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Abstract 

Anthropogenic contamination from the extensive use of potentially harmful 

elements (PHEs) in industrial, commercial, and agricultural activities is a 

significant public health concern. PHEs, such as lead, can become immobilised 

within soils, but are remobilised during flooding, which erodes soil and transports 

these elements downstream, depositing them on floodplains - often densely 

populated areas. Flooding alters porewater physicochemistry (e.g., pH), affecting 

PHE solid-phase distribution and bioaccessibility. Understanding these changes is 

crucial for managing the risks of increased exposure to remobilised PHEs during 

flooding. 

This thesis developed a machine-learning predictive tool to monitor changes in 

PHE porewater solubility, solid-phase distribution, and bioaccessibility during 

flooding. The tool was trained on physicochemical data from microcosm and 

mesocosm flood experiments and demonstrated the critical influence of soil 

particle size, redox potential, pH, and dissolved organic carbon on PHE dynamics. 

Decision tree models, particularly random forests, provided highly accurate 

predictions for PHE behaviour during flooding. When integrated with 

geographical information systems (GIS), these models enabled rapid, large-scale 

estimations of PHE changes, reducing the need for resource-intensive laboratory 

analyses. 

The findings suggest that machine-learning, informed by physicochemical data, 

offers a scalable and reliable method for predicting PHE dynamics during 

flooding. This approach may significantly support policymakers in identifying 

areas at risk of contamination under future flood scenarios. Future research should 

validate the random forest predictions across diverse catchments with varying 

physicochemical conditions. 
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List of Terminology 

Terminology         Definition 

Anthropogenic  Man-made and non-naturally occurring (Ponting et al 

2021).  

 

Aerobic Conditions in the presence of available oxygen molecules 

(McLaren 2017).  

Anoxic  Ambient conditions in the absence of oxygen (Laurent et 

al 2017).  

 

Bagging 

Acronym for Bootstrap Aggregating which combines 

multiple decision tree predictions to formulate a single 

prediction (Tyralis et al 2019).  

 

BARGE 

The Unified Bioaccessibility Research Group of Europe 

(BARGE) method is an extraction laboratory test 

investigating bioaccessible concentrations (Swartjes 2010, 

Wragg 2011). 

Bioaccessibility PHE concentration solubilised within the gastric fluid 

(Bindal and Singh 2019).  

 

Bioavailability 

The proportion of a solubilised gastrointestinal 

bioaccessible PHE as a concentration, diffusing through 

the intestinal epithelium, and entering systemic circulation 

(Bindal and Singh 2019). 

Boosting Iteratively train weak learners to formulate a strong 

learner (Shaheen and Iqbal 2018).  

Bootstrap 

Aggregation  

 

Parallel processing of decision trees splitting and 

organising data. The decision tree outputs are collected 

using a majority voting classifier either by averaging the 

results (regression) or calculating the mode (classification) 

(Brieman 2001). 

Porewater 

Solubility  

The mobilisation of a PHE that is solubilised and not 

bound, complexing, or coprecipitating with any soil, 

sediment, or organic particulate matter (McLaren 2017).  
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Solid Phase 

Distribution  

Reference to the soil mineral phase a PHE associates 

(Laurent et al 2017).  

 

CISED 

 

Chemometric identification of substrates and element 

distributions is a laboratory extraction test aiming to 

investigate PHE solid phase distribution (Cave et al 2015).   

Cross-validation Partition the training data into testing and training subsets 

(Tyralis et al 2019).  

Coprecipitation  

 

The simultaneous precipitation of more than one 

compound from a solution (Ponting et al 2021).  

Decision Tree 

 

Splits a dataset from a high order entropy to a lower 

entropy to finalise a prediction (Brieman 2001).  

 

Deep Learning  

 

Form of AI modelling referring to calculating a prediction 

by reconfiguring wights and bias values. An example of 

this refers to a neural network (Brieman 2001).  

 

Dissolution  

 

The chemical release of contaminants from mineral phases 

whereby the ionic bonding is broken and the contaminant 

eventually becomes solubilised (Ponting et al 2021).  

Entropy The order of the data (e.g., how structured is data) (Tyralis 

et al 2019).   

 

Fulvic Acids  

 

These acids are a group of organic acids that result and are 

created from organic matter decomposition. Fulvic acids 

are a component of humic substances (Ponting et al 2021).  

 

Grid-Searching 

 

Systematic exploration of hyperparameter combinations 

(e.g., n_tree and mtry) to identify the optimal combination 

to maximise the model performance (Tyralis et al 2019). 

 

Gini Impurity  

 

This refers the quality of the final decision tree output. 

This impurity assesses the number of misclassified 

variables within the decision tree final output (Brieman 

2001). 

Generalisation 

Error  

Refers to when the model overfits the data within the 

training dataset too well it cannot predict well outside its 

training data (Brieman 2001). 
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Geogenic Naturally occurring and non-man made, opposite from 

anthropogenic (Ponting et al 2021).  

Humic 

Substances  

Products resulting from the decomposition of organic 

materials, omnipresent within soil and sediment systems, 

and are complex organic compounds (Ponting et al 2021).  

Hyperparameter Set to control the performance and behaviour of the 

predictive model (Genuer et al 2010).  

Hyperplane  

 

Decision boundary dividing the input space into two or 

more regions each responding to different classes 

(Brieman 2001). 

Mean Square 

Error 

Metric used to assess the predictive model accuracy 

(Brieman 2001). 

 

Model Accuracy 

Defines the model “accuracy” as the prediction closeness 

value to the microcosm results. In classification problems, 

the model “accuracy” defines the ability of the model to 

correctly classify the different target variable classes 

(Genuer et al 2010). 

Model Sensitivity The proportion of true positives correctly predicted by the 

model (Genuer et al 2010). 

Model Specificity The proportion of true negatives correctly predicted by the 

model (Genuer et al 2010). 

 

Neural Network 

Predictive network mimicking the structure of the brain 

containing neurons linked by interconnecting layers 

(Schubach et al 2017). 

 

Occluded 

Refers to the blockage, trapping or incorporation of a 

solid, liquid or gas within soil and sediment minerals 

(Schubach et al 2017). 

Overfitting Model is too complex and fits the training data too well 

(Schubach et al 2017).  

 

Physical 

Remobilisation 

 

The erosion of sediment beds from flood water, 

resuspending contaminated material, and through high 

water velocities, physically remobilising these 
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contaminated insoluble sediments downstream, eventually 

depositing on floodplains (McLaren 2019).  

Physicochemistry  Defines a physical, chemical, biotic or abiotic substrate 

within water or soil (Ponting et al 2021).  

Potentially 

Harmful Element  

A type of element, whether anthropogenic or geogenic, 

whereby exposure may cause health consequences 

(Ponting et al 2021).  

Predictive 

Robustness 

Defines whether the predictive model results from the 

training dataset remain accurate, irrespective of altering 

variables and assumptions (Breiman 2001).  

 

Random Forest 

 

Combination of decision trees used to formulate a 

prediction which adds feature randomisation and sampling 

with replacement (Breiman 2001).  

Recursively 

Partitioning  

Decision tree splitting assigning variables in common 

groupings aiming to reduce the dataset entropy (Breiman 

2001).  

Regularisation 

 

Technique used to address overfitting or underfitting 

which adds a penalty function (Tyralis et al 2019). 

Solid-Phase 

Distribution 

Determines the specific soil mineral a PHE complexes 

(Ponting et al 2021).  

Soil 

 

A particle containing mineral fractions, organic carbon, air 

and water (Breiman 2001).  

Sediment  A particle containing primarily mineral fractions (Tyralis 

et al 2019). 

Underfitting Model is too simple and does not fir training dataset well 

(Tyralis et al 2019). 

Weight How strong (statistically significant) is such neural 

connections Tyralis et al 2019). 
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Project Rationale 

Anthropogenic climate change is increasing the frequency and magnitude of 

flooding worldwide, which, along with rising temperatures that alter soil's 

biogeochemical cycling processes, is significantly increasing PHE solubility, and 

thus their bioaccessibility and solid phase distribution (Sarhadi et al 2024). 

Understanding such changes is limited because of the complex interactions 

between physical, physicochemical, biological, and thermodynamic variables. 

Estimates indicate that 52% of the worldwide population will be at risk of 

flooding by 2100 (Kirezci et al 2020). 

The effect of flooding on soil/sediment PHE solubility may lead to greater 

contamination of food crops, drinking water supplies, and household allotments, 

potentially exposing humans and wildlife. The medical effects of PHE exposure 

include various conditions such as kidney failure, autism and autoimmune 

disease, which can vary in severity (Neuwirth et al 2024). Research is needed to 

investigate flooding’s impact on soil/sediment PHE solubility, bioaccessibility, 

and solid phase distribution, and to develop novel research methods that reliably 

predict such changes, particularly under a climate warming scenario.  

The research in this thesis investigates the potential of machine learning, trained 

on porewater physicochemical data, to predict PHE porewater solubility, solid-

phase distribution, and bioaccessibility changes during flooding. This approach 

enables predictions of PHE dynamics across micro, meso, and macro spatial 

scales, utilising microcosm, mesocosm, and GIS experiments, respectively. 

The work is structured as follows: 

• Chapter 1: A literature review exploring how flooding alters porewater 

physicochemistry, examining the potential of machine learning, trained 

using this physicochemical data, to predict PHE changes during flooding.  

• Chapter 2: A meta-analysis synthesising the findings from 327 peer-

reviewed studies to quantify flooding’s impact on PHE porewater 

solubility and bioaccessibility across different soil textures. This chapter 

identifies the key physicochemical variables driving PHE changes during 

flooding. 
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• Chapter 3: Microcosm experiments investigating the correlations between 

physicochemical changes during flooding and their influence on PHE 

porewater solubility, bioaccessibility, and solid-phase distribution. 

• Chapter 4: Evaluation of various machine learning models, trained on 

physicochemical data, to predict PHE porewater solubility, solid-phase 

distribution, and bioaccessibility during flooding. 

• Chapter 5: A mesocosm experiment testing the random forest ability to 

predict PHE dynamics under varying flood severities (e.g., 1 in 100 and 1 

in 10,000-year events) in larger-scale laboratory setups. 

• Chapter 6: Integrating the random forest model with geographical 

information systems (GIS) to predict PHE changes rapidly and reliably 

across large macro spatial scales. 
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Chapter 1: Thesis Literature Review   

1.1 The Origins of Environmental Contamination  

A “PHE” refers to any chemical, physical, biological, or radiological substance or 

matter in water or any solid medium that could harm ecosystems and human 

health (USEPA 2022). By “harms,” this may involve growth, reproduction, and 

overall health status (McLaren 2019). Geogenic PHE sources originate from 

weathered mineral fractions (e.g., lead atoms embedded within galena minerals) 

through geological processes, such as erosion and acid precipitate dissolution 

(Foroutan et al 2021). The slight acidity of precipitation (sulfur dioxide and 

nitrogen oxide) erodes acid-sensitive mineral phases, such as carbonates, 

dissolving and releasing geogenic lead mineral fractions into the surrounding 

environment (Ponting et al 2021). The proportion of geogenic PHE depends 

principally on a location’s geology (Foroutan et al 2021). Areas with abundant 

arsenopyrite geological formations (e.g., Cornwall) contain higher geogenic 

arsenic sources than locations with significantly fewer arsenopyrite minerals 

(Kilunga et al 2017). 

The Industrial Revolution significantly increased the availability and release of 

these geogenic PHE through mining, production, and industrial waste release 

(Szuskiewicz et al 2021). Such industrial processes may include tanneries, 

mineral smelters, and fossil fuel combustion (McLaren 2019). Specific geogenic 

PHE, such as lead, zinc, and chromium, are used for these industrial activities, 

such as casting and ore processing (Table 1.1; Koh et al 2021). 

Table 1.1. Example of industries and the associated industrial processes producing different PHE 

and potentially releasing such PHE into the environment (Koh et al 2021). 

Industry Type Industrial Process PHE Released Human Health Effects  

Metalworking Smelting and casting Lead and zinc ADHD and autism (Goodland 2013)    

Agriculture Pesticide application Copper and arsenic  Convulsions (Xie et al 2022)  

Tanning Leather tanning Chromium  Respiratory inflammation (Bidstrup 1983) 

Mining Extracting  Gold and lead Kidney damage (Mohamed et al 2016) 

 

Human or wildlife exposure to PHE may occur through inhalation, dermal 

contact, or ingestion of soil (Driver et al 1989, Nigg 2016, Table 1.1). Children 

exhibiting pica behavioural disorders by deliberately consuming large quantities 
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of such contaminated soil may become subject to significant long-term health 

risks (Table 1.1; Koh et al 2021). These health burdens can range from 

neurotoxic, hepatotoxic, dermatoxic, and carcinogenic complications (Table 1.1) 

(Coro et al 2021). There is extensive evidence of statistically significant 

correlations between lead exposure and neurological complications, such as 

attention deficit hyperactivity disorder (ADHD), autism, and attention deficit 

disorder (ADD) (Coro et al 2021, Goodland 2013, Nigg 2016).  

Direct exposure to specific PHE, such as copper and zinc, may not cause adverse 

health effects compared to lead and arsenic, which are known to have more severe 

and deleterious toxicological impacts (Ponting et al 2021). Copper and zinc are 

essential micronutrients for regulating metabolic enzymatic processes within the 

human system (McLaren 2019). However, serious health problems following sub-

chronic oral exposure to copper and zinc may promote hepatic oxidative stress 

and inflammation (liver damage) (Tang et al 2019). Arsenic and lead, however, 

serve no beneficial purpose within human or wildlife biological systems; 

exposure to such PHE may create significant health consequences 

(Goodland 2013). The specific concentration of exposure to such elements within 

soil and sediment systems creating health consequences is challenging to quantify 

(McLaren 2019). Specific variables, such as the receptor’s weight, food intake, 

age, and exposure (acute or chronic), must be considered when assessing the risks 

of exposure to such PHE (Goodland 2013).  

These PHE can be sequestered by soil and sediment beds (BGS 2024). The main 

difference between soil and sediment particles is that soil comprises a mixture of 

mineral particles, organic matter, air, and water, while sediment particles mainly 

consist of mineral particles with low organic matter fractions and limited air 

pockets (Figure 1.1; data extracted from Zhang et al 2004). Riverine sediment 

beds sequester PHE through inorganic and organic constituents. Examples of 

inorganic constituents include clay minerals, silica, iron and aluminium oxides 

and calcium carbonate (Rossi et al 2009). Organic constituents include humic 

substances, microbial biomass, and organic matter (Devi and Khatua 2017). These 

constituents have high affinities for co-precipitating PHE through chemical 

interactions, such as ion exchanges and complexation (Peck et al 2004). 

Environmental concentrations of such PHE, for example, lead, within the soil 
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across the UK are significantly high and, in many cases, may exceed many of the 

minimum threshold concentrations imposed under Part 2A of the Environmental 

Protection Act 1990 and soil guideline values (SGVs) (Figure 1.2, BGS 2024).  

The total soil lead concentrations presented in Figure 1.2 are derived from the G-

BASE (Geochemical Baseline Survey for the Environment) model. While the 

model provides valuable predictions of spatial trends, it does not account for sub-

grid resolution or variability within grid cells. Addressing such spatial 

heterogeneity is critical when scaling from micro to macro models to ensure 

accurate and reliable predictions based on soil parameter estimates. 

 

 

Figure 1.1. Outlines the structural difference between a soil and sediment particle, illustrating the 

main difference being the mineral phase, air, and water composition (data sourced from Zhang et 

al 2004). 
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Figure 1.2. Outlines the total soil lead concentration throughout the UK, indicating the different 

concentration gradients within 500-metre x 500-metre grid cells (BGS 2024). The predictions 

shown are generated by the G-BASE model, not from direct high-resolution sampling. The figure 

illustrates that the total soil lead concentrations vary significantly across the UK, with high 

concentrations predominately in the middle of the country and the lowest concentrations in 

northwest Scotland.  
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1.2 Ion Exchange and Adsorption of PHE - Organic and Inorganic 

Constituents  

The term “adsorption” refers to the adherence of a PHE to the surface of inorganic 

and organic constituents (e.g., organic materials, iron and manganese oxides, and 

clay minerals) (Kilunga et al 2017). Ion exchange involves the movement of 

anions or cations through the soil, where cations or anions that are adsorbed on 

soil surfaces are exchanged or replaced by other cations or anions in the soil 

solution (Mclaren 2019). For example, organic constituents on clay surface 

minerals are negatively charged through isomorphic substitutions, which 

electrochemically attract positively charged Pb cations; these cations may 

outcompete other cations originally coprecipitating with clay, leading to ion 

exchanges (Kilunga et al 2017).  

These exchanges can be “competitive,” whereby two or more ions compete for 

ligand binding exchanges on such constituents (Devi and Khatua 2017, Kilunga et 

al 2017). This ion exchange competition is driven by the ionic charge (Schmidt et 

al 2010). Ions with higher ionic charges (i.e., greater than one elementary positive 

or negative charge), such as divalent and trivalent ions, have greater electrostatic 

forces for adsorbing PHE (Tyler 2004). The differences in ionic charges mean that 

PHE adsorption is more competitive for trivalent ions, exerting a greater ionic 

charge than monovalent ions, which have much weaker ionic changes (Schmidt et 

al 2010). 

Several studies suggest that the sequestration of PHE by organic and inorganic 

constituents within rivers renders them effective buffering sinks for absorbing 

water-soluble contamination (Kilunga et al 2017, Nel et al 2018, Peck et al 2004, 

Roussiez et al 2006, Walling et al 2003). This buffering capacity is poorly 

understood and not definitively established (Roussiez et al 2006, Walling et al 

2003). By not fully understanding this buffering capacity, it remains unclear to 

what extent certain rivers, based on their sediment composition, may adsorb more 

contamination than others.  

However, it is understood that the process of PHE coprecipitation to organic and 

inorganic constituents plays a significant role in immobilising PHE soluble 

transport (Peck et al 2004). The PHE adsorption onto constituents means less 
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PHE concentrations are soluble and free-flowing within riverine water and, 

instead, are bound to these constituents, which are less susceptible to mobilisation 

downstream (Peck et al 2004). These constituents have vital roles in reducing 

PHE mobility by reducing PHE solubility (Walling et al 2003) .  

These riverine sediment beds can sequester and accumulate significant PHE 

concentrations, forming potential PHE “hotspots” (Nel et al 2018). These 

“hotspots” are not uniform throughout the river sediment beds; however, they are 

more prominent within slack areas or the outer meanders, exhibiting higher 

sediment deposition and accumulation (Kilunga et al 2017). These slack areas 

have lower kinetic energy conditions, favouring sediment deposition and 

potentially accumulating PHE-contaminated sediments (Nel et al 2018). These 

lower energy environments reduce sediment resuspension and transport, 

increasing deposition (Wu et al 2024). The low-energy environments particularly 

increase the deposition of large sediment particles, which require higher energy 

for resuspension and transport, giving rise to PHE sediment deposition of large 

particles within these slack areas (Nel et al 2018). The study by Iwuoha et al 

(2016) shows that these low-energy slacks significantly accumulate large 

sediment particles contaminated with PHE, often requiring dredging to remove 

such sediments.  

1.3 Economic and Legislative Mechanisms for Reducing Soil PHE  

To understand why there is extensive anthropogenic contamination released 

within soil, it is important to appreciate the existing economic and legislative 

challenges that have contributed to this issue. Understanding these economic and 

legislative challenges emphasises the need for environmental science 

interventions to address soil contamination which overcomes these economic and 

legislative barriers.  

Several economic strategies have been applied to reduce the release of PHE from 

industry into the environment. Market-based economic mechanisms, such as cap-

and-trade schemes, carbon taxation, and habitat offsetting, aim to reduce PHE 

concentrations within these “hotspots” (Haites 2018). These economic approaches 

reduce the anthropogenic release of PHE (e.g., lead, chromium and arsenic) in 

two ways. Firstly, placing a tariff or carbon taxation on polluting industries that 
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emit carbon may deter such industries from polluting by investing in cleaner 

technologies to reduce emissions (Table 1.1). Secondly, these mechanisms attempt 

to internalise the negative externalities created by producing these PHE 

“hotspots,” increasing an industry’s marginal abatement cost and making it 

cheaper to use “cleaner” technologies, which use and release less PHE (Shi et 

al 2018). Such investment in technologies because of these market-driven 

approaches, including the use of nanofiltration, reduces chromium release by 

98.8% (Giagnorio et al 2018). The purpose of this discussion is to outline the 

challenges and complexities, but also the opportunities of addressing PHE release 

in the environment using economic approaches.  

European environmental law attempts to address these “missing markets” by 

implementing regulations to reduce environmental contamination, such as the 

legally binding Water Framework Directive (2000/60/EC) (Conrad and 

Perzanowski 2019). Much of environmental law faces enforcement and 

compliance challenges through “game theory” concepts, with many countries 

unwilling to commit to such laws to reduce the production and release of many 

PHE due to fears of economic disadvantages (Conrad and Perzanowski 

2019). The economic and legislative shortcomings of reducing environmental 

contamination underpin the urgency for scientific intervention (Ponting et 

al 2021). 

1.4 Overview of PHE Behaviour in Soil and Sediment 

Less than 1% of soil and sediment PHE, such as lead, arsenic, and zinc, are 

soluble within the riverine water, whereas over 99% of PHE are insoluble and 

coprecipitate with soil and sediment particles (Section 1.2; Filgueiras et al 2004). 

Many PHE are metals (e.g., lead, copper, zinc) and are positively charged cations 

(Wilson et al 2010). Some PHE, such as arsenic, are metalloids, which can exist 

as negatively charged anions (e.g., As3-) (Wilson et al 2010). The chemical form 

and source of PHE (cationic or anionic) and the availability and type of soil 

organic and inorganic constituents, which coprecipitate with PHE, make 

understanding the behaviour of PHE within soil systems highly complex 

(Simmler et al 2017).  
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Understanding the relationship and complex interactions between soil chemistry 

and PHE may provide a deep understanding around the behaviour of PHE within 

soil systems. By “behaviour,” this means PHE coprecipitation and dissolution 

with different soil mineral phases (Izaditame et al 2022). Understanding PHE 

interactions with different soil mineral phases provides an understanding of PHE 

chemical speciation, which influences PHE solubility and is essential for 

predictive purposes.  

 Individual PHE interact with soil and sediment differently; however, this 

literature review will mainly discuss lead, copper, arsenic, zinc, chromium, and 

nickel because chronic exposure to all these PHE can cause severe health 

consequences (Table 1.1).  

1.4.1 Arsenic  

Arsenic is a metalloid, biochemically similar to phosphorus, which can either 

form cations (e.g., As3+) or anions (e.g., AsO3-
4) (Wilson et al 2010). Arsenic 

combines with elements such as oxygen, chlorine, and sulfur, referred to as 

inorganic arsenic (e.g., As2O3), and with hydrogen and carbon, referred to as 

organic arsenic (e.g., C5H11AsO2) (Izaditame et al 2022). Geogenic arsenic 

sources derive from sulfide minerals and iron oxides, and also anthropogenically, 

for example, from glass and dye industries which use arsenic in industrial 

processing (Bindal and Singh 2019). The worldwide average soil arsenic 

concentration is 32 mg/kg-1 in non-mineralised areas and ~290mg/kg-1 in 

mineralised locations (Moldes et al 2011).  

Arsenic’s remobilisation, bioaccessibility, and toxicity depend on its solid phase 

distribution (Bindal and Singh 2019). Arsenic’s predominant speciation within 

oxidising redox (Eh) conditions (+0mV) is As(V), and under reducing redox 

conditions (< 0mV) is As(III) (Simmler et al 2017). The toxicity between these 

arsenic species significantly differs, with As(V) being significantly less toxic than 

As(III), which is more lipophilic (fat-soluble) by having a greater affinity for 

binding with thiol groups, increasing the ability of As(III) to cross cellular 

membranes, thereby increasing the toxicity (Jinadasa et al 2024). Such As(V) 

species coprecipitate with Fe oxyhydroxides (e.g., FeAsO4. 2H2O) (Izaditame et 

al 2022). Flooding reductively dissolves iron oxyhydroxides, causing As(V) 
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species to coprecipitate with clay minerals through surface ligand exchanges and 

organic matter (Roe et al 2015). 

1.4.2 Copper 

Copper is a soft, malleable, ductile metal derived from geogenic sources, 

including chalcopyrite, and is also released in various forms through 

anthropogenic activities, such as mining and refineries, for use in products (Lair 

et al 2007). Copper exists in two oxidation states (Cu+ and Cu2+) as free ions, 

exchangeable, organic, precipitated, and residual forms (Kah et al 2022). 

Naturally occurring copper in the soil varies between 1-55mg/kg-1 in non-

mineralised areas and ~340mg/kg-1 in mineralised areas (McLaren 2019). 

Exposure to excessive copper concentrations (i.e., > 180 mg/dL) exerts 

detrimental health consequences, including neurodegenerative disorder (e.g., 

Wilson’s Disease); however, at lower concentrations (0.7 - 1.6 mg/dL), copper is 

an essential micronutrient involved in carbohydrate metabolism (Kumar et al 

2021).  

The soil pH influences copper solid phase distribution, porewater solubility, and 

bioaccessibility by influencing the stability of copper compounds and complexes 

and copper’s adsorption capacity (McLaren 2019). Increasing soil pH alkalinity 

increases copper’s adsorption capacity and affinity, particularly with organic 

matter through chelate complex formation (Kumar et al 2021). Copper forms 

complexes, given the appropriate pH conditions (pH > 7), with both organic 

(amino acids, peptides, and chelating agents) and inorganic ligands (carbonates, 

hydroxides, cyanides) (Kah et al 2022; Lair et al 2007). These organic and ligand 

complexes alter copper mobility by influencing copper solubility fraction and 

chemical speciation (Kumar et al 2021).  

1.4.3 Lead 

Lead is a soft and malleable heavy metal derived from geogenic sources, 

including galena minerals (e.g., PbS); however, it is also anthropogenically 

derived from mineral extraction, coal mining, and fossil fuel combustion 

(McLaren 2019). Naturally occurring lead in soil varies between 1-27mg/kg-1 in 

non-mineralised areas and ~ 2,400 mg/kg-1 in mineralised areas worldwide (Nigg 

2016).  
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Lead’s solid phase distribution and remobilisation are strongly influenced by the 

soil pH, ion exchanges, adsorption and desorption reactions, biological 

immobilisation, and aqueous complexation (Nigg 2016). Lead’s chemical form 

strongly influences its mobility, where lead compounds, such as lead acetate, are 

relatively soluble compared to insoluble compounds, such as metallic lead 

phosphate (Goodland 2013). Many physicochemical parameters influence lead 

porewater solubility, including the soil pH, texture, organic matter content, and 

cation exchange capacity (Goodland 2013).  

1.4.4 Zinc 

Zinc’s primary anthropogenic sources include mining and metallurgic operations, 

which release zinc through smelter slag discharges, mine tailings, and the use of 

fertilisers containing zinc compounds (Goodland 2013). Zinc is naturally found 

within the Earth’s crust and upper and lower mantle layers, predominately in the 

form of sphalerite minerals (Coro et al 2021). The background zinc 

concentrations in surface waters are typically < 500µg/L and in soils between 5 - 

2900mg/kg worldwide (Nigg 2016). 

Zinc occurs primarily in the +2 oxidation state and complexes with inorganic and 

organic ligands (McLaren 2019). Under aerobic conditions, such ligands include 

organic matter, clay minerals, hydrous iron, and manganese oxides (Lair et al 

2007). During anaerobic conditions, zinc may form complexes with organic 

matter and sulfide. Sorption by such ligands highly depends on the ligand’s cation 

exchange capacity, zinc concentration, soil redox and pH conditions (Roe et al 

2015). At lower soil pH conditions, zinc remains as free ions within the soil and 

water matrix (McLaren 2019). Under anaerobic flooding conditions, zinc 

primarily coprecipitates with sulfide ions (e.g., ZnS) (Coro et al 2021).  

1.4.5 Chromium  

Chromium is used extensively within industrial processing, such as electroplating 

industries using anti-biofouling and anticorrosive agents, steel production, and 

automobile manufacturing (Kumar et al 2021). Chromium exists in the trivalent 

or hexavalent state (Coro et al 2021). The chromium element occurs naturally 

within soils and sediments from the geochemical weathering of chromium 

minerals (e.g., chromite) or is released into the soil anthropogenically through the 
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industrial extraction of chromium for products. Aqueous hexavalent chromium is 

a public health concern, with acute exposure leading to cancer, skin irritation, 

liver diseases, and neurotoxicological complications, such as the association with 

dementia and chronic chromium exposure (Lair et al 2007). Chromium reduction 

transformation from Cr(VI) to Cr(III), facilitated by organic matter acting as a 

reductant, as well as the soil pH, redox status, and available electron donors, can 

effectively immobilise chromium (McLaren 2019). Once reductively transformed, 

Cr(III) precipitates as chromium hydroxide, forming stable complexes with 

organic materials, therefore immobilising chromium (Kumar et al 2021). 

The soil composition (i.e., texture and electron donor availability) and conditions 

(i.e., pH and vegetation coverage) can influence chromium porewater solubility 

and mobility (Roe et al 2015). Such mobility is enhanced under neutral soil pH 

conditions, particularly in the presence of competing oxyanions (Roe et al 2015). 

Irrespective of the soil composition and conditions, trivalent chromium is less 

mobile, precipitating as Cr(OH)3 or FexCr1-xCr1-X(OH)3 under slightly acidic 

environments (pH 5.5 - 6.8 (Kumar et al 2021). 

1.4.6 Nickel  

The element nickel is the 24th most abundant metal within the Earth’s crust 

(Naggar et al 2021). Natural sources of nickel minerals (e.g., Pentlandite) include 

forest fires and volcanic emissions (McLaren 2019). Anthropogenic nickel 

releases derive from coal and oil combustion, waste incineration, and phosphate 

fertilisers (Ponting et al 2021). The concentration of soil nickel ranges between 5 

- 500mg/kg worldwide (Ponting et al 2021). Nickel is essential for regulating 

organismal metabolic and digestive processes; however, excessive exposure and 

intake of nickel may cause severe allergies, cancer, and reduced lung functions 

(McLaren 2019). 

Nickel exists in several elemental forms (e.g., nickel oxides, nickel sulfate and 

nickel sulfide) that depend on the adsorption or complexation with organic 

surfaces, inorganic cation exchanges, free-ions, or chelated metal complexes 

(Naggar et al 2021). This complexation depends highly on nickel’s oxidation state 

(+1, +2, +3, +4) (Naggar et al 2021). The soil pH significantly influences nickel’s 

oxidation state and adsorption capacity with organic and inorganic ligands 
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(Naggar et al 2021). Nickel has high affinities under optimal pH conditions (pH 4 

- 9) with metallic sulfur, iron, and fulvic acids and humic substances within 

organic matter (Naggar et al 2021).  

1.4.7. Contaminant Interaction Effects  

Such relationships between different PHE and soil chemical properties do not act 

in isolation, rather, PHE mobility, bioaccessibility, and solid-phase distribution 

are often influenced by interactions with other contaminants and environmental 

factors. Many PHE, such as zinc and lead, have similar geochemical pathways, 

where they both precipitate as sulfides, for example. The competitive sorption 

between PHE can lead to displacement effects, where one metal (e.g., Zn2+) 

outcompetes another (e.g., Pb2+) for available ligand binding sites on mineral 

surfaces. Such interactions occur between metals (e.g., Pb) and metalloids (e.g., 

As), where during reducing redox conditions, the reductive dissolution or iron and 

manganese oxides, sulfide and dissolved organic carbon formation, changes the 

availability and competition of redox-sensitive arsenic and lead binding with 

surface minerals.  

 

 

1.5 Anthropogenic Climate Change and Future Flooding 

Anthropogenic climate change is predicted to increase the frequency and 

magnitude of severe storm events (Dube et al 2021). Such changes are attributed 

to warmer temperatures, increasing evaporation and atmospheric moisture, rising 

sea levels causing coastal flooding, and urbanisation and industrialisation 

degrading natural flood buffers, such as wetlands, riparian zones, and forests 

(Dube et al 2021). 

The last decade has witnessed several category 3+ storms globally, including 

hurricanes Harvey (2017), Irma (2017), Florence (2018), Barry (2019), Hanna 

(2020), Delta (2020), and Ida (2021) (Met Office 2020). Storm events are 

associated with high-magnitude flooding (e.g., 1 in 500-year flooding) (Dube et al 

2021). Estimates predict that 52% of the worldwide population will be at risk of 

high-magnitude flooding by 2100 (Kirezci et al 2020).  
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Like many countries, the UK is not immune to such flood challenges and is 

experiencing a significant increase in flood severity, frequency, and economic 

costs associated with flood defence (Met Office 2020). In 2018, the cost of flood 

defence amounted to £777 million; in 2021, it was £1.1 billion, and in 2050, it is 

projected to be £5 billion (Office for National Statistics, 2023). The UK has 

approximately 1.9 million housing developments on floodplains susceptible to 

regular flooding (Environment Agency 2021). Despite these flood forecasts, many 

local authorities approve housing development within such flood-prone locations; 

for example, in 2020, approximately 5,000 household developments occurred 

within floodplain zones (Richardson Jr 2021). Such developments are driven by 

land scarcity, the economic ease of building on floodplains, and the demand for 

new housing development (Environment Agency 2021).  

1.5.1 Flood Types 

A flood occurs when heavy precipitation exceeds the soil absorption capacity, 

leading to a water saturation surplus and an infiltration deficit within the soil 

(Ponting et al 2021). Several factors influence the balance between this surplus 

and infiltration capacity, including the level of urbanisation, vegetation coverage, 

land gradient and soil texture (Zhu et al 2022). The level of urbanisation reduces 

soil infiltration through increasing surface runoff from concrete foundations and 

soil sealing (Miller and Hutchins 2017). Nature-based solutions, such as 

peatlands, forestry, and wetlands, can adsorb and reduce flood water’s flow, 

velocity, and volume (Bogdzevic 2023). The topographical gradient influences 

flooding velocity, with steeper gradients increasing surface runoff and reducing 

infiltration (Flesch and Reuter 2012). Soil particle sizes influence floodwater 

absorption, with finer-grained particles reducing infiltration compared to larger 

particle sizes (Chen et al 2019).  

1.5.2 Riverine Flooding  

The saturated and overlying floodwater flows downstream into these river 

systems (surface runoff) (Mladenovic et al 2017). The absorbed water 

underground may also enter river systems from the processes of “throughflow” 

and “baseflow” (Mladenovic et al 2017). Such river runoff increases a river’s 

volume, flow, and velocity (Xu et al 2022). The excess river water will eventually 
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overflow from the riverbanks, inundating the surrounding floodplain (Viji et al 

2020). For an illustration denoting the basic concepts around riverine flooding, 

see Figure 1.3 (Yorkshire Dales River Trust 2021).  

 

Order:  

1. A storm usually characterises extreme precipitation events.  

2. Precipitation reaching ground level exceeds soil and sediment absorption 

capacity, leading to surface runoff.  

3. The absorbed precipitation infiltrates underground, and through deep water 

channels, eventually flows into the river (throughflow).  

4. The river’s flow and velocity can increase by adding surface water and 

throughflow inputs from extreme precipitation events. 

Figure 1.3. Outlines the process of how a riverine flood is created. The illustration indicates a 

significant precipitation event saturating the overland, potentially infiltrating the ground, 

eventually entering the river system, and increasing the river’s flow and velocity (Yorkshire Dales 

River Trust, 2021). 

1.5.3 Coastal Flooding 

The effects of coastal flooding may result from several events, including sea level 

rise, high tides, storms, or the depletion of natural flood buffers (Zhang et al 

2004). The land’s topography, such as bays, estuaries, and inlets, influences the 

frequency and magnitude of coastal flooding (Zhang et al 2004). The storm surge 

of sea water can eventually reach inland, flooding low-lying areas (Lee et al 

2017). Approximately 200 million individuals worldwide are vulnerable to 

coastal flooding (Lee et al 2017). The average sea levels are predicted to rise 

between 0.28-0.98 metres, exacerbating coastal flooding (Lee et al 2017). 

Riverine and coastal flooding differ regarding the floodwater chemistry, with 



34 

 

coastal floodwater having significantly higher saline concentrations (~3% - 3.5%) 

than riverine (0.1% - 0.5%) (Zhang et al 2004). For an overview of how coastal 

flooding forms, see Figure 1.4 (MacDonnell 2019).  

 

Order: 

1. Sea level rise or storm surge from meteorological events create large 

waves.  

2. The large waves and currents reach inland.  

3. Locations which are low-lying become inundated with coastal flood water.  

4. The flooded water is highly saline in concentration.  

Figure 1.4. Indicates the process of how coastal flooding works. The figure illustrates that a storm 

surge brings lots of coastal seawater inland on low-lying topographies (taken from MacDonnell 

2019).  

1.6 Flooding and PHE Remobilisation  

1.6.1 Physical Remobilisation  

The effects of flooding increasing a river water’s volume and velocity (Section 

1.5.2) may influence PHE physical remobilisation (Viji et al 2020). Devi and 

Khatua (2017) show that flooding’s high-velocity and hydraulic turbulences have 

the kinetic energy to physically erode riverine banks, which act as a store for 

sequestered PHE (Viji et al 2020). The floodwater then resuspends the eroded 

sediments and soil particles, transporting them downstream and eventually 

depositing them onto floodplains, where the water velocity and kinetic energy 

decrease (Mendez et al 2017, Sun et al 2007). People who reside on floodplains 

Figure 1: Highlights the Processes of Coastal Flooding. 
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could become exposed to physically remobilised PHE from the floodwater (Viji et 

al 2020).  

Quantifying PHE physical remobilisation during flooding is poorly understood, 

particularly under a climate change scenario that may increase the risk of flooding 

(Viji et al 2020, Wang et al 2020, Wragg et al 2011, Xu et al 2022). The different 

soil textures, land gradients, vegetation coverage, and flood magnitude, to name a 

few parameters, make quantifying the effects of flooding increasing PHE physical 

remobilisation significantly challenging (Xu et al 2022). In other words, the 

heterogeneous environmental conditions, like the vegetation coverage, can make 

the severity of flooding variable.  

Research has established the physical drivers influencing PHE remobilisation, 

such as increased flow velocity, currents, and turbulences (Ciszewski and Grygar 

2016, Ding et al 2019). However, there are significant limitations in quantifying 

PHE remobilisation during flooding (Kelly et al 2020, Kilunga et al 2017). 

Research on quantifying PHE physical remobilisation during flooding must 

encompass multiple high-quality studies, analysing PHE remobilisation within 

different soil textures, riverine systems, and flood types (Biswas et al 2020, 

Ciszewski and Grygar 2016, Ding et al 2019, Devi and Khatua 2017, Eggleton 

and Thomas 2004, Kelly et al 2020, Kilunga et al 2017). 

1.6.2 Chemical Remobilisation (Porewater Solubility)  

Flooding alters water and soil physicochemistry (e.g., redox status and pH), 

creating anaerobic conditions by restricting the input of atmospheric oxygen 

(Ponting et al 2021). In certain circumstances during flooding, particularly under 

fast-flowing water conditions, water can rapidly flow over rocks and debris, 

trapping air bubbles and reoxygenating, and therefore, creating aerobic conditions 

(Xu et al 2022). “Physicochemistry” defines soil and water interacting with 

physical and chemical properties (e.g., organic matter, iron, manganese) 

(Ponting et al 2021). Such physicochemistry changes influence PHE porewater 

solubility, defined as the soluble fraction of a PHE mobilised within an aqueous 

matrix (McCauley et al 2009). In other words, the changing physicochemical 

conditions during flooding, such as soil pH, may influence the binding properties 
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of PHE within different soil mineral phases, such as carbonates and organic 

materials (Xu et al 2022).  

Flooding alters the physicochemistry, which influences the binding properties of 

PHE with different mineral phases, impacting PHE porewater solubility or 

chemical mobility (Kelly et al 2020). For example, the lower redox conditions 

during flooding promote As(V) mobility and solubility, by enhancing the 

reductive dissolution of arsenic from iron and manganese oxides, influencing 

arsenic porewater solubility (Mendez et al 2017). As physicochemistry is 

inherently correlated with PHE porewater solubility, exploring the literature on 

how individual physicochemical changes influence PHE porewater solubility is 

necessary (McCauley et al 2009). The data presented in this thesis identifies 

major physicochemistry variables. By “variables,” this refers to different 

physicochemical properties, such as the pH, organic carbon, and calcium, which 

primarily influence PHE dynamics according to literature searches. The 

physicochemistry variables selected cover abiotic (e.g., pH), anionic (e.g., organic 

carbon), cationic (e.g., potassium) or both cationic and anionic (e.g., iron and 

manganese) types.  

1.7 Flooding and PHE Solid Phase Distribution 

Physicochemical changes during flooding alter PHE solid phase distribution with 

soil mineral phases (Laurent et al 2017). The term “solid phase distribution” 

describes the PHE solubility or immobility, depending on its complexation, with 

soil mineral phases (e.g., soluble within the exchangeable phase or immobilised 

by sulfide etc) (Fan et al 2014) (Figure 1.5, amended from Laurent et al 2017). 

For example, Cu2+ may speciate with sulfate, forming copper sulfate (CuSO4); 

however, redox physicochemistry changes from flooding can change copper solid 

phase distribution, forming copper sulfide (Cu2S) (Xu et al 2022). In the example 

above, the reducing redox conditions reductively dissolve sulfate, forming sulfide.  

Soil and sediment particles contain mineral fractions (Fan et al 2014). These 

fractions comprise organic materials, clays, sulfide, and carbonates (Xu et al 

2022). The organic and inorganic constituents (Section 1.1) coprecipitate with 

PHE (e.g., iron oxides, zinc sulfide, and organolead compounds) (Laurent et al 

2017). The term “PHE solid phase distribution,” refers to the concentration, 
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proportion, and abundance of a PHE complexing, coprecipitating, or being 

adsorbed to either one of these organic and inorganic constituents (see Figure 1.5, 

Laurent et al 2017). 

As an example, flooding significantly impacts arsenic, copper, and lead solid 

phase distribution (Figure 1.6, amended from Kelly et al 2020, McCauley et 

al 2009, Mendez et al 2017). The lower redox conditions from flooding reduce 

As(V) to the more toxic and mobile As(III), Pb(II) to the more soluble Pb(I), and 

Cu(II) to Cu(I) (Figure 1.6A, 1.6D and 1.6F, respectively). This lowering redox 

state during flooding does not always increase PHE mobility and toxicity (Ponting 

et al 2021). The introduction of organic materials during flooding (e.g., organic 

carbon allochthonous inputs) may form complexes with arsenic (methylarsonic 

acid) and copper (ethylenediaminetetraacetate) (Figure 1.6B and 1.6G, 

respectively). The pH changes influence lead coprecipitation with available 

hydrogen ions, influencing lead complexation with iron particles (Figure 1.6E). 

