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Abstract 
 
Proliferative Kidney Disease (PKD) caused by the Malacosporean parasite 
Tetracapsuloides bryosalmonae, is presently the most economically damaging 
disease of British rainbow trout farming, costing the industry in excess of £2.5 
million per annum in the UK alone.  With no vaccine or prophylactic treatment 
available, and only management techniques currently adopted to minimise the stress 
and mortality associated with the disease, alternative approaches must now be 
considered.  This document investigates if selective breeding for PKD resistance is 
possible by assessing the level of additive genetic variation, and calculating the 
subsequent estimates of heritability, for commercial strains of rainbow trout. 
During a PKD outbreak on a commercial farm, 1500 communally reared juvenile 
rainbow trout from two strains (Houghton Spring and Isle of Man) were sampled on 
a single day, their body weight and fork length measured, and severity of kidney 
swelling scored according to the scale of Clifton-Hadley et al. (1987).  Fish were 
assigned to individual families using microsatellite parentage assignment.  
Significant additive genetic variation was observed in the population, and families 
were ranked according to estimated breeding values.  A combined estimate of 
heritability (h2 = 0.19 ± 0.08) for kidney score suggests the population will respond 
well to selective breeding for kidney score, which may be deemed a measure of 
resistance, whilst the favourable genetic correlations between kidney score and the 
production traits measured suggest simultaneous selection for kidney score and 
growth traits should also be effective.  In order to support the findings of the initial 
research, controlled challenge experiments were conducted.  Using the family EBV 
information on kidney score from the IoM strain (due to its certification as a 
disease-free site), four females, two with high and two with low response to PKD, 
were each crossed with a randomly selected neomale to produce twenty two 
families for PKD challenge experiments.   
The PKD experimental challenges showed evidence of additive genetic variation to 
kidney score over an eleven week period, supporting initial findings.  A low score 
was deemed as evidence of greater resistance to the parasite in this study.  Although 
female EBV was taken into consideration in the statistical model, there was found to 
be no significant difference in resistance according to family.  
Immunohistochemistry stained kidney sections from each individual involved in the 
challenges proved kidney score correlated significantly to the number of parasites in 
the kidney, suggesting that the scale of Clifton-Hadley et al. (1987) is a sufficient 
and accurate basis on which to describe the severity of PKD, and infection level in 
rainbow trout. 
Having discovered evidence that furunculosis, causative agent Aeromonas 
salmonicida, plays a major role in the mortality of fish suffering from PKD in the 
field, the bacterial disease was investigated to assess the resistance of the same 
families used in the PKD challenges.  Twenty one of the families were used to 
discover that additive genetic variation for resistance to furunculosis is apparent 
when assessed as both a binary and longitudinal trait, suggesting significant genetic 
improvement can be made to increase resistance to furunculosis in the IoM stock.  
No significant correlation was observed between kidney score, EBV, and resistance 
to this bacterium, but there was a positive phenotypic correlation found between 
furunculosis resistance and size, suggesting simultaneous selection for performance 
and resistance is possible within this population. 
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1.1 Rainbow Trout 

1.1.1 The family Salmonidae 

Rainbow trout are a member of the family Salmonidae, a small group of fishes 

containing species in several genera; Oncorhynchus, Salmo, Salvelinus, and 

Thymallus.  Commonly known as salmon, trout, charr, and grayling, members of 

Salmonidae are naturally distributed throughout the northern hemisphere, being 

native to Europe, north west Africa, northern Asia, and North America (Muus and 

Dahlstrøm, 1971; Maitland, 1977, 2000), but widespread introductions - South 

America, India, Australia and New Zealand (Maitland, 1977, 2000) - now leaves 

Antarctica as the only continent not inhabited by salmonids (Brannon, 1991; Anon, 

2006a). 

Described by Watson (1993) as ‘primitive fish’ due to the fact they have changed 

little over a long period of evolutionary time, salmonids resemble their earliest 

known ancestors very closely.  The evolutionary progress of salmonids is illustrated 

in Figure 1.1, below. 

Figure 1.1 - Ancestry tree of salmonids, illustrating evolutionary progress 
Source: Modified from Watson, 1993 
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Anatomically, their slender design compliments the predatory lifestyle; keen eyes, 

manoeuvrability, and sharp movement are skills of a true predator (Muus and 

Dahlstrøm, 1971), whilst internally the short digestive tract is typical of carnivorous 

fish species (Figure 1.2; Roberts and Shepherd, 1979). 

 
Figure 1.2 - Internal and external anatomy of salmonid species 
Source: Modified from Shepherd and Bromage, 1988 
 
1.1.2 Classification and distribution 

As a member of Salmonidae, rainbow trout display all of the characteristics 

associated with the family’s taxonomy.  However, classification to the genus and 

species level previously caused some confusion.  Formerly recognised as Salmo 

gairdneri Richardson, 1836, rainbow trout were reclassified in 1989 as scientists 

concluded Pacific trout are more closely related to Pacific salmon than Atlantic 

salmon (see Smith and Stearley, 1989).  The anadromous cousin of rainbow trout, 

the steelhead trout, was also reclassified following re-examination in 1992, and both 

forms are now recognised as Oncorhynchus mykiss, Walbaum, 1792.   

Regardless of strain, rainbow trout are renowned for their ability to both grow and 

mature in a broad range of temperatures (Watson, 1993).  This has led to a wide 

distribution from their indigenous areas of North America (Sedgwick, 1990; 

Brannon, 1991; Watson, 1993).  Today, O. mykiss inhabit 39 of the 42 states in the 

United States of America alone (Watson, 1993).  Out with the USA, they can be 

found as far north as Finland, throughout equatorial regions, and south, as far as 
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New Zealand (Brannon, 1991).  It is believed some wild, self-sustaining populations 

have established (eg Shasta and Kamloops: Anon, 2006a) in such areas as Israel, 

(former) Yugoslavia, Madagascar, Sudan, Austria, Venezuela, Mexico, and Hawaii 

(Muus and Dahlstrøm, 1977; Sedgwick, 1990; Watson, 1993; Maitland, 2000).  

However, these populations are not a result of purposeful management practices, as 

attempts to establish free-living populations have generally been unsuccessful; it is 

expected that these populations derived from escapees of aquaculture (Muus and 

DahlstrØm, 1977). 

1.1.3 Rainbow trout in aquaculture 

The farming of rainbow trout has a long history compared to other members of the 

Salmonidae family (Anon, 2006b).  Following its initial introduction into foreign 

waters in 1874 (Anon, 2006a), the nineteenth century witnessed the first rainbow 

trout reared under artificial conditions (Roberts and Shepherd, 1979).  As the 

longest serving member of the Salmonidae family in aquaculture, numerous authors 

now suggest rainbow trout are one of the few fish species that can be regarded as 

truly domesticated (Sedgwick, 1990; Anon, 2004).  Consequently, the production 

cycle, industry, and market are well established for rainbow trout. 

1.1.3.1 Production cycle 

1.1.3.1.1 Broodstock and egg production 

The commercial production of rainbow trout begins with the selection of suitable 

broodstock in a sex ratio of approximately one male to three females.  During the 

spawning period daily checks for gravidity are undertaken.  At maturation, females 

are removed from the holding unit, the flanks and vent area of the fish are dried to 

prevent water entering the collection bowl, and gentle pressure is applied along the 

sides of the fish causing eggs to flow freely from the urino-genital pore into a 

collection bowl.  Recently, a more technologically advanced method has been 

applied on broodstock sites.  Involving the use of a low pressure air compressor, a 

hypodermic needle is inserted about 10 millimetres into the female between the 

pelvic fins, and air pressure, at 2 pounds per square inch, is used to clear the body 
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cavity of eggs.  The method is reported to be less stressful to the fish (AquaNic, 

2006), as it is faster and prevents excessive removal of the protective mucous and 

scales caused by continual massaging.   

Once eggs are collected, milt is added to the bowl; extracted from males using the 

same manual stripping technique.  Alternatively, where sex reversed females are 

used, milt extraction is lethal.  Neomales are used to produce all-female (XX) 

offspring; beneficial as it prevents early maturation and associated aggression of 

males, which inevitably leads to disease.  The functional males are produced by 

administering the hormone, 17-methyl testosterone, to females when first feeding 

begins.  The females mature to grow large round testes but the vent to release milt is 

absent; hence fish are sacrificed in order to remove milt.  From a marketing 

perspective the method is safe, as only parents are exposed to hormonal treatment.  

The offspring are completely marketable.  The popularity of this method has grown 

so fast that Paaver et al. (2004) report all-female rainbow trout are now the main 

product of northern European fish farms.  

To ensure good fertilisation, commercial sites use eggs from more than one female 

and milt from at least two males.  Eggs and milt are mixed gently and water is 

added to activate the sperm.  The eggs absorb water and become swollen and firm.  

This ‘water hardening’ takes approximately 20 minutes, during which time eggs 

increase in size by ~20%.  At this stage, they are referred to as ‘green’ and can be 

moved for up to 48 hours.  After 48 hours they should be left to incubate in 

complete darkness. 

1.1.3.1.2 Egg incubation, hatching and first feeding 

Three types of egg incubation system exist; hatching troughs, vertical flow 

incubators, and hatching jars (Anon, 2006a).  The decision of which to choose is 

largely dependent on the availability of space, manpower, and water quality.  In any 

system, eggs should be supplied with water circulation sufficient to provide enough 

oxygen and remove suspended particles that may lead to smothering, and 

subsequent death.  Dead eggs quickly accumulate fungus, and egg picking is 

generally required.  In extreme circumstances treatment may be necessary, eg 15 



IoA  Chapter 1 – General Introduction 

 PhD 6 GMB
  
 

minute flushes of formalin (1:600 volume:volume, formalin:water) daily.  When 

incubating eggs in jars, the flow should suspend and roll the eggs gently, whilst in 

troughs and trays, eggs should be stacked at no more than two layers deep.   

Hatching of fertilised eggs is temperature dependent (~370 degree days).  As alevins 

emerge (success rate: ~95%) empty shells should be removed from the holding unit 

to prevent an accumulation of waste products.  At this time sac-fry should be kept at 

or below 10oC to prevent deformity and/or disease.  Once the yolk-sac is almost 

fully used, fry swim to the surface.  As 50% of the stock surface, first feeding 

begins.  Feed is introduced on the surface 3 to 4 times daily until all fry are actively 

seeking food, at which point feeding rate should be increased to every 15 minutes 

where possible (but at least hourly).  Weaning should be completed as soon as 

possible, as developing larvae will be susceptible to dust particles aggravating the 

gills from prolonged use of dust diets.  

1.1.3.1.3 Ongrowing to market 

Post-weaning fry can be classified as ongrowers.  From this stage to market size, 

little changes in the way of handling and management practices.  Sampling should 

occur weekly to allow estimations of food conversion ratios, production costs, 

uniformity, feed strategy and closeness to carrying capacity; essential considerations 

for good management practice (Anon, 2006a).  Thinning of stocks may be required 

in some units to prevent overcrowding, but grading should be infrequent if the 

feeding strategy is managed correctly.  Tank transfers may be necessary as the fish 

approach market size. 

In the UK, market size (250 grams) is achievable in as little as 9 months (DPI, 

2006), at which stage fish are harvested to supply one of two markets; table or 

restocking (Anon, 2006a; AquaNic, 2006).  Fish intended for angling purposes are 

handled carefully, generally individually checked for fin quality, size, damage and 

external signs of disease.  Table market fish are subject to less stringent examination 

due to the volume of individuals concerned.  A small proportion of the stock may be 

kept as future broodstock.  These fish generally exhibit characteristics that appeal to 
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the farmer, processor or consumer.  The entire production cycle of rainbow trout can 

be summarised in a schematic diagram, as illustrated in Figure 1.3. 

Figure 1.3 - Schematic diagram of the production cycle for rainbow trout  
Source: Modified from Anon, 2006a  
 
1.1.3.2 The industry and market 

The exponential growth of rainbow trout production (Figure 1.4) emphasises the 

popularity of the species.  Inland culturing throughout Europe to supply domestic 

markets, and mariculture in cages throughout Norway and Chile for the export 

market, contribute to the vast increase in production witnessed in recent years 

(Anon, 2006a).   



IoA  Chapter 1 – General Introduction 

 PhD 8 GMB
  
 

 
Figure 1.4 - Global production of rainbow trout since 1950 
Source: Modified from Anon, 2006a 

The second contributing factor is the species itself.  Brannon (1991) describes 

rainbow trout as the most forgiving salmonid in terms of the abuse and displacement 

endured from management practices, with numerous advantages to account for the 

industrial growth; adaptability to culture environments, tolerance of immense 

amounts of environmental pressures, fast growth, ease of artificial spawning, short 

egg incubation phase, and ease of weaning (Brannon, 1991; Hardy, 2003; Anon, 

2006a; Anon, 2006b).  These factors represent a model species for aquaculture, and 

as a result rainbow trout became the most cultivated salmonid species in the world - 

a status maintained until 1994  (Hardy, 2003).  By 2002, 64 countries reported the 

production of rainbow trout (Anon, 2006a), with primary culture based in Europe, 

North America, Chile, Japan, and Australia (Anon, 2006a).  In 2006, over 53% of 

production could be attributed to Norway, Turkey, Italy, and Denmark (Table 1.1), 

with Britain contributing 17,600 tons to world production, ranking 8th in the league 

of European trout producing countries (CEFAS, 2008).  

Table 1.1 - Rainbow trout production by major producing countries in 2006 
Country Metric tons 
France 48,750 
Chile 42,656 

Denmark 40,864 
Italy 40,150 

Source: Produced from CEFAS, 2008 data 
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In North America, Britain, Denmark, France, and Italy, production occurs mainly in 

freshwater, and although the number of fish produced in freshwater far exceeds that 

of saltwater production, due to the average weight of marine-produced individuals, 

overall marine production accounts for a large proportion of the industry.  For 

example, in 2000, 150,000 metric tons of marine-reared rainbow trout were 

produced, accounting for approximately one third of global production. 

1.1.3.3 British trout farming 

1.1.3.3.1 Scotland 

The production of rainbow trout in Scotland accounts for a large proportion of the 

UK market due to the advantage of ideal natural culture environments.  In 2006, 

Scottish farms produced 7,492 tonnes of rainbow trout, 6,628 tonnes of which 

supplied the table market; the remaining 864 tonnes supplied the restocking market 

(CEFAS, 2008).  From the previous year (2005), this was a production increase of 

over 7% (CEFAS, 2008), which is representative of the general and continuous 

overall increase in Scottish production since 1991 (Figure 1.5). 
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Figure 1.5 - Annual Scottish production of rainbow trout from 1991 to 2006 
Source: Produced from FRS, 2002, 2005 and CEFAS, 2008 data 
 

The production figures published by the FRS include fish produced in both 

freshwater and marine environments.  Although the majority, if not all the rainbow 

trout produced in the UK is the non-anadromous strain, rearing still takes place in 
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the marine environment.  Saltwater production of rainbow trout in Scotland relies 

entirely on cage production.  In freshwater production, 54% relied on cage farming 

in 2005, the balance are cultured on land-based farms (FRS, 2005). 

1.1.3.3.2 England and Wales 

Cage culture is extremely uncommon in England and Wales, and land-based 

systems dominate the production technique.  Total production in England and Wales 

for 2006 exceeded 7000 tonnes, of which 67% was table market production.  

Restocking and ongrowing sectors of England and Wales appear significantly 

stronger than those of Scotland; 33% compared to <12% in 2006 (CEFAS, 2008).  

CEFAS (2008) report a continual decrease in rainbow trout production in England 

and Wales in recent years.  Between 2005 and 2006, a significant drop of just under 

16% was reported. 

1.1.3.4 Current trends and the future for British trout farmers 

Increased worldwide production of rainbow trout since the 1970’s has left the unit 

price comparatively low at the farm-gate.  This has resulted in an increase in 

worldwide distribution of both processed and live products from countries with 

reduced labour costs.  This is in addition to advancements in culture techniques, 

such as photoperiod manipulation, which allows hatchery strains to mature and 

spawn out of season, allowing a continuous and global supply of stock year-round 

(Anon, 2006a; AquaNic, 2006).  Today, many British trout farms are forced to buy-

in eggs to increase production, in an attempt to improve the economy of sales 

(AquaNic, 2006).  In 2004, over 20 million eggs were imported into England and 

Wales (Figure 1.6; CEFAS, 2005). 
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Figure 1.6 - Rainbow trout eggs imported into England and Wales by month in 
2004 
Source: Modified from CEFAS, 2005 
 

To ensure their existence in the future, British trout farmers must consider 

alternative culturing techniques to improve their economic margins.  Recent 

development in products and market expansion, as well as the continual demand for 

improved quality are just the beginning of a long and incessant trend.  Rainbow 

trout farming has practically been forced to turn to genetic manipulation in order to 

meet current and predicted future demands for fish products.  The opportunity of 

genetic improvement to improve such traits as growth rate, food conversion ratio, 

and disease resistance, will assist in bettering the species for aquaculture purposes.  

By producing fish that grow quicker, are better quality, and have a higher tolerance 

to commercially important diseases, more fish reach market size faster, in better 

condition, and at a higher quality.  Biotechnological methods such as hybridisation, 

polyploidy, monosex populations and inbreeding are currently used as short-term 

investments in some aquaculture species to gain desired qualities, but only one 

technique offers long-term improvement for the rainbow trout industry; selective 

breeding for genetic improvement.   
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1.2 Genetic Improvement in Aquaculture 

1.2.1 Selective breeding; the potential for genetic improvement in aquaculture 

Friars (1998) believes aquaculture can be considered a component of agriculture and 

that the advances made in a long history of breeding technology in terrestrial 

animals and plants present a tremendous opportunity to the aquaculture sector.  

Progress in farmed stock through controlled mating and selection has accumulated 

on the strength of natural variation (Friars, 1998).  Early estimates of genetic 

parameters and selection advances indicate that similar gains in aquaculture are 

possible.  Additionally, there now exists the potential of merging new technologies 

with traditional breeding techniques, both at the molecular and cellular level, to 

assist in the selection of desirable traits in aquaculture stocks (see Gjedrem, 2005a). 

The advances in genetic improvement of farm stock accelerated post World War II 

when knowledge and available technology improved; aquaculture was unable to 

benefit from such advances during this period, as the industry was in its infancy 

(Gjedrem, 1997).  The significant increase in agricultural productivity over the last 

few decades is illustrated in Figure 1.7, below. 

 
Figure 1.7 - Increased productivity in farm animals and finfishes following 
World War II 
Source: Modified from Gjedrem, 1997 
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Although aquaculture appeared relatively far behind terrestrial species, Gjedrem 

(1997) suggested the steep incline in salmon production indicated existing potential 

for productivity to equal or even better the growth of that seen in terrestrial animals.  

By 2000, he supported the claim, explaining that the trend was changing as research 

found fish, carnivorous species especially, are two to three times more efficient than 

pigs and broilers in converting energy from food to edible protein for humans, 

suggesting aquaculture will become extremely competitive with terrestrial 

agriculture as the domestication of fish continues and efficiency improves 

(Gjedrem, 2000). 

To date however, the majority of improvements seen in aquaculture has occurred 

through management; improved nutrition, health, welfare, and water quality.  

Important nonetheless, improving these factors is simply optimising the culture 

environment.  Breeding strategies involve the animal and its genetics; any 

improvements made are biological.  An optimum environment should be 

maintained, but selection for desirable traits, such as fast growth, low food 

conversion ratio, or disease resistance has the potential to culture fish more 

economically whilst building a cumulative effect on improved stocks (Tave, 1993). 

1.2.2 Selective breeding in aquaculture; from past to present 

Dunham et al. (2001) argue selective breeding in aquaculture began over 2000 years 

ago when Romans began breeding fish in ponds; without realising, selective 

breeding took place in the form of domestication.  Domestication continues today in 

most, if not all aquaculture facilities.  It is defined by Hale (1969) as the action 

where breeding, care, and the feeding of animals is ultimately controlled by man.  It 

can be characterised by genetic changes in behaviour, morphology, or physiology, 

which occur throughout cultivation in artificial conditions (Gjedrem, 2005b).  

However, such changes went unnoticed or were not managed until the 1800’s, when 

conscious breeding strategies commenced in Japan as the culturing of patterned koi 

carp commenced.  Then, in the twentieth century, commercial breeding programmes 

initiated as knowledge of breeding and inheritance improved (Dunham et al., 2001).   
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The application of genetic principles to aquatically reared species is therefore a 

relatively recent phenomenon with the majority of cultured aquatic organisms still 

extremely similar to their wild counterparts (Bartley, 2005).  Today, a mere 1 to 2% 

of aquatically reared species are reported to be genetically improved (Gjedrem, 

1997, 2000).  Although genetic enhancement is a relatively new activity in aquatic 

species, the figure of 1 to 2% is still surprising, especially when considering the 

high reproductive capacity of aquatic species in comparison to farm animals, and 

the associated potential for selection this generates.  Furthermore, the fecundity of 

fish makes it possible to produce progeny groups with many individuals in each 

group; an ideal scenario to research various traits in full- or half-sibling families 

(Refstie, 1990).  These factors highlight the tremendous scope to increase 

productivity in aquatically reared species by applying genetic improvement 

techniques (Bartley, 2005). 

1.2.3 Breeding goals 

Selective breeding aims to produce animals that are more efficient in their use of 

available food, land, and water resources (Gjedrem, 2005b).  Before applying 

selection to a breeding programme, it is important the goals of the scheme are 

recognised.  Input from the industry, consumer, and processor is advised, and 

should be used to measure the value of selecting individual breeding goals.  Even 

traits of extreme economic importance require careful consideration, as the 

difficulty and capital cost of selection may outweigh the benefits (Refstie, 1990).  

Important traits are generally those of economic value, and may include survival, 

food conversion efficiency, growth rate, meat quality, and disease resistance 

(Gjedrem, 1983, 1985; Refstie, 1990).  However, some traits are immeasurable 

when the individual is alive.  Traits requiring slaughter for assessment, such as 

market quality or disease resistance through challenges can only be assessed on 

family information (Friars, 1998).  It is therefore imperative that all information and 

the desired outcome are discussed thoroughly before decisions are made in regard to 

the chosen traits and the optimum selection strategy to achieve the breeding goals 

(Refstie, 1990). 
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1.2.4 The basis of selection – variation 

Gjedrem (2005b) defines animal breeding as a body of theory.  In order to address 

the problem of finding individuals which produce the best offspring, generation 

after generation, knowing the variation among those individuals is essential.  It is 

this variation or variance and its utilisation in breeding and selection strategies that 

are of the utmost importance for selective breeding.  Selection is based on the desire 

to improve specific characteristics (traits), which can be categorised as qualitative or 

quantitative.  Quantitative traits cannot be segregated into distinct categories; they 

have a continuous distribution where differences are a matter of degree rather than 

kind.  They are assumed to be regulated by a large number of genes each with a 

small effect on the trait.  Quantitative phenotypes are generally economically 

important for production, eg length and weight.  Falconer (1981) partitions the 

phenotypic value into the influences of genotype and the environment, where 

genotype is the particular assemblage of genes possessed by the individual, and the 

environment is all non-genetic circumstances:   

Phenotypic value (P) = Genotypic value (G) + Environmental deviation (E) 
 

However, it is the variation associated with a particular trait that interests selective 

breeders, as the phenotypic variation (VP) displayed is constructed of several 

components of variation (Tave, 1993): 

VP = VG + VE + VG.E 
 

where VG is genotypic variance, VE is environmental variance, and VG.E is the 

interaction that exists between the genetic and environmental variance.  Of primary 

interest to selective breeders is the genetic variance, as the object of any breeding 

programme is to alter the genetics of a population in order to improve its 

production.  Genetic variation can be further divided into three components; 

additive, dominant, and epistatic variance: 

VG = VA + VD + VI 
 

The most important component of genotypic variation is additive variation (VA).  

Where, dominance variation (VD) results from the interaction between pairs of 
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alleles at single loci, and interaction variation (V I; epistasis) results from the 

interaction of alleles between or within multiple loci, the additive effects of genes 

are inherited quantitatively from one generation to the next.  The additive variance, 

which is also the variance of breeding values, is the chief cause of resemblance 

between relatives, and therefore the determinant of observational genetic properties 

of the population and of the response of the population to selection (Falconer, 1981; 

Gjedrem and Olesen, 2005).  Consequently, the ratio of additive variation and 

phenotypic variation (VA/VP) gives an indication as to the extent at which 

phenotypes are determined by genes of the parents (heritability: h2), and the rate at 

which genetic progress is made (Falconer, 1981; Tave, 1993). 

1.2.5 Heritability 

Heritability is one of the most useful parameters in animal breeding.  Defined by 

Gjedrem and Olesen (2005) as the proportion of the total phenotypic variation 

which is genetic in origin, it is the degree to which genetic variance influences the 

phenotype of a continuous trait.  It is important to know the size of the heritability 

when planning a breeding experiment, as it can be used to predict the response to 

selection, or calculate the breeding value of individuals.  Several techniques are 

used to estimate heritability, and it is important to know which technique is used in 

order to assess the calculated value.  Generally, any technique used should produce 

equivalent results.  For example, where differences occur in epistatic and dominance 

effects, with no non-additive genetic variation, these heritabilities should give 

equivalent results.  However, it is important to consider that each technique can 

affect the accuracy of the estimate, with the increasing distance between relatives 

assessed for performance increasing the standard error associated with the 

calculated value.  Falconer and Mackay (1996) provide the example of estimates 

based on half-sibling analysis, which can have a standard error of up to four times 

greater than that calculated from single parent regression, whilst Kinghorn (1983) 

describes the biases incorporated into estimations of full-sibling heritabilities as a 

result of dominance and environmental variation; family-related components of 

variation, eg maternal effects, can be especially detectable when estimations are 

based on dam variance as opposed to the sire component (Gjerde and Schaeffer, 
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1989).  Such maternal effects have been found to reduce with age in many fish 

species, which consequently increases the estimates of heritability (Kinghorn, 

1983).  Heritability can be defined and calculated in either the broad or the narrow 

sense.  Where the proportion of genetic variation to phenotypic variation (VG/VP) is 

considered heritability in the broad sense, it often contains dominance and epistatic 

effects which do not contribute to selection.  The utilitarian estimate of heritability 

is defined as the ratio of the additive genetic variance, VA, to the phenotypic 

variance, VP, and is therefore the proportion of the total variance that is due to the 

differences between the breeding values of individuals in the population, ie narrow 

sense heritability: 

h2 = VA
 / VP 

The higher the heritability, the greater the genetic response that can be expected 

from selection.  However, it is worth noting that the heritability is not a general and 

static characteristic of a breeding population.  It is only relevant to the population 

from which measurements were taken (Gjedrem and Olesen, 2005).  Heritabilities 

calculated out with the population may be inaccurate, as values can vary between 

individuals, strains, populations, and even location.  Once calculated, the response 

to selection of that heritability can be predicted: 

R = Sh2 
 

where R is response (gain or loss) in each generation, S is the selection differential 

(the superiority or inferiority of the broodstock over the population mean), and h2 is 

the narrow sense heritability (Tave, 1993; Gjedrem and Thodesen, 2005).  If the 

heritability is low, the selected trait will be slow to respond (Tave, 1993), and when 

high estimates of heritability are calculated, random drift, environmental trends, or 

inbreeding depression can be observed in the response to selection.  It is therefore 

advised that at least two generations of trait information is collated before 

heritability conclusions are drawn (Kirpichnikov, 1981).  A traditional method of 

monitoring the progress in any selective breeding programme was to establish a 

control population of fish, but Tave (1993) emphasises that both the selected and 
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control lines require identical conditions so that environmental fluctuations can be 

accounted for (Figure 1.8). 

 
Figure 1.8 - Example of control population used to calculate the genetic gain 
from selection 
Source: Modified from Tave, 1993 
 

Today, good management techniques assist in monitoring the progress of selective 

breeding programmes; valid documentation of genetic progress is essential in larger 

breeding companies.  Top producers often require evidence for marketing purposes 

to illustrate the success of the breeding programme implemented, especially in the 

main markets of the industry (Rye and Gjedrem, 2005).  Unselected control lines are 

still used, but concerns relating to inbreeding and genotype by environment 

interaction has lead to alternative methods to assess genetic progress; repeated 

matings, average breeders, and genetic trend analysis can be used as alternative 

methods to monitor selective breeding progress (Rye and Gjedrem, 2005).  

Establishing procedures for monitoring and quantifying genetic changes in a 

breeding programme enables the progress to be recorded, but more importantly it 
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identifies if the realised gains do not meet the theoretical expectations.  This allows 

adjustments to be made to the breeding strategy as necessary (Rye and Gjedrem, 

2005).   

The heritability therefore acts as an indication as to the potential success selection 

can accomplish in the population measured for that trait.  As a rule of thumb, the 

larger the heritability the easier it is to change a population mean by selection.  In 

aquaculture, heritabilities of >0.25 have been effective for breeding programmes, 

whilst those of <0.15 have proved difficult to change the population mean (Tave, 

1993).  However, various methods of selection are available in order to improve a 

population regardless of the heritability value.  It is highly unlikely, and often only 

in extreme circumstances that genetic improvement could not be made through 

selective breeding.   

1.2.6 Methods of selection 

Tave (1993) defines selection as a breeding programme with the aim of choosing 

the most desirable individuals or families as broodstock in an effort to change the 

population mean in the next generation.  By saving or culling individuals according 

to a predetermined cut-off value, it is predicted that offspring will display a mean 

and range similar to those of the chosen broodstock, instead of the original 

population.  The first step is to measure, or record, the desired trait in the 

population, and then estimate the mean and standard deviation.  Selection can then 

be conducted on superior individuals whose estimated breeding values can be 

calculated (Gjedrem and Thodesen, 2005).  A prerequisite for running a sustainable 

selection programme is that a reasonable number of full- and half-sibling families 

are produced in a controlled and reliable manner.  This allows estimations of genetic 

components to be calculated.  It is therefore important that where the possibility of 

collecting eggs and milt separately is available, it should be utilised.  In salmonids 

especially, the mating structure can be easily controlled due to the required human 

intervention.  This means a large number of full- and half-sibling, maternal and/or 

paternal combinations are possible; mating designs are important as the genetic 

effects (ie (non-)additive genetic) can be calculated with unbiased and accurate 

parameter estimates, or predictions of breeding values (Gjerde, 2005).  A mating 
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design commonly used in the selective breeding of rainbow trout is illustrated in 

Figure 1.9, below.  This design is often utilised as both the maternal and paternal 

genetic components can be calculated having shared either the eggs of females or 

milt from (sexually reversed) males with more than one individual, producing 

various combinations of both full- and half-sibling families. 

Figure 1.9 – Example of a common mating design used in selective breeding 
programmes for rainbow trout 

Used as a tool to improve certain characteristics in every generation, selection 

represents a long-term genetic improvement strategy, described by Bartley (2005) as 

the best means to fully utilise the genetic resources of aquatic species.  Historically, 

selection was based solely on phenotype, and although thought to represent superior 

genotypes, progress in genetics means genotypic data can now be incorporated into 

selection programmes, increasing the accuracy of selection.  Using modern 

technology, genotypically superior individuals from a population can be selected to 

act as broodstock for subsequent generations; even where individuals are pooled, 

family information can be found through parental allocation, or in terminal studies 

the identification of relatives allows sibling selection, whilst the estimation of 

breeding values alone has improved the accuracy of which fish are selected.  

However, selection does not create new genes in a population, but rather it changes 

the gene frequencies.  By increasing the frequency of alleles with a favourable 

effect on a specific trait and reducing alleles with unfavourable effects on that 

phenotype, it is expected to change the mean value of the population for the trait 

under selection (Gjedrem and Thodesen, 2005).  It is therefore important to know 

the biological blueprint, heritability, recording methods, and nature of the selected 

phenotype, as well as the reproductive capacity of the species, as this makes it 

possible to determine which breeding programme to use in order to alter phenotypic, 

genotypic, and gene frequencies (Tave, 1993; Fjalestad, 2005b).  



IoA  Chapter 1 – General Introduction 

 PhD 21 GMB
  
 

1.2.6.1 Individual (mass) selection 

Individual, or mass, selection is based on individual performance or phenotype 

(Fjalestad, 2005b).  Although classified together, mass selection is a term used when 

individuals are held en masse and superior individuals are selected from the 

population based only on their phenotype.  Where individual selection experiments 

have taken place in fish a poor or even a negative response has been observed (eg 

Moav and Wohlfarth, 1976; Teichert-Coddington and Smitherman, 1988; Huang 

and Liao, 1990), but due to its simple design and the practicality of its use in 

commercial systems, it remains to be the most widely used method of selection for 

fish species (Tave, 1993; Fjalestad, 2005b).  In successful selection experiments, the 

results have lacked either reliable control lines (Donaldson, 1968), or simply did not 

continue after the first generation of selection (Friars et al., 1990).  The poor record 

of individual selection may be explained by the following areas:  

� The low variability of the base populations; due to the high fecundity of 

most aquatic species, populations can be established with a limited number 

of breeders.  This seems to be one of the main reasons for the failure of 

tilapia experiments (Teichert-Coddington and Smitherman, 1988; Huang and 

Liao, 1990) and of the carp Israeli experiment (Moav and Wohlfarth, 1974) 

� Inbreeding may develop during selection experiments, and have an adverse 

effect on growth rate (-1.5% to -8% per 0.10 increase of the inbreeding 

coefficient, F; Chevassus 1989; Su et al., 1996a; Pante et al., 2001b).  

Again, the high selection intensities that are easy to apply in fish due to their 

fertility, leave them especially sensitive to inbreeding during selection 

� Maternal effects can play a large role in the phenotypic variance between 

individuals.  Differences in hatching time and/or egg size can have a 

dramatic effect on future performance (Chevassus 1976; Mor and Avtalion, 

1988; Sin et al., 1994; Vandeputte et al., 2002) 
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However, efficient individual selection remains to be of interest to breeders since it 

is simple and cheap to establish in practical conditions (Chevassus et al., 2004).  

When the heritability is high for the trait of interest, individual selection is 

considered extremely effective, as the phenotypic values approximate the breeding 

values (Tave, 1993).  This led to Falconer (1981) suggesting that its use should be 

adopted unless there are good reasons for preferring an alternative method.  

Additionally, individual selection can also be particularly useful in species that 

spawn communally.  For example, Knibb et al. (1997, 1998) used mass selection in 

gilthead sea bream (Sparus aurata) due to the problems associated with group 

spawning, and achieved significant heritabilities for growth.  However, in such 

species the method has been known to create disadvantages, as was found by Frank-

Lawale (2005).  When studying the mass spawning species, Hippoglossus 

hippoglossus, it was discovered that only half of the parents succeeded in 

contributing to the F1 generation, resulting in the new population being comprised 

of a small number of large families.  The skewed contribution of parents left the 

effective population size (Ne) at an unacceptable 8.11, where 100 is believed to be 

an optimum value (see Section 1.2.7), whilst the inbreeding coefficient, F, was 

calculated at 6.16% in the F1 generation.   

When spawning can be controlled in aquatic species, or when the heritability is low 

for the desired trait, or the trait can not be measured on live individuals (eg flesh 

colour or disease resistance), individual selection may not be the best method of 

selection, and family-based methods should be considered. 

1.2.6.2 Family selection 

Family selection differs from individual selection in that the decision to save or cull 

fish is made with reference to the family.  The number of representatives per family 

contributes to the effectiveness of family selection; the greater the number, the 

closer the correlation between phenotypic mean and genotypic mean values 

(Falconer, 1981).  Family selection is often preferred when the desired trait has a 

low heritability because most of the phenotypic variance observed among 

individuals is due to non-heritable sources of variance, ie an individual’s phenotypic 

value does not accurately represent its breeding value (Fjalestad, 2005b).  It is 
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especially useful when the characteristics of selection cannot be measured on live 

fish, such as carcass traits or disease resistance (Refstie, 1990; Tave, 1993; 

Gjedrem, 2000).  Family-based schemes are based on two components: between 

family selection that chose entire families on the basis of their means relative to the 

population mean, and within family selection that chose individuals based on their 

relative performance within families. 

1.2.6.2.1 Between family selection 

When numerous families are pooled into a single holding unit, successful selection 

relies on the environmental effect on all individuals cancelling each other out in the 

family mean, leaving the phenotypic mean as a good estimation of the genotypic 

mean.  Then, the overall population mean is ignored, and selection is conducted in 

relation to family means alone.  Families are ranked, those with the best means are 

saved, the remainder culled.  This methodology requires a certain discipline; the 

temptation of retaining larger fish of families that require culling or disposing of 

smaller fish in selected families must be resisted.  However, Tave (1993) points out 

that the entire family need not be saved; a random sample will suffice - but it must 

be random and in equal number per family to ensure no biases occur between the 

selected individuals. 

1.2.6.2.2 Within family selection 

Within family selection considers each family as a temporary sub-population with 

selection occurring simultaneously and independently within each sub-population.  

Top performing individuals from all families are saved based on their performance 

in comparison to the family mean.  If families are held separately, the method is 

often used when environmental influences are uncontrollable, as deviations are felt 

at the family level instead of the individual level allowing unbiased selection overall  

(Tave, 1993).  In species where sexual dimorphism occurs, care must be taken to 

avoid selecting an inappropriate sex ratio, and it is advised that selection is 

performed individually for each sex. 

