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INTRODUCTION
Over the past three decades, extensive efforts have been made to 
uncover the genetic basis of elite athletic performance. In a series of 
updates of the gene map for human performance and fitness-related 
phenotypes between 2000 and 2015, over 200 autosomal genes 
and quantitative trait loci have been reported, often lacking replica-
tions [1, 2]. Despite persistent attempts to unveil the role of genes 
in human performance-related phenotypes [3–5], key genes and 
gene regulatory networks remain largely elusive. The underlying rea-
sons for this lack of understanding are multi-faceted, such as the 
predominant reliance on a candidate gene approach, a primary focus 
on European populations, and small sample sizes that result in low 
statistical power to detect true effects. In recent years, the applica-
tions of genome-wide approaches  [6], the shift to include 
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genetically diverse populations [7, 8] and improved power [9] have 
propelled the field of genetic research to tackling complex phenotypes 
more effectively.

Here, we set out to conduct a multi-phase, cross-ancestry ge-
nome-wide association study (GWAS), comprised of elite sprint and 
power-oriented athletes of West African and East Asian ancestry. 
These athletes competed in major sprint, jump and throw events, 
representing the top-end of elite sprint and power performance by 
breaking world records or winning Olympic medals. We expect to 
uncover common genetic variants of moderate to large effect sizes 
on a sample size comparable to that of the landmark GWAS of age-
related macular degeneration [10]. For the first time, these unique 
cohorts enabled us, with greater confidence, to explore both 
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of Florida State University, USA (D5.158), the Institutional Review 
Board of Juntendo University, Japan (SHSS 2022-137), the Institu-
tional Review Board of Tokyo Metropolitan Institute of Gerontology, 
Japan (TMIG 19-3784), the Institutional Review Board of the Na-
tional Institute of Health and Nutrition, Japan (KENEI 2-09), the Bio-
ethics Commission of Institute of Bioorganic Chemistry of the Na-
tional Academy of Sciences of the Republic of Belarus, Belarus 
(2017/03), the Lithuanian Bioethics Committee, Lithuania (69-99-
111), the Ethics Committee of the Lopukhin Federal Research and 
Clinical Center of Physical-Chemical Medicine of the Federal Medi-
cal and Biological Agency of Russia, Russia (2017/04), the Institu-
tional Review Board of the Children’s Hospital at Westmead, Aus-
tralia (2003/086), the Royal Children’s Hospital Human Research 
Ethics Committee, Australia (35172), the Ethical Committee of Ghent 
University Hospital, Belgium (B67020097348), Aristotle Universi-
ty of Thessaloniki Research Committee, Greece (1895), and the Po-
meranian Medical University Ethics Committee, Poland (BN-
001/45/08) approved for this work. Written informed consent was 
obtained from all subjects. All research was performed in accordance 
with the relevant guidelines and regulations, and in accordance with 
the “Declaration of Helsinki”.

DNA processing for GWAS
DNA was isolated from buccal cells or whole saliva. Participants were 
asked not to consume food or drink for at least 30 minutes before 
providing a sample. Buccal cells were collected by a trained indi-
vidual by firmly rubbing a brush (Medical Packaging Corporation, 
Camarillo, CA, USA) against the inside of a participant’s cheek for 
at least 15 seconds. The head of the brush was then cut into a screw 
cap tube containing cell lysis solution (0.1 M Tris-HCl pH 8.0, 
0.1 M EDTA; 1 % SDS). DNA was extracted using the QIAamp DNA 
Mini kit (QIAgen, Hilden, Germany) according to the manufacturer’s 
instructions with minor adjustments. Whole saliva was collected 
using the Oragene DNA Self Collection Kit (OG-250, DNA Genotek 
Inc., Canada). About 2 mL of saliva was collected and sufficiently 
mixed with the Oragene chemistry (DNA Genotek Inc., Canada) by 
repeated inversion for 10 seconds. DNA was extracted following the 
manual purification of DNA from 0.5 mL of sample using DNA Ge-
notek’s prepIT∙L2P DNA extraction kit with minor adjustments. DNA 
was quantified using the Nanodrop Technologies Nanodrop ND-
8000 Spectrophotometer (Wilmington, DE, USA).

Purified DNA samples from the Jam and A-A cohorts were shipped 
to Tokyo Metropolitan Institute of Gerontology, Japan, for genotyping 
on HumanOmniExpress (730,525 markers) and HumanOmni1-Quad 
Beadchips (1,134,514 markers) (Illumina, San Diego, California, 
USA). During transportation, DNA was stored in the sterile Thermo 
Scientific Matrix Storage Tubes (0.75 mL, 8 × 12 format; Thermo 
Fisher Scientific, Hudson, New Hampshire, USA) and was shipped 
with dry ice. DNA quality was re-evaluated using the PicoGreen As-
say prior to the whole-genome genotyping; and only samples of at 
least 50 ng of DNA were taken forward.

cross-ancestry and ancestry-specific genetic variations across the 
genome and their regulatory functions in association with elite sprint 
and power-oriented athletic status. In addition, we hypothesize that 
the genetic architecture underlying elite sprint and power perfor-
mance would have significant implications for future research of hu-
man health and disease, particularly in musculoskeletal, metabolic, 
immunological and neurological conditions that share common bio-
logical pathways with this trait.

MATERIALS AND METHODS 
Sample collection
Elite Jamaican (Jam) and African-American (A-A) sprint cohorts (of 
West African ancestry) [11, 12]: These cohorts comprised Jam and 
A-A sprint athletes of the highest caliber and geographically matched 
controls. One hundred and sixteen Jam athletes (60 male, 56 female) 
and 311 matched controls (156 male, 155 female) were recruited, 
as previously described [13]. Among them, 71 competed in the 
100–200 m sprinting events, 35 in the 400 m, and 10 in the jump-
ing and throwing events. They were classified as national-level ath-
letes (n = 28) competed in Jamaica and the Caribbean and inter-
national-level athletes (n = 88) competed at major international 
competitions for Jamaica. Among the international-level athletes, 
46 had won medals at the international events or held world records 
in sprinting.

One hundred and fourteen A-A sprint athletes (62 male, 52 fe-
male) and 191 matched controls (72 male, 119 female) were re-
cruited, as previously described [13]. Among the athletes, 48 spe-
cialized in the 100–200 m sprinting events, 42 in the 400 m and 
24 in the jumping and throwing events. The athletes included 28 com-
peting at the national level and 86 at the international level, with 
35 having won medals at international competitions or set sprint 
world records. An additional 350 A-A controls were incorporated 
from published dataset [14], to boost the number of A-A controls for 
this study.

Elite Japanese (Jpn) sprint athlete cohort (of East Asian ances-
try): This cohort included 54 (48 male, 6 female) international-lev-
el sprint athletes from Japan, but they were not necessarily medal-
lists. One hundred and eighteen geographically matched controls 
(38 male, 80 female) were recruited from the general population.

Elite European athlete cohorts: Cohort 1 comprised 133 sprint-
ers, 234 power-oriented athletes, 451 endurance athletes and 
1,525 controls from Belarus, Lithuania, and Russia. Cohort 2 con-
sisted of 171 sprinters, 168 power-oriented athletes, 252 endur-
ance athletes and 595 controls from Australia, Belgium, Greece, and 
Poland. All athletes were national-, and international-level, or were 
prize winners of these events.

Muscle biopsy samples: These samples were collected from 
23 physically active Russian males as previously described [15] for 
muscle fiber composition and GALNT13 gene expression analyses.

Ethics Committee of the University of West Indies, Jamaica (pro-
tocol number: ECP 121, 2006/2007), the Institutional Review Board 
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Discovery phase – part one: GWAS data analysis workflow
Illumina GenomeStudio Software (v2010.3), PLINK [16], and EIGEN-
STRAT [17] were used for converting array outputs to PLINK formats, 
performing genotype quality control (QC) and association testing, and 
conducting population stratification analyses, respectively.

Per-individual and per-marker QCs were initially performed in 
a cohort-specific manner. Single nucleotide polymorphisms (SNPs) 
met the following inclusion criteria: maximal proportion of missing 
SNPs per sample of 5% (267,969 Jam; 297,404 A-A; 48,490 Jpn; 
SNPs excluded); minor allele frequency (MAF) of 1% (9 A-A; SNPs 
excluded); minimum Hardy-Weinberg disequilibrium frequency P-
value 1 × 10−7 (31 Jpn; SNPs excluded). Any samples failing per-
sample QCs were removed, including discordant sex, low call rate 
below 95%, heterozygosity rate exceeding three standard devia-
tions (SD) from mean heterozygosity, cryptic relatedness subject to 
proportion IBD (identity-by-descent) of 0.05 and visual inspection 
of the relationship between Z0 and Z1 values, and outliers of prin-
cipal component analysis (Supplementary Table S1, and Supplemen-
tary Fig. S1 and S2). Genetic associations were evaluated using lo-
gistic regression for 22 autosomes in PLINK, assuming an additive 
effect in Jam and A-A and taking into account the top 10 principal 
components and genotyping center effect in the model, where ap-
propriate. Standard allelic association analysis was performed in 
PLINK, comparing the allele-frequency differences in Jpn. Visualiza-
tion of the GWAS results and regional associations was carried out 
in the Bioconductor package “karyoloteR”  [18] and the Lo-
cusZoom [19], respectively; along with other packages, “Cairo” [20], 
“tidyr” [21], and “cpvSNP” [22], required for plotting.

