normalisation methods—Macenko, Reinhard, and Modi-
fied Reinhard—across all models. Among these methods, we identified that
Reinhard consistently yielded the highest accuracy in our evaluations.

Several limitations are associated with our hyperplasia classification ap-
proach, primarily stemming from howwe framed the problem. We chose to
employ a four-class classification system, aligning it with the scoringmethod-
ology commonly used by histopathologists when assessing gill Whole Slide
Images (WSIs). This system was designed to harmonise with prevalent ter-
minology in gill condition reporting: ’normal,’ ’mild,’ ’moderate,’ and ’severe.’
However, this approach may fall short of ideal due to the discrete nature of
hyperplasia, which doesn’t neatly conform to categorical boundaries. Fur-
thermore, distinguishing between mild and moderate cases is often subjec-
tive, relying heavily on the examiner’s professional experience. While we
developed a rubric to account for this when creating our datasets, there still
exists no industry standard for tile-level analysis given that our work is the
first of its kind.

While our current methodology employs a single metric to represent hy-
perplasia in gillWSIs, amore nuancedunderstanding of how the lesionpresents
itself is required. For instance, the existing 0-3 scoring system does not cap-
ture the distribution of hyperplasia. It fails to distinguish between focal and
general hyperplasia, both ofwhich hold substantial clinical significance. Nev-
ertheless, given the available data, the tile level’s 0-3 scoring system remains
suitable.
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In the future, it would be worthwhile to explore unsupervised scoring
methods at the tile level on a larger dataset. Such an approach could po-
tentially yield more comprehensive insights and make the development of
aggregation metrics at the whole-slide level a more tractable task.

In our research, we centred our parametric feature generation approach
around the 2D Littlewood-Paley EWT. This choice was primarily motivated
by the method’s ability to produce a consistent number of boundaries, facil-
itating the generation of uniform feature vectors. An intriguing avenue for
future exploration lies in the consideration of how EWT-based approaches
such as ridglet, curvelet, and tensor could be harnessed for feature extrac-
tion.

To pave the way for more efficient development, it would be prudent to
initially benchmark thesemethods onwell-established texture-baseddatasets
before their application to medical images. This strategic approach ensures
a solid foundation and a clear understanding of their performance charac-
teristics, allowing for a more seamless transition to the domain of medical
image analysis.

Another avenue worthy of future exploration pertains to the application
of deep learning-based stain normalisation methods. Although the tech-
niques employed in our study were sufficient for our preliminary work, it’s
worth noting that stain normalisation in medical images is a dynamic and
evolving field of research. Therefore, there is considerable potential for fur-
ther investigation and experimentation in this domain in future research
endeavours.

9.3 Context-AwareHyperplasiaAnalysis usingVari-
ational Autoencoders

Our approach demonstrated its capability to accurately identify specific ab-
normal tissue regions, which could potentially interfere with hyperplasia
analysis, improving some test visualisations. This allowed us to exclude
these regions when calculating the overall slide hyperplasia score. How-
ever, despite these promising outcomes, our approach still faces challenges
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in detecting abnormal regions classified as severe, particularly at the tips
and base of the gill arch. These areas present a distinct challenge due to
their resemblance to severe hyperplasia, making it difficult for our method
to differentiate them accurately. Due to the use of a threshold value for the
reconstruction loss, some slides were over-estimated to contain anomalous
tissue, and vice-versa.

The use of anomaly detectionmethods to classify regions of interest was
to remedy the indiscriminate way in which our pipeline processes any tile
containing a sufficient quantity of tissue pixels. In our project, we relied on
the loss generated through the comparison of a tile with its ResNet50-based
VAE reconstruction, coupledwithOtsu thresholding basedonadataset equally
divided between our lamellar and anomaly classes. While this approach suf-
ficed for our preliminary analysis, it’s important to note that the effective-
ness of our Otsu threshold is significantly influenced by the proportion of
lamellar to anomaly images in the dataset. Consequently, it does not purely
represent a threshold value that delineates the divide between these two
classes. This is illustrated by the visualisation in Appendices 1 and 2, which
highlight how a single threshold value, effective in eliminating extraneous
tissue at the base and tips in one image, may inadvertently remove essen-
tial tissue in another WSI.

Conducting a comprehensive evaluation of various anomaly detection
methods, encompassing a range of autoencoders and variational autoen-
coders, holds the potential to foster greater alignment between the scores
generated by our pipeline and those provided by histopathologists. This
evaluation should involve a diverse set of neural networks, with a focus on
assessing their performance while considering the trade-off between accu-
racy and computational runtime—a particularly pertinent consideration for
computationally intensive methods.

Additionally, there exists the prospect of developing segmentation and
classification models to differentiate between lamellar and non-lamellar tis-
sue. However, this avenue was not pursued in our study due to the substan-
tial workload associated with annotating such data. Nevertheless, it’s worth
noting that the detection of regions of interest using similar methods could
find broader applications across the realm of general medical imaging.
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9.4 Lesion ScoreAggregation inGill Histology Im-
ages

We compared various metric generation approaches for representing hy-
perplasia within Whole Slide Images (WSIs) and contrasted these metrics
with those generated by expert histopathologists. Notably, we observed
significant disparities in the scores, which could be attributed to limitations
inherent in the aggregation techniques employed and the methods utilised
by histopathologists to summarise severity. Interestingly, our incorporation
of the VAE component exhibited mixed effects on the alignment of opin-
ions between the pipeline and the experts. In certain cases, it facilitated a
convergence of opinions; in others, it led to divergence. While this marks a
promising starting point for understanding how hyperplasia can be quan-
tified, further investigation with an expanded dataset is imperative to gain
deeper insights into the underlying reasons for the discrepancies observed
between the model and expert assessments.

9.5 Research Implications

At the time of writing, our work is the only project to apply data-driven ap-
proaches to marine mammal post-mortem reports and gill WSIs. Further
development of these, and similar methods, would have several significant
implications for industry, research, and policy.

• Improved Understanding of Health Patterns: Data-driven analysis
plays a pivotal role in enhancing our understanding of health patterns
anddisease dynamicswithin aquatic animal populations. This approach
becomes particularly valuable when dealing with large, yet previously
underutilised datasets, often characterised by their unstructured na-
ture. By applying data-driven information retrieval methodologies, we
can transform these disparate reports and images into a more com-
prehensive model of an animal’s health state at the time of death. This
holistic view empowers researchers to identify critical trends, risk fac-
tors, and emerging health issues with a granularity and precision pre-
viously unattainable. Ultimately, this enriched dataset amplifies the
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efficacy of epidemiological analyses, contributing significantly to our
collective understanding of aquatic animal health.

• Improved Disease Detection: Data-driven analysis methods excel in
their capacity to enable the early detection of diseases andhealth anoma-
lies among aquatic animals. What sets these approaches apart is their
ability tomodel an animal’s condition at the time of death at a granular
lesion level, improving upon the traditional focus solely on the patho-
logical level. By doing so, we can capture the emergence of pathologies
with heightened precision and sensitivity. This heightened sensitivity,
in turn, empowers researchers and stakeholders to identify potential
health issues, facilitating the implementation of more effective disease
management and prevention strategies. Timely interventions enhance
the welfare of aquatic populations and contribute significantly to the
overall health and sustainability of aquatic ecosystems.