 



IoA  Chapter 1 – General Introduction 

 PhD 24 GMB
  
 

1.2.6.2.3 Comparing selection methods 

When family means are compared much of the non-heritable variance, particularly 

environmentally-induced phenotypic variance, is reduced since deviations of 

individual values from family means negate each other.  Thus, the family 

phenotypic means approximate their mean breeding values.  This is particularly true 

if environmental variance has a greater effect on the individual level than on the 

family level.  Within family selection is more efficient than individual or between 

family selection when major sources of non-heritable variance, particularly 

environmental variance, are common to all individuals of a family but are different 

among families, ie environmentally-induced variations at the family level.  

Examples include time of birth and age of female.  When a large component of the 

phenotypic variance is due to environmental variance at the family level, within 

family selection will be more effective than between family selection, because the 

best families may be the best simply due to the environmental variance.  In the case 

of individual selection, all fish selected are phenotypically the best, and where 

heritability is large, phenotypes approximate the breeding values.  For example, if 

individual selection is based on weight and the desired value is 1 kilogram, all 

selected fish will be greater than 1 kilogram.  When between family selection is 

used, the selected broodstock will consist of individuals with a broad range of 

phenotypic values, having been selected on the overall family means.  When within 

family selection is used, the best fish in one family may be only half the weight of 

fish culled in other families. 

The way to prevent such a scenario becoming a problem in breeding programmes is 

to combine selection methodologies.  Tave (1993) gives the example of a two-

staged selection programme where the first step is to use between family selection 

to select the best families, before using within family selection to utilise only the 

best fish of those families selected.  However, Fjalestad (2005b) explains that 

combined selection is simply a combination of methods used together in a breeding 

plan to attain the desired result. 
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1.2.6.2.4 Combined selection 

The decision of which methods to employ will rely largely on the outcome desired, 

the management of the farm, and the available information.  By including all 

available sources of information, for example breeding values, phenotypic 

measurements, and the family structure (ie full- and half-siblings and contributing 

parents), an optimal way of improving desired traits can be established.  Combined 

selection represents the general solution for obtaining the maximum rate of genetic 

gain; combined selection is therefore, in principle, always the best method of 

selective breeding for genetic improvement. 

The simplest method generally adopted in aquaculture is an amalgamation of family 

and individual selection (Fjalestad, 2005b; Gjerde, 2005), where family deviations 

are taken into account in addition to the mean phenotypic value of individuals.  

Additionally, selection indices are used to improve the success of this method.  

Following the collection of information from the individual and its relatives, as well 

as from several commercially important traits, the information is combined into an 

index of merit, where traits are weighted according to their relative economic value 

(Fjalestad, 2005b).  One of the most successful breeding schemes in the UK utilises 

combined selection in a similar manner.  Using both within and between family 

selection and then selecting on individual performance, Landcatch pedigree 

breeding programme has had unprecedented success in salmonid aquaculture (Guy, 

1998).  By combining the two family methodologies, selection is based on between 

family selection first, and then within family selection; this ensures the most 

productive fish of the most productive families are selected as broodstock.  The 

final broodstock are likely to be the top performers from those fish selected; 

individual selection (Tave, 1993). 

A schematic diagram of the main areas involved in a selective breeding programme 

is illustrated in Figure 1.10.  The nucleus of breeding programmes, as shown in the 

diagram, is generally based on commercial sites that have an interest in specific 

traits which improve overall production.  Maturing fish are collected from 

production tanks and tagged so their identity is known.  From these fish, breeding 

candidates are selected as breeders, in an appropriate sex ratio, having considered 



IoA  Chapter 1 – General Introduction 

 PhD 26 GMB
  
 

the trait(s) of interest.  A representative number of eggs from each of the families 

generated are retained separately in the breeding nucleus, whilst surplus eggs are 

either sold to fingerling producers (normally for a premium price due to the 

improved quality of the selectively bred fish), or to multipliers who assist in the 

programme by rearing the families and recording data on the stock, or who act as an 

intermediate by producing eggs and fry for sale to fingerling producers once 

maturity of the improved fish has been reached.  Following the fingerling stage, 

adults are simply used as production fish for the table market, or are ongrown in the 

nucleus for subsequent selection generations.  Finally, as a tributary to the 

information generated by the nucleus, challenge and field tests take place for the 

considered traits, allowing families/populations to be tested on their overall 

performance. 

 
Figure 1.10 - Schematic diagram demonstrating the main factors in a fish 
breeding programme 
Source: Modified from Gjerde, 2005 
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1.2.7 Risks in selection: inbreeding 

Although individual selection is generally more effective than any family based 

method when heritabilities are large, there is no specific heritability value that 

identifies which selective breeding method will be more efficient (Tave, 1993), and 

alternative options may be sought, eg selection index or combined selection.  

Whichever methodology is chosen, it is imperative that controlled mating systems 

are conducted in order to prevent inbreeding (Friars, 1998).  Inbreeding occurs 

when related individuals are bred together (Sonesson et al., 2005; Fjalestad, 2005a), 

which can result in inbreeding depression, where reduced heterozygosity and the 

loss of desirable alleles generally occurs, retarding or even negating the selection 

response (Knibb, 2000).    Dunham et al. (2001) emphasise that it is as important to 

control inbreeding as it is to improve production through genetic gain.  Traditionally 

in commercial systems, before the negative effects of inbreeding were fully 

understood, only a small number of parents were used to contribute to the next 

generation, creating a bottleneck effect and the loss of genetic variation (Mustafa, 

1999; Fjalestad, 2005a; Gjedrem, 2005b).  Today, the mating of related animals is 

used as a breeding tool in certain programmes, but poor management can result in 

potential hazards; ultimately a lack of overall fitness (Falconer, 1981).  The 

detrimental effects of inbreeding are well documented in fish (Gjerde et al., 1983; 

Kincaid, 1983a; Refstie, 1990; Pante et al., 2001a).   

Measured by the inbreeding coefficient, F, inbreeding is the probability that two 

alleles at any locus are identical by decent, with values ranging from 0 to 1.  The 

inbreeding coefficient expresses the amount of inbreeding that has accumulated 

from a specific point in the ancestry of a population.  Estimates of the deleterious 

effects of inbreeding in aquaculture species generally involve salmonids, rainbow 

trout especially, due to their long history of culture (Toro and López-Fanjul, 1998; 

Lutz, 2002).  For example, Gjerde et al. (1983) estimated reduced survival of up to 

9% in rainbow trout fry with an inbreeding coefficient of 0.25.  Over the three 

successive generations, this accumulated to a reduction of over 18%.  Su et al. 

(1996a) found that a 10% increase in the inbreeding coefficient resulted in a delay 

in the spawning age of female rainbow trout by 0.53%, and a reduction in egg 
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number of 6.10%, whilst Pante et al. (2001a) studied the effect of inbreeding to find 

that an increase in the inbreeding coefficient of 10% resulted in a reduction of 

between 1% and 5% in the harvest weight of rainbow trout.  Kincaid (1976ab, 

1983a) also describes problems associated with inbreeding, where reductions in 

growth, survival, and reproduction of up to 30% have been observed in salmonid 

stocks.   

When initiating a breeding programme, a broad genetic base is of the utmost 

importance.  Synthetic populations have been manufactured in several selective 

breeding schemes in recent years to secure the genetic variability.  This has resulted 

in research focussing on the maintenance of variation in subsequent generations, 

whilst considering the rate of inbreeding.  In aquatic species it is important to have 

control over the rate of inbreeding, as opposed to level, due to the high fecundity, 

and possibility of high intensity selection.  In aquaculture, research into constraining 

inbreeding is limited (Gjerde et al., 1996; Bentsen and Olesen, 2002), but numerous 

authors have concluded the optimum effective population size to be at least 100 (50 

breeding pairs) to ensure the rate of inbreeding is maintained between 0.5% and 

~1% per generation, which is thought to be an acceptable level (Gjerde et al., 1996; 

Bentsen and Olesen, 2002; Sonesson et al., 2005; Fjalestad, 2005a).  In other 

research concentrating on the optimum number of parents and their contribution for 

maximising genetic gain, whilst constraining the inbreeding coefficient over a 

number of generations, numerous procedures have been documented (Wray and 

Goddard, 1994; Brisbane and Gibson, 1995).  In 1998, an adaptation of the work by 

Meuwissen (1997) was completed by Grundy et al. (1998), who applied the theory 

of maximising genetic response whilst restricting the rate of inbreeding per 

generation to a predefined value, but refined the procedure so that the constraint was 

achieved in each generation of selection.  Up until the year 2000 only Meuwissen 

and Sonesson (1998) had presented a method to maximise genetic progress whilst 

constraining the annual increase in inbreeding in the more complex situation with 

overlapping generations.  However, having based their method on the control of the 

average increment in coancenstry for discrete generations, the procedure is limited 

to annual constraints on the rate of inbreeding, where constraints per generation are 

considered to be more appropriate given the reduction of genetic variation and the 
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accumulation of mutations that occur per generation (Grundy et al., 2000).  Grundy 

et al. (2000) present a procedure to optimise the genetic contributions of selection 

candidates for maximising the genetic progress, whilst the rate of inbreeding is 

constrained to a predefined value, all taking place in schemes with overlapping 

generations.  The method is an extension of that described by Grundy et al. (1998) 

to overlapping generation structures, and allows for a restriction on the rate of 

inbreeding either per generation or per annum.  The dynamic selection algorithm 

procedure gives the optimum number of individuals to be selected and the progeny 

they each produce, all of which results from the use of best linear unbiased 

prediction (BLUP) estimated breeding values, the augmented numerator relationship 

matrix, and lifetime breeding profiles.  By considering all gene flow pathways, the 

optimisation procedure constrains the rate of inbreeding per generation to a 

predefined level across generations of selection, resulting in an improvement in the 

genetic response of up to 35% over standard truncation BLUP selection, at the same 

rate of inbreeding.   

For most aquaculture traits, an inbreeding coefficient of 0.05 is deemed to be an 

acceptable rate, but this should be continually assessed throughout selection 

experiments.  In selection programmes based on phenotype and without genotypic 

identification, high rates of inbreeding are inevitable with subsequent reproductive 

and production failures.  This is exemplified in aquatic animals due to the 

reproductive capacity of most species (Davis and Hetzel, 2000).  Through careful 

management and by maximising potential genetic gain using controlled 

management, the effects of inbreeding should be reduced.  Modern DNA marker 

technologies are now available to calculate the heterozygosity of populations; used 

an indication as to the level of inbreeding.  For example, Fishback et al. (1997) used 

microsatellite markers in order to monitor the level of inbreeding in a study on 

rainbow trout by assessing the number of alleles at specific loci in each generation.  

However, molecular techniques are not an outright solution to improving the 

performance of aquaculture stocks, and the best results are likely to come from a 

combination of marker technologies and selective breeding (Lutz, 2001). 
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1.2.8 Molecular markers in selective breeding 

Molecular marker based knowledge emerged in the 1980’s, and since that time its 

use has increased dramatically (Dunham et al., 2001).  Initial marker systems were 

based on protein polymorphisms and morphological characteristics (Davis and 

Hetzel, 2000).  Traditional markers, such as isozymes (Liu et al., 1992), restriction 

fragment length polymorphism (RFLP; Miller and Tanksley, 1990), and 

mitochondrial DNA (mtDNA) analysis (Curtis et al., 1987), have now been 

replaced with several powerful new types of marker, including random amplified 

polymorphic DNA (RAPD); amplified fragment length polymorphisms (AFLP); 

simple sequence repeat (SSR), or, microsatellite markers; variable number tandem 

repeat (VNTR) markers; and single nucleotide polymorphism (SNP).  Although 

each method has distinct properties and generates data for a variety of applications, 

the general principle of all these technologies is to detect variation at a single locus 

and nucleotide, or multiple loci in a single reaction (Davis and Hetzel, 2000).  

Today, DNA marker technologies enhance the way aquaculture genetics research is 

conducted (Liu and Cordes, 2004).  

Genetic markers are necessary to locate genes on chromosomes, isolate genes, 

determine gene expression, study genomes, conduct gene-linkage mapping, and are 

essential for marker-assisted selection (Dunham, 2004).  Today, the variety of 

biochemical and molecular markers available to study the genetics of aquatic 

species presents tremendous opportunities.  For example, the construction of gene 

maps can now take a matter of months rather than years when traditional DNA 

technologies were used, such as RFLP (Liu and Cordes, 2004; Dunham, 2004).  

Further, the ability to monitor the DNA of an individual and evaluate its relationship 

to the population, such that family and pedigree can be established and included in 

the breeding strategy, is a great advantage in any programme aimed at genetic 

improvement.  Using genetic markers for fingerprinting individual animals and 

parental assignment, or to determine the genetic diversity to assist in the selection of 

economically important traits provides great potential to selective breeding 

programmes and broodstock management (Lai, 2001).  One particular molecular 
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tool has had unprecedented success in aquaculture due to it versatility; microsatellite 

markers. 

1.2.8.1 Microsatellite markers in selective breeding 

Microsatellite markers work by utilising the repetitive DNA which makes up 5% to 

20% of the genome in some fish species (Elder and Turner, 1995; Twyman, 1998).  

Referred to as satellite DNA, regions of the genome that exhibit areas of tandemly 

repeated sequences are extremely polymorphic, and include regions of extremely 

short tandem repeats of 1 to 6 base pairs: microsatellites.   Microsatellite markers 

are therefore manufactured as di-, tri-, or tetra-nucleotide repeats in order to flank 

the unique sequences and bind as primers to those sites at amplification when 

polymerase chain reaction is used (Dunham, 2004).  Occurring frequently at 104 to 

105 in fish (Park and Moran, 1995), microsatellites are an ideal molecular tool 

because they are highly polymorphic, codominantly inherited, extremely numerous, 

and evenly distributed throughout the genome (Dunham, 2004).  The polymorphism 

and codominant inheritance allows precise genetic analyses and increased mapping 

accuracy, maximising the genetic information gathered and allowing lineages of 

individuals or families to be traced accurately (Waldbieser and Wolters, 1999).  It is 

the number of alleles that broadly determine the degree of heterozygosity which 

means that markers are often selected for each application based on the number of 

alleles.  Each allele can then be distinguished through differences in the size of 

polymerase chain reaction products generated.  This versatility has lead to the 

successful application of microsatellite markers in such areas of aquaculture as 

relatedness determination (Herbinger et al., 1995; Norris et al., 2000), inbreeding 

(Su et al., 1996b; Pante et al., 2001a), and assessing diversity and variation in 

stocks (Bártfai et al., 2003; Overturf et al., 2003; Ward et al., 2003).  However, they 

are not without their disadvantages, and Dunham (2004) warns that microsatellites 

require a great deal of time, effort, and expense in construction, screening, 

sequencing, and polymerase chain reaction primer analysis.  They can also produce 

non-specific bands in the analysis of the polymerase chain reaction (Liu and Cordes, 

2004). 
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1.2.9 Genetic improvement in aquaculture 

Historically, the aquaculture industry has not adequately utilised breeding and 

selection knowledge to increase and improve aquaculture production, with many 

species continuing to rely on wild-caught broodstock or juveniles (Gjedrem, 2005b).  

Collaborations between research institutions and commercial partners have failed to 

exploit genetics as a tool for enhancing productivity and increasing competition in 

the industry (Knibb, 2000).  However, recent years have seen an increase in the 

application of breeding technologies (Gjedrem, 1997; Gupta and Acosta, 2001; 

Bartley, 2005; Gjedrem, 2005b), and it is only recently that the economic 

importance of genetic improvement in aquaculture has been recognised; even slight 

improvements in productivity could result in millions of kilograms of additional 

production (Dunham and Smitherman, 1983), significantly improving the chance of 

meeting the future demands for fish produce (Gjedrem, 1997).  Aquaculture 

genetics shows immense potential for improved production (Dunham et al., 2001).  

With the ultimate goal of increased profitability, substantial opportunity exists, 

especially as progress made is cumulative and sustained (Davis and Hetzel, 2000; 

Powell, 2000).  Today, aquaculture research institutes in most countries are 

researching selective breeding in order to improve and increase the efficiency and 

productivity of existing practices and, consequently, increase the rate of genetic 

improvement in aquaculture species (Gjedrem, 2005b). 

1.2.9.1 Progress to date; salmonids 

The fact that most fish reproduce externally allows human intervention to 

manipulate fertilisation and breeding strategies, including parental crossings and the 

segregation of stocks and/or families.  Furthermore, the fecundity of fish, and large 

genetic variation often displayed allows increased selection pressure to be applied 

compared to most mammalian species (Gjedrem, 1997).  Prior to 1970 genetic 

selection was seldom used in aquaculture.  Today, a number of selective breeding 

programmes exist for aquatic species (Dunham et al., 2001). 

The first selective breeding programme in fish species was established in 1971 by a 

Norwegian research institute for aquaculture.  Although it took four years before 
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AKVAFORSK devised a breeding strategy, its success throughout the industry was 

renowned by 1985.   By 1997 the programme involved 360 families of Atlantic 

salmon (Salmo salar) and rainbow trout (Gjedrem, 1997), increasing to 400 full-

sibling families of Atlantic salmon and 120 families of rainbow trout by 2000 

(Gjedrem, 2000).  To date, the programme has achieved improvements in growth 

rate, sexual maturation, disease resistance, and flesh quality of greater than 20% per 

generation in some instances, highlighting the potential benefit of genetic 

improvement in the industry.  In 2000 Gjedrem reported approximately 65% of 

Norwegian farmed salmon and trout to be genetically improved; a figure 

undoubtedly exceeded today.  In Canada, a similar breeding programme to that of 

AKVAFORSK was established.  Although not as large, the Canadian Atlantic 

Salmon Federation programme report significant gains in BKD resistance and 

growth since commencing in 1984 (O’Flynn et al., 1999).  In brown trout (Salmo 

trutta), gains in weight of 6.3% per generation have been attained through selection 

conducted by the PROSPER breeding programme (Vandeputte et al., 2002), whilst 

in Coho salmon (O. kisutch) 60% improvements were made after only four 

generations of selection, following a selective breeding programme established by 

Washington University in 1977 (Hershberger et al., 1990).  With such positive 

results, it is obvious that the knowledge required for genetic improvement is already 

available in salmonid species (Gjedrem, 2000), however, the extent to which genetic 

improvement can be made, either in a single trait or over an index, is dependent on 

the genetic variation that exists for the trait or series of traits of interest (Davis and 

Hetzel, 2000).   

In general, fish exhibit a greater genetic variation than mammals in most traits 

(Gjedrem and Olesen, 2005; Aquaflow, 2006).  As the genetic variation allows the 

heritability to be calculated, this in turn gives the potential reach that can be 

obtained as the response to selection.  For comparison of the potential gain between 

land and aquatic animals, or even across traits or species, a useful statistical 

parameter called, the coefficient of variation, can be used.  The coefficient of 

variation defines how much reach is possible.  A population with a large coefficient 

of variation can produce a large selection differential, even when heritabilities are 

low (Tave, 1993).  When a trait is measured, the mean and standard deviation often 
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change in tandem, but the coefficient of variation is independent of the mean.  In 

mammalian species, the coefficient of variation is generally 5% to 10%, whilst in 

fish a coefficient of variation of up to 80% has been observed in some traits 

(Gjedrem, 1998; Gjedrem and Olesen, 2005; Aquaflow, 2006).  Numerous studies 

have shown positive results for selection in economically important traits in 

salmonid species (Gjerde and Schaffer, 1989; Hershberger et al., 1990; Gjerde et 

al., 1994; Martínez et al., 1999; Henryon et al., 2002; Quinton et al., 2002), with 

estimates of heritability typically high, ranging from 0.25 to 0.35 with coefficients 

of variation between 20% to 30%, implying that large responses to selection are 

possible (Gjedrem, 2000; Powell, 2000).   

1.2.9.2 Potential for rainbow trout 

A great deal of work has been completed on the potential for genetic improvement 

in rainbow trout.  Promising results have been observed at both the scientific and 

commercial level.  With increased understanding of genetics and methods of 

selection, aquaculturists are now more willing to cooperate with scientists in order 

to asses important traits within the commercial environment.  For example, 

Fishback et al. (2002) studied a commercial rainbow trout aquaculture facility for 

three character sets; early progeny growth, later progeny growth at 8.5oC, and later 

progeny growth at 15oC.  They found estimates of heritability ranging from 0.36 to 

0.72 for the growth traits of total length, weight, and condition factor, as well as 

genetic correlations between the character sets of 0.86 ± 0.03, suggesting early 

progeny growth is a good predictor of later progeny growth.  Traditionally, attention 

has been paid to the economically important characteristics of growth and 

reproduction; consequently, a great deal of work has been conducted in these areas.  

Perry et al. (2005) estimated the genetic (co)variance parameters of body weight, 

condition factor, and resistance to acute thermal shock, in a three generational 

rainbow trout pedigree.  Estimates of heritability were calculated to be 0.46 ± 0.04, 

0.52 ± 0.04, and 0.41 ± 0.07, respectively, suggesting substantial genetic potential 

exists for selection in the three traits.  Similarly, Henryon et al. (2002) concluded 

selective breeding would be possible for the traits, body weight and body length, as 
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significant additive genetic variation was apparent, and subsequent estimates of 

heritability equalled 0.35 and 0.53, respectively.   

However, not all traits or populations hold the capacity for improvement.  At the 

University of California a selection experiment conducted by Su et al. (1996b) 

assessed body weight data from 1978 to 1986 to find heritabilities were low at 0.03 

to 0.13.  Although the estimates increased with age, they remained low; 0.05 at 168 

days, and 0.10 at 364 days.  Kause et al. (2002) calculated low estimates of 

heritability in body composition traits; percent abdominal fat, percent fillet protein, 

and ash and water, all producing estimates ranging from 0.02 to 0.06.  Further, the 

genetic correlations between the body composition traits and body weight were 

negative (rA = -0.12 to -0.36), suggesting the quality of fillets may be compromised 

through the selection for increased growth rate.   

Although a number of studies have shown only low levels of additive genetic 

variation in some traits, to date, the most commercially important traits have 

generally shown outstanding potential for genetic gain through selective breeding, 

with moderate to high estimates of heritability frequently achieved.  However, most 

research has focussed upon production traits in rainbow trout, with little attention 

paid to disease resistance.  Recent years have seen an increase in the interest in 

selective breeding for disease resistance.  At present only major companies have 

attempted selection for improved disease resistance in salmonids, but the results 

have been promising (ie AKVAFORSK, PROSPER, and Landcatch).  In the United 

Kingdom, no scientifically based selection programs have been implemented for the 

genetic improvement of rainbow trout.  As a large commercial sector, making a 

significant contribution to world rainbow trout production, it is important that 

research towards the improvement of rainbow trout stocks is implemented in the 

UK.  In 2000, researchers at the Institute of Aquaculture, University of Stirling, 

collaborated with British trout farmers to establish what was believed to be the first 

selective breeding programme incorporating genetic information for rainbow trout 

in the UK.  The project was initiated to assess levels of additive genetic variation in 

production traits, such as growth rate, yield, survival, and improved flesh colour; all 

of which produced significant heritabilities in the strains tested (Ureta-Scmidt, 2006 
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unpublished work).  However, in 2002 scientists revisited the farms involved to 

discuss the progress of the established LINK aquaculture project but were faced 

with concerns relating to major production losses encountered due to Proliferative 

Kidney Disease (PKD).  With annual outbreaks of PKD resulting in up to 500 kilos 

of dead rainbow trout each day on a single site, and up to 1.2 million kilos across 

the English industry, the significance of the disease is obvious (Robinson, 2007 

personal communication).  Having discussed with the farms involved in the LINK 

project that avoidance and minimisation of losses were dominating husbandry 

practices, and without any viable vaccine or prophylactic treatment available at that 

time, it was clear that a programme to genetically improve the performance of 

rainbow trout to PKD was the only logical step to suppress its effects.   

Coinciding with a natural outbreak of PKD occurring at the time, the opportunity 

was taken to sample 1500 rainbow trout from the two strains being tested for 

performance at the Test Valley Trout farm at Itchen Abbass.  The trout were 

weighed, their length measured, and kidney assessed for inflammation caused by 

PKD, using the scale of Clifton-Hadley et al. (1987), whilst a fin clip was removed 

from each individual, which allowed parental assignment to one of the known 

families.  For the farms already involved in the LINK aquaculture genetic project, 

an opportunity was presented to genetically improve their stocks for resistance to 

PKD, and from the data generated at the opportunistic sampling, the basis of this 

project was formed. 
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1.3 Proliferative Kidney Disease 

1.3.1 Affected species and geographical range 

Proliferative kidney disease, named by Roberts and Shepherd in 1974, has become 

highly documented in recent years.  The first occurrence of the disease is unknown, 

but it is expected to pre-date the first reported identification in 1958 (Plehn, 1924; 

Schäperclaus, 1954; Besse, 1956; Hedrick et al., 1984b).  Today, PKD is recognised 

as one of the most serious and economically damaging diseases of salmonids.  

Principally affecting farmed, but also feral fish, the causative agent has been 

identified in rainbow and steelhead trout (D’Silva et al., 1984; Feist et al., 2001), 

Californian golden trout, O. mykiss aguabonita (Morris et al., 2003b), brown trout 

(Peribáñez et al., 1997), Atlantic salmon (Brown et al., 1991), cutthroat trout, O. 

clarki (MacConnell and Peterson, 1992), sockeye salmon O. nerka (Higgins and 

Kent, 1998), Chinook salmon, O. tshawytscha (Kent et al., 1995), Coho salmon 

(Hedrick et al., 1984ab), grayling Thymallus thymallus (Bucke et al., 1991), Arctic 

charr, Salvelinus alpinus (Brown et al., 1991), and the non-salmonid, Northern pike, 

Esox lucius (Seagrave et al., 1981).  The natural distribution of these species has 

resulted in the reported incidence of PKD ranging throughout Europe, Canada and 

the USA (Bucke et al., 1981; Seagrave et al., 1981; Klontz and Chacko, 1983; 

Hedrick and Aronstien, 1987; Peribáñez et al., 1997; AquaFlow, 2002; Henderson 

and Okamura, 2004) with some areas of Western Europe and North America now 

considered endemic (Hedrick et al., 1993).   

1.3.2 PKD in the United Kingdom 

Within the United Kingdom, PKD has had a marked effect on the British trout 

industry.  In recent years the level of incidence has escalated coinciding with 

increased production; in turn, the financial burden to aquaculture has grown 

(AquaFlow, 2002).  In 1988 Alderman and Clifton-Hadley reported PKD to cost the 

British trout farming industry more than £1 million per year.  Today, estimates 

fluctuate between £1.25 to 2.5 million per annum (AquaFlow, 2002; CEFAS, 2005; 

Hughes, 2005 personal communication).  Such losses are accountable to the 

symptoms and associated mortality of the disease, where morbidity often reaches 
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100% (Sippel and Ferguson, 1983; Scott, 2002), and mortality can range from 20% 

to 100%, dependent on secondary infection (Ferguson and Needham, 1978; Hedrick 

et al., 1984a; Clifton-Hadley et al., 1986b).  However, PKD is not thought to be an 

outright killer.  The secondary infections that occur as the salmonid host is 

overcome by PKD are thought to be the true cause of death; an immunosupression 

associated with chronic PKD has resulted in numerous secondary pathogens being 

identified at disease outbreaks, including Infectious Pancreatic Necrosis (IPN) 

(Hoffman and Dangschat, 1981), Ichthyophthirius species, gill bacteria (Hedrick et 

al., 1985), Flexibacter columnaris (Hedrick et al., 1985; Foott and Hedrick, 1987), 

Saprolegnia, Costia (O’Hara, 1985) and furunculosis (see Section 1.4; Hoffman and 

Dangschat, 1981; Morris et al., 2003a). 

As a seasonal summer disease in Britain, PKD generally affects freshwater fish in 

their first term (Ferguson and Needham, 1978; Foott and Hedrick, 1987; Alderman 

and Clifton-Hadley, 1988; Hoffman and El-Matbouli, 1994).  In Northern Ireland 

and Scotland, the disease occurs from mid-July to early-September (Ferguson and 

Adair, 1977; Ellis et al., 1982).  However, evidence of the disease has been recorded 

as early as May in the UK (Clifton-Hadley et al., 1986a).  The outbreaks witnessed 

each summer coincide with increasing water temperature, initiating a severe 

development of the disease in affected fish (Ferguson and Needham, 1978; Foott 

and Hedrick, 1987).  Although first year fingerlings (0+) on enzootic farms 

generally succumb to the disease due to a general susceptibility to opportunistic 

pathogens (Ferguson and Adair, 1977; Ferguson and Ball, 1979; Ellis et al., 1982), 

Hoffman and Dangschat (1981) describe the vulnerability of older fish (1+) that 

have had no previous exposure to the pathogen; age can not therefore be considered 

a protective measure in itself (Foott and Hedrick, 1987).  Conversely, fish 

previously exposed to the disease tend to exhibit resistance to future infection 

(Ferguson and Ball, 1979). 
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1.3.3 Causative agent: discovering and classifying Tetracapsuloides 
bryosalmonae 

Although identified for decades and characterised by Ferguson and Adair in 1977 

the causative agent of PKD remained unclassified for many years due to the 

uncertainty of its taxonomic position (Hedrick et al., 1984a, 1988b; Saulnier and de 

Kinkelin, 1996; McGurk et al., 2003).  Ascribed by Seagrave et al. (1980) as 

PK‘X’, ‘proliferative kidney organism unknown’, numerous authors predicted its 

identity, ranging from an amoeba (Plehn, 1924; Ferguson and Needham, 1978) to a 

protozoan Haplosporea; PKX displays similarities to the oyster (Ostrea edulis) 

parasite, Marteilia refringens (Seagrave et al., 1980).  Kent and Hedrick (1985a) 

were the first to propose PKX to be a myxosporean, following studies that showed 

spore-like stages of the parasite which contained polar capsules with polar 

filaments; a characteristic of a myxozoan species (Kent and Hedrick, 1985ab, 1986).  

However, the authors could not categorise further as myxozoans are classified 

mainly on spore characteristics and only immature spore stages were found in PKD 

infected fish.  In 1987 Feist and Bucke presented additional information on the 

structure of PKX, whilst Hedrick et al. (1988a) and Castagnaro et al. (1991) 

discovered the formation of secondary and tertiary cells, as well as the development 

of intratubular stages, all of which provided further evidence to support the 

myxozoan classification.   

By 1999 Saulnier et al. proved the organism is a myxosporean.  Its membership to 

the phylum Myxozoa was discovered through extracts of the parasite’s genomic 

DNA and small subunit (SSU) ribosomal DNA (rDNA) being amplified by 

polymerase chain reaction, cloned and sequenced.  The evidence that PKX was a 

sister group of the phylum Myxozoa was provided following a tree reconstruction 

from PKX and 76 or 128 eukaryotic species post phylogenetical analysis on SSU 

rDNA.  Kent et al. (1998) had already evaluated this theory but demonstrated, 

through 18S rDNA sequences, that the PKX organism collected from fish hosts is 

not closely related to any of the described myxozoans, all of which were classified 

in the orders Bivalvulida and Multivalvulida.  Anderson et al. (1999a) analysed 18S 

rDNA and demonstrated a relationship of PKX with the previously described 

bryozoan parasite, Tetracapsula bryozoides (Canning et al., 1999).  Subsequently, 
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Anderson et al. (1999b) undertook a study of phylogenetic analysis using partial 

sequences of 18S rDNA sequences of myxozoan organisms from Bryozoa and 

salmonid fish, to find PKX and Tetracapsula bryozoides, although discrete species, 

formed a novel clade within Myxozoa; distinct from the existing orders Bivalvulida 

and Multivalvulida.  As Tetracapsula bryozoides was originally classified in the 

class Myxosporea, order Multivalvulida (Canning et al., 1999), the new class 

Malacosporea and order Malacovalvulida were established to accommodate the 

newly ascribed myxozoan within the family Saccosporidae and genus Tetracapsula 

(Canning et al., 2000).  Due to the morphological, behavioural, and molecular 

similarity between Tetracapsula bryozoides and PKX, PKX was positioned within 

the genus Tetracapsula, but as with Tetracapsula bryozoides, PKX was named 

according to the organism it parasitized: Tetracapsula bryosalmonae (Canning et 

al., 1999).  In 2000, a concurrent study suggested that the organism be referred to as 

Tetracapsula renicola to represent the target organ in affected fish, following an 

investigation of the disease in Arctic charr (Kent et al., 2000).  However, under the 

International code of Zoological Nomenclature, the first name ascribed has priority 

(Okamura et al., 2001), and Tetracapsula renicola was made a junior synonym of 

Tetracapsula bryosalmonae. 

In 2002 Monteiro et al. re-examined Tetracapsula bryozoides and made 

comparisons to the nematode-like parasite of freshwater bryozoa, Buddenbrockia 

plumatellae.  They discovered that the rDNA sequences and morphological 

characteristics were almost identical between the organisms, leading Canning et al. 

(2002) to propose B. plumatellae and Tetracapsula bryozoides are in fact the same 

species of malacosporean, and that the name B. plumatellae should take historical 

preference.  As such, Tetracapsula bryozoides was made a junior synonym of B. 

plumatellae, and the new genus Tetracapsuloides was established to accommodate 

Tetracapsuloides bryosalmonae, the causative agent of PKD. 
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1.3.4 Salmonids and PKD 

Numerous authors have suggested salmonids are not the final host of T. 

bryosalmonae (Kent and Hedrick, 1986; Hoffman and El-Matbouli, 1994; Saulnier 

and de Kinkelin, 1996; Hedrick et al. 2004) due to the severe inflammation induced 

(Saulnier and de Kinkelin, 1996), and lack of transmission from fish to fish 

(Ferguson and Ball, 1979).  Further, the occurrence of T. bryosalmonae in 

watercourses void of salmonids, suggests salmonids could be unnecessary hosts 

(Okamura et al., 2001), and may even display symptoms worse than the unknown 

definitive host (Hoffman and El-Matbouli, 1994).  However, Morris and Adams 

(2006) proved salmonids to be an integral part of the parasite’s life cycle.  By 

transmitting T. bryosalmonae from aquarium effluent containing infected brown 

trout to uninfected bryozoan, Fredricella sultana, and from there to rainbow trout 

via collected spores from the infected bryozoa, Morris and Adams (2006) 

successfully completed a full cycle of transmission, concluding that the parasite can 

cycle between these hosts indefinitely without requiring another organism to act as 

an additional host. 

1.3.4.1 Response of salmonids to PKD 

1.3.4.1.1 Internal symptoms 

The early response of salmonids to PKD is believed to be cellular; proliferation of 

the haematopoietic cells in the interstitium of the kidneys (Castagnaro et al., 1991; 

MacConnell et al., 1989), followed by damage to vascular endothelium and the 

onset of lesions with severe diffuse granulomatous response occurring (MacConnell 

et al., 1989; Scott, 2002).  Macrophages appear epithelial and gradually replace 

haematopoietic tissue resulting in a significant anaemia with haematocrits as low as 

11%, where 40% would be considered normal (Ferguson and Needham, 1978).  

Increased iron deposits in the spleen (haemolysis) and hypoplasia of haematopoietic 

tissue are believed to contribute to the low haematocrit level (Ferguson and 

Needham, 1978).  Uncontrolled proliferation of immune cells in various organs, 

particularly the kidney, results in the destruction of haemopoietic tissue, also 

contributing to the severe anaemia (Clifton-Hadley et al., 1985). 
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The main gross pathological symptom is excessive swelling of the kidney (Ferguson 

and Needham, 1978; Clifton-Hadley et al., 1983, 1984) often with greyish, bulbous 

ridges forming (Ferguson and Needham, 1978; Hedrick et al., 1984ab), but the 

reaction can extend along the full length of the kidney and into the anterior 

hematopoietic tissue (Ferguson and Needham, 1978; Hoffman and El-Matbouli, 

1994).  The chronic inflammation of the kidney characterising the disease (Kent and 

Hedrick, 1986; Hedrick et al., 1988b; Castagnaro et al., 1991) is caused by the 

presence of mononuclear cells and macrophages, often with partial fibrosis as the 

interstitial tissue converts to a granulomatous tissue (Hoffman and El-Matbouli, 

1994).  In severe cases the progressive renal swelling can lead to renal failure and 

displacement of the swimbladder (Alderman and Clifton-Hadley, 1988).  

When the swimbladder is found to be laterally distorted, it creates longitudinal 

swelling, whilst abdominal swelling can be associated with peritoneal fluid; often 

blood stained (Ferguson and Needham, 1978; Sippel and Ferguson, 1983).  Patches 

of greyish mottling, thought to be caused by granulomatous lesions are sometimes 

visible on the liver, and occasionally the spleen, beneath the capsule or throughout 

the stroma.  The spleen can also be either reduced in size or massively enlarged 

(Ferguson and Needham, 1978; Sippel and Ferguson, 1983).  The internal 

symptoms caused by PKD are illustrated in Figure 1.11, below. 