Discovery phase – part two: imputation and meta-analyses
Two imputation workflows were adopted: IMPUTE2 (phasing with 
SHAPEIT2 [23]) on the 1000G phase 3 reference panel [24, 25] 
and the Sanger Imputation Server on the African Genome Resourc-
es [26] (phasing with EAGLE2 [27], imputing with PBWT [28]) for 
each GWAS cohort. Post-imputation QC criteria included an imputa-
tion quality measure > 0.3 and a MAF ≥ 5%. Cohort-specific ge-
netic associations were then tested using SNPTEST [29] under 
a frequentist additive model, conditioning on the top 10 principal 
components and genotyping centers, where appropriate. Meta-anal-
yses using the inverse variance-weighted fixed-effect model of the 
three imputed GWAS cohorts were performed in METAL [30] sub-
jected to genomic control (GC) correction.

Replication phase: independent replications of rs10196189 in 
athletes of European descent
Genotyping of rs10196189 (GALNT13) was performed in two Euro-
pean cohorts (Cohort 1 and Cohort 2) comprising sprint and power-
oriented athletes, endurance-oriented athletes, and their matched 
controls. Cohort 1 and 2 were independently organized and genotyped. 
Genetic associations were assessed using both additive and dominant 
genetic models within each replication cohort. Meta-analysis of the 

discovery and replication findings for rs10196189 was conducted in 
METAL [30], combining the association results from the Jam, A-A, 
and Jpn GWAS imputation cohorts, as well as Replication Co-
hort 1 “Other sprint/power oriented” and Replication Cohort 2 “Sprint-
ers and Jumpers” sub-groups.

Muscle fiber composition and GALNT13 gene expression analyses
Muscle fibre composition of musculus vastus lateralis was evaluated 
as previously described [31]. Briefly, vastus lateralis samples were 
obtained from the left leg using the modified Bergström needle pro-
cedure. Serial cross-sections (7 μm) were obtained from frozen 
samples using an ultratom (Leica Microsystems, Wetzlar, Germany). 
The sections were then incubated at room temperature in primary 
antibodies against slow or fast isoforms of the myosin heavy chains. 
Images were captured with a fluorescent microscope (Eclipse Ti-U, 
Nikon, Tokyo, Japan). The cross-sectional areas of fast- and slow-
twitch muscle fibers were evaluated using the ImageJ software (NIH, 
USA). The subjects were restricted to training for one day, prior to 
the muscle biopsy of vastus lateralis of left leg in the morning.

Total RNA was isolated using the RNeasy Mini Fibrous Tissue Kit 
(Qiagen, Hilden, Germany) as previously described [15] and was treat-
ed with the Turbo DNA-free Kit (Thermo Fisher Scientific, Waltham, 
MA, USA) according to the manufacturer’s instructions. RNA-seq li-
brary was then prepared using the NEBNext Ultra II Directional RNA 
Library Prep Kit with the NEBNext rRNA Depletion Module (New Eng-
land Biolabs, Ipswich, MA, USA) and was sequenced on a HiSeq sys-
tem (Illumina, San Diego, CA, USA) for paired-end sequencing with 
a read length of 125 bp and an average read depth of 48.4 M [15]. 
Expression of the GALNT13 gene was presented in transcripts per ki-
lobase million for downstream analysis.

Gene- and gene-set enrichment analyses
Gene-based analysis of the SNPTEST summary statistics was per-
formed using MAGMA v1.09b [32] following Sanger imputation. 
SNPs were annotated to NCBI 37.3 and assigned to a gene if lo-
cated within 5 kb up- or downstream of the gene region. The “multi” 
gene analysis model was applied, testing both “mean” and “top” SNP 
associations, which are sensitive to detect associations in high link-
age disequilibrium (LD) regions of a gene using the sum of squared 
SNP Z-statistics as the test statistic or in the top proportion of SNPs 
using the lowest SNP P-value as the test statistic. Gene location files 
derived from NCBI 37.3 and LD estimations between SNPs using 
the African and East Asian reference populations of the 1000 Ge-
nomes Project were downloaded from the auxiliary files available at 
https://ctg.cncr.nl/software/magma. Fixed effects meta-analysis of 
the gene analysis results was performed in METAL across the Jam, 
A-A and Jpn cohorts, followed by competitive gene-set analysis using 
the MSigDB (v7.4) hallmark [33] (N = 50) and canonical pathways 
(C2:CP; N = 2,922) collections of functional gene sets. Multiple 
testing correction was applied according to the number of genes 
available for each analysis.
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findings in each cohort. Specifically, 18,416 (Jam), 18,414 (A-A), 
and 18,317 (Jpn) and 13,301 (meta-analysis) genes were upload-
ed for gene reprioritization in the central nervous system, forebrain, 
brain, and caudate nucleus, respectively. The resulting positive Net-
WAS scores indicate genes that are more likely to be nominally sig-
nificant. To further evaluate the reprioritized gene lists, we submit-
ted them to Enrichr [41–43] for functional annotation, focusing on 
gene enrichment in “Diseases/Drugs” and “Cell Types” gene-set 
libraries.

Statistical analysis
For the GWAS association results, a P value of 5E-05 was used as 
a suggestive cut-off. For the imputed datasets, results were filtered 
using P < 1E-05. The relationship between GALNT13 gene expres-
sion and the relative area occupied by fast-twitch muscle fibers was 
analyzed using a Generalized Linear Model with a Gamma distribution 
and an “inverse” link function, adjusted for age, body mass index 
(BMI) and athletic levels, in R [44]. For the gene- and gene-set en-
richment analyses, multiple testing corrections were applied using 
Bonferroni or Benjamini–Hochberg (BH) methods; only statistically 
significant or borderline significant associations were reported. For 
LDAK gene-based heritability estimation, the P value is calibrated 
using 10 permutations (default setting in LDAK5.2). In the GIANT 
analysis, enriched biological processes and pathways were considered 
significant at P < 0.05. For the functional module analysis, Q-values 
of each term were calculated using a one-sided Fisher’s exact test 
and BH corrections for multiple testing, as implemented in humanbase. 
The Enrichr Q-value represents an adjusted P value calculated using 
the BH method.

RESULTS 
GWAS of elite Jam, A-A and Jpn athletes
In the discovery phase, following initial QC checks on DNA quantity 
and quality, GWAS genotype data were available for 95 Jam athletes 
and 102 Jam controls, 108 A-A athletes and 397 A-A controls, and 
54 Jpn athletes and 118 Jpn controls. All athletes were specialist 
sprint or power-oriented athletes with ancestry-matched controls. 
Following standard GWAS QC procedures, a  total of 609,801, 
637,991 and 541,179 markers were retained in the Jam (88 athletes 
and 87 controls), A-A (79 athletes and 391 controls) and Jpn (54 ath-
letes and 116 controls) cohorts. Seventeen, seven and thirty-six 
markers met a suggestive threshold of P = 5E-05 in these cohorts, 
respectively (Supplementary Table S2–S4). No variant exceeded the 
genome-wide significance threshold of P = 5E-08.

Genotype imputation and meta-analyses
The IMPUTE2 pipeline identified 9,726,027 (Jam), 9,640,471 (A-A), 
and 6,444,519 (Jpn) markers, and the Sanger Imputation Server 
revealed 7,700,522 (Jam), 7,592,681 (A-A), and 4,975,382 (Jpn) 
markers (see Supplementary Fig. S3 and S4 for the GWAS and im-
putation Q-Q and Manhattan plots).

LDAK gene-based heritability estimation
Gene-based heritability was estimated using individual-level SNPTEST 
results with restricted maximum likelihood (REML [34]) method, as 
implemented in LDAK5.2 [35]. Again, SNPs were annotated to NCBI 
37.3 and assigned to a gene if located within 5 kb up- or downstream 
of the gene region. SNPs were scaled to the recommended power of 
-0.25, implying weak negative selection (See: dougspeed.com/gene-
based-analysis/). Covariates were included to correct for population 
structure and genotyping center effect, where appropriate. Heritability 
estimates were provided on both the observed and liability scales by 
setting the population prevalence to 1% in the latter. This was based 
off a conservative estimate from the probabilities of competing in Col-
lege Athletics provided by the US Federal associations, the National 
Federation of State High School Associations, and the National Col-
legiate Athletic Association (NCAA) [36] – the probabilities for women 
and men competing in Track and Field at the NCAA Division I level 
during 2018–19 were 2.8% and 1.9%, respectively. Estimates for 
competing in professional athletics or at the Olympic level in Track and 
Field are not available, but are presumed to apply to only a select few 
(well under 1%). Here we set an arbitrary liability scale to 1%, only 
as an indicator of low prevalence.

Data-driven prediction for tissue-specific gene functions, regulation 
and GWAS re-prioritization in humanbase
To functionally annotate the findings from both SNP- and gene-based 
analyses, we utilized humanbase (https://humanbase.io/). Humanbase 
hosts a suite of machine-learning algorithms (Naïve Bayes, deep learn-
ing, and Supporter Vector Machine) to enable functional predictions of 
genomic variants and genes. By integrating 987 genomic datasets, 
consisting of ~38,000 conditions from ~14,000 publications, and by 
accessing their relevance in 144 tissues and cell lineages, it provides 
a high throughput and unbiased method to prioritize genes and ge-
netic variations for follow-up. We applied tissue-specific functional 
network analysis (GIANT [37]), implemented in humanbase, for the 
top genes identified from the gene-based analyses including GALNT13, 
STXBP2, BOP1, HSF1, GRM7, MPRIP, ZFYVE28 and ADAMTS18; the 
data plotted using cowplot [38]. In addition, we performed the Sei 
analysis [39] for six sentinel SNPs, representing independent regional 
signals resided near or in GALNT13 (rs113303758, T/C), STXBP2 
(rs2303115, G/A), BOP1 (rs4977199, T/G), GRM7 (rs3864067, A/G), 
MPRIP (rs117143557, C/T), and CERS4 (rs2927712, A/C), to inves-
tigate tissue- and cell-type-specific regulatory activities. We have also 
conducted functional module [40] detection in blood for the interferon-
gamma response gene set, which includes 199 genes identified through 
gene-set enrichment analysis using MAGMA, to explore genetic as-
sociations with specific biological processes represented by cohesive 
gene clusters or functional modules, including potential associations 
involving functionally uncharacterized genes in the detected modules.