• Data Integration: The power of data-driven analysis lies in its ability to
seamlessly integrate information from diverse sources, culminating in
a comprehensive perspective of aquatic animal health. This integration
extends beyond just traditional datasets and encompasses crucial en-
vironmental and behavioural factors, such as water quality scores and
weather conditions Combining these external variables with insights
extracted from unstructured data modalities creates a holistic portrait
of an animal’s health. This enables researchers and stakeholders to
analyse the interplay between an animal’s well-being and its surround-
ings. Such integration is invaluable in unveiling the complex relation-
ships between aquatic animals and their environments, allowing more
informed decision-making and conservation efforts.

• Environmental Impact Assessment: By examining the connection
between aquatic animal health and environmental factors, themethod-
ologies developed in this project canmake substantial contributions to
the assessment of the environmental repercussions stemming from
human activities on aquatic populations. An illustration of this poten-
tial could be the application of the information retrieval framework to
reports mentioning entanglements, which often culminate in marine
mammal strandings. Through this approach, we can gain insights into
the broader ecological implications of individual cases, shedding light
on the direct and indirect consequences of human activities on aquatic
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ecosystems.
• Policy and Regulatory Decisions: Robust data analysis can inform
policy and regulatory decisions related to aquatic animal health. Evidence-
based policies can enhance the sustainability and welfare of aquatic
ecosystems.
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10 Conclusions and Future Work

This thesis addresses the significant challenge of analysing unstructured
aquatic animal health data. The overarching objectivewas to develop a com-
prehensive set of techniques encompassing text mining, signal processing,
image analysis, and machine learning to handle such complex data effec-
tively, ultimately enabling information aggregation across historic datasets.

In pursuit of these goals, we achieved notable milestones in two key ar-
eas:

Text Analysis: We devised an ontology-based framework tailored for ex-
tracting and organising information from aquatic animal post-mortem re-
ports, with a primary focus on gross pathology reports. Initially applied to
marine mammal stranding reports, this adaptable framework holds poten-
tial for various species and multiple report types.

GillWSI Analysis: Our research led to the creation of innovativemethods
for identifying and analysing lesions withinWSIs of Atlantic salmon gills. This
approach introduced a novel feature extraction technique leveraging the
empirical wavelet transform and incorporated context awareness through
the use of a variational autoencoder to identify regions of interest within
histology images.

Our research has identified a substantial research gap in the domain of
sophisticated analysis of unstructured data modalities. Our investigations
have encompassed the exploration of promising approaches for extracting
information from textual post-mortem reports. Additionally, we have pio-
neered innovative signal and image processing techniques for the compre-
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hensive analysis of lesions within gill Whole Slide Images (WSIs). We have
also established that our explainable method often diverges from expert
scores.

These accomplishments collectively represent a significant advancement
in the analysis of unstructured aquatic animal health data. They enhance
the efficiency and comprehensiveness of data processing, contributing to a
deeper understanding of aquatic animal health. At the time of writing, this
project stands as a unique endeavour, applying data-driven methodologies
to marine mammal post-mortem reports and gill WSIs, paving the way for
more sophisticated and holistic data analysis in this domain.

10.1 Future Work

This project lays the groundwork for the analysis of unstructureddatamodal-
ities in aquatic animal health, opening doors to various potential areas of
future research:

• Integration of LLM-Based Approaches: Explore the incorporation of
new Large Language Models (LLMs) in tandem with ontology-driven
storage methods to enhance the understanding of reports.

• Extension toOther Species andReport Types: Apply ontology-driven
information retrieval techniques to different species and diverse re-
port types to broaden the scope of analysis.

• Historical Archives Analysis: Investigate the application of informa-
tion retrieval approaches to historical archives, enabling epidemiolog-
ical analysis at the lesion/observation level.

• Parametric FeatureGenerationwith EWT: Further developparamet-
ric feature generation methods in conjunction with EWT. This includes
exploring tensor, curvelet, and ridglet approaches, with a primary fo-
cus on benchmarking against texture analysis datasets.

• Expansion of Hyperplasia Analysis Datasets: Create larger hyper-
plasia analysis datasets encompassing a broader range of pathologies
and variations in staining.

• ExplorationofOtherGill Lesions: Investigate additional lesionswithin
gills, such asmucous cell analysis, hypertrophy, lamellar fusion, and in-
flammation.
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• Extension toOtherOrgans: Developdata-drivenmethods anddatasets
for other organs within fish, enabling comprehensive profiling of le-
sions across the entire organism.

• AnomalyDetectionMethods: Conduct further experimentswith anomaly
detectionmethods, including a comparative analysis of normal autoen-
coders and Variational Autoencoders (VAEs). Explore the potential of
utilising the VAE’s latent space for producing a discrete representation
of hyperplasia severity in tiles.

• Extension toOtherOrgans: Developdata-drivenmethods anddatasets
for other organs within fish, enabling comprehensive profiling of le-
sions across the entire organism.

• EWT-based Anomaly Detection: Using the EWT-based feature extrac-
tionmethods to create both shallowanddeep anomaly detectionmeth-
ods.
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ABSTRACT
This paper proposes Ir-Man (Information Retrieval for Marine An-
imal Necropsies), a framework for retrieving discrete information
from marine mammal post-mortem reports for statistical analysis.
When a marine mammal is reported dead after stranding in Scotland,
the carcass is examined by the Scottish Marine Animal Strandings
Scheme (SMASS) to establish the circumstances of the animal’s
death. This involves the creation of a ‘post-mortem’ (or necropsy) re-
port, which systematically describes the body. These semi-structured
reports record lesions (damage or abnormalities to anatomical re-
gions) as well as other observations. Observations embedded within
these texts are used to determine cause of death. While a cause of
death is recorded separately, many other descriptions may be of
pathological and epidemiological significance when aggregated and
analysed collectively. As manual extraction of these descriptions is
costly, time consuming and at times erroneous, there is a need for an
automated information retrieval mechanism which is a non-trivial
task given the wide variety of possible descriptions, pathologies
and species. The Ir-Man framework consists of a new ontology, a
lexicon of observations and anatomical terms and an entity rela-
tion engine for information retrieval and statistics generation from
a pool of necropsy reports. We demonstrate the effectiveness of
our framework by creating a rule-based binary classifier for identi-
fying bottlenose dolphin attacks (BDA) in harbour porpoise gross
pathology reports and achieved an accuracy of 83.4%.

*Also with Epidemiology Research Unit, Scotland’s Rural College (SRUC).
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1 INTRODUCTION
Monitoring and surveillance of wildlife is fundamental for the devel-
opment of understanding of the factors which impact the well-being
of populations, species and ecosystems. These activities are espe-
cially difficult when applied to the marine mammal domain, as direct
observation of living animals in their environments is often imprac-
tical. Observation of dead animals, when they become accessible,
provides a critical source of data for our knowledge of these popu-
lations, and information gathered from such events is particularly
important. When a cetacean or pinniped becomes stranded and dies,
and when its carcass is examined by trained investigators, the result-
ing post-mortem (PM) report provides a snapshot of the animal’s
condition. Collectively, such data provides a unique insight into
the general welfare of marine mammal populations and may reveal
problems facing the species’ environment as a whole.