The reducing redox conditions also created during flooding promote sulfide 

cluster complex formation, influencing arsenic’s solid phase distribution with 

sulfide minerals (Figure 1.6C). 

 

Figure 1.5A. Indicates contaminated soil. Figure 1.5B shows a microscopic image of the soil 

particles with coprecipitated PHE. Figure 1.5C shows a zoomed-in version of a soil particle, 

showing the different soil particle mineral phases, both soluble and insoluble (Laurent et al 2017).  

Multiple studies have quantitatively shown physicochemistry changes during 

flooding that influence PHE solid phase distribution (Doherty et al 2022, 

Izaditame et al 2022, Kelly et al 2020, McCauley et al 2009, Mendez et al 2017, 

Sun et al 2007). For example, Sun et al (2007) indicate that the higher soil pH 
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levels (> pH 7) during flooding promote cadmium coprecipitation with 

exchangeable hydrogen ions. Doherty et al (2022) demonstrates antimony and 

arsenic solid phase distribution can alter through coprecipitating with sulfide 

cluster complexes during reducing redox conditions. Izaditame et al (2022) 

indicate that reducing redox conditions increase dissolved As(III) concentrations. 

These are just a few examples of solid phase distribution alterations; however, 

such changes emphasise the complexity of understanding PHE solid phase 

distribution alterations with just a few physicochemistry changes during flooding 

(McCauley et al 2009). The current mechanisms for evaluating PHE solid phase 

distribution changes are poorly understood due to changing physicochemical 

parameters, the costs and resources required for speciation testing, and the spatial 

scale of testing needed (Ponting et al 2021).  

 

Legend  

A. Indicates changes in arsenic solid phase distribution under reducing redox potentials (Eh 

< 0), which form (As) III, and under oxidising redox potentials (Eh > 0), forming As(V). 

The colour yellow denotes arsenic speciation during drying periods and blue colour 

during flooding.  

B. Organo-complexation refers to how arsenic, for example, can bind with organic matter 

through humic substances and fulvic acids.  

C. Sulfide interaction indicates that arsenic can bind with sulfide ions, forming metal sulfide 

complexes.  
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Legend  

D. Indicates that redox changes can influence lead’s solid phase distribution. The figure in 

yellow highlights non-flooding conditions, showing that lead solid phase distribution is 

typically Pb(II) during oxidising redox conditions. Flooding (highlighted in blue) creates 

reducing redox conditions, changing lead’s solid phase distribution from Pb(II) to Pb(I).  

 

E. Illustrates how changing soil and water pH conditions influence iron complexation with 

lead. The grey circular dots represent iron molecules, the green crosses denote the 

positive hydrogen ions, and the smaller grey dots denote lead ions. During drying, lead 

ions coprecipitate with iron molecules because of these hydrogen ions. Flooding (denoted 

by a blue background) causes the hydrogen ions to be consumed by raising the soil and 

water pH conditions.  
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Legend  

F. Indicates how changing redox conditions influence copper solid-phase distribution. The 

figure shows that during drying conditions under oxidative redox conditions, copper solid 

phase distribution is Cu(II). However, during flooding and reductive redox conditions 

(indicated in blue), the copper ions change from Cu(II) to Cu(I).  

 

G. Shows copper ions (blue dots) coprecipitating with organic matter (grey dot). The 

chemical formula illustrates the chemical process of copper complexation with organic 

matter.  

Figure 1.6. Outlines how changing redox potentials, organic carbon concentrations, and sulfide 

cluster formations alter arsenic, lead, and copper solid phase distribution. Figures 1.6A, 1.6D and 

1.6F indicate a solid-phase distribution change of As(V) to As(III), Pb(II) to Pb(I), and Cu(II) to 

Cu(I) under oxidising to reducing redox potentials. The effects of organic carbon materials 

introduced to the riverine system from flooding can cause coprecipitation with arsenic and copper 

compounds (Figure 1.6B and 1.6G). The reductive dissolution of sulfate ions increases sulfide 

concentrations, which complex with arsenic, forming insoluble metalloid arsenic sulfide cluster 

complexes (Figure 1.6C). Increasing pH alkalinities during flooding alter lead’s complexation 

with hydrogen ions (Figure 1.6E). Under low pH conditions (pH < 7), lead ions compete with 

hydrogen ions for ligand exchanges on oxides, such as iron and manganese (Figure 1.6E). 

However, increasing the pH alkalinity facilitates lead’s complexation with hydrogen ions, altering 

lead solid phase distribution (Figure 1.6E, McCauley et al 2009, Kelly et al 2020 and Mendez et 

al 2017). 

1.8 The Relationship Between Soil and Porewater Physicochemistry 

Influencing PHE Solubility, Bioaccessibility, and Solid-Phase Distribution  

The influence of flooding altering the ambient soil and porewater 

physicochemistry can significantly influence PHE behaviour. Soil and water 

physicochemistry can refer to several things, such as cationic, anionic, biotic, and 

abiotic properties, which will all be discussed in Sections 1.8.1 to 1.8.11. 

Investigating how a single physicochemical property can change during flooding 

can allow detailed insight into how physicochemistry influences PHE behaviour. 

This literature review qualitatively explores the different physicochemical 

parameters that influence PHE dynamics. Chapter 4 quantitatively examines the 

reliability of these physicochemical parameters to predict PHE porewater 

solubility, bioaccessibility, and solid-phase distribution during flooding.   
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1.8.1 Soil and Water pH 

The pH is the negative logarithm of potential hydrogen ion concentrations (i.e., 

pH = -log[H+]) (McCauley et al 2009). Flooding alters the soil and water pH, 

typically increasing the pH between pH 0.5-1, through the Eh changes and 

allochthonous inputs of organic material (Ding et al 2019, McCauley et al 2009, 

Sun et al 2007, Wang et al 2020). 

There are well-established correlations between the pH and Eh fluctuations; as the 

soil becomes flooded, hydrogen ions (H+) are consumed mainly through the 

reductive dissolution of iron oxides, increasing the pH alkalinity (Ponting et 

al 2021; Seo et al 2017; Simsek 2016). Significant amounts of allochthonous 

inputs enter fluvial systems through bank overflows (Ding et al 2019). Base-

forming cations, such as calcium, magnesium, and potassium, typically increase 

pH alkalinity, whereas acid-forming cations, including aluminium and iron, 

decrease pH alkalinity (McCauley et al 2009). Whether the allochthonous inputs 

are either base or acid-forming determines whether the pH increases or decreases 

during flooding (McCauley et al 2009). 

As the flooding recedes, the oxidising Eh produces protons, decreasing pH 

alkalinity (Ponting et al 2021). Soil and sediments oxidise in the air post-flooding, 

converting dissolved organic carbon (DOC) into CO2, which then solubilises as 

carbonic acid, decreasing pH alkalinity (Ponting et al 2021). Such pH fluctuations 

may influence PHE porewater solubility. The pH is a significant physicochemical 

parameter regulating PHE coprecipitation and dissolution reactions with soil 

mineral phases (Boer et al 2012, Chen et al 2020).  

Acidifying pH conditions enhance PHE porewater solubility by dissolving pH-

sensitive soil mineral phases, thereby solubilising PHE. Guo et al (2005) show 

significant solubilisation of chalcophile PHE (e.g., silver, arsenic, copper, 

mercury, and lead) from the carbonate soil mineral phase during acidifying pH 

conditions. Flooding increases the soil and water pH alkalinity, meaning PHE 

dissolution from the carbonate phase is upon soil drainage. 

The consumption of protons (increasing pH/alkalinity) often releases dissolved 

organic carbon (DOC). The DOC forms organo-metal complexes with PHE. Such 

DOC and PHE coprecipitation reactions reduce soluble PHE concentrations. The 
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increasing pH alkalinity during flooding may reduce PHE porewater solubility. 

The findings from Kelly et al (2020) show statistically strong relationships 

between DOC coprecipitation with nickel and chromium ions (R2 = 0.78, R2 = 

0.52, respectively). These findings from Kelly et al (2020) could be attributed to 

the pH altering the partition coefficients with humic and fulvic acids on DOC 

(Ponting et al 2021). In other words, Kelly et al (2020) findings suggest that soil 

pH changes can impact how humic and fulvic acids interact with DOC. Paolis and 

Kukkonen (1997) demonstrate that the partitioning coefficient of 

pentachlorophenol with humic acids decreased significantly with a pH increase 

from pH 5 to pH 8. Decreasing protons under alkaline pH conditions reduces PHE 

competition for binding with DOC and Fe-Mn oxides. As such, more alkaline 

conditions may alter the binding associations with DOC, highlighting the 

interconnectedness between different physicochemical variables (pH and DOC) 

and influencing PHE porewater solubility (Ponting et al 2021).  

1.8.2 Redox Potential  

The redox potential (Eh) is the equilibrium between oxidative and reducing 

conditions (Mendez et al 2017). Flooding decreases oxygen concentrations, 

transitioning from oxic ([O2] > 30 μmol L-1) to anoxic or reducing conditions 

([O2] < 14 μmol L-1) (Huang et al 2021). These reducing conditions can 

chemically transform soluble sulfate into insoluble metal sulfide and, eventually, 

into sulfide cluster complexes with PHE, thereby immobilising PHE and 

decreasing their porewater solubility (Mendez et al 2017).  

During reducing redox conditions, sulfate ions gain electrons, transforming 

sulfate into sulfide (see Figure 1.7; Huang et al 2021). Figure 1.7 shows that 

during the drying process, there is sulfide oxidation, and during flooding, there is 

sulfate reduction. In Figure 1.7, during flooding (denoted by a blue background), 

it illustrates that, in some instances, multiple sulfide metal cluster complexes 

immobilise PHE. During drying, the oxidative conditions mean that such cluster 

complexes no longer exist, and the PHE is dissociated from the sulfide complex 

(arrows pointing away).  

Reducing redox conditions also chemically transform redox-sensitive iron and 

manganese oxides. These oxides often coprecipitate with PHE due to their high 
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surface reactivity; however, during these reducing redox conditions, the electrons 

are transferred to these metal oxides, weakening the structural integrity of these 

oxides and eventually releasing PHE (Fan et al 2014). The transition from 

reducing to oxidising redox conditions, when floods recede, can oxidatively 

transform insoluble sulfide back into soluble sulfate, resolubilising PHE 

coprecipitated with such sulfide cluster complexes (Figure 1.7, amended from 

Huang et al 2021).  

 

Figure 1.7. Outlines the sulfide oxidation process upon flood drainage and sulfate reduction 

during flooding. Such transitions alter PHE porewater solubility and remobilisation (Huang et al 

2021). 

1.8.3 Organic Carbon 

Organic carbon derives from residual plant and animal materials, synthesised by 

microorganisms, and subsequently biologically decomposed under abiotic 

controls (i.e., temperature) (Hao et al 2023). Organic carbon influences PHE 

porewater solubility by forming stable organic complexes (Hao et al 2023). Fulvic 

substances within organic matter are the complexants (Li et al 2023, Lodygin and 

Abakumov 2022). Organic carbon “arranges” into aqueous micelle-like 

formations containing hydrophobic interior domains, protected by hydrophilic 
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exteriors (Figure 1.8, by Fu et al 2018). By “arranges,” the organic carbon 

molecules are structured into micelle-like formations (Hao et al 2023).  

These micelle-like formations optimise surface complexation with PHE by 

increasing the surface area and enhancing the formation of organic ligands (Fu et 

al 2018). The organic carbon’s hydrophobic interiors and hydrophilic exteriors 

have high affinities for complexing with hydrophobic organic PHE (e.g., 

polycyclic aromatic hydrocarbons) (Lodygin and Abakumov, 2022). Fu et 

al (2018) suggest that the organic carbon’s aliphatic chains, comprising of organic 

compounds with branched or straight chains, optimise this complexation with 

hydrophobic organic PHE. This organic complexation with organic PHE also 

happens with inorganic PHE (Deonarine et al 2011). Buschmann et al (2006) 

show that arsenite and arsenate partition with organic ligands, specifically humic 

substances. Deonarine et al (2011) indicate zinc sulfide nanoparticles are 

partitioning with humic substances. Whitby and Berg (2015) show that organic 

humic substances within organic carbon reduce soluble copper.   

Several physicochemical parameters control the partitioning and complexation of 

organic and inorganic PHE with organic carbon, such as soil pH and calcium 

concentrations (Lodygin and Abakumov 2022). Calcium ions can modulate 

organic carbon complexation with PHE, with calcium ions competing for organic 

carbon binding sites and altering organic carbon’s charge density, influencing 

PHE partitioning and complexation with organic carbon (Lodygin and Abakumov 

2022). Oste et al (2002) demonstrate how pH and calcium ions influence organic 

carbon, showing increasing organic carbon concentrations under increasing 

alkalinity and, conversely, decreasing organic carbon concentrations under 

increasing calcium concentrations (Hao et al 2023). Increasing the alkalinity 

increases organic carbon's surface negativity, increasing the affinity for 

complexing with negatively charged ions (Ponting et al 2020). Increasing calcium 

concentrations create higher negative electrostatic potentials, increasing the 

organic carbon’s electrostatic repulsion and reducing its attraction for complexing 

with positively charged PHE (Whitby and Berg 2015). 

For this thesis, investigating how organic carbon influences PHE porewater 

solubility, bioaccessibility, and solid-phase distribution may provide insight into 
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reliably predicting how flooding influences such changes (Hao et al 2023). For 

example, understanding a soil's organic carbon content may provide reliable 

predictive insights into estimating PHE behaviour before flooding (Lodygin and 

Abakumov 2022). An example of understanding soil organic carbon content and 

organic carbon species could be using online platforms that record the total soil 

organic carbon contents and species across the UK (e.g., James Hutton Institute, 

BGS, and the Environment Agency). If organic carbon strongly influences PHE 

dynamics during flooding, understanding the soil carbon of a given location 

before flooding, with the information derived from these digital platforms, may 

provide valuable information about how flooding may influence PHE dynamics 

(Lodygin and Abakumov 2022). Such analysis directly impacts the thesis’s aims 

by exploring how incorporating physicochemical data (e.g., organic carbon) into 

predictive models may reliably estimate PHE mobility, bioaccessibility, and solid-

phase distribution changes during flooding (Lodygin and Abakumov 2022). 

 

Figure 1.8. Outlines the binding of hydrophobic PHE to hydrophilic and hydrophobic constituents 

of organic carbon. The outer hydrophobic head are denoted by the blue circles, and the 

hydrophobic tails (thin blue strips) represent the hydrophilic section (Fu et al 2018). 

1.8.4 Potassium  

Depending on the total soil potassium concentration, potassium may increase or 

decrease the soil and water oxidative redox potential during flooding (Hosaka et 
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al 2021). Soil potassium concentrations ranging between 150-250mg/kg optimally 

regulate plant cellular electrolyte metabolism, giving rise to vegetation growth, 

reproduction and survival (Khaledian et al 2017; Moustafa and Shedid 2018). 

Increased vegetation coverage increases oxygen production and diffusion within 

soil systems, increasing soil oxidative redox potentials (Hosaka et al 2021). 

Excessive potassium levels exceeding 500mg/kg may create toxicity (e.g., 

nutrient imbalance, salt stress, hyperkalaemia), reducing plant growth ( Hosaka et 

al 2021). This reduction in plant growth may restrict oxygen production in soil 

systems, lowering the oxidative redox conditions (Khaledian et al 2017).  

1.8.5 Calcium 

Calcium is an alkaline, reactive metal cation (Zhang et al 2004). Studies report 

that calcium ions influence PHE porewater solubility by complexing with PHE, 

altering soil and water pH conditions, and stabilising soil organic carbon 

(Bashir et al 2019, Huang et al 2021, Pinheiro et al 1999, Zhang et al 2004). 

Calcium ions coprecipitate with PHE through electrostatic interactions (Huang et 

al 2021). Additionally, the calcium ion is highly alkaline (pH > 7), meaning 

excess calcium concentrations can increase soil and water pH levels (Huang et 

al 2021). Increasing soil and water pH conditions may alter PHE dissolution and 

porewater solubility from the acid-sensitive carbonate soil mineral phase 

(Huang et al 2021; Pinheiro et al 1999). Calcium ions also stabilise soil organic 

carbon, an essential mineral phase for complexing PHE (Section 1.8.3) 

(Ponting et al 2021). Rowley et al (2018) show the calcium ions hydration shell 

forming an inner-sphere complex with organic carbon, stabilising organic carbon 

molecules from microbial degradation (Figure 1.9, amended from Rowley et 

al 2018).  

 

 

 

 

Figure 1.9. Outlines the effects of calcium in providing a protective layer (hydration shell) around 

organic matter (amended from Rowley et al 2018).  
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1.8.6 Salinity  

The salinity of a solution or particulate matter refers to the sodium ion 

concentration (Peng et al 2022). Soil salinity concentrations exceeding 

35,000mg/kg can increase water conductivity above 50 millisiemens per 

centimetre (Paz et al 2020). High water conductivity levels influence water 

electrical currents, with more sodium ions conducting electricity (Peng et 

al 2022). These electrical currents and sodium ion alterations may displace 

calcium and magnesium ions on soil exchange sites, influencing a soil’s cation 

exchange capacity (CEC) (Asselman et al 2021). Altering soil CEC may influence 

PHE coprecipitation with different soil mineral phases by altering the availability 

of soil binding exchange sites (Ponting et al 2021). Sodium ions may also 

compete with PHE for available ligand exchange sites on soil mineral phases, 

influencing PHE porewater solubility (Asselman et al 2021). Investigating how 

soil salinity alterations influence PHE porewater solubility during flooding is 

important given the increasing frequency and magnitude of coastal flooding, 

erosion, and wave overtopping events (Paz et al 2020). 

1.8.7 Iron 

Iron is a lustrous metal ion and the most abundant transition element in the 

Earth’s crust (Heyden and Roychoudhury 2015). Iron influences PHE porewater 

solubility through inner-sphere monodentate and outer-sphere complexation 

bonding, ligand-exchange reactions, and the formation of ternary complexes 

(Cundy et al 2008). Inner-sphere complexation occurs when PHE directly 

coordinate with iron (Zhang et al 2004). Outer-sphere complexation occurs when 

the PHE do not coordinate directly but rather indirectly through non-covalent 

interactions, such as hydrogen bonding (Cundy et al 2008). This unique inner and 

outer-sphere complexation between iron and PHE has resulted in the development 

of several environmental clean-up technologies, such as injected zero-valent iron 

nanoparticles, to adsorb and remove soil PHE (McCauley et al 2009). Iron also 

forms ternary complexes with PHE, reducing PHE solubility and mobility 

(McCauley et al 2009). A bridging ligand (i.e., ethylenediaminetetraacetic acid) 

interacts with the iron species and PHE, forming these ternary complexes 

(McCauley et al 2009). 
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1.8.8 Manganese 

Manganese is the second most abundant metal in the Earth’s crust (Das et 

al 2011). Manganese influences PHE porewater solubility through its large 

microporous surface area and ionic charge (Han et al 2006). The surface area of 

manganese consists of layered octahedral sheets with hydrated interlayers (Flynn 

and Catalano 2019). These octahedral sheets have negative ionic charges that 

promote the attraction of positively charged PHE (Das et al 2011). The octahedral 

sheets also contain vacancy sites with ligand exchange receptors for PHE binding 

(Flynn and Catalano 2019). Brandao and Galembeck (1990) show that these 

vacancy sites adsorb and remove significant quantities of lead, copper, and zinc 

ions. Suda and Makino (2016) indicate that the total average proportion of 

arsenic, cadmium, cobalt, copper, nickel, lead, and zinc occluded onto manganese 

oxides is 60, 38, 55, 58, 55, 43, and 57%, respectively, emphasising the role of 

manganese in reducing PHE porewater solubility. 

1.8.9 Magnesium 

Magnesium is an essential Earth metal, serving as a vital microelement for plant 

and mammalian physiological development (Gransee and Fuhrs 2012). Previous 

studies show that magnesium ions contain multiple available PHE sorption sites 

(Mao et al 2021; Pinto et al 2019; Shi et al 2018). Allochthonous inputs during 

flooding, rich in magnesium, may change PHE porewater solubility, affecting the 

availability of these magnesium sorption sites (Anyanwu et al 2023). Shi et al 

(2018) demonstrate the capabilities of magnesium ions in reducing PHE 

porewater solubility by incorporating magnesium ions with eucalyptus biochar 

and significantly reducing soil lead and copper by 99.9%. Pinto et al (2019) show 

that biochar impregnated with magnesium ions has a high removal efficiency for 

phosphorus compounds. Suzuki et al (2013) indicate that magnesium treatment 

for lead-contaminated kaolinite also successfully coprecipitates and immobilises 

lead PHE. Soil magnesium concentrations also influence the soil pH (Pinto et al 

2019). Excessive soil magnesium concentrations, exceeding 500-1000mg/kg, 

typically increase soil pH levels (Gransee and Fuhrs 2012). Magnesium can react 

with water molecules during flooding, forming brucite (Equation 1). The presence 

of brucite neutralises the soil acidity through brucite, by producing and increasing 

the concentration of available soil hydroxyl ions (Sanderson et al 2015).  



49 

 

MgO + H2O            Mg(2)(OH)2                                                                  Eq.  1  

1.8.10 Fluorine  

Fluorine is the 13th most abundant element in the Earth’s crust (Dec et 

al 2017). Empirical observations show that flooding can significantly remobilise 

fluorine, such as along the Dwarka River Basin (Thapa et al 2017). Fluorine has a 

high electron affinity of -322kj/mol, meaning fluorine atoms have a strong 

tendency to gain electrons (Dec et al 2017). The fluoride ion is small, with a 

radius of 1.33 nanometres (Dehnen et al 2021). Fluoride is also the least 

polarisable anion, meaning its electron cloud is highly resilient to changing 

ambient electrical charges, making the fluoride ion highly stable (Dec et al 2017). 

The high electron affinity and stability of fluoride also make this ion significantly 

effective for ionic bonding with transition metals (e.g., manganese (IV) fluoride 

and chromium (V) fluoride), influencing PHE porewater solubility (Dehnen et 

al 2021).  

1.8.11 Chloride 

Chloride is an ion that regulates plant photosynthesis, fertilisation, and 

transpiration (Li et al 2023). The chloride ion can stimulate iron’s oxidation 

process by acting as an electron acceptor (Lytle et al 2020). This iron oxidation 

can solubilise iron minerals, influencing iron complexation with PHE (Peng et 

al 2022). However, research investigating PHE porewater solubility in relation to 

chloride is scarce, and therefore, associations between chloride, iron, and PHE 

porewater solubility are limited and speculative in the context of flooding (Lytle 

et al 2020, Peng et al 2022).  

1.9 Physicochemistry and Bioaccessibility 

The term “bioaccessibility” defines the PHE fraction as soluble within the 

gastrointestinal tract, and readily available for adsorption through the intestinal 

epithelium (Thakur et al 2020). Frequently confused with the term 

“bioaccessibility,” “bioavailability” relates to the movement of PHE across the 

cell wall (Figure 1.10, amended from McLaren 2019).  

Bioavailability testing uses in vivo studies, typically involving rats and monkeys 

as host organisms (Thakur et al 2020). These in vivo experiments are costly, time-
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consuming, and ethically challenging (Mehta et al 2020). Bioaccessibility testing 

(in vitro) of PHE in soil has been developed over the last 30 years to overcome 

some issues associated with using animals (Cave et al 2011).  

To this end, a suite of in vitro bioaccessibility tests has been developed that 

simulate the physicochemical conditions (e.g., stomach pH, bodily temperature, 

simulated body fluids, time) in the gastrointestinal tract of “at risk” receptors 

(e.g., children) (Cave et al 2011). To gain acceptance by regulatory bodies, some 

of these in vitro methods have been validated against animal studies, including the 

method of the Bioaccessibility Research Group of Europe (BARGE), known as 

the Unified BARGE Method (UBM) (Denys et al 2012). This method has now 

been adopted by the International Standards Organisation (ISO) for determining 

PHE bioaccessibility in soil (ISO 17025) (Juhasz et al 2009).   
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Figure 1.10. Illustrates the biological processes where contaminated soil or sediment enters the 

human system, is solubilised within gastric fluids (bioaccessibility), and becomes available for 

adsorption into the intestinal epithelium (bioavailability) (amended from Ng et al 2015).  

 

Physicochemical changes during flooding alter PHE porewater solubility (Section 

1.8) by influencing PHE coprecipitation with different soil mineral phases 

(Rastegari et al 2021; Trukhina et al 2022). This relationship between 

physicochemical changes during flooding and PHE bioaccessibility is understood 

as linear (Table 1.2) (Trukhina et al 2022). By “Linearly,” this means one 

physicochemical change directly influences PHE bioaccessibility (Juhasz et al 

2009). An example of “linearly” includes how soil pH alkalinity influences PHE 
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bioaccessibility, how increasing soil calcium concentrations influence 

bioaccessibility, or how reducing redox conditions alter bioaccessibility 

(Trukhina et al 2022). The above examples have direct causes (physicochemical 

change) and effects (PHE bioaccessibility increase or decrease). 

As observed for PHE porewater solubility, many physicochemical parameters 

interconnect and operate “non-linearly” (Chen et al 2022). For example, "non-

linearly," under a hypothetical, may involve flooding lowering the redox potential, 

increasing metal sulfide cluster complexes, and reducing PHE bioaccessibility 

(Juhasz et al 2009). This "non-linearity" example may result in the opposite 

effect, with the lowering redox conditions promoting oxide dissolution, 

solubilising PHE and increasing bioaccessibility (Trukhina et al 2022). In this 

hypothetical scenario, the lower redox conditions during flooding could either 

increase or decrease PHE bioaccessibility (Juhasz et al 2009).  

Predicting PHE bioaccessibility changes during flooding is significantly limited 

because these interconnecting physicochemical changes affecting PHE 

bioaccessibility (Juhasz et al 2009). Understanding the dynamic 

interconnectedness among various physicochemical parameters that influence 

PHE bioaccessibility is fundamental for identifying locations susceptible to higher 

PHE bioaccessible concentrations after flooding (Camba et al 2024). Using 

information based on the soil’s physicochemical properties may help pre-

emptively predict locations susceptible to high and low PHE bioaccessibility 

concentrations before, during, and after flooding (Chen et al 2022, Gu and Wong 

2004, Rastegari et al 2021, Trukhina et al 2022).  
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Table 1.2. Shows the different soil and porewater physicochemical changes during flooding. The 

table outlines the main physicochemical components, the physicochemical interactions, and how 

such interconnectedness influences PHE bioaccessibility.  

Physicochemical  

Parameter 

Flooding 

 

Physicochemical   

Interaction 

Influence on PHE Bioaccessibility 

pH 

 

More Alkaline 

Conditions 

Eh, Potassium, Calcium, 

Magnesium oxide, Iron 

 

Decreases by reducing the 

solubilisation of the carbonate phase 

and promoting organo-ligand 

formation, decreasing PHE 

bioaccessibility (Ponting et al 2021). 

 

 

Eh 

 

 

 

Creation of 

Reducing 

Conditions 

pH, salinity, Organic 

Carbon 

Decreases, promoting sulfide 

complex formation, and increases 

solubilisation, stimulating the 

reductive dissolution of Fe-Mn 

hydroxides (Huang et al 2021). 

 

 

Salinity Unknown, 

dependent on the 

allochthonous 

input types 

Eh and pH Unknown effect of flooding 

depended on allochthonous inputs. 

Decreases PHE bioaccessibility by 

promoting PHE coprecipitation with 

DOC carboxylic groups; however, 

increases as salinity may compete for 

ligand binding sites (Asselman et al 

2021). 

 

 

Potassium Increases pH Increases, alleviates the reducing 

conditions during flooding, 

decreasing sulfide formation; 

however, decreases as this may 

reduce the reducing dissolution of Fe-

Mn hydroxides (Kelly et al 2020). 

 

 

Iron Unknown, 

dependent on the 

allochthonous 

input types 

Potassium, pH, Eh,  

Chloride 

Decreases, through irons binding 

capabilities via inner sphere 

monodentate bonding (Cundy et al 

2008). 
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1.10 Physicochemical Interconnectedness - PHE Porewater Solubility, Solid 

Phase Distribution and Bioaccessibility 

Soil and water physicochemical changes during flooding strongly influence PHE 

solid phase distribution, porewater solubility, and bioaccessibility; however, most 

work has focused on linear relationships (e.g., increasing soil pH influencing 

copper porewater solubility or decreasing iron concentrations influencing arsenic 

solubility) (Mendez et al 2017). In reality, physicochemical parameters 

influencing PHE solid phase distribution, porewater solubility, and 

bioaccessibility are dynamic, nonlinear, and highly interconnected (Figure 1.11, 

Gu and Wong 2004). For example, flooding can create reducing redox conditions, 

promote iron oxide reductive dissolution, and potentially increase the lead, 

copper, and arsenic porewater solubility from iron oxides (Xiong et al 2008). 

These reducing redox conditions also promote sulfide formation, eventually 

forming metal sulfide complexes and reducing PHE porewater solubility 

(Rastegari et al 2021). The example above concerning the redox conditions 

 

Calcium 

 

Increases pH, Fluorine Decreases, calcium may increase 

solution pH and protect soil organic 

carbon (Bashir et al 2019). 

 

 

Manganese Unknown, 

dependent on the 

allochthonous 

input types 

pH, Eh Decreases, manganese oxides may 

bind with PHE within the vacancy 

sites (Flynn and Catalano 2019). 

 

 

 

Magnesium Unknown, 

dependent on the 

allochthonous 

input types 

pH Decreases, effective immobilisation 

agent, evidence within the literature 

(Mao et al 2021). 

 

 

 

Organic 

Carbon 

Increases pH, Eh, Fe Decreases through the chemical 

binding of humic and fulvic acids; 

however, such an effect is highly 

dependent on other physicochemical 

controls (Li et al 2023). 
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Figure 1.11. Outlines the complexity between different variables (physicochemical, 

thermodynamic, physical, and biological) that influence PHE porewater solubility. The figure 

illustrates complex interactions within such variables (Gu and Wong 2004).  

The example above concerning the redox conditions highlight the inaccuracies of 

assuming reducing redox conditions can only increase or decrease PHE porewater 

solubility (Trukhina et al 2022). The issue with assuming linear correlations (i.e., 
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one variable influencing another) is that these relationships can significantly 

oversimplify complex non-linear reactions (Rastegari et al 2021). 

Another example of this “non-linear” relationship assumes that increasing soil 

and water pH alkalinity decreases PHE porewater solubility by reducing PHE 

dissolution from the acid-sensitive soil carbonate mineral phase (Chen et al 2022). 

However, increasing pH conditions also increase the concentration of hydroxide 

ions competing for available sorption sites with soil mineral phases, which may 

outcompete PHE for these ligand exchange sites, increasing PHE porewater 

solubility (McLaren 2019). These examples highlight that physicochemistry 

influences PHE porewater solubility non-linearly, which can both increase and 

decrease PHE porewater solubility (Ponting et al 2021).  

Understanding these non-linear relationships is essential for predictive modelling 

using physicochemistry to estimate PHE dynamics (Gu and Wong 2004). 

However, it is not fully understood how these non-linear relationships influence 

PHE porewater solubility, and how to incorporate these complex interactions into 

predictive models (Chen et al 2022, Gu and Wong 2004, Rastegari et al 2021, 

Trukhina et al 2022). 

Thermodynamic variables (e.g., water temperature and ambient water pressure) 

also influence this non-linear relationship between physicochemical changes and 

PHE dynamics (Huang et al 2021). For example, higher ambient water pressures 

increase soil porewater saturation (Trukhina et al 2022). Increased soil saturation 

alters physicochemical properties (principally the redox conditions) by restricting 

the diffusion of oxygen molecules (McLaren 2019; Xiong et al 2008). 

The atmospheric ambient temperature strongly correlates with soil 

physicochemistry, particularly soil microbial communities and organic carbon 

concentrations, by promoting microbial respiration (Gu and Wong 2004; Li et 

al 2023). Such respiration rates increase because higher temperatures stimulate 

the enzymatic breakdown of organic compounds by increasing microbial 

enzymatic kinetic energy (McCauley et al 2009). This relationship between 

temperature and microbial respiration rate does not increase consistently with 

temperature increases, with the respiration rates generally decreasing when the 
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ambient temperatures exceed 50oC, which causes soil microbial enzymes to 

denature (Flynn and Catalano 2019).  

The effects of rising ambient temperatures can increase soil microbial respiration 

rates, which accelerate organic carbon degradation, and decrease soil organic 

carbon concentrations, directly increasing PHE porewater solubility (Ponting et al 

2021). This increasing PHE mobility is attributed to the strong relationship 

organic carbon has with binding and immobilising PHE through humic substances 

and fulvic acids (Hao et al 2023). Such correlations indicate a nexus relationship 

between thermodynamic variables (i.e., temperature), biological communities, 

and physicochemistry (organic carbon), all influencing PHE porewater solubility 

(Huang et al 2021; Ponting et al 2021). 

Increasing ambient temperatures and soil microbial respiration may increase 

microbial oxygen demands because the higher temperatures accelerate microbial 

metabolism (Rastegari et al 2021). Increasing microbial oxygen demands reduce 

soil and water oxygen concentrations (Trukhina et al 2022). This oxygen 

concentration decrease may also decrease the redox potential; the term for this is 

called “oxidation-reduction potential” (Trukhina et al 2022). As discussed in 

Section 1.8.2, lowering redox potentials may influence sulfide formation, altering 

PHE porewater solubility by potentially increasing the formation of metal-sulfide 

cluster complexes and immobilising PHE (Rastegari et al 2021). This 

interconnectedness makes predicting PHE porewater solubility in soils highly 

complex because of the multilayered linkages between thermodynamic changes, 

biological community responses, and soil’s physicochemical changes (Li et 

al 2023).  

These interlinked changes also vary depending on the physical elements, such as 

the land gradient, land use type, and vegetation coverage, all affecting soil 

surfaces (Lodygin and Abakumov 2022). Locations with steeper soil gradients 

influence flood water's physical velocity, impacting water's erosional ability on 

contaminated soils (Das et al 2011). The abundance of vegetation affects soil 

oxygen concentrations, with more vegetation coverage decreasing soil oxygen 

concentrations (Xiong et al 2008). As previously discussed, lowering soil oxygen 
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concentrations influences soil microbial biological communities and alters soil 

physicochemical variables (McLaren 2019).  

The land use type, underlying geology, and soil depth may influence the 

availability of minerals, soil compression, and surface runoff (Flynn and Catalano 

2019). For example, if flooding occurs within agricultural land, the availability of 

fertilisers may alter soil biological community responses, impacting such soil 

enzymatic production (Lodygin and Abakumov 2022). Flooding can lead to the 

widespread dispersal and dilution of these fertilisers, which are typically 

concentrated within specific locations. If locations that are not originally fertilised 

receive this diluted fertiliser from floodwater, this can alter soil microbial 

communities, providing food sources to these microbes because these fertilisers 

contain several proteins, carbohydrates and fats (Flynn and Catalano 2019). 

Bohme et al (2005) show that organic fertilisation alters the activities of many soil 

microbial nutrient-cycling enzymes, particularly alkaline phosphatases, β-

glucosidases, and proteases. Bohme et al (2005) also showed that these enzymes 

increase by providing rich organic materials that serve as a food source for many 

soil microbes.  

Soil compression from agriculture may alter porewater absorption within soils, 

influencing hydrodynamic pressures (Lodygin and Abakumov 2022). Conversely, 

urbanised concrete locations reduce water infiltration, increasing surface runoff, 

which may change the water velocity and oxygen concentrations, and indirectly 

impact thermodynamic forces and biological communities, strongly influencing 

PHE porewater solubility (Shi et al 2018). The central message from this section 

is that complex interactions between physical variables, thermodynamics, soil 

microbial communities, and physicochemistry influence PHE dynamics.  

1.11 Applying Statistical and AI Modelling to Interpret Physicochemical 

Interconnectedness and Predict PHE Dynamics 

The soil and water physicochemistry strongly correlates with PHE solid-phase 

distribution, porewater solubility, and bioaccessibility during flooding (Ponting et 

al 2021) (Sections 1.7, 1.8, and 1.9, respectively). The complex non-linear 

relationships between physicochemical parameters influencing PHE dynamics 

pose significant challenges in understanding the changing physicochemistry 
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impact during flooding on PHE porewater solubility, bioaccessibility, and solid-

phase distribution (Flynn and Catalano 2019; Lodygin and Abakumov 2022; 

Ponting et al 2021; Rastegari et al 2021).  

There are opportunities to explore the role of numerical modelling in identifying 

complex relationships, correlations, and patterns between physicochemistry and 

PHE dynamics (Gall et al 2018; Giesselman and Catran 2020). Such numerical 

models could include statistical methods like linear regression and mixed models, 

machine learning methods like random forests and extreme gradient boosting 

(XGBoost), and deep learning approaches like neural networks (Tyralis et al 

2019). The fundamental difference between machine learning and deep learning 

approaches lies in the model’s architectural decision-making (Sorenson et 

al 2019). Machine learning methods apply decision-tree approaches for 

predicting, whereas deep learning mimics how the human brain processes 

information (Brieman 1990).  

This review will specifically analyse statistical mixed modelling. The purpose of 

selecting mixed models is that these models specifically address pseudo-

replication within the dataset (Tyralis et al 2019). Addressing pseudo-replication 

is necessary because soil and water physicochemistry influencing PHE dynamics 

are likely interrelated rather than truly independent (Kuhn and Johnson 2013). 

The machine learning models selected include random forests and XGBoost for 

handling non-linear interactions, assessing feature variable importance, and their 

versatility in performing well on classification and regression tasks (Genuer et al 

2010; Hastie et al 2009; Sorenson et al 2019). The deep learning approach 

selected is a feedforward neural network to compare different artificial 

intelligence architectures between machine and deep learning methods (Shaheen 

and Iqbal 2018).  

1.11.1 Statistical Models  

Mixed modelling is a form of regression analysis that incorporates fixed and 

random effects (Sorenson et al 2019). Fixed effects refer to the constant overall 

impact of physicochemical parameters influencing PHE dynamics (Gall et 

al 2018). Random effects denote the variation in PHE responses to 

physicochemical changes across land use types, time points, and experimental 
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conditions (Gall et al 2018). Distinguishing between fixed and random effects is 

challenging, especially when the problem to predict is complex and highly 

dynamic (Shaver 2019).  

1.11.2 Machine Learning Random Forests 

Among the various artificial intelligence methods, the use of a multi-decision tree 

approach, such as random forests, has gained considerable attention and use for 

predicting PHE dynamics during flooding (Feng et al 2015; Lopez et al 2021; 

Sorenson et al 2019; Sun et al 2019). Random forests are supervised machine 

learning algorithms that combine the concepts of classification and regression 

trees using bootstrap aggregation (bagging) (Tyralis et al 2019). Supervised 

machine learning involves training random forests with known labelled datasets 

(Sun et al 2019). In other words, it is like giving a student a practice exam with 

the answers next to the questions to prepare the student for the exam with similar 

questions, representing the concepts of supervised learning. The principle of 

“bagging” in random forests involves averaging or calculating the mode output of 

the decision tree predictions (Sun et al 2019).  

A random forest model consists of independent decision trees that split data to 

identify patterns and calculate the prediction, which is then averaged (bagging) 

across the decision trees (Sorenson et al 2019). The bagging process within 

random forests significantly reduces the bias within machine learning because 

multiple decision trees are attempting to calculate the prediction, reducing the 

model variance (Sun et al 2019). For an outline illustrating the design and 

processes of random forest modelling, see Figure 1.12 (Galiano et al 2014). 

Figure 1.12 shows the dataset (randomly coloured circles), highlighting each 

decision tree having a subset sample from the original dataset. The bottom of 

Figure 1.12 depicts the decision tree leaf (leaf node), the final predictor, with the 

coloured dot representing each decision tree prediction. The results are calculated 

using a voting classifier, with Figure 1.12 showing the most common prediction 

output from the different decision trees, which is the colour blue. Some random 

forests may produce unreliable predictions because poor-performing decision 

trees are averaged into the final prediction (Sorenson et al 2019).  
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By leveraging random forest models, it is possible, for the first time, to 

significantly upscale the analysis of PHE dynamics, deepening the understanding 

of how flooding influences PHE transport, fate, and behaviour (Genuer et al 

2010). These random forests’ popularity has grown considerably in computing 

science, ecology, and medicine since their introduction by Breiman in 2001 

(Couronne et al 2018). Such popularity results from the random forests’ unique 

ability to address the bias-variance trade-off in machine learning, handle high-

dimensional datasets, and their hyperparameter tuning capabilities (Genuer et al 

2010). In 1999, Breiman and Cutler introduced the random forest algorithm. For a 

historical timeline of the random forest model’s development, see Figure 1.13 

(Tyralis et al 2019). Extensive literature, including works by Breiman (2001), 

Biau and Scornet (2016), and the textbooks by Hastie et al (2009), Kuhn and 

Johnson (2013), and James et al (2013) elucidates the computational nature of 

random forest models.  

 

Figure 1.12. Illustrates the random forest computational process, which involves splitting the 

data, classifying, and averaging the results using a voting classifier (Galiano et al 2014). The 

random coloured dots at the top of the figure denote the dataset. The three square boxes represent 

the different decision trees. The leaf symbol represents each decision tree’s final prediction, and 

the single blue dot represents the random forest model’s final decision.  
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Figure 1.13. Shows the chronological development of machine and deep learning algorithms. The 

timeline indicates that algorithms initially made early predictions using single decision-tree 

learners. The development of bootstrap aggregation enabled multiple decision trees to formulate 

predictions. This chronology shows that as time progressed, decision tree learners evolved from 

averaging decisions to learning the mistakes from previous decision trees (XGBoost) (Tyralis et al 

2019).  

1.11.3 Machine Learning Extreme Gradient Boosting  

XGBoost is an alternative to random forests, potentially achieving improved 

predictive performance by using a different approach to combining decision trees 

(Tyralis et al 2019). Rather than deploying the random forest approach of 

simultaneously averaging multiple decision trees to formulate predictions, 

XGBoost applies an iterative approach to decision tree learning (Shaheen and 

Iqbal 2018). For example, a random forest model may use fifty decision trees to 

formulate a prediction simultaneously. In contrast, XGBoost also uses fifty 

decision trees, but rather than simultaneously averaging the prediction, one 

decision tree formulates a prediction, and then the next decision tree updates and 

improves the previous prediction iteratively fifty times (Cutler et al 2007).  

XGBoost can address the inherent challenges of dealing with high variance in 

random forest modelling (Section 1.11.2) (Hong et al 2019). XGBoost combines 

“weak” decision tree learners to form “strong” learners (Cutler et al 2007). By 

learning iteratively from the previous decision tree, the final prediction is less 

likely to have a high variance because each iteration aims to decrease the mean 

square error from the previous decision tree (Figure 1.14; Schubach et al 2017).  
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When a decision tree misclassifies (e.g., a decision tree says the prediction value 

is “x” when the actual estimate is “y”), an assigned penalty weight is applied 

(Hong et al 2019). For specific details about this penalty weight, see Chapter 4. 