Lastly, we conducted NetWAS [37] analysis on nominally sig-
nificant genes (P < 0.01) identified from the gene-based analysis, 
using a relevant tissue network representative of the top gene 
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The meta-analysis results comprised 11,038,143 (IMPUTE2) 
and 8,787,208 (Sanger) genetic variants, among which 107 (IM-
PUTE2) and 78 (Sanger) attained the suggestive significance cut-off 
of GC-corrected P = 1E-05 across two or three cohorts (Figure 1, 
and Supplementary Data S1 and S2). The genomic inflation factor 
was close to 1 (0.9995, IMPUTE2; and 1.004, Sanger; Supplemen-
tary Fig. S5). Notably, the most significant combined effect across 
all three cohorts was observed for the imputed variant rs113303758 lo-
cated in the intron of GALNT13 on chromosome 2. This variant ex-
hibited a MAF ranging from 0.06–0.35 and a combined odds ratio 
(OR) of 2.52 for the C-allele (PIMPUTE2 = 2.75E-07 GC-corrected, 
I2 = 0%, Phet = 0.63; and PSanger = 3.16E-07 GC-corrected, I2 = 
0%, Phet = 0.64). It is also tightly linked (in LD) with the GWAS ar-
ray variant rs10196189 (r2 = 0.97, D’ = 1; ORIMPUTE2 = 2.46, 
PIMPUTE2 = 6.00E-07 GC-corrected, I2 = 0%, Phet = 0.70, and 
ORSanger = 2.48, PSanger = 5.45E-07 GC-corrected, I2 = 0%, Phet = 
0.67, for the G-allele). The association results of rs113303758 and 
rs10196189 in individual cohorts following Sanger imputation are 
summarized in Table 1. At the cohort-specific level, the T-allele of 
rs117143557  (nearest gene: MPRIP, classified as a  distal 

enhancer-like signature according to ENCODE [45]; MAF: 0.06) on 
chromosome 17 in Jpn had an OR of 17.05 (PSanger = 7.63E-08 GC-
corrected), approaching the GWAS significance level of P = 5E-
08 (Figure 1). In addition, the Sanger imputation results, which out-
performed IMPUTE2, were used in the subsequent analyses detailed 
below.

Replication of the GWAS array hit rs10196189 in athletes of 
European descent
In the replication phase, we investigated the top hit, rs10196189 (in 
almost perfect LD with rs113303758), and independently replicated 
its association with elite sprint and power performance in two elite 
European athlete-control cohorts. The first cohort comprised 234 pow-
er-oriented athletes, 451 endurance-oriented athletes and 1,525 con-
trols from Belarus, Lithuania and Russia (ORadditive = 1.53, 95% CI = 
1.17–2.00, P = 2.00E-03, for the G-allele of rs10196189 in the 
power-oriented athletes vs controls; ORG-dominant = 1.61, 95% CI = 
1.19–2.18, P = 1.80E-03; Table 2). The second cohort consisted 
of 171 sprint athletes, 252 endurance-oriented athletes and 595 con-
trols from Australia, Belgium, Greece and Poland (ORadditive = 1.45, 

TABLE 1. Association results of GALNT13 rs10196189 and rs113303758 in individual GWAS cohorts following Sanger imputation.

CHR SNP BP
GWAS 
Cohort

Effect 
Allele

EAF OR 95% CI ln(OR)
SE

P*

ln(OR)

2 rs10196189 154826491 Jam G 0.36 2.83 1.77–4.53 1.04 0.24 1.69E-05

A-A G 0.32 1.99 1.13–3.52 0.69 0.29 0.02

Jpn G 0.06 2.66 1.04–6.83 0.98 0.48 0.04

2 rs113303758 154837893 Jam C 0.35 2.92 1.82–4.67 1.07 0.24 9.91E-06

A-A C 0.32 2.01 1.14–3.56 0.70 0.29 0.01

Jpn C 0.06 2.64 1.03–6.76 0.97 0.48 0.04

CHR: chromosome; SNP: single nucleotide polymorphism; BP: base pair position, matching GRCh37; EAF: effect allele frequency; 
OR: odds ratio; 95% CI: 95% confidence interval; SE: standard error. Jam: Jamaicans, A-A: African-Americans and Jpn: Japanese. 
*: Uncorrected P values.

FIG. 1. Genetic associations following imputation (IMPUTE2 and Sanger Imputation Server) and meta-analysis of Jam, A-A and Jpn 
cohorts with athletic prowess (sprinting) across 22 autosomes. 
Dotted line: suggestive significance cut-off of P = 1E-05; dashed line: genome-wide significance cut-off of P = 5E-08. X-axis: 
chromosome number; Y-axis: -log10(P).
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95% CI = 1.05–2.00, P = 2.40E-02, for the G-allele of rs10196189 in 
the sprint athletes vs controls; ORA-dominant = 0.28, 95% CI = 
0.10–0.75, P = 7.00E-03; Table 2). Details on the replication cohorts 
for their geographical regions and genotype distribution within each 
cohort are provided in Supplementary Table S5 and S6. Moreover, 
meta-analysis combining the Sanger imputation and replication results 
for rs10196189 across the three GWAS cohorts and two replication 
cohorts revealed a significant association crossing the GWAS thresh-
old of P = 5E-08 (ORadditive = 1.71, P = 2.28E-09; I2 = 41.7%, 
Phet = 0.16. When a sample-size weighted meta-analysis was per-
formed, the significance remained robust (P = 2.13E-09; I2 = 47.8%, 
Phet = 0.11; Table 3).

In silico search for rs10196189 and GALNT13 gene expression
Further in silico search for rs10196189 showed that the sprinting 
ability-increasing G-allele of rs10196189 was associated with 

higher GALNT13 expression in the brain cortex (t-statistic = 2.2, 
P = 0.027; using the eQTL Calculator on https://gtexportal.org). In 
addition, the muscle biopsy analysis showed that GALNT13 expres-
sion was positively associated with the relative area occupied by 
fast-twitch muscle fibers in the vastus lateralis muscle of 23 physi-
cally active men (t-statistic = -2.6, P = 0.018, adjusted for age, 
BMI and athletic levels).

Gene- and gene-set enrichment analyses
In the gene-based analysis, 18,416, 18,414, and 18,317 genes 
containing at least one SNP were identified in the Jam, A-A and Jpn 
GWAS imputation cohorts, respectively. Following multiple testing 
correction, significant associations were observed for BOP1 (Pmulti = 
6.52E-07, and Psnpwise_mean = 8.35E-07) and HSF1 (Pmulti = 1.71E-
06, and Psnpwise_mean = 1.67E-06) in Jam, GRM7 (Pmulti = 1.28E-06) 
in A-A, and MPRIP (Psnpwise_top1 = 1.63E-06) in Jpn. Furthermore, 

TABLE 2. Replication results of GALNT13 rs10196189 in two European cohorts.

Replication Cohort Sub Group
Effect Allele*; 

EAF

Additive Model Dominant Model

OR$ (95% CI) P& Dominant 
Allele

OR¶ (95% CI) P&

Cohort 1:
Belarus, Lithuania,
and Russia

Sprinters and 
Jumpers

(G); 0.14
1.23

(0.85–1.78)
0.27 G

1.32
(0.88–1.97)

0.17

Other sprint/
power oriented

G; 0.17
1.53

(1.17–2.00)
2.00E-03 G

1.61
(1.19–2.18)

1.80E-03

Endurance 
oriented

(G); 0.13
1.10

(0.88–1.38)
0.42 A

0.74
(0.32–1.68)

0.47

Cohort 2:
Australia, Belgium, 
Greece, and Poland

Sprinters and 
Jumpers

G; 0.19
1.45

(1.05–2.00)
2.40E-02 A

0.28
(0.10–0.75)

7.00E-03

Other sprint/
power oriented

(G); 0.14
1.02

(0.71–1.46)
0.92 A

1.13
(0.24–5.38)

0.88

Endurance 
oriented

(A); 0.88
1.23

(0.89–1.70)
0.20 G

0.70
(0.49–1.01)

5.50E-02

EAF: effect allele frequency; OR: odds ratio; 95% CI: 95% confidence interval. *: The allele whose frequency is higher in the athletes 
relative to the controls. It bears no meaning where the test results were non-significant (in brackets); $: Odds ratios are with respect 
to the effect allele; ¶: Odd ratios are with respect to the dominant allele; &: Uncorrected P values.

TABLE 3. Meta-analysis of association results for GALNT13 rs10196189 across the GWAS imputation cohorts and the two European 
replication cohorts exceeding the genome-wide significance of P = 5E-08.

SNP Effect Allele OR 95% CI Pcombined Direction I2 Phet

rs10196189 G 1.71 1.43–2.04 2.28E-09 +++++ 41.7% 0.14

When sample size weighted meta-analysis performed, Pcombined = 2.13E-09, I2 = 47.8%, Phet = 0.11.

SNP: single nucleotide polymorphism; OR: odds ratio; 95% CI: 95% confidence interval; Pcombined: combined fixed-effects meta-analysis 
P  value based on the raw additive association P values from each cohort; I2: heterogeneity index (0–100%); Phet: P  value for 
heterogeneity.
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gene-level meta-analysis across the three cohorts revealed a signifi-
cant association for ZFYVE28 (Pmulti = 2.01E-06) and a borderline 
significant finding for ADAMTS18 (Pmulti = 3.13E-06). Competitive 
gene-set enrichment analysis of these meta-analysis results identified 
199 genes significantly enriched in interferon-gamma response, one 
of the 50 gene sets in the MSigDB Hallmark Collection [33] (P = 
7.60E-04 after multiple testing correction; Supplementary Data S3). 