Williams et al. [23, 24], for example have extensively monitored
the levels of toxic polychlorinated biphenyls (PCBs) in harbour
porpoises. PCB levels are directly affected by human pollution
due to the compound’s use in some manufactured goods. Similarly,
Nelms et al. [19] have analysed the presence of microplastics found
in stranded cetacea using PM examinations. These examples show
that PM examinations can be used to observe the human impact on
marine ecology.
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Figure 1: Overview of the Ir-Man framework along with its information retrieval flow diagram.

PM reports are generated in a semi-structured format, with infor-
mation embedded across multiple free text sections which makes the
retrieval of pathological findings a non-trivial problem. Furthermore,
there are many cases where multiple indicators are described which
relate to multiple distinct pathologies. The ability to effectively con-
firm or rule out the presence of a pathology based on descriptions
of abnormalities would allow for clearer understanding of the prob-
lems facing marine mammals. Information retrieval approaches have
been applied extensively in human pathology [3, 8, 11, 21, 25, 26],
and other animal pathologies [2, 7, 13], however, no work currently
exists for marine mammal pathology free text.

To address such gaps we propose Ir-Man (Information Retrieval
for Marine Animal Necropsies), a new framework for retrieving
discrete information from marine mammal post-mortem (necropsy)
reports for statistical analysis. We infer that the hierarchical nature
of descriptive terms used in marine mammal PM reports can be
represented within an ontology, in which a class of terms represent
a specific observation, and subclasses represent distinct varieties
of observations. Our approach involves the extraction of a number
of key pieces of information: the term used to describe particular
observations; whether the context indicates presence or absence;
and the anatomical region to which the observation relates. Once
extracted, these fields can be used to create a deterministic classifier
based on the presence or absence of either general pathological
indicators or indicators of pathologies in specific anatomical regions.
We also extract a reference that can be used to link and aggregate
information across different report types. The overview of Ir-Man
framework is depicted in Figure 1.

In building the framework, this paper considers the marine mam-
mal PM reports, particularly the gross pathology reports and de-
scribes various framework components for extraction of gross pathol-
ogy findings. In evaluating the effectiveness of Ir-Man, we experi-
mented with an exemplar use case of identifying bottlenose dolphin
attacks on harbour porpoises and reported our findings. Our main
contributions are:

• We propose a new framework for information retrieval for
marine mammal necropsy analysis using an ontology driven
entity relation approach.

• We design three ontologies which contain terms relevant to
cetacean gross pathology reports that are based on observa-
tions, anatomy, and pathology, respectively.

• We develop a lexicon based entity-relationship engine that
can record the presence or absence of observations which can
confirm or rule out pathologies.

• We measure the effectiveness of our retrieval approach by
creating and evaluating a deterministic classifier for cases of
bottlenose dolphin attacks (BDAs) on harbour porpoises.

2 RELATED WORK
Our framework encompasses several information retrieval methods
and fields. While current literature covers a relatively large number
of information retrieval approaches in the biomedical domain (partic-
ularly on human health), only a handful of attempts were made in the
veterinary domain. We critically analysed both domains separately
in order to position our proposed framework appropriately.

2.1 Information Retrieval in Biomedical Domain
Related approaches for information extraction in the biomedical
domain are numerous. Chapman et al. [3] proposed NegEx, a tool for
determining the presence or absence of clinical findings in discharge
summaries. Their approach was used to analyse 76, 049 screening
and 17, 656 diagnostic mammography reports. Even though this
approach extracts conclusions, rather than observations – which are
the focus of our work - the applications are similar. More recently
Gao et al. [8] extracted a number of features from mammographic
reports: mass, calcification, asymmetry and architectural distortion.

Friedlin et al. [6] developed Medical Exploratory Data Analysis
over Text (MEDAT), a text analytics system for medical domains and
demonstrated their system on radiology reports. Comelli et al. [4]
also applied text mining to radiology reports. They leveraged the
entity relationships represented in their radiology ontology, to extract
relevant medical terms from mammographic reports. While their
approach was exhaustive within the mammographic domain, the
texts were in Italian and the application domain is far more specific
than that of marine mammal gross pathology.

Gong et al. [11] developed a biomedical information retrieval
approach for terminologies related to breast cancer. Their approach
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involves entity extraction, entity relationship identification, and visu-
alisation. Entities are extracted based on conditional random fields
while entity relationships were extracted using co-occurrence statis-
tics. Sudeshna et al. [21] aimed to identify symptoms and treatments
of heart disease using a machine learning based approach. Based
on suggested identified symptoms, texts would be classified into
treatments. Zhao et al. [26] created CausalTriad, an approach toward
the discovery of pseudo causal relationships between entities. They
evaluated their approach on HealthBoards message board data and
Traditional Chinese Medicine data. Yang et al. [25] used an ontology-
based text mining approach for the extraction of data from Chinese
EMRs. This work focused on the mining of stroke cases. Gero
and Ho [9] proposed NamedKeys, a keyphrase extraction approach
which they evaluated on PubMed abstracts. They also describe a
benchmark dataset for biomedical keyphrase extraction.

While a variety of different clinical text types have been the sub-
ject of such research, there is also a wide body of research into
automated biomedical literature reviews. Navathe [18] used UMLS
(Unified Medical Language System) [1] and a gene ontology to rep-
resent biomedical concepts, and an SVM to classify literature from
the Centre of Disease Control (CDC) based on relevant keywords.
Mala et al. [15] researched the use of ontology in semantic medical
text mining with WordNet. Gong et al. [10] used a dictionary-based
approach to extract biomedical concepts from literature. This was
done using an algorithm called the Variable-step Window Identi-
fication Algorithm (VWIA), matched terms to biomedical entities
using POS tagging and organisation based on phrasing. Their tech-
nique was applied to 10 Medline abstracts and produced promising
results. Mate et al. [16] focused on creating a process of extraction,
transformation and loading (ETL) of electronic medical records.

Although not used in our approach, it should be noted that emerg-
ing deep learning has become popular in the biomedical domain with
neural network based methods being used to enhance text mining
techniques [12, 22].

2.2 Information Retrieval in Veterinary Domain
All of the reports listed above applied information retrieval tech-
niques to biomedical text pertaining to humans. In the veterinary
domain, Bollig et al. [2] used a machine learning based approaches
for extraction of different pathologies from free text. Furrer et al. [7]
built a text mining tool for veterinary surveillance by linking terms
identified in necropsies to existing ontologies. Küker et al. [13] later
used this tool to analyse pig and cattle necropsies and found that
free text necropsy reports are a valuable resource for animal health
surveillance.

At present no work exists on information retrieval from marine
mammal necropsy reports. Given the importance of PMs in further-
ing understanding of marine mammals and marine ecology more
generally, an information retrieval framework that can aggregate
observations for statistical and epidemiological analysis would be
especially useful.

3 THE FRAMEWORK
In developing the proposed Ir-Man framework, we consider a num-
ber of steps that are involved in the extraction of observations from
marine mammal necropsies. Firstly, free text is pulled from necropsy

Algorithm 1: Information retrieval pipeline. Output of the
entity-relationship extraction engine is used to identify ob-
servations, attributed anatomies and detect negation.