The next decision tree iteratively “recognises” this penalty function and corrects 

the prediction (Hong et al 2019). The decision tree recognises this error by 

comparing the predicted outcomes with the actual outcomes and then measuring 

the difference (Hong et al 2019). Assigning penalty weights, recognising, and 

correcting the prediction iteratively can improve the XGBoost predictive 

performance by narrowing the differences between the predicted and the actual 

outcomes (Hong et al 2019). 
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Figure 1.14. Outlines the mechanisms of how XGBoost algorithms formulate predictions. The 

figure illustrates that when decision trees split, a mistake is assigned a penalty function (Schubach 

et al 2017). The figure shows that decision tree one (green) splits the data; however, it 

misclassifies since there is an “x” and an “o” in a single split. The values “x” and “o” are 

assigned a penalty, making “x” and “o” larger for illustrative purposes (i.e., “X” and “O”). In 

the decision tree learner, the misclassified values “X” and “O,” now larger, are seen by the next 

decision tree learner (yellow); however, again, the decision tree learner misclassifies “O.” In 

decision tree 10 (yellow), with splits forming curvatures or becoming polynomial, attempting to 

classify the dataset better. The general essence of this figure is to show that when a decision tree 

misclassifies, this misclassification is emphasised to the next learner, with the attempt to iterate so 

that the final learner is aware of all the previous mistakes.  

 

1.11.4 Deep Learning Neural Networks  

Deep learning neural networks are a sub-branch of artificial intelligence 

(Schubach et al 2017). These networks have three processing layers: input, 

hidden, and output (Figure 1.15; Schubach et al 2017). The input layer contains 

the dataset with all the feature variables; essentially, the input layer represents the 

dataset used to train the neural network (Galiano et al 2014). The hidden layer 

performs the decision-making processes, containing multiple neurons that 

interpret and analyse the data (Genuer et al 2010). The third layer is the output 

that produces the final prediction (Schubach et al 2017).  

Once the initial prediction is made, the neural network enters a continuous 

learning phase (Galiano et al 2014). This learning phase is enhanced through the 

processes of backpropagation and stochastic gradient descent, which iteratively 

adjust and update the neural networks weights and bias values with the aim of 

increasing predictive performance (Galiano et al 2014). The process of 

backpropagation and stochastic gradient descent typically involves multiple steps 

(Schubach et al 2017).  

The neural network is initialised with randomly assigned weights between the 

input, hidden, and output layers. In neural networks, “weights” determine the 

strength and direction of neural connections feeding into the hidden layer for 

decision-making processing (Galiano et al 2014). The input data are processed 

through the neural network, which produces an initial output prediction with an 
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associated error. This error is calculated by comparing the output prediction with 

the observed testing data.  

The backpropagation process then begins, which involves calculating the gradient 

of this error as it propagates through the neural network. The neural network 

evaluates all the randomly assigned weights and bias values through 

backpropagation. The neural network determines how much each weight 

contributed to the initial error, known as the loss function, within the hidden and 

output layers. These weights are updated and optimised to reduce the output error 

most significantly. Stochastic gradient descent involves updating these weights 

using a small batch of the training data (batch size) across the input, hidden and 

output layers, with updates occurring iteratively until the error is minimised. The 

updated output prediction is tested on unseen data, evaluating the predictive 

performance.  

 

Figure 1.15. Artificial neural network computational process outlining the input, hidden and 

output layers. The blue circles and lines denote the input layer of the neural network. This “input” 

layer equates to the training data implemented into this model. The green and yellow circles 

denote the “hidden layer.” This layer is simply the decision-making center of this model, whereby 

the model iteratively adjusts its weights and bias based on attempting to reduce the output layer 

prediction mean square error (Schubach et al 2017). 
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1.11.5 Comparing Predictive Model Variants to Estimate PHE Porewater 

Solubility, Bioaccessibility, and solid phase distribution   

A rigorous critical evaluation is essential for utilising artificial intelligence or 

statistical models to predict and better understand PHE transport, fate, and 

behaviour (Genuer et al 2010). Statistical models aim to quantify relationships 

between variables, with the underlying assumption often being that such variables 

are normally distributed. Such models have provided an insightful analysis of 

which variables influence PHE dynamics (Gil et al 2015, Seidl et al 2022). AI 

models learn from the dataset by subdividing the data into testing and training 

subsets. Such models do not require data to be normally distributed and formulate 

predictions by learning patterns within the data.  

The significant increase in the quantity and availability of data and much cheaper 

costs of parallel processing both mean there is an abundance of available data, 

code, and computer processors to perform data-intensive machine and deep 

learning AI. As discussed in Section 1.11, machine and deep learning models are 

within the umbrella term “AI.” The fundamental difference between such models 

are based on the model architecture, with machine learners using decision trees, 

and deep learners predicting using network designs, inspired by the biological 

system. Such opportunities for using AI approaches may significantly enhance 

understanding of how flooding remobilises PHE and how to monitor such 

transport. The reason why this understanding is enhanced is because such models 

fundamentally analyse, process and interpret data differently from statistical 

approaches, by splitting the dataset into training, validation, and testing data. To 

date, there is limited understanding around analysing and comparing how AI 

approaches could play a role in predicting PHE porewater solubility, 

bioaccessibility and solid phase distribution to statistical models.  

This thesis literature review qualitatively analyses and then compares, for the first 

time, the current literature that uses AI and statistical approaches, investigating 

the suitability of AI and conventional models for estimating PHE porewater 

solubility, bioaccessibility and solid phase distribution. Such analysis involves 

comparing statistical and AI models to analyse PHE dynamics regarding the user-

friendliness of the model, its robustness, and its predictive performance. 
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1.11.5.1 User Friendliness and Interpretability 

Examining any dataset using AI is straightforward, by automatically capturing 

non-linear dependencies between the predictor and dependent variables (Galiano 

et al 2014). Unlike traditional linear models, which only capturing linear 

relationships, AI can also uncover non-linear trends (Noye et al 2022, Tao et al 

2021).  

For instance, Cutler et al (2007) showed the success of RF models for chemical 

species distributions, by capturing non-linear relationships between 

environmental variables such as temperature and precipitation. This makes RF 

modelling a powerful tool in environmental research. Such reliability of RFs 

derive from the non-parametric nature of AI, meaning the model does not rely on 

assumptions about the underlying data distribution, making the model flexible and 

versatile (Hong et al 2019).  

This flexibility allows AI to handle highly correlated variables (Tyralis et al 

2019). On the other hand, statistical models require assumptions around the data 

distributions, and are incapable of handling non-linear relationships (Tyralis et al 

2019). In other words, the main reason why AI approaches can handle highly 

correlated variables, unlike conventional methods, is because AI methods learn 

feature relationships at different levels or processing layers. For example, imagine 

PHE interacting with different physicochemical parameters; these interactions 

could include with calcium, organic carbon, and iron. In this example, AI 

approaches can create multiple layers of such interactions with high intricacy; one 

layer could be PHE interacting with calcium and another layer could be with ionic 

bonding with iron hydroxide. This layering approach processes relationships 

much better than conventional statistical models which do not layer such data and, 

rather, use predefined equations, such as normality, to address non-linearity. A 

major limitation of AI modelling is that it can be considered a “black box” model, 

lacking transparency to users around the mechanistic understanding that 

underpins the predictions (Cutler et al 2007).  

The term “black box” refers to the model’s inner workings not often being 

understood or explained to users (Zednik 2021). Lack of transparency may lead to 

misinterpretations of the results or assumptions, hindering the identification of 
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potential model biases (Shaheen and Iqbal 2018). Galiano et al (2014) showed the 

“black box” nature caused many users to interpret the model using simplified and 

stylised versions (Galiano et al 2014). Statistical models contain inbuilt and 

highly developed checking mechanisms, ensuring the model is understood and 

interpreted correctly, including residual analysis, cross-validation, and assumption 

checks (Tyralis et al 2019). AI models do not require such assumption checks, 

thus these models have advantages of being able to handle highly correlated 

variables and noisy datasets from its inbuilt mechanisms and by tuning 

hyperparameters (Hong et al 2019). The concept “hyperparameters” is outlined in 

detail in Section 4.1.3 (Chapter 4); however, hyperparameters refers to the black 

box mechanisms used to generate the predictions, such as the learning rate of the 

model, how many decision trees process the data, or how many data splits.  

In contrast, statistical models have been used extensively to date, offer transparent 

and interpretable frameworks, and better visualisation and user friendliness 

around the direction of relationships and quantifying uncertainty, which is not 

apparent within the AI model’s “black box” (Tyralis et al 2019). 

1.11.5.2 Model Robustness and Stability  

The AI system configurations increase the model robustness because the inbuilt 

default parameters typically require minimal modification (Genuer et al 2010). 

Such default parameters (e.g., number of neurons, learning rate, and number of 

hidden layers) are initially set by developers, who use empirical evidence to allow 

such default parameters to cover as many data predictions at varying complexities 

(Feng et al 2015). For example, in MATLAB (MathWorks Inc), the ‘fitnet’ 

function, used to program a neural network, has a default parameter of having 

only a single hidden layer (Shaheen and Iqbal 2018).  

Many predictive applications may only require a single layer, given the low to 

mid-level of complexity, preventing inexperienced users from accidently 

computing two hidden layers, leading to machine learning issues relating to 

overfitting, discussed in Chapter 4. By “low to mid-level complexity,” this is 

subjective, but in this context, this means where there is roughly 2-8 feature 

variables influencing the predictor (Genuer et al 2010). Such default parameters 

can be adjusted and hyperparameter tuned if necessary (Shaheen and Iqbal 2018). 
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The central argument is because these models have default parameters, aimed at 

addressing the most likely data complexity problems - it minimises the likelihood 

of inexperienced users incorrectly programming such models (Feng et al 2015).  

AI model robustness can be limited as it may struggle to extrapolate predictions 

outside its training range due to reliance on learned patterns within the training 

data (Sinha et al 2019, Feng et al 2015). Such implications are important to 

recognise because environmental variables, particularly those associated with 

physicochemistry, can vary significantly, meaning a model may struggle to 

generalise the complex relationships in dynamic systems (Sinha et al 2019). 

Breiman et al (2001) suggested if a RF model is trained on temperature data 

ranging from 0-30oC for example, it may struggle to formulate accurate 

predictions outside this temperature range.  

The capturing of such non-linear relationships and the ability to handle spatial 

dependencies within the data may still result in many researchers preferring such 

models over statistical approaches (Genuer et al 2010). Uriarte and Andres 

(2006), showed AI modelling performed well (regarding high accuracy, precision, 

and recall) when addressing noisy datasets within fields of medicine and biology, 

notably for gene selection predictions. While statistical models, such as 

regularised regression (e.g., LASSO or ridged), offer variable selection 

mechanisms to mitigate irrelevant or noisy data (i.e., variables not relevant for 

predicting the target variable) (Hong et al 2019); statistical models still have a 

limited ability to handle highly multidimensional data unlike AI models (Hong et 

al 2019). Multidimensional data can create challenges in model estimation, 

interpretation and in some cases increase computation demands, decreasing the 

model robustness, irrespective of such models offering variable selection 

mechanisms (Hong et al 2019). 

In regards to this research attempting to predict PHE porewater solubility, 

bioaccessibility and solid phase distribution, using physicochemistry data, there 

are multiple non-linear relationships (see Section 1.10). Such relationships are 

also potentially very noisy given such high spatial variation of soil contamination 

and chemical properties, for example, Pb in UK soils (Figure 1.2). This non-

linearity and noisy data mean that such data used within this research may 
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become highly multidimensional, emphasising the importance of exploring the 

role of the machine and deep learning approaches.  

1.11.5.3 Predictive Performance 

AI models have several tuning parameters (e.g., number of decision trees and tree 

depth) that help reduce the predictive bias and variance (Ghosal and Hooker 

2020). For example, deeper trees may reduce the prediction bias, as more decision 

tree splits capture more information (Salles et al 2021). Increasing the decision 

tree numbers can reduce the model variance; each decision tree is trained on 

different data subsets; when such trees are combined, the prediction errors likely 

cancel out, known as “averaging out the error” (Ghosal and Hooker 2020).  

The ability of RF modelling to use the “out-of-bag data” to assess the “Variable 

Importance Metric” (VIM), increases predictive performance and addresses data 

multidimensionality by selectively removing noisy features (Genuer et al 2010). 

Briefly, the “out-of-bag” data refers to the data points not included in the 

bootstrap resampling for training such decision trees (Salles et al 2021). Briefly, 

“bootstrap resampling involves creating several subsets of the original dataset, by 

sampling with replacement, and creating multiple decision trees based on each 

subset so that each decision tree is fundamentally unique. This data increases the 

predictive performance by determining important feature predictive variables 

(VIM) (Ghosal and Hooker 2020). Such data compares the feature variables with 

the predictive estimate; if a removal of a particular feature results in a significant 

decrease in the predictive error, then such feature is removed (Ghosal and Hooker 

2020). In contrast, statistical models require no tuning, variable importance 

metrics or randomisation, however this increases variance and bias, and reduces 

predictive performance (Ponting et al 2021). Such models are inherently less 

prone to overfitting as they typically have fewer parameters to estimate in the first 

place (Roelofs et al 2019).  

AI modelling can be more susceptible to the negative impacts of imbalanced data 

than statistical models, which can negatively impact predictive performance 

(Jabbar and Khan 2015). Imbalanced data refers to a situation where the dataset 

classes are unevenly distributed, for example, where one class is significantly 

more prevalent than another (Krawczyk 2016). Such imbalanced data has “more 
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serious” consequences on RF modelling than statistical approaches because RF 

make decisions through voting or averaging, resulting in a decision boundary bias 

towards the majority class (Schubach et al 2017). The term “voting” or 

“averaging” refer to when multiple decision tree outputs are averaged, if a 

regression (number) problem occurs, or using a “voting” term, if the problem is 

binary or classification, whereby the modal value is calculated, essentially having 

the most “votes” from the decision tree. Despite these differences in the types of 

models, exploring the effectiveness of both statistical and AI approaches can lead 

to improvements in the understanding around how these different model types can 

discover new insights, correlations, patterns and potentially predictions around 

PHE dynamic changes during flooding (Jabbar and Khan 2015, Krawczyk 2016).  

This mini-critical review highlights that while AI models have inherent properties 

that enhance robustness and predictive performance, statistical models are simpler 

and more user-friendly. However, AI models are generally more robust because 

of hyperparameter tuning, randomisation and selection of variable importance. 

The application of AI can offer unique insights into better understanding of the 

role solid phase distribution and porewater solubility has on PHE bioaccessibility. 

Although, there should always be caution around the AI models “black box” 

nature to avoid making premature assumptions and interpretations. Statistical 

models may underperform over AI; however, offer opportunities to complement 

AI approaches through data interpretation, validation, and visualisation. 

1.12 Project Aims 

This thesis has five central aims addressed individually within the following five 

chapters. The first aim is to, 

• Quantify the effect of flooding on soil PHE porewater solubility and, 

using a meta-analysis, establish how rising ambient temperatures influence 

microbial respiration, community structures and thus porewater solubility.  

The second aim is to   

• Investigate the role of soil physicochemistry in correlating and estimating 

PHE porewater solubility, bioaccessibility, and solid phase distribution.  

Thirdly, this thesis,  
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• Examines the role of AI machine and deep learning approaches when 

using physicochemical data to predict PHE solubility, bioaccessibility and 

solid phase distribution.  

Fourthly, to 

• Test AI approaches predictive performance when estimating PHE 

porewater solubility, bioaccessibility and solid phase distribution by 

comparing outputs to the results from microcosm and mesocosm 

experiments.  

Finally, to 

• Verify AI model predictions. 

• explore how thermodynamic, biological, and physical data influence PHE 

dynamics and to see if the inclusion of these data can improve the 

predictive performance of AI models.  
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Chapter 2: Thesis Structure   
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Chapter 2: Flooding, Climate Change, and Physicochemistry: A Potentially 

Harmful Element Mobility and Bioaccessibility - A Meta Analysis 

2.1 Introduction  

Anthropogenic climate change and rapid urbanisation have exacerbated the effect 

of flooding both in terms of frequency and magnitude (Dube et al 2021). 

Estimates indicate that 52% of the worldwide population will be at risk of 

flooding by 2100 (Kirezci et al 2020). The phenomena of fluvial flooding may 

chemically remobilise contaminated riverine sediments. This contamination 

frequently derives from industrial activities, such as the exploitation of natural 

resources (e.g., chromite), urban expansion, and intensive agricultural practices, 

all releasing significant PHE concentrations, such as arsenic, zinc, and lead, into 

fluvial systems (Nel et al 2018) (Figure 2.1 (1), Shaun Leishman 2023).  

Such PHE initially are bound to mineral fractions within geological materials; 

however, through human exploitation of soil and minerals, these elements 

eventually become mobilised and distributed within the environment. These PHE 

overtime sequester and may become immobile within riverine sediments (Devi 

and Khatua 2017). Turbulent flow velocities can erode, resuspend, and chemically 

remobilise these sediments downstream still (Figure 2.1, (2)), potentially 

depositing them onto floodplains (Figure 2.1, (3)). Currently, 68 million people 

worldwide reside on floodplains susceptible to flooding, and who are therefore 

potentially exposed to remobilised PHE (Figure 2.1, (4)). 

Flooding influences the physicochemistry of soil and water (e.g., redox potential 

(EH) and pH) by creating anaerobic conditions (Kilunga et al 2017). These 

physicochemical changes affect PHE solubility (i.e., the partitioning with 

sediment mineral phases, such as oxides and carbonates) (Seo et al 2017). For 

example, higher pH conditions created during a flood, through the consumption of 

available hydrogen ions, influence PHE solubility with acid-sensitive carbonate 

phases (Kelly et al 2020). Similarly, lower redox potentials lead to reductive 

dissolution of iron, solubilising PHE (Liu et al 2021). This inherent correlation 

between physicochemistry and PHE mobility may provide insights into using 

physicochemistry data to predict PHE changes during flooding.  



75 

 

This study conducts a meta-analysis, investigating what controls PHE 

mobilisation during flooding, aiming to quantitatively analyse how flooding 

affects PHE solubility within different soil types. The study also aims to establish 

how increasing temperatures from climate change influences mobility. 

 

Figure 2.1. Flooding remobilises PHE downstream, eventually depositing such contaminated 

sediments onto floodplains, exposing humans and wildlife to remobilised PHE (Shaun Leishman, 

2023). 
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2.2 Methods  

2.2.1 Search Strategy  

Systematic searches were conducted within multiple databases (e.g., Google 

Scholar, Web of Science, Oxford Journals) (Table A2.1, Appendix A). Literature 

searches with search strings “potentially harmful element ” AND “remobilisation” 

identified relevant journal articles using forward and backward searches (Table 

A2.2, Appendix A). For an example of some search engines, number of results and 

the search string, see Table 2.1 below. 

Table 2.1. Outlines an example of search engines used within this meta-analysis, indicating the 

specific words typed into such databases and outlines the number of search results from the input 

word string.  

 

2.2.2 Eligibility Criteria and Selection Process 

An inclusion set of criteria, a selection of multiple eligibility statements enabling 

consistency and objectivity, was used to identify relevant literature (Koricheva et 

al 2018). These criteria dictated that all identified papers needed to provide 

statistics for calculating effect sizes, and be peer-reviewed (Table A2.3, Appendix 

A). Journal articles were selected following the PRISMA (Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses) guidelines by Fleming et 

al (2014). This is a multi-stage screening process assessing potential studies for a 

meta-analysis. The PRISMA guidelines help to identify, using key search strings, 

relevant journal articles. Abstracts were screened for suitability and the entire text 

was read and compared against these eligibility statements. The meta-analysis 

identified 327 journal articles (Figure 2.2, amended from Cohen and Fleiss 1973) 

and (Tables A2.4, A2.6, and A2.9, Appendix A). 

A Cohen’s Kappa coefficient analysis determined the inter-rater reliability 

between two qualified individual reviewers selecting the journal articles. The 

Database Number of Search 

Hits Per Database 

Example Search String 

 

Google Scholar 821 “Contaminant” AND “Remobilisation”  

Web of Science 24 “Flooding” AND “Contaminant” 

Oxford Journals 197 “Flooding” OR “Contaminant” AND “Remobilisation” 
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analysis requires and compares the decisions of two reviewers, based on the meta-

analysis eligibility criteria and the PRISMA guidelines, to help determine whether 

a journal article is included or excluded. This analysis subsampled 15 journal 

articles for comparison. Conducting a Kappa analysis determined the consistency 

of judgement and analytical decision-making when selecting journals against the 

eligibility guidelines. The analysis generated a 62% agreement, exceeding the 

minimum requirement of 60% for passing a Kappa analysis (Cohen and Fleiss 

1973) (Table A2.5, Appendix A). 

 

Figure 2.2. Flowchart showing the search strategy for selecting studies. Such studies meeting the 

inclusion criteria were included, totalling 327 (Cohen and Fleiss 1973). The number “1887” is 

generated by two steps. The first step involves placing the 635 irrelevant journals into the 

irrelevant reference library.  

2.2.3 Effect-Size Calculation 
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All the total chemically remobilised PHE concentrations within flooded soil 

porewater were converted to the same unit (µg/L) pre and post flooding. For the 

specific PHE types analysed, see Table A2.8, Appendix A. Converting all the 

concentrations to µg/L ensured uniformity and comparability between the studies 

used within this meta-analysis. Standardising the concentration matrix also allow 

more straightforward interpretation and analysis of the chemically remobilised 

PHE concentrations.  

The effect sizes were calculated using the control and treatment groups’ sample 

sizes, averages and standard deviations. The control group represents the PHE 

concentrations before and the treatment group after flooding. Effect sizes were 

calculated using Hedges’d standardised mean difference (Hedges et al 1999), 

Equation 2,   

d = [(XO – XY/s] J                                                                                              Eq. 

2. 

where “XO” represents the mean PHE concentration before flooding and “XY” 

indicates it post-flooding. The letter “s” is the pooled standard deviation, and “J ” 

is the correction factor (Hedges et al 1999). Large effect sizes indicate d = > 0.8, 

medium is d = 0.2 - 0.8, and small is d = < 0.2. Positive effect sizes indicate 

locations that have higher soil porewater PHE concentrations, and negative effect 

sizes represent lower soil porewater PHE concentrations after a flooding event. A 

meta-analysis was computed using a single mixed-effects model with a restricted 

maximum likelihood estimator using the dmetar package within RStudio (Version 

3.3.0; Pisanu et al 2019). Mixed-effect models can account for residual 

heterogeneity and pseudo-replication in the data analysis of soil porewater PHE 

concentrations across different flooding events and geographical locations. 

Regression diagnostics evaluated the model assumptions using the PResiduals 

package (Ritter et al 2019). The high residual heterogeneity observed was 

analysed by splitting and comparing all the subgroup participant data (e.g., 

inorganic) according to the individual PHE (e.g., lead, copper, arsenic) using a 

random-effects model. The random-effects model was chosen to make “broad-

level” inferences across all the PHE analysed (Higgins et al 2009).  
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2.2.4 Publication Bias 

This meta-analysis examined publication biases (the tendency for studies to only 

present statistically significant results) using sunset (power-enhanced) and 

contoured funnel plots using the metaviz package (Kossmeier et al 2020). These 

plots assessed the credibility of effect sizes in the meta-analysis studies. The 

power analysis depicts the study-level statistical power computed for a two-sided 

Wald test. Fail-safe N calculations quantified the minimum number of 

insignificant, unpublishable, or absent studies required to nullify the effect size, 

creating statistically insignificant results (Rosenberg 2005). Such publication 

analysis is important for quantifying the quality of the studies that generate such 

effect sizes (Simmonds 2015). The term “quality” in the last sentence, refers to 

the likelihood of the study reporting only statistically significant results and 

deliberately omitting statistically insignificant results, this is referred to a bias.  

2.3 Results  

2.3.1 Flooding Influencing PHE Porewater Solubility  

The post-flooding porewater solubility of radionuclide, microplastic, organic, and 

inorganic PHE showed statistically significant positive effect sizes (Figure 2.3 

and Table 2.2). In Figure 2.3, the plot shows the mean effect sizes (black dots) 

shifting to the right-side of the dashed line, indicating positive effect sizes. Such 

findings also show that flooding increases PHE porewater solubility, irrespective 

of any differences in PHE chemistry as all the PHE types investigated have 

positive effect sizes to the right hand side of the dashed vertical line (Figure 2.3). 

Radionuclide PHE (e.g., caesium-137) had the largest, and organic compounds 

(polycyclic aromatic hydrocarbons) had the lowest positive effect sizes (d = 

0.604, d = 0.189, respectively). Fail-safe N calculations showed that between 15 

and 1873 additional negative studies were required for these findings to lose their 

statistical significance (p = < 0.001). 

Despite radionuclide, microplastic, organic, and inorganic PHE porewater 

solubility increasing, there were remobilisation response differences between (Qm 

= 9.463; p = 0.024) and within (Qm = 4.371, p = <0.001) the PHE groups. In 

simpler terms, all the four PHE types (i.e., radionuclide, microplastics, organic, 
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and inorganic) increased; however, the individual PHE within each group (e.g., 

lead, cadmium, copper within the inorganic group) did not all uniformly increase.  

A subgroup analysis investigated the effect of PHE type on porewater solubility, 

revealing a statistically significant subgroup effect (Figure 2.4). For example, 

these findings mean that different PHE types within the inorganic PHE 

classification (e.g., lead, zinc, nickel) remobilise differently with statistical 

significance, irrespective of whether these PHE are all inorganic types. Flooding 

was shown to influence PHE porewater solubility within the four PHE moderator 

groups differently, meaning the subgroup effect is qualitative with high levels of 

heterogeneity (Table 2.3). The term “moderator” refers to the PHE grouping (i.e., 

organic, inorganic, radionuclide, microplastic) which all influence the effect size. 

By “heterogeneity,” this means the effect-size between the different PHE within 

each subgroup (organic, inorganic, radionuclide and microplastic) exhibit high 

variance. For example, the porewater solubility of arsenic decreased (d = -1.671, 

p = 0.064), whereas the porewater solubility of lead, zinc, and copper increased, 

suggesting that metals and metalloids mobility differ. Some confounding factors, 

such as the soil texture and variable physicochemical conditions, may influence 

this qualitative effect, leading to incorrect conclusions however so care must be 

taken with the interpretation. These findings reveal that when attempting to 

predict a PHE mobility during flooding it is significantly important to understand 

that the mobility of PHE is not all the same within the inorganic, organic, 

radionuclide and microplastic PHE types. In other words, assuming that if lead 

PHE remobilises then other inorganic PHE types, such as arsenic, will also 

mobilise could be misleading and incorrect because of variations in mobility 

responses between metals and metalloids.  

 

Table 2.2. Mixed-effects model outputs outlining the effect size statistics for radionuclide, 

microplastic, organic, and inorganic PHE. All confidence intervals represent the acronym “CI” at 

the 95% level. The standard error indicates the variance of such meta-analysis estimates.  

Moderator Estimate Standard Error Z-Value p-Value I2  Lower  CI Upper CI 

Radionuclides 0.604 0.107 5.684 <0.001**       78% 0.329 1.320 

Microplastics 0.276 0.112 2.460 0.014*       99% 0.218 0.638 

Organics 0.189 0.067 2.361 0.018*       97% 0.027 0.289 

Inorganic 0.267 0.081 4.379 <0.001**      99% 0.222 0.644 
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Figure 2.3. The effects of flooding on radionuclide, microplastic, organic, and inorganic 

porewater solubility. The black circles denote the mean pooled effect sizes (d) ± one standard 

deviation. The smaller coloured circles represent the individual effect sizes for each study used to 

generate the mean effect size, indicates at the black dots. The vertical dashed line differentiates 

between positive and negative effect sizes. The smaller coloured dots refer to the individual effect 

sizes used to generate the average effect size (black dot) and is presented to illustrate the variation 

of data, also aided using violin plots.  

Table 2.2. Mixed-effects model outputs outlining the effect size statistics for radionuclide, 

microplastic, organic, and inorganic PHE. All confidence intervals represent the acronym “CI” at 

the 95% level. The standard error indicates the variance of such meta-analysis estimates. The “I2” 

assesses the degree of heterogeneity among the effect sizes. High I2 percentages indicate high 

heterogeneity.   
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Figure 2.4. Subgroup analysis showing the mean effect sizes in subgroups A (inorganic), B 

(radionuclide), C (organic) and D (microplastic) categories in response to flooding (*p = <0.05, 

**p = <0.01,***p = <0.001). The effect sizes showed the effect of flooding increasing or 

decreasing the different PHE porewater solubility. The vertical line indicates the division between 

positive (right hand) and negative (left hand) side of the vertical line. The solid dark dots indicate 

the mean effect size with the associated upper and lower confidence interval error bars from the 

mean effect size.  

 

Table 2.3. The subgroup affects the impact of flooding on different PHE porewater solubility. The 

subgroup effects were statistically significant with high levels of variation (I2).  

 

 

 

Moderator Subgroup Effect Level of Heterogeneity (I2) 

Inorganic P = 0.04* 52% 

Radionuclide P = 0.002** 87% 

Organic P = 0.002** 98% 

Microplastic P = 0.004** 96% 
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2.3.2 The Effects of Soil Texture on PHE Porewater Solubility 

The soil physicochemical properties were shown to influence PHE porewater 

solubility. Sandy soil type textures statistically significantly increased PHE 

porewater solubility, especially when compared with silt and clay particle sizes 

which decreased, remobilisation (Figure 2.5, Table 2.4). Soil properties exhibiting 

a high organic carbon content (i.e., peat) and an alkaline pH (i.e., calcareous) 

decreased radionuclide, organic, and inorganic PHE porewater solubility. Fail-

safe N calculations show that between 19 and 1624, additional negative studies 

would be required for these findings to lose statistical significance (p = 0.041). 

 

 

 

 

 

 

 

 

 

Figure 2.5. Meta-analysis outputs analysis investigating different soil textures and chemical 

properties on (A) radionuclide, (B) inorganic, (C) microplastic, (D) organic PHE porewater 

solubility. The vertical black line denotes the division between positive and negative effect sizes. 

The circle dots denote the mean effect size for each toil texture and characteristic. The mean effect 

size contains upper and lower standard deviation confidence error bars (95% confidence level) 
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indicating the variation of data used to generate the mean effect size. The smaller circular dots 

around the mean effect size represent the individual effect size points used to generate the average.  

Table 2.4. Effect-size statistics showing PHE solubility within different soil textures. Such data 

indicate the effect-size value with the upper and lower confidence intervals with the associated 

significance level.  

 

2.3.3 Study Publication Bias 

The PHE porewater solubility was statistically significantly different between the 

different soil textures investigated (Qm = 5.925, p = 0.015), with high residual 

heterogeneity (p <0.001). A publication bias assessment investigated this high 

residual heterogeneity. The purpose of undertaking a publication bias assessment 

is to ensure the data quality and robustness of the results, investigating whether 

Moderator Estimate Standard 

Error 

Z - Value P - Value Lower Upper 

Radionuclide (Peat) -3.012 0.521 -3.393 <0.001 -4.621 -1.923 

Radionuclide 

(Calcareous) 

-3.528 0.371 -0.271 0.004 -4.769 -1.321 

Radionuclide (Clay) -2.811 0.411 -0.951 0.008 -4.001 -1.821 

Radionuclide (Silt) -2.132 -0.617 0.414 0.002 -1.625 -2.811 

Radionuclide (Sandy) 

 

2.315 0.397 3.925 0.002 1.871 2.985 

Organic (Peat) -2.113 0.379 -2.706 0.007 -0.8713 -2.895 

Organic (Calcareous) -3.214 0.292 0.310 0.0082 -5.382 -1.872 

Organic (Clay) -1.321 0.319 -0.894 0.004 -2.013 -0.5431 

Organic (Silt) -2.114 0.309 -0.739 0.021 -3.016 -1.521 

Organic (Sandy) 

 

1.621 0.315 1.251 0.005 0.2131 2.358 

Microplastic (Peat) -0.954 0.312 0.432 0.0032 -1.211 -0.543 

Microplastic 

(Calcareous) 

0.323 0.032 0.121 0.232 0.432 0.543 

Microplastic (Clay) -1.983 0.127 -2.972 0.003 -2.531 -1.031 

Microplastic (Silt) 0.064 0.127 0.503 0.615 -0.5131 0.4938 

Microplastic (Sandy) 

 

2.315 0.199 3.770 <0.001 1.732 3.103 

Inorganic (Peat) -0.9831 0.263 1.295 0.004 -1.321 -0.0021 

Inorganic (Calcareous) -2.031 0.263 1.295 0.032 -2.531 -1.538 

Inorganic (Clay) -1.528 0.285 -2.446 0.014 -1.811 -1.283 

Inorganic (Silt) -1.281 0.278 -1.334 0.008 -1.493 -1.083 

Inorganic (Sandy) 0.7214 0.296 -0.044 0.965 0.5541 1.039 
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the data used to generate the effect sizes was valid and not derived from studies 

only selecting statistical significant findings 

The funnel plots (Figure 2.6) exhibit no asymmetrical distribution (X2 = 19.52, 

degrees of freedom = 2045, p = 0.212). Egger’s test did not confirm publication 

bias (z = 1.928, p = 0.054). The study’s median power used within this meta-

analysis was moderate at 31.4%. The findings confirmed that there was no 

publication bias present. The absence of publication bias underpins the validity of 

the observed differences in PHE porewater solubility across the different soil 

textures. These findings are important for subsequent modelling chapters in this 

thesis, emphasising that to predict the PHE porewater solubility, appreciating the 

mobility differences in different soil textures is significantly important.  

Figure 2.6. Outlines the mechanism for determining publication bias. Plot (A) shows all the 

studies represented as small black residuals. Assessing asymmetry in such plots illustrates 

publication bias. The position of the residuals, either within the white triangle, the dark or light 

blue outer edges, or within the grey location, indicates the statistical evidence of that study 

reporting publication bias. For example, many points fall within the white triangle "0.10 < p ≤ 

1.00," this suggests a potential but not statistically significant indication of publication bias. This 

plot shows very few studies showing statistically significant indications of publication bias in this 

meta-analysis. Plot (B) shows the statistical power of the studies used within this meta-analysis. 

The different colour shades indicate the alternative power levels.  
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2.3.4 Physicochemical Changes Influencing PHE Porewater Solubility  

Oxidising redox potentials statistically significantly increased inorganic, organic, 

microplastic, and radionuclide porewater solubility (Figure 2.7). Fail-safe N 

calculations showed that between 11 and 345 additional negative studies would be 

required for these findings to lose statistical significance (p = < 0.001). Increasing 

the pH (alkalinity) statistically significantly decreased inorganic, organic, 

microplastic, and radionuclide porewater solubility (Figure 2.7). Fail-safe N 

calculations showed that between 14 and 66 additional negative studies would be 

required for these findings to lose statistical significance (p = 0.002).  

The porewater solubility of many PHE decreased with increasing pH alkalinity; 

however, the results were statistically insignificant (d = - 0.203, p = 0.539). Fail-

safe N calculations showed that 120 additional negative studies would be required 

for these findings to lose statistical significance (p = <0.001). The porewater 

solubility of many PHE also decreased under increasing DOC concentrations with 

statistical significance. Overall, these findings show that oxidising redox 

potentials increase PHE porewater solubility, whereas increasing pH soil 

porewater levels and DOC concentrations decrease PHE porewater solubility.  

Table 2.5 shows the soil texture and chemical properties (i.e., pH and organic 

carbon) influencing PHE porewater solubility. In Table 2.5, it indicates the 

different soil textures and chemical properties investigated (i.e., sand, silt, clay, 

peat, calcareous). Table 2.5 is arranged in a way whereby the order of the table 

from left to right begins with the soil texture and chemical properties with the 

lowest soil pH acidity and the highest organic matter content. For example, the 

left hand side of the table indicates peat soils which have the lowest pH acidity 

and also the highest fraction of organic materials. The far right hand side of the 

table indicates calcareous soil classification, which has a much higher pH 

alkalinity and lower organic matter fraction. Such values were obtained from the 

global soil indexing classification base from the United States Geological Survey, 

which provide the same data to the British Geological Survey (USGS 2024). The 

different colours in the table boxes indicate the statistical significance of these 

chemical properties and soil texture classification on PHE mobility.  
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In Table 2.5, soil exhibiting high clay fractions, organic matter content, and a pH 

range of 5 - 7.9 reduced PHE porewater solubility. The PHE solubility increased 

irrespective of reasonably high clay content, demonstrating that using soil texture 

exclusively, without considering the soil’s chemical properties (e.g., pH) to 

predict porewater solubility is unreliable. For instance, Table 2.5 shows that PCB 

porewater solubility increased within silty type soils; however, as the pH 

alkalinity increases, such remobilisation decreased, irrespective of the silt texture. 

Such findings illustrate the importance of appreciating a soil's chemical properties 

influencing PHE porewater solubility. Sandy soil textures exhibiting an organic 

matter < 0.05%, and an acidifying pH < 5, increased PHE porewater solubility.   

However, PHE porewater solubility, particularly for PAH, lead, plutonium-238, 

and caesium-137, is mainly influenced by the pH levels of sand textured soils, 

with higher pH alkalinity decreasing PHE porewater solubility. The porewater 

solubility is observed irrespective of the sand’s soil texture, indicating the 

importance of some instances appreciating a soil’s chemistry more than the 

texture when influencing PHE porewater solubility. These findings were 

significant, showing that using a soil's chemical properties combined with texture 

may reliably forecast areas susceptible to soluble PHE. See Figure A2.1, 

Appendix A for physicochemical changes influencing contaminant’s mobility. 
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Figure 2.7. Effects of physicochemical changes on A (organic), B (inorganic), C (radionuclide), 

and D (microplastic) PHE porewater solubility. The black circular point represents the mean 

effect size (95% CI). The small coloured circular points indicate the individual effect sizes 

generating the mean. Violin plots show the spread of data (variance).  

Table 2.5. Outlines the different soil textures (sand, silt, clay) and chemical properties (pH and 

Organic carbon from calcareous and peat soils, respectively) on PHE porewater solubility. The 

table investigates only a select few PHE types from different subgroups.  
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2.3.5 Climate Change Altering Physicochemistry and PHE Mobilisation 

Increasing ambient temperatures increased inorganic and organic PHE 

mobilisation (d = 1.38, p = 0.017; d = 2.21, p = 0.007, respectively). A statistically 

significant correlation exists between temperature increase and decreasing 

dissolved oxygen concentrations (R2= 0.82, p = <0.001, Figure 2.8A). These 

oxygen decreases have a profound effect by lowering the redox status. Lowering 

oxygen and redox conditions increased soil microbial respiration rates (Figure 

2.8B; d = 12.43, p = <0.001). The findings show increasing temperatures from 

climate change influenced PHE remobilisation dynamics by altering microbial 

biogeochemical cycling processes. 

Figure 2.8. (A) The effects of increasing temperature on soil and water dissolved oxygen 

concentrations and (B) the impact of higher temperatures on microbial respiration and (C) 

microbial abundance.  
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2.3.6 Flooding, Physicochemical Changes, PHE Bioaccessibility  

Increasing temperatures increased organic and inorganic PHE bioaccessibility 

with statistical significance (Figure 2.9). An increased dissolved organic carbon 

(DOC) content, salinity, ferrihydrite content, and an oxidising redox potential 

(EH) showed a statistically significant decrease in organic and inorganic PHE 

bioaccessibility. Increasing nitrogen and phosphorus resulted in statistically 

significant increases in inorganic PHE bioaccessibility but decreased organic PHE 

bioaccessibility. As calcium and dissolved oxygen concentration increased, a 

statistically significant decrease in inorganic PHE bioaccessibility was observed, 

whereas an increasing pH only resulted in a statistically significant decrease in 

organic PHE bioaccessibility. Fail-safe N calculations showed that 12,760 

additional studies would be required for these findings to lose statistical 

significance (p = <0.001). 

Statistically significant responses were seen for inorganic and organic PHE 

bioaccessibility in relation to changes in temperature, dissolved oxygen, and 

ferrihydrite increases (Q = 21.99, degrees of freedom = 577, p = <0.001). There is 

high residual heterogeneity observed between all the physicochemical parameters 

influencing organic and inorganic PHE bioaccessibility (Q = 3404, p = <0.001). 
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Figure 2.9. Mean analytical effect sizes showing the influence of different physicochemical parameters influencing PHE bioaccessibility. The letters “I” and “O” indicate 

inorganic and organic PHE types, respectively. The symbol “T” represents temperature, “Ca” calcium, “DOC” dissolved organic carbon, “P” phosphorus, “N” nitrogen, 

“Eh” redox potential, “Na” sodium, “F” ferrihydrite and “DO” dissolved oxygen. The large black circles denote the mean effect size, with the upper and lower vertical 

black lines showing the lower and upper confidence intervals. The smaller coloured circles indicate the individual study effect sizes used to generate the mean.  
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2.4 Discussion  

2.4.1 How Flooding Influences PHE Porewater Solubility  

The meta-analysis results show flooding increases PHE solubility. Increased water 

velocity can physically erode the sediment beds that are sequestering PHE, causing 

sediment particles to be resuspended, and physically moved downstream taking the 

PHE with them. This explains why many PHE exhibit positive effect sizes and is in line 

with other studies (e.g., Ponting et al 2021).  

The rate of solubility can differ for PHE types, primarily attributed to polarity 

differences (Menger et al 2020). Many PHE investigated, such as arsenic, form polar 

compounds (e.g., arsenic trioxide and methylarsonic acid) (Menger et al 2020). The 

term “polarity,” refers to the uneven distribution of electric charge around the molecule, 

which exhibit an electronegativity difference between the bonded atoms (Yoonah et 

al 2018).  

Therefore, compounds containing arsenic may exhibit polarity, meaning such 

compounds have partial positive and negative charges (Menger et al 2020). Polar 

compounds like arsenic can attract polar water molecules through dipole-dipole 

interactions, facilitating PHE porewater solubility (Menger et al 2020). Polyethylene 

and polycyclic aromatic hydrocarbons are non-polar and less soluble in water, thus 

reducing PHE porewater solubility (Yoonah et al 2018). Thompson and Goyne (2012) 

showed that these polarity differences create hydrophobic effects, for example causing 

segregation of non-polar benzo(a)pyrene from polar water molecules. Other studies 

observed similar findings, emphasising that the PHE polarity statistically significantly 

influences solubility (Kile et al 1995; Oepen et al 1991; Site 2000; Wang et al 2020).  

For radionuclides, such as strontium-85 and americium-241, solubility was found to 

decrease. Such findings are unlikely to be attributed to the radionuclide’s polarity, but 

rather their activity concentrations (Oepen et al 1991). These radionuclides have low 

environmental activity concentrations making it challenging to detect and measure the 

effects of flooding influencing PHE porewater solubility (Copplestone et al 2020). 