 

Figure 1.11 - Internal symptoms of Proliferative Kidney Disease, including 
swollen kidney and spleen 
Source: Photograph courtesy of C McGurk 
 
 

← Kidney 

← Spleen 
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1.3.4.1.2 External and behavioural symptoms 

The inflammation of the kidney leaves heavily infected fish exhibiting distended 

abdomens with longitudinal swelling of the body wall, level with the lateral line 

(Ferguson and Needham, 1978).  Darkened colouration (melanosis) and 

exophthalmia can occur, either mono- or bilaterally (Ferguson and Needham, 1978; 

Hoffman and El-Matbouli, 1994; Scott, 2002).  Feist et al. (2001) describe 

symptoms of frayed fins and haemorrhaging posterior to the adipose fin, with scale 

protrusion (O’Hara, 1985) and roughened skin; thought to be related to 

inflammatory nodules in the red muscle causing protuberances at the skin surface 

(Fernández-de-Luco et al., 1997).  Behavioural changes include loss of appetence, 

introversion, apathy, and unresponsiveness (Hoffman and El-Matbouli, 1994).  In 

the latter stages of disease, respiratory distress coincides with gill pallor due to 

pronounced anaemia (Klontz et al., 1986; O’Flynn and Mulcahy, 1995; Feist et al., 

2001), whilst increased nervous agitation marks the inception of death (Ferguson 

and Needham, 1978; Sippel and Ferguson, 1983). 

1.3.4.2 Biology of T. bryosalmonae within salmonids 

Two developmental phases of the parasite have been described in infected fish; 

extrasporogonic and sporogonic stages (Morris et al., 1999).  Extrasporogonic 

stages are found in the blood vessels and interstitium of the kidney at first (Foott 

and Hedrick, 1987; Fernández-de-Luco et al., 1997; Morris et al., 1999) before 

migrating to the lumen of the kidney tubules (Foott and Hedrick, 1987).  

Extrasporogonic stages are compiled of several secondary cells bound within a 

primary cell, whilst sporogonic stages are believed to be a result of the secondary 

cells being released from the primary cell following migration to the kidney tubule 

lumen (Kent and Hedrick, 1986).  The sporogonic development without the 

presence of completely formed spores (Kent and Hedrick, 1986) and increasing 

number of parasites aggravate the kidney forming nodules (Fernández-de-Luco et 

al., 1997) which causes an intense inflammatory response (Foott and Hedrick, 1987; 

Kent and Hedrick, 1987; Fernández-de-Luco et al., 1997).  Progression of the 

disease leads to parasites being transported around the body via the circulatory 

system to affect such tissues and organs as the spleen, liver, epithelium of the gills, 
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heart, brain, spinal canal, islets of Langerhans, striated muscle, intestinal submucosa 

and peritoneum (Fernández-de-Luco et al., 1997).   

Clifton-Hadley et al. (1985) give a detailed account of the development of PKD, its 

symptoms and the histology of affected specimens over time.  They describe how 

parasite appearance may take up to 8 weeks to occur, although the organism can be 

first detected in fish 3 to 4 weeks following exposure (MacConnell et al., 1989; 

Kent et al., 1995) or as little as 2 weeks in the kidney interstitium following 

exposure to enzootic waters (Kent and Hedrick, 1986; Clifton-Hadley et al., 1987).  

As little as 1 week later (week 9), clinical signs prevail lasting for 12 to 20 weeks 

(Clifton-Hadley et al., 1985) with weeks 6 to 20 thought to be most prominent 

(Kent et al., 1995).  Parasites undergo degenerative changes 12 weeks after 

exposure up to week 20 when fish often make a complete recovery (Clifton-Hadley 

et al., 1985; Morris et al., 1999), and the infection in the kidney interstitium and 

associated lesions resolve (Kent et al., 1995).  However, Clifton-Hadley et al. 

(1985) explain that the sequence of events may vary dependent on water 

temperature, disease prevalence, time of year, and location. 

1.3.4.3 Variations in display 

Normally associated with fish farms on soft, acidic waters (Ferguson and Adair, 

1977; Ferguson and Needham, 1978), the prevalence and intensity of PKD has been 

reported to increase throughout summer (Fernández-de-Luco et al., 1997).  

Peribáñez et al. (1997) compared the renal prevalence and density of parasites in 

rainbow trout and brown trout held in the same environment.  In rainbow trout renal 

prevalence and density of parasites peaked in July, but in brown trout renal 

prevalence and maximum density was reached in May and July, respectively.  By 

January Fernández-de-Luco et al. (1997) observed no parasites in PKD recovering 

fish.  Conversely, Foott and Hedrick (1987) observed later sporogonic stages of the 

parasite in rainbow trout for up to one year following initial infection. 
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1.3.4.4 Potential entrance sites and species-specific response 

To date the method of entry into the host has remained in question (Okamura et al., 

2001).  Feist et al. (2001) discuss numerous sites for spore invasion.  Although early 

invasive stages were repeatedly detected in the gills initially, the authors believe the 

most obvious entrance site would be via the skin.  Ferguson and Needham (1978) 

describe T. bryosalmonae in the gills; throughout the capillaries and lamina propria 

of the second lamellae.  Gills are an obvious entrance site for parasites, as they are 

extremely exposed organs and constructed of delicate tissue.  Further, parasites 

could easily enter the bloodstream via the gills and use it as a transport system to 

other organs (Clifton-Hadley et al., 1985).  While not detected in the epithelial cells 

of the gut mucosa, Ferguson and Needham (1978) observed parasites in the stroma 

of the liver, spleen, and kidney.  Once the kidney has reached maximum capacity, 

the parasites have been known to invade the muscle (Fernández-de-Luco et al., 

1997; Peribáñez et al., 1997).  Peribáñez et al. (1997) and Fernández-de-Luco et al. 

(1997) first detected parasites in the muscle only when the kidney became saturated.  

Lesions, which principally affect kidneys, were found to occur in the striated muscle 

and macroscopical nodules in the red muscle in nearly 80% of surviving subyearling 

fish in the study by Fernández-de-Luco et al. (1997). 

The presence of parasites in the muscle is thought to be exclusive to rainbow trout 

and that other species may have the potential to control the reproduction of T. 

bryosalmonae avoiding the subsequent spread to such areas (Peribáñez et al., 1997).  

However, MacConnell et al. (1989) observed an effective response to the parasite in 

rainbow trout and suggested that it interrupted the maturation of the organism, 

inhibiting the migration of T. bryosalmonae to the lumen of the kidney and the 

subsequent sporulation, when fish were experimentally induced with PKD.  

Although conflicting in terms of species ability to inhibit maturation, there appears 

to be a species-specific response to the disease, which is supported by the timing of 

T. bryosalmonae, its potency, and prevalence in different salmonids (Fernández-de-

Luco et al., 1997; Peribáñez et al., 1997).   
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1.3.5 Detection of Tetracapsuloides bryosalmonae 

As fish succumb to PKD the definitive cause of death is often difficult to distinguish 

due to the presence of secondary infection.  In 1983, Clifton-Hadley et al. described 

how a presumptive diagnosis can be made simply by observation; symptoms, post 

mortem appearance, and referring to the history of the disease on site, whilst a 

positive diagnosis required histological examination, showing the characteristic 

proliferation of mononuclear cells in the renal interstitial tissue.  However, the 

method was deemed costly in terms of consumables and time, and kidney 

impression smears were eventually introduced; found to be easier, quicker, and 

more efficient (Clifton-Hadley et al., 1983).  Similarly, squash preparations are a 

sufficient method to observe mononuclear lymphoid cells and macrophages 

surrounding primary cells (Clifton-Hadley et al., 1983; Hoffman and El-Matbouli, 

1994). 

As technology advanced the methodology for diagnosis has modernised, and 

diagnosis by observation of T. bryosalmonae in kidney smears or histological 

sections is used as a basic tool only (le Gouvello et al., 1999).  More precise and 

sensitive methods have been designed; PCR (Saulnier and de Kinkelin, 1996; Kent 

et al., 1998), monoclonal antibodies (Adams et al., 1992; de Mateo et al. 1993; 

Saulnier and de Kinkelin, 1996), and lectins (Castagnaro et al., 1991) allow early 

detection and response to PKD.  The development of T. bryosalmonae-specific 

monoclonal antibodies (see Adams et al., 1992) and the binding lectin, Griffonia 

simplicifolia, GS-1, allows staining of the extrasporogonic stages in tissue sections, 

through standard immunostaining techniques using peroxidase or fluorescein 

(Castagnaro et al., 1991; Hedrick et al., 1992).   

The monoclonal antibodies developed against T. bryosalmonae allow a 

demonstration of the parasite’s antigenic characteristics which change throughout its 

development in fish (Adams et al., 1992; Morris et al.̧1997; Saulnier and de 

Kinkelin, 1999).  This change in antigenicity of the parasite implies monoclonal 

antibodies are limited for the study into the lifecycle, as well as the early detection 

of infections.  However, a successful in-situ hybridisation DNA method that stains 

both developmental phases of the parasite has been designed, allowing the 
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identification of the genetic association between them.  The method proved 

successful in preclinical and clinical infections in numerous organs, demonstrating 

the potential of the technique to identify non-clinical T. bryosalmonae in the 

salmonid host (Morris et al., 1999).   

1.3.6 Freshwater Bryozoa and Tetracapsuloides bryosalmonae 

Freshwater invertebrates, from the phylum Bryozoa (Class: Phylactolaemata), 

commonly known as ‘moss animals’ (McGurk et al., 2003) are colonial, 

suspension-feeding invertebrates found in a wide variety of agnostic aquatic 

environments.  They are generally overlooked due to their inconspicuousness, 

sessile nature, but can be found growing in subtle locations.  Living on submerged 

branches, stones and macrophytes, as temperatures increase towards summer the 

organisms can be observed producing asexual propagules called statoblasts; tiny (<1 

millimetre) seed-like structures of two chitinised valves enclosing dormant germinal 

tissues.  These statoblasts are used to assess taxonomy as it is extremely difficult to 

differentiate between species due to phenotypic similarities of the colony form; 

taxonomy is based on morphological detail of the statoblasts (Okamura and Wood, 

2002). 

1.3.6.1 Bryozoa; the primary host? 

Through DNA analysis, bryozoans were discovered to act as a host to T. 

bryosalmonae (Okamura et al., 2001; Okamura and Wood, 2002).  The prevalence 

of the parasite within numerous species of Bryozoa resulted in Canning et al. (2000) 

suggesting that bryozoans could be the primary host of T. bryosalmonae.  From the 

numerous and poorly understood species of bryozoans, several are now considered 

to be natural hosts; phylactolaemate bryozoans ranging from primitive to derived 

genera, Fredericella species (sultana and indica), Plumatella species (rugosa, 

magnifica, and emarginata), and Cristatella mucedo are believed to be susceptible 

to T. bryosalmonae, with F. sultana, F. indica, and P. emarginata predominantly 

identified at disease outbreaks (Okamura et al., 2001; Okamura and Wood, 2002).   
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Okamura and Wood (2002) briefly discuss bryozoans as the only host required in 

the lifecycle of T. bryosalmonae, whilst Okamura et al. (2001) considered infection 

may alternate between species of bryozoan depending on their seasonal availability, 

but this would not be obligatory as Okamura and Wood (2002) found only a single 

species of bryozoan at one site infected with T. bryosalmonae.  Conversely, Tops et 

al. (2004) conducted experiments studying bryozoan to bryozoan transmission, 

reporting consistent failure, suggesting such transmission is precluded in 

malacosporean lifecycles.  Morris and Adams (2006) successfully transmitted T. 

bryosalmonae from brown trout to bryozoans, and also from bryozoans to rainbow 

trout as found by Feist et al. (2001), but to date the transmission from rainbow trout 

to bryozoans remains inconclusive and requires further investigation (Tops et al., 

2004). 

1.3.6.2 Environmental requirements and distribution 

The environment in which infected bryozoan species have been found ranges from 

clear, cold streams to warm, eutrophic lakes, suggesting bryozoa, and therefore T. 

bryosalmonae, can inhabit a variety of environments indicating a wide geographical 

spread is possible (Okamura et al., 2001).  However, Okamura et al. (2001) found 

T. bryosalmonae to be inconsistent in distribution, both spatially and temporally.  In 

the UK, Plumatella (probably P. emarginata) and F. sultana are the predominant 

species known to act as host to T. bryosalmonae (Longshaw et al., 1999), whilst in 

many countries across Europe, Canada, and the USA records indicate the presence 

of T. bryosalmonae in various species of bryozoa (Tops and Okamura, 2003).   

Although geographically dispersed Kent et al. (1998) discovered a maximum 

variation in sequences of only 0.8% among all T. bryosalmonae isolates across 764 

base pairs, when specific primers were designed to amplify and sequence a portion 

of SSU rDNA extracted from kidney samples of infected salmonids in England, 

California, British Columbia, Washington, and Newfoundland.  This strongly 

suggests T. bryosalmonae isolates from various regions across the world are closely 

related, or indeed, the same species.  Henderson and Okamura (2004) discovered the 

greatest genetic diversity of T. bryosalmonae to be throughout North America.  

Colonies in southern Europe are thought to have established via distribution of this 
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North American clade (Henderson and Okamura, 2004).  Although it remains 

unclear as to how colonies and the disease has spread, Henderson and Okamura 

(2004) believe the parasite was not distributed via fisheries, as colonisation 

significantly predated fisheries and aquaculture activity.  Instead, it is suggested that 

waterfowl are the vectors of T. bryosalmonae, introducing the Malacosporean 

parasite from North America into European countries (Henderson and Okamura, 

2004).  However, new evidence describing the role of salmonids in the life cycle of 

T. bryosalmonae (Morris and Adams, 2006), suggests that salmonids should not be 

ruled out as a means of distributing the parasite. 

Should alternative or obligate hosts become apparent, they will inevitably show a 

habitat requirement as extensive as the infective organism (Okamura and Wood, 

2002).  Potential final hosts discussed include, other fish; in particular, cyprinids 

(Kent and Hedrick, 1986; Hoffman and El-Matbouli, 1994; Okamura et al., 2001) 

and sticklebacks (Gasterosteus aculeatus) (Kent and Hedrick, 1986; Feist, 1988), 

invertebrates (Okamura et al., 2001), and numerous species of birds (Hoffman and 

El-Matbouli, 1994). 
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1.4 Furunculosis 

1.4.1 Affected species and geographical range 

Furunculosis received its name due to the characteristic boil-like lesions that 

resemble those observed in the human condition.  As an aquatic disease, 

furunculosis has only been recognised for a little over 100 years, but in this time 

much emphasis has been placed on its control due to the detrimental effects 

witnessed in fresh and saltwater fishes (Munro and Hastings, 1993).  Since its initial 

description in the late nineteenth century, the disease has been associated with major 

losses of both wild and cultured salmonid fish, which act as the predominant host 

(Emmerich and Weibel, 1894; Roberts and Shepherd, 1974; Munro and Hastings, 

1993).  Leitritz and Lewis (1976) describe the disease as a septicaemia; the 

causative agent is carried in the blood and collects in clumps in small blood vessels 

before rupturing and invading surrounding tissues.  This produces lesions and sores 

which appear as swollen red spots beneath the skin, before destroying the 

surrounding tissue to enlarge as characteristic furuncules.   

Although salmonids are the primary host of furunculosis, numerous other species 

are also known to be affected by the causative agent.  Atypical strains of the 

bacteria have been linked with major diseases in marine and freshwater species; 

Atlantic cod (Gadus morhua), goldsinny wrasse (Ctenolabrus rupestris), carp 

(Cyprinus carpio), and goldfish (Carassius auratus) (see Munro and Hastings, 

1993).  However, in such diseases the symptoms and gross pathology generally 

differ from that observed in furunculosis of salmonids, for example in ulcerative 

disease of (non-)salmonid species, and erythrodermatitis in carp (Munro and 

Hastings, 1993; Southgate, 1993). 

The geographical spread of furunculosis mirrors the culture areas of salmonids, 

ranging across almost all continents.  As the incidence of disease increases in wild 

and non-salmonid species, the distribution is now thought to be worldwide; endemic 

in Europe, North America, Japan, Korea, Australia, and South Africa (Holliman, 

1993; Munro and Hastings, 1993).  In Norway, the disease originated after several 

sporadic outbreaks in the Numedalslagen River between 1966 and 1977, 
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subsequently affecting fish farms by 1985; as the largest producer of salmonids in 

the world, furunculosis is recognised as one of Norway’s most economically 

damaging diseases (Nordmo, 1993).  In the UK, Scottish salmon farms have also 

been hindered by furunculosis with many sites experiencing endemic outbreaks and 

losses of up to 20% of stock (Munro and Hastings, 1993; Wall, 1993). 

1.4.2 Causative agent: discovering and classifying Aeromonas salmonicida 

The first authentic report of the causative agent of furunculosis was given by 

Emmerich and Weibel in 1894 when it was discovered in a German trout hatchery.  

Although named bacillus of contagious trout disease (Bacillus der Forellenseuche) 

in Germany, it was referred to in English as Bacillus salmonicida until Griffin et al. 

(1953) suggested the taxonomy Aeromonas within the family Vibrionaceae.  In 

1963 Smith suggested a separate genus but this was disputed and the bacterium 

remained under the genus Aeromonas until classification was certified in 1978.  By 

studying the homology between A. salmonicida and A. hydrophila McCarthy (1978) 

showed a 56% to 65% degree of binding, indicating a relationship at the generic 

level.  Further homology studies between many isolates of A. salmonicida indicated 

three subspecies may be necessary (McCarthy, 1978; Belland and Trust, 1988).  

Based on epizootiological criteria, classification now includes; group one – A. 

salmonicida, subspecies salmonicida typically derived from salmonids; group two – 

A. salmonicida, subspecies achromogenes derived from salmonids as atypical 

strains, including the former achromogenes and masoucida; group three – A. 

salmonicida, subspecies nova, atypical strains associated with non-salmonid species 

(Belland and Trust, 1988). 

1.4.3 Salmonids and furunculosis 

Emerging as a septicaemia and often fatal, furunculosis can affect all species of 

salmonid at any stage of life (Munro and Hastings, 1993).  Clinical manifestation 

varies from acute to chronic depending on the age and species of the fish concerned, 

as well as the environment (Southgate, 1993).  Younger fish are more likely to 

suffer from the acute form of the disease when there may be few clinical signs other 

than behavioural changes, whilst more chronic cases display typical hemorrhagic 
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symptoms (Southgate, 1993).  Rainbow trout are believed to be the least affected 

species, whilst Atlantic salmon and brown trout the most susceptible (Roberts and 

Shepherd, 1974; Leitritz and Lewis, 1976; Southgate, 1993).  As an opportunistic 

pathogen, occurrences are generally stress-related and can be heavily influenced by 

the environment.  Outbreaks of epizootic proportion have been known to occur at 

temperatures of 10oC to 15oC or more (Stevenson, 1987).  The severity of the 

disease has led to morbidity of up to 100% with mortality exceeding 80%, 

especially in young fish (Stevenson, 1987).  Such losses pose a real threat to the 

salmonid industry.   

1.4.3.1 Response of salmonids to furunculosis 

1.4.3.1.1 Internal symptoms 

Depending on the stage of disease, the symptoms displayed may vary.  Munro and 

Hastings (1993) explain that the time course of the disease is important as stocks 

may present a continuum of pathologies from acute to chronic.  At the acute stage, 

internal inflammation of the intestine can be observed, as well as splenomegaly, 

liver pallor, soft kidneys, and petechial haemorrhaging in the pancreatic fat or 

musculature of the flanks (Holliman, 1993; Wall, 1993).  Congestion of blood 

vessels in the body cavity is often observed, and the lining of the intestine may be 

inflamed with bloody discharge and mucous from the vent, especially after death.   

The spleen can be enlarged and cherry red, whilst the kidney is usually badly 

infected, often becoming liquefied.  Death generally occurs before furuncules form, 

unlike that observed in the chronic form (Leitritz and Lewis, 1976). 

In chronic cases the slow progression of infection results in a greater degree of 

bacterial localisation in visceral organs, commonly the kidney, spleen, blood vessel 

walls, and intestine, but also in the liver and gills (Munro and Hastings, 1993).  

Erythematous and petechial haemorrhaging may be apparent, but larger 

haemorrhaging occurs across the internal organs, especially the swimbladder, which 

appears swollen and cloudy.  The kidney and liver turn greyish with necrotic areas, 

while blood vessels surrounding the lower intestine and pyloric caeca are inflamed.  

The peritoneum and pericardium often have bloody fluid accumulations and the 
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intestine is devoid of food and can have an exudate of blood, mucous, and cellular 

debris.  The spleen is greyish to green in colour and the intestine may be filled with 

bloody food and faeces.  Haematocrit measurements often show severely depressed 

red cell numbers, coinciding with gill and liver pallor, whilst furuncules grow on 

visceral organs, and the internal body wall (Stevenson, 1987; Munro and Hastings, 

1993; Wall, 1993).  Further development of furuncules within the skeletal muscle 

leads to the surrounding tissue being destroyed, eventually appearing as necrotic 

areas of muscle that burst through the exterior of the fish releasing a thick 

bloodstained material (Munro and Hastings, 1993; Wall, 1993).  

1.4.3.1.2 External and behavioural symptoms 

The display of furuncules occurs following a chronic outburst in older fish (Roberts 

and Shepherd, 1974).  Chronic conditions present the majority of external and 

behavioural symptoms, as acute forms exhibit limited external symptoms (if any) 

prior to death; perhaps inappetance and melanosis.  In addition to inappetance and 

melanosis, in chronic cases petechiation at the fin bases, lethargy, haemorrhaging, 

or anaemia of the gills can be apparent, before characteristic furuncules appear 

(Figure 1.12) (Leitritz and Lewis, 1976; Stevenson, 1987; Holliman, 1993; Munro 

and Hastings, 1993).  Behaviourally, affected fish exhibit lethargy, aberrant 

swimming patterns, and a lack of shoaling (Wall, 1993). 

 
Figure 1.12 - Atlantic salmon affected by Aeromonas salmonicida, showing 
classic 'furuncule' 
Source: Modified from Southgate, 1993 
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1.4.4 Detection and treatment of A. salmonicida 

Diagnosis of furunculosis is based on clinical signs, histopathology and the 

laboratory isolation of the bacteria from affected individuals.  Post-mortem 

examination may show no gross pathological signs depending on the status of the 

disease (eg peracute).  Similarly, histopathology differs with furunculosis 

development; in acute cases little more than limited necrosis of tissues is apparent, 

while sub-acute and chronic cases typically show the presence of accumulations of 

bacteria in many tissues with accompanying necrosis but little inflammatory 

response (Southgate, 1993).  Aeromonas salmonicida has been identified as Gram-

negative, facultative anaerobic rod with rounded ends, approximately 0.3 to 1.3 

micron by 1.0 to 3.5 micron.  Although members of the aeromonad family are 

generally motile, A. salmonicida is the only exception (Munro and Hastings, 1993; 

Southgate, 1993).  Identification is possible through staining and observation of 

coccoid forms in tissue smears and culture plates.  Plates containing suitable media 

require incubation at approximately 22oC for 24 to 48 hours, at which stage a brown 

diffusible pigment characteristic of A. salmonicida can be observed.  Phenotypic 

identification is possible, but Munro and Hastings (1993) warn that colonies can 

vary dependent on the strain of A. salmonicida; the majority are extremely friable, 

with colonies capable of being pushed across the agar plate, whilst less common 

colonies are smooth looking and soft to touch.  In broth cultures, the common 

strains autoagglutinate to produce a settlement at the base of tubes, whereas non-

agglutinating smooth variants produce a uniform turbidity. 

Historically, A. salmonicida would be isolated and its antibiotic sensitivity assessed 

in order to ascertain effective therapy (Southgate, 1993).  In the 1950’s, the 

development of antibiotics showed promising results to control furunculosis, and by 

the 1970’s oxytetracycline, trimethoprim-sulphadiazine, oxolinic acid, and 

amoxicillin were regarded as effective treatments administered orally via feed.  

However, continued and prolonged use led to the pathogenic bacteria developing a 

resistance to the antibiotics.  Initially, resistance was specific to one drug, so an 

alternative could be used, but eventually a general resistance occurred and by mid-

1980 outbreaks of furunculosis increased dramatically.  In time A. salmonicida has 
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evolved, leaving only amoxicillin as a curative.  Today, British aquaculture 

continues to use amoxicillin, but even a resistance to this drug is occurring. 

1.4.5 Vaccination 

Attempts to produce an effective vaccine against furunculosis have been in progress 

since 1942.  Essentially, vaccines are killed bacteria cultures that are tested for 

efficacy by immunising and challenging fish.  Successful vaccines in other bacterial 

diseases of salmonids (eg Vibriosis and Enteric Red Mouth) were established 

relatively quickly compared to furunculosis.  Due to limited knowledge of which 

antigen(s) are protective and in what quantity they are necessary, only modestly 

successful vaccines were developed for rainbow trout until recent years (Stevenson, 

1987; Lutwyche et al., 1995; Siwicki et al., 2002).  In the commercial production of 

Atlantic salmon, vaccines against furunculosis have been available for a number of 

years, but most have proved to be of limited use for rainbow trout.  However, 

through improved knowledge and research into the disease, vaccines are becoming 

more and more effective.  Today, numerous companies offer life long protection 

against furunculosis in rainbow trout, eg Pharmaq Vaccines, Norvatis Ltd, Schering-

Plough Animal Health (Aquavetplan, 2001; Schering-Plough, 2007).  Their role will 

inevitably play an important part in the future of preventing the disease (Southgate, 

1993). 

1.4.6 Control 

Furunculosis is generally introduced to sites by the movement of infected fish on to 

a culture facility or by wild carriers shedding bacteria into the watercourse.  Fish 

tissue, equipment, and escapees are also known to act as vectors (Southgate, 1993).  

However, even if present in the environment, it does not necessarily suggest that 

disease is inevitable.  Furunculosis is highly dependent on the environment of the 

host, as stress is believed to be the primary factor resulting in outbreak.  Poor 

environmental conditions, increased temperatures, trauma, and crowding resulting 

in physical damage, will increase the transmission and infection rate of the disease.  

Stressors therefore require careful consideration (Holliman, 1993; Munro and 

Hastings, 1993).   
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As the problems surrounding furunculosis continue, its impact on the industry is not 

to be underestimated; losses are increasing, multiple resistance to antibiotics is 

developing, and the distribution of farms is so widespread that no area is likely to be 

risk free.  Although antibiotics can be administered with some degree of success, 

avoidance and vaccination are the preferred methods of control.  With increased 

knowledge and interest in genetic techniques, selective breeding for resistant strains 

may well provide an alternative or additional opportunity to improve control 

measures, and help suppress the effects of the disease (Munro and Hastings, 1993). 
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1.5 Aims and objectives 

The aim of this project was to test for evidence of additive genetic variation towards 

the commercially important disease Proliferative Kidney disease, via the scoring 

system of Clifton-Hadley et al. (1987), and to support any evidence of this variation 

by undertaking challenge tests with the causative agent, Tetracapsuloides 

bryosalmonae.  The forthcoming chapters will consider: 

 

� Testing for evidence of additive genetic variation towards kidney score, 

according to the scale of Clifton-Hadley et al. (1987), following a natural 

challenge in T. bryosalmonae enzootic water.  Where evidence of variation 

exists, estimates of heritability will be obtained for the two rainbow trout 

strains involved.  Additionally, the genetic correlations between the three 

traits measured (kidney score, fork length, and body weight) will be 

calculated 

 

� Experimentally inducing PKD in a certified disease-free strain of rainbow 

trout.  Challenge tests on these distinct families is expected to provide 

information on the level of resistance to T. bryosalmonae, as all individuals 

involved will be subject to the Malacosporean parasite on a single day.  The 

level of additive genetic variation for resistance to PKD will therefore be 

investigated, which will also act to support or dismiss the initial findings of 

the project.  Additionally, the progression of PKD in individual families, and 

phenotypic trends between size and kidney score will be documented 
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and Methods 
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2.1 Molecular Biology; Genetics 

2.1.1 DNA extraction 

All DNA was extracted from tissue samples using one of two methods; phenol-

chloroform or Chelex.  Dependent on the tissue and storage time prior to extraction, 

samples were stored individually in 0.5 millilitre (ml) Eppendorf tubes 

(Thermofischer, UK) and either refrigerated immediately (frozen if necessary: 

kidney samples) or submerged in 95% ethanol (Fischer Scientific, UK) (fin clips) 

ready for extraction.   

2.1.1.1 Phenol-chloroform method 

The protocol used in the present project is specifically designed for the rapid 

extraction of salmonid DNA from fresh, frozen or ethanol preserved samples 

(Taggart et al., 1992).  The expected quantity of DNA obtained using this method is 

dependent on the tissue used, eg liver, blood, adipose, muscle etc, and can vary 

significantly the amount of DNA obtained; ranging from 10 to 250 micrograms (µg) 

DNA.  The size of tissue sample also affects DNA yield; standardisation was 

therefore important.  

Dependent on the storage conditions of the tissue, samples were either thawed or 

were blotted free of ethanol and allowed to air dry before a biopsy punch (Kruuse, 

UK) of 3 millimetre (mm) diameter (Ø) was taken.  Each sample was placed into an 

individually labelled autoclaved 0.5 ml Eppendorf tube containing 10 microlitre (µl) 

Proteinase K (ABgene, UK) at 20 milligram (mg)/µl and 340 µl of TEN buffer (0.2 

molar (M) ethylenediaminetetra-acetic acid (EDTA) at pH 8.0 with 0.5% 

weight:volume (w:v) sodium dodecyl sulphate (SDS): Sigma, UK).  The Proteinase 

K reduces proteins to their component amino acids, whilst SDS causes cells to 

rupture, initiating protein denaturation.  The tubes were mixed briefly then placed in 

a rotating oven (Techne Hybridiser HB-1: Techne, UK) to incubate at 55oC for 

approximately 16 hours (hr).  Following incubation 10 µl Rnase (Dnase free at 2 

mg/µl: ABgene) was added to the solution and shaken vigorously.  A further 

incubation period to digest and remove traces of RNA followed; 60 minutes (min) at 
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37oC.  Phenol (Fischer Scientific) was added at 350 µl per tube to extract the 

denatured protein from the DNA solution.  This was followed by vigorous shaking 

for 10 seconds (s) before gentle turning for 15 to 20 min.  The process was mirrored 

with the addition of 350 µl of chloroform (Fischer Scientific) to each tube to absorb 

and eradicate traces of phenol, before the tubes were shaken for 10 s and turned 

gently for 15 to 20 min.  New autoclaved Eppendorf tubes required labelling whilst 

the samples were centrifuged at 10,000 gravitational force (xG) for 5 min to create 

separation.  Upon removal from the centrifuge a DNA-filled top aqueous layer was 

apparent, of which 300 µl was removed (using a wide bore pipette tip) and 

dispensed into the new tube.  Nine hundred µl of 92% ethanol (volume:volume 

(v:v), distilled water) was added to the new tubes, which was then mixed vigorously 

to precipitate out the DNA pellet.  A rest period of 2 to 3 min allowed the pellet to 

fall to the base of the tube, so that the 92% ethanol could be decanted, and replaced 

with 70% ethanol (v:v, distilled water).  The tubes were then turned gently for at 

least 30 min, acting as a wash, before the ethanol was removed and the tube allowed 

to air dry for 5 to 10 min.  The pellet was resuspended in TE buffer (10 mM 

electrophoresis purity reagent Tris (hydroxymethyl) – amino methane (Tris: Biorad, 

USA), 1 mM EDTA, pH 8.0) and left to dissolve for 24 to 48 hr.  Aliquots of the 

stock solutions were transferred to 96-well plates (ABgene) and the concentration of 

extracted DNA determined using a 6405 UV/Vis spectrophotometer (Jenway, UK); 

additional TE was added where required to maintain a 100 µg/ml working 

concentration (protocol modified from Taggart et al., 1992).  Both stock and 

working solutions were stored at -20oC.   

Prior to using the working solution, the DNA was denatured by heating to 95oC for 

15 min.  Phenol-chloroform extracted DNA was preferred where high quality DNA 

was required and long periods of storage was necessary.  

2.1.1.2 Chelex method 

A 10% Chelex solution (1:10 w:v, (Chelex (Sigma) to TE buffer) at pH 8.0, plus 

0.1% SDS) was warmed (approximately 60oC) and continuously spun using a Bibby 

HB502 centrifuge (Bibby, UK) to create an even distribution of beads to assist in 

their uptake.  Using a wide bore pipette, 100 µl of solution was dispensed into the 
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number of required wells of a 96-well plate to which was added 3 µl of Proteinase K 

(20 mg/µl).  As per the phenol chloroform method, tissue was removed from 

individually labelled Eppendorf tubes and blotted dry or allowed to thaw.  Biopsies 

of the tissues were added to wells before the plate was sealed securely using 

adhesive PCR film (ABgene) to prevent evaporation at the incubation phase; 55oC 

for at least 3 hr in a T-gradient thermoblock (Biometra, Germany).  At the end of 

incubation the plate was centrifuged at 258 xG for 1 min before being returned to 

the thermoblock for denaturation; 95oC for 15 min.  A further spin of 258 xG for 1 

min was performed.  When the solution was not used immediately, samples were 

stored at -20oC, although attempts were made to use the DNA within two weeks of 

extraction. 

2.1.2 Polymerase chain reactions (PCR) and primers 

Three PCRs were used in this project, two of which utilised multiple loci due to the 

large amount of information required for successful parental allocation (Multiplexes 

1 and 2).  These PCRs required vast optimisation due to the intricate chemistry 

involved in the reaction.  Where qualitative answers were required for the detection 

of Tetracapsuloides bryosalmonae, a single locus PCR was used.   

2.1.2.1 Single locus PCR 

2.1.2.1.1 Primer preparation 

Designed by Kent et al. (1998) the primers, 5f (CCTATTCAATTGAGTAGGAGA) 

and 6r (GGACCTTACTCGTTTCCGACC), specific to the parasite 

Tetracapsuloides bryosalmonae, causative agent of proliferative kidney disease 

(PKD), were used in the ‘PKD-PCR’.  The primers were dissolved in molecular 

biology grade (mbg) water (BDH Laboratory Supplies, UK) for 10 min at 55oC, 

resulting in a 100 micromolar (µM) concentration.  Following a vortex, aliquots of 

10 µl were stored at -20oC.  When required, 2.5 µM working solutions (ws) were 

prepared by adding mbg water. 
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2.1.2.1.2 PKD-PCR 

Alterations were made to the method of Kent et al. (1998) in the PCR preparation.  

The necessary amount of each solution per sample was pooled into a single 1.5 ml 

Eppendorf tube before being aliquoted into the required number of wells of a 96-

well plate.  Added into the tube were 8 µl mbg water, 1 µl of each primer, and 12.5 

µl PCR master mix solution (2 x Reddymix, ABgene, UK; 1.25 units Thermoprime 

plus DNA polymerase, 75 mM Tris-HCL (pH 8.8 at 25oC), 20 mM (NH4)2SO4, 1.5 

mM MgCl2, 0.01% Tween 20, 0.2 mM dATP, 0.2 mM dCTP, 0.2 mM dGTP, 0.2 

mM dTTP, precipitant and red dye for electrophoresis).  The reaction volume 

totalled 25 µl, including 2.5 µl DNA template.  Both positive and negative controls 

were included in each reaction (see Section 2.1.2.1.3). 

The actual DNA amplification process followed that of Kent et al. (1998) where 

DNA denaturation lasted 3 min at 94oC, followed by 35 cycles of amplification; 

94oC for 1 min, 55oC for 1 min, and 72oC for 1 min, ending with a 5 min extension 

at 72oC, all of which took place in a T-gradient thermoblock.  Samples were then 

mixed, pulse spun to condense the reaction mix in the bottom of the tube, and held 

on ice awaiting gel electrophoresis. 

2.1.2.1.3 Gel electrophoresis 

All PCR products were checked under ultra violet (UV) illumination (UVS white 

UV Syngene Ingenius transilluminator; Synoptics Ltd, UK) following 

electrophoresis on a 1.2% agarose gel containing Ethidium Bromide (EB).  All 

agarose gels and their buffers were sodium boric acid (SBA) based, used at a 1x 

concentration.  Although dependent on the required amount of buffer and size of 

gel, the majority were prepared by adding 80 ml of 25x SBA (1:100 w:v, 1 mol 

sodium hydroxide pearls (NaOH) with mbg water, pH to 8.5) to 1920 ml of mbg 

water making a 1x SBA solution.  Two hundred millilitres of the solution was 

poured into a 500 ml flask and 2.4 grams (g) of electrophoresis grade agarose 

(Invitrogen, UK) added.  This was mixed, heated in a microwave until boiling, then 

4 µl EB (2 µl/100 ml) was added to the solution before being left to cool to handling 

temperature.  Whilst cooling, a suitable gel caster (Biorad) was prepared and the 
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necessary combs positioned.  Once cooled the solution was poured and allowed to 

set (approximately 30 min). 

The gel was placed into a compatible electrophoresis machine (Biorad), and covered 

by the remaining 1800 ml of 1 x SBA solution.  The wells were loaded with one of 

four solutions; 7 µl of negative PKD-PCR product, 7 µl of positive PKD-PCR 

product, 7 µl of PCR product requiring analysis, or 7 µl of DNA molecular weight 

marker (ØX 174 RF DNA Hae II, 11 bands, size 72 to 1353 base pairs (bp): 

ABgene).  Due to the nature of SBA (see Brody and Kern, 2004), the gel could be 

used at 300 volts (v), 195 milliamps (mA) for 20 to 25 min allowing enough time 

for separation.  Any positive bands were apparent at 435 bp; the size of which was 

determined from the nuclear weight marker. 