Result: relationships
sentences = sentenceTokenisation(text);
observations;
while not at end of sentences do

RELChunkedSentence = preprocess(sentence);
identifyNamedEntities(RELChunkedSentence);
while not at end of sentences do

if No Observational Entities then
break to next relationship;

end
if Observational Entity AND No Anatomical Entity
then

observations <- ‘unattributed’ observation;
break to next relationship

end
if Observational Entity and Anatomical Entity then

observations <- anatomy, observation;
end

end
end
while not at end of observations do

negatedObservation <- mark_negated(observation) ;
if observation == negatedObservation then

presence <- True;
else

presence <- False;
end

end

documents, and then individual reports sections (i.e., the gross pathol-
ogy report section and if applicable, the histopathology and bacte-
riology report sections) are extracted. Text is divided into sentence
tokens before individual words are tagged based on part-of-speech.
Entities and the relationships between them are then grouped using
a feature-based grammar. Each entity is then checked against our
lexicon of anatomical, pathological and observational terms which
is generated using our ontology. Presence or absence of a described
feature is then established by checking for negation. It is fundamen-
tal to record negative occurrences of identifiers (absences) as well
as positive occurrences, (presence) as both can be leveraged in a
deterministic classification system. The overall retrieval process is
outlined in Figure 1 and the pseudo-code in Algorithm 1 along with
the description of each framework components below.

3.1 Data Set: Marine Mammal Stranding Reports
The data used in this project was generated using PM reports of
cetacea produced by the Scottish Marine Animal Stranding Scheme
(SMASS) between 2012 and 2019. When generating these reports,
the pathologist records features of the carcass, including condition,
morphology, pathological lesions and observations. Information re-
lating to the body’s condition usually refers to the level of autolysis
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Body condition: Fat

External examination
Body orifices: NAD
Ectoparasites: NAD – None seen
Fins and flukes: NAD – Intact, no rake marks

Integument
Epidermis: Rake marks over left flank/tailstock. Severe
scavenger damage at right side of head
Blubber: NAD – Good layer, not jaundiced
Subcutaneous tissue: Bruising over lateral spinous pro-
cesses and right side head region
Mammary glands: NE

Figure 2: A gross pathology extract from a harbour porpoise
necropsy report.

or physical damage to the remains. Morphometric measurements,
such as blubber thickness and body length, are also taken. These
features all help inform the pathologist of a probable cause of death.
PM reports include gross pathology reports, which describe, in de-
tail, the characteristics of the body as a whole, and those of specific
anatomies. The final PM report then contains a number of sections:
basic information (sex, date, location etc.); morphometric data; a
gross pathology; bacteriology and histopathology reports, where
applicable; and a conclusion which includes comments, cause of
death, and an indicator of confidence in diagnosis.

The material analysed for this paper consists of 193 gross pathol-
ogy reports on harbour porpoises (Phocoena phocoena). This species
was chosen for a number of reasons: the relatively high number of
reports produced by SMASS on harbour porpoises; easy future inte-
gration of other cetacean species due to transferability of the harbour
porpoise anatomy; and the prevalence of BDAs listed as the cause of
death, which allows us to establish the suitability of our framework
for detecting exhibited pathologies. Bottlenose dolphins are known
to violently attack harbour porpoises, usually leaving parallel inci-
sions which are referred to as ‘rake marks’. It is these rake marks
which are used as a primary indicator of a BDA, and as such, the use
of the term is relatively consistent, making it a good candidate for
evaluating the effectiveness of our approach.

While the language used in these gross pathology reports is spe-
cialised, there is some structure to the reports which can be leveraged.
An anatomical region of interest will often be used as a heading
followed by a free text description. This can be seen in Figure 2.
Acronyms such as NAD (no abnormalities detected) and NE (not
examined) are also important and distinct. One can rule out some
pathological conditions when no abnormality is detected, but not
when a region has not been examined.

3.2 Gross Pathology Report Extraction
The SMASS post-mortem reports were stored in Microsoft Word
Open XML Format (DOCX) files. We parsed documents and stored

fields in a non-relational MongoDB1 database. Where applicable,
specific text fields were extracted by searching for field names which
where indicative of a field’s presence. An example would the species
field, where we used the string “SPECIES:” as the field indicator
and the string following it in the line as the field to be extracted
(e.g., “delphinus delphis”). When a field was left blank, no value was
stored in the database. We normalised fields by grouping synony-
mous terms. For example, the case of the species field this involved
pairing the scientifc names (e.g., “delphinus delphis”) with their cor-
responding common names (e.g., “short-beaked common dolphin”).
Free text sections such as the gross pathology reports were obtained
by identifying relevant section headers and extracting the text be-
tween them. When the space between section headers consisted only
of white-space or short strings such as “Not examined”, the section
was not extracted. All extracted fields and sections were stored in a
local MongoDB database.

3.3 Ontology Development
The framework uses our bespoke ontologies to organise terms, and
to provide context that would otherwise be unavailable. While multi-
species ontologies such as Uberon [17] do exist, it was decided that
a smaller more manageable ontology would be more appropriate for
this task. We identified three main branches of relevant terminologies
for our purposes. The first is a representation of anatomy, where
classes represent different anatomical regions. The second is the
pathology ontology which was used to record different conditions
which can be represented in PM reports. The third is the observation
ontology, which groups terms into classes and sub-classes where
children represent an extra degree of specification that may not apply
to all within the parent class. For all classes a representative label
is stored in the “rdfs:label” annotation, and manually generated
synonymous terms are stored in our own “synonym” annotation.
Ontologies were developed using Protégé [20] (shown in Figure 3)
and stored in RDF/XML format.

3.3.1 Observation Ontology. The observation branch of the on-
tology makes use of the semantic relationships between terms. When
terms are very similar semantically, but one gives a greater degree
of specification, the more specific term is considered a child of
the other. For example, reports may specify that “fluid” or “brown
fluid” is present. Not all fluid is brown fluid, so a parent-child rela-
tionship is created between the terms. This allows for distinctions
between different types of fluids and their descriptions such as mu-
coid, protein-rich or amniotic fluids. The ontology was populated
manually by producing lists of terms from the reports based fre-
quent unigrams, bigrams, and trigrams, as well as collocations using
pointwise mutual information (PMI). Previously established anatom-
ical and disease related terminologies were filtered to accelerate the
process. The structure of the observational ontology is shown in
Figure 4.

3.3.2 Pathology Ontology. The pathology ontology (shown in Fig-
ure 5) is used to represent different conditions and the semantic rela-
tionships between them. This was initially created using the diseases
or conditions listed as a cause of death within the SMASS database.
These were also mined from the reports using known target strings

1https://www.mongodb.com/
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Figure 3: Screenshot of Protégé IDE for ontology development. The OntoGraf plugin [5] was used for ontology visualisation.

Figure 4: Structure of the observation ontology demonstrated using the marks, haemorrhage and urine class examples.

that precede causes of death. They were then categorised based on
semantic similarity. For example, the “physical trauma” class repre-
sent cases where there is evidence of blunt force or penetration to the
skin which appear to have been detrimental to the animal’s health.
This category captures conditions such as boat strikes, bottlenose
dolphin attack trauma and entanglement (where rope, line or netting
has wrapped around the animal).