2.4.2 Soil Texture and Chemical Properties Influencing PHE Porewater Solubility  

Soil texture significantly influences PHE solubility, controls water filtration through the 

soil, and can provide large surface areas for ligand-exchanges, all of which can be 
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further influenced by microbial community structures (Abdu et al 2008, Zhang and Lin 

2020).  

The soil texture influences PHE solubility with the particle surface areas complexing 

with PHE through ligand exchanges (Stewart et al 2009). Sand particles have small 

surface areas (0.10-2mm), and low surface to volume ratios, containing low organic 

carbon fractions (0.4-66.9 g C kg-1) (Duplay et al 2014). Clays and silts in contrast have 

large surface areas containing phyllosilicate mineral fractions, including micas, 

chlorites, serpentinites, and pyrophyllite (Ndlovu et al 2013). These minerals provide 

large surface areas for adsorbing PHE (Barre et al 2016; Feng et al 2015; Hassink 1996; 

Stewart et al 2009). 

Soil chemical properties influence PHE solubility. Peats, for example, are rich in soil 

organic matter, containing significant organic carbon contents, typically ranging from 

30-200 kg C m-2 (Wang et al 2017). These organic carbon molecules contain humic and 

fulvic substances, with high affinities of coprecipitating with organometallic 

compounds through hydrogen bonding, hydrophobic effects, and stacking interactions 

(Yang et al 2020). Chianese et al (2020) show humic substances having a particular 

coprecipitating affinity with organometallic compounds, such as PAH's. These 

interactions are not exclusive to organometallic compounds as Steely et al (2007) 

showed organometallic compound antimony (III) acetate coprecipitating with humic 

acid molar mass fractions, reducing remobilisation.  

Calcareous soils are characterised by their calcium carbonate content, typically between 

0.5% and 10% of the soil mineral composition (Weeks and Hettiarachchi 2020). The 

divalent 2+ cations present in these soils coprecipitate with and immobilise PHE via 

calcium bridging, reducing PHE solubility (Ciszewski and Grygar 2016; Gall et 

al 2018; Huang et al 2021). 

2.4.3 Climate Change Altering Soil Physicochemistry and PHE Mobility  

Increasing temperatures increase the oxygen demand for microbial communities and 

the eventual decrease in oxygen concentrations directly lowers the redox conditions 

(Huang et al 2021). Lowering the redox conditions further and decreasing the transition 

time between oxidising and reducing conditions, both enhances the reductive 

dissolution of the oxide mineral phase (e.g., for iron and manganese) (Ponting et al 

2021). Such oxides immobilise PHE through ligand-binding exchanges (Heyden and 
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Roychoudhury 2015). The dissolution of oxides, because of such temperature increases, 

enhances PHE solubilisation and remobilisation (Mao et al 2021). These findings 

underpin the central conclusion from the meta-analysis, that temperature, oxygen, redox 

conditions and oxide concentrations need to be considered when attempting to predict 

PHE solubility.  

This meta-analysis reveals the importance of pH, Eh, and dissolved organic carbon in 

influencing a contaminant porewater solubility from extensive synthesised searches of 

laboratory and field-based studies. These variables are significant for predictive 

modelling purposes, particularly for improving the input feature parameterisation. 

Appreciating such important variables can reduce the probability of selecting redundant 

and uninformative variables in such modelling frameworks. The findings from this 

meta-analysis, recognising the importance of pH, Eh, and dissolved organic carbon 

influencing contaminant porewater solubility, will be used for subsequent modelling 

chapters (e.g. chapter 4) to estimate a contaminant porewater solubility using such 

variables.  

2.5 Conclusion  

This meta-analysis shows that climate change impacts on flooding frequency and 

duration and higher temperatures is highly likely to influence soil PHE solubility.  

The meta-analysis results demonstrate the importance of including physicochemical 

parameters when predicting soil PHE solubility because of the inherent relationship the 

physicochemistry has influencing PHE transport, fate, and behaviour. The findings 

from this meta-analysis reveal the importance of pH, Eh, and dissolved organic carbon 

in influencing a contaminant's porewater solubility. Identifying such variables can 

significantly improve the parameterisation for predictive modelling purposes, which 

will be analysed in subsequent chapters. Tailoring such input features reduces the 

likelihood of including redundancy and unnecessary variables in such modelling.   

  



95 

 

Chapter 3: Thesis Structure  
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Chapter 3: Investigating the Impact of Flooding on Soil PHE Solubility, 

Bioaccessibility, and Solid Phase Distribution - A Microcosm and Mesocosm 

Experiment  

3.1 Introduction  

The UK and many other countries face increasingly severe flooding events because of 

anthropogenic climate change, leading to rising economic costs for flood protection and 

mitigation (Met Office 2020). Flooding alters many soil and water physicochemical 

parameters, changing PHE porewater solubility and mobility, which may influence the 

exposure risk levels to contamination for humans and wildlife (Chapter 2) (Koh et 

al 2021). Chronic and acute exposure to these PHE, either through inhalation, dermal 

contact, or ingestion of contaminated particles, can be neurotoxic, hepatotoxic, and 

endotoxinogenic to humans and wildlife (Table 1.1, Chapter 1) (Petruzzelli et al 2019). 

Flooding can physically erode contaminated soil and sediment particles sequestering 

PHE, transporting such particles downstream, and if the flooding is severe, onto 

floodplains where many households reside (Thakur et al 2020). Essentially, flooding 

can generate an environmental pathway for transporting these contaminated particles 

(Thakur et al 2020).  

Increasing ambient temperatures from climate change alter soil biogeochemical 

processes, which influence PHE porewater solubility and mobility (Chapter 2, Section 

2.3.5) (Szuskiewicz et al 2021). Many policymakers, such as the Scottish Environment 

Protection Agency, the Environment Agency, and local authorities, urgently require 

more solutions to address and monitor the impact of increasing temperatures on soil 

biogeochemistry and PHE dynamics (Devi and Khatua 2017; Foroutan et al 2021; 

Kilunga et al 2017).  

The effects of more frequent flooding and rising temperatures altering soil 

biogeochemistry and physicochemistry also influence PHE bioaccessibility (Chapter 2) 

(Petruzzelli et al 2019). The term “bioaccessibility” defines the fraction of PHE soluble 

within the gastrointestinal tract, readily available for absorption through the intestinal 

epithelium (Thakur et al 2020). Bioaccessibility is often confused with 

“bioavailability,” which refers to the bioaccessible PHE fraction crossing the epithelium 

and being absorbed into the systemic circulation, reaching organs and tissues (Figure 

3.1, amended from McLaren 2019). Flooding influences PHE bioaccessibility by 
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creating anaerobic conditions and typically increasing soil and water pH levels, which 

both influence PHE coprecipitation with different soil mineral phases (Chapter 1, 

Section 1.8.1 and 1.8.2 ) (Szuskiewicz et al 2021). For example, changing water and 

soil pH conditions influence how PHE coprecipitate with the pH-sensitive carbonate 

mineral phase (Ponting et al 2021). Lowering soil and water redox conditions influence 

the oxidative reduction of aluminium, manganese, and iron oxides that coprecipitate 

with PHE (Koh et al 2021). The reducing conditions created during flooding influence 

the formation of PHE metal sulfide complexes and clusters (Chapter 1, Section 1.8) 

(Ponting et al 2021). These soil and water physicochemical changes may increase or 

decrease PHE solubility and bioaccessibility; influencing PHE exposure.  

 

Figure 3.1. The concepts of “bioaccessibility” and “bioavailability.” The square red box on the left 

illustrates PHE solubilised within the gastric fluid, defined as “bioaccessible.” The right-hand box 

represents a PHE being adsorbed through the intestinal epithelium, “bioavailability” (McLaren 2019).  

The physicochemical changes are only one driver influencing PHE porewater solubility, 

bioaccessibility, and solid phase distribution during flooding (Wyke et al 2014). Other 

drivers include physical, thermodynamic, and biological variables (Gu and Wong 

2004). Physical parameters include the land gradient, vegetation coverage, and land use 

type, and may also refer to the flood length and how frequently and quickly the flood 

recedes. For instance, 1 in 100 year floods last a few days compared to 1 in 500 year 

floods, because “severity” can be a measure of flood duration (Foroutan et al 2021). 

Thermodynamic changes refer to the water pressure and temperature; and biological 

variables relate to the soil microbial community (Wyke et al 2014).  
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These parameters are not independent; they are highly co-dependent; however, there is 

very little understanding around how they interact and, more importantly, how they 

influence PHE porewater solubility, bioaccessibility and solid phase distribution 

(Karmakar and Srivastava 2017). An understanding of the interaction between these 

parameters is key for accurately predicting PHE changes during flooding (Figure 3.2, 

information obtained from Gu and Wong 2004). By “accurately” predicting, this means 

estimating PHE porewater solubility and bioaccessible concentrations with no 

statistically significant differences from the observed laboratory results.  

 

Figure 3.2. Outlines the complexity between different variables (physicochemistry, thermodynamic, 

physical and biological) interacting and all influencing PHE porewater solubility and bioaccessibility 

(Gu and Wong 2004). Such illustration focuses on emphasising how the physicochemistry, highlighted in 

blue, alone influences PHE porewater solubility, bioaccessibility and solid phase distribution.  

Figure 3.2 shows that PHE porewater solubility, bioaccessibility, and solid phase 

distribution can be influenced not only by physicochemical changes during flooding, 

but also thermodynamic changes (such as water pressure), biological (referring to soil 

microbial and fungal community changes), and physical (relating to the land gradient 

and vegetation coverage). The purpose of this illustration is to emphasise the 

importance of appreciating not only how physicochemical changes influence PHE 

porewater solubility, bioaccessibility and solid phase distribution, but also how 

thermodynamic, biological, and physical variables interact and also impact PHE 

dynamics.   

These interactions are highly complex and intercorrelated, making understanding how 

these variables influence PHE porewater solubility, bioaccessibility, and solid phase 

distribution significantly challenging. To elaborate further on why these interactions are 
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challenging to understand as they relate to PHE dynamics, two hypothetical scenarios 

are outlined below, both indicating the complexities of these interactions between 

physicochemical, biological, physical, and thermodynamic changes during a flood 

(Figure 3.3).  

In “Scenario A”, a flood occurs on agricultural land with highly compacted soil from 

farming machinery (Figure 3.3). The compacted soil reduces the flood water absorption 

by decreasing the soil pore space, reducing permeability. This soil compaction restricts 

the diffusion, circulation, and exchange of oxygen molecules due to the minimised pore 

space, which would previously allow the transfer of oxygen throughout the soil (Zhao 

and Xu 2024). The weight of the water that cannot absorb and infiltrate through the soil 

may also eventually increase the soil ambient hydrostatic pressure due to the build-up 

of this water exerting a force on the soil (Zhao and Xu 2024). 

Increasing the pressure conditions and limited oxygen transfer considerably reduces 

soil oxygen availability, eventually lowering the redox conditions. Such lower redox 

conditions increase soil microbial respiration rates and community structures, 

increasing anaerobic microbial compositions. The decreasing soil oxygen 

concentrations may also increase the anaerobic reductive dissolution of manganese, 

aluminium, and iron oxides, releasing coprecipitated PHE into solution and increasing 

PHE porewater solubility and bioaccessibility. Scenario A illustrates the interactions 

between soil compaction (physical variable), influencing soil oxygen diffusion 

(physicochemical variable) and pressure (thermodynamic) impacting PHE solubility 

and bioaccessibility. Such interactions, however, are non-linear; for example, an 

increase in “X” does not result in a proportional increase or decrease in “Y.”  

To illustrate this “non-linearity, ”consider “Scenario B,” which simulates the same 

scenario of flooding on agricultural soil to “Scenario A” (Figure 3.3). The compacted 

soil may lower the redox potential by limiting oxygen transfer. Reducing redox 

conditions; however, may promote metal sulfide complexes, reducing PHE porewater 

solubility and bioaccessibility. Sulfide cluster formation can occur due to the increase 

in facultative anaerobic bacteria, which are heavily involved in organic carbon 

degradation. These bacteria thrive in anaerobic conditions, helping create these sulfide 

ions. The bacteria are instrumental in organic carbon degradation, which can lead to the 

byproduct of these sulfide, by utilising sulfate present in the soil as an electron acceptor 
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instead of oxygen (as oxygen is limiting under anaerobic conditions) during organic 

carbon degradation.  

This rapid organic carbon degradation may promote soil aggregation. During the 

breakdown of organic carbon, the byproducts (humic substances) can act as binding 

agents for soil particles, eventually forming aggregates. The process of aggregation 

naturally enhances soil structure by increasing the number of available pore spaces. The 

increase in aggregation increasing the number of pore spaces may also increase oxygen 

and water diffusion within the soil profile, reducing the volume of standing infiltrated 

water, eventually decreasing the exerted soil pressure. In Scenario B, PHE porewater 

solubility and bioaccessibility may decrease (Figure 3.3, information obtained from 

Ponting et al 2021). The reason why PHE solubility and bioaccessibility may decrease 

is that the enhanced exchange of oxygen molecules throughout the soil may increase 

overall soil redox status, decreasing the likelihood of reducing redox conditions causing 

iron, aluminium, and manganese oxide dissolution, solubilising and increasing PHE 

bioaccessibility.  

Both hypothetical scenarios A and B are plausible; however, the changing soil and 

water physicochemistry, thermodynamics, and soil biological community responses 

result in significantly different outcomes for PHE porewater solubility and 

bioaccessibility. Scenario B shows a decrease in PHE solubility and bioaccessibility 

whereas Scenario A increases PHE solubility and bioaccessibility. 

Such complexities highlight the potential role of artificial intelligence modelling to 

predict PHE dynamics during flooding by appreciating the stochastic relationships 

between physicochemistry, physical parameters, thermodynamics, and biological 

responses. In this case, an artificial intelligence model based on physicochemistry data 

alone may predict entirely incorrectly, either completely underestimating or 

overestimating PHE solubility and bioaccessibility. For a detailed outline of how each 

physical, thermodynamic, and biological variable influences a PHE dynamic during 

flooding, see Table 3.1. 
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Figure 3.3. Scenario A. Outlines how compacted soil influences PHE mobility and bioaccessibility 

during a hypothetic flood. Scenario 1 indicates (1) a pressure increase is created by reducing (2) oxygen 

flow, which (3) lowers the redox conditions and (4) increases microbial respiration, eventually (5) 

promoting oxide dissolution, eventually increasing PHE solubility and bioaccessibility (Ponting et al 

2021). Scenario B, indicates how (1) soil compaction creates a pressure increase, which (2) reduces 

oxygen diffusion, (3) lowers the redox conditions; however, (4) promotes sulfide producing anaerobic 

bacteria, which (5) promote the degradation of soil aggregates (6) increasing soil oxygen diffusion, 

eventually decreasing PHE solubility and bioaccessibility by increasing the overall soil redox status 

(Ponting et al 2021).  

Table 3.1. Outline how different physical (land gradient, vegetation coverage, and land use type), 

thermodynamic (pressure and temperature) and biological variables influence PHE porewater solubility, 

bioaccessible and solid phase distribution changes during flooding.  

Modelling Input  Influence on PHE Porewater Solubility, Bioaccessibility and Solid Phase 

Distribution  

Land Gradient • Alters the flood water velocity, eroding the soil and sediment particles, 

which sequester PHE (Calderon et al 2023).  

Vegetation Coverage 

 

• Locations containing high vegetation coverage may adsorb soluble 

PHE during flooding (Walton et al 2020). 

Thermodynamic 

 Pressure  

• Influences the diffusiveness of oxygen molecules which is directly 

involved in affecting the redox conditions and oxide dissolution 

kinetics (Ponting et al 2021).  

 

Microbes  

• Involved influencing PHE coprecipitation with the organic mineral 

phase (Romkens et al 2002).  

• Influences the oxygen concentrations and redox status (McLaren 

2019). 
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3.2 Aims and Objectives  

This chapter aims to (1) investigate the influence of physicochemical changes during 

flooding influencing PHE mobility, bioaccessibility, and solid phase distribution. The 

chapter assesses (2) the influence of ambient temperature changes influencing soil 

microbes, potentially impacting PHE dynamics (biological parameter). This chapter 

explores (3) the influence of different flood severities (e.g., 1 in 100 year and 1 in 500 

year) with differing flood lengths, influencing PHE behaviour during flooding (physical 

parameter). The chapter finally (4) investigates such physicochemical, physical and 

biological effects on PHE mobility, bioaccessibility and solid phase distribution using 

larger-scale mesocosm experiments. The purpose of this chapter is to collect and 

analyse data around how physicochemistry, soil microbes, and different flood severities 

influence PHE dynamics. This data will train artificial intelligence modelling to predict 

PHE mobility and bioaccessibility during flooding in subsequent Chapter 4.  

3.3 Methods  

3.3.1 Sampling Location Selection Process  

Each soil sample location was selected using a predefined process in QGIS (Version 

3.30.2) (Figure 3.4). This process identified locations susceptible to flooding with large 

populations (e.g., flood risk AND population number). The goal was to identify 

physicochemically unique locations and establish the flood risk probability.  

This research focused on arsenic, copper, and lead. These PHE were chosen due to their 

significance in minimising human and ecological health. Analysing arsenic, copper, and 

lead allows a comparison between metals (lead and copper) and metalloids (arsenic) 

regarding porewater solubility, bioaccessibility, and solid phase distribution changes. 

The meta-analysis in Chapter 2 (Section 2.3.1) concluded that the porewater solubility 

of metals and metalloids differs, highlighting the importance of comparing lead and 

copper with arsenic. These metals and metalloids showed high concentrations, 

exceeding the minimum soil threshold guidelines for CLEA for the land use type at all 

sampling points across the three catchments (CLEA 2023). Different PHE types, such 

as zinc and nickel, were also investigated and can be found in Appendices B and C.  

These screening values were chosen because they are effective for assessing the health 

risks of PHE exposure, providing a suite of minimum thresholds based on reliable 
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toxicity data (Middleton et al 2017). Many studies recommend these screening values 

due to this toxicity data (Cocerva et al 2024; Crispo et al 2021; Meng et al 2020; 

Middleton et al 2017; Moles et al 2016). The threshold values for freshwater and 

estuarine environments were chosen because the riverine catchments investigated in 

this chapter cover both freshwater and estuarine systems (see Section 3.3.2). Selecting 

locations susceptible to flooding and with high PHE concentrations ensured that the 

artificial intelligence models (discussed in Chapter 4) were trained with data for 

previously flooded locations with contamination levels above minimal soil threshold 

levels for human health risk assessments.  

 

Figure 3.4. Predefined selection process identifying sampling locations. The process filters potential 

sampling locations uniquely different in the geology and physicochemistry. The method identifies areas 

vulnerable to flooding which are highly contaminated.  
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3.3.2 Study Areas 

Soil samples were collected from three physicochemically and geochemically distinct 

locations: the Humber and Clyde catchments and the River Almond (Figure 3.5; BGS, 

2024). This chapter analysed copper, lead, and arsenic because extensive industries, 

such as mineral mining, dominate within these locations, polluting the environment 

with high concentrations of these specific elements (Shokunbi et al 2024). All the 

physicochemical soil data collected from the Clyde were used to train various artificial 

intelligence models (random forests, extreme gradient boosting and neural networks) 

discussed in Chapter 4. The Humber catchment and the River Almond were used to 

assess the performance of these artificial intelligence models under different 

physicochemical conditions.  

The Humber consists of sedimentary bedrock containing sandy soil textures with a high 

alkalinity, whereas the Clyde has an underlying igneous bedrock geology with acidic 

clay textured soils. The River Almond sampling locations have loam textures with 

neutral soil pH conditions. Each sampling location was divided into 250 x 250-meter 

blocks. In summary, this Chapter analyses PHE dynamics during flooding within the 

Clyde, Humber, and River Almond (Chapter 3). The relationship between 

physicochemistry changes and PHE dynamics within the Clyde catchment were used to 

train various artificial intelligence models (Chapter 4). These trained models were 

tested to predict PHE dynamic changes within the Humber catchment and the River 

Almond (Chapter 5).  

Three quadrats were placed 125 meters apart, totalling nine quadrats. Five composite 

samples were taken from within each quadrat, four from the corners and one from the 

centre as recommended by United States Environmental Protection Agency for soil 

sampling (USEPA 2024). A sterilised auger extracted soil samples within the top 0-5cm 

layer. This depth was selected, as according to Mitran et al (2024), who analysed the 

vertical depth-wise distribution of soil heavy metals, copper, lead and arsenic, showed 

these elements having the highest total concentrations within the upper 0-15cm of the 

soil profile, particularly the upper 0-5cm. This depth was also chosen as the high PHE 

concentrations present within this depth pose significant risks for human health 

exposure and the potential for PHE physical movement under flooding (Keller et al 

2007). The soil samples were stored airtight, bulked, and dried at 105oC for 72 hours, 

which is the standard temperature and time for removing soil moisture without 
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compromising and changing the integrity of the soil structure (Dexter and Richard 

2009).  

 

Figure 3.5. Outlines the three study catchments with the associated sampling locations. The figure 

illustrates the soil sampling design, totalling nine quadrats per sampling location (BGS, 2023). 

3.3.3 Microcosm Setup  

This chapter explores the influence of flooding on copper, lead and arsenic porewater 

solubility, bioaccessibility and solid phase distribution using microcosm experiments, 

by simulating a flood event. For information why copper, lead, and arsenic were 

selected, see Section 3.3.1. Four microcosm experimental designs were used to address 

the four chapter aims (Section 3.2.2). Microcosm experiment one investigated how soil 

and water physicochemistry influenced PHE porewater solubility, bioaccessibility and 

solid phase distribution within the Clyde and Humber catchments. The second 

microcosm experiment analysed how temperature influenced PHE solubility within the 

Clyde. Microcosm experiment three explored how differing flood severities influenced 
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PHE solubility and bioaccessibility within the Humber. The fourth microcosm 

experiment investigated how physical variations (e.g., land gradient) and land use types 

(e.g., agriculture) within the River Almond sampling points influenced copper, lead, 

and arsenic solubility within soil (Table 3.2).  

The first microcosm experiment was conducted within the Humber and Clyde because 

these catchments were physicochemically different, allowing for comparison. These 

physicochemical differences enabled a detailed investigation of how significant 

physicochemistry changes impact PHE dynamics. The second microcosm experiment  

examined the effects of temperature on PHE dynamics only within the Clyde catchment 

because of its proximity to the laboratory; collecting soil with biological samples from 

the Humber, with extended travel time, may negatively impact the quality of results. 

The third microcosm experiment on different flood severities was conducted within the 

Humber because this catchment is susceptible to coastal flooding, increasing the 

likelihood of more severe flooding than riverine flooding. The impact of physical 

variations on PHE dynamics was only investigated across the River Almond because 

this location contained significant variation in land gradients, vegetation coverage and 

land use types, unlike the other catchments investigated. 

The total soil organic matter content of all the soils within the different sampling 

locations was determined using the Loss on Ignition method (Zhang and Wang 2014). 

Soil pH was determined using 0.01M of calcium chloride extractant reagent, following 

the Houba et al (2000) procedure. The soil moisture content was determined using a 

field capacity procedure, following Assi et al (2019) guidelines. Total concentrations of 

soil heavy metals (e.g., lead, copper, and arsenic) were determined using microwave 

digestion (Sandroni et al 2003). For a detailed outline regarding the experimental 

methodologies estimating the total soil organic matter content, pH, soil moisture 

content, and microwave digestion, see Appendix B, Section 2.  

Table 3.2 The four microcosm setups, outlining the catchment, research aim, microcosm number and 

where in thesis, derived from the flow chart part, this section is attempting to address.  

Microcosm 

Setup 

Location  Research Aim No. of 

Microcosms  

Flow Chart Number  

1 Clyde and Humber  1 54 6  

2 Clyde  2 27 7, 8  

3 Humber  3 108 9 

4 River Almond  1 27 10, 11, 12 
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3.3.4 Microcosm Design One  

Microcosm Experiment One aims to analyse PHE solubility and bioaccessibility across 

three sampling locations, each within the Humber and the Clyde catchments. For each 

sampling location, nine subsampling points for soil were analysed. Selecting nine 

replicate samples captures the balance of accounting for the wide spatial variations in 

soil chemistry within each sampling location, whilst appreciating resource and time 

limitations, as recommended by Messing et al (2024). The nine replicates were mixed 

using an end-over-end shaker for nine hours at 15 rotations per minute (rpm).  

Approximately 250g ±2 of dried < 6.3mm soil fractions was placed into one-litre 

microcosms for an initial one-week pre-incubation (at 21oC). This pre-incubation 

equilibrated soil microbial respiration following the sieving/homogenisation processes, 

applying the recommendations proposed by Comeau et al (2018). The particle fraction 

of < 6.3mm was used within all the microcosm setup experiments. A < 6.3mm soil 

fraction was selected to ensure soil fraction uniformity, allowing variables, such as 

water retention and aeration to be controlled, whilst striking the balance of removing 

larger organic debris (leaves, wood, and roots) and maintaining the soil particle 

structure (Messing et al 2024).  

The microcosms were initially flooded for 14 days and then air dried for five days 

(Table 3.3). Each microcosm was flooded with 600 mL of artificial rainwater (11.6 

mg/L of NH4NO3, 7.85 mg/L of K2SO4, 1.11 mg/L of Na2SO4, 1.31 mg/L of 

MgSO4·7H2O, and 4.32 mg/L of CaCl2) according to the UK average rain composition 

(Tyler et al 2016). The 600 ml volume was selected to ensure the entire MicroRhizonTM 

sampler, pH, and Eh probes were fully submerged when making recordings, and also, 

several studies recommend using this volume to provide the sufficient submersion of 

soil for conducting microcosms (Arth and Frenzel 2000; Gao et al 2018; Mehrotra and 

Sedlak 2005; Schwartz et al 2016). Selecting 14 days for flooding ensured ample time 

for the redox potential to transition from oxidising to reducing redox conditions, and to 

observe such redox transitions on copper, lead, and arsenic solubility and 

bioaccessibility (Wisawapipat et al 2024).  

Many floods worldwide are less than 14 days of inundation, allowing the findings from 

this microcosm setup, regarding how copper, lead, and arsenic solubility and 

bioaccessibility change, applicable to wider flooding contexts (Basso et al 2023). 
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Selecting five days for drying ensured considerable time to remove soil moisture, 

allowing the transition from reducing to oxidising redox conditions, influencing copper, 

lead, and arsenic solubility and bioaccessibility, to be observed (Wisawapipat et al 

2024).  

The microcosms were stored in sealed incubators at a constant temperature of 21oC 

throughout the flooding and drying periods. Selecting 21oC is close to room 

temperature, which is conducive for microbial activity and growth. The soil porewater 

was sampled throughout using MicroRhizonTM samplers, placed into the microcosm 

and embedded 7cm into the soil at a 45o angle. The porewater collected for analysis 

during the experiment was immediately acidified to 2% nitric acid to preserve the 

samples by inhibiting microbial growth (Argumedo et al 2023). The porewater samples 

were analysed for major cations (e.g., sodium, potassium, and magnesium), trace 

elements (e.g., iron, aluminium, and manganese), and the PHE of interest (copper, lead, 

and arsenic) using inductively coupled plasma optical emission spectrometry (ICP-

OES). Major porewater anions (e.g., chloride, bromide, fluoride, and sulfate) were also 

analysed using ion chromatography. The porewater samples were collected daily (Table 

3.3). The porewater pH and Eh were recorded immediately when the porewater was 

collected by using a HANNA HI-98107 probe inserted at the soil surface for 20 

seconds. The probe was calibrated using pH 4 and pH 10 buffer solutions for every ten 

samples.  

Table 3.3. Microcosm experimental design indicating the sampling periods and the flood and drying 

periods.  

 

The microcosm experiments for the Humber and the Clyde were conducted 

simultaneously. The three sampling locations for the Humber and the Clyde were 

subdivided into groups. For both locations, blocks one, two, and three (B1, B2, B3) 

represented sampling location One for both catchments. Blocks four, five, and six (B4, 

B5, B6) indicated sampling location Two for the Humber and Clyde catchments. Blocks 
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seven, eight, and nine (B7, B8, B9) represented sampling location Three for both 

catchments (Figure 3.6).The purpose of dividing the microcosms in these block systems 

was to ensure that during the initial porewater sampling, there was enough time for the 

microcosms to recover and stabilise. By “recover” and “stabilise,” when the pH probes 

were inserted into the microcosms and the porewater was extracted, this may have 

created a slight alteration to the biogeochemistry (e.g., turbidity of the flood water, 

oxygen flow, and movement of the floodwater). The study by Hu et al (2019) shows 

this soil disturbance interfering with microbial and fungal community respiration 

processes, and recommended minimising such disturbance during porewater sampling, 

by creating a larger time gap between porewater sampling. The block microcosms 

design (Figure 3.6) shows at 9 am B1, B4, and B7, representing sampling locations 

One, Two and Three being sampled. The subsequent time at 10 am shows B2, B5, and 

B8, representing sampling locations One, Two and Three; however, as these 

microcosms were not previously sampled at 10 am, allowing the previous microcosm 

setups to “recover,” following the recommendations by Hu et al (2019).    

 

 

 

 

 

 

 

Figure 3.6. Shows the Microcosm One sampling design. The figure illustrates two rectangular blue boxes 

representing the microcosm incubator chambers for Clyde (left) and Humber (right). The incubators 

were both consistently set at 21oC ambient temperature. The smaller square boxes represent the 

individual microcosm setups. The codes “B1, B2, and B3” represent sampling location one for both 

catchments, “B4, B5, B6” denote sampling location two and “B7”,“B8”, and “B9” indicate sampling 

location three. The figure demonstrates that at 9 am, 10 am, and 11 am, each sampling location is 

analysed; however, the design of the experiment ensures that in a single sampling day from 9 am to 11 

am, no microcosm setups are sampled twice.  
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3.3.5 Microcosm Design Two 

This microcosm design investigated the influence of changing ambient temperatures on 

soil microbial communities and PHE porewater solubility. This experimental setup 

involved microcosm experiments with soil samples collected from the Clyde 

Catchment (Figure 3.5, Section 3.3.1).  

The microcosm experiment ambient air temperatures were incubated at 20oC, 30oC and 

40oC. These temperature gradients were selected by covering a significant range of 

ambient temperatures within many terrestrial environments (Li et al 2024). At 20oC, it 

covers many European and North American regions, 30oC in tropical and temperate 

locations, and 40oC in semi-arid regions (Prigent et al 2024). This span of temperatures 

means that the relationships observed between temperature and soil microbial activity 

in this experiment may apply to a variety of environments (Li et al 2024). Mesophilic 

bacteria, which are the most common soil bacteria, have optimal enzymatic activity 

within these temperature ranges (20 - 40oC) (Wang et al 2023). The 40oC threshold 

approaches the upper tolerance limit of many soil microbial enzymes, particularly 

mesophilic bacteria, allowing an analysis of how the beginning of enzymatic denaturing 

at this temperature influences PHE dynamics (Lepock et al 1990).  

Approximately 250g ± 2g of air dried soil was placed into 27 microcosms (9 

microcosms for each sampling location). Three replicate microcosms were placed at 

each temperature point. These microcosms were flooded with 600ml of artificial 

rainwater for fourteen days before being allowed to dry out for five days. Soil 

porewater was regularly sampled at the same frequency as microcosm design one (see 

Table 3.3) and analysed for physicochemical parameters and PHE porewater solubility 

using ICP-OES analysis. The microcosms were subdivided into block systems (B1, B2 

and B3 = sampling location One, B4, B5, and B6 = sampling location Two, B7, B8, and 

B9 = sampling location Three). Each block (e.g., B1) contained three replicates. For the 

entire experimental setup, outlining the temperature treatments and sampling design, 

see Figure 3.7 below.  
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Figure 3.7. The experimental design shows that each of the three setups (20oC, 30oC and 40oC) contains 

27 microcosms. The square boxes indicate the microcosms and show the microcosm groupings and the 

associated porewater sampling times. The experimental setup replicates the design undertaken in the 

morning between 9-11 am. 

3.3.6 Microcosm Design Three 

The third microcosm investigated the impact of different flood severities, ranging from 

a (1) typical annual flood, (2) 1 in 100-year flood, (3) 1 in 500-year flood, and (4) 1 in 

10,000-year flood (Figure 3.7, Section 3.3.3). This microcosm examined PHE 

porewater solubility and bioaccessibility within the Humber catchment under these 

different flood treatments. These flood experiments mimicked real flooding events by 

extracting data from flood monitoring stations, which recorded the flood length. The 

data from these flood monitoring stations were derived from the National Oceanic and 

Atmospheric Administration (NOAA, 2022), UK Centre for Ecology and Hydrology 

(UKCEH, 2022), United States Geological Survey (USGS, 2022), and the United States 

Environmental Protection Agency (USEPA, 2022).  

In terms of mimicking such floods, these microcosms simulated the flood length and 

how frequently the floodwater receded and then returned. The microcosms were 

drained and reflooded according to the time intervals from real flood data (Figure 3.8). 
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The number of microcosm experiments used within this setup replicated the previous 

microcosm design one (Section 3.3.3.1) and design two (Section 3.3.3.2).  

Each of the four flood severity setups mimicked, using the real flood data, 27 

microcosm floods (9 per sampling location). For a detailed methodology around how 

the microcosms were prepared, see Section 3.3.3.1. The microcosms were incubated at 

21oC throughout the flooding and drying periods. The porewater was extracted using 

MicroRhizonsTM, and then acidified (2% HNO3) before analysing copper, lead, and 

arsenic porewater solubility and other physicochemical parameters.  

 

Figure 3.8. Flood hydrological regimes mimicking real flood data. The titles of the different flood names 

are denoted above. The flood ranges differ in duration by flood length and the frequency of drying cycles 

(NOAA 2022; UKCEH 2022; USEPA 2022; USGS 2022). The flood severity (e.g., 1 in 100, 1 in 500) 

denotes the flood length and the repeated flooding and drying cycles. For instance, a flood length 

considerably long (e.g., over 20 days) would be considered a severe flood (i.e., > 1 in 500).  

3.3.7 Microcosm Design Four 

This microcosm experiment investigated the influence of land use type and land slope 

gradient on soil copper, lead, and arsenic porewater solubility within the three sampling 

locations along the River Almond embankment. Land gradient and slope data were 

obtained from the inbuilt QGIS databases on land use information extracted from 

Google Maps (Google Maps, 2024).  

The microcosm simulated the flood length of a recorded flood across three sampling 

locations along the River Almond embankment in December 2020, occurring for five 

days (Figure 3.9), where flood data was obtained from the River Almond flood gauging 

station (River Levels, 2023). This microcosm experiment analysed soil copper, lead, 
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and arsenic PHE porewater solubility within the three sampling locations. Nine 

microcosms were flooded per sampling location, totalling 27 (Section 3.3.3.1). The 

land gradient and vegetation coverage, expressed as percentage coverage per square 

meter, were different across the three sampling locations investigated.  

 

 

 

 

 

 

 

Figure 3.9. Outlines the recorded flood depth within the River Almond between the dates 05/12/2010 and 

10/12/2020. The flood in the three sampling locations along the River Almond embankment occurred for 

five days. This microcosm experiment’s purpose was to use flood monitoring data for this specific flood 

(derived from River Levels, 2023) to artificially mimic this flood within the laboratory (i.e., exact flood 

duration and flood and drying cycles), assessing how different land gradients, vegetation coverage, and 

land use types influence copper, lead, and arsenic solubility.  

3.3.8 Mesocosm Setups 

The mesocosm experiments were designed to mimic a real flood scenario within the 

Clyde catchment (Table 3.4). The flood data were obtained from the ClydeINFO 

weather monitoring station (ClydeINFO 2023). This flood was recorded between June 

12th and June 25th, 2021. Six mesocosms were flooded for eight days, dried for six 

hours (receding flood time), and was then reflooded again for another two days, 

mimicking the flood data from ClydeINFO.  

These mesocosms flooded 2.5kg of air-dried soil using 6 litres of artificial rainwater 

(Section 3.3.3.1). This water volume ensured the full submersion of the soil and the 

MicroRhizonTM porewater sampler. The quantities of soil mass and flood water volume 

in these experiments were scaled up to be ten times larger than those in the microcosm 

flooding experiments. This scaling aimed to maintain the same soil-to-water ratio as the 

microcosm, with the only difference being the scaling-up of water and soil in these 
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mesocosm setups. This scaling-up also aims to simulate flooding conditions more 

representative within real-world scenarios, thereby enhancing the experimental 

relevance and findings to natural settings (Byun et al 2017). 

These mesocosm also represent more realistic and natural soil systems because flooding 

larger quantities of soil creates more stratified soil structures and biological diversity, 

leading to different nutrient cycling and biological activity changes compared to 

microcosms (Graupner et al 2017). These mesocosms were stored in large sealed 

incubation chambers. Each chamber was programmed to mimic the hourly change in 

humidity, light irradiance, and temperature throughout the flood.  

Table 3.4. Mesocosm setup outlining the catchment, research aim, mesocosm number and where in 

thesis, derived from the flow chart part, this section is attempting to address.  

 

The six incubator setups, labelled “T1-T6”, were used to replicate different temperature 

and humidity levels (Figure 3.10). The first group of three incubators mimicked the 

actual temperatures observed during the real flood and at three different humidities 

(35%, 65% and 95%). The base temperature, therefore, was the actual hourly 

temperature recordings during the flood. For example, if the recorded ambient 

temperature at 14:30 was 14.5oC, then the mesocosm chamber’s base temperature at 

this time was also 14.5oC. This first group investigated how humidity alone influences 

PHE dynamics. The second group of three incubators mimicked a climate change 

scenario by increasing all the temperature changes by 1.5oC from the base temperature 

at 35%, 65%, and 95% humidity. This second group investigated whether a climate 

change scenario could influence PHE dynamics (Figure 3.10).  

Mesocosm 

Setup 

Sampling Location  Addressing 

Research Aim 

No. of 

Mesocosms 

Flow Chart Part 

1 Clyde   4 27 13, 14  
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Figure 3.10. The groupings “B1, B2, and B3” represent sampling location one, “B4, B5, and B6” 

denote sampling location two, and “B7, B8, and B9” is sampling location three. The different shades of 

blue represent the humidity levels, with light blue indicating a low humidity of 35%, medium shade of 

blue at 65%, and darkest blue at 95%. Treatments 1-3 indicate the current ambient temperature 

scenario, whereas treatments 4-6 indicate a climate change scenario of a 1.5oC increase. The graph 

indicates the flood hydrological and temperature data. 

3.3.9 Bioaccessibility 

The PHE bioaccessibility was determined using the method developed by the 

BioAccessibility Research Group of Europe (BARGE) and known as the Unified  

BARGE Method (Wragg et al 2011). Since development this method has become ISO 

standard (ISO 17924:2018) (Zingaretti et al 2021). Briefly, 2g ± 0.2 of < 250µm of each 

soil sample was subjected to extraction by simulated saliva and gastric fluids (gastric 

phase) rotated at 15rpm for 1 hour at 37oC, centrifuged at 4500rpm, and the supernatant 

removed for analysis by ICP-OES. A second extraction was undertaken where a 

separate aliquot of soil was subjected to saliva/gastric fluids for 1 hour (as above), 

followed by the addition of bile/duodenal solutions, rotated at 15rpm for 4 hour at 

37oC, centrifuged at 4500rpm and the supernatant removed for analysis (Figure 3.11, 

based on information obtained from Wragg et al (2011). The < 250µm size fraction was 

used in the bioaccessibility experiments as this is the upper bound of the size fraction 

that adheres to children’s hands (Wragg et al 2011).  

Each sample was extracted in triplicate (Figure 3.11) and each BARGE experiment 

contained one black sample, which only contained the gastric and intestinal solutions 

but with no soil. To determine the accuracy of the BARGE method, a British 
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Geological Survey (BGS) reference material was used (BGS 102). This reference 

material is a homogenised ferritic brown earth soil containing slightly elevated 

concentrations of lead and arsenic of geogenic origin and is described as “naturally 

contaminated” (Wragg 2009).  

 

Figure 3.11. BARGE experimental procedure. The 50ml test tubes represent the different samples (i.e., 

silva, gastric, bile and duodenal) being added to the tubes before being rotated and centrifuged (i.e., the 

tubes are rotated and centrifuged with the added samples). The left 50ml test tube represents the added 

silva and gastric solutions. The right 50ml test tube indicates the added silva, gastric, bile and duodenal 

solutions. The numbers “1”, “2” and “3” represent sampling locations 1,2 and 3 within either the Clyde 

or Humber catchment. The purpose of these number is to illustrate that per BARGE experiment there 

were three replicates per sampling location, 1 reference material, and 1 blank sample.  

3.3.10 Physicochemical Speciation  

The non-specific sequential extraction procedure chemometric identification of 

substrates and element distribution (CISED) was used to identify the PHE fractionation 

between the physicochemical components of the test material (Cave 2004). This CISED 

method was chosen over other types of sequential extraction (e.g., Tessier extraction) 

by being significantly effective at processing large and complex datasets (Giacomino et 

al 2011; Tessier et al 1979). Multivariate chemometric techniques, which allow multiple 

parameters to be taken into account simultaneously, aid the visualisation and analysis of 

the sequential extraction results (Giacomino et al 2011).  

Briefly, 2g (<250µm) of soil was sequentially extracted using increasing concentrations 

of aqua regia (0.01M-5M). The extracts from each step were analysed for major and 
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trace elements by ICP-OES including calcium, potassium, magnesium, iron, 

manganese, sodium, phosphorous, aluminium, zinc, copper, lead, arsenic, chromium, 

titanium, nickel, and vanadium (Figure 3.11; Table B3.1, Appendix B). The elemental 

data from each extractant was subjected to a chemometric mixture resolution algorithm 

described by Cave (2004) to determine the number and proportion of physicochemical 

components and the distribution of PHE therein (Figure 4B, Appendix B) (McLaren 

2019). 

The number of sample replicates, blanks and reference materials was the same as 

outlined in the BARGE setup (Section 3.3.39, Figure 3.11). Each of the three sampling 

locations within each of the catchments (Clyde and Humber) were sequentially 

extracted simultaneously. The CISED extraction used one blank sample and one 

reference material (BGS 102). For an overview of the CISED extraction procedure, see 

Figure 3.12 (Cave 2004).  

 

Figure 3.12. CISED extraction protocol. The soil samples are sequentially exposed to gradually 

increasing aqua regia concentrations . ICP-OES analysed the total metals leached within each phase. 

Elemental data leached within each sample are then subjected to a chemometric algorithm, determining 

the PHE concentration, proportion and composition (Cave 2004). The numbers “1”, “2” and “3” 

represent sampling locations 1,2 and 3 within either the Clyde or Humber catchment. The purpose of 

these number is to illustrate that per BAGRE experiment there were three replicates per sampling 

location, 1 reference material, and 1 blank sample per CISED extraction.  