2.1.2.2 Multiple locus PCR 

2.1.2.2.1 Microsatellite loci 

The microsatellite loci and subsequent multiplex PCRs in the present project were 

largely influenced by Fishback et al. (1999).  In order to ascertain enough 

information to allow parental allocation, as many loci as possible were incorporated 

into one of two multiplex systems.  A total of ten microsatellites were selected, 

seven comprising multiplex 1, and three in multiplex 2 (Table 2.1).  Either the 

forward or reverse primer was labelled with one of three WellRED fluorescent dyes; 

dye 2PA (black), dye 3PA (green), or dye 4PA (blue) (Proligo primers and probes, 

USA).  
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Table 2.1 - Primer and loci information for multiplex PCRs used in the project 

 

2.1.2.2.2 Multiplex PCRs 

The two multiplex systems were configured following a lengthy optimisation 

period.  In the majority of instances PCR amplification took place in 0.2 ml 96-well 

plates, sealed with adhesive PCR film, using a total volume of 15 µl; 6 µl mbg 

water, 2.1 µl of fluorescently labelled primer and unlabelled primer (1:1, v:v), 280 

µM of each dNTP (0.84 µl: ABgene), 2.0 µM MgCl2 (1.2 µl: ABgene), 3 µl Buffer 

II (75 mM Tris-HCL; 20 mM (NH4)2SO4, 0.01% (v:v) Tween® 20: ABgene), 3 

Units Taq polymerase (ABgene), and 1.5 µl of genomic DNA, assumed to be ~100 

µg.   

As the loci used had various optimum annealing temperatures, it was necessary to 

use a T-gradient thermoblock touchdown PCR program, allowing simultaneous loci 

amplification and the suppression of any spurious artefact bands (Fishback et al., 

1999).  Multiplex 1 consisted of the following profile: 1 cycle of 95oC for 3 min, 

followed by 10 cycles of 95oC for 30 s, 65oC for 1 min (-0.5oC per cycle), and 72oC 

for 4 min, then 30 cycles of 95oC for 30 s, 60oC for 1 min, and 72oC for 4 min, 

ending in one cycle of 72oC for 45 min.  Multiplex 2 followed the same sequence 

but used 12 cycles of 60oC for 1 min (-0.5oC per cycle) at the initial annealing stage, 

Locus Primer Sequence Dye Range (bp) No. Alleles Multiplex 
OmyFGT14TUF_R 
OmyFGT14TUF_F 

5’ – AGAGGGTTACACATGCACCC – 3’ 
5’ – TGAGACTCAACAGTGACCGC – 3’ 

3PA 203 – 211 5 1 

OmyFGT10TUF_R 
OmyFGT10TUF_F 

5’ – GCTCATGAACTGGGCTTCTC – 3’ 
5’ – AAGCGAAAGGTGAAGAAAAGC – 3’ 

3PA 148 – 178 8 1 

Ssa20.19NUIG_R 
Ssa20.19NUIG_F 

5’ – CTAGTTTCCCCAGCACAGCC – 3’ 
5’ – TCAACCTGGTCTGCTTCGAC – 3’ 

4PA 66 - 92 13 1 

Omy325UoG_R 
Omy325UoG_F 

5’ – CGGAGTCCGTATCCTTCCC – 3’ 
5’ – GAACTTTGACTCCTCATTGTGAG – 3’ 

2PA 104 - 150 18 1 

SSOSL439_F 
SSOSL439_R 

5’ – AGTCAGGGGGGAGTGTAAAGGTT – 3’ 
5’ – TGCTGCTGGCACTAAGTGGAGAT – 3’ 

4PA 108 - 174 19 1 

One18ASC_R 
One18ASC_F 

5’ -  AAACCACACACACTGTACGCCAA – 3’ 
5’ – ATGGCTGCATCTAATGGAGAGTAA – 3’ 

2PA 166 - 186 8 1 

Omy27DU_R 
Omy27DU_F 

5’ – TTTATGGCTGGCAACTAATGT – 3’ 
5’ – TTTATGTCATGTCAGCCAGTG – 3’ 

3PA 99 – 131 9 1 

OmyFGT15TUF_R 
OmyFGT15TUF_F 

5’ – GGTACACACAGCTTGATTGCA – 3’ 
5’ – ATAGTTTCCACTGCCGATGC – 3’ 

2PA 145 – 169 7 2 

Ots1BML_F 
Ots1BML_R 

5’ – GGAAAGAGCAGATGTTGTT – 3’ 
5’ – TGAAGCAGCAGATAAAGCA – 3’ 

4PA 162 – 272 16 2 

OmyFGT23TUF_R 
OmyFGT23TUF_F 

5’ – CTATTGGGGGTTGTGTTCCA – 3’ 
5’ – ATTCGTGCGTGTGTACGTGT – 3’ 

3PA 97 – 121 9 2 
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and reduced from 30 cycles to 28 cycles at an annealing temperature of 54oC for 1 

min. 

 Although the multiplex systems mimic closely the work of Fishback et al. (1999), 

significant modifications were made during optimisation.  The predominant 

differences were the amount of, and way, primers were used.  Primers were 

dissolved in biological grade TE to make a stock solution, before being pooled and 

diluted in mbg water to produce a working concentration of 10 µM.  The following 

volumes (µl per sample) were added to each multiplex: multiplex 1 (7 loci), 

OmyFGT14TUF, 0.12; OmyFGT10TUF, 0.2; Ssa20.19NUIG, 0.12; Omy325UoG, 

0.54; SSOSL439, 0.52; One18ASC, 0.40; Omy27DU, 0.38, and in multiplex 2 (3 

loci), FGT15TUF, 0.30; Ots1BML, 0.11; OmyFGT23TUF, 0.80.   

2.1.2.2.3 Microsatellite screening: genescanning 

All microsatellite screening was undertaken on one of two Beckman Coulter CEQ 

8800 machines (Beckman Coulter Inc, USA).  By utilising a capillary 

electrophoresis-based machine possessing a plate changer, a high volume of 

samples could be analysed in a relatively short space of time; up to one hundred and 

ninety two samples in less than 24 hr.  The chemistry required to load and run the 

samples was supplied by Beckman Coulter Inc, Fullerton, USA. 

Slight adjustments were made to the fragment analysis method protocol supplied by 

Beckman Coulter to allow for variable dye concentrations present in the multiplex 

PCR products.  Within a 96-well Beckman Coulter loading plate, 30 µl of sample 

loading solution (SLS) and 0.25 µl of size standard 400 (SS-400; 400 bp with 

WellRED dye D1) were added to each well already containing 0.9 µl of PCR 

product.  The plate was then centrifuged at 258 xG for 1 min to mix, before each 

sample was covered with a drop of Sigma mineral oil to prevent evaporation.  A 

separate Beckman Coulter 96-well buffer tray was filled with 125 µl CEQ 

separation buffer per well.  Both sample and buffer plates were then loaded into a 

CEQ 8800 where onscreen instructions were followed.  The option of running two 

plates simultaneously was selected, before a 20 ml separation gel cartridge (Genome 

LPA-I) was installed.  Following setup, the CEQ 8800 was left to separate samples 
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using the 33 centimetre (cm) 75 micron (µm) capillary array, whilst a wetting tray 

had been filled with mbg water to prevent the capillaries drying between analysis of 

rows. 

The analysis parameters for microsatellite screening could be stored on the machine 

and analysis conducted whilst separation occurred, or data could be transferred to 

personal computers specifically maintained for Beckman Coulter data.  One 

parameter requiring immediate setting was the analysis parameter Frag-3; used for 

fragment analysis of the size range 60 to 420 bp.  All other parameters required 

manual optimisation from the default settings of the Beckman Coulter software. 

2.1.2.2.4 Microsatellite screening analysis – genotyping 

The parents of the offspring requiring analysis were used to set up all analysis 

parameters due to the fact any alleles present in the parental population could be 

present in the offspring.  Therefore locus tags were compiled on the sire and dam 

information.  Each tag required optimisation, but all followed the Beckman Coulter 

criteria of: search for stutter, a stutter detection window width of 1, detection of 

stutter longer and shorter than allele, spurious peak detection, as well as +A 

detection, including; apparent size includes +A, detection of +/-A, and use +A peak 

to call alleles.  Optimised criteria included maximum relative stutter peak height 

(MRSPH), maximum height for spurious peaks (MHFSP) and the resultant allele 

confidence intervals (ACI) from the locus tags generated. 

Further optimisation was required for fragment analysis.  All data was subject to 

automatic analysis conditions of size standard 400, using a cubic model, dye 

mobility calibration phosphoramidite synthesis primers version one (PA ver 1), a 

slope threshold of 1, relative peak height threshold of 0%, the identification of short 

tandem repeat (STR) alleles, and tagging of STR loci; Omy27DU, Omy325UoG, 

One18ASC, OmyFGT14TUF, SSOSL439, OmyFGT10TUF, and Ssa20.19NUIG in 

multiplex 1; and OmyFGT23TUF, Ots1BML, and OmyFGT15TUF in multiplex 2.  

In every instance samples were manually checked in case of allele or loci 

miscalling.  All analysis was completed using the CEQ 8800 version 7.0 software 

supported by associated training guides on fragment analysis, locus tag generation, 
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and allele list generation (Beckman Coulter, 2004ab).  Resultant genotype lists were 

then compiled and exported to Microsoft Excel in preparation for parental 

assignment.   

2.1.3 Parental assignment; software and analysis 

The program used to determine parentage in the present project was family 

assignment program (FAP) version 3.1 (Taggart, 2000).  Two other programs had 

been considered and tested (Cervus version 2.0: Marshall et al., 1998, and, Package 

for the analysis of parental allocation (PAPA): Duchesne, 2005) but due to the fact 

CERVUS assigns the two most likely parents by using one as a known parent, 

restricting the alleles available to match the second parent and PAPA assigns the 

most likely pair of parents regardless of sex, neither of these likelihood-based 

programs were used and FAP was selected as the most efficient for this project.  

Complementing the breeding design, FAP used exclusion principles in its predictive 

analysis, assuming a closed environment where individuals tested are the progeny of 

known parental combinations for which full genotypic data is available (Taggart, 

2000).   

All genotype data was configured to a six digit nuclear format for each locus (eg 

122124).  Where genotypic data could not be attained for a particular locus 

‘000000’ was entered as a substitute.  It was necessary to convert the Excel 

spreadsheets containing data into tab delimited text format to run FAP.  Once data 

was entered correctly (for formatting see Taggart, 2000) the program used ten 

simple steps for analysis; enter parental genotypes, select locus tags to be 

considered, select not to include mt haplotypes in analyses, select ‘A’ for 

assignment analysis, enter progeny file name, name result file, select zero for allele 

size tolerance, and six for mismatch tolerance, before exiting to view the results file.   
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2.2 Immunohistochemistry 

2.2.1 Supply, culture, and maintenance of monoclonal antibodies 

Cryopreserved hybridoma cell lines, A8 (made in-house, Institute of Aquaculture, 

University of Stirling, and known to bind to secondary cells) and D41, known to 

produce effective anti-T. bryosalmonae monocolonal antibodies, were removed 

from liquid nitrogen and allowed to thaw (Morris et al., 1997).  Each vial was 

pipetted into a 40 ml flask (Nunc, Denmark) and had 10 ml of Dulbecco’s modified 

eagles medium (DMEM: Sigma-Aldrich, USA) added, plus additives (L-Glutamine 

(200µM), sodium pyruvate, penicillin/streptomycin; Sigma), and 10% foetal calf 

serum (Sigma).  (For a detailed description of the processes leading up to the 

successful production of anti-T. bryosalmonae monoclonal antibodies, see Morris, 

1996).  Cells were checked every second day to ensure there was a plentiful supply 

of medium, no contamination had arisen, or a build up of acidic conditions occurred 

(identified by a colour change from red to yellow in the medium).  For media 

requiring replacement or supplementation, DMEM with additives and 10% FCS 

was used. 

To replenish the stocks of A8 and D41 used, aliquots of the cultured cell lines were 

cryopreserved.  Cells were checked under a microscope to ensure a sufficient 

number were present.  They were then harvested from flasks by pipetting media into 

15 ml centrifuge tubes.  These were pelleted by centrifuging at 10,000 xG for 7 min.  

As much media as possible was removed without disturbing the pellet before 

resuspending the cells in DMEM containing 20% dimethyl sulphoxide (DMSO; 

Sigma).  The resuspended cells were aliquoted in labelled cryotubes (Nunc), and 

wrapped in insulation material to allow a slow freezing process; thought to prevent 

ice crystals forming in the cells, which would subsequently damage them.  The vials 

were then stored at -70oC overnight before being transferred to liquid nitrogen.  
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2.2.2 Preparation of samples 

Rainbow trout were over-anaesthetised in a 10% (w:v, ethanol) benzocaine solution 

(Sigma-Aldrich) before being euthanased by cutting the spinal cord.  A ventral 

incision from jaw to anus was made and the posterior kidney and spleen were 

removed and placed in a vial of 10% neutral buffered formalin (NBF; sodium 

dihydrogen phosphate (monohydrate) 4 g/ litre (l), Di-sodium hydrogen phosphate 

(anhydrous) 6.5 g/l, formaldehyde 40% 100 ml, mbg water 900 ml) for at least 24 hr 

to allow fixation to occur.  Transects of the tissues were cut and placed within 

individually labelled cassettes (Surgipath Europe Ltd, UK) before being submerged 

in water.  After a short period of soaking in water, samples were processed using a 

Shandon Citadel 2000 automatic tissue processor (Shandon, UK), and then 

embedded in paraffin wax (Tissue Tek Number 2, UK).  Once set, blocks were 

trimmed and soaked in distilled water for 1 hr before sections of 5 µm were cut 

using a Reichert-Jung Biocut microtome.  The sections were floated on to heated 

water (~45oC) and placed on poly-l-lysine coated slides (Surgipath, UK).  The slides 

were labelled and placed in a drying oven at 60oC for at least 1 hr. 

2.2.3 Immunohistochemistry methodology 

Tissue sections were prepared following the protocol of Adams and Marin de Mateo 

(1994).  In each assay kidney sections known to be positive and negative for T. 

bryosalmonae infection were included as controls.  Slides were placed into slide 

racks (Surgipath) as sections required dewaxing via immersion in two washes of 

xylene for 5 min each.  This was followed by rehydration in 100% ethanol for 5 

min, 70% ethanol (v:v, distilled water) for 3 min, and distilled water for 5 min.  

Upon removal, sections were circled using a wax based liquid blocker (PAP pen, 

Daido Sangyo Co Ltd, Japan) to ensure localisation of reagents on the tissue 

sections during incubation periods.  All incubation stages were conducted at room 

temperature (~22oC) in Hybaid omnislide slide racks within Hybaid omnislide wash 

sleeves (Hybaid Omnislide, UK) to prevent evaporation.  The first incubation lasted 

10 min using 10% (v:v) hydrogen peroxide in methanol (used to block endogenous 

peroxidise activity) before sections were rinsed and soaked for 3 min in Tris 

buffered saline (TBS; 20 mM tris, 0.5 M sodium chloride, pH 7.6; or phosphate 
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buffered saline, PBS; 20 mM phosphate, 0.15 M sodium chloride, pH 7.2).  Non-

specific binding was blocked when sections were incubated for 10 min with 10% 

(v:v, TBS) goat serum (Diagnostics Scotland, UK).  The slides were tapped to 

remove the majority of goat serum, and a mixture (1:1) of the two anti-T. 

bryosalmonae monoclonal antibodies, A8 and D41, were added to each section and 

left to incubate for 1 hr.  Sections were then rinsed with TBS to remove the 

antibodies and a 1:50 solution (v:v, TBS) anti-mouse horse radish peroxidise (HRP: 

Sigma) was added to each section and allowed to incubate for 30 min.  A further 

rinse in TBS was required before sections were covered with 3,3’-diaminobenzidine 

tetrahydrochloride (DAB; 20 µM DAB, 5 ml TBS, 100 µl of 1% hydrogen 

peroxide) for 15 min and left to incubate out with the wash sleeve. 

The slides were washed with tap water in the wash sleeve and left to soak for 3 min.  

Once removed and transferred from the Hybaid slide racks back to Surgipath slide 

racks, counterstaining was performed using Mayer’s haemotoxylin (3 mM 

haemotoxylin, 1 mM sodium iodate, 0.1 M aluminium potassium sulphate 

dodecahydrate, 5 mM citric acid, 30 mM trichloroacetaldehyde hydrate) for 3 min, 

followed by a 10 min flush in running tap water.  The sections were then subject to 

alcohol dehydration of a minimum 3 min in 70% ethanol and then 100% ethanol.  

Finally, sections were rinsed in two separate submersions of xylene for at least 5 

min, before being coverslipped using Pertex (Sigma) and left to dry overnight.  The 

following day sections were viewed using light microscopy (Olympus CH, x40 

objective: Olympus optical Co, UK), and if present, T. bryosalmonae appeared 

brown in colour. 

2.2.4 Counting parasites 

In order to asses the parasite load of infected kidneys, and subsequent correlations 

between parasite number and kidney score (according to Clifton-Hadley et al., 

1987), individuals used in the PKD challenges (Chapter 4) of this project had the 

number of parasites within the kidney tissue section counted.  Following the 

methodology described by Higgins and Kent (1998) and Morris et al. (2003a), 

sporogonic and extrasporogonic stages of T. bryosalmonae within the kidney 

sections were counted under 11 random fields of view at x400 magnification (0.45 
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mm diameter) under light microscopy.  The total parasite count was converted to 

number per mm2, which was then plotted against the individuals kidney score 

following transformation of the dataset.   
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2.3 Bacteriology 

2.3.1 Source and quantification of Aeromonas salmonicida 

The strain of A. salmonicida used throughout the study was isolated from a natural 

outbreak of furunculosis at a Marine Harvest site in 2005 (A. salmonicida MH; 

Crumlish, 2006 personal communication).  This was obtained from the Bacteriology 

department at the Institute of Aquaculture, University of Stirling.  Being an 

extremely virulent strain, it was decided that passaging the bacteria in fish was not 

required prior to challenge experiments.  Instead a direct culture from a slope was 

inoculated on to horse blood agar and incubated at 22oC for 48 hr in preparation of a 

standard curve (Appendix 1).  Horse blood agar plates were prepared and sealed 

using Nescofilm (Alfresa Pharma corporation, Japan) in anticipation of the 

challenges.  The standard curve (concentration versus optical density) produced an 

R2 value of 0.931. 

2.3.2 Challenge preparation and culture 

A subculture was taken from the culture grown on the horse blood agar and grown 

on tryptone soya agar (TSA).  This was incubated at 22oC for 96 hr before several 

colonies were removed with a loop and placed in tryptone soya broth (TSB; 50 ml) 

for 24 hr.  After 24 hr, the bacteria were harvested by centrifuging the TSB culture 

at 3000 xG for 10 min to produce a pellet.  The supernatant was removed and 

replaced with 5 ml of sterile 0.85% (w:v, distilled water) saline solution.  At this 

point, the purity of the bacterial suspension was checked by inoculation on to a TSA 

plate to ensure A. salmonicida was the only bacteria present.  Using the equation 

obtained from the standard curve, y = 4.0061x, an optical density (O.D) of 0.25 was 

calculated to achieve a 1 x 108 solution.  From here serial dilutions in 0.85% saline 

allowed the desired concentration to be made for injection into test fish.  Drop 

counts were made on TSA plates at 104, 105, and 106 to quantify the actual dosage 

injected.  Although a 24 hr incubation period was required before drop counts could 

be examined and actual concentrations calculated, it was assumed that an injection 

of 0.1 ml of a particular solution produced the desired (although approximate) dose 

rate; ie 0.1 ml injection of 1 x 104 produces a dosage of 1 x 103 per fish.   



IoA  Chapter 2 – General Materials and Methods 

 PhD 73 GMB
  
 

2.3.3 Injection and bacteria recovery 

Every fish used in Chapter 5 was injected intraperitoneally (ip) with either 0.1 ml 

0.85% saline (control fish) or 0.1 ml of the A. salmonicida suspension (test fish) at 

the desired concentration.  Following preparation, solutions were immediately 

stored on ice to equalise methodology, but more importantly to ensure shifts in 

bacteria morphology and/or number were minimised.  The solution containing 

bacteria was therefore used within 1 hr following its preparation.  Prior to injection 

fish were anaesthetised using 10% benzocaine at 4 mg/l, and post injection were 

recovered in highly aerated water.   

As mortality or morbidity occurred, fish were removed from tanks (euthanased if 

necessary) and sampled for the presence of A. salmonicida.  Using sterile 

equipment, an incision along the ventral surface from jaw to anus was made.  The 

internal organs were removed and a second sterile incision allowed access to the 

head kidney.  Using a sterile plastic loop (TSC technical service consultants, UK) 

the sample was collected, inoculated on to a TSA plate, and incubated at 22oC for 

48 hr in preparation of analysis.  Aeromonas salmonicida was identified, if present, 

using pigmentation analysis, morphological identification, Gram’s staining, and 

agglutination tests. 

2.3.4 Pigmentation analysis and morphological examination 

As A. salmonicida produces a brown diffusible pigment and due to the fact fish used 

in challenges were certified disease free by a qualified veterinarian prior to the 

study, it was highly unlikely that any brown pigment found diffusing on TSA plates 

would be caused by anything other than A. salmonicida.  However, due to limited 

experience with bacteria, A. hydrophila, also known to produce a brown diffusible 

pigment, and potentially the only bacteria that could be confused with A. 

salmonicida, was grown to allow comparisons to be made.  Marked differences 

could be observed in the growth rate and morphology of the two species.  With 

increased confidence in the ability to identify A. salmonicida, all samples collected 

were visually checked using pigmentation analysis and morphological examination.  

Additionally, Gram’s staining and agglutination tests were conducted.  Due to the 



IoA  Chapter 2 – General Materials and Methods 

 PhD 74 GMB
  
 

limited requirement for the two methodologies (ie the disease-free certification of 

the fish involved and the fact A. salmonicida had been injected into test fish), as 

well as time constraints, and the expense of consumables only 10% to 20% of all 

samples taken were analysed using Gram’s staining and agglutination testing.  

2.3.5 Gram staining and agglutination testing 

The following Gram’s staining method was used throughout the project: first a loop 

of sterile 0.85% saline was aseptically placed on to a clean microscope slide.  Then, 

one or two single colonies of A. salmonicida were removed from the agar plate 

using a sterile loop.  The bacteria were then emulsified evenly into the saline and 

across the slide, before being left to air dry for a few minutes.  The slide was passed 

through a Bunsen burner to heat fix, and left to cool in preparation of the staining 

protocol; immerse in crystal violet solution for 1 min, wash with tap water, immerse 

in iodine for 1 min, decolourise with acetone solution for 2 to 3 s, rinse under tap 

water, immerse in Safranin solution for 2 min, wash with tap water, remove excess 

moisture, and allow to air dry.  Once dry, the slides were microscopically examined 

under x40 or x100 objective, using magnification oil.  All observations were 

recorded, eg red/pink stained coccibaccili. 

During pre-challenge experiments limited success was achieved in agglutination 

tests with the rabbit polyclonal anti-A. salmonicida antisera developed at the 

Institute of Aquaculture, University of Stirling.  To ensure a distinction could be 

made between positive and negative results, a rapid agglutination test kit for A. 

salmonicida was used (BioNor AQUA Mono-As, Norway).  The kit was supplied 

with testing cards which made recognition of positive and negative samples simple.  

To use, a drop of the test reagent was positioned on each test area before a colony of 

bacteria was aseptically removed from the culture plate and mixed into the solution.  

After a few moments of tilting the test card, agglutination was obvious.  For each 

group of tests performed, negative controls were included, using the same 

methodology but replacing the test reagent with the control reagent provided. 
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Chapter 3: Proliferative Kidney 
Disease Cross Section 
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3.1 Introduction  

The importance of Proliferative Kidney Disease (PKD) as an economically 

damaging disease has been recognised for many years.  In 2002 British trout 

farmers gathered to discuss the significance and severity of the losses associated 

with the parasitic infection.  Ranging from 25% to 100% mortality and up to 100% 

morbidity in most circumstances, recent years have seen the most severe outbreaks 

of PKD and as a result, the greatest production losses, costing the industry up to 

£1.8 million in Britain alone; a figure which continues to grow.  As British rainbow 

trout production increases and climatic change continues to elevate summer water 

temperatures (known to increase the development of the causative agent, T. 

bryosalmonae; Ferguson, 1981; Clifton-Hadley et al., 1986a; Gay et al., 2001), the 

situation is unlikely to improve. 

At present, no functional and viable chemical, available vaccine, or prophylactic 

treatment is available, leaving avoidance and minimisation of losses dominating 

current husbandry and management practices on farms.  Although husbandry, 

maintenance of equipment, optimising environmental parameters, and minimising 

handling and husbandry stressors can greatly reduce associated losses (Seagrave et 

al., 1981; Le Gouvello et al., 1999), management practices alone can not be relied 

upon for long term control.  To date, the only method of control is to naturally 

immunise fish by delaying their exposure to clinically infected waters until late 

summer, as water temperature and PKD development decline.  Fish exposed at this 

time, effectively build a resistance in the following year (Ferguson, 1981; Ellis et 

al., 1982; Hedrick et al., 1985; Foott and Hedrick, 1987; Morris et al., 2003a).  This 

natural approach will inevitably be preferred over chemical treatment or 

immunisation in an ever-increasing environmentally-conscious society, but it 

dramatically reduces the productivity on affected farms, increasing the time it takes 

to produce market-sized fish.  Further, the long-term efficacy and required 

management are far from ideal.  As advances are made in the understanding of the 

complicated lifecycle of T. bryosalmonae, the likelihood of an effective vaccine 

grows closer, but until such a time, alternative methods must be sought.   
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The development of rainbow trout strains less susceptible to PKD is currently the 

only logical step to suppress the disease in the British rainbow trout industry.  To 

date, the level of tolerance in cultured populations has yet to be assessed.  Natural 

selection through the mating of survivors has not been attempted; segregation within 

the industry means broodstock are kept on different sites to production fish, and are 

therefore rarely exposed to the parasite, as a result no information of tolerance is 

available at the individual, family, or even strain level.  Immunity may be apparent 

in strains with limited exposure to the disease.  However, and conversely, farmed 

strains may have developed a genetic resistance due to continual exposure, as 

discussed by Brown et al. (1991) in feral landlocked salmon.  Both suggestions 

imply selective breeding may be a future possibility. 

For this reason, the objective of the current study was to detect the level of additive 

genetic variation displayed in two commercial populations of rainbow trout.  

Following exposure to a natural challenge, the information gathered was used to 

calculate estimates of heritability for preliminary use in the development of a 

selective breeding programme against PKD. 
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3.2 Materials and Methods 

3.2.1 Broodstock and mating design 

In the winter of 2002 broodstock at the two farms involved in the LINK project 

(Houghton Spring Hatchery, Hampshire (HS) and Glenwyllin fish farm, Isle of Man 

(IoM)) were crossed to generate families for a large scale performance trial under 

commercial conditions.  The relationship among broodstock was unknown.  

Consequently, they were assumed to be unrelated.  Sires and dams were mated 

using a partial factorial design.  Each sire was mated with four to eight dams, and 

each dam to four sires, resulting in 540 full- and half-sibling families.  

IoM utilised two lines, A and B, to generate 160 families, using 20 females (FI) and 

20 neomales (NI) per line, whilst HS produced 380 families, generated by crossing 

95 females (FH) with 50 neomales (NH).  IoM broodstock were crossed to achieve 

four strains; females were mated with neomales of the same strain (ie AFI x ANI or 

BFI x BNI) as well as crossed between strains (ie AFI x BNI and BFI x ANI), 

whilst HS families were produced from a single strain (ie FH x NH; Figure 3.1).  

The mating design of IoM is illustrated in Figure 3.2. 

At stripping, female broodstock were subject to adipose fin clipping to allow DNA 

extraction (phenol-chloroform method), genotyping, and subsequent parental 

assignment of their offspring, as described in the General Materials and Methods 

(Chapter 2, Section 2.1).  Females had passive integrated transponder (PIT) tags 

injected into the body cavity for individual identification purposes, so they could be 

identified for future selective breeding.  Due to the lethal methodology used in 

extracting milt from neomales only fin clips were required for genotypic 

identification. 

 
 
 
 
 
 
 
 



IoA  Chapter 3 – PKD Cross Section 

 PhD 79 GMB
  
 

 
Figure 3.1 - Specific crosses of Houghton Spring broodstock used in the PKD 
Cross Section study 



IoA  Chapter 3 – PKD Cross Section 

 PhD 80 GMB
  
 

 
 
 
 

 
Figure 3.2 - Specific crosses within and between strains of the IoM broodstock 
used in the PKD Cross Section study 
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3.2.2 Offspring: incubation to growout 

Fertilisation, shocking, and hatching differed between the farms by less than one 

month.  In IoM families, fertilisation took place on 22/11/2002.  The eggs were 

incubated as separate families following IoM commercial practices.  Water 

temperature was elevated in order to increase egg development, with shocking 11 

days post fertilisation once the eyed stage had been reached.  Houghton Spring also 

used heated water.  Following fertilisation on 17/12/2002 HS families were 

maintained separately according to HS commercial conditions.  Eggs were shocked 

at the eyed stage (31/12/2002). 

In the IoM, after shocking, individual family sizes were assessed using an automatic 

egg counter.  Each family was split into three equal batches to form three communal 

populations.  Once eyed, one of the egg batches was transported from IoM to 

Iwerne Spring, a fingerling rearing site, where complete hatch occurred by 

17/12/2002 - 25 day incubation period.  Once hatched, the families were transferred 

to growout tanks and reared to a normal fingerling size, before being transported to 

Test Valley Trout farm, Itchen Abbas (TVT), where they were held in a single tank.  

Fifteen hundred of these fish were PIT tagged (~5 to 10 g), the balance were used in 

commercial production on this farm.  The HS families, which hatched after a 30 day 

incubation period, on the 16/01/2003, were ongrown to fingerling size using 

standard commercial practice, before being transported to the TVT site at ~2 to 5 g.  

Fifteen hundred from this population were held in a separate tank until PIT tagged, 

the remainder were mixed with the IoM fish and ongrown under normal commercial 

conditions.  

3.2.3 PKD data collection 

During the summer of 2003 (July to September), all fish at the TVT site were 

naturally challenged with PKD via exposure to enzootic river water.  Fish were 

assumed to be infected due to the history of the disease on site, behavioural and 

external symptoms, as well as the onset of mortality in some stocks on site, where 

dissected fish displayed internal symptoms of PKD.  On a single day in September 

2003, 1500 fish were collected from the mixed untagged population, having been 
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randomly selected from three tanks in proportionate numbers to the stocking 

regime; Tank 1 HS stock only, 250 individuals; Tank 2 HS stock only, 250 

individuals; Tank 3 HS and IoM mixed (1:4 ratio), 1000 individuals.  The fish were 

euthanased, and one person was allocated to assign fork length, body weight, and 

kidney score to each individual.  Fin clips were taken and stored in individually 

marked, ethanol filled Eppendorf tubes for DNA extraction (Chelex method), and 

subsequent genotyping, and parental assignment (as described in Chapter 2, Section 

2.1). 

PKD scoring was based on the scale of Clifton-Hadley et al. (1987); Grade 0, 

kidney with no apparent lesions; Grade 1, kidney with slight enlargement, especially 

at the posterior end, but maintaining a dark red colouring as for Grade 0 kidneys; 

Grade 2, kidney obviously enlarged along its length, the capsule corrugated over 

renal tissue, which has a mottled red and grey appearance; Grade 3, kidney 

approximately six times its normal volume, with marked corrugation of the kidney 

surface and the capsule having a blue sheen; Grade 4, kidney mottled pink and grey, 

further swollen due to oedema, with clear fluid running from cut surfaces and 

gelatinous fluid adhering to the underside of the kidney capsule.   

3.2.4 Statistical analysis 

3.2.4.1 Genstat 

Genetic parameters were estimated using linear mixed models performed in Genstat 

Release Version 9.1 (VSN International, UK).  Restricted maximum likelihood 

(REML) analysis was used to provide genetic variance estimates and subsequent 

heritabilities using a linear mixed model: 

yijklmnq = µi + tankij + hsik + b1i.damAijklmnq + b2i.paijklmnq + b3i. dabijklmnq + sireiko + 

damikp + eijklmnq 

where yijklmn is the observational phenotypic value for trait i (ie kidney score, fork 

length, or body weight) of individual q kept in tank j, and with sire o and dam p 

from origin k.  µi is the population mean for trait i, tanki j is the fixed effect of tank j 
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for trait i, hsik is a fixed effect with k representing fish strain (ie origin; HS or IoM) 

for trait i; sireiko is the random effect of sire o from origin k; and damikp is the 

random effect of dam p from origin k, whilst eijklmnq represents the residual error 

connected to trait i.  To model the lines within the IoM strain three further terms 

were fitted as regressions with coefficients b1i, b2i, and b3i for trait i: on the maternal 

line origin (damAijklmnq = 1 if the dam was from line A, or 0 otherwise); on the 

additive effect of line A (paijklmnq =  0, 0.5, or 1 if the parental contribution was from 

neither, one, or both parent(s) of line A); and on the dominance deviation (dabijklmnq 

= 1 if AxB or BxA, or 0 otherwise). Values of 0 were given to the regression 

variables for HS fish.  

The random effects of sireio, damip, and residual error (eijklmnq) were considered to be 

independent random normal variables with mean zero, and variances denoted σs
2, 

σd
2, and σe

2, respectively.  Total phenotypic variance was denoted σt
2, and was 

estimated as σt
2 = σs

2 + σd
2 + σe

2.  Genstat estimates of heritability are expressed as 

narrow sense heritabilities, ie the ratio of the additive genetic variance to the total 

phenotypic variance, which was calculated using the VFunction procedure in 

Genstat, and following formulae from Falconer (1981): 

4(σs
2) / σt

2, from the sire variance component hs
2 

4(σd
2) / σt

2, from the dam variance component hd
2 

Combined estimates, relying on information from both parents, is more precise and 

therefore favoured over single parent estimates.  However, combined estimates 

assume that the dam component contains no other sources of variance other than 

additive genetic (as is assumed to be the case for the sire).  To test this, a likelihood 

ratio test was conducted to look for evidence that the dam component was larger 

than the sire variance.  This is most easily carried out by defining sire and dam 

components as a ratio with the residual error variance, γs = σs
2/σe

2 and γd = σd
2/σe

2 

and testing a null hypothesis Ho: γs = γd against an alternative hypothesis, H1: γs ≠ 

γd.  This was completed within Genstat for each trait.  The γ values for sire and dam 

were constrained to be equal within Genstat, before manually entering appropriate 
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values to 5 decimal places to minimise the deviance value.  Once the value that 

minimised the deviance was attained, the value of the deviance obtained from the 

constrained model was compared to the deviance of the original model where γs and 

γd were not constrained to be equal. The difference in the deviance was the 

likelihood ratio test statistic for testing H1 against Ho and was compared to χ2 at 1 

degree of freedom, using 95% significance level (3.84).  Ninety-five percent 

confidence intervals (95% CI) were defined by the minimum deviance values 

required to reject the null hypothesis.  For all variates the null hypothesis was 

accepted, and the equation, hcf
2 = 4γ/(2γ+1), was used to estimate combined 

heritability. 

3.2.4.2 ASReml 

Data was also processed using ASReml version 1.1 software (VSN International, 

UK) to identify genetic (co)variation, and subsequent correlations.  ASReml takes 

into account all relationships between the analysed individuals as well as the crosses 

between the sires and dams.  It therefore provides a more direct estimate of 

heritability without the need for the manual iteration.  With more complex pedigree 

structures it is also capable of producing a more accurate estimate of heritability.  

Although results from Genstat are displayed within the results section, the final 

statistics are derived from ASReml.  In particular ASReml provides a means of 

estimating genetic correlations (rA) between the traits.  These differ from phenotypic 

correlations as they are estimates of correlations between breeding values.  This 

requires multivariate analyses, which can be handled by ASReml.  The analysis 

fitted the same fixed effects as the univariate model, but the random effects of sire 

and dam were replaced by an individual term uijklmnoq, plus an additional term for the 

dams. This term was considered random with a (co)variance matrix given by σa
2A. 

Estimates of heritability were then estimated by h2 = VA/VP. 

To calculate rA, the multitrait analyses fitted a (co)variance matrix for the additive 

genetic variance ΣA across traits, and a matrix for the residual effects ΣE.  For two 

traits, eg y and z, rA was estimated by σA,y,z /(σA,y σA,z), where σA,y
2 and σA,z

2 are the 

additive genetic variances for y and z, and σA,y,z is their additive genetic covariance, 

all obtained from ΣA. 
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3.3 Results 

3.3.1 Molecular biology 

Having successfully optimised the two multiplex PCRs it was noted that locus 

OmyFGT10TUF was uninformative.  Its removal from the multiplex was tested 

with negative results.  In order to prevent a delay in data collection, its use was 

continued in the system, although its information was not.  This lowered the total 

loci used to nine.  The optimised genotyping criteria for each locus are displayed 

below in Table 3.1. 