3.3.3 Anatomy Ontology. Finally, the anatomy ontology was
created based on the anatomical terms which were used to convey
observations within the reports. The highest level of the “anatomical
region” tree contains classes which relate to different organ systems
within the body, or anatomical regions which are semantically linked.
The latter situation applies, for example, to the “integument region”
(relating to the skin) and the “external region" which mostly refers
to external observations out with the main scope of those captured
in the integument class.

The next level of subclasses generally represents different types of
these regions. The decision was taken to make a distinction between
having a parent-child relationship and an “isPartOf” attribute: it is
not accurate, for example, to represent regions such as “the left valve
of the heart" as a subclass of “heart", but it is still desirable to capture
the relationship between these two regions. The “isPartOf” object
property is transitive and asymmetric. This allows for instances such
as the duodenum to be more accurately represented. The duodenum
“isPartOf” the small intestine, and the small intestine “isPartOf” the
intestines. Therefore, we can deduce that the duodenum “isPartOf”
the intestines also. The structure of this ontology is shown in Figure 6,
which shows some example anatomies in the ailmentary system. The
anatomy ontology was manually populated and structured based on
the headings used for sections of gross pathology reports (shown in
Figure 2).
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Figure 5: Structure of the pathology ontology demonstrated using the physical trauma and pneumonia class examples.

Figure 6: Hierarchical structure pf anatomy ontology demonstrated using example ailmentary region subclasses.

3.4 Information Retrieval
Information retrieval consists of several individual components
within the framework including, (a) lexicon, (b) entity-relationship
extraction engine, (c) anatomy, observation and presence recognition
and (d) formatting to extract anatomical features, observations and
pathologies. This pipeline is shown in the flowchart in Figure 1 as
well as Algorithm 1.

3.4.1 Lexicons. Our anatomy, pathology and observation ontolo-
gies (refer Section 3.3) are used to identify entities. Two lexicons
of key terms are generated by parsing the three ontology xml files
and extracting their “rdfs:label”, and “synonym” attributes. The ob-
servation lexicon was created using the observation and pathology
ontologies, while the anatomy lexicon was created using the anatomy
ontology. Pathological terms are incorporated in the observation lex-
icon because they can used to both represent the pathology of the
specimen as a whole, and the condition of anatomical region. An
example would be a case of physical trauma cause by entanglement
which is a subclass of physical trauma within the pathology ontology.

The inclusion of the term “entangled” could be treated as both an
observation and pathology based on the representation within our
ontology.

3.4.2 Entity-Relationship Extraction Engine. Reports are first
segmented at the sentence level. As shown in Figure 2, sections are
not always delimited by a full stop as one would expect. As such, we
assume that sentences could also be delimited by new line characters
(‘\n’). Word level tokenisation is also performed. Words and punc-
tuation are tagged using NLTK’s POS Tagger library [14]. Words
are then grouped together through “Noun Phrase Chunking” (NP-
chunking). Empirically, we developed a simple feature-based gram-
mar of tag patterns which represent entities and entity-relationships.
Our grammar is passed into NLTK’s Regexparser library to create
chunks of entities and entity-relationships. The regular expression
based grammar we defined for this task can be seen below.
NP: {<DT>?<JJ>*<VB.*>*<JJ>*<NN.*>+}
NP: {<NP><CC><NP>}
NP: {<VBD|VBN>}
NP: {<CD><RB>}
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NP: {<NP><NP>}
IN: {<IN>}
REL:{<NP><IN><NP>}
REL:{<NP><TO><NP>}
REL:{<NP><:><NP>}

Entity chunks are grouped together as noun phrases (NP). The
first rule captures any case where there is at least one noun preceded
by any adjectives (JJ) or verbs (VB) and may include a determiner
(“the”, “a” etc.) denoted by ‘DT’. If any past tense or past participle
verbs are used separately, they is also chunked as a noun phrase to
account for cases such as “right eye: scavenged”. Lastly, NPs can
be linked into a single NP where they are separated by coordinating
conjunction terms such as ‘and’.

NPs are then linked together into relationship (REL) chunks based
on several conditions. Simple adjacency of two NPs is the first rela-
tionship as proximal entities are likely to relate. Prepositions (e.g.,
‘in’) were also of particular interest as they represent a relationship
between that which precedes and follows them. The word ‘to’ is
another good link between NPs given that phrases such as “damage
to left flank” are very common. Lastly, we use the colon to capture
cases where the anatomical entity is stated, then observations follow.
An example of this is shown in Figure 2: “Blubber: NAD”. This
grammar is designed to capture relatively simple expressions, but
can be expanded to incorporate more complex entity-relationships
in future.

3.4.3 Anatomy, Observation and Presence Recognition. For
each sentence in a report, each REL chunk is parsed and compared
to the anatomical and observational lexicons. Where a NP chunk
contains a sub-string that occurs in either lexicon, it is identified as
anatomy or observation accordingly.

The implementation deliberately only incorporates NP - NP re-
lationships (as defined in our grammar) as when only the relation
subsection of the sentence is used for the marking of negated terms,
one reduces the number of falsely negated terms. This means a rela-
tively simple process for identifying negated words can be used, to a
high degree of accuracy.

We use the NLTK mark_negated package for this purpose. The
package adds ‘_NEG’ as a suffix to any word between a negation and
certain punctuation marks. For each REL chunk with an identified
observation, a negated version of the statement is generated. The
NP chunk containing the free text representation of the observation
is compared to the same chunk after negated terms are marked. In
the event an observational term is negated, it is considered to be an
absent case. An example would be "no obvious rake marks on flank",
where rake marks would be identified as an observational entity.
When compared to the negation marked version of the text (“there
are no obvious_NEG rake_NEG marks_NEG on_NEG flank_NEG”)
the negation of the observation would become apparent. In this event
“rake marks” would be identified as “absent”. The benefit of this
approach is that one only marks negated terms at the relationship
level. If one were to mark at the sentence level, unrelated negated
terms would incorrectly cause for a classification of absence rather
than presence.

When a recognised observational term is not attributed to an
anatomical entity, it is still recorded as either present or absent and is
not attributed to an anatomical region. There are a number of reasons

why an anatomical entity might not be identified: the term used is
not represented within the anatomical ontology; the observation is
not used in relation to an anatomical entity; or the grammar used for
chunking fails to capture relevant NP chunks within a relationship.

3.4.4 Formatting Findings. The information extracted is sum-
marised in a dictionary implemented in Python, which can then be
used for analysis or classification systems. The anatomy and observa-
tion terms are represented as strings, while the presence or absence
of an observation is stored as a Boolean value. Some examples are
shown below:

{
'anatomy': 'right pectoral fin',
'observation': 'scavenger damage',
'presence': True

}
{

'anatomy': 'epidermis',
'observation': 'rake marks',
'presence': False

}
{

'anatomy': 'skull',
'observation': 'nad',
'presence': True

}

4 USE CASE, RESULTS AND ANALYSIS
To analyse the effectiveness of our approach, we identified observa-
tions which could negate or confirm a chosen pathological finding,
and used the presence or absence of these observations as a means
of classification. Bottlenose Dolphin attacks (BDA) on harbour por-
poises are a very common cause of death within the dataset, with
50 of the 193 cases listing BDA as the key finding in the SMASS
database.