3.3.11 Statistical Analysis  

All data, including the results from BARGE and CISED, were subjected to normality 

testing, and outliers were removed from the upper and lower median interquartile 
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ranges (IQR) at the 95% confidence level. This approach of removing the outliers from 

the lower and upper IQR follows the methodologies outlined in Mishra et al (2019), 

suggesting such an approach minimises skewing the analysis.  

Residual diagnostic plots (i.e., q-q plot and residuals Vs fitted) visualised the data 

normality using the ggplot2 package in RStudio (Version 2023.03) (Bengtsson et 

al 2017). Data quality control was regulated using a pre-defined eligibility criteria 

(Figure 3.13). Multicollinearity was assessed using the variance inflation factor. 

Principal component analysis (PCA) was programmed using the FactoMineR package 

in RStudio, and such information was analysed for clustering and data relationships 

around physicochemistry influencing PHE dynamics (Husson et al 2016). PCA was not 

applied to the CISED data as the chemometric algorithm already applies PCA 

clustering. Any feature variables exhibiting clustering were implemented into a linear 

regression model examining statistically significant correlations using the lme4 package 

(Feng et al 2015).  

Hierarchical heatmaps clustered PHE mineral phases derived from the chemometric 

algorithm using the pheatmap package in RStudio (Couch and Kuhn 2022). The 

purpose of producing such heatmaps is to identify patterns and relationships in the soil 

PHE chemical component data across each sampling location. This data was scaled and 

transformed into z scores by dividing the standard deviation and maximising the sample 

difference. Scaling data into z-scores serves the purpose of detecting data anomalies. A 

distance matrix between the components was generated, and using the Euclidean 

distance by complete linkage, clustering was performed by agglomerative nesting aids 

in grouping the data and identifying correlations.  
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Figure 3.13. Outlines the schematic process of ensuring data quality before implementing such data into 

the predictive model. The solid green arrows indicate the direction which the data would be accepted into 

the model. Any dashed purple arrows denote procedural steps that violate the model criteria. 

3.3.12 Quality Assurance  

All reagents used were of analytical grade, purchased from Fisher Scientific and Sigma 

Aldrich. Purified Milli-Q deionised water was used throughout all the experimental 

procedures and cleaning processes. All the experimental methods used reference 

materials and procedural blanks (British Geological Survey, 102 Arsenic 

bioaccessibility guidance soil) (Wragg 2011). For information around the reference 

material used, see Section 3.3.9. Depending on the experimental procedure, these 

blanks consisted of either deionised water or acid matrix solutions. The BARGE and 

CISED experimental analysis contained three replicates per sampling location.  
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3.4 Results  

3.4.1 Soil/Sediment Characteristics  

Soils from the Clyde catchment were more acidic than those collected from the Humber 

and River Almond (Table 3.5), with average soil pH of 5.86, 7.13, and 7.04, 

respectively. The total soil organic carbon content was the highest within the Clyde, 

with an average content of 77.9 mg/L C. The Humber had the lowest total soil organic 

carbon content, averaging 6.55 mg/L C. The average soil moisture content within the 

Humber, Clyde and the River Almond was 7.5%, 23% and 16.3%, respectively, due to 

the Humber and the River Almond having a more sand-based soil texture (Figure B3.2, 

Appendix B). For information around how the soil pH, total organic carbon and 

moisture content were determined, see Section 3.3.3 and Appendix B, Section 2.  

Many PHE concentrations, notably lead, based on estuarine concentrations exceeded 

CLEA’s (Contaminated Land Exposure Assessment) minimum threshold levels for all 

the sampling locations investigated (Table 3.5; CLEA 2023). The Clyde catchment has 

the highest average total soil lead concentration (183 mg/kg), followed by the River 

Almond (92 mg/kg), and the Humber (57 mg/kg). The average total soil copper was the 

highest in the Clyde (65.3 mg/kg), followed by the River Almond (61 mg/kg) and the 

Humber (22.9 mg/kg). The Humber has the highest total soil arsenic concentration at 20 

mg/kg, the Riv er Almond at 9 mg/kg and the Clyde at 8 mg/kg. For information around 

how these concentrations were established, see Section 3.3.3 or Appendix B, Section 2.  

Table 3.5. Outlines the soil/sediment characteristics of the three sampling locations investigated and 

across the associated sampling points. 
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3.4.2 Analysing the Influence of Flooding on PHE Porewater Solubility - 

Microcosm Design One  

This analysis focuses on the influence of flooding on the porewater solubility of copper, 

lead, and arsenic within both the Humber and Clyde catchments. For a complete 

overview of how flooding influences other PHE solubility within the Humber and 

Clyde, see Appendix B.  

The solubility of arsenic in porewater increased with inundation time (Figure 3.14, 

Figures B3.3, B3.4 and B3.5, Appendix B). From days one to fourteen, the average 

arsenic porewater concentration increased from 3.09µg/L to 3.6µg/L and 20.3µg/L to 

23.7µg/L within the Humber and Clyde with statistical significance, respectively. 

Copper solubility significantly decreased as flood duration increased from days one to 

fourteen, with average porewater concentrations decreasing from 576µg/L to 48µg/L 

and 399µg/L to 126µg/L with the Humber and Clyde. Lead solubility increased slightly 

from 13.7µg/L to 13.9µg/L between days one and fourteen within the Humber; 

however, decreased from 139µg/L to 93µg/L within the Clyde. 

The decreased copper and lead mobility at the end of the flood compared to the 

beginning may be attributed to dilution effects within larger water volumes; however, 

complexation reactions with, for example, organic carbon and sulfide, may also explain 

the significant mobility decrease (Laing et al 2008). The variation between the average 

porewater solubility concentrations of arsenic, lead, and copper in porewater is 

significantly higher within the Clyde. One-Way ANOVA statistics showed the soluble 

porewater concentrations of arsenic, lead, and coper statistically significantly differs 

between the three sampling locations across the Clyde and Humber (F = 10.7, p = < 

0.001; F = 5.17, p = 0.01; F = 6.26, p = 0.01, respectively). The redox potential 

transitions from oxidising to reducing conditions, and the pH gradually increased at all 

the sampling locations within the Humber and Clyde. Average pH conditions between 

the three sampling locations increased from pH 6 to pH 9.2 and from pH 5.3 to pH 6.2 

within the Humber and Clyde, respectively. The average redox potential decreased from 

Eh 139 to Eh (-) 171 and Eh 290 to Eh (-) 30.6 within the Humber and Clyde, 

respectively. For information regarding the average, minimum, and maximum values of 

the different physicochemical variables in the Clyde and Humber, see Tables X and Y.  
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Many PHE demonstrate strong interaction effects, particularly for Pb and Zn (R2 = 

0.88) indicating they frequently co-occur in contaminated environments (Figure X). Cr 

and Ni show the highest correlation (R2 = 0.95), likely due to their common sources 

and oxidation state similarities (Ponting et al 2021). Arsenic has a weak correlation 

with lead (R2 = 0.26). Va and Ni and Va and Cr also indicate a strong correlation (R2 = 

0.81, R2 = 0.81, respectively).  

 

 

Figure 3.14. Indicates arsenic, copper and leads porewater solubility  within Clyde and Humber 

catchments with the associated pH and Eh changes. Error bars represent average concentrations (n=3) 

at the 95% CI. The top three graphs denote the Clyde and the bottom the Humber. 
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Table 3.6. Descriptive statistics (average, standard deviation, minimum, and maximum values for the 

different physicochemical properties in the Clyde and Humber catchment.  

                                                  Clyde 

 

Humber  

Physicochemical 

Variable 

 

Average 

 

Standard 

Deviation 

Min Max Average 

 

Standard 

Deviation 

Min Max 

 

pH 

 

5.83 

 

0.78 

 

4.12 

 

6.45 

 

7.13 

 

0.98 

 

6.12 

 

8.32 

OC(mg/L) 6.55 1.12 3.11 10 84.4 12.22 123 65 

Pb (mg/kg) 183 12.4 152 189 57.3 5.66 106 43 

Cu (mg/kg) 65.3 6.4 43 79 22.89 4.45 56 2 

As (mg/kg) 8 0.87 3.4 13.1 20 2.2 34 3.4 

K (µg/L) 38612 28224 12123 126810 34211 4533 23111 89078 

Mg (µg/L) 39668 15852 13758 82274 87382 14565 67988 101900 

Ca (µg/L) 193638 83416 55266 489675 124521 3233 80989 179089 

Fe (µg/L) 33055 53952 1131 331584 12322 8092 4099 23498 

Na (µg/L) 32085 11451 8619 109253 12865 4532 5625 23009 

Al (µg/L) 19155 13319 1109 56947 11421 1011 8667 19029 

Mn (µg/L) 35058 11424 105960 105960 9053 1211 4321 17922 

  

 

Figure 3.15. Correlation heat map indicating the interaction effects between the different PHE 

investigated.  

The PCA results, which analyse the influence of various physicochemical parameters 

on the mobility of copper, lead, and arsenic, indicate several discernible clusters (Figure 

3.15, Figure B3.6, Appendix B). The first two axes for arsenic within the Clyde and 

Humber catchments explain 66.1% and 60.2% of the total variation in arsenic mobility 
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during flooding, respectively. Such percent values are derived from PCA1 and PCA2 

axes and they are percentages of variance explained by each principal component. 

These principal components were retained as they capture the majority of the dataset 

variance, reducing dimensionality, while preserving key patterns in contaminant 

mobility. High order PCA components contribute less variance and are therefore 

excluded to minimise overfitting, as these high order components explain variance 

which is more likely noise rather than signal. These two PCA components, explaining 

the majority of variation, is verified from the scree plots, illustrating two main principal 

components influencing PHE mobility concentrations (Figure 6). The scree plots 

illustrate a distinct “elbow” at PCA2, indicating that additional PCA components 

exceeding PCA1 and PCA2 do not contribute significantly to explaining the variance in 

PHE mobility. The eigenvalues for PCA1 and PCA2 exceed 1, which is commonly used 

as a threshold for retaining such components, further confirming PCA1 and PCA2 

significance.  

PCA1 predominately captures redox-sensitive processes, indicated by the influence of 

arsenic and manganese, suggesting that transitions in reducing to oxidising redox states 

likely influence arsenic mobility. Under reducing redox states, arsenic exists as arsenite; 

however, under oxidising conditions is arsenate, with both chemical forms of arsenic 

having different mobility factors. PCA2 is driven by cation exchange and pH 

variations, which are key variables influencing lead and copper concentrations. pH 

alters cation exchange capacity, ligand exchanges and the dissolution of acid sensitive 

mineral phases, which all influence PHE mobility. 

The axes for copper within the Clyde and Humber explain 64.1% and 63.5% of the total 

variation in copper porewater solubility, respectively. The axes for lead within the 

Clyde and Humber explain 63.5% and 62.1% of the total variation in lead’s mobility 

explained, respectively.  

The PCA analysis indicates manganese negatively correlated with soluble arsenic 

within the Clyde catchment (based on the angle between their vectors from the PCA 

plot). This negative cosine means that the presence of soil manganese may associate 

with lower arsenic concentrations. Suda and Makino (2016) show similar findings, 

indicating that manganese can oxidise arsenite [As(III)] to less soluble arsenate 

[As(V)]. Physicochemical change during flooding is determinant of the flood length; 
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for example, how much a particular physicochemical variable alters with time 

throughout inundation (Figure 3.16). For instance, does the soil porewater solubility of 

potassium alter with increasing flood length? The initial results from the Humber and 

Clyde microcosm experiments reveal that increasing flood lengths alter soluble 

porewater potassium concentrations but also changes many other physicochemical 

parameters, such as calcium, pH, and magnesium.  

These PCA results are highly significant for future work by clustering the most 

important physicochemical parameters influencing PHE mobility. This clustering can 

improve the parameterisation of machine learning features, by avoiding training such 

models on poorly explanatory variables, likely reducing the probability of overfitting. 

Identifying the most relevant feature inputs can significantly improve PHE modelling, 

potentially identifying locations of interest based on these clustering parameters. 

Integrating such PCA-driven features into predictive models, such as machine learners, 

can enhance the ability to estimate PHE mobility under varying flood environments and 

improving the risk assessment approach for contaminated sites.  

These findings also reveal that the level or rate of these physicochemical changes 

shows a distinct pattern with increasing flood length. This pattern shows three major 

physicochemical changes, or what this investigation calls “phases,” that occur with 

flood length. In other words, these physicochemical changes with increasing flood 

length can be captured within three segments of change, which this experiment calls 

“phases.” The first phase indicates that some physicochemical variables, within the first 

three days of the flood, change the most significantly; this phase, for the purpose of this 

investigation, is called the “critical phase.” After three days of flooding to around five 

or six days, the physicochemical change remains statistically significant; however, 

gradually, the rate of change declines compared to the critical phase; this phase is called 

the “sub-critical phase.” The final phase is that the physicochemical changes typically 

do not change significantly after six days and begin to remain relatively constant, 

referred to as the “lag phase.” Given the clustering between physicochemistry and 

arsenic, lead, and copper solubility, these findings may suggest that PHE mobility 

changes the most significantly during the beginning of a flood.  

This initial increase in the solubility of copper, lead, and arsenic in porewater may be 

attributed to the enhanced de-sorption of exchangeable metals from the soil during this 
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rapid alteration of physicochemical conditions at the beginning of the flood (Daramola 

et al 2024). Further research is required to assess whether this pattern of 

physicochemical changes during flooding is observed within different locations. For an 

example illustrating these “physicochemical phases” with some data from this 

investigation, see Figure 3.16. The purpose of Figure 3.16 presents sulfate, nitrate, 

nitrogen oxide, and sodium to illustrate the impact of physicochemistry changes 

influencing PHE mobility.  

 

Figure 3.15. Outlines PCA graphs illustrating how different physicochemical parameters influence 

arsenic, copper, and lead soil porewater solubility. The top three graphs indicate the Clyde, and the 

bottom three are the Humber. The PCA axes indicate a percentage value (x and y), indicating how much 

variance is captured from the different PCA components. The small green and blue dots represent the 

individual observations of copper, arsenic or lead porewater solubility concentrations. The black arrows 

represent the PCA vectors, illustrating the magnitude and direction of a particular feature variable (e.g., 

Eh, pH, K, Ca, Mg) contribution to the principal component.  
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Figure 7. Scree plot analysis outlining the number of principal components influencing PHE mobility 

concentrations. 

 

Figure 3.16. Changing physicochemical variables during flooding within the Clyde. The figure outlines 

the three major phases of physicochemical change during flooding: “critical”, “subcritical,” and “lag.” 

The figure shows the rate of physicochemical changes during flooding, which is illustrated using a “bell-

shaped” curve, as indicated in the figure.  
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3.4.3 Ambient Temperature on PHE Porewater Solubility - Microcosm Design Two 

This section analyses the influence of increasing ambient temperatures (20oC, 30oC, 

and 40oC) on copper, lead and arsenic porewater solubility within the Clyde..  

At sampling locations One, Two and Three, copper solubility on the first day of 

flooding was the highest at 40oC, initially at 362µg/L, 591µg/L, and 539µg/L, 

respectively, and at 41µg/L, 37µg/L, and 92µg/L, respectively on the last day of 

flooding (Figures 3.16 A, 3.16B, 3.16C). Copper’s solubility within sampling locations 

One, Two, and Three was the lowest at 20oC, initially at 161µg/L, 198µg/L, and 

195µg/L, respectively, during the first day of flooding, and at 37µg/L, 29µg/L, and 

87µg/L, respectively, on the last day of flooding.  

These findings show that increasing ambient temperatures increase copper solubility 

during flooding; however, the results also indicate that despite copper solubility 

increasing, the results are not statistically significant (p = 0.85, F-crit = 3.40). These 

statistically insignificant findings may be attributed to the small sample size, which 

only covered one catchment, meaning this experiment may not be able to detect a true 

effect (Kontopantelis et al 2010). By “true effect,” this means a real non-zero 

relationship between variables in a sample size or, in other words, the actual impact that 

is happening due to the experimental intervention (i.e., ambient temperature) 

(Nakagawa and Cuthill 2007). The variability of soluble copper at the beginning of the 

flood was also relatively high (greater than one standard deviation from the mean), 

again making it harder to detect a true effect (Kontopantelis et al 2010).  

The solubility of lead within sampling locations One, Two and Three showed similar 

results to copper, exhibiting the highest soluble lead concentrations throughout the 

flood at 40oC and the lowest concentrations at 20oC (Figures 3.17D, 3.17E, 3.17F). 

Lead’s solubility, however, increases initially between days one to five during flooding 

at 20oC (71-125µg/L), 30oC (105-289µg/L), and 40oC (100-228µg/L). The reason why 

soluble lead is initially increasing during the flood are attributed to the oxide 

dissolution (e.g., iron and manganese) that is causing lead to become solubilised 

(Ponting et al 2021). Despite the higher temperatures increasing lead solubility 

throughout the flood, the results are statistically insignificant (p = 0.53, F-crit = 3.47).  

Throughout the flood, higher ambient temperatures (40oC) increased the soil arsenic 

porewater concentrations compared to lower temperatures (20oC) (Figure 3.17G, 
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3.16H, 3.16I). The highest solubilised arsenic concentrations throughout the flood were 

around day eight of flooding at 40oC within sampling locations One, Two and Three at 

24µg/L, 26.6µg/L, and 21.3µg/L, respectively. These high soluble arsenic 

concentrations at the end of the flood attribute to the reducing conditions transforming 

arsenic [(V)] into more soluble arsenic ([AsIII]) (Connolly et al 2021).  

 

 

 

 

 

Figure 3.17. Different temperature incubation experiments influencing soil enzymatic activity altering 

PHE porewater solubility. The error bars denote the standard deviation (n=3) at the 95% confidence 

interval. 
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3.4.4 Evaluating the Influence of Different Flood Severities on PHE Porewater 

Solubility - Microcosm Design Three  

This microcosm experiment investigated the influence of different flood severities (i.e., 

annual, 1 in 100, 1 in 500, 1 in 10,000) with altering flood lengths and flood receding 

frequencies on copper porewater solubility within the Humber. For the purposes of 

space (given that four separate flood severity experiments were conducted) copper was 

used as an example; however, for information on the different flood severities on lead 

and arsenic porewater solubility, see Appendix B. The purpose of investigating copper 

porewater solubility within different flood severities within the Humber is highlighted 

in Section 3.3.3.  

The porewater solubility of copper decreased as flood duration increased during all the 

flood severities and within all the sampling locations (Figure 3.18). During the 

beginning of the flood, the lowest copper porewater solubility was observed at the most 

severe flood scenario, the 1 in 10,000-year flood, with a concentration of 10µg/L. This 

concentration was significantly lower compared to the beginning of the 1 in 500-year 

(137µg/L), 1 in 100-year (211µg/L), and annual (211µg/L) flood. Copper’s solubility 

during the beginning of the 1 in 10,000-year flood was also much lower than sampling 

locations Two (321µg/L) and Three (139µg/L). 

 The low copper solubility within sampling location One, compared to the other flood 

severities, and the different sampling locations, may attribute to the soil organic carbon 

contents. For instance, the total soil organic carbon content was the highest within 

sampling location One compared to locations Two and Three (8.64mg/L C, 3.3mg/L C, 

and 7.7mg/L C, respectively) (Table 3.5). This organic carbon, through humic and 

fulvic substances, may form stable complexes with copper, facilitating ligand 

exchanges, reducing copper solubility (Ponting et al 2021).  

As the flood inundation time increases, particularly for the severe 1 in 10,000-year 

scenario, the standard deviation, measuring copper’s solubility variation, decreases. 

This variation decrease is indicated by the small error bars across the different sampling 

locations, highlighting the repeatability of the results. The results show that the 

variability of copper’s solubility decreases as the flood length increases. As the flood 

duration increases beyond three days (i.e., the annual flood), observant across the 1 in 

100, 1 in 500 and 1 in 10,000-year flood simulations, copper’s porewater solubility 
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significantly decreases. These findings indicate that longer flood lengths, exceeding 

three days, may significantly reduce copper’s solubility more than shorter flood 

durations, less than three days. 

 

 

 

Figure 3.18. Outlines the porewater solubility of copper across the different flood severity treatments 

within sampling locations one, two, and three across the Humber catchment. The results represent the 

average chemically remobilised copper concentration (n=3) with the associated standard deviation bars 

(95% confidence interval).  

3.4.5 Investigating the Influence of Physical Elements on PHE Porewater 

Solubility - Microcosm Design Four  

This section focuses on investigating how changing land gradients (4.35o, 7.22o, and 

16o) and vegetation coverages (35%, 55%, 90%) influence copper, lead, and arsenic 

porewater solubility across the three sampling locations along the River Almond 

embankment, respectively. The “physical elements” in this section refer to the land 

gradient and vegetation coverage. For information on how the land gradient and 
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vegetation coverage were calculated, including why copper, lead, and arsenic were 

selected, see Section 3.3.7 and Section 3.3.1.  

For all the sampling locations, increasing the flood duration (1-4 days) decreased 

copper and lead porewater solubility; however, it increased the solubility of arsenic 

present in the soil (Figure 3.19). Arsenic solubility was the highest during day four of 

flooding (5.6µg/L, 6µg/L, and 6.7µg/L, respectively). The solubility of arsenic at the 

end of the flood was the lowest under the flattest land gradient (4.35o at 5.6µg/L) and 

the highest under the steepest gradient (16o at 6.7µg/L). At the end of the flood, copper 

and lead solubility decreased considerably within all the sampling locations. Copper 

and lead solubility under the steepest land gradient did not decrease significantly from 

the beginning to the end of the flood, only by a 6.6% and 13.5% decrease, respectively. 

The steady decrease in copper and lead solubility suggests that steeper land gradients 

do not significantly alter copper and lead porewater solubility. Copper and lead 

porewater solubility was the highest at the end of the flood within the sampling location 

containing the highest vegetation coverage (51µg/L and 2.1µg/, respectively).  

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Outlines the changing soluble arsenic, lead, and copper concentrations within the soil 

porewater across the three different sampling points along the River Almond embankment. Such 

concentration changes refer during the four day flood. The large points represent the average porewater 

concentration (n=9) with the associated standard deviation bars (95% confidence interval). The black 

line represents arsenic, green is lead and blue is copper.  
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3.4.6 Investigating the Influence of Flooding on PHE Porewater Solubility Within 

Large-Scale Designs - A Mesocosm Experiment  

This mesocosm experiment examined the influence of flooding on PHE mobility within 

larger-scale mesocosm experiments. The purpose of conducting such setups are 

outlined in Section 3.3.8. This discussion only focuses on copper; however, for more 

information around the influence of flooding within these mesocosms for different 

PHE, see Appendix D.  

Copper is a priority in environmental monitoring because of its dual role as an 

important micronutrient for plants and wildlife; however, copper is also a non-

degradable and persistent PHE which is highly toxic when total soil copper 

concentrations exceed 20-30mg/kg (see Section 1.4.2) (Hayat et al 2021). Compared to 

other PHE (e.g., lead and arsenic), copper interacts with a wider range of organic and 

inorganic soil components, including organic matter, iron, manganese, and aluminium, 

making it significantly challenging to analyse the effects of flooding influencing the 

porewater solubility of copper (Poggere et al 2023) (see Section 1.4.2). The non-

degradable persistence of copper and the complexity of understanding how copper 

interacts with different inorganic and organic soil components emphasise the 

importance of focusing on copper (Hayat et al 2021; Kah et al 2022; Kumar et al 2021; 

Lair et al 2007; Poggere et al 2023).  

During inundation and drying, the different ambient humidity levels (35%, 65%, 95%) 

statistically significantly influenced copper porewater solubility (F-Crit = 3.21; p = 

0.004; F-Crit = 3.17; p = 0.03) (Figure 3.20). The climate warming scenario of + 1.5oC 

also statistically significantly increased copper porewater solubility (t = 3.49, p = 

0.00074). The results show similar findings with the microcosm design one (Figure 

3.14), confirming that as flood duration increases, copper porewater solubility 

decreases. Such findings show copper’s remobilisation alters the most significantly 

within the first five days during inundation, showing similar results with Figure 3.16, 

indicating the physicochemical changes most significantly during such periods, 

potentially influencing copper’s mobility.  
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Figure 3.20. Outlines the mesocosm results investigating copper’s porewater solubility across sampling 

locations 1-3 for the different treatment groups (1-6). The microcosm results denote averages (n=3) at 

the 95% confidence interval. These figures outline the observed laboratory copper concentrations 

remobilising throughout the flood (indicated in green). The random forest models (blue line) compared 

these observations with the predicted chemically remobilised copper concentrations. The “t” value 

denotes the results from the independent sampled t-test results, comparing the observations with the 

predictions at the 95% confidence interval. The significance of providing the t-test statistic and 

significance level is to investigate the effect of the random forest predictions having the reliability to 

estimate remobilised PHE fractions.  

3.4.7 Analysing the Influence of Flooding on PHE Bioaccessibility           

Microcosm Design One  

This section investigates the influence of flooding on copper, lead, and arsenic 

bioaccessibility within the Humber and Clyde catchments. Copper, lead, and arsenic 

bioaccessibility concentrations were significantly higher in the gastric phase than the 

gastrointestinal phase (Figure 3.21). This decrease in bioaccessible concentrations 

within the gastrointestinal phase occurs within all the sampling locations in the Clyde 

and Humber catchments. The most notable bioaccessibility decrease is post-flooding, 

most likely because all the bioaccessible copper was loosely bound and no longer 

available (Xu et al 2023). The gastric bioaccessibility of lead, copper, and arsenic was 

significantly higher within the Humber compared to the Clyde catchment. This 

difference in bioaccessibility within the Humber compared to the Clyde is particularly 

apparent for copper and lead bioaccessibility. The gastrointestinal bioaccessibility of 
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lead, copper, and arsenic was observed to be higher in the Humber than in the Clyde. 

These findings suggest that the significant differences in PHE gastrointestinal 

bioaccessibility between the Humber and Clyde could be attributed to their distinct 

physicochemical and geochemical properties (Ponting et al 2021). The disparity in 

gastrointestinal bioaccessibility could result from the differences in total soil PHE 

concentrations (Table 3.5). These differences of total soil PHE concentrations are linked 

to the differences in the bedrock geology between these two catchments, as well as the 

industrial sources and types. However, the error bars are significantly large for the 

gastric and intestinal PHE bioaccessibility concentrations, indicating high 

bioaccessibility variations between the replicates. These variations in bioaccessibility 

may be attributed to the large spatial differences in soil PHE concentrations.  

 

 

 

 

 

 

 

 

 

Figure 3.21. BARGE gastric and intestinal bioaccessibility results before, during and after flooding 

within the Clyde and Humber catchment. The error bars indicate the data variation at the 95% 

confidence interval (n=3).  

3.4.8 Evaluating the Influence of Different Flood Severities on a PHE 

Bioaccessibility - Microcosm Design Three 

This section investigates flooding on PHE bioaccessibility within the Humber. For the 

purpose of space, copper will be investigated; however, for information relating to 

different PHE types, see Appendix C. The small standard deviation bars across the 

various flood severities indicate that despite the physicochemical changes associated 

with the different flooding treatments, the gastric and gastrointestinal bioaccessibility of 

copper remains unchanged within each treatment (Figure 3.22). For example, within the 
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annual flood, consisting of oxidising redox potentials, copper bioaccessibility variations 

remain low; however, within the 1 in 10,000-year flood, with low reductive redox 

conditions, copper bioaccessibility variation is also low. These findings suggest that the 

differences in physicochemical conditions between the different flood treatments do not 

significantly impact the variability of copper bioaccessibility. If a particular flooding 

severity (e.g., 1 in 100 year) did have high variations in copper bioaccessibility, 

potentially attributing to the physicochemical conditions during that flood, this may be 

challenging to predict; however, as mentioned, these variations were not observed 

within any of the flooding experiments.  

The total gastric bioaccessibility is highest at the beginning of the flood within the 

annual flood severity group at 1364µg/L. This 1364µg/L value exceeds the maximum 

daily dose for copper in drinking water, which is 1300µg/L (Environment Agency 

2008). As the flood duration increases gastric concentrations decrease. Again, like with 

the rapid physicochemical changes observed during the beginning of the flood (Figure 

3.22), copper bioaccessibility rapidly decreases between days one and three within the 

1 in 500 years and 1 in 10,000 treatment and slowly declines after such days.  

Increasing the flood duration (i.e., annual flood at three days compared to 1 in 10,000 

year flood at 43 days) does not reduce copper’s gastric concentration compared to the 

shorter durational annual floods. For example, at the end of day for the annual flooding 

experiment, the average copper bioaccessibility was 53µg/L, whereas at the end of day 

43, copper bioaccessibility was higher 501µg/L, suggesting longer duration floods 

significantly increase copper gastric bioaccessibility. Sharma et al (2022) agrees, 

showing that prolonged flooding increases copper bioaccessibility within wetland soils 

through the reducing redox potentials causing the reductive dissolution of metal-

bearing oxides.  

At the end of the flood, the gastrointestinal bioaccessible concentrations of copper are 

the highest within the 1 in 10,000-year flood (1183µg/L) and the lowest within the 1 in 

500-year flooding treatment (51µg/L). These findings are significant, indicating that 

increasing the flood duration does not increase gastrointestinal copper bioaccessibility. 

The findings reveal a key difference between the influence of flood duration and copper 

bioaccessibility, indicating that longer floods increase copper gastric bioaccessibility; 

however, flooding does not influence increasing copper gastrointestinal bioaccessibility. 
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These findings emphasise the need to understand more about how copper’s gastric 

bioaccessibility changes during flooding and how this influences human and wildlife 

health through conducting more flooding experiments to confirm these findings and 

analyse relationships within different locations to verify and validate the results 

(Kulsum et al 2023).  

Figure 3.22. Outlines the changing bioaccessible gastric (blue) and intestinal (green) concentrations 

throughout the flooding treatment microcosms within the Humber (annual, 1 in 100-year, 1 in 500-year, 

and 1 in 10000-year). Such data represents the average bioaccessible concentrations for copper (n = 3) 

with the associated standard deviation bars (95% confidence interval).  

3.4.9 Investigating the Influence of Flooding on PHE Bioaccessibility within 

Large-Scale Designs - A Mesocosm Experiment  

This section focuses on analysing the influence of flooding on lead bioaccessibility 

during flooding within large-scale mesocosms experiments using soil extracted from 

the Clyde catchment. This section selects lead because of the significant health 

consequences of exposure to bioaccessible lead (Table 1.1, Chapter 1). For information 

about the changes in bioaccessibility of different PHE during this experiment, see 

Appendix B.  

There are statistically significant differences in bioaccessible lead concentrations at 

different humidity levels during flooding (F = 18.5; p = 0.02) (Table 3.6). The results 

indicate that lead bioaccessibility increases under higher humidity levels (95%). These 

findings suggest that floods during the summer within the UK, which experience 

average ambient humidity levels between 50-60%, are associated with lower lead 

bioaccessibility compared to winter floods, where the ambient humidity levels range 

between 80-90%, potentially increasing lead bioaccessibility (Brugnara et al 2023). 
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This chapter does not investigate extensively the implications of such findings on 

predictive models; however, it emphasises the importance of any predictive model 

when estimating lead bioaccessibility changes during flooding to account for ambient 

humidity, particularly during the winter periods with higher humidity levels. Increasing 

the ambient temperatures by 1.5oC under a climate change scenario did not statistically 

influence lead bioaccessibility during flooding and drying (F = 4.54; p = 0.905). These 

results do not necessarily imply that temperature is not a significant variable 

influencing bioaccessibility; instead, an ambient temperature increase of 1.5oC is not 

enough to statistically influence lead’s bioaccessibility. The results are significant from 

a predictive model estimation, indicating that slight ambient temperature increases, 

irrespective of the importance of the temperature influencing soil microbial 

communities, are not statistically necessary for predicting lead bioaccessibility. 

Table 3.6. Outlines the changing gastric bioaccessibility concentrations of lead during the flooding and 

drying process within the six different mesocosms flooding groups. The table outlines average 

bioaccessibility concentrations (n = 3) recorded at the end of the flooding experiment. For information 

relating to the different treatment designs, see Section 3.3.8.  

Mesocosm 

Treatment 

Humidity 

Level (%) 

Ambient 

Temperature (oC) 

Gastric Bioaccessibility 

(µg/L) 

Flooding 

Gastric Bioaccessibility (µg/L) 

Drying 

1 35 Ambient 418 355 

2 65 Ambient 169 183 

3 95 Ambient 151 182 

4 35 + 1.5oC 153 321 

5 65 + 1.5oC 421 643 

6 96 + 1.5oC 503 532 

 

3.4.10 The impact of Flooding Influencing a PHE Solid Phase Distribution              

- A Microcosm Experiment 

This section investigates the influence of flooding on lead’s solid phase distribution 

within the Clyde catchment. For an overview explaining the purposes for selecting the 

Clyde catchment, see Section 3.3.3. Lead was selected to compare with the results 

showing lead’s bioaccessibility changes during flooding within the Clyde (Section 

3.4.9). Lead is also highly neurotoxic, with lead toxicity changing depending on the 
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solid phase distribution of lead (Kushwaha et al 2018; Peana et al 2021) (Table 1.1, 

Chapter 1). Briefly, the “solid phase distribution” refers to the fractionation of lead 

between soil mineral phases (e.g., carbonates, exchangeable, residual) (Cave et al 

2015). The process of adsorption and dissolution of lead ions in different soil mineral 

phases can directly influences lead solubility and bioaccessibility (Goodland 2013). For 

example, lead ions coprecipitating with organic matter are much less soluble than lead 

soluble within soil porewater not coprecipitating with any soil organic matter (Nigg 

2016). 

The chemometric mixture resolution algorithm identified the soil components and how 

lead is distributed among these different components. These findings from the 

algorithm reveal six different soil components (Tardif et al 2019). The six components 

were determined using hierarchical cluster analysis, which was chosen to visually 

cluster these components and distinguish the difference between the components. 

Before flooding, lead was not associated with oxides; instead, such complexation was 

with aluminium, specifically aluminium-phosphorus and copper and arsenic associating 

with oxides (indicated by light blue coefficient on the plot, see dashed circle) (i.e., Al-

Fe-Ca, Fe-Al-P and Fe) (Figure 3.23, Figure B3.7, Appendix B). 

During flooding, many PHE coprecipitated with oxides instead of carbonates. (Figure 

B3.8, Appendix B). Lead strongly dissociated with iron and aluminium during flooding 

(indicated by the darker blue coefficient values within the plot). Arsenic dissociated 

with many mineral phases, particularly the oxide phases, such as aluminium. Such 

findings reveal that physicochemistry influences PHE solid phase distribution, 

confirmed by the identified PCA clustering (Figure B3.9, Appendix B).  

In figure 3.13, it shows how different mineral phases (i.e., carbonates, porewater, 

exchangeable) influence different physicochemical variables. The individual 

component within each mineral phase is also computed. The colour from each gird cell 

denotes the correlation coefficient between the mineral component and the physic 

alchemical parameter. The tables below (Table 3.23, 3.24) indicate the total variation 

(R2) of each mineral phase with the different physicochemical components. The results 

reveal before and after flooding, many of the PHE have relationships (binding sorption 

and dissolution properties) with iron and aluminium oxides.  
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Figure 3.23. Hierarchical clustering heat map. The figures display the data as a grid with columns 

indicating the different physicochemistry parameters, and the rows show the different speciation clusters. 

Each cell represents a coefficient strength. High coefficients mean stronger and higher values, whereas 

low coefficients show weaker and lower values. The coefficient represents the R2. For example the cell in 

the very top right box for before flooding (Ca-Al-Fe) indicates an R2 of 0.06, meaning Ca-Al-Fe explains 

0.06 of the variation in aluminium concentrations. The different rows (speciation) cluster groups based 

on this coefficient. Rows with similar colours are related and are therefore clustered. For example, take 

the physicochemical parameter aluminium in plot A. This parameter shows a darker red colour with the 

carbonate cluster, indicating high correlations aluminium may have with influencing PHE within the 

carbonate mineral phase. Plot B shows the same relationships, the only difference being how 

physicochemical changes during flooding influence PHE within different clusters. For example, in 
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contrast with plot A, aluminium has a darker blue coefficient (meaning a strong relationship) with the 

exchangeable cluster more than the carbonate phase. 

Table 3.23. Compares the statistical correlation (R2) between the different mineral phases and soil 

physicochemical components before flooding.  

Mineral Phase 

Cluster 

Pb 

R2 

Cu 

R2 

As 

R2 
Na 

R2 

Ca 

R2 

Mg 

R2 

S 

R2 

K 

R2 

Mn 

R2 

P 

R2 

Fe 

R2 

Al 

R2 
Porewater -0.15 -0.08 -0.05 0.05 0.04 0.02 0.02 0.02 0.06 0.06 0.04 0.02 

Exchangeable -0.17 -0.04 -0.02 0.04 0.02 0.03 0.03 0.02 0.04 0.03 0.02 0.02 

Carbonate -0.12 -0.01 -0.05 -0.02 -0.03 0.09 0.05 0.02 0.03 0.03 0.02 0.05 

Fe-Al  (1) -0.11 -0.04 -0.03 0.01 0.04 0.09 0.13 0.04 0.04 0.03 0.04 0.05 

Fe-Al (2) -0.11 -0.04 -0.03 0.05 0.04 0.12 0.15 0.05 0.02 0.02 0.02 0.02 

Fe-Oxide -0.15 -0.10 -0.04 0.05 0.05 0.07 0.08 0.02 0.02 0.02 0.01 0.03 

 

Table 3.24. Compares the statistical correlation (R2) between the different mineral phases and soil 

physicochemical components after flooding.  

Mineral 

Phase Cluster 

Pb 

R2 

Cu 

R2 

As 

R2 
Na 

R2 

Ca 

R2 

Mg 

R2 

S 

R2 

K 

R2 

Mn 

R2 

P 

R2 

Fe 

R2 

Al 

R2 
Porewater -0.04 -0.06 -0.11 0.03 0.03 0.04 0.03 0.01 0.01 0.03 0.06 0.05 

Exchangeable -0.06 -0.04 -0.15 0.05 0.06 0.03 0.03 0.07 0.05 0.04 0.02 0.01 

Carbonate -0.08 -0.03 -0.12 -0.04 0.04 0.04 0.04 0.05 0.03 -0.02 0.03 0.05 

Fe-Al (1) -0.16 -0.12 -0.14 -0.19 0.07 0.04 0.04 0.04 0.04 0.02 0.02 0.04 

Fe-Al (2) -0.02 -0.05 -0.09 -0.01 0.03 0.05 0.05 0.05 0.06 0.05 0.06 0.04 

Fe-Oxide -0.05 -0.06 -0.09 0.03 0.05 0.05 0.04 0.06 0.04 0.03 0.04 0.04 

 

3.5 Discussion  

3.5.1 The Influence of Physicochemical Changes During Flooding Impacting PHE 

Porewater Solubility  

Flooding generally decreased the soil porewater solubility of metals; however, flooding 

increased the arsenic’s solubility. Such findings can be attributed to increased 

interactions with oxides, PHE surface charge, and PHE competition (Whitby and Berg 

2015). 

The anoxic reductive redox potentials created during flooding promoted sulfate 

reduction into sulfide (Bindal and Singh 2019). These sulfides complexed with PHE 

through clustering, forming insoluble complexes or precipitates through sulfide ions 

acting as ligands and binding with PHE (Izaditame et al 2022). Lytle et al (2020) 

showed that the negatively charged sulfide species attract positively charged lead and 

copper ions. The association between sulfide formation, created from reducing 

conditions, indicates the mechanism for decreasing PHE mobility, emphasising the 
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correlation between physicochemical changes influencing PHE mobility (Simmler et al 

2017). 

Arsenic’s porewater solubility increased during flooding, irrespective of such sulfide 

minerals potentially forming stable complexes with arsenic (e.g., As2S2); potentially 

immobilising arsenic’s porewater solubility (Izaditame et al 2022). These findings can 

be attributed to arsenic’s surface charge changing during flooding through the reducing 

redox conditions  because lowering redox conditions transforming arsenate to less 

negatively charged arsenite, which has a lower affinity of adsorbing to positively 

charged mineral phases (Izaditame et al 2022). Many PHE compete for ligand receptors 

on mineral phase surfaces (e.g., clays, organic carbon, and aluminium) (Simmler et 

al 2017). Such competition may mean lead and copper are outcompeting arsenic for 

ligand exchanges (Jaruga et al 2017). This competition heightens when many lead and 

copper ions are reductively dissolved from iron, aluminium, and manganese oxides 

(Heyden and Roychoudhury 2015). The findings here support such evidence, showing 

that solubilised arsenic significantly increased after day six during flooding, most likely 

attributed to the oxides dissolving and the metals outcompeting arsenic for sulfide 

binding (McCauley et al 2009). 

3.5.2 The Influence of Physicochemistry Changes During Flooding Influencing 

PHE Bioaccessibility  

The results showed flooding decreased bioaccessible PHE concentrations. This 

decrease in bioaccessible PHE concentrations may be attributed to the reductive redox 

conditions that form metal-sulfide clusters (Mendez et al 2017). These clusters, as 

mentioned previously, form ligand exchanges with PHE, reducing PHE solubility and 

bioaccessibility (Huang et al 2021). However, the Unified BARGE method uses a pH 

1.2 gastric solution, effectively acidifying soil mineral phases, such as carbonates, iron, 

and aluminium oxides, potentially affecting these metal-sulfide complexes (Wragg et al 

2011). The pH of the human stomach ranges between 1.5 - 3.5, making the BARGE 

procedure using a pH of 1.2 considerably lower than the typical stomach pH conditions 

(Takegawa et al 2022).  

This lower BARGE pH level represents the stomach pH at the more extreme 

conditions, with no food intake, whereby food typically raises the stomach pH 

conditions (McLaren 2017). The issue with such low pH conditions simulated during 
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BARGE is it typically does not consider a realistic scenario of the actual stomach pH 

levels, and because the pH 1.2 is significantly low, this likely acidifies these sulfide 

complexes more compared to the normal pH levels between 1.5 - 3.5 (Takegawa et al 

2022). This low pH level raises concerns regarding the validity of these BARGE results 

because the low pH levels most likely dissolve these sulfide complexes more compared 

to a scenario typical of the stomach pH. By dissolving these sulfide complexes more, 

the BARGE procedure likely will increase PHE bioaccessibility (by dissolving these 

sulfide complexes) and potentially overestimate the actual PHE bioaccessibility 

because of the extreme pH conditions (Takegawa et al 2022). 

Irrespective of the highly acidic pH conditions dissolving many soil mineral phases, the 

metal-sulfide clusters potentially exhibit some resistance to these acidifying conditions 

(Huang et al 2021). These metal-sulfide clusters have shown significant resistance to 

acidifying conditions by forming passivation layers (Ghita et al 2013). The passivation 

layers can shield the metal-sulfide complex clusters, reducing the contact and exposure 

of these clusters with the acidic gastric solution (Ghita et al 2013). These metal-

sulfides, which form exclusively during reductive redox conditions, and typically form 

under anaerobic conditions, potentially significantly influence PHE bioaccessibility, 

irrespective of the acidifying gastric pH conditions (Huang et al 2021). 