No significant enrichment was observed in any of the 2,922 Ca-
nonical pathways from the MSigDB C2 Collection.

LDAK gene-based heritability estimation
LDAK gene-based heritability estimation for MPRIP in the Jpn cohort 
yielded an estimated heritability of 0.20 (SD: 0.09) on the observed 
scale, and 0.13  (SD: 0.06) on the liability scale, assuming 

FIG. 2. Tissue-/cell-type specific expression of GALNT13, STXBP2, BOP1, HSF1, ZFYVE28, ADAMTS18, GRM7 and MPRIP in the nervous 
system (a), hematopoietic system (b), as well as other multiple systems (c), following the functional networks analysis in GIANT [37] 
(the data available under a CC-BY 4.0 license, see: https://humanbase.readthedocs.io/en/latest/).
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a prevalence of 1% (test statistic = 20.87, Ppermutation = 2.05E-
06 following multiple testing correction). This significant finding 
aligns with that of the gene analysis results for Jpn mentioned ear-
lier. Furthermore, the top gene unveiled in the Jam cohort is STXBP2, 
with an estimated heritability of 0.13 (SD:0.07) on the observed 
scale and 0.07 (SD: 0.04) on the liability scale (test statistic = 
17.83, Ppermutation = 6.91E-06). For the next two top genes, BOP1 
and HSF1, the estimated heritability on the observed scale is 
0.10 (SD: 0.07) and 0.09 (SD: 0.09), respectively, while on the 
liability scale, the values are 0.06 (SD: 0.04) and 0.05 (0.04) (test 
statistic = 17.71, Ppermutation = 7.38E-06 for BOP1, and test statis-
tic = 16.83, Ppermutation = 1.08E-05 for HSF1). These results are 
consistent with the gene analysis findings in Jam. GALNT13, har-
bouring the replicated rs10196189, showed a heritability estimate 
of 0.19 (SD: 0.08) on the observed scale and 0.11 (SD: 0.04) on 
the liability scale in Jam (test statistic = 9.14, Ppermutation = 7.81E-
04). In contrast, negligible heritability estimates were observed in 
A-A (test statistic = 0.02, Ppermutation = 0.32) and Jpn (test statistic = 
0, Ppermutation = 0.68). It should be noted that these findings in Jam 
were not statistically significant after accounting for the number of 
genes analyzed.

Tissue-specific functional network analysis (GIANT)
Among the genes analyzed in GIANT – GALNT13, STXBP2, BOP1, 
HSF1, GRM7, MPRIP, ZFYVE28 and ADAMTS18 – tissue-/cell-type 
specific expression networks revealed distinct patterns of expression. 
GALNT13, GRM7, MPRIP, ZFYVE28, and ADAMTS18 are expressed 
almost universally across the nervous system (Figure 2a). Notably, 
ZFYVE28 demonstrates the highest predicted confidence score for 
its expression in caudate nucleus (score: 0.87, Figure 2a). In contrast, 
STXBP2 shows broad expression across the hematopoietic system 
(confidence scores ranging from 0.15 to 0.87), and is experimen-
tally validated in blood platelet achieving the maximum confidence 
score of 1 (Figure 2b). Intriguingly, in addition to the nervous system, 
MPRIP is expressed across diverse tissue systems, including the 
muscular, endocrine, cardiovascular, skeletal, and embryonic systems. 
Its expression is experimentally validated specifically in smooth 
muscle (Figure 2c).

Polypeptide N-acetylgalactosaminyltransferase 13 (GALNT13)
Tissue-specific gene expression of GALNT13 was observed in the 
central nervous system, with its highest predicted confidence score 
of 0.73 relative to other nervous tissue types (Figure 2a). Within this 
network, 14 genes were identified as functionally similar to GALNT13 
based on interaction scores exceeding 0.15, including GNAO1, ASIC1, 
GRIK2, MED12L, SORCS1, GRIK3, FZD4, SEZ6L, MYO7A, SHANK2, 
KMT2A, KANSL1, DSCAM, and PIEZO2 (Supplementary Fig. S6). 
Of these, seven genes were associated with key biological processes 
represented in the network: the nervous system process (ASIC1, 
GRIK2, MYO7A and SHANK2), sodium ion transmembrane transport 
(ASIC1, GRIK2, and MYO7A), histone H4–K16 acetylation (KMT2A 

and KANSL1), ionotropic glutamate receptor signalling pathway 
(GRIK2 and GRIK3), and monovalent inorganic cation transport 
(ASIC1, GRIK2 and GRIK3) (P < 3.70E-02). Most gene pairs as-
sociated with GALNT13 in this network also show evidence support-
ing their role in the locus ceruleus (a nucleus in the pons of the brain 
stem, which activates the sympathetic nervous system). Interaction 
scores for these gene pairs ranging from 0.36 to 0.91(Supplemen-
tary Data S4).

For biological process-specific gene interactions, the GALNT13–
TF (transferrin) gene pair demonstrated the strongest association 
with forebrain development (highest interaction score: 0.89). This 
was followed by other notable gene pairs, including GALNT13–FUT6, 
GALNT13–SIX3, GALNT13–GCNT3, GALNT13–BTG4, and 
GALNT13–RTL3 with interaction scores ranging from 0.51  to 
0.64 (Supplementary Fig. S6). In addition, key developmental pro-
cess such as dorsal/ventral pattern formation, regionalization and 
pattern specification process are enriched in forebrain development 
(P < 3.80E-02), driven by network genes SIX3 and SMAD6.

Syntaxin binding protein 2 (STXBP2)
The highest predicted score for STXBP2 was observed in leukocyte 
(score: 0.87, Figure 2b). Functionally similar genes to STXBP2 include 
CAPG, PTPN6, S100A11, EHBP1L1, IFI30, ARPC4, PTPN18, MVP, 
ACTN4, CYBA, TYMP, SBNO2, PFN1, and IKBKG, all of which have 
interaction scores exceeding 0.46 (Supplementary Fig. S6). Gene 
pairs involving STXBP2 in the network show evidence supporting 
their functions in osteoblasts, granulocytes (basophils), monocytes, 
dendritic cells, natural killer cells, locus ceruleus and dentate gyrus 
(interaction scores ranging from 0.51 to 0.93; Supplementary Data 
S4). Gene interactions specific to leukocyte migration are character-
ized by gene pairs STXBP2–ARHGEF1, STXBP2–CNOT3, STXBP2–
CAPG, STXBP2–SBNO2, STXBP2–GRN, STXBP2–CLDN4, STXBP2–
MVP, STXBP2–STX4 and STXBP2–POLD4 (interaction score ≥ 0.95; 
Supplementary Fig. S6). Notably, STXBP2, SBNO2 and STX4 are 
associated with several biological processes enriched in leukocyte 
migration, such as myeloid cell and leukocyte activation involved in 
immune response (P = 1.00E-03 and P = 4.00E-03, respectively), 
as well as granulocyte activation (P = 1.40E-02).

BOP1 ribosomal biogenesis factor (BOP1) and heat shock tran-
scription factor 1 (HSF1)
BOP1 shows its highest expression in leukocyte (predicted score: 
0.70), followed by blood (0.67) and the nervous system (0.64). Its 
expression is also observed in endocrine gland, such as testis (0.61), 
ovary (0.58), and pancreas (0.56) (Figure 2). HSF1 is most expressed 
in the reproductive system (placenta, 0.74), followed by the endocrine 
gland (testis, 0.68; ovary, 0.54; prostate gland, 0.48; pancreas, 0.46; 
and liver, 0.45), embryonic structure (fetus, 0.60), leukocyte (0.58), 
blood (0.57), heart (0.52), skeletal muscle (0.49), and brain (0.36) 
(Figure 2). BOP1 and HSF1 are physically close and located on chro-
mosome 8, with the strongest interaction confidence observed in the 
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peripheral nervous system (0.97). This prediction is supported by 
evidence from gene co-expression (62%), transcription factor (TF) 
binding prediction (26%) and GSEA perturbations datasets (12%). 
Functionally similar genes in the network include FGFR3, TRIP6, 
PTBP1, FGFR1, CCNF, UPF1, SLC52A2, SCRIB, GAL, C20orf27, 
NUP188, EIF3B and SMARCA4, with interaction scores ranging from 
0.88 to 0.96 (Supplementary Fig. S6). Among these genes, five are 
associated with viral gene expression (PTBP1, EIF3B and SMARCA4), 
IRES-dependent viral translation initiation (PTBP1 and EIF3B), syn-
ostosis (FGFR3 and FGFR1), and viral translation (PTBP1 and EIF3B) 
enriched in the peripheral nervous system (P ≤ 2.80E-02). Gene pairs 
involving BOP1 or HSF1 in the network are also predicted to function 
in diverse tissues, including hepatocytes, corpus luteum, trophoblast, 
cardiac muscle, adrenal cortex, and the uterine cervix (interaction 
scores: 0.56 to 1.00; Supplementary Data S4).

In addition, BOP1 and HSF1 are specifically implicated in the 
ubiquitin-dependent protein catabolic process (Supplementary 
Fig. S6). The top three genes connected to BOP1 and HSF1, i.e., 
ARHGDIA, EIF4G1 and ATP5F1D (interaction score > 0.90), show 
experimentally validated associations in glutamate receptor signal-
ling, ribonucleoprotein complex assembly, translation initiation, cel-
lular respiration and rRNA processing. BOP1 and DHX30 are also 
associated with ribosomal large subunit assembly (P = 1.50E-02) 
and ribosomal biogenesis (P = 2.40E-02), processes that are en-
riched within the ubiquitin-dependent protein catabolic process.