A deterministic classifier was created using extracted empirical
observations. The classes chosen were either explicit mentions of
BDA, or strong indicators such as “rake marks”. Where BDA is
mentioned, it’s absence or presence is sufficient to classify the case
as “Non-BDA” or “BDA”. The observation “rake marks”, however,
can also be used to describe some grey seal attacks (GSA). As such,
we then filter all observations relevant to seal attacks and claw marks
(an indicator of a GSA). We make the assumption that if there is
evidence of both a GSA and a BDA, an explicit mention of BDA
should be found. If the document has not been classified using these
rules, presence of “rake marks” results in “BDA” classification.
The deterministic classifier’s sequence of decisions is shown in
Algorithm 2. The cause of death stored in the SMASS database was
used as ground truth for classifier evaluation.

The results for the Bottlenose Dolphin attacks use case are shown
in Table 1. The approach achieved an overall accuracy of 83.4%
and an F1-score of 0.83. BDA classification achieved a precision of
0.70, a recall of 0.64, and F1-score of 0.67. Non-BDA classification
achieved a precision of 0.88, a recall of 0.90, and F1-score of 0.89. Of
the 193 reports used, 50 were cases of BDA and 143 were Non-BDA
cases based on the cause of death stored in the SMASS database.
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Algorithm 2: Deterministic BDA classification process
based on presence or absence of observations.

Result: prediction
if Any observation is a BDA term then

if observation present then
prediction <- “BDA”;

else
prediction <- “Non-BDA”;

end
return prediction;

else
if Any present observation is a GSA or claw mark term
then

prediction <- “Non-BDA”;
return prediction;

else
if Any present observation is a rake mark then

prediction <- “BDA”;
return prediction;

end
prediction <- “Non-BDA”;
return prediction;

end
end

Metrics Cumulative BDA Non-BDA

Accuracy 0.83 - -

ROC-AUC 0.77 - -

Recall - 0.64 0.90

Precision - 0.70 0.88

F1-score 0.83 0.67 0.89

Support 193 50 143

Table 1: BDA classifier performance evaluation metric scores.

A Receiver Operating Characteristic (ROC) curve (Figure 7) was
generated using the BDA precision and recall values listed above
which achieved the Area Under Curve (AUC) score of 0.77. The
disadvantage of labelling based on cause of death is that there are
many instances where a BDA has occurred but a separate finding has
been identified as the cause of death. This leads to some false positive
(FP) classifications as BDA terms and indicators are still described.
This can be seen in the confusion matrix in Figure 8. Given the
deterministic nature of our classifier, there are three possible causes
of incorrect classifications. The first is the presence of a separate
more significant finding which caused death, even though a BDA
occurred; the second is the use of an significant term outwith the
scope it was intended; and the third is that a significant finding is not
successfully identified by the entity-relationship engine.

When analysing cases of FPs, some statements such as “rake
marks, assumed bird” lead to an incorrect detection. This reflects

Figure 7: ROC-AUC curve of BDA classifier predictions. AUC
= 0.771

Figure 8: Confusion matrix of BDA classifier predictions.

the difficulty of varying terminology usage between pathologists.
Several FPs included instances where BDA rake marks were “healed”
or “healing”. Some false negatives (FNs) were caused by the lack of
explicit mentions of BDAs and there being “no obvious rake marks”.
This suggests that there were other indicators of BDA despite the
absence of rake marks.

The recall (0.64) and precision (0.70) scores of the BDA classifi-
cations are relatively low due to the simplicity of the feature-based
grammar, and the total number of true positives (TPs) being underes-
timated. This being said, analysis of FPs and FNs also showed some
cases where significant phrases were not captured by the feature-
based grammar in the entity-relationship engine.

The precision and recall scores associated with Non-BDAs (0.88
and 0.90 respectively) are considerably higher. When analysed, it
was found that several cases were correctly identified as Non-BDA
due to the exclusion of GSAs in the deterministic classifier. This
shows that the creation of an inclusion/exclusion based determiner
can be used to increase trust in positive classifications, meaning any
insight obtained is more robust to scrutiny. While the classifier had
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minor shortcomings due to the grammar used, the results are very
promising for future work. Using cause of death as a label leads to
lower performance metrics than anticipated. The use of a manually
labelled dataset would naturally produce more realistic results, but
in its absence, we can still get a good understanding of the classifier
characteristics.

Another thought to consider is that one necropsy report contains
many other fields pertaining to morphology, confidence in diagnosis
and other free text sections such as the histopathology report and
conclusion sections. By incorporating relevant fields and applying
a similar information retrieval process to other free text sections,
more accurate, complex, and inclusive determiners would be defined,
meaning a higher confidence in positive or negative results.

5 CONCLUSIONS
We proposed Ir-Man, an information retrieval framework for ma-
rine animal necropsy analysis. The framework applied and adapted
information retrieval techniques to reports in a previously unex-
plored domain. Necropsy reports of stranded marine mammals pro-
vide a unique insight into marine ecology; the ability to access
and aggregate this information will allow for more useful epidemi-
ological analysis. Despite the challenges associated with mining
semi-structured gross pathology reports, our information retrieval
framework achieved a baseline accuracy of 83.4% when classifying
BDAs on harbour porpoises. Future work will include the incor-
poration of more complex feature-based grammar representations
which would identify structure within text more effectively; expand-
ing the ontologies to incorporate other cetaceans; and defining and
detecting further nuance between different observation classes. Most
importantly, the framework will be used to further pathological and
epidemiological understanding within the marine mammal domain.
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ABSTRACT

Measuring hyperplasia in Atlantic salmon gills can give important insight into fish health and environmental
conditions such as water quality. This paper proposes a novel histology image classification technique to identify
hyperplastic regions using an emerging signal decomposition technique, Empirical Wavelet Transform (EWT)
in combination with a fully connected neural network (FCNN). Due to its adaptive nature, we hypothesise and
show that EWT effectively represents unique features of gill histopathology whole slide images that help in the
classification task. Our hybrid approach is unique and significantly outperformed regular deep learning-based
methods considering a joint speed-accuracy metric.

Keywords: Hyperplasia, empirical wavelet transform, image classification, histopathology, deep learning, At-
lantic salmon gills, digital pathology

1. INTRODUCTION

Tissue samples taken from fish during post-mortem analysis can give valuable insight into the animal’s condition
at the point of death. An essential aspect of this is histopathology, which involves assessing changes in tissue at the
microscopic level. Epithelial hyperplasia is a lesion of cell proliferation and a strong indicator of local irritation,
infectious disease, or poor water quality. This paper proposes a new classification approach that assesses the
severity of hyperplasia in Atlantic Salmon whole-slide images (WSIs). We have incorporated pathological domain
expertise in the image processing pipeline and propose a novel feature engineering technique based on Empirical
Wavelet Transform (EWT), it’s subband statistics and a fully connected neural network (FCNN). To identify
local affected regions, a tile-based method is used that allows the pathologists to visualise and understand which
regions of a WSI contribute to an overall classification. An example output of the proposed algorithm is shown
in Fig. 1.