Table 3.1 - Analysis information produced by Beckman Coulter software for 
locus tags used in the multiplex systems  
 
 
 
 
 
 
 
 
 
 
 
 
 

       † Locus proved to be uninformative, and its use in analysis was removed; MRSPH – Maximum 
relative stutter peak height; MHFSP – Maximum height for spurious peaks; ACI – Allele 
confidence interval 

 

The FAP program used for parental allocation successfully allocated 86.14% of the 

1500 offspring genotyped for this study.  The confidence in the allocation is high 

due to previous testing conducted.  Although six mismatches was selected for 

analysis, results data relied only on zero or one mismatch information.  To ensure 

the reliability of this data, the zero and one mismatch individuals were tested; 

specific alleles were changed to the most common allele of a particular locus.  In the 

100 zero mismatch individuals tested, the majority changed to one mismatch as 

expected or did not change at all.  In a minority of cases, the results showed one 

mismatch with multiple families, or multiple families with no mismatches.  In the 

100 one mismatch individuals, 13 were found to be incorrectly called at a single 

locus.  Therefore, 25 individuals were subject to PCR using only their weakest locus 

(Omy325UoG, SSOSL439, or Ots1BML).  At locus Omy325UoG, 29% were 

Locus MRSPH MHFSP ACI 
OmyFGT14TUF 30% 30% 0.60 
OmyFGT10TUF† 75% 75% 0.72 
Ssa20.19NUIG 80% 80% 0.74 
Omy325UoG 85% 85% 0.70 
SSOSL439 75% 75% 0.83 
One18ASC 75% 75% 0.43 
Omy27DU 60% 60% 0.83 
OmyFGT15TUF 60% 60% 0.50 
Ots1BML 65% 65% 0.60 
OmyFGT23TUF 65% 65% 0.41 
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miscalled, at locus SSOSL439, 25% were miscalled, and none were miscalled at 

locus Ots1BML.  Overall 67% of the one mismatch individuals subject to single 

locus PCR were miscalled.  When the most common alleles at specific loci were 

replaced, the result remained the same (one mismatch; but not necessarily at the 

same locus), changed to two mismatches or to no mismatches, all of which kept the 

same single family; in only 2% of the hundred tested, the family changed.  This 

implied that both zero and one mismatch individuals were reliable, providing only 

single family matches were used. 

3.3.2 PKD resistance 

Data and/or pedigree information was available from 1501 individuals, including 

1287 offspring and 214 parents; 89 sires and 125 dams.  Of the 1287 offspring, 

1029 were allocated to a parental crossing with zero mismatches, whilst 258 were 

allocated with a single mismatch.  Representatives of HS comprise 60.36% of the 

data, the remainder coming from IoM.  The proportion of fish sampled taken from 

each tank equated to 214 from T1 (HS stock only), 214 from T2 (HS stock only), 

and 859 from T3 (HS and IoM mixed, 1:4 ratio); 343 HS, and 516 IoM.  The data 

overall, and divided into distinct categories, are summarised in Table 3.2, below. 

Table 3.2 - Structure of the PKD Cross Section data 

Offspring displayed the full range of kidney scores; 0 to 4 inclusive.  Mean values 

between HS and IoM differed significantly (P<0.001) with HS having a mean 

kidney score of 0.46 lower than IoM.  IoM fish were both longer and heavier, 

statistically, than those of HS, with differences in mean values between the stocks of 

Total number of individuals with pedigree and/or data 1501 

Total number of offspring with pedigree and data (Overall; HS, IoM) 1287; 771, 516 

Total number of parents with pedigree 214 

 - of which were dams (Overall; HS, IoM) 130; 85, 45 

- of which were sires (Overall; HS, IoM) 89; 50, 39 

Number of full-sib families represented (Overall; HS, IoM) 397; 261, 136 

Number of dams per sire (Mean; range) 3.18; 1-4 

Number of sires per dam (Mean; range) 4.46; 1-8 

Progeny per full-sib family (Overall mean; range) 3.24; 1-18 

Progeny per HS full-sib family (Mean; range) 2.95; 1-18 

Progeny per IoM full-sib family (Mean; range) 3.79; 1-13 
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10.92 mm and 13.91 g, respectively.  No difference was found between the A- and 

B-only lines of the IoM strain or the diallele crosses.  Overall mean values - where 

data was calculated from all 1287 offspring - were 2.19 (kidney score), 150.95 mm 

(fork length), and 62.29 g (body weight).  Means ± their standard errors (SE), as 

well as the range for each trait are illustrated below in Table 3.3. 

Table 3.3 - Mean kidney score, fork length (mm), and body weight (g) overall, 
and per strain ± SE for PKD Cross Section data 
Trait Mean ± SE Range n 

Overall kidney score 2.19 ± 0.03 0.00 – 4.00 1287 

Overall fork length 150.95 ± 0.51 40.00 – 204.00 1287 

Overall body weight 62.29 ± 0.59 11.10 – 189.40 1287 

HS kidney score 2.01 ± 0.04 0.00 – 4.00 771 

HS fork length 146.57 ± 0.60 40.00 – 195.00 771 

HS body weight 56.71 ± 0.63 11.10 – 121.50 771 

IoM kidney score 2.47 ± 0.05 0.00 – 4.00 516 

IoM fork length 157.49 ± 0.82 100.00 – 204.00 516 

IoM body weight 70.62 ± 1.02 18.30 – 189.40 516 

Following the identification of additive genetic variation, estimates of heritability 

were calculated, and found to be moderate to high in all cases (Table 3.4).  When 

calculated for each strain, estimates differed by > 0.10 in all traits; higher in the IoM 

stock.  The estimates of heritability for HS were 0.25, 0.38, and 0.33, for kidney 

score, fork length, and body weight, respectively, whilst IoM displayed estimates of 

0.35, 0.53, and 0.50 for the three traits.  These estimates were against the overall 

estimates of 0.31, 0.44, and 0.41, respectively (Table 3.4, below).  (All estimate of 

heritability to this point calculated using Genstat).     

Table 3.4 – Overall estimates of heritability ± 95% Confidence Interval (CI) for 
kidney score, fork length (mm), and body weight (g), calculated using Genstat 
for PKD Cross Section data  

Trait Lower 95% CI h2 Upper 95% CI 
Kidney score 0.20 0.31 0.41 
Length 0.31 0.44 0.58 
Weight 0.29 0.41 0.54 

Genetic correlation between fork length and body weight was high and positive; 

0.98.  The calculated genetic correlation between size and kidney score was found 

to be moderate and negative; against body weight, -0.34 ± 0.16, and between fork 

length and kidney score, -0.36 ± 0.15.  The estimates of heritability calculated using 
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ASReml ± SE, and correlations between the traits (genetic and environmental) are 

highlighted in Table 3.5, below. 

Table 3.5 – Overall estimates of heritability ± SE, genotypic, and 
environmental correlations calculated using ASReml for PKD Cross Section 
data 
h2 ± SE Fork length Body weight Kidney score 
Fork length 0.43 ± 0.08 0.89 -0.41 
Body weight 0.98 0.42 ± 0.08 -0.34 
Kidney score -0.36 ± 0.15 -0.34 ± 0.16 0.19 ± 0.08 
Genetic correlations below, and environmental correlations above the diagonal values of heritability 
(calculated using ASReml) 
 

The additive genetic covariance was high for length and weight, and moderate for 

kidney score.  The genetic and environmental covariances used to calculate the 

phenotypic correlations of fork length and body weight, 0.93; fork length and 

kidney score, -0.38; and body weight and kidney score, -0.33 are illustrated in Table 

3.6, whilst the phenotypic trend of larger size equalling lower kidney score is shown 

in Table 3.7.  Both the average fork length and average body weight of rainbow 

trout measured display the trend, with minimal kidney swelling (kidney score: 0) 

displayed in the larger fish of average fork length, 182.50 mm, and average body 

weight, 103.80 g, whilst the most severely affected fish (kidney score: 4) are 

distinctly smaller at an average fork length of 143.45 mm, and average body weight 

of 55.94 g. 

Table 3.6 - Genetic and environmental covariation for the traits, fork length 
(mm), body weight (g), and kidney score from individuals in the PKD Cross 
Section data 
Trait Fork length Body weight Kidney score 
Fork length --- 175.80 -5.04 
Body weight 145.0 --- -4.78 
Kidney score -1.90 -1.97 --- 
Genetic covariation below, and environmental covariation above diagonal. 
 
Table 3.7 - Average fork length (mm) and body weight (g) of fish assessed in 
the PKD Cross Section using the scale of Clifton-Hadley et al. (1987) 

Kidney Score Fork length (mm) Body weight (g) 
0 182.50 ± 4.30 103.80 ± 6.41 
1 156.29 ± 0.79   67.37 ± 1.03 
2 151.88 ± 0.88 62.30 ± 1.00 
3 146.08 ± 1.19 57.90 ± 1.24 
4 143.45 ± 1.26 55.94 ± 1.38 
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3.4 Discussion 

This study was possible due to known pedigree structures on the farms involved and 

the careful management used to maintain family integrity, as well as the genetic 

technology available to distinguish families using microsatellite markers.  The 

objective to test for the existence and level of additive genetic variation for PKD 

score within the farmed populations of rainbow trout involved in the project proved 

to be successful.  The two populations display a moderate level of additive genetic 

variation for PKD score, as well as high levels of additive genetic variation for body 

weight and fork length.  When genetic correlations were produced, an expected high 

and positive relationship between the two production traits was found, whilst in the 

case of either production trait and PKD score, a moderate and negative genetic 

correlation was observed.  Estimates of heritability were calculated for all traits, and 

appear to be paralleled by other salmonid populations (Kinghorn, 1983; Gjedrem, 

1983, 1992, 2000; Gjerde, 1986; Gjedrem et al., 1991; Henryon et al., 2002; Pante 

et al., 2002; Perry et al., 2004).  The additive genetic variation detected in the 

present study indicates selective breeding for PKD score can be successful within 

the HS and IoM strains. 

Challenges under commercial conditions may be viewed as a more realistic synopsis 

than experimental testing, as fish are exposed to a vast range of additional 

pathogens in the culture environment, and in unknown quantities.  However, it 

could be argued that the results of the present study are masked due to effects of the 

culture environment, secondary pathogens, or holding unit; despite the inclusion of 

model terms to account for such sources of variance where possible (ie tank).  

Kolstad et al. (2005) noted that infection in the wild is highly variable in time and 

magnitude when conducting a field experiment to improve the resistance of Atlantic 

salmon to the sea louse, Lepeophtheirus salmonis, recommending that challenge 

experiments should be used where selective breeding is to be implemented.  In order 

to support the preliminary findings of this study, it is necessary to reproduce the 

results under controlled experimental conditions.  Additionally, the validity of the 

scoring system may be open to question.  Although one person conducted all 

measurements for kidney score, and the scoring system of Clifton-Hadley et al. 
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(1987) is very comprehensive and can be followed easily, it must be stressed that 

observational characters are extremely subjective, and can vary from person to 

person, or even over time.  It is therefore imperative to consider observational 

results, such as those in the present study, specific to the population tested (Kolstad, 

2005).  Comparisons are possible, as differences should be a matter of degree rather 

than kind, but in each instance the measurement technique and population from 

which results came should be described. 

The phenol-chloroform DNA extraction method used in the present study has had 

limited success with some species (ie perch (Perca fluviatilis), roach (Rutilus 

rutilus), and stickleback), but the technique has proved successful with most 

salmonids.  Phenol-chloroform extraction was used for the parents in the present 

study, due to the high quality of DNA produced and low risk of degradation in 

storage; an advantage when archives are required or when genotyping errors occur, 

as was often the case here.  Chelex extracted DNA does not share the advantages of 

phenol-chloroform extracted samples, as the DNA is of poorer quality and storage is 

limited to only a few months even when at -20oC.  However its use is compensated 

by the simple, fast, and safe extraction protocol involved.  All the reagents used in 

the Chelex extraction process pose no immediate danger to the user, it is simpler as 

the substances are added to a single Eppendorf tube or 96-well plate well before 

adding the tissue, and it is faster due to the fact a thermocycler can be used for 

incubation and denaturing stages.  Consequently, Chelex was ideal for the offspring 

analysis, where a high throughput of samples was required in a short period of time.  

Further, Chelex is advantageous for microsatellite analysis.  Requiring DNA of 

relatively low molecular weight (<3 kilobase pairs), because sequences of interest 

are short (<500 bp), the shorter fragments produced from Chelex extraction 

improves the binding of primers with the target sequence, excluding the purification 

process needed in many other protocols, saving time.   

The microsatellite analysis used in the study was selected based on the high level of 

inter- and intra-specific polymorphism displayed in the markers, as well as the 

advantageous Mendelian codominant inheritance displayed for microsatellites.  The 

number of markers available within the genome makes them an ideal tool for 
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determining parentage (Wikipedia, 2007).  In rainbow trout, the methodology has 

already been applied successfully in aquaculture projects (Herbinger et al., 1995; 

Fishback et al., 2002; McDonald et al., 2004), with up to eight primers combined in 

a single multiplex for salmonid analysis (Fishback et al., 1999).  The increased and 

improved development of fluorescently labelled microsatellite markers and 

automated sequencing machines seen in recent times, means loci with overlapping 

product sizes can now be differentiated at the analysis stage.  Although this is time 

consuming in preparation, due to the fact primers are generally designed in isolation 

and annealing temperatures vary between loci considerably, the development of 

successful multiplexes used in this study saved both time and resources over the 

course of research.  By pooling primers together in one solution, it reduced the 

number of PCR reactions required to achieve the same result.  The uninformative 

locus left the number of loci suboptimum for the project, but those used were 

sufficient to provide enough information to allow parentage assignment. 

Parental assignment was previously based on exclusionary power using a small 

number of loci, but improved statistical analysis using computer based likelihood 

methods has resulted in the ability to increase the number of loci used, improving 

the confidence level of the parental match.  The success of assignment in this study 

is similar to the levels of allocation in other projects involving aquatic species 

(Norris et al., 2000; Rodzen et al., 2004; Sekino et al., 2005), including rainbow 

trout (Herbinger et al., 1995; Fishback et al., 2002).  Vandeputte et al. (2006) 

discuss how assignment by exclusion, using multiple and polymorphic loci, can 

create genotyping errors in parentage assignment due to mismatching, whilst Jones 

and Arden (2003) describe how exclusionary assignment can be extremely fragile as 

a single mismatch between parent and offspring is enough to exclude one of the 

parents.  In the present study the FAP program used for parentage assignment 

ensured that both parents were taken into consideration as the mating design, and 

parental combinations could be entered into the program prior to analysis.   

Additionally, problems associated with null alleles occurred in the analysis which 

required attention.  Null alleles can be caused by poor primer annealing due to 

nucleotide sequence divergence in one or both flanking primers, differential 
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amplification of size variant alleles (Wattier et al., 1998), or because of the 

competitive nature of PCR, where alleles of short length often amplify more 

efficiently than larger ones, such that only the smaller of the two alleles might be 

detected from a heterozygous individual (Dakin and Avise, 2004).  Null alleles can 

often be eradicated by increasing the sample load, adjusting the contrast of the 

analysis screen, or by improving the template quality (Dakin and Avise, 2004); 

‘partial null’ alleles were often present in the genotyping data here, but these were 

easily eradicated by the suggestions made by Dakin and Avise (2004).  Finally, the 

addition of a nucleotide, principally adenosine, caused by Taq DNA polymerase 

catalysing non-templated DNA (Brownstein et al., 1996), in PCR reactions was 

prevented using an extension time in both multiplexes, whilst the testing and use of 

only zero and one mismatch individuals in the study maintained confidence in the 

parental allocations.  

As one of, if not the first study reporting on the potential of PKD resistance in any 

species of fish, it is impossible to compare the results here with other disease 

resistance studies involving T. bryosalmonae.  Further, due to vast contrasts in the 

aetiologies of fish diseases, to make comparisons with the results of studies 

involving other fish pathogens would be impractical.  Given previous reports of 

genetic resistance against fish pathogens (Gjedrem et al., 1991; Hard et al., 1997; 

Gjedrem, 2000), it was plausible to assume that additive genetic variation would 

exist for T. bryosalmonae within the populations tested.  In other salmonid studies 

additive genetic variation has been found for resistance to specific, and even 

multiple pathogens (Gjedrem, 2000; Henryon et al., 2005).  It is therefore worth 

noting that the results of this study, in terms of the presence of additive genetic 

variation and subsequent moderate estimate of heritability, are in agreement with 

other studies involving various diseases of salmonids (Henryon et al., 2002, 2005; 

Perry et al., 2004). 

To date, the work conducted on parasite resistance in fish, although limited, has 

shown promising results (Gleeson et al., 2000; Hedrick et al., 2001; Karvonen et 

al., 2005; Kolstad et al., 2005; Gilbey et al., 2006).  The majority of parasitic 

research in fish has focused on acquired resistance following initial exposure.  Many 
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studies have found an improved tolerance after the first encounter with the causative 

organism (Gleeson et al., 2000; Karvonen et al., 2003, 2005; Gilbey et al., 2006; 

Cable and Van Oosterhout, 2007), as is displayed with T. bryosalmonae (Foott and 

Hedrick, 1987; Morris et al., 2003a).  For example, Karvonen et al. (2005) found an 

acquired resistance to the trematode parasite, Diplostomum spathaceum, improved 

infection rate at the second exposure by up to 89.1% in rainbow trout, but the 

presence of innate resistance to the same pathogen was minimal, potentially zero.  

Numerous parasites have been used to test potential innate immunity in fish species, 

including Gyrodactylus species, L. salmonis, Cryptobia species, Trypanosoma 

species, Ceratomyxa shasta, Myxobolus cerebralis, and Kudoa thyrsites.  However, 

such studies generally fail to clarify and/or differentiate the relative roles and degree 

of innate and acquired immunity against parasitic infection in fish (Jones, 2001). 

In studies testing for innate resistance, Kolstad et al. (2005) concluded the potential 

for improving resistance to L. salmonis in Atlantic salmon through selective 

breeding has potential following an experiment of 350 full-sibling families.  

Estimates of heritability ranged from 0.02 ± 0.02 to 0.14 ± 0.02 in the field 

(dependent on the methodology of parasite counting), with a higher estimate of 0.26 

± 0.07 following experimental challenge.  The authors also detected a favourable, 

moderate genetic correlation (0.32 to 0.37) between body weight and the number of 

lice; a correlation of similar magnitude (but of a negative sign) has been found in 

the present study – both suggest it is possible to improve body weight and resistance 

to the parasites, L. salmonis or T. bryosalmonae simultaneously through selection, 

in the respective populations.  In another salmonid study, Gilbey et al. (2006) found 

resistance to G. salaris was heritable, and hypothesised a polygenic mechanism of 

control.  By identifying ten regions associated with heterogeneity in both innate and 

acquired resistance, they were able to explain 27.3% of the total variation in parasite 

loads, with both the innate and acquired parasite resistance deemed to be under 

polygenic control in Atlantic salmon.  They concluded that Atlantic salmon would 

be highly suited to a selection programme to improve resistance to G. salaris in 

either wild or farmed populations.  Glover et al. (2005) studied the susceptibility of 

Atlantic salmon to the sea lice, L. salmonis and Caligus elongatus, to find additive 

genetic variation was apparent for both species - with a significant difference in L. 
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salmonis resistance between families - indicating selective breeding for improved 

resistance would be possible in both organisms.  Mustafa and MacKinnon (1999) 

studied 73 full-sibling families to attain an estimate of heritability of 0.22 for the 

susceptibility of Atlantic salmon to C. elongatus, whilst in myxozoan parasite 

research several studies have identified the potential for genetic selection towards 

M. cerebralis and C. shasta resistance.  In 2001 Bartholomew et al. experimented 

with the susceptibility of F1 progeny crosses of rainbow trout parents resistant and 

susceptible to C. shasta.  It was found that groups with at least one parent of the 

resistant strain resulted in less than 5% mortality, compared to up to 98% mortality 

from a susceptible parent cross, leading the authors to conclude that resistance to C. 

shasta is a dominant trait, which would respond to selective breeding.  In M. 

cerebralis research numerous authors have experimented with susceptible and non-

susceptible strains of rainbow trout (Hedrick et al., 2003; Severin and El-Matbouli, 

2007).  With the strain-specific susceptibility for this infection well established, 

attention has turned towards the underlying genetic basis for the variation expressed 

within (non-)susceptible strains (Severin and El-Matbouli, 2007).   

A broad genetic basis has been suggested as a key element for parasite resistance, 

with heterozygous individuals assumed to detect and present a wider range of 

pathogen-derived antigens due to a larger number of different Major 

Histocompatability Complex (MHC) molecules (Langefors et al., 2001).  In a study 

by Hedrick et al. (2001) it was discovered that populations from different sources 

showed variable, but not statistically different responses to an exotic fluke from 

guppies (Poecilia reticulate) on the endangered Gila topminnow (Poeciliopis 

occidentalis).  They found the most homozygous population to carry the greater 

infection and mortality, with homozygotes for a MHC gene displaying lower 

(although not statistically different) survival compared to heterozygotes.  Further, an 

inbred line from one of the populations showed lower survival and higher infection 

compared to an outbred control, leaving the authors to conclude that low genetic 

variation in general, or for the important MHC genes, and populations with a history 

of inbreeding are more likely to suffer detrimental effects from this parasitic 

infection.  Similarly, Gleeson et al. (2000) discovered distinct populations of 

rainbowfish (Melanotaenia species) differed significantly in their susceptibility to 
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Ichthyophthirius multifiliis in a controlled environment.  In the same experiment 

they produced intraspecific hybrids which demonstrated increased tolerance, leading 

to the same hypothesis; there may be a link between heterozygosity of populations 

and their innate ability to resist parasitic infection.  Cable and Van Oosterhout 

(2007) studied the tolerance of guppy populations from different areas of the Aripo 

River in Trinidad to G. turnbulli to find a superior resistance both initially and 

across subsequent challenges, suggesting the immunocompetance for this organism 

in the Aripo River guppy population has a heritable genetic basis. 

With a multitude of parasite species in the aquatic environment, it is perhaps 

unsurprising that the impact on the host results in different physiological effects.  

The immune reaction depends on both the parasite and fish species involved, as well 

as the immunogenetic background of the host.  Represented by MHC alleles, the 

specific and adaptive immune system in fish can defend against parasitic invasion in 

a number of ways.  Genes of the MHC represent the most polymorphic genes in the 

vertebrate genome (Marsh et al., 2000; Marieb, 2004).  The MHC genes encode cell 

surface glycoproteins responsible for the presentation of self and foreign peptides to 

T lymphocytes (T cells).  Generally, foreign peptides produced by the degradation 

of intracellular pathogens are bound by MHC class I molecules and are presented to 

cytotoxic T cells, whilst foreign peptides derived from extracellular pathogens are 

bound by MHC class II molecules, which are presented to helper T cells 

(Rammensee, 1995; Marieb, 2004).  In the majority of circumstances, presentation 

and recognition of foreign peptides produces a humoral or cell mediated immune 

response, where the highest level of polymorphism observed in the MHC genes is 

concentrated within the peptide-binding regions (PBR).  Polymorphism within the 

PBR enables different allelic variants to bind and present unique sets of antigenic 

peptides.  However, some pathogens may escape recognition by certain MHC 

molecules as their peptides are not presentable by the MHC, leading to variation in 

susceptibility to certain pathogens.  Alternatively resistance may be derived through 

a high affinity binding of certain peptides by specific MHC alleles (Marieb, 2004). 

To date, the specific immune response during PKD is unknown, and requires further 

investigation.  However, it has been identified that the MHC genes in teleost species 
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are considered to be primitive compared to humans, having the unusual feature of 

non-linkage between the classical class I and class II genes (Sato et al., 2000; Shum 

et al., 2002).  This led to the genes being renamed MH genes in Atlantic salmon 

(Stet et al., 2002).  However, the class II alpha and beta loci (DAA and DAB) have 

remained linked in salmonids, with evidence of a single dominantly expressed locus 

of both the classical class I and class II genes in Atlantic salmon and rainbow trout 

(Shum et al., 2002; Stet et al., 2002).  The polymorphic nature of the MHC has 

made it possible to associate certain alleles or genotypes to increased tolerance to 

infectious pathogens in numerous animals.  For example, in Soay sheep, MHC 

polymorphism has been significantly associated with juvenile survival and 

nematode parasitism (Paterson et al., 1998), whilst in chickens, one MHC haplotype 

is known to be significantly associated with resistance to Marek’s disease (Bacon, 

1987).  In salmonid research, Grimholt et al. (2003) have shown a highly significant 

association between MH polymorphism and resistance to furunculosis and 

Infectious Salmon Anaemia (ISA) in Atlantic salmon, whilst Langefors et al. (2001) 

concluded fish from high and low resistance families of Atlantic salmon displayed 

significant differences in MHC class II beta alleles, which helped to produce a large 

variation in resistance to furunculosis infection.  Wynne et al. (2007) found a 

significant association between specific MHC alleles and the susceptibility to 

Amoebic Gill Disease (AGD) in Atlantic salmon, while Miller et al. (2004) describe 

an increased resistance to Infectious Haematopoietic Necrosis (IHN) in Atlantic 

salmon associated with certain MHC alleles.  In the viral disease, ISA, Kjøglum et 

al. (2006) identified specific MHC alleles that influence resistance.  Although 

genotyping was conducted in the present experiment, its use was solely for the 

purpose of parental allocation.  Future research into PKD resistance would benefit 

from the identification of specific loci that provide information on the immune 

reaction of the host to T. bryosalmonae, which identifies the alleles that provide 

beneficial results for selection. 

Having discovered additive genetic variation exists for PKD score within the two 

farmed stocks, estimates of heritability for each strain were calculated, and found to 

be moderately high in both populations.  However, age differences and 

discrepancies in early rearing left comparisons between the two strains confounded; 



IoA  Chapter 3 – PKD Cross Section 

 PhD 97 GMB
  
 

as a result the overall estimate is thought to be more reliable.  The overall 

heritability calculated for kidney score from combined components was medium, 

suggesting significant additive genetic variation is present in both populations, 

which would respond to selective breeding and result in improved PKD score, and 

potentially resistance.  Improving resistance to PKD has numerous benefits for the 

British rainbow trout industry.  By selectively breeding for PKD resistance, a 

cumulative improvement can be observed in each generation of selection.  The 

advantages of such improvements are obvious; less fish will be lost due to the direct 

mortality associated with the disease, less feed will be wasted in fish that die, there 

will be a reduced requirement for management, more fish will make it to harvest, 

and the general welfare on the farm will be improved.  However, it must be 

considered that the causative agent is likely to evolve to survive in the host over 

selection generations.  Although evidence is available to support this claim in higher 

vertebrates (Nicholas, 1987), to date, no information is available on the evolution of 

fish pathogens.  However, any increase in resistance of the pathogen will inevitably 

offset at least some of the progress made for PKD resistance within the fish.  

Additionally, the current limited knowledge of interactions between rainbow trout 

as a host and the causative agent, means any evolutionary progress of T. 

bryosalmonae will most likely go unnoticed for the first few generations of 

selection; such considerations are undoubtedly challenges facing selection for PKD 

resistance. 

The heritability estimate for body weight is in agreement with other studies 

involving sub-yearling salmonid species (Henryon et al., 2002; Perry et al., 2004, 

2005).  Estimates of heritability for fork length are limited for sub-yearling 

salmonids in the literature, but the heritability calculated here is similar to that 

described by Henryon et al. (2002), and is expectedly high.  Similarly, the genetic 

correlation between body weight and fork length is expectedly high and positive 

(Gunnes and Gjedrem, 1978).  Between either performance trait and kidney score, 

the genetic correlation is moderate and negative.  The negative correlation between 

size and kidney score has two implications.  It could be suggested that more 

resistant fish are less stressed and so continue to feed throughout the epidemic 

gaining weight and being larger at the time of sampling, or, having been exposed to 
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the parasite for some two to three months, certain individuals may have been more 

affected at different times; those affected earlier recovering earlier and subsequently 

feeding, being larger at the time sampling took place.  Alternatively, larger fish may 

simply be less susceptible to the disease.  The fact that larger fish have a greater 

kidney size may affect the rate of development of PKD.  Where smaller fish (ie 

smaller kidneys) require fewer parasites to cause the profuse swelling seen 

throughout the progression of PKD, larger fish are affected only when the same 

parasite to kidney ratio is reached.  However, this does not necessarily mean that 

these fish are less susceptible overall as the affect of the disease may simply be 

delayed.  In the present study, data was collected as a cross section over a single 

day, ie a snapshot in time of the disease status.  If disease progression could be 

followed in larger and smaller fish, it may simply show that larger fish are affected 

later rather than less.  This in itself has implications; if larger fish take longer to 

become affected, size alone could be incorporated into current management 

strategies.  Where natural vaccination (Ferguson, 1981; Foott and Hedrick, 1987; 

Morris et al., 2003a) is utilised, managing fish size according to water temperature 

may provide a reduced impact by stocking more resistant, larger fish earlier in the 

summer when PKD is more prolific, and smaller fish later in the summer as 

temperature (and PKD development) decline.  With the average body weight at the 

lowest kidney score almost twice that at the highest kidney score (103.80 grams 

compared to 55.94 grams), it suggests that this may be a feasible practice even at 

commercial levels.  At the intermediate grades (1, 2, and 3), although the trend 

continues, the degree of difference is reduced.  Between grades 1 and 4, the 

difference is a mere 11.43 grams, but between grades 0 and 1, the difference is 

36.43 grams, which would be sufficient to categorise fish when grading on farms.  

By using a cut off average weight of approximately 70 grams (for the HS and IoM 

populations), and stocking fish above this threshold earlier, and smaller fish later, a 

reduction in the effects of PKD may be seen.  However, this could only be viable on 

commercial farms where fish could be held in a PKD-free environment until 

reaching the threshold size.  Further, it is worth noting that, although greater size is 

shown to display more resistance in correlation terms, it is not represented in the 

mean size traits and kidney score data of each farm; IoM representatives have the 

larger average kidney score, yet are both longer and heavier than HS 
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representatives.  As preliminary data in terms of PKD resistance and size in this 

population, no stringent conclusions can be drawn here, and further work is 

required. 

Considering the estimate of heritability calculated for kidney score, it is predicted 

that significant gains can be made towards genetic improvement for PKD score, 

whilst the favourable correlation between body weight or fork length and kidney 

score suggests it is possible to improve the two production traits and resistance to T. 

bryosalmonae simultaneously through selection.  Perry et al. (2005) suggest 

pedigreed selection may provide specific sires and dams with advantageous 

genotypic combinations (see Kause et al., 2003); a hypothesis tested in Chapter 4.  

Nevertheless, the additive genetic (co)variation detected here highlights the 

potential to successfully implement a breeding programme for rainbow trout in the 

UK industry.  The estimates provide an indication of the magnitude of additive 

genetic variation associated with each trait, as well as the genetic correlations 

between them.  As a result, these preliminary findings form a basis on which to 

develop a suitable breeding programme for PKD resistance in the UK trout industry, 

beginning with HS and IoM strains. 
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4.1 Introduction  

The relatively high proportion of existing genetic variation in metric characters has 

resulted in numerous studies concentrating on the genetic control of production 

traits (Bolivar and Newkirk, 2002; Goyard et al., 2002; Pante et al., 2002).  The 

level of progress made in improving commercially important characteristics is 

dependent on the amount of genetic variation displayed in the trait (Marsden et al., 

1996).  Until recently, improvements in characteristics of economic value in fish 

species had focused on growth and performance traits, but emphasis is now moving 

towards selective breeding for disease resistance (Argue et al., 2002; Fishback et 

al., 2002; Henryon et al., 2005).   Mortalities from specific pathogens in aquaculture 

have indicated considerable genetic variation exists between fish at the inter- and 

intra-specific level; as such several reviews of selective breeding for disease 

resistance are now available (Kinghorn, 1983; Chevassus and Dorson, 1990).  By 

incorporating disease resistance into selection indices, improved economic returns 

are inevitable, through minimising losses and reducing disease incidence (see 

Henryon et al. 2002).   

In areas endemic to Proliferative Kidney Disease (PKD), sites would benefit from 

genetically improved stocks.  Now considered the most costly disease to the British 

rainbow trout farming industry, its incorporation into selective breeding 

programmes will be welcomed.  The progress made in disease resistance is 

dependent on the level of genetic variation exhibited in relation to the causative 

pathogen within the population tested; this being most beneficial when variation is 

large (Marsden et al., 1996).  Chapter 3 discussed the existing variation in 

Houghton Spring Hatchery (HS) and Isle of Man (IoM) populations, suggesting 

significant potential is available to produce strains of rainbow trout with lower PKD 

scores.  However, to ensure the genetic variation is real, it is necessary to reproduce 

the results under experimental conditions, alleviating any environmental or 

management practices that may have created biases under commercial conditions 

(Kolstad et al., 2005). 
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The present chapter focuses on challenge experiments used to test if genetic 

differences are apparent in the resistance to PKD between different commercial 

families produced from the disease-free site, IoM.  From the information gathered in 

Chapter 3, a challenge was established to assess known high and low responding 

families in an attempt to support the evidence described previously that additive 

genetic variation exists to PKD score.  Timeframes for each family to assess the 

development of PKD will be incorporated into the study.  These could potentially be 

used as a useful tool when integrated into current management practices, ie artificial 

vaccination.  Finally, parasite counts from immunohistochemistry-stained kidney 

sections may provide evidence of a significant and positive correlation between 

kidney score and parasite load that will justify the continued use of the Clifton-

Hadley et al. (1987) scale used to categorise the severity of PKD. 
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4.2 Materials and Methods 

4.2.1 Broodstock and mating design 

From the information gathered in Chapter 3, estimated breeding values (EBVs) 

were calculated for each family.  Based on the EBV, female siblings of the naturally 

challenged fish were then used as broodstock in the present study.  Equal numbers 

of high and low responding females were selected from a total of 500 mature 

females, previously identified and ranked according to EBV position; see ‘Female 

ID’ and ‘EBV Position (1-500)’ of Table 4.1, which illustrates all information 

relating to the generation of the experimental families.  The 28 selected females 

were then crossed with 7 randomly selected neomales; two high and two low 

responding females were crossed with each neomale so that sire effect could be 

calculated.  However, it is important to note that, as the broodstock matured at 

different times (see ‘Fertilisation date’ in Table 4.1), selection intensity for actual 

high and low ranking females was hindered; those selected are therefore considered 

to be nominally high and low responding females.  Although ‘Response (EBV)’ is 

documented as high and low in Table 4.1, the EBV value is also included as the 

analysis of data uses regressions on EBV of the dams rather than the nominal line, 

as this considers the variation as deviance from the regression line.   

Only IoM families were used in the experiment due to their disease-free 

certification.  Families were transported to the Aquatic Research Facility (ARF), 

Institute of Aquaculture, University of Stirling in two batches at the eyed egg stage.  

Spawning, fertilisation, and incubation until this time were conducted according to 

IoM commercial techniques.  Sufficient numbers of eggs were sent to allow for 

mortality during the culture period. 
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Table 4.1 - Family generation and pedigrees of fish used in the PKD Challenge 
trials 

Fertilisation date Female ID EBV Position (1-500) Response (EBV) Neomale Family n 

December 20, 2005 151 30 Low (1.81) 1 ARF 1 1298 
 137 6 Low (1.69) 1 ARF 2 733 
 307 447 High (2.87) 1 ARF 3 791 
 45 432 High (2.34) 1 ARF 4 314 
 139 14 Low (1.81) 2 ARF 5 646 
 115 54 Low (2.03) 2 ARF 6 1317 
 111 376 High (2.38) 2 ARF 7 689 
 232 339 High (2.47) 2 ARF 8 324 
 440 28 Low (1.69) 3 ARF 9 722 
 38 50 Low (2.03) 3 ARF 10 853 
 495 437 High (2.83) 3 ARF 11 730 
 260 416 High (2.65) 3 ARF 12 960 
 222 89 Low (2.16) 4 ARF 13 916 
 227 20 Low (1.73) 4 ARF 14 1258 
 57 377 High (2.40) 4 ARF 15 689 
 34 398 High (2.21) 4 ARF 16 1357 

December 29, 2005 467 29 Low (1.69) 5 BRF 1 874 
 74 4 Low (1.69) 5 BRF 2 1205 
 398 394 High (2.22) 5 BRF 3 1006 
 309 498 High (2.83) 5 BRF 4 975 
 287 138 Low (2.27) 6 BRF 5 1595 
 259 79 Low (2.13) 6 BRF 6 1438 
 88 413 High (2.47) 6 BRF 7 946 
 461 468 High (2.41) 6 BRF 8 1794 
 23 41 Low (2.11) 7 BRF 9 592 
 241 21 Low (1.73) 7 BRF 10 998 
 216 479 High (2.34) 7 BRF 11 1218 
 383 401 High (2.21) 7 BRF 12 1563 

‘Family’ is the experimental name given prior to challenge (see below for further detail), and ‘n’  
refers to the number of eggs sent per family 
 
4.2.2 Batch 1 - ARF 

Eyed eggs representing 16 families arrived at the Institute of Aquaculture, 

University of Stirling on the 25/01/2006, at an age of 253 degree days (dd).  Upon 

arrival, the distinct families remained separated, and were stocked into egg trays 

suspended inside 10 l holding units.  Flow rates and aeration were adjusted to 

supply enough oxygen and clear debris, whilst the light regime was 12 h light:12 h 

dark.  Over a 6 day period water temperature was increased from ambient (~6oC) to 

a maintained 10oC (± 2oC).  Water filtration was minimal (charcoal filter only) due 

to the use of mains tap water.  Egg incubation was normal in terms of development 

and mortality, but due to a system failure tanks were subject to critical water 

temperatures resulting in a complete loss of ARF 11 and severe reduction of ARF 4.   
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Following 100% hatch and first feeding to a size suitable for handling, all groups 

were transferred to larger (100 l) circular tanks (18/03/2006).  Water temperature 

remained at 10oC (± 2oC).  As ambient temperatures increased towards summer, 

>10oC, water supply was switched.  Inflows were adjusted to a minimum of 0.5 

litres per min (l/min) and airstones provided additional oxygen and water 

circulation.  The light regime remained at 12h light:12h dark.  On the 07/04/2006, 

fish number was reduced to 300 per family, with the exception of family 4, where 

only 65 fish remained.  Average weights ranged from 0.574 g to 0.920 g.  On the 

26/04/2006 symptoms of Costia occurred.  All 15 families were subject to a 1 h bath 

of formalin at 200 parts per million (ppm).  No future symptoms were observed.  