Glutamate metabotropic receptor 7 (GRM7)
GRM7 is universally expressed across the nervous tissue system, 
with expression levels ranging from the lowest in parietal lobe, nu-
cleus accumbens and cerebellar cortex (predicted score: 0.14) to 
the highest in the forebrain (0.76) (Figure 2a). In the forebrain, 
functionally similar genes to GRM7 include ATP2B2, MYT1L, GRIK3, 
LRP6, EDA, PKNOX2, CACNA1I, CATSPER2, NELL1, AFF2, GABRA4, 
DOCK1, PAPPA2, and RALYL (interaction scores ranging from 0.28 to 
0.41) (Supplementary Fig. S6). Among these genes, GRM7 and 
GRIK3 are present in several biological processes enriched in the 
forebrain network, particularly in neurotransmission pathways, such 
as the adenylate cyclase-inhibiting G-protein coupled glutamate re-
ceptor signalling pathway (P = 7.50E-04) and the G-protein coupled 
receptor signalling pathway, coupled to cyclic nucleotide second 
messenger (P = 4.40E-02). In addition, GRM7 and ATP2B2 are 
associated with sensory perception of sound and mechanical stimu-
lus (P = 2.20E-02). The majority of gene pairs involving GRM7 in 
the network are also supported by evidence for their role in locus 
ceruleus (interaction scores ranging from 0.68 to1; Supplementary 
Data S4).

For biological process-specific gene interactions in the glutamate 
receptor signalling pathway, the genes GRM7, GRM1, GRIK3, GRIK1, 
GRIA1, GRIA2, GRIN1, and GRMB are over-represented in this net-
work (P = 1.00E-12). Furthermore, GRIK3, GRIK1, GRIA1, GRIA2, 
and GRIN1 associate with ionotropic glutamate receptor signalling 

pathway (P = 5.20E-09), GRM1, GRM7, GRM8, and GRIK3 with 
G-protein coupled glutamate receptor signalling pathway (P = 6.30E-
09), and GRM7, GRM8 and GRIK3 with adenylate cyclase-inhibit-
ing G-protein coupled glutamate receptor signalling pathway (P = 
2.60E-07), highlighting the integral role of these genes in glutamate 
receptor signalling (Supplementary Fig. S6).

Myosin phosphatase Rho interacting protein (MPRIP)
MPRIP is expressed across multiple tissue systems, particularly in 
smooth muscle, endocrine gland (e.g., testis, liver, pancreas, ovary, 
and prostate gland), placenta, skeletal muscle and the nervous sys-
tem (Figure 2). In these tissue networks, MPRIP and YWHAB strong-
ly interact in smooth muscle (interaction score: 0.71), testis and 
placenta (0.82), skeletal muscle (0.73), and brain (0.61). This gene-
pair is also predicted to function in spermatogonium (0.96), parietal 
lobe (0.95), pons (0.93), eosinophil (0.92), spermatid (0.92) and 
T-lymphocyte (0.89). In addition, MPRIP and YWHAB participate 
in a variety of specific biological processes and pathways, with in-
teraction scores ≥ 0.9. These processes include, in descending order 
of interaction score, translational initiation, gene silencing by RNA, 
RNA splicing, cell adhesion mediated by integrin, cellular senescence, 
actin cytoskeleton reorganization, acute inflammatory response, T cell 
proliferation, cell morphogenesis, erythrocyte differentiation, cardiac 
muscle contraction, extracellular matrix organization, telomere main-
tenance, Ras protein signal transduction, neuron projection morpho-
genesis, response to hypoxia, chemical synaptic transmission, ne-
crotic cell death, angiogenesis, actin filament bundle assembly, T-cell 
differentiation, T-cell mediated immunity, and response to virus.

Other genes functionally similar to MPRIP show enrichment in 
the following biological processes. PPM1F and ITGB1BP1 are asso-
ciated with cell-substrate adherens junction assembly in the brain 
(P = 2.90E-02), ITGB1BP1 and TAX1BP3 with negative regulation 
of cellular protein localization in the brain (P = 3.90E-02), LAMC1, 
RHOA and MACF1 in cell junction assembly and cell junction orga-
nization in skeletal muscle (P = 3.40E-02), and RHOA, MACF1 and 
YWHAG in regulation of neuron differentiation, regulation of neuro-
genesis and regulation of nervous system development in skeletal 
muscle (P ≤ 4.60E-02).

GALNT13, GRM7 and MPRIP
These three genes originate from the Jam (GALNT13), A-A (GRM7) 
and Jpn (MPRIP) GWAS cohorts, crossing the suggestive threshold 
of P = 5E-05. Notably, they are almost universally expressed across 
the entire nervous tissue system (Figure 2a). Given their widespread 
expression, we focused our analysis solely on their interactions with-
in the nervous system. They are most strongly characterized in the 
glutamate receptor signalling pathway. To refine the gene network, 
we applied a minimum interaction score of 0.20, limiting analysis 
to the top 10 genes unique to the query genes. These include PCD-
HGC5, OR4D2, TAS2R50, KNG1, ANKRD31, KRT82, TEX26, 
FOXR2, MGAT4C and EXOC3L4 (Supplementary Fig. S6).
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ranging from 0.29 to 1.00; Supplementary Data S4). For MPRIP, di-
rect interactions were identified with ANKRD31, EXOC3L4 and PCD-
HGC5 in chemical synaptic transmission (0.26), cartilage develop-
ment (0.47) and cardiac ventricle development (0.58), respectively; 
in addition to their functional relationship to glutamate receptor sig-
nalling pathway, with interaction scores of 0.27, 0.50 and 0.69, re-
spectively (Supplementary Data S4).

Zinc finger FYVE-type containing 28 (ZFYVE28)
Tissue-specific expression of ZFYVE28 is prominent across the ner-
vous system, with the highest predicted expression in the caudate 

GALNT13 and GRM7 have an interaction score of 0.33 within 
the glutamate receptor signalling pathway (interaction evidence: 79% 
co-expression, 20% GSEA perturbations, and 1% TF binding). How-
ever, their strongest interaction is observed in chemical synaptic 
transmission (interaction score: 0.80). Most gene pairs associated 
with GALNT13 or GRM7 show co-expression in the glutamate re-
ceptor signalling pathway. In addition, there is functional evidence 
supporting their roles in chemical synaptic transmission, detection 
of chemical stimulus, sodium ion transport, potassium ion transport, 
hormone secretion, cardiac ventricle development, cardiac muscle 
contraction, and the cAMP biosynthetic process (interaction scores 

FIG. 3. Cellular responses to interferon-gamma unveiled in blood-specific functional modules, linking individual genes to specific 
biological processes. Top three enriched GO terms are annotated for each module, and novel, previously uncharacterized genes are 
labelled in M1-M7 (among which, the highest ranked genes are marked in magenta based on the number of edges they associate 
with). The figure is adapted from the output of the modules analysis implemented in humanbase [40] (the data available under  
a CC-BY 4.0 license, see: https://humanbase.readthedocs.io/en/latest/)
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nucleus (predicted score: 0.87), followed by the substantia nigra 
(0.85) and basal ganglion (0.83) (Figure 2a). In the caudate nucle-
us, CHD9, PRNP, PSMB7, SUPT7L, USP46, ACOT11 and TTC17 
interact with ZFYVE28, with interaction scores ranging from 0.16 to 
0.20 (Supplementary Fig. S6). These interactions are similarly ob-
served in the amygdala. Other specific interactions include PSMB7, 
USP46, ACOT11 with ZFYVE28 in the substantia nigra (0.18–0.19), 
and CHD9, PRNP, TTC17 with ZFYVE28 in the basal ganglion 
(0.18–0.21). Most of these gene pairs show stronger interactions in 
the locus ceruleus, with scores ranging from 0.29 to 0.72 (Supple-
mentary Data S4).

ADAM metallopeptidase with thrombospondin type 1 motif 18 
(ADAMTS18)
ADAMTS18 is expressed in the submandibular gland (Figure 2c) and 
ubiquitously across the nervous tissue system, with its highest expres-
sion observed in the nervous system (predicted score: 0.69, Fig-
ure 2a). Top genes functionally similar to ADAMTS18 in the nervous 
system include INHBB, SLC9A2, ITGA11, BCL2, SMOC2, CSMD1, 
BAIAP2, PDGFRA, JPH3, ACTL6B, WNT1, TBC1D26, CHRD and 
GDF6 (interaction scores ranging from 0.16 to 0.19, Supplemen-
tary Fig. S6). Key biological processes associated with ADAMTS18 
and its network genes include: INHBB, PDGFRA, WNT1 and AD-
AMTS18 in response to wounding (P = 2.10E-03), INHBB, WNT1, 
CHRD and GDF6 in transmembrane receptor protein serine/threonine 
kinase signalling (P = 2.10E-03), WNT1, CHRD and GDF6 in BMP 
signalling pathway and cellular response to BMP stimulus (P = 2.10E-
03), ADAMTS18 and PDGFRA in negative regulation of platelet ac-
tivation (P = 2.10E-03) and aggregation (P = 6.10E-03), PDGFRA, 
WNT1, CHRD and GDF6 in cellular response to growth factor stim-
ulus (P = 6.10E-03), PDGFRA, WNT1, ADAMTS18, and BAIAP2 
in cell-cell adhesion (P = 6.10E-03), PDGFRA and WNT1 in positive 
regulation of fibroblast proliferation (P = 8.60E-03), PDGFRA, BCL2, 
and ADAMTS18 in regulation of cell activation (P = 1.30E-02) and 
WNT1 and GDF6 in skeletal system development (P = 4.70E-02). 
Four gene pairs, ACTL6B–ADAMTS18, JPH3–ADAMTS18, TBC1D26–
ADAMTS18 and CSMD1–ADAMTS18, also closely interact in the 
locus ceruleus with interaction scores of 0.24, 0.51, 0.63 and 0.88, 
respectively (Supplementary Data S4).