3.5.3 The Influence of Physicochemical Changes During Flooding Influencing PHE 

Solid Phase Distribution   

The results indicated that physicochemical changes during flooding alter a PHE solid 

phase distribution; however, the findings highlight the intricacy of solid phase 

distribution changes (Bindal and Singh 2019). Such solid phase distribution changes are 

distinguishable by clustering, showing specific PHE (e.g., arsenic) speciate less with 

some mineral phases than others (e.g., copper and lead, which speciate more with 

oxides and carbonates) (McLaren 2019). The most significant finding is that soil 

heterogeneity itself influences PHE solid phase distribution within such clusters, 

emphasising the challenges of predicting PHE solid phase distribution using 

physicochemistry alone (Huang et al 2021).  

These challenges are further exacerbated because soils are highly heterogeneous on the 

micro and macro scales (Nunan et al 2020). These microcosm and mesocosms 

experiments showed the explicit links between how flooding alters physicochemistry 
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and how this change influences PHE mobility, bioaccessibility and solid phase 

distribution. The results highlight the need for research on how physicochemistry can 

benefit understanding PHE dynamics and surveillance. Such complexities around how 

flooding changes PHE solid phase distribution may mean predicting such mechanisms 

using physicochemistry is challenging.  

3.6 Conclusion  

This chapter highlights the importance of developing of improving mechanisms for 

estimating PHE porewater solubility, bioaccessibility and solid phase distribution 

changes during flooding. The implications of future climate change increasing the 

frequency and magnitude of riverine and coastal flooding underscores the need for 

monitoring such PHE changes in real time. This chapter highlights the opportunities of 

using physicochemical information to estimate such PHE changes during flooding.  

The chapter recommends further research around developing computer models to 

predict, using this physicochemical data, PHE porewater solubility, bioaccessibility and 

solid phase distribution. Such models should identify the relevant physicochemical 

variables to predict these PHE changes. These models should also explore different 

modelling types, such as statistical, machine and deep learning approaches to 

investigate and compare such predictions.  

These findings have significant implications for modelling purposes, emphasising the 

unique opportunities of using the correlations between soil physicochemistry changes 

during flooding to predict PHE dynamics. The key messages for modelling purposes 

would be:  

• Training different modelling approaches to estimate which soil physicochemical 

changes during flooding influence PHE porewater solubility, bioaccessibility, 

and speciation. 

• Analyse the opportunities of novel artificial intelligence approaches and 

compare this to existing statistical models to estimate PHE dynamics.  

• Analyse the predictive performance of different modelling approaches trained 

on these data to predict PHE dynamics.  



145 

 

Chapter 4: Thesis Structure  
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Chapter 4: Developing Statistical, Machine, and Deep Learning Models for 

Estimating PHE Porewater Solubility, Bioaccessibility, and Solid Phase 

Distribution  

4.1 Introduction  

Recent developments of computer algorithms, parallel processing and quantum 

computing have created opportunities for exploring intricate and unknown relationships 

between soil physicochemistry and PHE dynamics. The previous chapter indicated that 

physicochemical changes during flooding can have statistically significant influence on 

PHE porewater solubility, bioaccessibility, and solid phase distribution. There are 

opportunities for incorporating such data into AI models for estimating a PHE transport, 

fate, and behaviour during flooding (Feng et al 2015). Such models may overcome the 

resource intensive field and laboratory procedures for scientists and instead, for the first 

time, provide reliable, fast, and cost-effective predictions.  

This chapter will review the mechanistic “black box” nature of random forest models, 

extreme gradient boosting algorithms, and neural networks. These AI models were 

selected, examined, and compared in their predictive performance between decision-

tree learners and neural network architectural designs. The review focuses on decision-

tree splitting, bias and variance trade-off’s within AI modelling, hyperparameter tuning 

and regularisation, bootstrap aggregation, gradient boosting and neural network 

designs, respectively. This investigation statistically compares, for the first time, 

different statistical and AI designs (decision-tree and neural networks), using 

physicochemical data, to predict PHE changes during flooding.   

4.1.1 Decision Trees and Data Splitting  

A decision tree approach formulates a prediction, which can quantify the soluble 

porewater PHE concentration and bioaccessibility during flooding (Genuer et al 2010). 

To do this, a decision tree comprises of many attributes, such as roots, nodes (parents 

and children), and leaves (Galiano et al 2014). A root node is the top of the tree, 

containing the entire dataset (Galiano et al 2014). The branches represent a potential 

outcome after splitting a particular feature (Cutler et al 2007). A parent node is the 

topmost node in a decision tree, which splits into smaller child nodes (Galiano et al 

2014). As the tree splits, the data within each node gets smaller, decreasing the 

information transfer from the parent to the child nodes (Cutler et al 2007). The final 
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decision is represented in the leaf node. The collective combination of the root, 

branches, nodes and leaves form the decision tree (Figure 4.1, information obtained 

from Galiano et al 2014). 

 

Figure 4.1. Outlines the computational process of tree learning AI. The figure outlines the root note 

containing the dataset, which is split into subsequent parent nodes, the final decision split represents the 

leaf node (Galiano et al 2014). 

Decision trees split data, identifying nonlinear patterns and relationships (Cutler et al 

2007). The criterion function for splitting the root to the parent node follows the 

principles of entropy and information gain (Hong et al 2019). Entropy refers to the 

datasets disorder (chaos) (Galiano et al 2014). Calculating the datasets entropy can 

determine the degree of randomness or variation in the data (Hong et al 2019). For 

example, a fruit basket containing only apples will have a very low entropy because 

there are just apples. In contrast, a fruit basket containing apples, oranges, pears, and 

mixed tropical fruits contains higher entropy and randomness. The decision tree 

calculates the dataset entropy using the equation proposed by Springel and Hernquist 

(2002),  

Entropy(s) = ∑ − 𝑝 𝑙𝑜𝑔2 𝑝𝑖𝑐
𝑖=0                                                                                        Eq. 2 

where “S” is the dataset, “c” is the number of target variable classes, “p” is the 

proportion of data points that belong to the class “i,” and the summation “Σ” denotes 

this is calculated across all the classes. The information gain defines the amount of 

entropy reduction after feature splitting (Galiano et al 2014). Calculating the 

information gain using entropy allows the model to determine which feature is best to 

split based on the principles of which features reduce the entropy most significantly 
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(Shaheen and Iqbal 2018). The decision tree calculates the information gain using the 

following equation by Nelson (2017), 

Gain (S,A) = Entropy(s) - ∑ ∗
𝑆𝑣

|𝑆|
∗ Entropy(Sv)𝑣𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)                                  Eq. 3 

where “SV” is the number of elements in a set, “S” is the number of total elements, and 

“veValues(A)” is the value of all attributes.” The “Gain(S, A)” is the expected reduction 

in entropy upon setting on “A.” Very simply, the first split from the root node is decided 

based on which split from the feature variable decreases the dataset entropy the most 

significantly, contributing to the highest information gain (Shaheen and Iqbal 2018). 

The root node contains highly unordered “chaotic” data with high entropy (Cutler et al 

2007). The purpose of the decision tree is to transform this “chaos” data into orderly 

low entropy data (Cutler et al 2007). If splitting a feature has a greater information gain 

and a lower entropy, that feature is split first from the root node (Shaheen and Iqbal 

2018). When a particular feature is identified to split, splitting is performed through 

recursively partitioning the feature data (Hong et al 2019). The recursive aspect is 

placing the data into a two-axis hyperplane (X, Y) (Hong et al 2019).  

The hyperplane data are partitioned into groups (or splits) in which the algorithm is 

clustering (Shaheen and Iqbal 2018). For example, assume the algorithm calculated, 

based on entropy and information gain, that splitting pH data to predict copper’s 

porewater solubility creates the lowest entropy and highest information gain (Hong et al 

2019). The algorithm places all the pH values on the X-axis and copper concentrations 

on the Y-axis (recursive) (Hong et al 2019). The algorithm decides to split on the right-

hand side with “pH > 9” with copper concentrations “>100µg/L” and the left-hand side 

with “pH < 9” with copper concentrations “< 100µg/L” (Cutler et al 2007).  

When a hyperplane is partitioned based on such a command and it is then split 

(Shaheen and Iqbal 2018). Adding to the degree of randomness and addressing highly 

multi-dimensional data, a random forest model uses feature sampling when splitting the 

data (Cutler et al 2007). Simply, feature sampling is when the random forest choose 

features to split; when the randomly selected features are identified, the split function 

will begin based on information theory (Shaheen and Iqbal 2018). Not all decision tree 

splits will have the same features to split; however, the number of features is randomly 
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allocated to the decision tree; typically, the value is the square root of all the features. 

(Figure 4.2, information obtained from Shaheen and Iqbal 2018). 

Figure 4.2. Outlines the mechanistic “black box” process of splitting the dataset from a high entropy 

towards a lower entropy using the recursive or kerel trick process (Shaheen and Iqbal 2018). This figure 

outlines how information splits using the techniques.  

Randomly selecting features also helps reduce the model bias and multidimensionality 

(Tyralis et al 2019). Feature sampling addresses multidimensionality by forcing the 

model to focus on a subset of features, reducing the influence of noisy features (Hong 

et al 2019). The bias is addressed because each decision trees works with different data, 

increasing the model’s diversity and lowering the bias (Hong et al 2019). If such 

splitting cannot be performed; for example, where there is a lot of noise in the dataset, 

then the random forest model can perform the Kernel trick (Tyralis et al 2019). Such a 

‘trick’ projects the data into a higher dimensional space, improving the ability to 

identify clusters or patterns, similar to PCA, allowing decision trees to capture more 

intricate relationships (Tyralis et al 2019).  

The Gini impurity assesses the degree of entropy in the final leaf node (Cutler et al 

2007) and quantifies the probability of misclassifying elements within the data 

(Shaheen and Iqbal 2018). When the decision tree continuously splits using recursive 

partitioning, it is anticipated in the leaf node that the data contains the results the user 

needs (i.e., the predictions) (Feng et al 2015). The Gini impurity measures how 
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frequently a randomly chosen element from a set would be incorrectly labelled if it 

were randomly labelled according to the label distribution in the subset (Shaheen and 

Iqbal 2018). For example, if the subset of data in the leaf node contained nine oranges 

and one apple, then the Gini impurity is 0.9; however, if there were five oranges and 

five apples, then the impurity is 0.5, meaning the leaf node has a higher entropy and 

generalisation error (Feng et al 2015). See Figure 4.3 outlining how the Gini impurity is 

defined (information taken from Feng et al 2015). 

 

Figure 4.3. Indicates how the definition of the “Gini impurity” is calculated. The figure indicates within 

the leaf node the number of correctly and incorrectly data contained (Feng et al 2015). 

The Gini impurity is used for classification trees; however, for regression problems, the 

mean squared error of the leaf is used for assessing the impurity level, where the mean 

is purer if all the points are closer to the mean (Shaheen and Iqbal 2018). This impurity 

reflects the entropy of the decision tree, assessing the quality of decision tree splitting 

(Feng et al 2015). 

4.1.2 Bias and Variance in Random Forest Modelling 

Any machine learning algorithm has inherent issues and trade-offs concerning bias and 

variance (Sinha et al 2019). High bias refers to the tendency of the model to 

consistently make unreliable predictions because the model is generalising the results, 

leading to underfitting and a generalisation error (Sinha et al 2019). Typically, such a 

model is too simplistic, consisting of a poor linear relationship, creating a high bias, 

requiring extreme gradient boosting (discussed in Sections 4.1.3, 4.1.4, 4.1.6). 

Bias can occurs in simplistic models which do not capture data patterns, where the 

model has very strong preconceptions (Belkin et al 2019). Oppositely, high variance 

means the model is overly complex and has learned to fit the training dataset almost 
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perfectly; however, when confronted with unfamiliar test data, the model fails to 

generalise well, causing overfitting (Belkin et al 2019). High variance can occur when 

the decision trees are split too frequently, and the trees are too deep, typically creating a 

polynomial data fit (Biau and Scornet 2016). Complex models generally contain high 

variance because they capture intricate relationships, potentially capturing noise data, 

and thus can result in poor generalisation (Belkin et al 2019).  

The goal for any decision tree model is to strike a delicate balance between bias and 

variance, finding the appropriate level of model complexity, where the training error is 

minimised, without potentially causing a testing error increase (Belkin et al 2019). 

Diagnosing overfitting and underfitting is challenging; however, when the training error 

is reduced considerably at the expense of the testing error increase, this is the first sign 

that overfitting is occurring (Biau and Scornet 2016). For an illustration of bias and 

variance concepts within decision tree splitting, see Figure 4.4 (information taken from 

Biau and Scornet, 2016).  

 

Figure 4.4. Outlines how the decision tree size, number of branch connections and nodes influence the 

bias and variance of the model predictions. The figure illustrates that increasing the decision tree size 

with the attempt to lower the Gini impurity has negative consequences for increasing the variance (Biau 

and Scornet 2016).  

4.1.3 Hyperparameter Tuning 

The purpose of hyperparameter tuning is to maximise the model’s generalisation 

performance on unseen testing data. Such tuning helps locate the bias-variance sweet 

spot discussed in the previous section (Belkin et al 2019). However, different 

hyperparameter values impact on model predictive performance; thus finding the right 
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combination is crucial for achieving the optimal bias-variance trade-off (established 

using cross-validation) (Cutler et al 2007). Some common tuning hyperparameters 

include the number of decision trees, the tree depth, and feature randomisation (Sinha et 

al 2019). 

For the number of decision tree hyperparameters, the typical default setting is 500 

decision trees for an ensemble classifier; however, tuning such a parameter by altering 

the number of trees can address this bias-variance problem (Springel and Hernquist 

2002). Increasing the number of trees can minimise bias, by capturing more complex 

relationships, and increase the variance, leading to overfitting (Feng et al 2015). 

Conversely, decreasing the decision tree number can reduce the variance but increase 

bias by reducing the likelihood of capturing such intricate relationships. Tuning this 

hyperparameter can help establish the correct balance (Hong et al 2019).  

Adjusting the tree depth hyperparameter alters the number of decision tree splits 

(Belkin et al 2019). Such tuning may reduce overfitting, minimising the complete 

training purity and bringing in some generalisation or “guessing” work for the decision 

tree (Biau and Scornet 2016). A deeper tree can capture more detailed complex 

relationships but may cause overfitting. The hyperparameter applies the cost 

complexity penalty to each split (Biau and Scornet 2016). The level of entropy usually 

represents the penalty; the branches with the highest cost (i.e., greatest entropy) are 

removed (Feng et al 2015). The feature randomisation hyperparameter may also 

address overfitting and underfitting (Hong et al 2019). Such a hyperparameter 

determines the number and type of features considered at each decision tree split (Sinha 

et al 2019). For instance, such a hyperparameter can be tuned to ensure each decision 

tree split has only a third of the subsampled features (Schubach et al 2017). This tuning 

ensures randomisation and diversity within the decision trees, helping address the 

multidimensionality issues, by not accounting for all the feature variables, ensuring the 

decision tree ensemble is different (Figure 4.5; amended from Schubach et al 2017).  
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Figure 4.5. Outlines the various different hyperparameter tuning mechanisms. The figure indicates the 

number of decision trees, the tree depth and the number of feature splits all influencing the model tuning 

(Schubach et al 2017). 

There are several tuning hyperparameters to assign (e.g., number of trees, tree depth, 

number of features) (Feng et al 2015). Frequent mistakes are either tuning using all the 

hyperparameters, randomly guessing which parameters to tune, or applying the default 

hyperparameter values (Biau and Scornet 2016). Systematic grid searches can avoid 

such mistakes (Biau and Scornet 2016). Grid searching systematically explores the 

different combinations of hyperparameters to identify, establishing the type and value 

of hyperparameters to use by applying cross-validation (Hong et al 2019). The 

statistical technique “cross-validation” involves splitting data into parts, which train the 

model, and is then tested on different parts (Tougui et al 2021). The term “K-fold” in 

cross-validation refers to how many parts the machine learners train on (Tougui et al 

2021).  

4.1.4 Model Regularisation  

Regularisation helps prevent overfitting by adding a penalty term to the model, 

discouraging the model from overly relying on a single feature or overfitting the dataset 

(Lopez et al 2021). Regularisation is widely used to address overfitting, by adding a 
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penalty term to the model for the misclassification of variables (Sorenson et al 2019). 

The purpose of such a penalty is to discourage the model from misclassifying 

subsequent predictions by deliberately placing a weight (penalty) on the misclassified 

values (Sun et al 2019). For example, if a student performed poorly in a particular 

section within an exam, that student attempts to work harder at addressing the mistakes 

they made for the next exam (Feng et al 2015, Lopez et al 2021, Sorenson et al 2019, 

Sun et al 2019). There are two main regularisation types: one being L1 and the other 

being L2 regularisation (Breiman 2001). These regularisation penalties are similar; 

however, the difference is the nature of the regularisation penalty (Couronne et 

al 2018). In L1 lasso regularisation, the penalty function is proportional to the sum of 

the absolute values of the model coefficients. See equation the proposed by Kavuk et al 

(2011),  

R(W) = ʎ*||w||                                                                                                   Eq. 3            

where “ʎ” is the regularisation parameter, and “W” is the weight added to each feature. 

In L2 ridge regularisation, the equation is very similar; only the penalty function is 

proportional to the sum of squares of the model coefficients (Breiman 2001). See below 

by Kavuk et al (2011). 

R(W) = ʎ*||w||2                                                                                                  Eq. 4 

The aim of regularisation is to fit the training data using a quadratic fit, which is the 

sweet spot between a linear fit and a polynomial fit (Breiman 2001). In other words, a 

polynomial fit attempts to fit the data perfectly, leading to overfitting, and a linear fit, in 

many instances, does not understand the intricates of the data patterns, leading to 

underfitting (Kavuk et al 2011). The idea of regularisation is to bridge the gap between 

overfitting and underfitting using quadratic fits (Breiman 2001) (see Figure 4.6, 

information obtained from Feng et al 2015). 
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Figure 4.6. Outlines the mechanistic understanding of regularisation in machine learning. The 

illustration shows two limitation of training data (1) linear generalisation error, showing the predictions 

not encapsulating small data variations and (2) a polynomial fit leading to making poor predictive 

performances outside its testing range. The process of regularisation “smooths” the model fit closer to 

quadratic fits 

4.1.5 Random Forest Bagging 

Bagging, also known as bootstrap aggregation, is an ensemble learning method 

designed to improve decision tree models by reducing the variance and enhancing the 

stability and accuracy (James et al 2013). Multiple decision trees are trained on a 

training dataset (McLaren 2019). 

There is no standard method for deciding the number of decision trees; however, grid 

searches are a systematic approach to searching for the best hyperparameters, including 

the number of decision trees as well as other model-specific parameters that need to be 

set before training the model (e.g., max_depth and max_features) (James et al 2013). 

The number of decision trees depends on the model complexity, the number of features, 

and the complex interactions among such features (Breiman 2001). The term “feature” 

refers to the input variables the machine learning models use to predict (Breiman 2001). 

Each sample can be selected multiple times with replacement, ensuring randomisation 

(Sorenson et al 2019). For example, if the dataset contains singular values representing 

calcium, potassium and iron concentrations, sampling with replacement could result in 
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selecting the same value multiple times, such as two calcium values and one potassium 

value chosen randomly (Sinha et al 2019). For example, the same value can be chosen 

more than once (Cutler et al 2007).  

A decision tree is different from the training dataset because it is trained on bootstrap 

samples from the training dataset, meaning that each sample can be selected multiple 

times, ensuring randomisation (Schubach et al 2017). These decision trees also ensure 

feature randomisation, meaning the decision tree will only take calcium and potassium 

values, for example, whereas another tree will extract iron and manganese, for example. 

(Shaheen and Iqbal 2018).  

Typically, two-thirds of the total number of data points from the training dataset will be 

extracted for such decision trees. The remaining one-third of data is used for testing, 

known as out-of-bag samples, which are used to estimate the model’s generalisation 

performance and assess feature importance (Shaheen and Iqbal 2018). Such features 

(e.g., calcium, potassium, and iron) are compared to predict this out-of-bag testing data.  

The predictions are only made for out-of-bag samples (Kavuk et al 2011). If removing a 

particular feature increases the out-of-bag prediction error, such a feature is considered 

important (Sinha et al 2019). By “important” means it has a strong statistically 

significant influence on the predictor variable (McLaren 2019). If removing a feature 

variable significantly reduces the out-of-bag testing error this variable is considered 

“important.” The out-of-bag data offers a unique advantage of assessing the variable 

importance without requiring the actual test data bank (James et al 2013).  

The feature importance is measured by assessing how much each feature contributes to 

reducing the impurity (Gini for classification and mean square error for regression); the 

more significant the reduction in the impurity, the more important the feature (James et 

al 2013). The “Gini” metric determines the “purity” of the leaf node and refers to the 

number of misclassified variables within the final prediction (Kavuk et al 2011). Gini 

values closer to 1 equal low purity and closer to zero equal perfect classification or 

purity (Kavuk et al 2011). 

Alongside calculating the feature importance using the out-of-bag data, there are 

various other ways of calculating the feature importance, such as using SHapley 

Additive exPlanations (SHAP), Gini importance, entropy and information gain (Cutler 

et al 2007). SHAP derives from Shapley values from the cooperative game theory 
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(James et al 2013). Initially, these Shapley values are fairly distributed “payout” among 

the different players “features” (Tougui et al 2021).  For each feature variable, or 

“player” in the game, it calculates that features contribution by considering all the 

different feature combinations (Tougui et al 2021). The combination of all the features 

equate to the model’s predicted value minus the baseline (e.g. mean prediction) (Cutler 

et al 2007). Gini importance, as described before, measures the purity of the leaf node, 

with higher gini values denoting feature variables which are more important for 

increasing the purity or categorisation of splits (Cutler et al 2007). If removing a 

particular feature causes a decrease in the gini impurity this means that exclusion of 

that feature could negatively impact the predictive performance. Entropy measures the 

uncertainty or randomness in a dataset (see Section 4.2.5 for future information) 

(Sorenson et al 2019). Information gain measures the reduction in entropy after splitting 

a dataset based on a feature, essentially measuring how much a feature contributes to 

classifying the dataset (Sorenson et al 2019).  

The number of predictions depends on the number of decision trees trained and the 

number of testing samples, resulting in a total number of predictions equal to the 

product of these values. For example, if you have 100 decision trees and 100 testing 

samples, you create 10,000 predictions, meaning that the prediction number is equal to 

the product of the number of decision trees and the number of testing samples (Sinha et 

al 2019). The overall prediction is obtained by averaging all the decision trees using a 

majority classifier (Schubach et al 2017). If the problem is a classification task then the 

mode of the predictions is collected.  

The purpose of averaging or selecting the mode of the predictions, is that this 

significantly reduces the model variance, helping to improve the model’s generalisation 

performance, decreasing the probability of overfitting the training data (Feng et 

al 2015). Averaging the predictions provide a single estimate for each testing sample 

(Feng et al 2015). 

4.1.6 Algorithmic Boosting  

Extreme gradient boosting is an alternative to the random forest method that may 

achieve improved predictive performance by using a different approach to combining 

decision trees (Genuer et al 2010). Rather than ensemble approaching, extreme gradient 

boosting applies an iterative means to decision tree learning (McLaren 2019). 
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Extreme gradient boosting can address the inherent bias errors within random forest 

modelling and be used for regression and classification problems (Cutler et al 2007). A 

regression problem refers to a prediction using numbers and a classification problem 

indicates a prediction using image processing. Such a technique combines “weak” 

decision tree learners with “strong” learners (Feng et al 2015). Extreme gradient 

boosting begins with a weak decision tree learner attempting to predict an outcome 

using feature data (Kavuk et al 2011). 

When such a tree misclassifies specific data, then the algorithm places more weight on 

that misclassified data (Sinha et al 2019). Another weak decision tree then places more 

emphasis on correcting the misclassified data from the previous tree, and this continues 

with the aim to minimise the overall error (training and validation) (see Figure 4.7, 

information obtained from Lopez et al 2021).  

 

 

Figure 4.7. Indicating the computational process of extreme gradient boosting. The figure shows every 

misclassified prediction assigning a weighted value. This weighted value is noticed and learned by the 

next decision tree learner (information obtained from Lopez et al 2021).  

Assigning weight to the misclassified data adjusts the loss function for the subsequent 

iteration of training (Hong et al 2019). The loss function describes how well the model 
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fits the data; assigning weights tells the next learners to focus on such misclassified 

data will lower the loss function for the next iteration (Springel and Hernquist 2002). 

By learning from the previous mistakes of the last decision tree, a strong learner can be 

created from all the misclassified mistakes from the previous learners (Springel and 

Hernquist 2002). Extreme gradient boosting is iterative, and there is no means of 

absolutely deciding how many decision tree learners are required (Breiman 2001). 

Key hyperparameters such as learning rate, number of trees, and maximum tree depth 

can be tuned to help identify the number of learners, aided by systematic grid searching 

(Breiman 2001). Extreme gradient boosting is not restricted to decision tree algorithms 

but can also use other models, such as linear models; however, decision trees are the 

most used base learners (Feng et al 2015). For an overview of all the black box 

components within this chapter, see Figure C4.1 Appendix C. box 

 

4.1.7 Neural Networks 

Deep learning artificial neural nets is a sub-branch of AI (Schubach et al 2017). These 

networks have three layers (input, hidden, and output). The input layer is the dataset 

containing all feature variables; essentially, the input layer represents the dataset 

implemented into the model (Galiano et al 2014). The hidden layer formulates decision-

making, and the output presents the final prediction (Schubach et al 2017).  

When data are added to the input layer, a neuron within the hidden layer receives the 

data (Lopez et al 2021). The function of a neuron calculates the strength of the input 

signal or, in other words, the significance of that specific feature relating to the 

prediction (Galiano et al 2014). Such signal strength derives from several metrics 

(Schubach et al 2017). The input is initially assigned an arbitrary weight (“weight” 

means the strength of the relationship) and bias value (Schubach et al 2017).  

This weight and bias value are added, and then the neuron within the hidden layer 

passes such values through an activation function (e.g., sigmoid curve) (Biau and 

Scornet 2016). This function takes the combined value and "squashes" it into a range 

between 0 and 1 using a logistic function to introduce non-linearity (Lopez et al 2021). 

The output value combines all the sigmoid values from the hidden layer (Galiano et al 
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2014). The actual value is subtracted from the prediction output, and such differences 

denote the loss functions (e.g., mean square error) (Biau and Scornet 2016). 

The neural network then reconfigures and updates its weights by applying back 

propagation using stochastic gradient descent (SGD) (Lopez et al 2021). Briefly, the 

gradient of each neural loss function concerning the weights is calculated by dividing 

the loss function by the individual weights iteratively (Schubach et al 2017). The data 

are continuously run through the model, and the derivatives concerning the weight 

changes update the initial weights, gradually reducing this loss function closer to zero 

and improving the prediction (Lopez et al 2021). 

4.1.8 Aims and Objectives  

This chapter aims to investigate (1) which physicochemical parameters are the most 

and least reliable for estimating PHE changes during flooding. The chapter seeks to 

incorporate such physicochemical data into statistical, machine, and deep learning AI 

modelling to predict a (2) PHE porewater solubility, (3) bioaccessibility, and (4) solid 

phase distribution during flooding. The physicochemical data to train such models were 

obtained from the Clyde catchment during the experimental analysis in Chapter 3. This 

chapter also aims (5) enhancing the statistical and machine learning models, training on 

mechanistic data for improving the predictive performance. For an overview of the 

objectives of this chapter in relation to the thesis structure, see Table 4.1 below. For the 

purposes of space, this chapter will focus on predicting lead mobility, bioaccessibility 

and solid phase distribution. For information regarding the training and testing of such 

models to predict different PHE, see Appendix C and D.  

Table 4.1. Outlines the different research aims and how such aims relate the overall thesis structure. The 

table outlines the catchments in which the physicochemical data was obtained to train such models, 

indicating also the PHE type such models are predicting.  

Research Aim  Flow Chart Part Catchment  PHE Type  

1 15 Clyde   Lead 

2 16 Clyde  Lead 

3 16 Clyde  Lead 

4 16 Clyde  Lead 

5 16 Clyde  Lead 
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4.2 Methods  

4.2.1 Programming the Statistical Model  

The physicochemical data were collected from the microcosm experiments within the 

Clyde catchment, and to ensure the independence of the data points and avoid 

pseudoreplication, a mixed model was programmed on the physicochemical data using 

the lm34 package in RStudio (Feng et al 2015). Mixed models can address 

pseudoreplication by incorporating fixed effects to adjust for non-independence 

(Arnqvist 2020). The statistical model, therefore, compared with the machine and deep 

learners, was a mixed model because such models address pseudoreplication. A mixed 

model was also selected over other statistical models, such as a multiple regression or 

generalised linear model, because mixed models are highly capable of handling 

hierarchical data structures (or data with clustering) through random effects.  

 

4.2.2 Programming the Machine Learning Models  

A random forest regression model was computed using the RandomForest package in 

RStudio (Doran et al 2007). The physicochemical data were split into training (70%), 

validation (10%), and testing (20%). The training dataset is the largest portion and is 

used to train and fit the model, where the algorithm learns patterns, correlations, and 

relationships within the training dataset (Kanevski et al 2008). The validation set 

assesses the model performance during the training, estimating the prediction error for 

model selection (e.g. tuning hyperparameters) (Kanevski et al 2008). The testing 

dataset is completely separate from the training data, giving an unbiased estimate of the 

generalisation error of the final chosen model (Kanevski et al 2011). Data partitioning 

to training, validation, and testing was performed by random splitting, using the 

train_test_split function.  

The out-of-bag data were used to determine the variable importance of the 

physicochemical data for estimating lead porewater solubility during flooding (Section 

4.1.5). This study did not include a validation dataset; instead, it conserved such data 

and used the out-of-bag error to estimate the training error (Breiman 2001). Systematic 

grid searches optimised hyperparameter tuning (see Section 4.1.3). This study 

compared such grid searches using performance autoplots (Figure 3C, Appendix C). A 

classification random forest model was computed to predict the PHE solid phase 
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distribution. The model sensitivity, specificity, and receiver operating characteristic 

(ROC) metrics were examined to determine the ability of the random forest model to 

predict lead solid phase distribution. These metrics are important for the random forest 

model to train and correctly identify and classify different predictor variables.  

An extreme gradient boosting algorithm was computed using the xgboost package, with 

the data splits, hyperparameter tuning, and regularisation addressed similarly to the 

random forest model (Lee et al 2017). The number of rounds of learning (30 rounds) 

was defined using systematic grid searching.  

4.2.3 Programming the Deep Learning Model  

A neural network was constructed using the TensorFlow Python interface, caret, and 

keras packages in RStudio (Pang et al 2016, Kuhn 2012, Arnold 2017, respectively). 

The data were partitioned into training (70%), validation (10%) and testing (20%) 

datasets. This study computed a neural network containing two hidden layers using a 

rectified linear activation function to address non-linearity. This activation function 

aims to address regression problems and allow the network to address non-linearity by 

setting all negative inputs to zero.  

The neural network was trained, applying stochastic gradient descent, using the Adam 

optimiser, running through a specified epoch number, and attempting to lower the 

model output training and testing mean square error. The Adam optimiser helps the 

neural network learn from the data (Su et al 2023). The optimiser adjusts the model’s 

learning rate to aid in minimising the training and testing loss function (Su et al 2023). 

The term “epoch” in machine learning refers to the entire network processing all the 

data, allowing the network to learn and adjust its weights and bias values (Siddique et 

al 2018). This epoch value controls the number of complete passes of data to update 

such weights through the network (Siddique et al 2018). For example, an epoch of “50” 

means the entire training data passes through the network 50 times, continuously 

updating the network’s weights and bias values.  

This study used a learning rate of 0.001% to enhance the model’s generalisation 

performance and reduce overfitting. In other words, having a minimal learning rate of 

0.001% means the model slowly analyses the data, minimising the likelihood of 

misclassifying intricate relationships. The epoch number was selected by visually 
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inspecting when increasing the epoch number increases the validation error and 

secondly with systematic grid searches (Figure 4.8).  

The batch was 32, randomly shuffled each epoch, specified by systematic grid searches, 

which is relatively large for ensuring stable gradient estimates. As mentioned, each 

epoch passes through the entire dataset to update the network weights; however, this 

can be computationally expensive. To minimise this computational demand, the 

purpose of the batch size refers to how much data from the training dataset passes 

through one epoch; after each epoch, the batch number remains the same; however, it 

randomly selects another 32 data points to circulate through the network.  

Figure 4.8. Outlines the effects of increasing the epoch number on the training and validation loss. The 

Figure outlines the optimal epoch number (26), which significantly reduces the training and validation 

loss. 

4.2.4 Mechanistic Modelling 

The best performing model (either mixed, random forest, extreme gradient booster or 

neural network), which will be established in Sections 4.3.2, 4.3.3 and 4.3.4, were 

enhanced by “learning” mechanistic information derived from inputting 

physicochemical data into PHREEQC (version 3.37.3) and Visual MINTEQ software 

(version 4) and then using their outputs to help train the best performing model 

established in Sections 4.3.2, 4.3.3, and 4.3.4.  
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PHREEQC (PH REdox EQuilibrium) analyses a PHE solid phase distribution (e.g., 

CuSO4, PbSO4, AsCl3) by inputting hydrodynamic and physicochemical data (e.g., 

water temperature, volume, iron concentration) into its geochemical speciation model 

(Lu et al 2022). This study implemented the composition of the solution and specified 

the thermodynamic and kinetic reactions (i.e., sorption, ion exchanges, aqueous 

complexation, dissolution, and precipitation). PHREEQC ensures the element’s total 

mass and the ionic charge remain conserved under such simulations by applying the 

Law of Mass Action Equation. This determines the species (e.g., copper) composition 

and distribution (Lu et al 2022).  

Visual MINTEQ (MINeral and TEQuilibrium) analyses the concentration of sorbed and 

reductively dissolved PHE from oxide and carbonate mineral phases during flooding 

(Gustafsson 2011). This chapter conducted microwave digestion to gain an 

understanding around the soil’s total heavy mental concentration. For information 

around the specific microwave digestion procedure, see Appendix B, Section 2. Abiotic 

inputs (i.e., Eh and pH) changes throughout the flood were implemented. Using mass-

balance equations, this software calculated the concentration of lead sorbed and 

dissolved from key mineral phases (i.e., iron, manganese, and calcium) throughout the 

flood. The investigation incorporated this mechanistic understanding from both these 

software programs into the models examining the predictive performance change. 

The types of PHE analysed were copper, lead, and arsenic. These PHE, particularly lead 

and arsenic, are toxic to humans and wildlife and is important to understand how 

flooding influences these PHE for human and wildlife health purposes (Ponting et al 

2021). These PHE represent the chemical form and characteristics of different PHE; for 

example, lead interaction with different soil mineral phases during flooding is similar to 

cadmium and chromium, and copper interactions are similar to zinc and nickel.  

4.2.5. Performance Evaluation  

The performance of the machine learning and statistical models were evaluated using 

widely recognised metrics, such as the R², root mean square error (RMSE), mean 

absolute error (MAE), and mean square error (MSE). While additional metrics, such as 

L1 and L2 norms, are also commonly used to evaluate predictive performance, they are 

not employed in this chapter. The L1 norm (Manhattan Distance) calculates the average 

of the absolute differences between predicted and observed values, while the L2 norm 
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(Euclidean Distance) computes the square root of the average squared differences (Pang 

et al., 2016). These metrics emphasise absolute error magnitudes, with L2 placing 

greater weight on larger deviations. 

This chapter focuses on evaluating performance through R², MAE, MSE, and RMSE 

for two key reasons. Firstly, the study’s objective is to assess relative explanatory 

power (variance captured) rather than solely minimising absolute error magnitudes, 

which makes R² particularly relevant. Secondly, while L1 and L2 metrics are effective 

for penalising errors, they do not provide intuitive insights into the proportionality of 

variability explained by the model, which is central to understanding trends in 

contaminant mobility and bioaccessibility.  

The entropy and information gain from the model predictions within the testing dataset 

were quantified and compared to measure the uncertainty in the observed outcomes and 

the reduction in uncertainty achieved by the model predictions. Entropy is a measure of 

the uncertainty in a dataset by quantifying how unpredictable the outcomes are (Feng et 

al 2015). High entropy indicates greater uncertainty, higher data diversity, or less 

predictable categorisation, which could mean the predictions lack alignment with the 

observed outcomes. Low entropy indicates greater order, reduced variability, and 

potentially better alignment with the observations(Feng et al 2015). Entropy is 

calculated below,  

𝐻(𝑋) =  − ∑ 𝑃(𝑥i)log2 𝑃(𝑋i)𝑛
𝑖=1                                                                              Eq. 5           

where “H” is the entropy “(X)” and “P(xi)” is the probability of the datapoints within 

each interquartile range (e.g., 5th to 95th) and “n” is the total number of interquartile 

ranges (). Information gain measures the reduction in entropy, see Equation 3,  

Information Gain = H(Y) – H(Y) – H(Y | X)                                                               Eq. 6  

where “H(Y)” is the entropy of the observed dataset. The calculated entropy and 

information gain form each of the random forest, XGBoost, neural network and the 

mixed model was compared. A lower entropy and higher information gain suggests the 

model reduces uncertainty and aligns well with the observed outcomes.  
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4.3 Results  

4.3.1 Identifying Optimal Physicochemical Feature Variables for Predictive 

Modelling of PHE Porewater Solubility and Bioaccessibility  

Many types of physicochemical parameters exist, such as oxides, micronutrients, and 

abiotic variables. The physicochemical data from the microcosm and mesocosm 

experiments conducted within the Humber and Clyde catchments, discussed in Chapter 

Three, was computed into a linear regression model, identifying correlations between 

the physicochemical and copper, lead, and arsenic porewater solubility. The 

physicochemical variables were grouped into different classes (e.g., abiotic, 

micronutrients) and treated as separate linear models to predict PHE porewater 

solubility.  

Many physicochemical features correlate with PHE porewater solubility (Table 4.2). 

Such physicochemical groupings show the importance of appreciating oxides, PHE, 

micronutrients and abiotic features when predicting mobility. This analysis indicates 

that for reliably estimating PHE porewater solubility, incorporating physicochemical 

information across different groups (e.g., oxides, micronutrients, abiotic) provides the 

highest performing model, accounting for AIC and BIC estimates. For a more detailed 

breakdown indicating the physicochemical combination of different PHE, see Table 

B3.2 and Figure B3.7, Appendix B.  

The literature view (Chapter 1) and quantitative meta-analysis (Chapter 2) show the 

importance of different physicochemical parameters influencing PHE dynamics during 

flooding. This Chapter builds upon such analysis, indicating the importance of 

physicochemistry; however, adding the importance of using a single physicochemical 

parameter that strongly correlates with PHE porewater solubility (e.g., iron) yields low 

predictive reliability. This analysis emphasises the importance of training machine, 

deep and statistical models to predict PHE porewater solubility, bioaccessibility and 

solid phase distribution using physicochemical data all across the different groupings 

(e.g., oxides, abiotic, and micronutrients).  

In this section, predictions for bioaccessibility were made using the “best” combination 

of feature physicochemical variables to predict PHE porewater solubility and its 

influence on bioaccessibility. The results showed a good correlation with arsenic, 

copper and lead with very low mean square errors (Figure 4.9, Tables B3.2, Appendix 
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B). The correlation fit decreased though as PHE concentration increased. Such 

correlation was weakest for arsenic but exhibits the lowest mean error (Table 4.3). 

These findings reveal the opportunities of programming different statistical, machine 

and deep learning models using this physicochemical combination to estimate PHE 

porewater solubility and bioaccessibility. 

Table 4.2. Outlines the linear model outputs investigating the correlation between physicochemical 

predictive features estimating PHE porewater solubility. The table outlines the model selection, error and 

correlation statistics.  

 

 

 

 

 

Feature Combination 

 

AIC 

 

BIC 

R2 (adjusted) Mean Square 

Error 

Mean Absolute 

Error 

Root Mean 

Square Error 

 

Micronutrients 

(K, Ca, Mg, Na) 

Cu - 1893 

Pb - 806 

As - 521 

Cu - 1912 

Pb - 824 

As - 541 

Cu - 0.75 

Pb - 0.57 

As - 0.67 

Cu - 3520 

Pb - 6.1 

As - 1.15 

Cu - 43 

Pb - 1.73 

As - 0.83 

 

Cu - 59.3 

Pb - 2.5 

As - 1.1 

 

PHE (Li, Cr, Cu, As, Ni, 

V, Zn, Pb) 

Cu - 1968 

Pb - 806 

As - 488 

Cu -1997 

Pb - 834 

As - 516 

 

Cu - 0.62 

Pb - 0.58 

As - 0.74 

Cu - 5274 

Pb - 5.86 

As - 0.92 

Cu - 57.2 

Pb - 1.65 

As - 0.69 

 

Cu - 27.3 

Pb - 2.32 

As - 0.96 

 

Oxides 

(Fe, Al, Mn) 

Cu - 2079 

Pb - 902 

As - 399 

Cu - 2094 

Pb - 918 

As - 415 

Cu - 0.25 

Pb - 0.25 

As - 0.84 

Cu - 10527 

Pb - 10.8 

As - 0.57 

Cu - 85.6 

Pb - 2.41 

As - 0.53 

 

Cu - 103 

Pb - 3.29 

As - 0.76 

 

 

Abiotic  

(pH, EH) 

Cu - 2022 

Pb - 945 

As - 500 

Cu - 2035 

Pb - 957 

As - 513 

Cu - 0.45 

Pb - 0.02 

As - 0.71 

Cu - 7660 

Pb - 14 

As - 1.04 

Cu - 66.1 

Pb - 2.84 

As - 6.35 

 

Cu - 87.5 

Pb - 3.7 

As - 1.02 

 

Optimal Combination 

(Al, Cu, Fe, Mn, pH, As, 

Ca, Na, K) 

Cu - 1704 

Pb - 797 

As - 328 

Cu - 1741 

Pb - 834 

As - 365 

Cu - 0.92 

Pb - 0.61 

As - 0.90 

Cu - 39142 

Pb - 5.39 

As - 0.35 

Cu - 162 

Pb - 1.68 

As - 0.59 

Cu -197 

Pb - 2.32 

As - 0.42 
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Figure 4.9. Regression correlation output comparing the effects of incorporating physicochemical 

features to predict arsenic (yellow), copper (blue) and lead (green) bioaccessibility. The figures provide 

the regression error, indicated by the grey outline over the regression line, referring to the uncertainty in 

the residual data points around the regression line. Residual points not within this error area represent 

outliers. 