Average weights were calculated at two intervals prior to challenge; 15/05/2006, 

overall average weight 3.06 g; and, 02/06/2006, overall average weight 5.31 g.  Test 

fish were required to exceed 5 g to ensure the immune system was developed.  

Feeding to 5 g was ad libitum before reduced to maintenance ration until the trial 

began. 

4.2.2.1 Tagging 

Tagging was completed over a two day period (28/06/2006 and 29/06/2006).  One 

hundred and ten fish per family (excluding family 4) were randomly selected and 

subject to tagging using Visible Implant Elastomere (VIE, Northwest marine 

technology (NMT), USA) of two colours, pink and green.  Injection took place in 

one of 10 locations; head, belly, left or right; eye, dorsal, flank, or jaw (Figure 4.1); 

these combinations allowed identification to the family level (Table 4.2). 
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Figure 4.1 - Possible Visible Implant Elastomere tagging locations on rainbow 
trout  
 

Fish were removed from the holding unit, anesthetised in 10% benzocaine (0.4 

ml/l), injected with VIE, and placed into an aerated recovery bin.  Tagged fish were 

transferred to duplicate 100 l circular holding units, and labelled as experimental 

fish.  Mortality following tagging was negligible. 

Table 4.2 - Tagging location and code for experimental ARF families used in 
challenges 

Family Number Tagging Location and Colour Code 
ARF 1 Right flank – pink   RF – P 
ARF 2 Left flank – pink LF – P 
ARF 3 Right jaw – pink RJ – P 
ARF 4 Adipose fin clipped Adipose 
ARF 5 Left jaw – pink LJ – P 
ARF 6 Left jaw – green LJ – G 
ARF 7 Belly – green B – G 
ARF 8 Right flank – green RF – G 
ARF 9 Left flank – green LF – G 
ARF 10 Left dorsal – green LD – G 
ARF 12 Left eye – green LE – G 
ARF 13 Head – green H – G 
ARF 14 Left eye – pink LE – P 
ARF 15 Head – pink H – P 
ARF 16 Right eye – green RE – G 

 



IoA  Chapter 4 – PKD Challenges 

PhD 107 GMB 

4.2.3 Batch 2 - BRF 

Twelve distinct families of eyed eggs arrived at the Institute of Aquaculture, 

University of Stirling on the 02/02/2006 at an age of 252 dd.  The families were 

transported to Buckieburn research facility (BRF), where they were disinfected 

using buffadine and laid down in egg troughs within 1.5 m circular tanks.  Flow 

rates, sourced from Buckieburn Dam, were set to 2 l/min to supply oxygen and clear 

suspended solids.  Ambient light and water temperature regimes were followed.  At 

times of poor water quality, eggs were checked and flushed as necessary to prevent 

smothering.   

After hatching, problems occurred in almost all holding units resulting in mass 

mortality in the majority of groups.  Coinciding with the presence of Costia and/or 

Trichodina, formalin treatments ensued; flushes on the 6th, 10th, 13th and 18th April, 

and baths on the 21st, and 24th April.  However, mortality persisted, resulting in fish 

veterinarian Richard Collins (Institute of Aquaculture, University of Stirling) 

observing and sampling stocks: “A definitive cause of the problem among fry 

remains uncertain.  The possibility of lipid-related nutritional deficiency among the 

ova, only manifesting significantly at lower incubation temperature, is not to be 

excluded”.  Mortalities due to the ‘condition’ resulted in the complete loss of 

families BRF 1, BRF 7, BRF 11, and BRF 12. 

On the 13/07/2006 families were reduced to 300 fish per holding unit, duplicated in 

case of further losses.  They were maintained at the BRF until sufficient tank space 

was available for transfer to the ARF.  Feeding was maintained ad libitum until 

transfer.  On the 31/08/2006, families were moved to the ARF.  The groups of 300 

were transported in well-oxygenated plastic bags.  However, families BRF 2 and 

BRF 3 died in transit, possibly due to a lack of oxygen and/or acute stress; they 

were replaced with their duplicate groups.  Due to higher than expected average 

weights, families were divided into two 100 l holding units upon arrival.  Feeding 

was reduced to maintenance ration in anticipation of challenge. 
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4.2.3.1 Tagging 

Tagging took place over a single day (18/10/2006).  At least 60 representatives were 

selected at random and subject to family marking using VIE.  The family markings 

are illustrated below in Table 4.3. 

Table 4.3 - Tagging location and code for experimental BRF families used in 
challenges 

Family Number Tagging Location and Colour Code 
BRF 2 Left jaw – pink LJ – P 
BRF 3 Head – pink H – P 
BRF 4 Right jaw – pink RJ – P 
BRF 5 Left flank – pink LF – P 
BRF 6 Right jaw – green RJ – G 
BRF 8 Left flank – green LF – G 
BRF 9 Left jaw -  green LJ – G 
BRF 10 Head - green H – G 

 
4.2.4 Challenges 

4.2.4.1 Screening 

Prior to the challenges taking place, representatives from each family were screened 

for the presence of Tetracapsuloides bryosalmonae using the same techniques 

described for the actual challenges (see Section 4.2.4.4).  Using the equation of Otte 

(2007): 

n = z2 x p(1-p) / a2 

where n is the required sample size, z is the appropriate value from the normal 

distribution for the desired confidence (95%), p is the anticipated prevalence of 

disease (0.01), and a is the desired precision (0.05).  The resultant sample size was 

divided by the number of families; 15 ARF families, and 8 BRF families.  The low 

prevalence, p, was used due to both batches being certified disease-free and no 

history of PKD at the two holding sites.  All fish tested negative for PKD. 
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4.2.4.2 Design 

Both PKD challenges were conducted at the ARF; a home office licensed premises 

to perform experimental tests.  The consecutive challenges were completed so 

comparisons could be made.  Both used three 100 l holding units, with flows of >2 

l/min, plus additional aeration.  Light regime remained at 12 h light:12 h dark, 

whilst feed was given at 2% body weight per day.  Water temperature was adjusted, 

ie heated when necessary, to maintain temperatures above 12.5oC (± 2oC).  After 

tagging, test fish were allowed at least 21 days recovery time to ensure the VIE had 

solidified.  Movement to the test tanks took place at the time of injection 

(21/07/2006; day 0) for PKD challenge 1 (ARF fish), and 3 days prior to injection 

(06/11/2006) for PKD challenge 2 (BRF fish, 9/11/2006; day 0).  Test fish in PKD 

challenge 2 were given time to acclimatise and recover from tank transfer due to 

experiences of a general susceptibility to stress, possibly related to the earlier 

condition.  In PKD challenge 1, each replicate consisted of 14 fish per family, 210 

fish per tank (total: 630), whilst in PKD challenge 2, 20 fish per family were used, 

160 fish per tank (total: 480).  Representatives were weighed into test tanks to 

ensure no biases in replicate weight.   

4.2.4.3 Induced infection 

Intraperitoneal injection followed the protocol of McGurk (2005); for each replicate, 

six heavily PKD infected Artic charr were euthanased and kidney removed 

aseptically.  Following impression smears and Rapi-diff staining (Appendix 2) to 

ensure infection was sufficient, five of the six infected kidneys were added to 40 ml 

of sterile PBS and homogenised; repeated for each replicate and kept on ice to 

prolong use.  Fish were anaesthetized (4 mg/l 10% benzocaine) before being ip 

injected with 0.1 ml homogenate, and released or returned to test tanks. 

4.2.4.4 Sampling 

The sampling regimes for the two challenges were identical, but sampling numbers 

differed.  At 3 weeks post injection (pi), sampling took place to ensure T. 

bryosalmonae had transmitted successfully.  Using a VIE light (NMT, USA) to 
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identify individuals, 2 (PKD challenge 1) or 3 (PKD challenge 2) representatives 

per family per replicate were selected, euthanased, fork length and body weight 

taken, and kidney score assigned, before the spleen and a section of posterior kidney 

were removed and placed in 10% neutral buffered formalin for 

immunohistochemistry, as described in Chapter 2, Section 2.2.  A small section of 

kidney was stored on ice for PKD-PCR (Chapter 2, Section 2.1) at 3 weeks pi only. 

The next sampling occurred at 6 weeks pi following the same protocol but without 

PCR analysis.  This continued weekly until 11 weeks pi, taking 96 fish per week in 

PKD challenge 1 (6 fish per family), and 72 fish each week in PKD challenge 2 (9 

fish per family) where possible, until no fish remained in test tanks. 

4.2.4.5 Kidney scoring as a measure of resistance 

Using the entire scale of Clifton-Hadley et al. (1987), each sacrificed fish was 

allocated a score from 0 to 4 inclusive, in addition to healing (grade H) where 

appropriate; kidney with advanced signs of healing, often containing either discrete 

cream-coloured patches or spherical nodules up to 10 mm in diameter surrounded 

by dark red renal tissue.  Measuring the severity of inflammation was believed to 

provide a measure of the degree of resistance, ie the smaller the swelling, the greater 

the resistance.  Further, the analysis of representatives from each family every week 

allowed a timeframe of PKD progress within each family. 

4.2.4.6 Parasite counting 

Following immunohistochemistry, the parasite load of sampled kidneys was 

recorded.  The methodology used is described by Higgins and Kent (1998) and 

Morris et al. (2003a), where sporogonic and extrasporogonic stages of T. 

bryosalmonae within the kidney sections were counted under 11 random fields of 

view at x400 magnification (0.45 mm diameter) under light microscopy.  The total 

parasite count was then converted to number per mm2 for each fish and plotted 

against the individual’s kidney score in order to establish if any relationship was 

apparent. 
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4.2.5 Statistical analysis 

4.2.5.1 Summary Statistics 

Data from the challenges were entered into Microsoft Excel in preparation of 

analysis.  Where summary statistics were desired, formulas in Excel were used to 

calculate the basics; mean, minimum, maximum, count etc.  The majority of graphs 

presented were generated using Microsoft Excel.  All other analysis was conducted 

using Genstat Release Version 9.1. 

4.2.5.2 PKD resistance, survival, and estimates of heritability 

Genetic parameters were estimated using a single linear mixed model in Genstat 

Release Version 9.1.  All traits were analysed using the REML model:  

 yip = µi + bi.EBVip + sireik + damil + tankim + eip 

where yi is the vector for trait i, when the variable yi is the observed value of fish p, 

with random effects of sire k, dam l, and tank m for trait i.  The residual error 

connected to trait i is represented as eip.  µi is the population mean for trait i, and 

bi.EBVip is the regression on the estimated breeding value of dam l, treated as a 

fixed term.   

Survival was assessed using this model as a binary trait (ie survived/died), where yi 

= 0 was allocated if death occurred and yi = 1 if the individual survived.  Other traits 

included kidney score, fork length, body weight, and parasite/mm2.  Further, 

evidence of genetic variation, effect of EBV, and estimates of heritability were 

calculated on a week by week basis for each challenge using this model, by 

restricting the data appropriately. 

The random effects of sireik, damil, and residual error (eip) were assumed to be 

independent random normal variables with mean zero, and variances denoted σs
2, 

σd
2, and σe

2.  Total phenotypic variance was denoted σt
2, and was estimated as σt

2 = 

σs
2 + σd

2 + σe
2.  The genetic information therefore comes from three sources: (i) the 

regression on the EBV of the dam; (ii) the dam variance (σd
2), which represents the 
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variance of deviations from the regression on EBV; and, (iii) the sire variance (σs
2).  

Estimates of heritability were based on the narrow sense heritability, and could be 

obtained from the sire variance using the formula: 

4(σs
2) / σt

2, from the sire variance component hs
2 

The variance between dams, in principle, contains other non-genetic maternal 

effects, but in this study, given its small size, was interpreted as being wholly 

genetic, with the estimates of heritability obtained from the dam variance using the 

formula: 

4(σd
2) / σt

2, from the dam variance component hd
2 

However, it is important to note that part of the genetic variance attributable to dams 

was removed by the regression on EBV. 

In every instance the significance of the random variables were tested using a 

likelihood ratio test.  Using the above REML model, the term of interest (sire, dam, 

or tank) was dropped and the deviance compared to the original deviance.  If the 

difference was greater than χ2 at 1 degree of freedom (likelihood ratio test statistic at 

95% CI: 3.84), the variable was considered to be significant. 

Additional analysis was conducted on survival.  A Kaplan-Meier estimate of the 

survivor function, including graph, was completed based on the mortality occurring 

due to anything other than sampling.  Using trial (factor), tank (factor), female 

(factor), EBV (variate), sire (variate), and survival (variate), the data was input into 

the estimate with actual time points considered (measured as days post injection to 

death) and survival censored for sampling weeks. 
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4.2.5.3 Bulk weights 

Prior to the challenges, families were weighed into test tanks.  In order to ensure no 

differences were apparent between families, a similar REML model was used, but 

modified to include the term trial : 

yihq = µi + bi.EBVihq + trialih +sireik + damil + tankim + eihq 

where yi is the bulk weight of family q involved in the challenge, and trialih is 

included as a fixed effect to assess differences between PKD Challenge 1 and PKD 

Challenge 2 fish stocks. 
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4.3 Results 

From the 1109 individuals involved in the challenges, information was available on 

1106.  However, only 1032 were used for the analysis of PKD resistance as many 

individuals were unidentifiable to the family level, victims of mortality between 

sampling weeks, or simply lost from the study; most likely due to cannibalism.  

Overall mean values for kidney score ranged from 0.64 ± 0.09 to 2.46 ± 0.19 within 

full-sibling groups, against an overall mean of 1.48 ± 0.03.  The information 

gathered per family, per challenge, and overall is summarised in Table 4.4. 

At 3 weeks pi, 85.19% of individuals tested using the PKD-PCR demonstrated 

successful transmission of T. bryosalmonae.  In PKD Challenge 1, 85 of the 90 fish 

showed successful transmission at week 3 (94.44%), whilst PKD Challenge 2 

demonstrated a lower transmission of 73.61%.  An example of the 435 bp positive 

bands obtained in the PKD-PCR is illustrated below in Figure 4.2. 

 
Figure 4.2 - Example of Ethidium Bromide stained, 1.2% agarose gel image.  
Chelex extracted DNA (source: kidney) from (non-)infected rainbow trout. 
Lanes 1 to 4 negative for PKD (no bands), lane 5 ØX 174 RF DNA Hae II 
ladder, lanes 6 to 9 positive for PKD. Bands apparent at 435 bp 
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Table 4.4 - Mean values for kidney score, fork length (cm), and body weight 
(g), as well as the number of fish measured in the PKD Challenges 

Family Kidney score ± SE Length (cm) ± SE Weight (g) ± SE Number 
ARF 1* 2.05 ± 0.19 13.21 ± 0.42 28.13 ± 1.78 37 
ARF 2* 1.94 ± 0.25 12.67 ± 0.24 27.08 ± 1.58 33 
ARF 3* 2.46 ± 0.19 13.35 ± 0.31 33.08 ± 2.16 37 
ARF 4* 1.68 ± 0.20 13.10 ± 0.21 28.43 ± 1.43 37 
ARF 5* 1.51 ± 0.14 13.15 ± 0.28 30.99 ± 1.88 41 
ARF 6* 2.21 ± 0.22 12.19 ± 0.30 23.83 ± 1.65 29 
ARF 7* 2.28 ± 0.23 12.02 ± 0.27 22.94 ± 1.56 36 
ARF 8* 1.84 ± 0.22 12.26 ± 0.26 23.20 ± 1.39 37 
ARF 9 1.29 ± 0.14 12.90 ± 0.24 28.81 ± 1.48 41 
ARF 10* 1.13 ± 0.14 12.59 ± 0.20 26.59 ± 1.25 39 
ARF 12* 1.35 ± 0.17 12.13 ± 0.25 23.43 ± 1.33 40 
ARF 13* 1.47 ± 0.17 12.34 ± 0.22 24.81 ± 1.21 36 
ARF 14* 1.67 ± 0.17 11.75 ± 0.24 22.42 ± 1.41 39 
ARF 15* 1.38 ± 0.16 12.01 ± 0.26 23.11 ± 1.63 34 
ARF 16 1.13 ± 0.12 12.77 ± 0.27 27.96 ± 1.90 40 
BRF 2 1.35 ± 0.11 13.00 ± 0.14 27.21 ± 0.93 60 
BRF 3 1.67 ± 0.10 13.21 ± 0.14 27.23 ± 0.97 60 
BRF 4 1.45 ± 0.09 13.12 ± 0.15 28.06 ± 0.93 60 
BRF 5 1.13 ± 0.10 13.59 ± 0.17 30.34 ± 1.15 60 
BRF 6 1.68 ± 0.16 12.68 ± 0.22 25.86 ± 1.36 60 
BRF 8* 1.33 ± 0.10 12.49 ± 0.26 24.34 ± 1.54 58 
BRF 9* 0.64 ± 0.09 14.37 ± 0.17 36.18 ± 1.34 59 
BRF 10* 0.76 ± 0.09 13.26 ± 0.17 29.69 ± 1.16 59 
       
PKD Challenge 1 Overall  1.67 ± 0.05 12.78 ± 0.21 26.41 ± 0.43 556 
PKD Challenge 2 Overall  1.25 ± 0.04 13.21 ± 0.07 28.62 ± 0.46 476 
Combined Overall  1.48 ± 0.03 12.98 ± 0.12 27.43 ± 0.31 1032 
     
Unidentified 1.78 ± 0.21 13.41 ± 0.43 33.08 ± 2.89  18 
     
*Total mortality PKD Challenge 1    53 

*Total mortality PKD Challenge 2    3 
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The timecourse of PKD development throughout the challenge periods was 

calculated for every family.  The progression of the disease for a number of families 

is shown in Figure 4.3, which illustrates not only the variation in peaks and troughs 

between the mean PKD score of families recorded at each sampling week (eg ARF 

4 and BRF 2), but also the overall difference between families, for example ARF 7 

and BRF 9 (which is also representative of the overall mean scores).   
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Figure 4.3 - Timecourse of kidney scores for rainbow trout over sampling 
weeks in the PKD Challenges; demonstrated using only six families (three ARF 
and three BRF) to highlight variation 

The mean fork length and body weight of fish involved in the challenges 

demonstrated a general overall increase throughout the trial period, as can be seen in 

Figures 4.4 and 4.5.   
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Figure 4.4 - Mean body weight (g) for rainbow trout used in PKD Challenge 1 
and PKD Challenge 2 
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As illustrated in Table 4.4, it can be seen from Figures 4.4 and 4.5 that the fish 

involved in PKD Challenge 2 are both longer and heavier than those involved in 

PKD Challenge 1, which is constant throughout the challenges (with the exception 

of a small crossover in Week 11 for weight, and Weeks 7 and 11 for length; none of 

which are significant – data not shown). 
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Figure 4.5 - Mean fork length (cm) for rainbow trout used in PKD Challenge 1 
and PKD Challenge 2 
 

Phenotypic correlations between the three traits were calculated, with an expected 

high and positive trend between fork length and body weight (r=0.962, P<0.001), 

and low and negative trends between either production trait and kidney score.  

Correlation between fork length and kidney score was significant; r=-0.217, 

P=0.039.  The phenotypic trend of larger size and lower kidney score is shown in 

Table 4.5.  Both the average fork length and average body weight of rainbow trout 

measured display the trend, with the most severe kidney swelling (kidney score: 4) 

displayed in fish at an average length of 11.95 cm and average weight of 23.67 g, 

whilst the least severely affected fish (kidney score: 0) are larger at an average fork 

length of 13.38 cm, and average body weight of 30.14 g. 

Table 4.5 - Mean fork length (cm) and body weight (g) of fish assessed in the 
PKD Challenges using the scale of Clifton-Hadley et al. (1987) 

Kidney score Fork length Body weight 
0 13.38 ± 0.12 30.14 ± 0.85 
1 12.89 ± 0.09 27.29 ± 0.53 
2 12.91 ± 0.09 27.78 ± 0.55 
3 12.30 ± 0.13 24.48 ± 0.77 
4 11.95 ± 0.18 23.67 ± 1.10 
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Throughout the challenge period, the overall mean measurements of kidney score 

(n=1050; 1032 of known pedigree, 18 unknown) were recorded for each challenge 

by week; illustrated in Figure 4.6, below.  The kidney scores of fish sampled in 

PKD Challenge 1 are consistently greater than those of PKD Challenge 2 

throughout the entire study period.  The two datasets follow a similar trend with a 

sharp increase between weeks 3 and 6 (the greatest duration between sampling 

weeks), before peaking at week 7 in PKD Challenge 1, and over a three week period 

in PKD Challenge 2 (weeks 7, 8 and 9), before a reducing trend occurs in the last 

weeks of the disease.  The kidney scores of mortalities from PKD Challenge 1 were 

recorded where possible, and having been segregated to fit within sampling periods, 

are also illustrated in Figure 4.6.  The mean kidney scores of mortalities at each 

sampling period are constantly greater than those of fish sampled, but the low 

number of observations leaves the statistical significance questionable. 
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Figure 4.6 - Mean kidney score for rainbow trout at each sampling week ± SE 
for PKD Challenge 1 (n=556), PKD Challenge 2 (n=476), and mortalities of 
PKD Challenge 1 (n=53; NB Week 10 mortality is a single observation; 
standard error could not be calculated) 
 

Overall, mortality during the challenges was relatively minimal at 5.30%.  PKD 

Challenge 1 displayed the greater mortality, 53 fish from 627 died (8.45%); of those 

possible to examine, 64.15% displayed signs of PKD, whilst in PKD Challenge 2, 

only 3 fish died over the course of the trial (0.61%), none of which exhibited signs 
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of PKD.  The number of deaths that occurred varied between 11 and 22 in the three 

replicates of Challenge 1, with a minimum dpi to death of 9 and maximum of 69.  In 

PKD Challenge 2, the 3 mortalities died at 17, 19, and 20 dpi, one from each 

replicate.  The number and time at which death occurred for each challenge, and by 

replicate, are shown in Table 4.6.  The number of mortalities within each family 

selected for the study is illustrated in Figure 4.7.  Colour-coordinated according to 

high and low EBV values, the greatest mortality in any family with the female 

parent having a low EBV was 11 (ARF 6), whilst from a female parent having a 

high EBV was 6 (ARF 7).  Conversely, the lowest mortality of 1 fish was shared 

among 7 families, 4 having a female parent of low EBV, the remainder high. 

Table 4.6 - Summary of mortality, in days post injection to death, in PKD 
Challenges 
PKD 1 Tank 1 Tank 2 Tank 3 Overall 
Minimum 10 28 9 9 
Maximum 69 55 55 69 
Mean 38.36 39.55 34.45 37.45 
Count 11 22 20 53 
PKD 2     
DPI to death 17 19 20 mean: 18.67 
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Figure 4.7 - The number of mortalities per family for both PKD Challenge 1 
and 2.  The colour blue indicates families with parental female of low EBV to 
PKD, whilst those coloured in pink represent families with parental female of 
high EBV 
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A Kaplan-Meier estimate of the survival function was conducted for the challenges 

overall; Figure 4.8, below.  Although the mortality experienced was low overall, the 

greatest loss was observed between days 20 and 41, with the rate levelling until the 

trial terminated at 77 dpi, when the overall survival equalled 94.95%. 

 
Figure 4.8 - Kaplan-Meier estimate of the survival function (Overall) for the 
duration of the two challenges (77 days) of rainbow trout with Tetracapsuloides 
bryosalmonae; − Survivor function, □ Censored observations 
 

Family weights between the two groups (ARF and BRF) at the beginning of the trial 

and water temperatures between the two challenges differed significantly (P<0.001).  

The summary of the water temperatures (including means ± their SE) for the 

challenges is displayed in Table 4.7, whilst the temperature profiles, showing a 

constant lower temperature in PKD Challenge 2, as well as the time at which 

mortality occurred in the challenges is shown in Figure 4.9. 

Table 4.7 - Summary table of water temperature for the PKD Challenges 
Temperature oC PKD Challenge 1 PKD Challenge 2 
Minimum 15.00 12.50 
Maximum 19.00 16.00 
Mean ± SE 16.59 ± 0.10 14.21 ± 0.08 
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Figure 4.9 - Daily temperature profiles for PKD Challenges, and days post 
injection to death of mortalities encountered throughout PKD Challenge 1 and 
PKD Challenge 2 
 

As a binary trait, there was no significant difference in the survival between the 

challenges, and the EBV showed no significant effect.  However, a likelihood ratio 

test demonstrated a significant dam effect when analysis was conducted overall.  

Analysis of PKD Challenge 1 alone, followed the same trend, but PKD Challenge 2 

showed no parental effect following the likelihood ratio test. 

The genetic components were extremely variable between the two challenges, but 

also between each sampling week.  From sires, the genetic component for PKD 

score varied from a bound estimate to 0.359 over the two challenges, whilst the 

greatest component from females came from PKD Challenge 1 in week 7 (0.390), 

the lowest being bound.  Only six of the parental components were deemed to be 

significant following likelihood ratio tests, whilst the regression of kidney score on 

EBV was never found to be significant, although the majority did display a positive 

sign.  All the genetic components related to the random terms, sire, dam, and tank 

effect, as well as all residual variance, whether EBV was significant, and the 

regression on EBV are illustrated in Table 4.8, below. 
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Table 4.8 - Summary of genetic components for PKD score from the PKD 
Challenges, by week 

Trial/Week σ2 sire σ
2 dam σ

2 replicate σ
2 residual Significant EBV Regression 

1/3 0 bound 0.049 ± 0.026† 0.001 ± 0.005 0.106 ± 0.018 X 0.013 ± 0.187 
1/6 0.032 ± 0.060 0.121 ± 0.082† 0 bound 0.464 ± 0.076 X -0.317 ± 0.325 
1/7 0.061 ± 0.126 0.390 ± 0.229† 0.014 ± 0.047 1.000 ± 0.166 X 0.008 ± 0.545 
1/8 0.027 ± 0.063 0 bound 0 bound 2.056 ± 0.319 X 0.605 ± 0.430 
1/9 0.164 ± 0.260† 0.088 ± 0.135 0 bound 1.342 ± 0.222 X 0.345 ± 0.412 
1/10 0.042 ± 0.090 0.166 ± 0.170 0 bound 1.083 ± 0.200 X 0.501 ± 0.455 
1/11 0.071 ± 0.133 0 bound 0 bound 0.971 ± 0.232 X 0.719 ± 0.442 
2/3 0 bound 0.016 ± 0.024 0 bound 0.233 ± 0.041 X 0.300 ± 0.211 
2/6 0.021 ± 0.045 0.012 ± 0.030 0.008 ± 0.021 0.299 ± 0.054 X 0.194 ± 0.230 
2/7 0.087 ± 0.136 0.009 ± 0.026 0.046 ± 0.058† 0.278 ± 0.050 X -0.091 ± 0.218 
2/8 0.109 ± 0.173 0 bound 0.104 ± 0.126 0.524 ± 0.091 X -0.139 ± 0.264 
2/9 0.131 ± 0.263 0.165 ± 0.147† 0.031 ± 0.056 0.595 ± 0.107 X 0.141 ± 0.522 
2/10 0.359 ± 0.647 0.348 ± 0.264† 0.039 ± 0.065 0.616 ± 0.111 X 0.482 ± 0.704 
2/11 0.312 ± 0.536 0.125 ± 0.184 0.092 ± 0.152 0.874 ± 0.211 X 0.182 ± 0.577 

† denotes significant effect when tested using a likelihood ratio test; X denotes a negative result for 
significance of EBV 

The estimates of heritability for PKD score display a vast range, 0.05 to 1.25 from 

either parent.  Due to limited variance in some instances, estimates were not 

possible, and due to the inequality of sire and dam components, combined estimates 

are not appropriate.  From sires, the estimates range from 0.05 to 1.05, and from 

dams 0.09 to 1.25 for kidney score, whilst for the size traits, estimates ranged from 

0.004 to 0.72 from the sire component, and 0.05 to 1.14 from the dam component.  

Where estimates obtained are greater than 1.00, the value has been reduced to the 

maximum theoretical value achievable.  Estimates of heritability, from both the sire 

and dam component, for all three traits measured are displayed in Table 4.9, below. 

Table 4.9 – Estimates of heritability ± SE (from both the sire and dam 
components) for each trait measured in the PKD Challenges - kidney score; 
KS, fork length (mm), and body weight (g)  

Trial/Week h2s KS h2
d KS h2

s Length h2d Length h2s Weight h2d Weight 

1/3 --- 1.00 0.06 ± 0.14 0.05 ± 0.30 0.004 ± 0.05 --- 
1/6 0.21 ± 0.37 0.77 ± 0.46 0.16 ± 0.30 0.59 ± 0.43 0.13 ± 0.27 0.73 ± 0.46 
1/7 0.17 ± 0.34 1.00 0.07 ± 0.14 --- 0.27 ± 0.42 0.23 ± 0.34 
1/8 0.05 ± 0.12 --- 0.18 ± 0.29 --- 0.16 ± 0.27 0.12 ± 0.33 
1/9 0.40 ± 0.57 0.22 ± 0.33 0.11 ± 0.20 --- 0.08 ± 0.18 0.31 ± 0.37 
1/10 0.13 ± 0.27 0.51 ± 0.49 0.05 ± 0.18 --- --- 0.24 ± 0.42 
1/11 0.27 ± 0.48 --- 0.004 ± 0.25 1.00 --- 1.00 
2/3 --- 0.25 ± 0.38 0.56 ± 0.83 0.14 ± 0.32 0.72 ± 0.94 --- 
2/6 0.25 ± 0.51 0.14 ± 0.35 --- 1.00 0.14 ± 0.68 1.00 
2/7 0.93 ± 1.13 0.09 ± 0.27 --- --- --- --- 
2/8 0.72 ± 0.91 --- --- 0.74 ± 0.54 --- 0.48 ± 0.46 
2/9 0.59 ± 1.03 0.74 ± 0.62 0.14 ± 0.77 1.00 0.19 ± 0.78 1.00 
2/10 1.00 1.00 0.19 ± 0.48 0.30 ± 0.43 0.51 ± 0.78 0.10 ± 0.31 
2/11 1.00 1.00 0.24 ± 0.53 --- 0.24 ± 0.53 --- 

--- denotes a ‘bound’ estimate due to limited or no variation displayed in the character by one of the 
parents; 1.00 denotes an estimate attained above a value of 1 - value reduced to maximum theoretical 
value achievable; s and d are the estimates calculated from the sire and dam component, respectively 
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Following observation of the kidney sections taken, 755 of the 1032 (73.16%) fish 

displayed T. bryosalmonae; stained sporogonic and extrasporogonic stages of T. 

bryosalmonae following immunohistochemistry of a kidney section are shown in 

Figure 4.10, below.  

 

Figure 4.10 - Sporogonic and extrasporogonic stages of Tetracapsuloides 
bryosalmonae within a kidney section (stained brown in colour) following 
immunohistochemistry using the anti-T. bryosalmonae monoclonal antibodies 
A8 and D41 

Overall, the mean number of parasites per mm2 observed in immunohistochemistry 

stained kidney sections was 23.45, with PKD Challenge 1 fish displaying a mean of 

26.66, and PKD Challenge 2 fish, 17.83 overall.  The maximum number of parasites 

for any individual was 319.61 per mm2 from an individual in PKD Challenge 2 

(Week 8).  Both the lowest and highest percentage of individuals with parasites 

observed was in PKD Challenge 1, with 92.22% of the fish displaying T. 

bryosalmonae in Week 6, and only 55.68% of fish displaying parasites in Week 11.  

Overall, parasites were present in 71.22% of the fish in PKD Challenge 1, and in 

75.42% of the fish in PKD Challenge 2.  In relation to kidney score, there was a 

significant and strong positive correlation between the two terms, r=0.607, P<0.001.   

 

        → 

 

← 
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The trend of increasing parasites/mm2 in relation to kidney score is shown in Figure 

4.11.  At each increasing kidney score the number of parasites/mm2 increases also.  

Although a linear regression model should not be fitted to ordered categorical data, 

for the purpose of illustration, the R2 value here gives an indication as to the 

correlation calculated as statistically significant. 
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Figure 4.11 – Parasites/mm2 (Tetracapsuloides bryosalmonae) observed at each 
assigned kidney score; numbers displayed relate to the mean parasite/mm2 
(pink line) and number of observations (n) at each kidney score 
 

The genetic components in relation to parasites per mm2 were variable both within 

and between the two challenges.  In relation to the sire and dam, components range 

from bound estimates to 748 in PKD Challenge 1, and from bound to 441 in PKD 

Challenge 2.  The significance of the regression of parasites per mm2 on EBV is 

also illustrated, with four of the fourteen analyses proving to be significant; the 

majority of the signs being negative.  The genetic components related to the random 

terms, sire, dam, and tank effect, as well as the associated residual variance are 

presented in Table 4.10, below.  The significance of EBV as well as the regression 

of parasite count per mm2 on EBV are also illustrated. 
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Table 4.10 – Summary of genetic components relating to parasite number per 
mm2 from the PKD Challenges, by week 

Trial/Week σ2 sire σ
2 dam σ

2 replicate σ
2 residual Significant EBV Regression 

1/3 1.69 ± 3.01 0 bound 2.97 ± 4.67 49.04 ± 7.70 √ -6.928 ± 2.157 
1/6 84.0 ± 148 179 ± 166 48.0 ± 92.0 1294 ± 216 X 13.360 ± 14.557 
1/7 138 ± 241 375 ± 261† 136 ± 187 1533 ± 254 X 17.420 ± 18.347  
1/8 10.0 ± 52.0 0 bound 0 bound 3127 ± 485 √ 36.790 ± 16.767 
1/9 63.0 ± 122 75.0 ± 190 188 ± 263 2079 ± 356 X 21.390 ± 15.342 
1/10 59.0 ± 165 748 ± 447† 52.0 ± 116 1503 ± 281 X 27.870 ± 23.875 
1/11 0 bound 0 bound 0 bound 628.9 ± 153 X 13.070 ± 11.133 
2/3 0 bound 2.36 ± 3.52 5.16 ± 6.53† 32.66 ± 5.87 X 1.393 ± 2.543 
2/6 3.50 ± 32.2 39.4 ± 48.5 33.8 ± 47.7 323.8 ± 59.1 X 0.039 ± 9.203 
2/7 34.7 ± 56.9 0.40 ± 15.4 42.2 ± 50.9† 208.5 ± 37.5 X -3.877 ± 5.311 
2/8 281 ± 490 0 bound 67.0 ± 173 2498 ± 435 √ -37.18 ± 18.194 
2/9 441 ± 649† 0 bound 49.9 ± 79.5 708.0 ± 122.3 √ -23.23 ± 9.765 
2/10 348 ± 566 126 ± 141 0 bound 857.7 ± 151.6 X -4.592 ± 16.304 
2/11 84.6 ± 176 0 bound 0 bound 948.0 ± 212.0 X -6.749 ± 13.978 

† denotes significant effect when tested using a likelihood ratio test; X denotes a negative result for 
significance of EBV; √ denotes a positive result for significance of EBV 
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Discussion 

Striving to test if significant differences were apparent between families for 

resistance to PKD, evidence of additive genetic variation, whether the regression of 

kidney score on EBV of selected females was significant, and calculating 

timeframes of families (that may assist in natural vaccination procedures), only 

additive genetic variation was detected and timecourses calculated.  No family 

demonstrated a significantly higher tolerability to PKD regardless of the high or low 

EBV rankings, and any regressions calculated were not significant.  Additive 

genetic variation was detected every week from at least one parent relating to PKD 

score, and in the majority of weeks for fork length and body weight.  Estimates of 

heritability were calculated from both the sire and dam component, and show a very 

diverse range; the majority suggesting that moderate to strong genetic improvement 

to PKD resistance is possible within the families selected for this study.  Due to 

biases caused from maternal effects, the sire component (and therefore its estimate 

of heritability) is thought to be more reliable (Falconer and Mackay, 1996; Heath et 

al., 1999; Kolstad, 2005).  For this reason, all estimates of heritability discussed 

from this point onwards will be referring to those calculated from the sire 

component, unless otherwise stated.  Finally, the timecourse of disease progression 

was calculated for every family involved in the challenges; a vast difference 

between family disease progression was observed.  Such timeframes could 

potentially assist farmers in stocking regimes to minimise the effects of PKD, ie 

when and which families to stock in the production cycle. 