Blood-specific functional modules
The previous competitive gene-set enrichment analysis revealed 
199 genes enriched in the interferon-gamma response gene-set. We 
now focus on uncovering blood-specific functional modules within this 
gene set. Of the 197 genes (excluding WARS1 and MARCHF1 not 
matched in the humanbase data collections), 109 genes were catego-
rized into specific modules (M1–M7, Figure 3). The top three repre-
sentative biological processes, annotated to Gene Ontology terms, in 
each module, consist of response to virus, defense response to virus, 
and defense response to other organism (M1, 38 genes; Q < 1.00E-
4); viral life cycle, regulation of viral genome replication, and regulation 

of viral life cycle (M2, 40 genes; Q < 1.00E-4); regulation of endo-
thelial cell apoptotic process, endothelial cell apoptotic process and 
regulation of epithelial cell apoptotic process (M3, 8 genes; Q < 1.00E-
4); regulation of response to interferon-gamma, regulation of interfer-
on-gamma-mediated signalling pathway, and interferon-gamma-me-
diated signalling pathway (M4, 4 genes; Q < 1.00E-4); leukocyte 
migration, natural killer cell chemotaxis, and regulation of natural 
killer cell chemotaxis (M5, 15 genes; Q = 1.00E-4); positive regula-
tion of endopeptidase activity, positive regulation of peptidase activity, 
and positive regulation of proteolysis (M6, 2 genes; Q ≤ 8.00E-4); 
and muscle cell proliferation, regulation of inflammatory response and 
inflammatory response (M7, 3 genes; Q ≤ 8.00E-4). Among the 
109 genes, 8, 18, 3, 1, and 6 genes are uncharacterized in M1–M5, 
respectively (36 genes in total); in other words, approximately 21% 
to 43% of genes in M1–M5 lack annotation to specific Gene Ontol-
ogy terms, suggesting their potentially novel roles within these spe-
cific functional modules (Figure 3). Notably, IFI44 is the top-ranked 
uncharacterized gene in M1, while IFI35, PSME2, HLA-A and UBE2L6 
are top-ranked in M2, and IL2RB and FGL2 in M5 (Figure 3). The 
uncharacterized pairs PSME2–PSME1 and HLA-A–HLA-B in M2 dis-
play strong edge weights of 0.997 and 0.987, respectively. In addition, 
IFI35 in M2 is associated with 11 other genes in the local network, 
including 6 uncharacterized genes (IFI30, LGALS3BP, LY6E, NMI, 
PARP12 and UBE2L6; Figure 3). The edge weights for these interac-
tions range from 0.981 (IFI35–ISG15) to 0.816 (IFI35–MVP) (Sup-
plementary Data S5).

Genomic variant effect analysis (Sei analysis)
The variant effects of six sentinel SNPs, representing independent 
regional signals near or within GLANT13, STXBP2, BOP1, GRM7, 
MPRIP, CERS4, on tissue- and cell-type-specific regulatory activities 
were quantified in Sei (Table 4). These six SNPs were identified from 
the discovery GWAS, crossing the suggestive cut-off of P = 5E-
05 (rs2303115, STXBP, Jam) or were replaced by stronger Sanger 
imputation signals in almost perfect LD: rs4977199, (BOP1, P = 
7.73E-07, Jam) and rs2875287 (GRM7, P = 3.79E-07, A-A). They 
also include top associations following genotype imputation and 
meta-analysis: rs117143557 (MPRIP, Jpn, PGC-corrected = 7.63E-08), 
rs2927712 (CERS4 across Jam and A-A, PGC-corrected = 2.08E-07), 
and rs113303758 (GALNT13 across Jam, A-A, and Jpn, PGC-corrected = 
3.16E-07).

Sequence class-level variant effects
The C-allele of rs2927712 (an intergenic variant, nearest CERS4) 
increases the activity of TF sequence classes, notably TF3 FOXA1/
AR/ESR1 (maximum sequence class score: 1.05), TF5 AR (0.97), 
as well as the enhancer (E) class E4 Multi-tissue (0.72). In contrast, 
the C-allele decreases the activity of E5 B-cell-like (-0.50). The A-
allele of rs2303115 (intron variant in STXBP2) increases the activ-
ity of transcription (TN) sequence classes TN1 (0.21), TN2 (0.18) 
and TN4 (0.17). Meanwhile, the G-allele of rs4977199 (intron 
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TABLE 4. Tissue-/cell-type-specific regulatory activities associated with sentinel SNPs resided within or next to genes derived from 
the SNP- and gene-based analysis in Sei [39] (predictions made for 40 sequence classes and 21,907 regulatory features; the data 
available under a CC-BY 4.0 license, see: https://humanbase.readthedocs.io/en/latest/).

Gene rs ID CHR:BP
Ref 

Allele
Alt 

Allele
OR

(95% CI); cohort(s)

Maximum 
sequence-class 

score

GALNT13 rs113303758 2:154837893 T C 2.52 (1.77–3.58); across Jam, A-A and Jpn -0.022

GRM7 rs2875287 3:7676406 G A 4.99 (2.68–9.28); A-A -0.028

BOP1 rs4977199 8:145508691 C G 0.35 (0.23–0.53); Jam -0.84

MPRIP rs117143557 17:16933431 C T 17.05 (6.19–46.98); Jpn -0.085

STXBP2 rs2303115 19:7708214 G A 2.80 (1.80–4.36); Jam 0.21

CERS4 rs2927712 19:8333905 A C 0.20 (0.11–0.37); across Jam and A-A 1.05

Gene Corresponding sequence class Representative regulatory features (Alt-Ref allele probability diff score)

GALNT13 HET2 Heterochromatin Blast Cells Blood / H3K9me2 (0.027)

GRM7 HET5 Centromere Jurkat T Lymphocyte Blood / TET2 (-0.13)

BOP1 E4 Multi-tissue

ECC-1 Epithelium Endometrium / NFIC (-0.92);
K562 Erythroblast Bone Marrow / NFIA (-0.82);
SK-N-SH RA Neuron Brain / DNase (-0.50);
Neuroblastoma cell / H3K4me1 (-0.32)

MPRIP PC1 Polycomb / Heterochromatin Kidney / RUNX1 (-0.061)

STXBP2 TN1 Transcription
H1 Derived Mesenchymal Stem Cells / H3K36me3 (0.13);
CD19 Primary Cells Peripheral / H3K36me3 (0.12)

CERS4 TF3 FOXA1 / AR / ESR1
VCaP Epithelium Prostate / AR (0.21);
Astrocyte Brain / H3K9ac (0.16);
Jurkat T Lymphocyte Blood / ATAC-seq (0.16)

rs ID: SNP reference id; CHR: BP: chromosome and base pair position, matching GRCh37. ORs are relative to the Ref allele. Jam: 
Jamaicans, A-A: African-Americans and Jpn: Japanese.

alt-ref allele diffs score: 0.21), H3K9ac-marked transcription activity 
in Astrocyte Brain (0.16) and chromatin accessibility in Jurkat T Lym-
phocyte Blood (0.16). The A-allele of rs2303115 exhibits a higher 
probability of enhancing H3K36me3-marked transcription activity in 
Fetal Stomach (0.18), Fetal Intestine Small (0.15), Fetal Muscle Leg 
(0.14), H1 Derived Mesenchymal Stem Cells (0.13), CD19 Primary 
Cells Peripheral (0.12), Monocytes-CD14+ RO01746 (0.11). The 
G-allele of rs4977199 decreases the activities of NFIC in ECC-1 Ep-
ithelium Endometrium (-0.92), NFIA in K562 Erythroblast Bone Mar-
row (-0.82), DNase in SK-N-SH RA Neuron Brain (-0.50) and heart 
(-0.35), and H3K4me1-marked enhancer activity in Neuroblastoma 
cell (-0.32) and Brain Cingulate Gyrus (-0.16). It increases the ac-
tivities of CNOT3 in HCT-116 Colorectal cancer cell line (0.20), CBFB 
in ME-1 Leukaemia cell (0.13), H3K36me3-marked transcription in 
Left Ventricle (0.12) and Adipose Nuclei (0.12), and H3K-
27me3-marked repression in Astrocyte (0.12).

The C-allele of rs113303758 is linked to H3K9me2-marked epi-
genetic repression in Blast Cells Blood (0.027) and K562 Erythro-
blast Bone Marrow (0.019). The A-allele of rs2875287  is 

variant in BOP1) mitigates the activity of several enhancer classes, 
including E4 Multi-tissue (-0.84), E3 Brain/Melanocyte (-0.64), and 
E1 Stem cell (-0.62), P promotor (-0.56), and TF3 FOXA1/AR/
ESR1 (-0.50), while enhancing transcription in sequence classes 
TN1 (0.70), TN4 (0.69) and TN2 (0.45).

The C-allele of rs113303758 (intron variant in GALNT13) over-
all decreases the activity of heterochromatin (HET) sequence class-
es HET2 (-0.022) and HET1 (-0.020). The A-allele of rs2875287 (in-
tron variant in GRM7) decreases the activity of HET5 Centromere 
(-0.028) and HET6 Centromere (-0.018), while increasing the ac-
tivity of HET4 heterochromatin (0.019) and HET3 heterochromatin 
(0.015). The T-allele of rs117143557 (an intergenic variant, near-
est MPRIP) results in a global reduction of activity in all sequence 
classes, particularly in the Polycomb (PC) sequence class PC1 Poly-
comb/Heterochromatin (-0.085).