Table 4.3. Regression output analysis investigating the effects of the major cationic physicochemical 

parameters, identified from PCA, influencing the bioaccessibility of the different PHE during flooding. 

Such outputs verify the PCA findings and aid in interpreting which physicochemical parameters to use in 

the predictive model.  

PHE Optimal Physicochemical 

Combination  

Standard 

Error 

R2 Adjusted 

R2 

P- 

Value 

F-

Statistic 

df 

Arsenic 

 

Al, Cu, Fe, Mn, pH, Ca, Na, K, Pb 0.23 0.99 0.98 <0.001 53.3 69 

Copper 

 

Al, Cu, Fe, Mn, pH, Ca, Na, K, Pb 36 0.98 0.88 0.02 10.5 69 

Lead Al, Cu, Fe, Mn, pH, Ca, Na, K, Pb 61.4 0.96 0.79 0.04 5.86 69 

 

4.3.2 Comparing Statistical, Machine, and Deep Learning for Estimating PHE 

Porewater Solubility During Flooding  

This section uses all the physicochemical data derived from Chapter 3 from the Humber 

and Clyde catchments to train different statistical, machine and deep learning models to 

estimate PHE porewater solubility. Specifically, based on the analysis in Table 4.2, the 

input features for all the machine learning models and the statistical mixed model were 

major ions (i.e. Ca, K, Na, Fe, Al, and Mn) and physicochemical properties (i.e. pH and 

Eh) with the target variables (output) were predicting the porewater solubility of As, Pb, 

and Cu. The types of feature variables to train such models derive from the optimal 

combination from Section 4.3.1. For the purposes of space, this section will focus on 

predicting the lead porewater solubility. Lead is also highly toxic through exposure and 
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exhibits high concentrations within soil and sediment across the United Kingdom 

(Tables 1.1 and 1.2).  

Predicting lead porewater solubility using the “optimal” physicochemical feature 

combination estimated lead’s mobility using all the model types investigated (Figure 

4.10). Using t-test statistics showed no statistically significant difference between the 

predictions and the experimentally derived data. Such findings are important and 

emphasise these AI approaches as a novel means of potentially aiding risk assessment 

procedures for assessing PHE porewater solubility during flooding. The order of the 

best model by having the highest correlation coefficient and the lowest testing root 

mean square error was the extreme gradient boosting, random forest, neural network, 

and mixed model (16.3, 17.6, 20.7, 26.9, respectively).  

However, the importance of physicochemical features to each model varies. For 

example, all the models agreed that aluminium and other PHE (i.e., copper and arsenic) 

were significantly important predictive features. Whereas, the machine learning random 

forests and extreme gradient boosters and also statistical mixed models agreed 

micronutrients (i.e., potassium, sodium, calcium) were not important predictive 

features. While deep learning neural networks placed micronutrients much higher in 

importance, particularly sodium. According to the AI models, the pH is not as 

significant a feature as expected; however, the statistical model ranked it as the most 

important. For predicting different PHE, see Figures C4.2 and C4.3, Appendix C.  

These findings all emphasise machine and deep learning models, using 

physicochemistry to train and reliably predict PHE porewater solubility. The results 

show that, based on the variable importance, each model may “learn” the data 

differently; however, it still predicts reliably. Such findings suggest two conclusions. 

Physicochemical influence on PHE porewater solubility is highly multidimensional and 

complex, and the understanding of how each variable relates to another to formulate an 

outcome can be interpreted differently. Lastly, understanding the intricate relationships 

between physicochemistry and estimating PHE porewater solubility is not 

fundamentally important; it’s more important for the models to understand how the 

main variables influence the prediction. 

The machine learning predictions yielded predictions exhibiting lower entropy and 

higher information gain compared to the mixed model. Specifically, the random forest, 
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XGBoost, and neural network yielded an entropy of 2.12, 2.45, 2.54, respectively, 

whereas the mix model yielded an entropy of 4.54. These findings suggest the machine 

learning models, particularly the random forests, where better at categorising and 

providing order to the predictions. Similarly, the information gain was the highest for 

the machine learning model random forests, XGBoost, and neural network at 0.78, 

0.67, 0.58, respectively, whereas the mixed model exhibited a lower information gain of 

0.16.    

Figure 4.10. Comparing the different model predictions (yellow) against the observed laboratory results 

(blue). The strength of such predictions is represented using regression analysis. The “importance” of 

each physicochemistry feature influencing the prediction is also presented. By “importance”, this defines 

how much the mean square error would change if such a variable was removed from the model. For 

example, if removing the variable iron caused a significant increase in the mean square error, then this 

variable would be regarded as statistically important. If the removal of calcium results in little mean 

square error change, this variable implies having little change in the predictive performance and minor 

importance.  
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4.3.3 Comparing Statistical, Machine, and Deep Learning for Estimating PHE 

Bioaccessibility During Flooding  

Predicting the bioaccessibility using physicochemistry is highly reliable using the 

models investigated, except for the neural network, as there are no statistically 

significant differences between the experimental data and the different models 

predictions (Figure 4.11). The deep learner performed poorly, with a higher RMSE of 

666. The best model incorporating physicochemistry was the extreme gradient booster, 

exhibiting the highest correlation coefficient and the lowest RMSE of 48.62. The next 

best model was the random forest and then the mixed model with an RMSE of 97.6 and 

123, respectively. Fig 

 

Figure 4.11. Outlines the effects of predicting lead’s bioaccessibility using different modelling 

approaches. The upper figures compare estimating lead’s bioaccessible concentrations with the observed 

laboratory results. The lower set indicates the relationship’s strength. The figure suggests the different 

model types have a significant predictive variation. The coloured band over the regression line represents 

the confidence interval for the fitted regression curve. The width of the band indicates the confidence 

level (95%). Data points falling within the confidence interval are considered within the 95% confidence 

interval of the model. Such points outside the 95% confidence interval band denote outliers.  
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4.3.4 Comparing Statistical, Machine, and Deep Learning for Estimating PHE 

Solid Phase Distribution During Flooding  

The area under the curve, in relation to the ROC analysis (see Section 4.2.2) indicates a 

very suitable and reliable predictive model analysing a PHE solid phase distribution. 

Again, the best predictive model was the extreme gradient booster, which showed a 

very high area under the curve and prediction accuracy against the testing data (Figure 

4.12). The metric for assessing the “best predictive model” was by evaluating the area 

under the ROC curve for classification accuracy and also the testing data mean square 

prediction error. Statistical and neural networks provided a very low predictive 

accuracy; however, the area under the curve remains high. These two models suggest 

that such models do not explain much variance in the target variable, but they perform 

well distinguishing between classes (by “classes,” this means the mineral phases). The 

random forest performs very well, exhibiting a high classification accuracy and area 

under the curve. 

 

Figure 4.12. The receiver operating characteristic curve indicates each predictive model's performance, 

using physicochemistry to predict lead solid phase distribution. This figure illustrates the trade-off 

between the true positive rate (sensitivity) and the false positive rate (1-specificity) as the model 

discrimination threshold is adjusted.  

4.3.5 Enhancing Random Forest Machine Learners Predicting PHE Porewater 

Solubility Using Mechanistic Data  

The previous section evaluated different predictive models, using the optimal 

physicochemical combination (Section 4.3.1) to predict PHE porewater solubility, 

bioaccessibility, and solid phase distribution, concluding the machine learning random 

forest models having the highest predictive performance. This section explores the 
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opportunities of training and improving these random forest models, using mechanistic 

data, derived from VISUAL MINTEQ and PHREEQC to estimate PHE dynamics.  

4.3.5.1 Training Random Forests to Address Sorption and Dissolution Kinetics - 

Visual MINTEQ and PHREEQC  

Incorporating mechanistic data into the random forest models significantly improves its 

correlation and predictive performance of these models for estimating lead porewater 

solubility. The inclusion of this mechanistic information improved the random forest 

predictive performance by lowering the testing and training root mean square errors 

while improving the testing and training correlation coefficient (Figure 4.13). Such 

mechanistic information shows that the concentration of lead reductively dissolved 

from iron, manganese, and calcium changes between pH 6 and pH 6.5 (Figure 4.13). 

Incorporating this mechanistic information increased the model fit (+ R2 of 0.03). Lead 

adsorption increased with iron and decreased with manganese concentrations 

throughout the flood, and there is no change with calcium mineral phases (Figure 4.13).  

Specifically, as the flood duration increased, approximately 2.5mol/L of lead was 

adsorbed onto iron, whereas 2.3mol/L of lead was dissolved from manganese. Such 

findings also reveal calcium to be a poor predictive variable as the results indicate 

almost negligible concentrations of lead either dissolving or adsorbing with calcium 

throughout the flood. For a specific breakdown of how different physicochemistry 

elements (iron, manganese, and calcium) release and adsorb PHE during different 

hydrodynamic pressures see such sections below for copper, arsenic, and lead. For an 

overview comparing the mechanistic predictions with non-mechanistic data for 

different PHE types, see Figure C6.1, Appendix C. 
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Figure 4.13. The effects of incorporating mechanistic speciation and kinetic sorption and dissolution 

data into the random forest algorithm. Using lead as an example, the figure highlights how lead sorption 

and dissolution changes with iron, manganese, and calcium during pH changes throughout the flood. 

Iron Ferrihydrite Oxides - VISUAL MINTEQ and PHREEQC Modelling Results  

All this data represents Visual MINTEQ model outputs. For example, the 

physicochemical data, derived from Chapter 3, was inputted into VISUAL MINTEQ. 

The software then calculated, based from the physicochemistry data, how much, as a 

concentration, copper, lead, and arsenic during the flood was being adsorbed and 

dissolved from iron. The output data, indicated below, from VISUAL MINTEQ, could 

then be incorporated back into the random forest models, allowing the models to train 

on the physicochemistry data and also this mechanistic data outputs from VISUAL 

MINTEQ.  

Across the three microcosm setups, representing the three sampling locations across the 

Clyde, the pH was recorded, investigating the magnitude of the pH change from the 

beginning to the end of the flooding experiments. The pH within sampling location One 
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from the beginning to the end of the flood increased from pH 6 to pH 6.5, sampling 

location Two from pH 5.6 to pH 6.4, and sampling location Three from pH 4.4 to pH 

6.0. These pH changes were not manipulated or altered, rather, these pH changes were 

a natural outcome of the flooding conditions. These findings are consistent with the 

wider literature, which shows flooding increasing water and soil ambient pH conditions 

(Ponting et al 2021, Konsten et al 1994, Xiao et al 2021, Xie et al 2018).  

This data (denoting the microcosm pH changes) were implemented into PHREEQC. 

The PHREEQC outputs show the incremental pH changes, observed within sample 

locations One, Two, and Three, directly increased the modelled copper sorption onto 

ferrihydrite by 4.8%, 91%, and 63%, respectively (Figure 4.14). In other words, the 

microcosm pH increases throughout the flood within all the sampling locations indicate 

from the PHREEQC model that copper is speciating more with ferrihydrite with 

increasing flood duration because of this pH increase. The implication of such findings 

show the importance of random forest models accounting for the increasing pH 

conditions increasing copper sorption with ferrihydrite.   

Moreover, the pH increase from the microcosm setups One, Two, and Three show 

PHREEQC modelled lead chemical sorption onto ferrihydrite also increasing by 1.8%, 

2.1%, and 27%, respectively. Arsenic exhibited the opposite effect, with the modelled 

Arsenic dissolution concentrations increasing within all the sampling locations during 

an incremental pH increase. Such findings highlight that any predictive modelling 

should account for lead and copper’s sorption with ferrihydrite and the dissolution of 

arsenic from ferrihydrite. These results can use such percentages from PHREEQC 

outputs, representing as concentrations and apply correction factors to the modelled 

concentration to estimate change.  
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Figure 4.14. Outlines the Visual MINTEQ outputs indicating the effects of increasing pH conditions and 

pressure differences during flooding influencing the adsorption (green) and dissolution (blue) of arsenic, 

copper and lead ions from iron oxides.  

Manganese - VISUAL MINTEQ and PHREEQC Modelling Results 

The data from Chapter 3 indicating the physicochemical changes during flooding were 

inputted into VISUAL MINTEQ to assess copper sorption and dissolution with 

different soil mineral phases. The differences between sampling locations One, Two 

and Three represent the study locations for assessing flooding on PHE dynamics across 

the Clyde catchment. These locations are physicochemically different, analysing the 

implications of changing physicochemical conditions of PHE dynamics. This section 

aims to investigate how flooding influences copper sorption and dissolution with 

manganese across these physicochemically different locations using Visual MINTEQ 

software. 

Copper’s sorption onto manganese oxides increased under more alkaline conditions by 

1.3%, 1.5%, and 1.3%, respectively; however, the sorption stabilised at pH 5.5. 5.7, and 
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5.2, respectively (Figure 4.15). The sorption of metals and metalloids onto manganese 

oxides differed under incremental pH increases during flooding. Copper sorption onto 

manganese oxides averaged only 0.01%; lead sorption decreased by 4.4%. Such values 

are negligible, concluding that these metals have minor associations with manganese 

oxides regarding sorption kinetics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. Outlines the Visual MINTEQ outputs indicating the effects of increasing pH conditions and 

pressure differences during flooding influencing the adsorption (green) and dissolution (blue) of arsenic, 

copper and lead ions from manganese oxides.  



178 

 

Carbonates - VISUAL MINTEQ and PHREEQC Modelling Results 

The term “carbonates” is a mineral phase defined within this investigation as calcium 

carbonate. The results showed that increasing the pH does not influence the adsorption 

and dissolution kinetics of the investigated metals and metalloids with calcium 

carbonate (Figure 4.16).  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.16. Outlines the Visual MINTEQ outputs indicating the effects of increasing pH conditions and 

pressure differences during flooding influencing the adsorption (green) and dissolution (blue) of arsenic, 

copper and lead ions from calcium carbonate. 
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4.4 Discussion  

4.4.1 Predicting PHE Porewater Solubility  

All the predictive models performed well when estimating PHE porewater solubility, 

emphasising the role using AI and physicochemistry could play as predictive tools. The 

results indicated that decision-tree models performed better for estimating PHE 

porewater solubility. The higher performance is attributed to the capabilities of 

addressing feature interactions, non-linear relationships and high robustness (Genuer et 

al 2010). Random forests predict using multiple decision trees, training on different 

subsets of the data (i.e., sampling by replacement), which average out the complex non-

linear relationships (Breiman 2001).  

The mechanism of feature randomisation in the splitting of data within AI approaches 

meant specific "important" variables were not prioritised (Probst et al 2019). By 

avoiding the prioritisation of such features, the model can understand intricate 

interactions between non-significant relationships, minimising the model bias towards a 

select few variables and reducing generalisation errors (Ding et al 2020). Feature 

randomisation improved the predictive performance, by training the random forest 

model to account for all potentially relevant predictor variables, which statistical 

models and artificial neural nets may ignore as they assume all the variables are 

inherently linear (Huang et al 2021). Probst et al (2019) showed that the feature 

randomisation mechanism of decision tree learners identified complex feature 

interactions within environmental data because it ignored competing and highly 

correlated variables. 

This study by Probst et al (2019) supports the findings from this study, concluding that 

because random forests have inbuilt mechanisms to ensure randomness in analysing the 

data (i.e., feature randomisation), the model has less tendency to predict using 

unreliable predictor features. In other words, if there are only a few “dominant” feature 

variables influencing a PHE mobility (e.g., pH), then by randomly selecting other 

features to train on, the model avoids placing too much emphasis on pH and omitting 

other important intricate relationships influencing PHE mobility asides from the pH. 

Such “feature randomisation” outlined in Probst et al (2019), and indicated in Section 

4.3.2, demonstrate the high confidence and reliability of training random forest models 

on extensive databases (e.g., BGS G-BASE) to predict PHE mobility because such 
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models are “learning” differently from other predictive models. In other words, the 

feature randomisation metric means the model learns more intricately and is less likely 

to focus on a select few “dominant” variables.  

4.4.2 Predicting PHE Bioaccessibility 

The results indicate that machine-learning random forests provides the highest and most 

reliable predictions for estimating a PHE bioaccessibility. Such findings may derive 

from the linearity of the data, feature importance, and sample size (McLaren 2019). 

Physicochemical interactions with PHE operate nonlinearly. By “nonlinear,” there are 

no direct correlations between the two variables (e.g., increasing calcium 

concentrations decreasing iron concentrations) (Sun et al 2019). Deep neural networks 

contain hidden layers that can address data nonlinearly, especially deep nonlinear 

relationships, where dozens of physicochemical features may interact to produce an 

outcome (Ponting et al 2021). By “deep nonlinear relationships,” this means the neural 

network can account for intricate multilayered correlations between multiple variables 

(Abdolrasol et al 2021). For example, under a hypothetical flooding scenario, the flood 

lowers the redox conditions, which increases sulfide clustering with lead and copper; 

however, increases arsenic’s solubility because of the competitive ion exchanges with 

sulfide. This “competitiveness” then increases arsenic solid phase distribution with 

calcium, forming calcium arsenate. Under this hypothetical, multiple interactions occur 

at different levels, indicating the “deep nonlinear relationships.” 

Machine learning random forests can also handle nonlinear and linear relationships 

(Hui et al 2012). The findings here reveal that physicochemistry and bioaccessibility 

are nonlinear; however, the “depth” of non-linearity is “shallow” (Ponting et al 2021). 

By “depth” and “shallow,” this means that based on the variable importance plots, only 

a few variables influence the absolute mean square error. Such predictions are not 

derived from several minor intricately nonlinear dependencies but are dominated by a 

few nonlinear correlations.  

This “shallowness” regarding linearity is captured by random forest better because the 

individually constructed decision trees investigate linear dependencies between two 

feature variables, unlike neural nets, which tend to delve deeper, potentially 

overcomplicating the problem (Sun et al 2019). These findings do not preclude neural 

nets from serving a purpose in predicting bioaccessibility; instead, the optimal model 
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most likely should involve using a shallow network containing only a single hidden 

layer (Malik et al 2018). This investigation uses a two-hidden-layer neural network 

rather than a one-hidden-layer, meaning the neural network does not represent a 

shallow network. Selecting two hidden layers may offer enhanced predictions by 

increasing the model’s ability to handle more data and high complexity between 

interacting variables; however, it may overfit the data, leading to lower predictive 

performance. A future research approach would be to test a one hidden layer neural 

network and investigate its performance in estimating PHE dynamic changes during 

flooding.  

Machine learning random forests can assess feature importance from its bagging data 

(Kah et al 2022). This feature importance can train the model to understand important 

patterns, correlations, and relationships of feature data (Zhang et al 2004). The results 

indicate that the non-linearity should be “shallow,” meaning that if the decision tree can 

correctly identify the critical variables to reduce the mean square error, the random 

forest model can better predict by placing more weight on the relevant predictive 

features (Malik et al 2018). The data size may also not be sufficient for deep learning 

neural networks to understand such complex patterns (Liu et al 2019). The laboratory 

work carried out in Chapter 3 used to train this neural network did not produce 

thousands of rows of training data. Many neural networks require training using 

thousands of data rows with multiple feature variables to formulate predictions 

(Abdolrasol et al 2021). Predicting bioaccessibility is likely to be a moderately to high 

complexity problem, with multiple feature variables to consider, meaning the training 

data amount needs to increase for the neural net to compete with decision-tree learners 

(Malik et al 2018).  

4.4.3 Predicting PHE Solid Phase Distribution  

Estimating PHE solid phase distribution changes during flooding proved significantly 

more challenging than analysing the chemical mobility and bioaccessibility, perhaps 

related to the data available and classification problems (Chapter 1, Section 1.7 and 

Chapter 3, Section 3.4.10) (Grabowska et al 2014). Many models, particularly random 

forests, and extreme gradient boosters, reliably predicted solid phase distribution; 

however, the limited training data available in this study hindered the performance of 

these models (Kebede et al 2021). The CISED procedure data set for estimating the 

solid phase distribution was significantly smaller than those investigating the mobility 
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and bioaccessibility. Having fewer training data points potentially causes models to 

miss intricate relationships around how physicochemistry influences PHE solid phase 

distribution (Hewins et al 2016). Undertaking further speciation tests to increase the 

training dataset may improve the predictive performance, and reduce the likelihood of a 

generalisation error (Ponting et al 2021). 

Predicting PHE solid phase distribution is a classification problem, whereby to address 

the issue, models attempt to reduce the entropy (i.e., the Gini Impurity value for 

decision tree learners) instead of the mean square error (Breiman 2001). This difference 

means the discrete nature of classification makes predicting more challenging because 

there is no inherent continuity between the classes (Breiman 2001). Classification 

problems face the challenges of class imbalance, meaning the different classes are not 

evenly distributed, making it challenging to learn and generalise as the model may 

unknowingly through weighted bias, favour a particular class (Grabowska et al 2014). 

Many discrete classes overlap more than regression problems as they contain poorly 

defined boundaries, making it challenging for the model to separate classes for 

predicting PHE dynamics (Ponting et al 2021). 

4.4.4. Upscaling Random Forest Predictions 

This random forest was trained and tested to predict PHE porewater solubility, 

bioaccessibility, and solid-phase distribution within microcosm flooding experiments. 

These small-scale setups, however, are not representative of flooding, given their small 

spatial scales. It is significantly important to scale up the simulated flooding 

experiments to represent real flooding conditions. This scaling up involves using 

greater soil mass and flood water volumes. Scaling-up can alter the heterogeneity of 

soil used, potentially changing the soil biological community, soil chemistry etc, which 

are all important for influencing PHE dynamics. The next chapter aims to explore 

testing these trained random forests to predict PHE dynamics across larger-scale 

flooding setups - mesocosm experiments.  

This chapter has explored predicting PHE dynamics within a select few locations across 

the Clyde catchment, anticipating scaling up and testing this random forest to predict 

across a few locations in the Humber, which has very different soil chemistry 

characteristics. The concept of training and testing the random forest across varying soil 

chemistries aims to build a general-purpose predictive model, which can estimate PHE 
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dynamics across multiple catchments. Given the significant heterogeneities in land use 

characteristics, soil chemistry, flood type etc, training a random forest on data 

representative of all such varying conditions is significantly challenging, emphasising 

the importance of selecting locations very different physiochemically.  

The mixed model indicated the weakest predictive performer for estimating PHE 

porewater solubility, bioaccessibility, and solid-phase distribution. These findings 

indicate that while mixed modelling is highly effective for handling fixed and random 

effects and managing pseudoreplication, scaling up to predict such PHE dynamics 

using mixed models would not be appropriate. Mixed models often assume linear 

relationships between the predictor variables and outcomes; however, many of the 

relationships between physicochemical changes and PHE dynamics are non-linear, 

which may not be captured by the mixed model (Sun et al 2019). While mixed models 

capture fixed and random effects, they are unable to capture highly dynamic 

interactions between the fixed and random effects, with multiple variables interacting 

(Sun et al 2019).  

A limitation of this research was the metrics used to evaluate the machine learning and 

statistical model performances. This chapter focuses on using the R2 statistic, which 

measures the proportion of variance in the dependent variable that is predictable from 

the independent variables. The R2 does not always fit well for non-linear relationships 

and does not penalise large errors. The L2 loss is another performance metric, which is 

the average of the squared differences between the predicted and actual values 

(Grabowska et al 2014). The L2 statistic penalises large errors and the quadratic nature 

of the L2 creates a smooth and convex loss surface, particularly useful for gradient 

boosting optimisation (Grabowska et al 2014). Future research should evaluate the 

machine and statistical models using a variety of performance metrics, such as L2.   

4.5 Conclusion  

This chapter aimed to identify which physicochemical parameters are reliable for 

estimating PHE porewater solubility and bioaccessibility. The specific physicochemical 

parameters include iron, manganese, aluminium, pH, Eh, magnesium, potassium, and 

calcium. The chapter also explored the effects of testing and comparing different 

predictive models (i.e., statistical, machine, and deep learning), using physicochemistry 
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information to estimate PHE porewater solubility, bioaccessibility, and solid phase 

distribution  

The optimal combination of physicochemical parameters to predict PHE mobility and 

bioaccessibility covers different physicochemical groupings (i.e., micronutrients, 

oxides, and abiotic variables). Specifically, the optimal combination of 

physicochemical parameters for training all the different modelling approaches used are 

calcium, iron, aluminium, manganese, pH, and Eh. Predicting a PHE mobility and 

bioaccessibility using physicochemical variables from one group (e.g., oxides) proves 

statistically unreliable, exhibiting high testing mean square errors with low correlation 

coefficients. The machine learners (i.e., random forests and extreme gradient boosters) 

outperformed statistical and neural networks for estimating PHE porewater solubility, 

bioaccessibility, and solid phase distribution by exhibiting high predictive performance 

with low training and testing errors. Training machine learners using mechanistic data 

slightly improves the predictive performance for estimating PHE porewater solubility.  

This chapter shows, for the first time, that incorporating the relevant data into machine-

learning random forests, established as the most appropriate predictive model type, can 

estimate PHE dynamics during flooding. This is measured by evaluating the modelling 

performance and error metrics within the training and testing datasets. The results offer 

a novel approach for future research to identify locations susceptible to future flooding 

from climate change and estimate, using the location’s baseline soil physicochemistry, 

to predict future PHE dynamic changes. Predicting PHE dynamics using 

physicochemistry requires appreciating the intricate physicochemical correlations 

instead of focusing on a select few.  

The subsequent chapter (Chapter 5) aims to test the random forest model, trained on the 

physicochemical and mechanistic data from the Clyde catchment, to predict PHE 

porewater solubility, bioaccessibility and solid phase distribution during flooding 

within the Humber. Chapter 5 also verifies the predictive performance of this developed 

random forest within the River Almond. By testing, this means comparing the random 

forest testing dataset performance and error metrics with the observed laboratory results 

carried out in Chapter 3. 
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Chapter 5: Thesis Structure  
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Chapter 5: Testing Random Forest Model Predictions for Estimating PHE 

Porewater Solubility, Bioaccessibility, and Solid Phase Distribution  

5.1 Introduction  

Increasing temperatures from climate change can significantly influence microbial 

activities, such as decomposition and respiration, which can alter soil biogeochemical 

processes (e.g., nutrient cycling) (Szuskiewicz et al 2021). These altered soil 

biogeochemical processes may influence PHE solubility in soil porewater, 

bioaccessibility, and solid phase distribution (Sorenson et al 2019). For example, higher 

temperatures may enhance soil organic matter decomposition, reducing the ability of 

organic humic substances and fulvic acids to adsorb PHE (Koh et al 2021).  

The UK, along with many other locations worldwide, is also currently facing 

increasingly severe and more frequent flooding, with increasing economic costs 

ensuing for flood protection and mitigation (Figure 5.1; Met Office 2020). More 

flooding also has opportunities, like with higher ambient temperatures, to significantly 

alter PHE dynamics. For example, flooding alters soil redox potentials, pH levels, 

organic matter contents, and oxygen concentrations, significantly influencing PHE 

porewater solubility, bioaccessibility, and solid phase distribution (Koh et al 2021). For 

a detailed analysis of why flooding influences soil physicochemistry, and how this 

influences PHE dynamics, see Chapter 1, Sections 1.8.1, 1.8.2, 1.8.3.  

Increasing temperatures and more frequent and severe flooding may result in significant 

changes in soil physicochemistry unseen before (Koh et al 2021). Many studies have 

highlighted that the coupling of higher temperatures and more frequent flooding may 

create the “perfect storm” of increasing PHE solubility and bioaccessibility (Coro et al 

2021, Kilunga et al 2017, Kumar et al 2021, Ponting et al 2021, Roe et al 2015). This 

“perfect storm” may also influence oral exposure to soil PHE (Cave et al 2011, Ng et al 

2015, Mclaren 2019, Mehta et al 2020, Ponting et al 2021). Exposure to such PHE, for 

example, lead, can have severe neurotoxic health consequences, with correlations of 

lead exposure with stunted growth and neurological development (Gamboa et al 2023). 

For a detailed analysis of why the soil physicochemistry influences PHE 

bioaccessibility and oral exposure, see Chapter 1, Section 1.9.1.  
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Figure 5.1. Number of recorded flooding events (blue bars) with the associated economic costs of flood 

defence (green line) within the UK between 2000 and 2019 (blue bars) (Met Office 2020).  

The previous results from Chapters 3 and 4 show the opportunities of using soil 

physicochemical information to predict PHE porewater solubility, bioaccessibility, and 

solid phase distribution. Chapter 4 highlights the significance of machine learning 

random forest models predicting PHE porewater solubility, bioaccessibility, and solid 

phase distribution using soil physicochemical data.  

The purpose of this chapter is to test the reliability of this random forest model for 

predicting PHE porewater solubility, bioaccessibility, and solid phase distribution 

during flooding. The previous chapter trained the random forest model using soil 

physicochemical data from the Clyde catchment, which contained acidic clay-textured 

soil. This chapter tests the predictive performance of the random forest model to predict 

PHE dynamics within the Humber catchment, which contained alkaline and sandy 

textured soil that was very different physicochemically from the Clyde. After testing the 

random forest model within the Humber, this chapter finally verifies the random forest 

model predictions within three sampling locations along the embankment of the River 

Almond, which all contain silt-textured soils with a slight pH alkalinity.  
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5.2 Chapter Aims and Objectives  

The aim of this chapter is to test the reliability of the trained random forest model to 

predict PHE porewater solubility, bioaccessibility, and solid phase distribution within 

(1) small-scale microcosms and (2) larger-scale mesocosms with soils taken from the 

Humber catchment. This chapter then (3) verifies the random forest model predictions 

along sampling points across the embankment of the River Almond. Briefly, this 

chapter begins by testing this random forest model to predict PHE dynamics within the 

Humber and then verifies the predictions within the River Almond.  

The main aim of this chapter is to test the random forest predictions within the Humber 

and then verify the predictions along the River Almond. For information on how each 

research aim relates to the thesis flow chart, the experiment design of each research 

aim, and the PHE types being investigated, see Table 5.1.  

Table 5.1. Outlines the how the chapter’s research aims relate to the different thesis structure. The table 

indicates that all the testing of the model predictions were performed within the Humber, investigating 

lead and copper soil porewater solubility, solid phase distribution, and bioaccessibility changes.  

Research Aim  Flow Chart Part Catchment  PHE Investigated  Experimental Type  

1 17 Humber  Copper Microcosm  

2 18 Humber Copper Mesocosm  

3 19 River Almond Copper, Lead, Arsenic  Microcosm  

5.3 Methods  

5.3.1 Sampling Locations  

All the experimental analyses, including the microcosms, mesocosms, BARGE, and 

CISED, were conducted within the Humber and the River Almond (see Section 3.2.2, 

Chapter 3). PHE porewater solubility, bioaccessibility, and solid phase distribution were 

investigated within three sampling locations across the Humber and River Almond. 

Each of the three sampling locations within the Humber and River Almond were 

physicochemically different, which was determined using QGIS (see Section 3.3.1, 

Chapter 3). The purpose of selecting physicochemically different sampling locations 

was to test the random forest model’s predictive ability within various physicochemical 

conditions.   
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5.3.2 Microcosm Experiment  

The soil collected were dried at 105oC for 48 hours and mixed for 10 hours using a 

mechanical end-over-end rotator (15 rpm). The soil was then sieved to a < 6.3 soil 

particle fraction. For information about why this particle size fraction was selected, see 

Chapter 3, Section 3.3.4. Approximately 250g ±10 of the mixed soil (< 6.3 soil particle 

fraction) from each sampling location were placed into one-litre microcosm containers 

in a sealed incubator at a constant ambient temperature of 21oC. The soil placed in 

these microcosms underwent a one-week pre-incubation. Essentially, the soil 

microcosms were untouched and not flooded for one week to equilibrate microbial 

respiration following the sieving/homogenisation processes, applying the 

recommendations by Comeau et al 2018.  

The soils were all flooded, following exactly the experimental treatment conducted 

within Microcosm Design Three (Chapter 3, Section 3.3.6). Briefly, four separate 

microcosm setups occurred, mimicking different flooding severities (i.e., annual flood, 

1 in 100-year, 1 in 500-year, 1 in 10,000-year). The purpose of this chapter’s 

microcosm experiment was to test the random forest model predictions for estimating 

PHE porewater solubility, bioaccessibility, and solid phase distribution within the 

Humber catchment across these different flood severities. For a detailed outline of how 

the microcosm experiments were setup, the different flood severities, and the porewater 

sample analysis, see Section 3.3.6, Chapter 3. For the River Almond microcosm setups, 

used to verify the random forest predictions, the microcosm experiment was again set 

up the same as the Microcosm Design Four (conducted previously within the River 

Almond), see Section 3.3.7, Chapter 4. Essentially, the setup, experimental analysis, 

and porewater sampling for both the Humber and River Almond Microcosm 

experiments followed the same procedures outlined in Chapter 3, with the only 

difference being that the random forest predictions are being compared to the 

microcosm results.  

5.3.3 Mesocosm Experiment  

To test the random forest model to predict PHE solubility, bioaccessibility, and solid 

phase distribution on larger-scale setups, this chapter simulated mesocosm flooding 

experiments. These mesocosm experiments were only conducted across the three 

sampling locations within the Humber catchment. The experimental design (e.g., flood 
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length and porewater sampling) was the same as the mesocosm setup within the 

Humber in Chapter 3, Section 3.3.7.  

5.3.4 PHE Bioaccessibility and Solid Phase Distribution Analysis  

The procedure of analysing PHE bioaccessibility and solid phase distribution changes 

within the Humber was analysed by conducting BARGE and CISED experiments, 

following the same procedure within Chapter 3, Section 3.3.9 and Section 3.3.10, 

respectively.  

5.4 Results  

5.4.1 Testing Random Forest Model Predictions for Estimating PHE Porewater 

Solubility - A Microcosm Experiment  

This section uses microcosm experiments to investigate the random forest predictive 

performance for estimating copper porewater solubility during flooding. As mentioned, 

these microcosm experiments were conducted using soil samples from the Humber, 

mimicking different flooding severities, and were carried the same as Microcosm 

Design Three (Chapter 3, Section 3.3.6). The random forest predictions were evaluated 

by comparing such predictions with the porewater solubility of copper established from 

the microcosms. Specifically, the random forest was trained using the following input 

features: Ca, K, Na, Fe, Al, Mn, pH, and Eh to predict Cu porewater solubility. A two-

tailed t-test was used to compare the statistical differences between the predictions and 

the microcosm results. The t-test was selected because of the ability to handle large 

sample sizes and deal with data which is not normally distributed (Kim 2015). For a 

description of why copper was selected, see Chapter 3, Section 3.3.1. For information 

on the random forest predictions for estimating other PHE porewater solubility, see 

Appendices B, C, and D.  

There were no statistically significant differences between the random forest 

predictions and the laboratory microcosm results for estimating copper’s porewater 

solubility during flooding for all the different flooding simulations (Figure 5.2). These 

findings show the opportunities of random forest models to predict copper porewater 

solubility within various flood lengths and severities. However, the random forest 

predictions frequently overpredicted copper solubility. This overprediction may be 
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attributed to the random forest model slightly overfitting the data (see Chapter 4, 

Section 4.1.4).  

As the flood duration increases for all the microcosm setups, copper porewater 

solubility decreases. The random forest model captures this trend with the predictions 

also decreasing with increasing flood length. The random forest predictions align 

closely with the microcosm results more towards the end of the flood rather than at the 

beginning. An explanation of why the random forest predictions align more towards the 

end of flooding may be attributed to the findings from Chapter 3, specifically Figure 

3.10. The results in Figure 3.10 show that soil physicochemical changes during 

flooding are the most significant at the beginning of the flood, with such 

physicochemical changes decreasing with increasing flood length. Minimal 

physicochemical changes during the end of flood may simplify predicting copper 

solubility, since these changes can significantly influence copper solubility.  

 

 

 

 

 

 

 

 

 

Figure 5.2. Compares the microcosm results and the random forest predictions for estimating copper 

porewater solubility within the annual, 1 in 100-year, 1 in 500-year, and 1 in 10,000-year flood 

simulation experiments. The microcosm results represent the average copper porewater solubility (n=9) 

with the associated standard deviation bars at the 95% confidence interval. At the top of each figure is 
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the two-tailed t-test statistic comparing the statistical differences between the average porewater 

solubility of copper during the microcosm experiments and the random forest predictions. The number 

just before the t-test (1-3) indicates the sampling location number.  

5.4.2 Testing Random Forest Model Predictions for Estimating PHE 

Bioaccessibility - A Microcosm Experiment  

This section investigated the predictive performance of the random forest model to 

estimate PHE bioaccessibility across the Humber catchment. The section tests the 

random forest model using microcosm experiments of varying flood severities, 

mimicking the Microcosm Design Three setup (see Chapter 3, Section 3.3.6). The 

random forest model reliability predicted gastric bioaccessible copper concentrations, 

with no statistically significant differences between the predictions and the microcosm 

results (Figure 5.3).  

The gastric predictions, similar to predicting copper porewater solubility, align closer 

towards the end of the flood than the beginning. This random forest model also reliably 

predicted gastrointestinal bioaccessible copper concentrations, with no statistically 

significant differences between the predictions and the microcosm estimates (see t-test 

scores above each figure). Predicting gastrointestinal copper concentrations was the 

most reliable and accurate within the 1 in 10,000-year flood.  

This reliability is most likely attributed to this flooding setup having the longest 

inundation period (43-days), whereby the physicochemical parameters do not change 

significantly with increasing flood length (see Section 5.4.1 for an extensive 

discussion). In other words, after a given period (typically five days), during this 43-

day flood, physicochemical changes do not vary significantly, which makes predicting 

PHE bioaccessibility easier after five days. Irrespective of the high variation of gastric 

and gastrointestinal copper bioaccessibility concentrations, particularly within the 1 in 

100-year setup, the random forest model can still reliably predict copper 

bioaccessibility. These findings conclude the reliability of random forests predicting 

copper bioaccessibility within different flood lengths and severities. For a complete 

overview of the results, including for different PHE, see Figure D5.3, Appendix D.  
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Figure 5.3. Compares the random forest model predictions with the microcosm results for estimating 

gastric (blue) and gastrointestinal (green) bioaccessibility concentrations for copper. This comparison is 

made for the different flood simulation experiments (annual, 1 in 100-year, 1 in 500-year, and 1 in 

10,000-year). The BARGE points represent average concentrations (n = 3) with the associated standard 

deviation bars at the 95% confidence interval. T-test statistics are provided at the 95% confidence 

interval, comparing the statistical difference between the random forest predictions and the microcosm 

results. The black horizontal dashed line denotes the maximum daily dose limit of copper (µg/L)  

5.4.3 Testing Random Forest Model for Estimating PHE Solid Phase Distribution - 

A Microcosm Experiment 

The purpose of this section is to investigate the ability of the random forest model to 

predict copper solid phase distribution during flooding within the Humber catchment 

across the different flood severities. This analysis only focuses on copper; however, for 

further information about predicting the solid phase distribution of different PHE types, 

see Appendices B and D. The aim of this section is to test the random forest model’s 

ability to predict the CISED extraction phase for copper. For example, if the model 

reliability estimated that the extraction phase was 0.01M, then this gives some insight 

into copper’s solid phase distribution, indicating copper was unlikely to coprecipitate 

with acid-resistant mineral phases, such as iron oxides (McLaren 2019).  

The random forest model reliably predicts copper CISED extraction phase, particularly 

for lower acid dissolvable phases (i.e., deionised water, 0.01M and 0.05M) within all 

the flood simulations (Figure 5.4). By reliably, this means the random forest model is 

predicting the exact same extraction phase compared to the laboratory results. For a 

detailed explanation of the meaning around the different CISED extraction phases, see 
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Chapter 3, Section 3.3.10. The random forest model’s ability to predict copper 

coprecipitating with mineral phases, such as residuals, was less reliable. Such findings 

are unclear as to why the performances for estimating the copper solid phase 

distribution were unreliable; however, potential data limitations around training the 

random forest models on solid phase distribution data may explain such results.  

This limited training dataset makes it challenging for the random forest model to learn 

intricate relationships and correlations around copper solid phase distribution changes 

(Boateng et al 2020). These findings highlight the challenges of the random forest 

model predicting precisely copper’s solid-phase distribution (e.g., Cu-Al-Fe, Mg-Cu-

Pb); however, despite these challenges, the random forest model can estimate the soil 

mineral phase that may coprecipitate with copper, such as oxides, carbonates and 

sulfide. In other words, the random forest model can predict which soil mineral phase 

copper coprecipitates with (e.g., sulfide); however, has challenges predicting copper’s 

speciation within that mineral phase in more detail (e.g., Cu-Al-Fe). 

 

Figure 5.4. Compares the AI predictions for estimating the CISED extraction phase with the laboratory 

results. The error bars represent the averages at the 95% confidence interval (2 standard 

deviations). Predicting the extraction phases means the random forest model can estimate which 

extraction phase will leach a particular PHE. For example, the AI predictions successfully predicted in 

the 1 in 500 treatment that copper was extracted from the deionised water phase. Such information on 

the extraction phase of a particular PHE does not determine its solid phase distribution; rather, it 

indicates the mineral phase the PHE coprecipitates. In the case of extraction from deionised water, these 

copper species were unlikely to speciate with oxides resistant to high acid strengths. 
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5.4.4 Testing Random Forest Model Predictions for Estimating PHE Porewater 

Solubility - A Mesocosm Experiment 

This section analyses the random forest models’ predictive performance for estimating 

copper porewater solubility within large-scale mesocosms. The previous section (5.4.1) 

showed the reliability of random forests predicting copper porewater solubility within 

small-scale microcosms. This experiment tests the random forest predictions to estimate 

copper porewater solubility using larger-scale setups. As mentioned in Section 5.3.3, 

this mesocosm experiment was conducted within the Humber catchment. For 

information about the mesocosm design, such as the descriptions for treatments 1-6, see 

Chapter 3, Section 3.3.6.  

The random forest predictions aligned with the mesocosm results, with almost all 

treatments (1-6) showing no statistically significant differences between the random 

forest predictions and the mesocosm results (Figure 5.5). Almost all the t-test statistics 

exceed p > 0.05 (see above each figure), indicating no statistical differences between 

the predictions and the mesocosm results. These findings highlight the reliability of 

training random forest models to predict PHE porewater solubility during flooding 

within large-scale setups. Unlike the microcosm setups, the random forest predictions 

typically underpredicted copper porewater solubility. This random forest model was 

originally trained to predict copper porewater solubility using data from small-scale 

microcosm experiments. Training the random forest model on smaller-scale setups may 

mean the random forest minimises copper solubility concentrations by not appreciating 

the larger spatial scale.  
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Figure 5.5. Outlines the mesocosm results investigating copper porewater solubility across sampling 

locations 1-3 for the different treatment groups (1-6). For information about what each treatment group 

means, see Section 3.3.6, Chapter 3. The mesocosm results indicate copper porewater solubility averages 

(n=9) at the 95% confidence interval, with the associated standard deviation bars indicating the spread 

of data from the average. This figure outlines the mesocosm results for copper porewater solubility, 

which is indicated in green. The random forest model predictions are indicated in blue. The “t” value 

denotes the two-tailed t-test results, comparing the observations with the predictions at the 95% 

confidence interval.  