Hyperplasia in gills has a significant impact on the morphology of the microscopic anatomy. Epithelial
hyperplasia can be caused by local irritation, infectious disease, or poor water quality. Tissue samples taken
from healthy gills form a comb-like structure where the comb’s teeth, known as primary lamellae, further branch
into secondary lamellae (Figures 1 & 2). In a healthy gill, the secondary lamellae consist of a linear red blood
cell-filled channel surrounded by a thin layer of cells known as the epithelium. In mild and moderate cases of
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(a) Normal/Mild (b) Severe

Figure 1. A heatmap of our approach applied to gill WSIs. White indicates healthy and red indicates severe hyperplasia.

hyperplasia, the number of cells in the epithelial layer increase, and as such, the space between secondary lamellae
decreases. In a severe case, the secondary lamellae fuse entirely (Fig. 2). High degrees of hyperplasia diminish
the gill’s respiratory function and ability to extract oxygen from water, meaning that measuring hyperplasia in
gills is important for understanding the overall health of the fish.

Classification of hyperplasia in WSIs can be automated through frequency domain texture analysis. However,
traditional image decomposition methods either rely on fixed template-based (e.g., wavelets) or data-driven (e.g.,
Empirical Mode Decomposition (EMD)1) approaches. While the former lacks flexibility due to rigid template
structures, the latter lacks an underlying mathematical basis. A recent development2,3 attempted to address the
gap by proposing empirical wavelet transform which is adaptive to the input signal. We hypothesise that content
adaptive signal decomposition along with an artificial neural network is advantageous for texture understanding
and classification in analysing gill WSIs.

In this paper, we propose a tile-based classification framework allowing for statistic generation. An approach
that quantifies the severity of a variety of lesions in an individual WSI can create a profile of an animal that could
complement other pathological or epidemiological data. As such, our work makes the following contributions:

• A unique data-driven approach for hyperplasia analysis in gill histology images that does not currently
exist, which can also be used to produce visualisations.

• A new parametric feature generation method (in combination with an FCNN) that translates expert knowl-
edge into mathematically explainable features using both non-adaptive wavelets and EWT.

• A scale and rotation agnostic method of representing image features allowing for effective models to be
developed using small datasets.



Figure 2. Tiles extracted from gill WSIs. From left to right - Normal, Mild, Moderate, and Severe cases of hyperplasia.

2. RELATED WORK

Machine learning (ML) is being increasingly used in aquaculture to optimise fish growth and performance.4

Similarly, ML is revolutionising histopathology understanding of many tissue types and animal species, most
notably in human medicine5 and oncology.6 Humans have naturally been the focus of much of this research,
given its importance in tasks like tumour detection.7 CNNs, in particular, have seen wide usage for applications
such as brain tumour segmentation,8 gastrointestinal cancer classification,9 and lung cancer classification.10

Very little work exists for the automated histological analysis of gill tissue in fish despite heavy reliance on
such tools in the field. Current methods use traditional image pre-processing steps and alternative staining
techniques for quantifying mucous cells in salmon skin11 or to study gill health.12 Jayasuriya developed and
used a tool that evaluated morphological changes in salmon gills to produce descriptors in individual cases
automatically.13 While useful for in-depth analysis of individual gill WSIs, a data-driven approach for analysis
across large numbers of WSIs is desirable. Template-based computer vision pipelines are more challenging to
develop than data-driven machine learning-based approaches. Sveen et al. have successfully used deep learning to
automatically segment Atlantic Salmon skin tissue;14 however, there has been little to no progress in automated
analysis of gill histology images.

The EWT has been applied to glaucoma classification in Fundus Imaging. However, glaucoma classification
presents a much more consistent morphological structure than gill WSIs. Primary and secondary lamellae in
gills vary in structure based on location, and branches may overlap. Furthermore, the tissue sectioning process
frequently introduces irrelevant artefacts. Maheshwari et al. used 2D empirical Littlewood-Paley (LP) wavelet
subband images to obtain correntropy features to identify cases of glaucoma in fundus images.15 Similarly, Kirar
et al. developed an EWT-based approach that combined traditional discrete wavelet transforms with the 2D
LP-EWT to produce features from subband images, including Zernike moment, Hu’s Invariant Moments, chip
histogram, and grey level matrix approaches.16 Chaudhary et al.17 used a Fourier-Bessel series expansion-
based EWT (2D-FBSE-EWT) and transfer learning with four pre-trained Resnet-50 models to evaluate subband
images.

3. METHODOLOGY

Our approach consists of three main sections: preprocessing, the subband image generation using 2D LP-EWT,
and parametric feature calculation. These steps are shown in Fig. 3. The vectors generated are then used as
features for machine learning models. Our approach aims to incorporate expert knowledge as model features.
In this context, ground truth has been created in consultation with the expert pathologist identifying several
components of gill histology slides which help differentiate between healthy/normal, mild, moderate, and severe
cases of hyperplasia. Indicators of hyperplasia were summarised as: an increase in overall tissue area; a decrease
in space between secondary lamellae, and a shift in tissue colour.

We evaluated potential features and included or excluded them based on how much they represent the
characteristics listed above. By applying the EWT to separate RGB channels of the tiles, we represent the
colour and overall texture of the image. Before we applied the EWT to each tile, a series of preprocessing



Figure 3. A flowchart showing the main sections of our approach: preprocessing, EWT, and parametric feature generation.
A Gaussian Mixture Model fitted to the lowest subband is shown, as well as Gaussian distributions for three other
subbands.

operations were applied. First, we resized each image from 1024 × 1024 to 128 × 128 using pixel area relation
resampling. We then used a low-pass 5× 5 average blurring filter before normalisation.

3.1 Littlewood-Paley Empirical Wavelet Transform

The traditional 2D LP transform involves filtering images using 2D wavelets in the Fourier domain, with annuli
supports around the origin. Scales are divided by these supports, the radii of which are calculated using the
dyadic decomposition of the Fourier plane. Gilles et al. proposed a version of this method that involved the
empirical detection of annuli radii.3 The 2D LP-EWT, WELP , of an input image, f , is described in Eq. (1),
which is denoted by the 2D Fourier boundary detection function, F2, its inverse, F∗

2 , and the wave function,
ψ. x = (x1, x2) is the position in the 2D plane while ω = (ω1, ω2) is the position in the frequency domain. In
our work we empirically chose n=20, meaning 20 subbands are produced. The central panel in Fig. 3 shows the
frequency domain image, the boundaries generated, and the resultant subband images.

WELP
f (n,x) = F∗

2

(
F2(f)(ω)F2 (ψn) (ω)

)
. (1)

Naturally, the boundary detection method used to build the filter bank, B, described previously, is funda-
mental to the LP-EWT approach. The first step is to perform a Pseudo-Polar Fast Fourier Transform (FFT),

F̃P (|ω|), of the original image based on the number of defined filters. The average is then calculated with regard
to each discrete angle, θ, in the 1D Fourier spectrum, the number of which is defined as Nθ. This process is
described in Eq. (2).