Regulatory feature scores for 21,907 chromatin profiles
The C-allele of rs2927712 shows a higher probability of increasing 
androgen receptor activity in VCaP Epithelium Prostate (maximum 
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S10). These reprioritized genes also overlap significantly with genes 
expressed in prefrontal cortex (OR = 1.76, Q = 1.10E-03), CD8+ 
T cells (OR = 1.53, Q = 2.00E-02) and cerebellum peduncles (OR = 
2.21, Q = 2.00E-02) in the Human Gene Atlas gene-sets (Supple-
mentary Data S11). Further enrichment is observed in fibrous astro-
cytes (Human Astro L1-6 FGFR3 AQP1 down, OR = 2.08, Q = 
1.99E-08) from the Allen Brain Atlas 10x scRNA 2021 library (Sup-
plementary Data S12) and in neurons from the retrosplenial area, 
lateral agranular part, and layer 6b (OR = 2.03, Q = 3.40E-02) 
from Allen Brain Atlas (Supplementary Data S13).

Using the tissue network for the caudate nucleus, 13,301 genes 
reprioritized from the gene-level meta-analysis results are also en-
riched for top neuron-enriched and neuron-specific genes in humans 
and mice (OR = 1.52, Q = 8.75E-06, neuron-enriched and OR = 
1.36, Q = 4.60E-03 neuron-specific), and for those altered in brain 
versus spinal cord derived oligodendrocyte progenitor cells (OPCs) 
(OR = 1.41, Q = 2.60E-03), up-regulated in hippocampus of 
Foxp1 knock-out versus wild-type mice (OR = 1.29, Q = 2.70E-
04) and up-regulated in Pvalb/Th-expressing interneurons of zQ175DN 
versus WT (OR = 2.22, Q = 8.40E-03) in the HDSigDB Human 
2021 gene sets (Supplementary Data S14). This gene list also in-
cludes genes highly expressed across the whole brain, superior fron-
tal gyrus, prefrontal cortex, motor neuron, cerebral cortex and the 
spinal cord in the ARCHS4 Tissues gene sets (Supplementary Data 
S15). It also overlaps with genes expressed in layer 1 of the AOV 
cortex, layer 1 of the frontal cortex (FCx), mantle zone of AOV, su-
perficial stratum of AOV, Forel’s field, and nucleus of the posterior 
commissure in the Allen Brain Atlas gene-sets (Supplementary Data 
S16) and in the human motor cortex in the HuBMAP ASCTplusB 
augmented 2022 gene-sets (Supplementary Data S17).

Additionally, focusing on the four genes with the highest positive 
NetWAS score – ubiquinol-cytochrome c reductase, Rieske iron-sul-
fur polypeptide 1 (UQCRFS1; Jam), protein tyrosine phosphatase 
non-receptor type 6 (PTPN6; A-A), RALY heterogeneous nuclear ribo-
nucleoprotein (RALY; Jpn), and zinc finger MYM-type containing 
4 (ZMYM4; meta-analysis) (Supplementary Data S18) – a knowledge 
search in Enrichr gene-set libraries highlights their potential function-
al relevance. Knockdown of UQCRFS1 results in extended life span 
in female mice (MP:0001661) and in contrast, leads to premature 
death in male mice (MP:0002083) in MGI Mammalian Phenotype 
Level 4 2021. UQCRFS1 is also down-regulated in the FCx during 
aging in humans (GSE53890), rats (GDS3939) and mice (GSE20411) 
in the Aging Perturbations from GEO libraries. Knockdown of PTPN6 
is linked to abnormal astrocyte morphology (MP:0002182), forebrain 
morphology (MP:0000783), and nervous system morphology 
(MP:0003632), as well as decreased brain size (MP:0000774), ab-
normal hippocampus development (MP:0000808), and reduced neu-
ron number (MP:0008948). Other associated phenotypes include de-
creased apoptosis (MP:0006043), decreased bone mass 
(MP:0004016), and increased erythroid progenitor cell number 
(MP:0003135) in the MGI Mammalian Phenotype Level 4 2021. 

associated with the reduced activities of TET2 in Jurkat T Lympho-
cyte Blood (-0.13) and H3K27me3-marked repression in PAR As-
trocyte (-0.091), while increasing H3K27me3 activity in Jurkat 
T Lymphocyte Blood (0.060). The T-allele of rs117143557 has 
a  variety of functional roles, such as associations with H3K-
4me3-marked promoter activity in IMR90 Fibroblast Lung (0.060), 
H3K27ac-marked enhancer activity in Monocyte Blood (0.055), 
H3K27me3-marked repression in Proerythroblast Bone Marrow 
(0.041), and H3K18ac-marked DNA demethylation [46] in H1 De-
rived Neuronal Progenitor Cultured Cells (0.038). Conversely, it de-
creases the activities of the transcription factor RUNX1 in kidney 
(-0.061) and repressive H3K27me3 marks in PAR Astrocyte (-0.051).

GWAS reprioritization (NetWAS) and enrichment analysis in 
Enrichr
Using the central nervous system network, the 14,788 genes repri-
oritized with NetWAS from the Jam cohort show significant enrichment 
in the HDSigDB Human 2021 gene sets. For example, these include 
top neuron-specific and neuron-enriched genes in humans and mice 
(OR = 1.96, Q = 7.64E-13, neuron-specific and OR = 1.82, Q = 
1.55E-10, neuron-enriched), genes changed in striatum and cortex 
of HdhQ175 mice (OR = 1.45, Q = 4.46E-11 striatum and OR = 
1.52, Q = 1.65E-08 cortex), H3K27me3-enriched genes in MSNs 
of adult mice (OR = 1.43, Q = 5.29E-08) and differentially expressed 
genes in hippocampus of Foxp1 knock-out versus wild-type mice 
(OR = 1.40, Q = 1.29E-07). A full list of enrichment terms, overlap-
ping genes, raw P-value, Q-value, OR and Enrichr combined score for 
the HDSigDB Human 2021 is provided in Supplementary Data S6. 
Furthermore, the reprioritized genes are highly expressed across a range 
of brain regions and the spinal cord in the ARCHS4 Tissues gene sets 
(Supplementary Data S7). Significant enrichment is also observed in 
glutamatergic neurons from the CellMarker Augmented 2021 gene-set 
library (OR = 6.66, Q = 5.00E-05) and in the adult frontal cortex 
gene-set from ProteomicsDB (OR = 1.97, Q = 6.00E-05).

In the forebrain network, the 15,472 genes reprioritized from the 
A-A cohort are enriched for developmental transcription factor genes 
bound by Suz12 (OR = 1.89, Q = 4.10E-02), which regulate ear-
ly developmental processes, such as neurogenesis, haematopoiesis 
and cell-fate specification, in HDSigDB Human 2021 (Supplemen-
tary Data S8). These genes also show enrichment for expression in 
macrophages (OR = 2.44, Q = 1.60E-03), dendritic cells (OR = 
2.37, Q = 1.66E-03), hematopoietic stem cells (OR = 2.09, Q = 
7.58E-03), microglia (the resident macrophage cells of the brain 
and spinal cord; OR = 2.15, Q = 9.53E-03) and GABAergic neu-
rons (OR = 2.23, Q = 2.65E-02) from the single-cell RNA-seq da-
tabase PanglaoDB (Supplementary Data S9).

Using the brain network, 1,846 genes reprioritized from the Jpn 
cohort are enriched for NP2 neural progenitor cell-enriched genes 
(OR = 1.64, Q = 4.10E-17) and genes down-regulated in Sdt/Npy-
expressing interneurons of HD patients versus controls (OR = 1.62, 
Q = 2.90E-16) in the HDSigDB Human 2021 (Supplementary Data 
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Knockdown of RALY results in abnormal lung morphology (MP:0001175) 
and shortened tibia length (MP:0002764) in the MGI Mammalian 
Phenotype Level 4 2021. Furthermore, RALY is up-regulated in Claus-
trum cells and in the primary visual area, layer 5 cells in Allen Brain 
Atlas gene-sets. Knockdown of ZMYM4 results in decreased body 
length (MP:0001258), decreased lean body mass (MP:0003961), 
and reduced mean platelet volume (MP:0008935) in the MGI Mam-
malian Phenotype Level 4 2021. ZMYM4 is also down-regulated in 
Alzheimer’s Disease (GSE1297), Parkinson’s Disease (GSE7621), 
chronic obstructive pulmonary disease (GSE3320) and large granu-
lar lymphocytic leukaemia (GSE10631) in the Disease Signatures 
from GEO 2014.

DISCUSSION 
Here, we conducted a cross-ancestry, multi-phase GWAS in world-
class sprint and power athletes and their matched controls. We 
carried out both the SNP- and gene-based analyses, complemented 
by machine-learning based functional characterization and tissue-
specific reprioritization of GWAS associations. Specifically, genotype 
imputation enhanced the strength of GWAS findings despite the lim-
ited sample size (Supplementary Fig. S4), uncovering stronger and 
novel associations for GALNT13, BOP1, HSF1, GRM7, MPRIP and 
STXBP2 (Supplementary Figures S7–S11). Replication and meta-
analysis further boosted the power for the detection of genetic as-
sociations for GALNT13, ZFYVE28, ADAMTS18 and CERS4. Func-
tional characterization provided key insights into the regulatory roles 
of specific variants: rs4977199 in BOP1, rs2303115 in STXBP2 
and rs2927712 in CERS4, which were found to modulate enhanc-
er activity, transcription, and transcription factor activity, respec-
tively (Table 4). Functional predictions also revealed 36 previously 
uncharacterized genes implicated in host defence, leukocyte migra-
tion, and cellular responses to interferon-gamma (Figure 3). Further-
more, four genes–UQCRFS1, PTPN6, RALY and ZMYM4–were iden-
tified for their associations with traits such as aging, forebrain and 
nervous system morphology, lung and bone morphology, neurode-
generative diseases and blood disorders.