Due to limitations of experimental facilities in the ARF at the Institute of 

Aquaculture, University of Stirling, the families sent from the IoM were reared at 

different sites; 15 ARF families, 8 BRF families.  Although the fertilisation date 

differed between these two groups by nine days, approximately 90 dd, this could 

have been overlooked if comparisons were required.  However, Dunham (2004) 

explains that differences in spawning time and ultimately age of experimental fish 

can result in such environmental deviations that the genetic effects within the 

population can be masked.  Although considered, the age difference was believed to 

be of no great concern but exposure to very different environments and rearing 
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techniques, left numerous differences between the ARF and BRF families; 

combining their data would leave the results confounded.  The greatest difference at 

the time of challenge was the statistically significant size variation between the two 

groups.  Further, BRF fish encountered numerous pathogens at the commercial site 

prior to challenging, two of which (Costia and Trichodina) required treatment on 

multiple occasions.  ARF fish were also affected and treated for Costia, but only on 

one occasion.  Also, the BRF families suffered mortality, chronic in some instances, 

due to a ‘condition’ which left some families so depleted they were unable to be 

used in the study.  As a result, the two groups were analysed separately.  Another 

area of concern was tagging.  The inexperience of using visual implant elasomere 

left many fish in PKD Challenge 1 unidentifiable to the family level.  The groups 

most affected included ARF 2, ARF 6, and ARF 15; losses of up to 31% of the 

family information were experienced.  Also, limitations of experimental tanks and 

fish number hindered the challenge design.  The design used was deemed to be the 

most efficient way of gathering the data required to asses for PKD resistance and 

associated additive genetic variation.  Finally, although kidney score was used as a 

measure of resistance here, other parameters have been identified as good indicators 

(assessed as correlated marker traits) of resistance to other diseases in fish species 

(Refstie, 1982; Røed et al., 1990, 1992, 1993; Salte et al., 1993; Fevolden et al., 

1994; Strømsheim et al., 1994ab; Lund et al., 1995).  In PKD research it is 

understood that there is a good humoral antibody response to T. bryosalmonae by 

rainbow trout at approximately seven weeks post infection, which would suggest 

that serology could be a useful tool to help with measuring and understanding 

resistance levels of rainbow trout to PKD.  Although the collection of serum was 

discussed in the present study, time limitations on sampling days meant serum was 

never collected.  Future studies would benefit from serum sampling as well as 

Enzyme-Linked ImmunoSorbent Assays (ELISAs) being conducted in family 

research towards PKD resistance. 

Having assessed the regression of kidney score on EBV of females selected for this 

study, none were found to be statistically significant.  However, the majority of 

weeks display a positive sign for the regression of kidney score on EBV, supporting 

the hypothesis that PKD score is positively related to the EBV of the selected 
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females demonstrating high and/or low response to PKD.  Further, as each sampling 

was considered a subsample of the population, and therefore independent each week 

(ie fish were slaughtered to asses kidney swelling and could therefore not be used as 

repeated measurements), there was justification for using a one-sided test to asses 

the significance of each regression.  The one-sided test reduces the critical level that 

requires to be exceeded for the regression to be considered significantly different 

from zero; however, even after this analysis, none were found to be statistically 

significant, assessed either individually or when pooled (data/results not presented).  

As the majority of weeks display a positive sign for regression of kidney score on 

EBV, the philosophy that EBV plays a role on kidney score cannot be dismissed, 

but, due to the limited power of this experiment, it is difficult to draw stringent 

conclusions.  Further, the distance between the individuals assigned an EBV for this 

study, and the actual broodstock used to produce this population may have 

weakened any regressions; EBVs were calculated from the offspring of Chapter 3 

and assigned to the respective parents, yet it was the siblings of the offspring 

involved in Chapter 3 that were used as broodstock in the present study.  Future 

research in this area would benefit the British trout farming industry, as well as 

improve knowledge towards PKD.  Further studies involving the regression of 

kidney score on EBV should use a greater number of individuals per family, a larger 

number of families, and also families that exhibit greater extremities in the high and 

low lines of susceptibility to PKD; these factors could potentially support and 

strengthen the stated hypothesis and positive relationship identified here. 

The estimates of heritability calculated for resistance to PKD are so diverse that 

comparison to other disease resistance studies would be ineffective.  Ranging from 

0.05 to 1.25, the estimates cover almost all other estimates of disease resistance 

cited in the literature (Gjøen et al., 1997; Perry et al., 2004; Kolstad et al., 2005; 

Henryon et al., 2005).  With no previous work conducted on the genetic component 

of PKD resistance (with the exception of Chapter 3 in the present project), no 

literature is available for comparison.  However, the evidence that additive genetic 

variation is available at any stage during the timecourse of the disease and from 

either parent suggests that selection, and therefore genetic improvement is possible, 

regardless of the time selection takes place, disease progress, or parental component 
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(providing estimates are taken within the parameters of this population and study).  

No trends are apparent in relation to the estimates of heritability over the timecourse 

suggesting there is not an optimum week in which selection would yield a better 

genetic response from either group involved.  Although some weeks demonstrate a 

genetic component above what could realistically be referred to as an estimate of 

heritability (ie 1.25), the realism is that additive genetic variation is present and 

selection for improved PKD resistance is possible, supporting the findings of 

Chapter 3.  From the sire component, although a low estimate is apparent; 0.05 

(PKD Challenge 1, week 8), all remaining estimates are moderate to strong 

implying selection for disease resistance measured by kidney score will provide 

positive results from the families involved here. 

The fact that no differences were observed between high and low responding 

females, or between families, according to the term EBV in the statistical model, 

suggests that selection based on EBV will provide no additional benefit towards 

PKD resistance over other selection methods within the population tested here.  

However, the families displayed a range of average kidney scores from 0.64 to 2.46.  

Should at least some of the additive genetic variation be held within those families 

with lower average kidney scores, a greater improvement in PKD resistance than 

that estimated may be observed over selection generations.  Variation was also 

expressed between the families for the timecourse relating to the development of 

PKD.  Figure 4.3 illustrates the PKD score timecourse of a number of families used 

in the experiment; including all families on one graph would be somewhat 

confusing, hence a subsample of representatives have been selected to demonstrate 

the differences between groups.  As previously mentioned, timecourses could give 

farmers the opportunity to stock particular families at different times in the 

production cycle to naturally minimise the effects of PKD, but the practicalities of 

implementing such a stocking regime on commercial farms must be addressed.  

Further, the significant negative correlation between fork length and kidney score 

again suggests that fish size plays a role in PKD resistance.  In Chapter 3, a genetic 

correlation between size and kidney score was detected and discussed.  It was 

suggested that individuals may have been affected at different times, with those 

affected earlier surpassing the epidemic, recovering and beginning to feed to 
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become larger.  As all fish in the present study were infected at the same time, this 

could not be the case here, although size variation within or between families may 

still play a role.  Secondly it was suggested that more resistant fish are less stressed 

and so continue to feed gaining weight throughout the disease, and being larger at 

the time of sampling.  Although fed on maintenance ration throughout the 

challenges, this theory cannot be dismissed either, as hierarchical differences within 

the tank may have occurred so that larger fish dominate at feeding times increasing 

their size.  Finally, it was suggested that larger fish may simply be less susceptible 

or take longer to reach the epidemic stage, possibly due to a parasite to kidney ratio.  

Unfortunately, these claims cannot be dismissed either, and further work towards 

fish size in relation to PKD resistance may benefit the industry, where sizes are 

practical enough to be useful.   

The correlation between fork length and kidney score, although statistically 

significant, is weak and below what could be considered practical to use in 

commercial production.  The difference between the extreme grades of kidney score 

and fork length is only 1.43 cm, which is not enough to utilise in commercial 

management practices.  However, having shown on two separate occasions within 

this project that fish size is correlated to kidney score, should correlations be strong 

between production and physiological traits, by combining the family information 

(ie mean kidney score and timecourse) as well as fish size (either as fork length or 

body weight), additional benefits may be presented to the farmer; ie by stocking 

larger, and therefore more resistant fish and late ‘peakers’ early in the summer when 

PKD is most prolific, and smaller, less resistant fish and early ‘peakers’ later in the 

summer as water temperatures and PKD development decline - the benefit to the 

farmer is two-fold.  However, in practice, commercial farms may not benefit from 

segregating families and/or fish of differing sizes due to the time and management 

required in doing so.  The significant (albeit low) correlation between fork length 

and kidney score indicated here is based on phenotypic data.  However, it is likely 

that the genetic correlation would mirror the phenotypic correlation fairly closely, as 

demonstrated in Chapter 3.  To date, numerous authors have suggested that 

phenotypic correlations are generally indicative of genetic correlations, but only for 

pairs of production traits (Mousseau and Roff, 1987; Roff and Mousseau, 1987; 
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Roff, 1997).  Little is known of the predictive value of phenotypic correlations in 

relation to genetic correlations for production and physiological traits (see Roff, 

1997; Perry et al. 2004). 

Where fork length and body weight demonstrated a continual and rising trend over 

time (Figures 4.4 and 4.5), PKD score illustrated a trend that peaked and troughed 

according to disease progression in each challenge.  As expected, at 3 weeks post 

injection kidney scores were at their lowest as the parasite began to infiltrate the 

kidney (D’Silva et al., 1984; MacConnell et al., 1989).  Over time, development 

increased.  In PKD Challenge 1 kidney scores peaked at 7 weeks post injection 

(which appears not to be statistically different from weeks 6 and 8, according to the 

standard error), whilst in PKD Challenge 2 the highest overall kidney score was at 

week 9 (which appears not to be statistically different from weeks 7 and 8, 

according to the standard error).  In PKD Challenge 1, following week 7, a general 

and overall decrease in the development of the disease occurred, demonstrated by 

the lowering average kidney scores, until the trial was terminated at week 11.  In 

PKD Challenge 2, weeks 7, 8, and 9 combined are the peak in disease progress, 

before a reduction in kidney score is seen at week 10.  The observed trends in both 

challenges are similar to those observed in other studies (D’Silva et al., 1984; 

Clifton-Hadley et al., 1985, 1986; MacConnel et al., 1989).  Although a slight 

increase in kidney score was observed in week 11 over week 10 in both challenges, 

due to fewer individuals involved at week 11, increasing the standard error 

associated with the sampling, the two weeks are thought not to be statistically 

different.  Overall, the two challenges follow a similar trend in relation to kidney 

score over time with PKD Challenge 2 consistently lower than PKD Challenge 1 at 

every time point.  This is believed to be related (ultimately) to water temperature.  

Similarly, the reduced transmission in PKD Challenge 2, 73.61% compared to 

94.44% in PKD Challenge 1, is believed to be a result of lower water temperatures.  

With the development of PKD known to be temperature related (Ferguson, 1981; 

Clifton-Hadley et al., 1986), the lower and significant difference in water 

temperature between challenge 1 and 2 inevitably created differences between the 

two trials.  Although temperature alone could be the cause of the differences seen 

week on week, and in transmission, the possibly of husbandry stressors in earlier 
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life must not be dismissed.  Varsamos et al. (2006) found temperature variation and 

husbandry-associated stress in early life rearing later reduced the tolerance of 

juvenile sea bass (Dicentrarchus labrax) to disease, whilst Saeij et al. (2003) 

demonstrated that handling stress in the early life stages led to much more 

susceptible carp later in life when infected with Trypanoplasma borreli.  Such 

incidences suggest a negative impact.  Potentially, a reverse effect may have 

occurred in the present study.  Due to more severe stress in earlier life, BRF fish 

may have accustomed a greater tolerance to stress, leaving them more able to 

withstand PKD, but this is unlikely as a greater general susceptibility to stress was 

noted in the stock (see Section 4.2.4.2), supporting the findings of Varsamos et al. 

(2006) and Saeij et al. (2003).  However, having been exposed to various parasitic 

infections on multiple occasions, a general immune response against T. 

bryosalmonae may have occurred.  This has certainly been the case for re-exposure 

to the same parasitic infection (Gleeson et al., 2000; Karvonen et al., 2003, 2005; 

Cable and Van Oosterhout, 2007).  It cannot be ruled out that temperature, 

husbandry, and previous exposure to disease had an effect on both the progress of 

PKD, and also the mortality experienced in the two challenges. 

In PKD Challenge 2 mortality was negligible, whilst in PKD Challenge 1 mortality 

was much higher than anticipated.  Numerous publications describe mortalities 

associated with PKD in salmonids (Ferguson and Needham, 1978; Ferguson, 1981; 

Ellis et al., 1982), but the actual cause of death is often confounded due to the 

presence of other pathogens (Ellis et al., 1982; Foott and Hedrick, 1987), previous 

exposure to the disease (Foott and Hedrick, 1987; Hedrick and Aronstien, 1987), 

management techniques (Ellis et al., 1982), or environmental stressors (Brown et 

al., 1991).  To compare the mortality of the present study to those from field 

experiments is impracticable, and in the laboratory situation where fish are induced 

with PKD, having had no previous exposure to the disease, few records exist that 

report associated mortality.  D’Silva et al. (1984) report mortality having conducted 

an 8 week study using naïve rainbow trout exposed to T. bryosalmonae using the 

same inducing method as used in the present study (ip injection with homogenates 

of PKD-infected kidney), and where temperatures were similar to those of the 

present study (18oC ± 2oC); the mortality experienced was much greater than that 
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found in PKD Challenge 1, 35.48% compared to 8.45%.  Conversely, in an 

experiment by Morris et al. (2005), naïve rainbow trout induced via ip injection of 

PKD-infected kidney homogenate, and also held at 18oC ± 2oC, experienced no 

mortality over a 40 week period.  Both experiments used fish of comparable age 

(0+) and size to those of the present study.  Undoubtedly, the disease itself 

contributed to death, as the average kidney scores of mortalities are consistently 

higher than the average kidney scores of sampled fish (Figure 4.6), but PKD alone 

is thought not to be the sole reason for death.  To compare mortality in different 

salmonid species is not practical, as the effect of PKD is species-dependent 

(Ferguson and Needham, 1978; Ellis et al., 1982; Hedrick and Aronstien, 1987; 

Brown et al., 1991).  However, temperature has been discussed as a contributing 

factor where mortality has been associated with experimental T. bryosalmonae-

related mortality (Ferguson, 1981; Clifton-Hadley et al., 1986a). 

Since the two challenges were conducted in an identical manner in terms of holding 

unit and the sampling procedure, it is assumed that the ARF group were either more 

susceptible to stress, or the temperature profile in PKD Challenge 1 bordered, if not 

exceeded the upper critical level for this population of fish.  As water temperature 

rises, the metabolic rate of fish increases (Fry, 1971).  To accommodate the increase 

in metabolism, fish increase their oxygen consumption.  However, with rising water 

temperature comes a depression in the solubility of oxygen in water, presenting an 

unfavourable and degenerative cycle to fish living within such conditions.  During 

brief periods of high metabolic demand, the fish may be able to compensate by 

resorting to anaerobic metabolism, however Ojolick et al. (1995) warn that this may 

not be possible during chronic conditions of high metabolic demand, for example 

when disease is combined with high water temperatures, as was the case in PKD 

Challenge 1.  Temperatures of 21oC ± 1oC have been described as chronically high 

for rainbow trout following a study of diploid individuals at 21oC for 3 weeks: 39% 

mortality was experienced (Ojolick et al., 1995).  In the same study, it was noted 

that a marked increase in mortality occurred when water temperatures exceeded 

18oC.  This is in agreement with Myers and Hershberger (1991) who discuss 

mortality in rainbow trout at an averaged water temperature of 18.4oC.  Mortalities 

have also been recorded in rainbow trout associated with a constant water 
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temperature as low as 17oC (Blanc et al., 1992).  This suggests that there is no 

single optimum or critical temperature range for all rainbow trout, and that the 

tolerance of any population measured could differ due to water chemistry (eg 

oxygen or ammonia), previous trauma (eg disease, stress, or suboptimal conditions), 

or the genetics of the stock.  With water temperature known to have a significant 

effect not only on production traits, but also on disease resistance (Dunham, 2004), 

several studies have concentrated on the potential of selectively breeding for 

increased temperature tolerance in rainbow trout (Ihssen, 1986; Linton et al., 1998; 

Molony et al., 2004), with Perry et al. (2005) discussing genetic differences for 

upper thermal tolerance between different populations within a single experiment.  

Molony et al. (2004) compared domesticated and naturalised lines of rainbow trout 

to find that domestication through passive selection left the stock more tolerant to 

water temperatures in excess of 25oC.  In the present study, the IoM population have 

had no (known) previous selection pressure in relation to temperature tolerance.  

However, from the range experienced it is unlikely that temperature alone was the 

cause of mortality in the PKD challenges, and elevated water temperature, handling 

stress, overcrowding, and hierarchical dominance, or a combination thereof, may 

have contributed to the mortality witnessed.   

A kidney score was allocated to every fish sampled for PKD resistance, according 

to the scale of Clifton-Hadley et al. (1987).  Over the eleven week period, each fish 

had a section of kidney removed which was used for immunohistochemistry.  In 

order to numerate the infection level, the extrasporogonic and sporogonic stages of 

T. bryosalmonae were stained using anti-T. bryosalmonae antibodies, A8 and D41.  

A significant positive correlation between kidney score and parasite load was found, 

suggesting that it is feasible to assume that the scale of Clifton-Hadley et al. (1987) 

is representative of the infiltration of parasites to the kidney, which may also be 

defined as a method of calculating resistance.  Although high (r=0.607), the 

correlation is not as strong as expected.  This could be due to a number of factors.  

Firstly, the kidney score assigned is extremely subjective.  Although the grading 

system of Clifton-Hadley et al. (1987) is detailed and comprehensive, there are only 

five possible categories in which to position a swollen kidney.  In the case of 

parasite load, the numbers could show an extensive range; in this study alone counts 
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of one, up to five hundred and fifty nine were observed over the eleven fields of 

view.  The correlation could be stronger if more categories were added to the 

Clifton-Hadley et al. (1987) scoring system, but as a long standing and simple 

approach, this is unlikely to change.  Other areas that could affect the correlation 

include the methodology in preparing sections, ranging from the quality of section 

cut to the successful staining of parasites, as well as the choice of antibodies and 

their efficacy (which could also vary dependent on culture and storage conditions).  

It was noted in the present study that the majority of procedures (including cutting 

and staining) improved over time as competence increased; that is not to say earlier 

samples are less reliable, simply harder to observe.  The storage and culture of the 

cells producing the antibodies should be conducted so that variation is minimised.  

In the present study, cultures were prepared in bulk before being aliquoted into 

manageable volumes, and storage was equal both within and between the antibody-

producing hybridoma cell lines.  

Although every attempt was made to ensure that a similar transect of kidney was 

used for immunohistochemistry from each fish, it was inevitable that some variation 

would occur.  It was noticed when counting parasite numbers that sections with a 

greater density of kidney tubules had lower parasite numbers; the majority of 

sections densely packed with tubules produced zero to less than ten parasites over 

the eleven areas studied (personal observation).  Clifton-Hadley et al. (1987) 

reported a similar observation following a histological study of 0+ rainbow trout on 

a PKD infected farm.  The fact that T. bryosalmonae destroy kidney tubules, 

suggests that disease progression to a chronic state will inevitably increase the 

number of parasites, and therefore the rate at which tubules are destroyed, 

explaining the number of parasites to tubule ratio in both this and the study of 

Clifton-Hadley et al. (1987).  However, as kidney tubules condense towards the 

posterior of the kidney, the variation seen in the present study may be due to the 

area of kidney taken for immunohistochemistry.  However, the theory that fish 

possessing a greater density of tubules within the kidney may be more tolerant to 

the infiltration of T. bryosalmonae must not be overlooked.  The implications of 

such a correlation could provide numerous advantages to the industry and research.  

Resistance could be selected based on tubule number rather than kidney score or 
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parasite count, reducing the need for artificial challenging or collating data from 

natural outbreaks.  The techniques required to count tubules are more affordable and 

simpler than for immunohistochemistry, especially as the requirement for antibodies 

would be removed.  Further, farmers could use production fish at harvest to gather 

the required information, saving both time and money on trials and/or sacrificing 

healthy or young fish.  Further research to support or dismiss these claims would 

benefit the industry.   

In order to fully understand if kidney score is a good indicator of parasite load, and 

in turn resistance, further research is required in this area.  The present study has 

provided a firm basis on which to develop future work, suggesting that kidney score 

is a good measure of parasite infestation, and in turn a representative measure of 

resistance to PKD.  However, with areas requiring further attention in parasite 

counting, strict guidelines need to be developed, standardised, and adopted in 

relation to the section of kidney taken for immunohistochemistry, the protocols used 

in the cutting and staining procedure, as well as the number of tubules within the 

kidney section taken into account.   

Finally, when parasites/mm2 was assessed for the regression on female EBV, the 

result was extremely variable; this is further identified by the graphical display of 

parasites at each kidney score (Figure 4.11).  Most notably, the sign for regressions 

in the majority of weeks throughout PKD Challenge 2 is negative.  As kidney score 

was hypothesised to relate significantly to the number of parasites in the 

immunohistochemistry stained kidney sections taken for each individual (which was 

proved with some degree of success in this study), it is perhaps surprising that a 

similar result to kidney score regression on EBV was not found in PKD Challenge 

2, ie the majority of regressions being positive.  Further, of all the regressions of 

parasite/mm2 on EBV calculated, unlike kidney score, four were deemed to be 

statistically significant; three of which demonstrated a negative value.  However, the 

regressions in PKD Challenge 1 are in agreement with the philosophy that 

parasites/mm2 has a positive relationship with the EBV of females, and in turn, the 

relationship between kidney score and parasites/mm2 is strengthened.  Although the 

regression in week 3 in PKD Challenge 1 is negatively significant, it is important to 
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note that the other significant regression is positive in week 8.  In PKD Challenge 2, 

the significant regressions are in weeks 8 and 9, and although negative in PKD 

Challenge 2, this timing is believed to be an important stage in PKD progression, 

and the aetiology of this disease during this time should be focussed upon in future 

research.  With the mean kidney scores in both trials peaking at or around weeks 7 

to 9, and the timecourse of individual families showing vast variation seven weeks 

post infection, as well as the humoral antibody response to T. bryosalmonae at 

approximately seven weeks post infection already identified, it is obvious that this 

stage of infection may hold the key to understanding the resistance of rainbow trout 

to PKD. 

Having identified additive genetic variation for PKD score exists within the IoM 

population (Chapter 3), the present chapter was established and proved to support 

these findings.  Although families of high and low tolerance to the disease were 

selected for the study, no significant difference occurred between the families, or 

between the groups held at different locations; ARF and BRF.  However, additive 

genetic variation leading to significant estimates of heritability was calculated from 

both the sire and dam components in the study, suggesting selection for improved 

resistance to PKD is possible within the families used here.  Additionally, the 

variation in average PKD scores of each family indicates that selection may be 

improved above that predicted by selecting families with lower scores, but only if 

the additive genetic variation calculated is held within those families.  The 

numerous positive regressions of kidney score on EBV, although not significant, 

indicate that future research may support the theory that broodstock of high and low 

response to PKD relates significantly to kidney score.  The timeframes calculated 

for each family illustrates the variation of the effect of PKD for each group.  The 

demonstration of peaks and troughs of PKD score at different times may provide a 

useful tool for farmers seeking to minimise the effects of PKD through management 

practices, ie stocking regimes assisting with natural vaccination.  Finally, the 

significant and positive correlation found between PKD score and parasite number 

within kidney sections suggests that scoring according to the scale of Clifton-

Hadley et al. (1987) is representative of the infiltration of parasites to the kidney 

throughout the course of the disease, reassuring that kidney score is a good measure 
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of PKD resistance.  However, with many areas questionable as to the reliability of 

the counting, no strict conclusions can be drawn here, and it is suggested that further 

research is conducted.  Overall, this study has supported the claims that additive 

genetic variation exists within the IoM population that would respond well to 

selection for improvement to PKD resistance.  This strengthens the initial findings, 

and provides further evidence that a selective breeding programme for PKD 

resistance in the British rainbow trout industry is not only possible, but also 

feasible. 
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5.1 Introduction  

Scientists at the Institute of Aquaculture, University of Stirling, consistently report 

the presence of Aeromonas salmonicida in fish affected by Tetracapsuloides 

bryosalmonae in the field situation or in naïve fish experimentally induced from 

field affected fish.  Although no literature is available in support of this claim, 

acting as an opportunistic pathogen following the infection of T. bryosalmonae, it is 

perhaps unsurprising that A. salmonicida takes advantage of immunocompromised 

species, suggesting Proliferative Kidney Disease (PKD) acts as a precursor for the 

bacterial disease.  In PKD challenges where naïve fish have been injected with the 

kidney homogenate of fish infected with T. bryosalmonae from a commercial site, 

evidence of furunculosis is often recorded in the experimental fish.  However, the 

symptoms of the bacterial disease are rarely witnessed in the fish used to transmit 

PKD, suggesting that infection of PKD often leads to a carrier state of A. 

salmonicida in rainbow trout (Morris et al., 2003a and subsequent unpublished 

laboratory work).  To date, numerous pathogens have been reported at field sites 

affected by PKD (Hoffman and Dangschat, 1981; Hedrick et al., 1985; O’Hara, 

1985), but the presence of A. salmonicida as a secondary pathogen has been 

described at only one (Hoffman and Dangschat, 1981).  In the majority of 

circumstances rainbow trout are considered the salmonid least affected by 

furunculosis, but under the extreme pressures of PKD, especially in the culture 

environment, an opportunity is presented to overcome the host.   

Controlling furunculosis has historically been problematic.  Although some 

evidence of treatment through the use of therapeutic antimicrobials has been 

possible, the evolution of drug resistant strains has and continues to hinder the 

salmonid industry (Munro and Hasting, 1993).  Advances in fish vaccine design 

have been made in recent years (Munn, 1994; Lutwyche et al., 1995; Siwicki et al., 

2002) and oil-adjuvated vaccines against furunculosis have produced encouraging 

results in the field (Press and Lillehaug, 1995; Midtyling et al., 1996).  Although 

numerous companies offer vaccines to control the disease (Aquavetplan, 2001; 

Schering-Plough, 2007), there continues to be increased interest in selective 

breeding to produce fish stocks tolerant to furunculosis; as a result substantial work 
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has been conducted in this area (Marsden et al., 1996; Gjøen et al., 1997; Nordmo et 

al., 1998; Perry et al., 2004).  Selection for furunculosis tolerant strains on farms 

endemic to PKD will help to alleviate at least one of the associated stressors 

contributing to mortality.  Where genetic correlations between PKD and 

furunculosis resistance are found to be favourable, a suitable selection index can be 

designed to utilise families with the greatest resistance to both diseases.  

Conversely, the discovery of a negative relationship, most likely due to differing 

aetiologies of the diseases, as found by Henryon et al. (2005) when studying the 

bacterial diseases Enteric Red Mouth (ERM) and Rainbow Trout Fry Syndrome 

(RTFS), and Viral Haemorrhagic Septicaemia (VHS), means alternative approaches 

may be necessary, eg sequential selection. 

The object of the present study is to test the tolerance of the Isle of Man (IoM) 

commercial families to furunculosis under experimental conditions.  By estimating 

the degree of genetic variation that exists in these commercial families following 

exposure to the causative agent, the subsequent data will indicate as to whether 

genetic improvement to furunculosis resistance is possible.  The estimates of 

heritability calculated can then be incorporated into the previous results attained for 

PKD resistance.  With information gathered for both diseases, data will be available 

in anticipation of a forthcoming breeding programme for the farms involved in this 

project. 
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5.2 Materials and Methods 

5.2.1 Broodstock and mating design 

The same families of fish used in the PKD challenges were used for the furunculosis 

challenges in order to asses and compare the resistance between the two 

commercially important diseases.  The broodstock, mating design, rearing, and 

tagging are therefore identical to those seen in Chapter 4, Section 4.2.  The only 

exception is the absence of ARF 4 in the furunculosis challenge due to a limited 

number of representatives available. 

5.2.2 Challenges 

5.2.2.1 Screening 

Prior to any challenge taking place, representatives from each family were screened 

for the presence of A. salmonicida using the same equation described in Chapter 4, 

Section 4.2.4.1.  However, sample size required was divided by 14 ARF families, 

not 15 as described in Chapter 4.  Again, the low prevalence (0.01) was used due to 

both batches being certified disease-free and no history of furunculosis at the two 

holding sites.  All fish tested negative for furunculosis.  The techniques used to 

screen fish mirrored those of the actual challenges described below. 

5.2.2.2 Design 

Both furunculosis challenges were conducted at the Aquatic Research Facility 

(ARF), Institute of Aquaculture, University of Stirling due to its Home Office 

licensed status.  The challenges were completed consecutively and design remained 

the same so comparisons could be made.  The challenge involved four test tanks and 

four control tanks, each assigned at random.  Each tank was 100 l in volume, with 

flows of >2 l/min plus aeration.  Light regime was standard to the ARF; 12 h 

light:12 h dark.  Feed was not given.  Water temperature remained at or above 15oC 

(± 2oC) in both challenges.  Movement to the test tanks took place 5 days prior to 

injection (17/08/2006) for Furunculosis Challenge 1, ARF families (22/08/2006; 

day 0), and 1 day prior to injection (19/09/2006) for Furunculosis Challenge 2, BRF 
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families (20/09/2006; day 0).  In Furunculosis Challenge 1, each replicate consisted 

of 10 fish per family, equating to 140 fish per tank (total: 1120).  In Furunculosis 

Challenge 2, 20 fish per family were used, 160 fish per tank (total: 1280).  

Representatives were weighed into tanks to ensure no biases in replicate weight for 

each challenge.   

5.2.2.3 Bacterial preparation 

The Marine Harvest strain of Aeromonas salmonicida used for challenging fish was 

prepared following the Institute of Aquaculture, University of Stirling standard 

curve protocol (Appendix 1).  The virility of the bacterial strain and unknown 

response of the population to be tested meant pre-challenge experiments were 

conducted to calculate the required dose to achieve 50% mortality.  The 14 ARF 

families were used in pre-challenge experiments. 

5.2.2.4 Pre-challenges 

Performed in three replicates, 3 fish per family were ip injected with 1.15 x 103, 104, 

and 105 colony forming units (CFU), equating to 42 fish per replicate (a total of 126 

fish).  This was the most efficient way to calculate the desired dose rate without 

excessive use of fish, whilst maintaining a representative number per family.  

Mortality in each replicate exceeded the desired 50% mark with 1.15 x 103, 104, and 

105 CFU producing 62%, 83%, and 90%, respectively, over a 9 day trial period.  A 

further pre-challenge using two replicates was performed to assess dose rates of 5 x 

102 and 1 x 103 CFU.  Over the second nine day challenge period, mortalities of 

45% and 55% were obtained, respectively, and 1 x 103 CFU was selected as the 

challenge dose. 

5.2.2.5 Actual Challenges 

The infection method used throughout challenges was ip injection.  Test fish were 

subject to a 0.1 ml injection of 1 x 104 CFU of A. salmonicida-MH to achieve a dose 

rate of 1 x 103 CFU per fish, whilst control fish were treated identically but injected 

with 0.1 ml of 0.85% saline solution only.  The day of injection was defined as day 

0, and both trials lasted 21 days.  
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5.2.2.6 Observation and examination 

Tanks were observed twice daily until the inception of death, when observation was 

increased to four times daily, in accordance with Home Office regulations.  Dead 

and moribund fish were removed each day.  Fish were identified to the family level, 

had their fork length recorded, and were examined bacteriologically for the presence 

of A. salmonicida.  Anterior kidney smears were plated on to TSA, and incubated 

for 48 hr prior to examination.  After 48 hr, isolates of A. salmonicida were 

identified as typical colonies (morphological examination) producing brown 

diffusing pigment (pigmentation analysis).  Each day, a random sample of at least 

10% of the isolates were examined by Gram’s staining and agglutination testing; 

positive A. salmonicida showed Gram-negative coccibaccili bacteria, and reacted 

positively by agglutination test with the test serum BioNor AQUA Mono As 

(BioNor, Norway); for protocols see Chapter 2, Section 2.3.   

5.2.3 Statistical analysis 

5.2.3.1 Summary statistics 

All data relating to the challenges were entered into Microsoft Excel in preparation 

of analysis.  Where basic statistics (mean, count, standard error etc) were required 

Microsoft Excel was used.  Some graphs are also products of Microsoft Excel.  All 

other analysis was conducted using Genstat Release Version 9.1.  Mortality of the 

fish following challenge is presented as the number of mortalities, number 

surviving, cumulative mortality within each full-sibling group, as well as per trial, 

and overall.  The average length at time of death, and average number of days to 

death is also presented.   

5.2.3.2 Furunculosis resistance, survival, and estimates of heritability 

Resistance was assessed as both a binary trait (ie survived/died) and longitudinal 

trait (ie time until death following challenge).  The statistical model used is 

described below.  As a binary trait, resistance was assessed as a binary variable, Yi, 

where Yi is the observed value of fish p (yip), allocated the value yi = 0 if death 

occurred during the 21 days following injection and yi = 1 if it survived.  Fish that 
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survived were assumed to be more resistant than those that died.  As a longitudinal 

trait, resistance of fish p was assessed as the time (days post injection; dpi) to death.  

Having aimed for 50% mortality rate, it was assumed that all fish surviving to day 

21 would recover from A. salmonicida infection; these fish were assigned as 

censored observations.  Measuring resistance as the time until death provides a 

measure of the degree of resistance; the longer it takes for a fish to die, the greater 

the resistance.  The study also looked at the proportion of each family that died over 

the 21 day challenge period; this was thought to give a further indication as to the 

level of resistance within each family.  Fish size was measured, but due to problems 

associated with measuring body weight in challenge trials where no feed is 

administered (ie cannibalism), fork length was taken as a more accurate measure.   

The REML model allowed individuals or entire families to be assessed on their 

challenge performance.  Further, estimates of heritability could be calculated from 

the resultant genetic components: 

yihp = µi + bi.EBVihp + trialih + sireik + damil + tankim + eihp 

where yih is the vector for the trait of interest (i) of fish p.  µi is the population mean 

for trait i, bi.EBVihp is the regression on the estimated breeding value of dam l, 

treated as a fixed term, trialih is the fixed effect to assess any differences between 

ARF and BRF fish (ultimately Furunculosis Challenge 1 and 2), and sire k, dam l, 

and tank m are random effects for trait i, whilst eihp represents the residual error 

associated with trait i. 

As per Chapter 4, the random effects of sireik, damil , and residual error (eijp) were 

considered to be independent random normal variables with mean zero, and 

variances denoted σs
2, σd

2, and σe
2.  Total phenotypic variance was denoted σt

2, and 

was estimated as σt
2 = σs

2 + σd
2 + σe

2.  The genetic information for this study comes 

from: (i) the dam variance (σd
2), which represents the variance of deviations from 

the regression on EBV; and, (ii) the sire variance (σs
2).   
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Estimates of heritability were based on the narrow sense heritability, and could be 

obtained from the sire variance using the formula: 

4(σs
2) / σt

2, from the sire variance component hs
2 

Whilst the dam variance, in principle, contains other non-genetic maternal effects, 

in this study, given its small size, it was interpreted as being wholly genetic.  The 

estimates of heritability were obtained from the dam variance using the formula: 

4(σd
2) / σt

2, from the dam variance component hd
2 

However, it is important to note that part of the genetic variance attributable to dams 

was removed by the regression on EBV. 

In order to determine if random variables were significant, they were assessed using 

a likelihood ratio test.  Following the REML model, the term of interest (sire, dam, 

or tank) was removed and the resultant deviance compared to the original.  The term 

was deemed significant if the difference was greater than χ2 at 1 degree of freedom 

(likelihood ratio test statistic at 95% CI: 3.84). 

The rate at which fish died is also demonstrated using Kaplan-Meier estimates of 

the survival function for the 21 day challenges (Kaplan and Meier, 1958), where 

factors included trial, tank, and female, whilst variates included dpi, EBV, and 

survival. 
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5.2.3.3 Bulk weights 

As in Chapter 4, the bulk weights of families weighed into test tanks were assessed 

for any significant differences.  The REML model used to asses the bulk weight of 

families was: 

yihq = µi + bi.EBVihq + trialih +sireik + damil + tankim + eihq 

where yih is the bulk weight of family q involved in the challenge, and trialih was 

included as a fixed effect to assess differences between ARF and BRF fish (ie 

Furunculosis Challenge 1 and 2). 
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5.3 Results 

5.3.1 Furunculosis resistance 

Overall the challenges produced a mortality rate close to the anticipated (50%), 

52.04%; Furunculosis Challenge 1, 45.74%, and Furunculosis Challenge 2, 57.37%.  