F̃P (|ω|) =
1

Nθ

Nθ−1∑

i=0

|FP (f) (θi, |ω|)| . (2)

The filter bank is then constructed using the spectral radii obtained, shown in Eq. (3). More details can be
found in Gilles et al.’s 2014 paper on 2D empirical wavelets.3 The outcome of this process is the boundaries
shown in Fig. 3.

B =
{
ϕ1(x), {ψn(x)}N−1

n=1

}
. (3)



3.2 Parametric Feature Engineering

Given that we identified colour and texture as relevant characteristics for our approach to capture, the LP-EWT
method described above was applied to separate colour channels of each tile. We applied a parametric method
to the subband images generated by EWT to produce the features used for model training and testing.

Our approach produces, n, subband images when we apply LP-EWT to the tile. We then extract statistical
features from each image by fitting bespoke probability distribution functions (PDF) to flattened representations
of the tiles’ pixels. A Gaussian Mixture Model (GMM) PDF18 is fitted to the 1st image, with a given number
of, K, components. For each kth component, a mean, µk, a variance, σk, and a weight, ϕk are produced. In our
approach, we have empirically set K to be 3, meaning for the 1st subband image we obtain 9 features. Equation
4 describes the GMM PDF-based feature generation process.

p(x) =
K∑

i=1

ϕiN (x | µi, σi) , (4)

where,

N (x | µi, σi) =
1

σi
√
2π

exp

(
− (x− µi)

2

2σ2
i

)
,

such that,
K∑

i=1

ϕi = 1.

For all subband images except the first, a Gaussian PDF is fitted based on the pixel values (shown in Eq. 5).
The σ is kept and used for the feature vector, while the mean, µ, is discarded as µ = 0 in all cases.

p(x;µ, σ) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

. (5)

This process is applied to three different representations of the tile using the red, green, and blue colour
channels. Given that n=20 in this work, we generate 29 features for each colour channel and 87 in total.

The features extracted from the 1st subband image using the GMM PDF are concatenated and organised.

The features extracted from the other subband images from each channel (Hr,Hg,Hb) are then also concate-
nated to produce the feature vector, H:

H = (Hr,Hg,Hb), (6)

where,
Hr = (Mr, σr1, σr2, ...σrn),

Hg = (Mg, σg1, σg2, ...σgn),

Hb = (Mb, σb1, σb2, ...σbn).

M = (µ0, ..., µk, σ0, ..., σk, ϕ0, ..., ϕk). (7)

The features extracted from the other subband images from each channel (Hr,Hg,Hb) are then also concate-
nated to produce the feature vector, H:

The feature vector (H) is then passed to an FCNN with 3 hidden layers of 1024 neurons.



Algorithm 1: Parametric feature generation

1 T : Tile image. P : Predicted class.
2 n← 20 ; // n = number of subband images generated by EWT.

3 features.append(tissue area(T )); // Get tissue area feature.

4 channels← separate rgb(T ); // Get individual channels.

5 for channel ∈ channels do
6 channel← pre processing(channel) ; // Resize to 128x128, apply 5x5 blur, and normalise.

7 subband images← EWT (n, channel) ; // Get channel subband images using EWT boundaries.

8 for subband ∈ subband images do
9 pixels← flatten(subband) ; // Get pixel values.

10 subband statistics← distribution.fit(pixels) ; // Generate statistics from probability density

function.

11 channel Features.append(subband statistics)

12 end
13 features.append(channel features) ; // Add channel statistics to feature vector.

14 P ← model.predict(features) ; // Model predicts Tile class.

15 end

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Dataset Preparation

The dataset used in this work is composed of 5 WSIs of gills. We divided each WSI into tiles of size 1024x1024.
Each tile was manually categorised as either normal, mild, moderate, severe, other, or empty. Any tile with
an identifiable quantity of primary or secondary lamellae was labelled based on the severity of hyperplasia
represented in the tile, with healthy lamellae classified as normal and tiles with hyperplasia classified as mild,
moderate, or severe as appropriate. Tiles categorised as other (for-lamellae tissue) or empty were not used in
the experiment. The dataset was edited and verified by an expert pathologist. The final version of the dataset
consists of 1465 tiles. The moderate class is slightly underrepresented with only 169 samples. We applied
Vahadane stain normalisation19 to each tile in the dataset, with a representative large section of a withheld
WSI used as a reference. This was to minimise the possibility that models may learn based on the staining
characteristics of individual WSIs.

Model Average Accuracy Across 10
Folds (%)

Fold Training and Testing Run-
time w/ Preprocessing (Min-
utes:Seconds)

AlexNet20 58.84 17:12
ResNet1821 71.94 27:41
MobileNetV3-Small22 67.78 13:17
InceptionV323 73.31 83:15
Biorthogonal 1.3 64.46 3.55
Haar 63.26 3:53
LP-EWT 73.10 15:18

Table 1. Average accuracy and runtime results across 10-folds. Our LP-EWT approach achieved a similar accuracy to
the best-performing CNN evaluated while using less than a 5th of the total training and testing runtime.

4.2 Experimental Setup

We applied our parametric feature generation approach to both traditional wavelet methods (Biorthogonal 1.3
and Haar wavelet using PyWavelets24) and the LP-EWT. For the traditional wavelets, the 3 levels of subband
images were used, with the GMM features extracted from the LL subband. We also evaluated several non-
pretrained CNNs - AlexNet,20 ResNet18,21 MobileNetV3-Small,22 and Inception V3.23 We trained these models



using 10-fold cross-validation. For CNNs, we trained each fold over ten epochs with a batch size of 32. Due to
the considerably shorter training times of the wavelet-based approaches, 50 epochs were used. The NNs used for
the wavelet-based methods consisted of 3 layers of 1024 nodes, each with ReLU activation functions. They were
trained using Cross Entropy Loss and an Adam optimiser.

4.3 Results and Discussion

We recorded accuracy scores, and training and testing runtimes for each model (Table 1). Of the models
evaluated, InceptionV3 and LP-EWT achieved the highest accuracy scores of 73.31 and 73.10 respectively for
the classification task. InceptionV3’s total training and testing time across one fold was 83:15. In contrast, the
LP-EWT had a one-fold training and testing time of 15:18. It should be noted that the results were generated
using a small dataset, demonstrating the effectiveness of each approach on tasks where data availability is limited.
We also created visualisations of WSIs using the LP-EWT to evaluate the effectiveness of our approach (shown
in Figure 1). We did this to empirically compare the aggregate scores produced by our model and the ground
truth provided by an expert pathologist. In both cases, our approach agreed with the expert; however, some
non-lamellar tissue was included and classified as severe, despite not being relevant for the task of hyperplasia
analysis. In the future, we intend to include a semantic segmentation step in the pipeline to identify regions
relevant to the task of hyperplasia analysis.
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Appendix 5 - Model Performance
metrics.

10.1.1 Model Performance Metrics

The metrics used to evaluate model performance are defined in Equations10.1, 10.2, 10.3, and 10.4.
Accuracy = TP + TF

TP + TF + FP + FN
(10.1)

Precision = TP

TP + FP
(10.2)

Recall = TP

TP + FN
(10.3)

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(10.4)
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