Across ancestries, the most striking result is the overrepresenta-
tion of the G-allele of rs10196189 (GALNT13) in elite sprint and pow-
er athletes of West African, East Asian and European descent, cross-
ing the GWAS significance threshold of P = 5E-08 (Table 3). The 
G-allele of rs10196189 is associated with higher GALNT13 expres-
sion in the brain cortex (data from the GTEx portal). In addition, the 
GALNT13 expression is positively associated with the relative area oc-
cupied by fast-twitch muscle fibers observed in the current muscle bi-
opsy analysis. Consistent with these findings, previous studies report 
that GALNT13 is predominantly expressed in the central nervous sys-
tem and may promote neurogenesis [47]. Collectively, these results 
suggest a regulatory role of rs10196189 in muscle fiber innervation 
and specification [48]. Moreover, gene-based analysis unveiled sta-
tistically significant associations for ZFYVE28 and borderline signifi-
cance for ADAMTS18, across the West African and East Asian GWAS 

cohorts. All three genes, GALNT13, ZFYVE28 and ADAMTS18, are 
universally expressed in the nervous tissue system in GIANT analysis 
(Figure 2 and Supplementary Fig. S6). Notably, ZFYVE28 is found to 
mediate insulin resistance, with higher expression levels in obese, 
non-diabetic patients (insulin resistant individuals) [49]. Further, 
Zfyve28 overexpression in mice impaired insulin sensitivity and in-
creased lipid content in the serum and liver [49]. Consistent with the 
current findings on ZFYVE28, previous studies have reported that elite 
power athletes exhibit greater insulin resistance than elite endurance 
athletes [50], highlighting distinct metabolic characteristics among 
athletes and patient populations. The beneficial and detrimental ef-
fects of insulin resistance require further investigation to improve ath-
letic performance while minimising risks for type 2 diabetes and heart 
disease in both athletes and general population. ADAMTS18 is criti-
cal for the development and morphology of epithelial organs, the vas-
cular and neuronal systems, adipose tissue and reproductive tracts [51]. 
Aberrations in this gene have been linked to a range of pathological 
conditions, including cancers and eye disorders [51]. Intriguingly, AD-
AMTS18 has been associated with bone mineral density (BMD) across 
three ethnic groups, including white U.S. families, a Chinese BMD 
sample, and a cohort of African ancestry. Its expression is significant-
ly higher in subjects with normal-healing skeletal fractures than those 
with delayed healing [52]. In addition, senior Olympic athletes in high-
impact sports exhibit higher BMD levels compared to those in non-
high-impact sports [53]. Again, in line with the current findings on 
ADAMTS18, these data together suggest a pivotal role for ADAMTS18 
in maintaining bone health in athletes and serving as a potential ther-
apeutic target for osteoporosis.

For cohort-specific findings, multiple lines of evidence highlight 
the significance of the findings for: MPRIP (T-allele of rs117143557; 
Jpn), GRM7 (A-allele of rs2875287; A-A), BOP1 (G-allele of 
rs4977199; Jam), CERS4 (C-allele of rs2927712; Jam and A-A), 
and STXBP2 (A-allele of rs2303115; Jam) (Table 4). These associ-
ations are supported by strong SNP- and gene-based signals or their 
regulatory effect scores in Sei. Intriguingly, rs4977199, rs2927712 and 
rs2303115, as the lead SNPs in their respective gene regions (BOP1, 
CERS4, and STXBP2), also act as statistically significant cis-eQTLs 
for other genes in blood-derived expression data [54], such as 
rs4977199  for DGAT1 (encoding a  key metabolic enzyme), 
rs2927712  for CD320 (involved in B-cell proliferation) and 
rs2303115 for PCP2 (predicted to locate in neuronal cell body). 
These data confirm that the three SNPs identified impact elite sprint 
and power performance via their regulatory roles on the transcrip-
tome. This warrants further investigation into the shared genetic 
mechanisms underlying elite athletic ability, metabolic homeostasis, 
and normal immune and neuronal functions. These findings also of-
fer translational potential for identifying new therapeutic targets in 
the relevant disease contexts. The T-allele of rs117143557 nearest 
MPRIP with a MAF exceeding 5% shows a large effect of on elite 
sprint and power performance in Jpn athletes (Table 4). In contrast, 
the T-allele is present at much lower frequencies in European and 
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therapeutics for multisystem autoimmune diseases and cancer, par-
ticularly in understudied populations such as those examined in the 
current study. Furthermore, the current study reprioritized four genes 
with respect to their functional significance derived from common 
genetic variations in Jam (UQCRFS1), A-A (PTPN6), Jpn (RALY), 
and across Jam, A-A and Jpn (ZMYM4). Mutations in these genes 
cause mitochondrial disorders (manifesting in severe multi-system-
ic disorders [62]), inflammatory diseases [63], metabolic disease 
states [64], and energy dyshomeostasis [65], respectively. These 
findings provide a framework for closely studying the connections 
between common regulatory variants and rare protein-coding muta-
tions in related health conditions.

The limitation of the current study relates primarily to its sample 
size. Despite that the study examined the largest cohorts of world-
class sprint and power athletes assembled to date across West-Afri-
can and East-Asian ancestral groups, enabling the detection of mod-
erate to large genetic effects, it lacks the statistical power to identify 
genetic variants with small to modest effects (effect sizes ranging from 
1.1 to 1.4). Another limitation is the absence of a close examination 
of the gene-environment interactions, particularly the role of epigen-
etic mechanisms, such as DNA methylation and miRNA regulatory 
networks, in driving elite sprint and power performance. Future large-
scale, prospective studies should incorporate detailed environmental 
exposure variables and systematically record athletes’ living and train-
ing conditions to thoroughly investigate the interplay between genet-
ic variations and environmental factors, for uncovering the complex 
biology underlying elite sprint and power performance. Although the 
current study offers new insights into the molecular factors influenc-
ing physical performance in health and disease, well-designed func-
tional studies in disease contexts are necessary to fully elucidate these 
findings before drawing further clinical implications.

CONCLUSIONS 
Taken together, we identified nine genes and their sentinel SNPs (where 
applicable) associated with world-class sprint and power performance 
in the first cross-ancestry GWAS of elite athletes. We elaborated on 
their functional roles and interactions within tissue- and cell-type-
specific networks. Furthermore, we uncovered thirty-six novel genes 
involved in cellular immune responses and highlighted four genes 
linked to aging, neurological, blood and bone disorders in these elite 
cohorts. It is noteworthy that our work focused on underrepresented 
ancestral groups from West Africa and East Asia, comprising athletes 
of the highest performance calibre, thereby adding significant value 
to the current genomic landscape. Future studies are required to 
closely examine the impact of gene-environment interactions on elite 
athletic performance in large-scale, well-designed research. Overall, 
the current findings not only provide new biological insights into elite 
sprint and power performance but also lay the foundation for future 
research in understanding how elite sprint and power performance-
related genes may influence health and disease, particularly in mus-
culoskeletal, metabolic, immunological and neurological conditions.

African populations (MAF < 1%), indicating a potential population-
specific function. Further study is required to validate its target gene 
and understand its functional role in elite athletic status as studied 
here and fitness- and health-related phenotypes for this novel inter-
genic variant. The lack of functional evidence in Sei for the intronic 
variant rs2875287 in GRM7 underscores the novelty of this finding. 
GRM7 is known to regulate neurotransmission and mutations in this 
gene that result in reduced expression have been linked to neurode-
velopmental disorders [55, 56], suggesting GRM7 is a disease-caus-
ing gene. The association with elite sprint and power performance 
in the A-A cohort indicates a potential role for rs2875287 in main-
taining neurological and cognitive functions in athletes. Further in-
vestigation is necessary to understand the variant effect on the glu-
tamatergic pathway. These cohort-specific genes are specifically 
expressed in the nervous tissues system, except for MPRIP (expressed 
across multiple tissue systems, including the nervous tissues) and 
STXBP2 (primarily in the hematopoietic system) (Figure 2 and Sup-
plementary Fig. S6).

In addition to the above, the tissue-specific network analysis has 
provided exploratory links to the most relevant interacting genes in 
specific tissues and biological processes, as detailed in the GIANT 
section above. These predicated and functionally similar genes can 
be integrated into the broader biological contexts to refine and test 
new hypotheses for their roles in the nervous system, forebrain de-
velopment, glutamate signalling pathway, higher neurological func-
tions in caudate nucleus, and leukocyte migration (Supplementary 
Fig. S6).

Other notable findings from this study include the identification 
of 36 novel genes in populations of West Africans (Jam and A-A) 
and East Asians (Jpn) associated with specific functional modules 
indicative of response to virus (M1), viral life cycle (M2), cell apop-
tosis (M3), response to interferon-gamma (M4) and leukocyte mi-
gration (M5) (Figure 3). These results coincide with recent discov-
eries that IFI44, OAS2, and HERC6 (in M1) are present in IFN 
responsive T cells in SARS-CoV-2 infected macaques, suppressing 
viral transcription and aiding clearance of the virus [57]. In addition, 
IFI44 has been reported to repress HIV-1 replication in vitro [58]. 
Evidence for NMI and IFI35 (in M2) indicates that they function as 
damage-associated molecular patterns in the extracelluar space, me-
diating proinflammatory responses to cellular infection and damage 
through the activation of the nuclear factor-κB in the Toll-like recep-
tor 4 signalling pathway [59]. More recently, IFI35 has been pro-
posed as a biomarker for neuroinflammation and for predicting long-
term treatment response in multiple sclerosis patients [60]. Autosomal 
recessive mutations in IL2RB (in M5) have been recently character-
ized in severe autoimmunity and viral susceptibility, reflecting the 
important functions of IL2RB in T and natural killer cells signalling 
and in maintaining immune tolerance [61]. Conceivably, the identi-
fication of these functional module-specific genes provides new in-
sights for future studies aimed at understanding the molecular mech-
anisms underlying immunity, with potential applications in developing 
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