5.4.5 Testing Random Forest Model Predictions for Estimating PHE 

Bioaccessibility - A Mesocosm Experiment 

In Section 5.4.3, the random forest model estimated copper bioaccessibility within three 

sampling locations across the Humber under the different flood severities (i.e., annual, 

1 in 100-year, 1 in 500-year, 1 in 10,000-year). The previous section showed the 

reliability of the random forest model in predicting copper bioaccessibility within the 

different flood severity experiments. This section tests the random forest model 

predictions for estimating copper bioaccessibility within larger-scale mesocosms (see 

Section 3.3.8, Chapter 3 for further information). For information about the 

experimental design of the mesocosm experiments, including what Treatments 1-6 

mean, see Chapter 3, Section 3.3.6.  

There were no statistically significant differences, according to the t-test estimates, 

between the random forest model predictions estimating copper bioaccessibility within 
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many of the mesocosm setups (Table 5.2). These findings conclude the reliability of 

random forest models, trained using physicochemical data, to estimate copper 

bioaccessibility within larger-scale setups. Predicting copper bioaccessibility post-

flooding was more challenging, with some of the random forest predictions being 

statistically significantly different from the mesocosm results, particularly within 

Treatments 3 and 6 (t = 2.32, p = 0.001; t = 0.689, p = <0.001, respectively). 

Treatments 3 and 6 contained the highest ambient humidity levels (95%), potentially 

altering copper bioaccessibility, which the random forest model does not account for. 

These findings reveal the random forest model estimates better copper bioaccessibility 

during flooding rather than post-flooding. The results are unsurprising because much of 

the physicochemical data the random forest models were trained on were collected 

during a flood instead of during the drying phase.  

Table 5.2. Outlines the random forest model predictions for estimating copper bioaccessibility within the 

six treatment groups (T1-T6), comparing such predictions with the BARGE laboratory results. The six 

treatment groups represented the different flooding conditions. Treatments 1-3 mimicked real flood data 

for a ten-day flood, indicating the temperature and humidity fluctuations. The difference between such 

treatments was the humidity levels (35%, 65% and 95%). Treatments 4-6 mimicked the exact flood with 

fluctuating humidity levels (35%, 65% and 95%); however, the only difference was throughout the day 

and night, there was a 1.5oC temperature increase.  

Treatment Design Phase BARGE 

Mesocosm 

BARGE             

Prediction 

T-Test 

 

One-Way ANOVA 

 

1 Ambient Temperature Flooding 418 µg/l 831 µg/l t = 1.25; p = 0.279 F = 1.56; p = 0.28 

 35% Humidity  Drying 355 µg/l 574 µg/l t = 0.908; p = 0.415 F = 7.71; p = 0.416 

       

2 Ambient Temperature Flooding 169 µg/l 578 µg/l t = 1.09; p = 0.386 F = 18.51; p = 0.39 

 65% Humidity  Drying 183 µg/l 506 µg/l t = 2.03; p = 0.112 F = 7.71; p = 0.11 

       

3 Ambient Temperature Flooding 151 µg/l 432 µg/l t = 3.21; p = 0.232 F = 12.2; p = 0.43 

 95% Humidity  Drying 182 µg/l 521 µg/l t = 2.32; P = 0.001 F = 13.6; P = 0.002 

       

4 + 1.5oC Flooding 153 µg/l 452 µg/l t = 4.32; P = 0.543 F = 2.12; P = 0.622 

 35% Humidity  Drying 321 µg/l 389 µg/l t = 2.11; P = 0.984 F = 1.34; P = 0.872 

       

5 + 1.5oC Flooding 421 µg/l 502 µg/l t = 3.11; P = 0.482 F = 4.21; P = 0.352 

 65% Humidity  Drying 643 µg/l 421 µg/l t = -4.21; P = 0.422 F = 3.21; P = 0.657 

       

6 + 1.5oC Flooding 503 µg/l 932 µg/l t = 0.321; P = 0.211 F = 0.454; P = 0.421 

 95% Humidity  Drying 532 µg/l 1002 µg/l t = 0.689; P = <0.001 F = 0.492; P = 0.003 
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5.4.6. Verifying the Random Forest Model Estimating PHE Porewater Solubility - 

The River Almond  

The random forest model was verified to predict copper, lead, and arsenic porewater 

solubility within the three sampling locations along the embankment of the River 

Almond (Figure 3.5, Chapter 3). These three sampling locations have different land 

gradients (4.35o, 7.22o, and 16o) and vegetation coverages (35%, 55%, 90% per 1m2). 

For information about each location's physicochemistry, total soil PHE concentrations, 

why the River Almond was selected, and the microcosm experimental design, see 

Sections 3.3.3, 3.3.7, and 3.4.1.   

No statistically significant differences existed between the random forest predictions 

and the microcosm results within sampling location One (Figure 5.6). The predictions 

slightly underpredicted copper and overpredicted lead and arsenic's solubility. The 

microcosm results for copper exhibited large standard deviations; however, despite 

these variations, the predictions aligned with the microcosm results (t = 0.198, p = 

0.857).  

The predictions did not differ statistically from the microcosm results for estimating 

lead and arsenic solubility within sampling location Two (t = 0.322, p = 0.154; t = 

0.322, p = 0.433, respectively). These predictions for lead and arsenic solubility again 

overpredicted slightly. There were also statistically significant differences between the 

predictions for estimating copper solubility (t = 0.356, p = 0.04). These statistically 

significant differences may be attributed to the steeper land gradient (7.22o). This 

steeper land gradient exerts a greater gravitational downward force on the flooded 

water (Marr et al 2001). Steeper land gradients can increase the flow and movement of 

floodwater, which, as demonstrated with copper, can potentially enhance the 

remobilisation of various PHE.  

The random forest models were originally trained on data within the Clyde catchment, 

within sampling locations much less steep (< 5o) than across sampling location Two 

along the River Almond embankment, making it harder for the model to predict on 

steeper gradients. The challenges arise for the random forest to generalise on unseen 

data, which are strongly influenced by steep gradients that the random forest did not 

originally train on (see Section 4.1.2, Chapter 4 for the term “generalise”). For 

example, using an unrelated hypothetical for illustrative purposes, if the random forest 
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model was only trained to predict arsenic solubility during flooding and was asked to 

predict zinc solubility, there is a high probability the random forest would fail to 

generalise; just like predicting copper solubility within steeper land gradients the model 

is unfamiliar to.  

Lead and arsenic within sampling location Three were not statistically different from 

the microcosm results (t = 4.32, p = 0.564; t = 3.42, p = 0.312). The model predictions 

slightly overpredicted lead and arsenic solubility throughout the flood. These 

overpredictions may be attributed to the random forest model overfitting (see Section 

4.1.5 for information about overfitting). This overfitting may be attributed to the 

addition of addressing the land gradient and vegetation coverage, causing the model to 

become overly complex with too many variables. Overfitting is likely mild, given that 

the predictions and the microcosm results were not statistically insignificant (Brieman 

et al 2001). 
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Figure 5.6. Outlines copper, arsenic and lead porewater solubility within sampling locations One, Two 

and Three along the embankment of the River Almond. The figure compares the microcosm results, 

indicating the average copper, arsenic, and lead porewater solubility for each day during the flood (n=9) 

at the 95% confidence interval). The random forest predictions (blue line) is compared with the 

microcosm results (orange line) and the statistical difference between the values is indicated using the 

two-tailed t test statistic.  

5.5 Discussion 

5.5.1 Investigating the Predictive Modelling Estimating PHE Dynamics 

This chapter tested random forest predictions to estimate PHE porewater solubility, 

bioaccessibility, and solid phase distribution within microcosm and mesocosm using 

soil samples from the Humber. Predicting copper porewater solubility, bioaccessibility, 

and solid phase distribution was highly reliable within the Humber catchment. Such 

findings reveal the opportunities of training random forests to predict PHE porewater 

solubility, bioaccessibility, and solid phase distribution during flooding within small 

and larger scale setups, potentially across multiple river catchments susceptible to 

regular flooding. However, such predictions, in some cases, overestimated copper 

porewater solubility and bioaccessibility. From a precautionary approach, for risk 

assessment purposes, overpredicting the porewater solubility of copper is more reliable 

than underpredicting. Overpredicting such concentrations avoids misrepresenting or 

underappreciating the severity of PHE solubility and bioaccessibility, avoiding 

scenarios of where the random forest model gives the “green light” to locations not at 

risk which are at risk (Mendes et al 2020).  

Overpredicting may introduce additional monitoring costs and resources around issues 

concerning false positives, or in other words, where the random forest says there is risk 

where there is no risk (Mendes et al 2020). Such overpredictions may attribute to the 

random forest model requiring more training data. As discussed previously, the random 

forest model was trained using the microcosm data obtained from the Clyde, as well as 

using mechanistic data derived from PHREEQC and Visual MINTEQ (Chapter 3). This 

data limitation may cause the predictions to generalise, leading to overpredictions 

(Feng et al 2015). Limited data means the random forest model has challenges learning 

intricate correlations between soil physicochemistry and PHE porewater and solubility, 

meaning the model is more likely to predict using limited detail (generalise). Future 

research must include sampling physicochemical data from other catchments to train 
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further these random forest models, aiming to improve the generalisation of the random 

forest model. For specific information around “generalisation”, see Chapter 4. 

The slight overprediction of the random forest model might attribute to the incorrect 

decision tree depth and tree size (Brieman 2001). For specific information around the 

decision tree depth, see Chapter 4; however, briefly, if the models are trained on 

decision trees which are not “pruned” then the model may overfit the dataset (Lopez et 

al 2021). By not having the correct decision tree depth, the random forest model will 

continuously split the training dataset until it minimises the model mean square error 

close to zero, resulting on overfitting (Sorenson et al 2019). 

In other words, the continuous splitting of the training dataset means the random forest 

model is learning the training dataset significantly well; however, at the cost of failing 

to generalise well on the testing dataset, leading to overfitting (Sorenson et al 2019). 

Future research must explore feature engineering to minimise this model from 

overpredicting (Feng et al 2015, Lopez et al 2021, Sorenson et al 2019, Sun et al 2019). 

Such feature engineering may include conducting systematic grid searches to identify 

the optimal combination of hyperparameter tuning variables (e.g., tree depth) (Breiman 

2001).  

5.5.2 Assessing the Predictive Model Estimating PHE Dynamics on Large-Scale 

Setups 

Three major findings arise from estimating PHE porewater solubility, bioaccessibility, 

and solid phase distribution from these larger-scale setups. Such findings include that 

changing humidity levels, and an increasing ambient temperature of 1.5oC, both 

influence PHE porewater solubility. Irrespective of changing humidity and increasing 

ambient temperatures, the random forest models can still estimate PHE porewater 

solubility.  

Humidity levels influence PHE porewater solubility, solid phase distribution, and 

bioaccessibility by influencing soil respiration and the soil redox status (Liu et al 2019). 

Studies show high humidity levels (>90%) promote soil sulfate formation (De et al 

2017, Kukumagi et al 2014, Martin et al 2015, Stewart et al 1995). Liu et al (2019) 

show that a relative humidity exceeding 90%, enhancing soil sulfate formation. Wang 

et al (2017) analysed the humidity levels within a Beijing haze, indicating that the 

humidity can increase atmospheric sulfur, which was transferred into the soil as sulfate, 
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increasing soil sulfate concentrations. Increasing soil sulfate significantly influences 

PHE dynamics, particularly during flooding as sulfate is transformed into sulfides, 

eventually forming metal-sulfide complexes (De et al 2017). Soil sulfate increases with 

humidity by increasing atmospheric nitrogen concentrations, triggering atmospheric 

sulfur oxidation (Martin et al 2015). The increased atmospheric nitrogen may also 

inadvertently change the soil pH, influencing PHE dynamics (Ponting et al 2021). 

The relative humidity is also known to influence the organic carbon phase, specifically 

the coprecipitation of PHE with fulvic acids and humic substances (Wang et al 2023). 

Cabbar (1999) showed an exponential reduction in the adsorption capacity of organic 

carbon with a humidity increase from 30-90%. Stewart et al (1995) showed PHE 

coprecipitate less with the organic phase because of the competitive displacement 

between the water molecule’s hydrogen bonding and the PHE. Such findings emphasise 

that when flooding recedes, locations with higher humidity levels may alter PHE 

dynamics differently compared to those with lower humidity levels (Ponting et al 

2021). 

Higher humidity levels (>90%) showed to increase PHE porewater solubility and 

bioaccessibility during post-flooding; however, the humidity had no significant 

influence on PHE dynamics during flooding. Such insignificant effect is because the 

humidity may decrease such PHE mobility or bioaccessibility by promoting sulfide 

formation or increase mobility or bioaccessibility by reducing coprecipitation reactions 

with organic carbon, essentially promoting PHE solubilisation (Ponting et al 2021). The 

humidity levels also influence soil respiration processes. Kukumagi et al (2014) 

investigated the elevated humidity levels on soil respiration within a forest ecosystem. 

Such findings reveal that the relative humidity correlated with gross primary 

production, influencing soil microbial enzymatic processes. These findings are justified 

by the humidity limiting oxygen diffusion across soil micropores, increasing microbial 

oxygen demand (Ponting et al 2021). Nielsen et al (2004) show increasing humidity 

levels alter the soil bacterial growth and secondary metabolism. Humidity fluctuations 

inadvertently influence the redox status (Huang et al 2021). Such alterations in oxygen 

diffusion, microbial oxygen demand, and soil respiration impact soil redox status 

(McLaren 2019). The redox status significantly influences PHE dynamics, affecting 

sulfide formation and reductive and oxidative dissolution processes of mineral phases 

(McLaren 2019). 
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When using these random forest models for large-scale predictions, potentially 

integrated with GIS (discussed in the subsequent chapter) it is essential to address 

spatial heterogeneity within datasets, particularly those derived from models such as G-

BASE. G-BASE provides valuable large-scale predictions of soil PHE concentrations 

(Figure 1.2); however, G-BASE model does not capture sub-grid resolution or 

variability within the 500 x 500m grid cells provided. Addressing such limitations is 

important to improve the accuracy and precision of macro-scale predictions, ensuring 

that the random forest model accurately reflects the inherent spatial heterogeneity of 

soil PHE dynamics. Future modelling efforts should incorporate methods to account for 

sub-grid variability to reduce uncertainties when scaling predictions to regional or 

national levels.  

5.6 Conclusion 

This chapter aimed to assess and test the reliability of the random forest model to 

estimate PHE porewater solubility, bioaccessibility, and solid phase distribution within 

the Humber. This random forest model was not originally trained on any 

physicochemical data from the Humber, and because the Humber was very different 

physicochemically from the Clyde, it served as a reliable catchment for testing the 

random forest predictions. This chapter tested the random forest predictions on 

microcosm and mesocosm setups. This research aimed to explore the opportunities of 

combining physicochemical data with random forests to forecast PHE porewater 

solubility, bioaccessibility, and solid phase distribution changes during flooding 

reliably. 

The data showed the reliability of predicting PHE porewater solubility using these 

trained random forest models within the microcosm and mesocosm setups. Predicting 

the bioaccessibility provided reliability; however, it was less reliable during the drying 

phase of the flood, emphasising the need to train these random forest models on more 

physicochemical data post-flooding. The random forest model could not predict the 

exact PHE solid phase distribution during flooding (e.g., copper sulfate, copper 

chloride). Instead, the random forest measured how copper coprecipitated into broader 

extraction mineral phases (e.g., oxides), rather than specific mineral phases. This lack 

of specificity highlights a limitation of the random forest model, likely attributing to the 
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few training data, which impacts the model to generalise to more precise mineral 

phases.  

The data revealed significant findings, particularly around the novelty of using 

physicochemistry and random forest models to predict future PHE porewater solubility, 

bioaccessibility, and solid phase distribution changes during future flooding. This 

chapter calls for further research around cross-validating these random forests on 

riverine catchments physicochemically different, which are not originally trained on 

these random forest models. Future research should also examine the role of geospatial 

analysis to map locations, using these trained random forests, of high vulnerability to 

PHE mobility and bioaccessibility. Such geospatial analysis may involve extracting a 

soil’s physicochemical data from a known location, using online tools such BGS 

GBASE, and incorporating such data into these random forests to formulate predictions 

(BGS 2024).  
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Chapter 6: Estimating the Effectiveness of Combing Random Forest Models with 

Geospatial Analysis to Predict PHE Porewater Solubility During Flooding  

6.1 Introduction 

The influence of anthropogenic climate change increasing flooding’s frequency and 

magnitude poses risks of increasing the mobility and altering the bioaccessibility and 

solid phase distribution of PHE (Kilunga et al 2017, Nel et al 2018, Peck et al 2004). 

Exposure to such remobilised PHE, such as lead, arsenic, and cadmium, may cause 

adverse neurotoxic health effects (Table 1.1, Chapter 1). The influence of flooding 

altering a PHE solid phase distribution can transform PHE into more toxic forms (e.g., 

arsenite (III) to more toxic arsenate (V)) (Ponting et al 2021).  

Flooding alters a soil and water physicochemistry (e.g., pH, EH, organic carbon) 

(Laurent et al 2017). These physicochemical alterations influence a PHE solid phase 

distribution with soil mineral phases like carbonates, oxides, and residuals (Doherty et 

al 2022). The purpose of the chapter within this thesis was to determine the correlation 

between physicochemistry and PHE porewater solubility, bioaccessibility, and solid 

phase distribution. Such correlations are statistically significant, indicating that the 

physicochemistry may become a reliable indicator for estimating a PHE mobility and 

bioaccessibility change during flooding. For example, Chapter 2 established that higher 

pH conditions reduce copper, lead, and arsenic porewater solubility.  

This analysis may infer that locations with highly acidic soil may become susceptible to 

high fractions of soluble and bioaccessible PHE (Ponting et al 2021). Chapter 2 also 

revealed that assuming that a pH increase directly decreases PHE mobility and 

bioaccessibility is incorrect; and rather, physicochemistry is multi-dimensional. By 

“multi-dimensional,” this means such physicochemical parameters all interact 

differently, and predicting PHE dynamics using a single physicochemical variable (i.e., 

an increase in pH increases PHE mobility) is unreliable. This unreliability extends to 

using multiple physicochemical variables to predict PHE dynamics because it is 

inherently unknown how these variables interact. While it is valuable to model using 

these physicochemical parameters to estimate PHE dynamics, much work is still 

needed. Future research must solely investigate deeply the interactions between these 

variables to understand between when using these variables for predictive artificial 

intelligence purposes. In essence, there are two black box systems at place: one black 
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box being the artificial intelligence and the second being the interactions between these 

variables, both of which require a deeper understanding.  

The opportunities of machine learning algorithms, particularly random forest models, 

proved highly reliable at predicting PHE porewater solubility, bioaccessibility, and 

solid phase distribution during flooding (see Chapter 4 and 6). Such predictions were 

reliable by training these random forest models on physicochemical data and also 

mechanistic data.  

This Chapter expands upon the previous chapters, investigating the role of combining 

these random forest predictions with geospatial data analysis (i.e., geographical 

information systems (GIS)). There are multiple government and non-government 

agencies providing reliable information about soil’s physicochemical information 

across the UK. Such agencies include the British Geological Survey, the UK Centre for 

Ecology and Hydrology, the Environment Agency, and the James Hutton Institute.   

This Chapter proposes, for the first time, dividing the United Kingdom into spatial 

grids, using GIS, and extracting the relevant physicochemical information relating to 

the soil type from these agencies. These data will be concatenated to each grid, which 

can then be transferred to the developed random forest model to predict the likelihood 

of PHE mobility changes during flooding.  

6.2 Aims and Objectives 

This chapter aims (1) to explore the opportunities of GIS spatial analysis combined 

with machine learning random forests to predict PHE porewater solubility fraction 

within the River Thames. The chapter aims to incorporate the physicochemical data 

into the random forest model to predict the PHE porewater solubility within the Thames 

catchment. Other relevant information, such as the flood risk probability and the 

population number for a given location, will also be incorporated into the random forest 

model as feature variables. Training the random forest model with this physicochemical 

data, population numbers, and flood risk enhances the understanding of better 

predicting PHE porewater solubility risk to humans. This chapter, given computational 

constraints, will only focus on lead, given how abundant lead is within the environment 

and how neurotoxic lead is from exposure. For example, given the number of variables, 

predicting lead mobility changes during flooding would require at least 48 hours to 
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concatenate and process the data on QGIS. Lead was selected given its abundance 

within soil and its severe toxicity from exposure.  

This chapter builds upon the previous chapters, identifying the future role of this 

random forest model in risk assessment procedures. For an overview outlining the 

random forest model development and where this chapter aims to develop the model, 

see Figure 6.1 below.  

Table 6.1. Outlines the research aim and how this aim relates to the wider structure of this thesis. The 

thesis indicates the investigation’s catchment, the PHE type, and the experimental analysis technique.  

Research Aim  Flow Chart Part Catchment  PHE Type  Experimental Type  

1 20 Thames Lead Geospatial Analysis   

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Outlines the random forest model development throughout the thesis. The step denoted in 

bold represents the purpose of this chapter regarding the random forest development.  

6.3 Methods  

6.3.1 Map Projections  

The random forest model predictions were forecast across the Thames catchment, with 

the purpose of identifying locations of high vulnerability to PHE porewater solubility 

using QGIS (Version 3.30.2).  

Identifying Physiocochemical Variables for Training Random Forest Model  

Train Random Forest Model using Physicochemical Data from the Clyde  

Train Random Forest Model using Mechanistic Data from the Clyde  

Test the Random Forest Models within the Humber Catchment  

Test the Random Forest Model within the Thames Catchment   
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Establishing the locations of high vulnerability was done by creating a polygon map of 

the UK, and a one-mile squared grid was overlayed across the polygon map. The 

baseline physicochemical conditions of the different soils in the Thames catchment 

were obtained from the BGS G-BASE (BGS 2024). All data were imported into QGIS, 

vectorised, and joined onto each polygon grid cell. The combined attribute table was 

downloaded and implemented into the random forest model, allowing PHE porewater 

solubility predictions for a ten-day flood scenario, the average flood length for the UK 

(EA and DEFRA, 2016) to be made. The prediction hazard was obtained by comparing 

these predictions with environmental quality standard pollution indices for freshwater 

and estuarine environments for lead (EA and DEFRA, 2016). The Environment Agency 

estimates that freshwater and estuarine soluble lead concentrations of 14µg/L or higher 

would exceed minimum threshold levels, causing “significant” health consequences 

through exposure (EA and DEFRA, 2016). The risk level was assessed by determining 

the likelihood of flooding and the hazard based on the flood probability (high, medium, 

low, very low) (Table 6.2).  

The random forest was trained using the following input features: Ca, K, Na, Fe, Al, 

Mn, pH, and Eh to predict Pb porewater solubility across the Humber catchment. These 

input features were selected based on PCA and statistical analysis (AIC and BIC scores) 

derived from Chapter 4.  

Table 6.2. Outlines the risk rubric for classifying locations within the Thames catchment vulnerable to 

lead mobility. This rubric shows that estimating the risk level must first appreciate the probability of 

flooding. If the flood probability is low, there is a low-risk likelihood as the hazard is absent (flooding).  

 

Very High High Medium Low Very Low 

 

Flood Risk: High 

 

Remobilised Lead:           

> 20µg/L 

 

Population: >100 per 

mile square 

Flood Risk: High 

 

Remobilised Lead:   

14-20µg/L 

 

Population: > 100 per 

mile square 

 

Flood Risk: Medium 
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Flood Risk: Low 

 

Remobilised Lead:  
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per mile square 

Flood Risk: Very 

Low 
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<5µg/L 
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mile square 
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6.4 Results  

6.4.1 Predictive Forecasting the Mobility of Lead 

The results from the random forest model training dataset shows predicting lead 

mobility is non-clustering, meaning that lead mobility can be high within one location 

and very low within the immediate next area (Figure 6.2). Lead’s mobility is the highest 

in the central to southwest of the Thames catchment, with low mobility within the north 

of the catchment. These findings are in agreement with Premier et al (2019), which 

used multivariant statistical analysis, showing high metal concentrations occurring 

within the central part of the Thames estuary.   

Many locations show high risk-levels of remobilised lead. Such findings indicate that 

addressing lead’s mobility can be tailored to specific locations of high remobilisation 

concern (i.e., southwestern locations).  
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Figure 6.2. Outlines lead’s mobility within the Thames catchment boundary, and the different colours 

denote the risk. The figure 6.2 (A) summarises the river system within the Thames catchment. Figure 6.2 

(B) indicates the risk of lead mobility. Figure 6.2 (B) begins with dividing the Thames catchment into 1 

mile x 1 mile grids. Within such girds, soil physicochemical data (e.g., pH, iron, and aluminium) was 

collected and inputted into the random forest model to estimate lead porewater solubility.  

6.5 Discussion  

This chapter explored the opportunities of combining geospatial analysis and random 

forest machine learning to predict lead porewater solubility across the Thames 

catchment. This approach developed a colour-coded map indicating locations of high, 

medium, and low lead solubility fraction changes during flooding; however, further 

validation is necessary. Data needs to be collected within several locations across the 

Thames catchment to confirm the map’s predictions.  

The data show the opportunities for the wide-scale application of random forest models 

to predict a PHE response during flooding. Many studies also demonstrate the 

opportunities of using these random forests for such flood modelling, by improving the 

feature selection, variable importance understanding and their ability to quickly process 

input features (Breiman 2001, Rodriguez-Galiano 2012).  

The analysis outlines several PHE porewater solubility hotspots. The data indicate that 

risk assessment approaches towards addressing future PHE remobilisation should focus 

on a few locations within the Thames. However, it is important to address some 
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limitations of this analysis. The Thames map generated is a risk assessment map based 

on the random forest training dataset. More specifically, the random forest model was 

trained on physicochemistry and PHE porewater solubility correlations within the 

Clyde catchment. These predictions are generated from the random forest training 

dataset and do not reflect reality. In other words, this risk map is a prediction estimate 

and not any indication of reality, emphasising the need for future research to conduct 

laboratory results across the Thames catchment, testing the reliability and validation of 

these predictions (Hengl et al 2017). However, by offering a balanced approach, the 

random forest model did account for several key parameters which influence PHE 

remobilisation (e.g., physicochemical changes) which may reflect some form of reality. 

This chapter aimed to illustrate the opportunities and applications machine learning and 

geospatial analysis have towards estimating PHE mobility.  

Such findings also indicate the importance of accounting for the risk of flooding in such 

predictive estimates. For example, if a location has a hazard, based on a soil’s 

physicochemical attributes, of creating a high chemically remobilised fraction of lead 

during a flood; however, has a very low probability of flooding, then the risk of soluble 

PHE is minimal. In other words, if the location is susceptible to soluble PHE; however, 

it has a very low flood risk, then the risk factor is low because flooding may never 

happen in the first place. Many studies support this, emphasising that floodplain 

dynamics significantly influence contaminant mobility, whereby hydrological changes 

have been shown to impact contaminant distributions (Saaristo et al., 2024; Gfeller et 

al., 2021). This highlights the necessity of integrating flood risk into predictive models 

for improved risk assessment." Such analysis must be appreciated for any predictive 

model. Moreover, the model could also account for type of population present, for 

example, are there schools nearby with vulnerable receptors, vulnerable wildlife zones 

etc.  

The data also shows the high variability of lead porewater solubility. This high 

variability is attributed to the high variation in soil physicochemistry. For risk 

assessment purposes, predicting lead porewater solubility across large spatial scales 

must appreciate the local variability in physicochemical conditions. Applying a spatial 

scale grid of 5 miles, for example, may have a high chemically remobilised variation, 

emphasising the need for risk assessment purposes to predict lead porewater solubility 

within much smaller scales. These findings emphasise the importance of the data within 
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this thesis to develop reliable predictive tools to aid rapidly testing locations susceptible 

to high fractions of PHE mobility. By identifying sites where there is PHE 

remobilisation risk, receptor risk and high flood probabilities, these factors can be 

overlaid to identify areas for monitoring where the risks are high. Essentially, this 

approach effectively aids rapidly testing these high-risk locations.  

 6.6 Conclusion  

This chapter explored the opportunities of combining machine learning random forests 

with geospatial analysis to predict lead porewater solubility during flooding. The 

chapter investigated the opportunities of dividing the UK into sub-gird cells, 

incorporating physicochemical data into each cell, and then using the developed 

random forest model to simulate the chemically remobilised fraction of lead under a 

flood within each cell.  

The results reveal several conclusions. Firstly, lead porewater solubility may be highly 

spatially variable, emphasising the need to develop rapid tools to estimate mobility 

variations. Predicting the chemically remobilised fraction of lead should be tailored to 

hotspot locations, which were apparent across the Thames catchment. However, this 

chapter reveals the limitations of these results, indicating that such mapping predictions 

are constrained to the reliability of the random forest models training dataset. 

Moreover, the information used to generate physicochemical data for these random 

forest models to formulate predictions may be unreliable and requires laboratory 

assessments to test the reliability of these online databases (e.g., from BGS GBASE).  

This chapter calls for future research around testing the predictions of these random 

forest predictions across the Humber and assessing the reliability of such predictions. 

The chapter also calls for more research around exploring more reliable databases, 

which may provide an extensive array of geospatial data around a soil’s 

physicochemistry.   

Chapter 7 Thesis Conclusions  

Several field and laboratory experiments were conducted to investigate the role of soil 

physicochemistry in predicting PHE porewater solubility, bioaccessibility, and 

speciation changes caused by flooding. These experiments aimed to examine the role of 

training AI modelling using laboratory and fieldwork data to reliably predict PHE 
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dynamics during flooding (Chapter 4 aims). The laboratory work involved conducting 

multiple microcosm and mesocosm artificial flooding experiments. Soil porewater was 

collected throughout the flooding and drainage periods and was analysed for 

physicochemical parameters. PHE chemical speciation was determined using the 

chemometric CISED sequential extraction procedure. PHE bioaccessibility was 

established using the BARGE procedure. The soil porewater physicochemistry was 

determined using ICP-OES analysis.  

These data were then used in various AI modelling approaches to evaluate the 

usefulness of predicting PHE porewater solubility, bioaccessibility, and solid-phase 

distribution during flooding using soil porewater physicochemistry. Specifically, 

different AI modelling was assessed, including machine learning random forests, 

XGBoost, and deep learning recurrent neural networks. This work is driven by the 

knowledge that exposure to such PHE may cause severe health implications, and with 

climate change increasing flooding frequency, emphasises the need for improved PHE 

monitoring (Goodland 2013). The data presented in this thesis have shown that: 

• The soil's physicochemistry is reliable as a predictive proxy for estimating PHE 

porewater solubility, bioaccessibility, and solid phase distribution. These 

findings are significant because soil physicochemistry is well understood across 

the UK, meaning specific geographical locations with particular soil 

physicochemical characteristics could be prioritised for future research (Chapter 

2; Section 2.3.4 and Chapter 3; Section 3.4.2).   

• Machine and deep learning approaches using physicochemistry training data 

have significant opportunities for reliably estimating PHE changes during 

flooding (Chapter 4; Section 4.3.2).  

• Random forest models are most reliable for estimating PHE porewater 

solubility, bioaccessibility, and solid phase distribution. These findings 

emphasise a significant conclusion showing that machine learning AI 

approaches outperform deep learning and conventional statistical models 

(Chapter 4; Section 4.3.2, 4.3.3, 4.3.4).  

• Significant future opportunities exist for combining random forest modelling 

with geospatial analysis tools to predict PHE changes during flooding (Chapter 

6; Section 6.4.1).  
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The following section outlines these findings in more detail:  

7.1 The Role of Soil Physicochemistry Predicting PHE Dynamics 

The data show that physicochemistry changes during flooding influence PHE porewater 

solubility, bioaccessibility, and solid phase distribution (Chapter 3). Physicochemical 

changes are highly interconnected, meaning that a straightforward relationship between 

the increase of one variable (e.g., pH) affecting another (e.g., iron concentrations) is 

simplified, and any predictive model must account for this interconnectedness.  

Predicting PHE dynamics requires training predictive models on diverse 

physicochemical data from different groups (e.g., oxides, abiotic, microbial). The data 

also show that the flood length, which alters physicochemical conditions differently, 

particularly the redox conditions, must be appreciated in predictive modelling (Chapter 

3; Section 3.4.4).  

7.2 The Implications AI Predicting PHE Dynamics  

The data show that deep-learning neural networks, machine-learning random forest 

models, and extreme gradient boosters can estimate PHE changes during flooding 

(Chapter 4). Such data reveal that all these models are better at predicting regression 

(i.e., porewater soluble and bioaccessibility fractions) than classification predictions 

(i.e., solid phase distribution).  

However, the ability of random forest models for predictive purposes is not limited to 

the task being regression or classification but rather the complexity of the problem 

(Biau 2012). Training such models on physicochemistry data, which covers different 

groups (e.g., anaerobic, oxides and micronutrients), reliably predict porewater solubility 

and bioaccessibility. However, the results in Chapter 4, Section 4.3.2, reveal that 

different AI modelling types assign different variable importance rankings to specific 

physicochemical variables influencing PHE mobility. For example, random forest 

models assign soil iron concentrations higher importance in influencing PHE mobility 

than neural networks.  

7.3 The Role of Random Forest Modelling  

The results show decision tree learners, specifically random forests, have the highest 

prediction accuracy around estimating PHE porewater solubility, bioaccessibility, and 

solid phase distribution (Chapter 4; Sections 4.3.2, 4.3.3., 4.3.4, respectively). Such 
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models exhibit the lowest training and testing RMSE. Incorporating mechanistic data 

from Visual MINTEQ and PHREEQC further improved the random forest predictive 

performance by increasing the model fit with the testing data and slightly lowering the 

training and testing RMSE (Chapter 4; Section 4.3.5). The data indicate that these 

random forests may outperform the models investigated because feature randomisation, 

replacement sampling, and out-of-bag data reduce the model bias and variance. 

7.4 Random Forests and Geospatial Analysis  

The data reveal the opportunities of dividing a location into geographical spatial grids 

(1 mile by 1 mile) and concatenating physicochemistry data to such grids, using the 

“concatenate by location function on QGIS (Chapter 6). After concatenating such data, 

the random forests show opportunities for predicting PHE porewater solubility across 

large spatial scales. Such data indicate that these random forests can predict the risk of 

PHE porewater solubility by incorporating information relating to the population of that 

location and the flood probability. These population and flood risk data should be 

treated as additional training features within the random forests. 

7.5 Next Steps to be Done  

The next steps required are as follows:  

1. Investigate how soil microbes and fungi influence PHE porewater solubility, 

bioaccessibility, and solid phase distribution.  

This research focused little on soil microbes and the complex interplay between 

microbial changes during flooding, which significantly influences PHE dynamics. 

Analysing the role soil microbes play in affecting bioaccessibility would significantly 

increase the predictive accuracy. This higher accuracy is due to microbes playing a 

central role in soil biogeochemical cycling, particularly in organic carbon degradation, 

which is important for influencing PHE dynamics.   

More specifically, understanding the relationship between microbes and PHE dynamics 

would enhance understanding PHE interactions with the organic mineral phase. Soil 

microbes influence how PHE coprecipitate with organic mineral fractions, specifically 

humic substances and fulvic acids. Understanding the nexus between microbes, organic 

matter, and PHE dynamics improves the capability of monitoring PHE changes during 

flooding within locations with particularly high organic matter fractions.  



216 

 

2. The number of riverine catchments analysed.  

Conducing microcosm experiments across more catchments would verify and validate 

the model predictions, testing the random forest model’s generalisation ability. 

Different riverine catchments have different soil physicochemical properties, land 

gradients, vegetation coverages, bedrock geology and flood regimes. This difference 

tests these artificial intelligence models to predict PHE dynamics across heterogeneous 

conditions. Testing on these varying conditions reduces the likelihood of these artificial 

intelligence models overfitting and underfitting the data. Increasing data variations 

reduces the likelihood of these AI models overfitting or underfitting patterns in one data 

type, preventing the model from becoming overly specific with a low ability to 

generalise.  

Moreover, different riverine catchments flood differently. Depending on the land 

gradient, land use type, soil texture, and riverine hydrological characteristics, some 

riverine catchments may flood for longer and shorter periods (Chapter 3, Section 3.4.5). 

Examining different riverine catchments also addresses the complexities surrounding 

how different rivers flood, hence improving the random forest generalisation 

performance. The land gradient, land use type, and soil texture all influence flood 

water’s velocity, flow and infiltration, impacting soil physicochemistry (Ponting et al 

2021). For example, steeper land gradients increase surface runoff, reducing soil water 

infiltration and saturation and impacting soil redox status. Understanding the 

relationship between differing land gradients, vegetation coverages, and land use types 

influencing soil physicochemistry during flooding may increase the performance of the 

random forest to predict PHE dynamics within multiple catchments with different 

physical characteristics indicated above.  

3. Representing a real flooding scenario  

The random forest was trained on laboratory data; however, training this model on data 

from actual flooding experiments would enhance the ability of the model to predict on 

larger scales. More specifically, the interactions between these physicochemical 

variables influencing PHE dynamics differ on larger scales. For example, larger-scale 

setups may encompass more variables influencing PHE dynamics, which laboratory 

work cannot capture. Such differing variables may include variability in soil texture and 

chemical properties across catchments. From a modelling perspective, using real flood 
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measurements can help validate the modelling approaches by testing their predictions 

against the “real” data.  

4. Microbial species influencing PHE dynamics during flooding  

The data presented in this thesis analysed how soil microbial communities influence 

PHE porewater solubility under changing temperature gradients (20oC, 30oC and 40oC) 

(Chapter 3, Section 3.3.5); however, the experiment did not analyse how microbial 

species types change under these temperature gradients. These changes in microbes 

under these temperature gradients could have been measured using eDNA sequencing. 

It was intended to use eDNA sequencing; however, given financial constraints and time 

implications, this research did not focus on using eDNA sequencing. Applying eDNA 

sequencing is important for future research. There are several fungal and microbial 

types, all of which respond differently during flooding, and investigating how different 

species influence PHE dynamics could serve as an important predictive parameter, 

similar to soil physicochemistry.  

In future scenarios, the experiment should take soil samples under these changing 

temperature conditions and analyse how the microbial richness and diversity alter. This 

analysis of the soil’s bacterial and microbial composition may significantly enhance the 

ability of random forest modelling to predict how PHE remobilises during flooding by 

training on datasets that contain information about how biological communities respond 

to temperature change. Such analysis is observed in Nagler et al (2022) study, which 

uses eDNA sequencing of soil microbes to enhance biomonitoring.  

7.6 Future Recommendations  

There is scope for enhancing the research around predicting PHE porewater solubility, 

bioaccessibility, and solid phase distribution using physicochemistry data. The main 

recommendations for future research from this thesis are:  

Predictive Modelling  

• Understanding how incorporating physicochemical variables into random forest 

modelling can predict PHE risk from an inhalation exposure scenario. This is 

important because there are significant research limitations around airborne 

contamination. Moreover, the interactions between physicochemical parameters 

influencing airborne contamination are likely significantly different from those 
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at the soil interface. This difference means that the AI models developed and 

trained within this research may have significant limitations around being 

restricted to predicting PHE dynamics within the soil interface rather than 

atmospheric.  

• Validate such random forest predictions across catchments with differing 

physicochemical, mineralogical, and geological components. This 

recommendation may be the most important for this research because it finalises 

the conclusions around the role of AI and physicochemistry in predicting PHE 

dynamics during flooding. Validating these model predictions also establishes 

any underlying constraints or weaknesses within the initial modelling 

predictions.  

• Investigate the vertical transport, fate, and behaviour of PHE and the role of 

random forests in monitoring such change during flooding. This serves 

interesting grounds around how PHE interacts in soil systems; however, it is 

less important for risk assessment purposes, focusing on PHE exposure within 

the upper soil layers.  

• Determine novel ways physicochemical information can predict PHE solid 

phase distribution more than just determining the soil extractable mineral phase. 

The data presented in this thesis shows the profound opportunities of using AI 

and soil physicochemistry to predict PHE solid-phase distribution. By solid-

phase distribution, this means the modelling could estimate which soil mineral 

phase, such as exchangeable, carbonate, and organic, PHE coprecipitate. 

However, these AI models had difficulties predicting the chemical speciation, 

for example, what specifically is PHE coprecipitating within the organic mineral 

phase. These predictive challenges are most likely attributed to data limitations, 

and future work should involve conducting several chemical speciation tests, 

correlating the physicochemical changes with PHE chemical speciation, and 

retraining these AI models on more chemical speciation data.  

• Examine the accuracy of the GBASE model predictions as input data for the 

random forest model to predict over large macro scales, exploring sub-grid 

variability in predictions.  
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Policy and Governance 

• Evaluate how such knowledge can improve environmental policy around flood 

management. A novel modelling approach was developed to assess PHE 

changes during flooding rapidly. It is important to investigate how this model 

compares with the existing approach to flood modelling, how this model may 

benefit environmental consultants, and how this model could be used for wide-

scale risk assessments is important.  

 

The current approach to monitoring flooding influencing PHE dynamics is slow 

and requires intensive laboratory work. Future research should evaluate how 

this modelling approach could complement existing approaches for examining 

PHE dynamics during flooding. Inevitably, the role of AI has profound 

opportunities for significantly upscaling testing and identifying new locations of 

risk to PHE dynamic changes during flooding. Future work should also re-

evaluate locations of more susceptible risk than others, essentially triaging 

locations of vulnerability.  

 

Laboratory and Field Investigations  

• Analyse PHE remobilisation and bioaccessibility under a real flood scenario, 

conducting fieldwork analysis rather than laboratory microcosm and mesocosm 

setups. This research aimed to simulate a flooding scenario by conducting 

larger-scale mesocosm experiments. However, these mesocosms are only 

partially representative of carrying out research during actual flooding periods. 

Conducting fieldwork flooding experiments may introduce variables not 

previously considered within the laboratory setups, which may influence PHE 

dynamics more or less than anticipated. Such variables include the influence of 

the riverine physicochemistry, ambient weather conditions, and vegetation 

coverage.  

 

In conclusion, this research aimed to develop a fast, reliable, and novel methodology 

for analysing PHE porewater solubility, bioaccessibility and solid-phase distribution 

changes during flooding. This research has achieved these aims, uncovering the 
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fundamental role of soil physicochemistry and the opportunities for training AI to 

predict PHE dynamics. The data within this thesis establishes the profound possibilities 

of combining soil physicochemical data with artificial intelligence to rapidly and 

reliably examine PHE dynamic changes during flooding.  

This research emphasises the next steps around verifying and validating the developed 

random forest further, testing such predictions within different catchments, training this 

model on more data, and evaluating its role in complementing existing monitoring 

approaches.  
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