Of the 1204 test individuals, 1201 were available for testing, but only 1178 could be 

identified to the family level.  For these individuals, mean dpi to death was 4.57 ± 

0.06 overall, with a range of 3.61 ± 0.10 (BRF 10) to 5.60 ± 0.31 (ARF 3) within 

full-sibling groups.  Cumulative mortality expressed a range from 22.50% (ARF 5 

and ARF 6) to 96.25% (BRF 10) within groups; mean 48.86%.  Fish unidentifiable 

to the family level were included in analyses where possible, ie Kaplan-Meier 

estimates overall and by challenge.  The data collated in the challenges is 

summarised according to family and overall in Table 5.1, below. 

Table 5.1 - Summary of furunculosis challenge data collected over a 21 day 
period for rainbow trout of different families 

Family Mortalities Survivors Cum. Mort % Morts % Mean dpi ± SE Length ± SE 
ARF 1 15 26 37.5 36.59 4.60 ± 0.32 11.91 ± 0.22 
ARF 2 21 17 52.5 55.26 5.00 ± 0.34 11.69 ± 0.19 
ARF 3 10 30 25 25.00 5.60 ± 0.31 12.64 ± 0.63 
ARF 5 9 31 22.5 22.50 5.11 ± 0.20 11.96 ± 0.23 
ARF 6 9 32 22.5 21.95 5.00 ± 0.33 11.64 ± 0.48 
ARF 7 14 25 35 35.90 5.50 ± 0.90 11.45 ± 0.23 
ARF 8 22 18 55 55.00 4.32 ± 0.23 11.75 ± 0.48 
ARF 9 16 24 40 40.00 4.69 ± 0.30 10.92 ± 0.23 
ARF 10 24 16 60 60.00 4.71 ± 0.39 11.66 ± 0.29 
ARF 12 19 17 47.5 52.78 5.47 ± 0.65 11.25 ± 0.27 
ARF 13 29 10 72.5 74.36 4.66 ± 0.31 11.51 ± 0.18 
ARF 14 21 18 52.5 53.85 4.71 ± 0.23 11.44 ± 0.30 
ARF 15 14 18 35 43.75 4.79 ± 0.52 11.42 ± 0.14 
ARF 16 24 11 60 68.57 4.67 ± 0.38 11.05 ± 0.17 
BRF 2 44 36 55 55.00 4.70 ± 0.23 10.75 ± 0.16 
BRF 3 41 39 51.25 51.25 4.88 ± 0.23 10.52 ± 0.21 
BRF 4 45 35 56.25 56.25 4.33 ± 0.16 10.13 ± 0.13 
BRF 5 32 48 40 40.00 4.50 ± 0.30 10.16 ± 0.16 
BRF 6 31 49 38.75 38.75 4.61 ± 0.19 9.65 ± 0.21 
BRF 8* 33 47 41.25 41.25 4.82 ± 0.40 9.75 ± 0.37 
BRF 9 63 17 78.75 78.75 4.43 ± 0.13 10.73 ± 0.10 
BRF 10* 77 1 96.25 98.72 3.61 ± 0.10 10.39 ± 0.11 
       
Challenge 1 families 247 293  45.74 4.85 ± 0.11 11.54 ± 0.07 
Challenge 2 families 366 272  57.37 4.39 ± 0.07 10.33 ± 0.06 
       
ALL families 613 565  52.04 4.57 ± 0.06 10.82 ± 0.05 
       
Unknown ARF 8 13     
Unknown BRF 0 0     
       
* Non-furunculosis deaths 2      
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The rate at which fish died was highest from days 3 to 5 over both challenges 

following injection with A. salmonicida.  The Kaplan-Meier estimate of the survival 

function indicates that over 10% of fish challenged with A. salmonicida died on 

these days when data was combined, with the greatest mortality on day 4: 20.57%.  

Very few fish died after day 7.  The rate at which fish died over the challenge period 

is illustrated in Figure 5.1.   

 
Figure 5.1 - Kaplan-Meier estimate of the survival function (Overall) for 21 
days following challenge of rainbow trout with Aeromonas salmonicida; − 
Survivor function, □ Censored observations 
 

The Kaplan-Meier account of mortality over the 21 day period (illustrated in Table 

5.2, below) details the time and number of deaths of fish involved in the study.  It 

illustrates the initial number of fish as ‘No. at risk’, which reduces accordingly as 

fish succumb to the injected A. salmonicida.  The Kaplan-Meier estimates, as well 

as the respective upper and lower estimates, are given to three decimal places on 

each day that mortality occurred during the challenge period. 
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Table 5.2 - Kaplan-Meier output for the two furunculosis challenges combined 
Time of death No. of deaths No. at risk Lower estimate Kaplan-Meier  Upper estimate 
2 2 1201 0.993 0.998 1.00 
3 123 1199 0.877 0.896 0.912 
4 247 1076 0.663 0.690 0.716 
5 137 829 0.548 0.576 0.604 
6 62 692 0.496 0.525 0.552 
7 27 630 0.473 0.502 0.530 
8 6 603 0.468 0.497 0.525 
9 8 597 0.462 0.490 0.518 
10 4 589 0.459 0.487 0.515 
11 1 585 0.458 0.486 0.514 
12 2 584 0.456 0.485 0.513 
13 1 582 0.455 0.484 0.512 
15 1 581 0.454 0.483 0.511 
17 1 580 0.454 0.482 0.510 
21 1 579 0.453 0.481 0.509 
Total Failed Censored % Censored   
1201 623 578 48.13   
 

The time (dpi) and number (cumulative mortality) of mortalities within each family 

following exposure to A. salmonicida are shown in Figure 5.2, below, which 

highlights the variation in susceptibility to A. salmonicida.  It can be seen from 

Figure 5.2 that certain families succumb to the pathogen quickly resulting in a larger 

cumulative mortality (eg BRF 9 and BRF 10, which may be perceived as resistance 

assessed as a binary trait), whilst others show a greater resistance initially but 

mortalities persist over a longer period of time (eg ARF 7 and BRF 8, which may 

suggest a greater resistance assessed as a longitudinal trait).   

The two trials are segregated in Figure 5.3 to provide comparable Kaplan-Meier 

estimates of the survival function for both Furunculosis Challenge 1 and 

Furunculosis Challenge 2.  Displaying similar trends in mortality over the callenge 

periods, including the final level of mortality, the subtle difference between the two 

challenges lies with the initial death rate, being larger and in a greater number in 

Furunculosis Challenge 2.  
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Figure 5.2 – Cumulative mortality of all families involved in the Furunculosis 
Challenges up to 18 days post injection with Aeromonas salmonicida  
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Figure 5.3 - Kaplan-Meier estimate of the survival functions (by challenge) for 
21 days following challenge of rainbow trout with Aeromonas salmonicida; − 
Survivor function, □ Censored observations 

The Kaplan-Meier estimate of the survival function shown as Figure 5.4 illustrates 

the survival divided into individual groups, according to female, highlighting the 

variation between families.  This vast variation demonstrates survival according to 

female ranging from less than 5% to over 75%.  Most females demonstrate a similar 

trend in relation to cumulative mortality over this time period, but in certain families 

over 70% of the family is lost by 6 dpi.   

A Kaplan-Meier estimate of the survival function is also presented to illustrate the 

variation between neomales (Figure 5.5).  Again, a similar pattern has occurred, 

where not only a large difference in overall survival can be observed, for example 

between neomale 2 (over 60% survival) and neomale 7 (less than 15% survival), but 

also the rate at which fish die according to neomale. 
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Figure 5.4 - Kaplan-Meier estimate of the survival functions (by Female) for 21 
days following challenge of rainbow trout with Aeromonas salmonicida; − 
Survivor functions, □ Censored observations 
 

 
Figure 5.5 - Kaplan-Meier estimate of the survival functions (by Neomale) for 
21 days following challenge of rainbow trout with Aeromonas salmonicida; − 
Survivor functions, □ Censored observations 
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Although completed at different times the temperature profiles between the two 

challenges did not differ significantly, but the bulk weights of families between the 

groups (ARF and BRF) did (P<0.001). 

5.3.2 Genetics 

Overall, neither the binary nor the longitudinal traits uncovered significant 

differences between the two challenges, or between the females selected for their 

known high and low response to PKD (model term: EBV).  However, in both binary 

and longitudinal analyses, a significant genetic effect was present for sire and dam.  

Analysed separately, the two challenges displayed no significant effect for EBV, but 

a significant dam effect was evident for both binary and longitudinal traits in both 

challenges, following the likelihood ratio test.  A weak but significant correlation 

between individual fish size, measured as fork length, and timing of mortality (dpi 

to death) was observed in the stock (r=0.09, P<0.05).  The phenotypic trend of 

increasing fork length equating to greater resistance can be seen as dpi to death and 

mean fork length in Table 5.3, where smaller fish, eg 10.64 cm and 10.56 cm die 

due to furunculosis at 3 and 4 dpi, respectively, whilst larger fish, eg 11.57 cm and 

11.51 cm succumb to the disease after a longer period of time, 8 and 9 dpi, 

respectively. 

Table 5.3 - Average fork length of fish that died on specific days following 
injection with Aeromonas salmonicida in the Furunculosis Challenges 

Days post injection to death Fork length (cm)  
3 10.64 ± 0.11 
4 10.56 ± 0.08 
5 11.19 ± 0.10 
6 11.19 ± 0.16 
7 11.24 ± 0.26 
8 11.57 ± 0.48 
9 11.51 ± 0.25 

NB Only dpi with 4 or more observations used 
 

Estimates of heritability for fork length were calculated to be 0.09 ± 0.15 from the 

sire component, and 0.23 ± 0.10 from the dam component.  There was a significant 

difference (P=0.005) in the fork length of fish between the two challenges, as well 

as a significant dam effect for fork length when tested using a likelihood ratio test. 
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The proportion of fish that died in each family was calculated and compared to the 

EBV of females selected for the study (Figure 5.6).  From the EBVs, ranging from 

1.63 up to 2.83, the corresponding value of the proportion of the family that died 

was plotted.  Although a negative trend is apparent, as can be seen from the low 

EBV values corresponding to the greater proportion dead percentage, it is not 

significant (r=-0.139, p=0.196).  However, a significant sire and dam effect was 

found when analysed overall using the likelihood ratio test, but no effect from the 

fixed model term, EBV, occurred.  When analysed by challenge, a significant dam 

effect was found in both Furunculosis Challenge 1 and Furunculosis Challenge 2. 

 

 
Figure 5.6 - 2D scatter graph displaying the proportion of each family that died 
due to infection with Aeromonas salmonicida over a 21 day period, against the 
Estimated Breeding Value of the females selected for the study. 
 

The Kaplan-Meier estimate of the survival function below (Figure 5.7) illustrates 

survival according to females selected as high and low responders to PKD, ie with 

high and low EBV values, respectively.  As described for Figure 5.6, the females 

categorised as Low responders (ie with low EBVs) demonstrated a greater number 

of mortalities throughout the challenge period (represented as a lower survival in 

Figure 5.7), whilst females that were selected as high responders to PKD show a 

greater survival after 21 days. 
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Figure 5.7 - Kaplan-Meier estimate of the survival functions (by High and Low 
responders to PKD selected for the study) for 21 days following challenge of 
rainbow trout with Aeromonas salmonicida; − Survivor functions, □ Censored 
observations 

The estimates of heritability could be calculated from both the sire and dam 

components from the information attained.  The overall estimates of heritability 

were similar when calculated as binary and longitudinal traits, but were 

considerably higher when calculated from the proportion of fish that died.  All of 

the estimates displayed in Table 5.4, below, showed a significant genetic effect 

when tested by the likelihood ratio test. 

Table 5.4 - Estimates of heritability ± SE calculated from Furunculosis 
Challenges  
Estimate h2

s h2
d 

Binary trait 0.14 ± 0.21 0.33 ± 0.13 
Longitudinal trait 0.15 ± 0.23 0.37 ± 0.14 
Proportion dead 0.72 ± 0.96 1.00 
Fork length 0.09 ± 0.15 0.23 ± 0.10 
1.00 denotes an estimate attained above a value of 1 – value reduced to maximum theoretical value 
achievable; s and d are the estimates calculated from the sire and dam component, respectively  
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5.4 Discussion 

This experiment was designed to investigate whether significant differences and 

additive genetic variation exists in susceptibility to Aeromonas salmonicida 

between families specifically selected for high and low tolerance to PKD.  The 

EBVs of females selected to produce the families used in the experiment 

demonstrated no difference in resistance to furunculosis.  However, the additive 

genetic variation and subsequent estimates of heritability indicate selective breeding 

for furunculosis resistance is possible within these specially selected lines.  

Although calculated from both the sire and dam component, due to maternal effects 

that can create biases in disease resistance studies in fish species (Mor and Avtalion, 

1988; Sin et al., 1994), all estimates of heritability discussed will be based on the 

sire component only, as a more reliable estimate (Kolstad, 2005).  An estimate of 

heritability for fork length was also obtained.  The precedence of measuring fork 

length was to asses the effect of size on furunculosis resistance; as a result, a 

positive and significant phenotypic correlation was found between the length of fish 

and days to death following challenge with A. salmonicida. 

As previously discussed in Chapter 4 (Section 4.2.7), there was limited availability 

of experimental facilities to hold all families at one site and challenge 

simultaneously.  This led to marked differences between the two stocks.  The 22 

families were therefore held as two groups; ARF stock, consisting of 14 families, 

and BRF stock, consisting of 8 families.  Although separation of the two challenges 

was accounted for in the statistical model (term: trial), certain areas should not be 

overlooked; age difference, the exposure to and incidence of multiple diseases in the 

BRF families prior to challenge (as well as the single incidence of disease in ARF 

fish), the ‘condition’ suffered by BRF families (which resulted in 100% mortality in 

some families), and the size difference between the groups.  Many, if not all of these 

areas have been shown to have an effect on disease resistance in fish.  Numerous 

authors have reported an increase in resistance to reinfection following re-exposure 

to the same pathogen (Ferguson, 1981; Ellis et al., 1982; Gleeson et al., 2000; 

Karvonen et al., 2003, 2005; Gilbey et al., 2006) but there is also evidence of 

immunodepression following parasitic infection, which can increase the 
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susceptibility of fish to other pathogens (see Woo, 1992).  The stocks used in the 

present trial were exposed to and affected by Costia (ARF and BRF) or Trichodina 

(BRF).  To stipulate whether or not the previous exposure affected the overall result 

is impossible to conclude; to asses such effects would require research in itself.  

However, with the two groups experiencing very different levels of parasitic 

infection (both intensity and number), it is suggested that different responses may be 

apparent.  Ideally, any experimental testing should use naïve fish that have been 

exposed to the same environment.  When experimental facilities are lacking, where 

possible, terms should be incorporated into the statistical model to account for 

differences.  Further, the ‘condition’ experienced by BRF fish, thought to be related 

to the environment in which they were kept, described as a “lipid-related nutritional 

deficiency among the ova, only manifesting significantly at lower incubation 

temperature”, may also have had adverse effects on the susceptibility of the BRF 

trout (see Saeij et al., 2003; Varsamos et al. 2006).  Finally, age and size difference 

has also been noted to affect the results of challenge experiments (Glover et al., 

2004).  However, due to the nature of the disease, the design of the experiment, and 

the way data was compiled, it was decided to combine the results from both groups 

to attain an overall perspective of furunculosis resistance in the IoM fish.   

An additional problem encountered throughout Furunculosis Challenge 1 was the 

loss of tags.  Initially it was expected that fish from the family ‘Belly – green’ (ARF 

7) would be a problematic group as many of the recovered mortalities had their 

underside cannibalised due to starvation throughout the challenge.  However, it was 

found that ARF 7 had only one record missing from its data.  The most problematic 

tags were ‘Left eye – green’, ‘Head – pink’, and ‘Right eye – green’, belonging to 

families ARF 12, ARF 15, and ARF 16, each losing 10%, 20%, and 12.5% 

(respectively) of their data due to missing tags.  The main reason for the loss of tags 

was inexperience using elastomere tagging, which is supported by the number of 

unknown individuals in Furunculosis Challenge 2; zero.  Finally, the challenge 

design could have been improved.  Although the four test tanks provided sufficient 

information to assess any differences between families as well as calculate additive 

genetic variation, the results will have undoubtedly strengthened had the number of 

control tanks been reduced from four to two, increasing the test tank number from 
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four to six.  However, the challenge design was standardised across the two 

experiments. 

The estimate of heritability calculated from binary data is somewhat lower than 

other estimates for disease resistance in salmonids (Gjøen et al., 1997; Henryon et 

al., 2005), while assessed as a longitudinal trait is comparable ((Henryon et al., 

2002, 2005) or lower (Perry et al., 2004).  Such research indicates that selection for 

disease resistance is possible within salmonid populations, but it is impracticable to 

compare the results of the present study with work conducted on other pathogens.  

The research that has been compiled on A. salmonicida in salmonids has shown 

promising results (Marsden et al., 1996; Gjøen et al., 1997; Nordmo et al., 1998; 

Perry et al., 2004).  As early as 1925 selection experiments proved how successful 

genetic improvement towards furunculosis resistance could be as Embody and 

Hyford (1925) reported an increased survival rate from 2% to 69% after three 

generations of selection when studying brook trout.  Additionally, Ehlinger (1977) 

successfully reduced mortality rates in both brown trout and brook trout following 

selection for furunculosis resistance.  Since that time, a significant genetic 

component has been documented for resistance to furunculosis in many salmonid 

species.  Gjedrem et al. (1991) estimated heritability at 0.40 in Atlantic salmon, 

whilst Gjøen et al. (1997) calculated heritabilities of 0.53 and 0.38 for Atlantic 

salmon in challenge and field experiments, respectively.  Ødegård et al. (2007) 

calculated a heritability estimate of 0.43 ± 0.02 for furunculosis resistance in 

Atlantic salmon following challenge tests, whilst Perry et al. (2004) report an 

estimate of heritability of 0.51 in an experimental challenge using Arctic charr.  

Glover et al. (2004) found no significant difference between stocks of Atlantic 

salmon from farmed, hybrid, and wild parentage; any differences observed were 

deemed to be due to size of the fish in each group.  There has been limited research 

conducted on the difference in susceptibility to furunculosis at the family level, 

however Kjøglum et al. (2005) identified differences in susceptibility (prevalence of 

death) to furunculosis between three families of Atlantic salmon studied, whilst 

Dahle et al. (1996) observed family but not population differences to furunculosis 

susceptibility in the same species.  Although the estimates of heritability calculated 

here are moderate, and somewhat lower than those reported elsewhere, there 
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remains to be potential to improve the selected lines for furunculosis resistance.  

Further, the extreme variation in response to the disease illustrated between the 

families (Figure 5.4 and Table 5.1) suggests that some families could be disregarded 

from selection.  By selecting families that demonstrate a stronger resistance to A. 

salmonicida, the response to selection may be improved above that estimated from 

the heritability, providing the additive genetic variation detected lies within those 

families.  Although it is often difficult to select neomales according to family 

information due to the commercial management strategies used on farms, the graph 

illustrating the Kaplan-Meier estimate of survival by neomale highlights the 

variation that can occur between randomly selected fish.  By improving the 

management of neomale broodstock and selecting those with a greater resistance to 

the disease of interest based on family information, the resultant offspring should 

display a greater resistance overall.  Between the PKD high and low resistant lines, 

there is very little variation (Figure 5.7).  This supports the notion that the females 

selected for this project should be considered nominally high and low responding 

females as discussed in Chapter 4.  Finally, the estimate of heritability calculated 

from the proportion of each family that died, although promising, due to the limited 

number of families involved it is somewhat unreliable, as indicated by the large 

standard error associated.  Additionally, no other estimates of heritability for disease 

resistance in salmonids have been calculated this way, leaving comparisons to other 

work unavailable.   

It did not seem to matter whether resistance was assessed as a binary or longitudinal 

trait, as indicated by the estimates of heritability.  This is favourable for trout 

farmers, as it implies that the way resistance is assessed is not crucial to the overall 

result attained.  The trout were moderately challenged in this study, with mortality 

at ~50% in each challenge.  Most of the trout died within 8 days of challenging, 

presumably due to the high concentration of the causative agent administered.  

Challenge by intraperitoneal injection allows the bacterium to bypass initial lines of 

innate immune defence.  However, from a breeding perspective, challenging the 

trout in this way should have provided a suitable means to assess resistance.  Firstly, 

intraperitoneal injection meant a standardised amount of the bacterium was given to 

all challenged fish.  Secondly, it allowed the additive genetic variation for resistance 
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to be detected; although it is likely other forms of challenge would allow the genetic 

variation to be detected.  Many studies have shown that detection of additive genetic 

variation can be successful at a range of mortality rates and challenge methods for 

disease resistance.  For example, Gjedrem et al. (1991) challenged Atlantic salmon 

with A. salmonicida via cohabitation, resulting in mortality of 68%, and 

heritabilities of 0.32 to 0.48.  Henryon et al. (2002) immersed rainbow trout in the 

causative agent of VHS, resulting in almost 85% mortality and a heritability 

estimate of 0.13, whilst in 2005 Henryon et al. challenged rainbow trout with three 

commercially important diseases, induced via intraperitoneal injection (ERM and 

RTFS) or immersion (VHS), and resulting in 86% to 90% mortality with successful 

detection of additive genetic variation, and subsequent heritabilities ranging from 

0.07 to 0.57. 

Although standardised, the amount of causative agent injected into the fish requires 

consideration.  The fact that fish in the present study expressed a range of sizes, 

especially between the two groups (ARF and BRF, significant difference), suggests 

individuals were exposed to different amounts of bacterium in relation to size.  This 

is potentially the reason why a significant correlation between fork length and days 

to death occurred, with size found to have a bearing on resistance of the trout to 

furunculosis; the trend suggesting that smaller fish are more susceptible to A. 

salmonicida.  Glover et al. (2006) found the reverse to be true as a significant, albeit 

weak, negative correlation was detected between length and time until death when 

Atlantic salmon were challenged with A. salmonicida; however, when fish of less 

than 12 cm were removed from the data, correlations were no longer significant.  In 

the present study, it is assumed that the (weak) significant positive correlation is due 

to the ratio of fish size to the amount of bacterium; smaller fish displaying a faster 

response to A. salmonicida.  Using young/small fish in challenge experiments is 

beneficial for a number of reasons.  More representatives per holding unit can be 

used, less feed and management is required prior to challenge, and small scale 

experimental facilities can provide results as strong as large commercial operations 

utilising natural outbreaks.  Having used smaller and relatively young rainbow trout 

in the present study, enough data was collated to produce estimates of heritability 

for furunculosis resistance.  Using young fish in challenge experiments may provide 
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an insight into the resistance of adult rainbow trout.  The early selection for disease 

resistance would be a useful tool in breeding strategies.  However, it must be 

ensured that there is sufficient genetic correlation between the early and late trait 

measurements so that the indication given in early life is representative as the fish 

age.  To date, this has been the case for some production traits in salmonid species 

(Fishback et al., 2002; Su et al., 2002), but such correlations are yet to be measured 

for disease resistance (Perry et al., 2004), and further work is required. 

In addition to quantitative genetic experiments calculating significant heritability (as 

demonstrated here), there has been research conducted that demonstrates a link 

between allelic variation at the Major Histocompatability Complex (MHC) class I 

and II loci and susceptibility to furunculosis in studies involving salmonids 

(Langefors et al., 2001; Lohm et al., 2002; Grimholt et al., 2003).  Langefors et al. 

(2001) tested the importance of genetic variation in the MHC class II beta in 

Atlantic salmon for survival following challenge with A. salmonicida.  Fish from 

high and low resistance families were screened for their MHC class II beta 

genotypes to find certain alleles were more prevalent relating to high or low 

resistance; the study was the first of its kind to find a correlation between MHC 

class II allelic variation and resistance to a bacterial pathogen in a lower vertebrate.  

Later, Lohm et al. (2002) strengthened the claim of disease resistance and an 

association with the MHC when a strong survival advantage was detected for 

individuals carrying high-resistance MHC alleles against A. salmonicida; however, 

following exposure of numerous families, there was no difference between the 

groups displaying varying levels of hetero- and homozygosity.  Additionally, 

Grimholt et al. (2003) demonstrated the association between MHC class I and class 

II alpha and resistance against A. salmonicida in Atlantic salmon.  Having 

discovered a significant genetic component exists for susceptibility to furunculosis 

(Marsden et al., 1996; Gjedrem, 2000), and that Langefors et al. (2001) detected 

significant differences between the distributions of MHC class II beta alleles 

between families with high and low resistance to infection with A. salmonicida, it 

may have been expected to find differences between the families studied here.  

However, in agreement with the work of Lohm et al. (2002) the families involved in 

the present study displayed no difference in susceptibility to furunculosis relating to 
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the EBV.  This is perhaps unsurprising considering the families are of a similar 

origin, and have had comparable histories of exposure to the bacteria, ie none.  

However, it does appear that families with low EBVs are more affected by A. 

salmonicida than those of high EBV, but this effect is not statistically significant.   

As the first study to test for additive genetic variance in relation to furunculosis 

resistance in families specifically selected for high and low PKD tolerance, an 

overall positive result was observed.  Although no difference was indicated in 

relation to the female EBV, the additive genetic variation detected suggests 

significant gains in resistance to A. salmonicida can be made in the families used in 

this study.  It also suggests that other families from the IoM population may hold 

the potential for improvement to furunculosis resistance, as female EBV played 

only a minor role, if any.  Having calculated estimates of heritability of a similar 

magnitude from both binary and longitudinal traits, it appears the methodology used 

to calculate resistance shows no bias; an advantage to the farmer.  Finally, the 

families were assessed only against furunculosis in the present study.  Having 

already been assessed for PKD resistance (Chapters 3 and 4), and the data here 

suggesting a negative effect between the two diseases based on EBV, where a low 

EBV suggests a low resistance to furunculosis and high resistance to PKD, ie 

potentially a negative correlation (although not statistically significant), the data can 

be collated and used to provide information to the farms involved.  This will assist 

in establishing a suitable selective breeding programme incorporating the two 

commercially important diseases. 
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Initially, the sole aim of this project was to examine and identify if additive genetic 

variation exists within farmed populations of rainbow trout to the commercially 

important disease, Proliferative Kidney Disease (PKD); causative agent 

Tetracapsuloides bryosalmonae.  However, as research continued into the disease, it 

was noted that the bacterial pathogen, Aeromonas salmonicida; the causative agent 

of furunculosis, may play an important role in the mortality experienced at farm 

outbreaks.  Under the belief that PKD alone is not enough to cause mortality, it has 

been assumed that the effects of T. bryosalmonae in the latter stages of PKD 

(Holland et al., 2003) combined with additional infection from other rainbow trout 

disease(s) compromise the immune system of fish resulting in mortality (Hoffman 

and El-Matbouli, 1991, 1994; Foott and Hedrick, 1990).  With only two 

publications highlighting A. salmonicida at PKD outbreaks (Hoffman and 

Dangschat, 1981; Morris et al., 2003a) one of which is deemed to be related to the 

drug used rather than PKD (Morris et al., 2003a), this extended investigation into 

the relationship between PKD and furunculosis is based on the observations of 

scientists at the Institute of Aquaculture, University of Stirling, who continually 

report the presence of A. salmonicida at PKD epidemics.  This evidence is based on 

observations from the field, via commercial practices or field trials, or following the 

injection of kidney homogenate from PKD infected fish from the field into naïve 

experimental trout, often resulting in outbreaks of furunculosis in the injected fish, 

suggesting a carrier state of A. salmonicida in the transmission individuals.  In only 

one instance has PKD been reported to improve the immune response to another 

pathogen (Foott and Hedrick, 1990); the general consensus, supported by numerous 

authors reporting the presence of secondary infection where mortality occurs 

(Hoffman and Dangschat, 1981; Hedrick et al., 1985; O’Hara, 1985), is that 

opportunistic pathogens are the critical factor resulting in death where PKD is 

apparent, hence the importance of considering secondary pathogens of commercial 

importance, such as A. salmonicida. 

To test for a genetic component to PKD resistance, initial research involved a 

natural challenge test, where commercial populations of 0+ rainbow trout were 

exposed to the causative agent in the field situation.  The 1500 juveniles sacrificed 

on a single day were assigned kidney scores, from 0 to 4 inclusive, according to the 

scale of Clifton-Hadley et al. (1987).  From the data generated, it was discovered 
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that significant genetic (co)variation exists within the farmed populations to PKD 

score, and therefore potentially resistance, where the theory that the lower the 

kidney score the higher the resistance is considered, additive genetic variation for 

this trait could prove beneficial to the industry for selective breeding purposes.  A 

combined estimate of heritability for the two farms involved, Houghton Spring 

Hatchery (HS) and Isle of Man (IoM), was moderately high, suggesting that 

significant gains can be made towards the genetic improvement of PKD.  Further, 

the favourable genetic correlation between kidney score and fish size (fork length or 

body weight), as well as the additive genetic variation detected for the two 

production traits indicates that improvement to all three characters can be conducted 

simultaneously through selection.  Management techniques and genetic technology 

allowed the individuals to be assigned to specific families, as pedigree structures 

had been previously generated for a LINK project working on the genetic 

improvement of production traits in the populations.  This resulted in families being 

ranked (1 to 500) based on their estimated breeding values (EBVs are based on the 

same principal of kidney score); those with low values were used in production, 

whilst representatives of both high and low resistance families were retained so that 

challenging under experimental conditions could take place in order to support or 

dismiss the findings of the initial research.  The opportunistic challenge therefore 

presented the first insight into the potential of selectively breeding for PKD 

resistance in the British trout farming industry.  

The PKD experimental challenge was established using known high and low 

responding females to PKD, calculated from the initial study.  Four females (two 

high, and two low) were crossed with a single neomale so that the sire component 

could be calculated.  However, it was deemed that the high and low responding 

females were only nominally high; hence the regression of kidney score on female 

EBV was incorporate into the data.  The study resulted with the evidence of additive 

genetic variation to PKD score being supported, and having based the kidney score 

in the experimental challenges on the afore mentioned theory, that a lower score is 

deemed to be higher resistance, it suggests that the additive genetic variation is 

represented as PKD resistance also.  Although results were confounded due to 

differences in families held at different locations, additive genetic variation for PKD 

resistance was found to exist at each sampling week over an 11 week period.  The 
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additive genetic variation and subsequent estimates of heritability demonstrate the 

potential of selectively breeding for PKD resistance within the IoM families used.  

It also suggests that a genetic component may well be present in other production 

fish at the IoM site.  The regression of kidney score on EBV generally demonstrated 

a positive sign, suggesting that kidney score and EBV do hold a relationship, but the 

statistical insignificance at each sampling week (and overall) means no conclusions 

can be drawn here; further work is required to support the hypothesis.  The EBV 

was also included as a model term to assess family performance, but no family 

demonstrated a significantly better resistance to PKD.  The usefulness of 

incorporating EBV into a selection programme for PKD resistance in this 

population is therefore questionable; any programme developed should be based on 

the fact that additive genetic variation exists within the population that would 

respond favourably to selection.  Further, by recording family performance in 

relation to the desired trait, numerous options exist as to what selection 

methodology could be employed.  The timeframes produced for each family may 

prove useful to farmers to assist in stocking regimes so that the effects of PKD can 

be minimised, ie natural vaccination.  Where this could be employed practically, 

and the segregation of families could be maintained, families which PKD score peak 

later could be stocked earlier in the summer when PKD is most prolific, whilst those 

which peak earlier could be stocked later in the year as water temperature and PKD 

development decline.  Further, by incorporating the timeframe data with the 

negative correlation between fork length and kidney score (where size variation is 

sufficient to be practical, as seen in Chapter 3), it may be possible to stock larger 

fish earlier in summer, and smaller fish later to help suppress the effects of PKD.  

Finally, PKD score was found to relate significantly to the number of parasites in 

the kidney suggesting that the scale of Clifton-Hadley et al. (1987) is indeed 

sufficient and accurate to describe the degree of infection in rainbow trout.  

However, certain areas in relation to T. bryosalmonae counting require attention. 

The same families, with the exception of one, were used in the furunculosis 

challenges.  The experimental design differed significantly to that of the PKD 

challenge, but the design was sufficient to detect additive genetic variation for 

resistance to furunculosis.  Assessed as both a binary and longitudinal trait, 

estimates of heritability calculated for survival were moderate suggesting significant 
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genetic improvement can be made within these families for resistance to 

furunculosis.  No families illustrated a higher tolerance to the disease according to 

the EBV but as additive genetic variation was detected it suggests the IoM 

production stock may also hold potential resistance to the disease.  Similarly to the 

previous two studies, a favourable correlation was found between size and 

resistance, suggesting these traits can be used in selection simultaneously.  

However, having analysed the same families for the two separate commercial 

diseases, it was discovered that the EBV of females showed an opposing result to 

each disease.  Females with low EBVs, calculated from initial data suggests that a 

higher degree of resistance to PKD should be demonstrated, and that higher EBVs 

would produce a more severe PKD reaction (although this was not statistically 

significant in the PKD challenges).  When EBV was plotted against days to death or 

high and low responding lines were assessed using a Kaplan-Meier estimate 

following challenge with A. salmonicida, although not statistically significant, 

females of lower EBV were found to respond quicker to the bacteria, indicating a 

lower resistance to furunculosis, and overall, a potentially negative correlation 

between the two diseases. 

To date, the results of other studies have noted various responses to research 

between two diseases in salmonids.  There is evidence of both favourable (Ødegård 

et al., 2007) and unfavourable (Gjøen et al., 1997) genetic correlations between 

viral and bacterial diseases, a favourable response between two bacterial diseases 

(Gjøen et al., 1997), and inconclusive evidence in a rainbow trout population 

studied by Henryon et al. (2005), who discovered only a weak genetic correlation 

between two bacterial diseases, Enteric Red Mouth (ERM) and Rainbow Trout Fry 

Syndrome (RTFS), and the viral disease, Viral Haemorrhagic Septicaemia (VHS); it 

was hypothesised that a positive and strong genetic correlation between ERM and 

RTFS, and a unfavourable correlation between the two bacterial diseases and VHS 

would be apparent.  In terms of production traits and disease resistance both 

favourable (Standal and Gjerde, 1987; Gjedrem et al., 1991; Nilsson, 1992; as well 

as Chapter 3, and phenotypically in Chapter 4) and unfavourable (Henryon et al., 

2002) genetic correlations have been identified.  Ødegård et al. (2007) are critical of 

some of the work conducted on genetic correlations in disease resistance, suggesting 

that the work of Gjøen et al. (1997) does not indicate a truly antagonistic genetic 
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relationship, stating the low negative correlation calculated may have been the result 

of sampling error.  The same suggestion is made by Ødegård et al. (2007) toward 

the work of Henryon et al. (2005), who are self-critical of their result and suggest 

that the weak-to-moderately strong genetic correlation may be due to uncertainty of 

the estimates attained.  They (Henryon et al., 2005) continue by stressing how it is 

important that reliable estimates of genetic correlations are required through 

assessing large numbers of families for resistance.  Although the correlation is not 

statistically significant in the present study, there remains to be an indication that 

the two diseases conflict.  Having only a limited number of families to asses, as well 

as a limited number of observations within those families, the error associated with 

the result here is enough to mask any real genetic relationship that may be 

occurring.  Based on the discussions of previous authors, it is therefore important 

that further research is conducted towards the relationship between PKD and 

furunculosis, or any other important commercial disease that may be contributing to 

mortality when PKD occurs. 

As far as is known this is the first study to take into account a bacterial and parasitic 

disease within the same population of rainbow trout, and although tentative, it is 

also the first to report any form of correlation between resistance to parasitic and 

bacterial diseases.  Due to the different aetiologies of aquatic diseases, it is expected 

that certain pathogens will conflict when genetic studies take place.  The 

mechanisms involved in fighting pathogens will undoubtedly play a considerable 

role in any correlations detected.  This very assumption led Henryon et al. (2005) to 

explain how the different pathogens of ERM, RTFS, and VHS are believed to have 

invoked different immune responses from the trout, and that the response 

mechanisms were under independent genetic control.  In the present study, the ideal 

situation would have been a significant and positive correlation between the two 

diseases, which would benefit the industry so that selection could be conducted 

simultaneously resulting in a faster genetic improvement to both PKD and 

furunculosis.  The result here implies that progress can be made towards resistance 

in both diseases simultaneously or over time without a severe negative impact 

occurring in resistance to the opposing disease, suggesting that sequential selection 

or a selection index could be used in a breeding programme.  Sequential selection 

allows the genetic improvement towards resistance of one disease first before the 
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second is added to the selection programme, whilst a selection index uses families 

based on a moderate response to both diseases, and all traits are taken into account, 

given an appropriate weight according to the heritability and phenotypic and/or 

genetic correlation between them (Gjedrem and Thodesen, 2005).   

Due to the statistical insignificance of the trend between the two diseases shown 

here, it is suggested that the effect of selecting for one disease will not have a 

detrimental effect on the other.  However, as A. salmonicida is considered a 

secondary pathogen in this situation as it emerges only as water temperatures 

increase towards summer inflicting additional stress on the trout, and because the 

host is immunocompromised due to the effects of PKD, it would be more beneficial 

to employ sequential selection to the population used in the present study.  

Sequential selection requires careful management, and it is important to record the 

progress of PKD resistance as discussed in the General Introduction (Chapter 1, 

Section 1.2.5).  By selecting for high tolerance to PKD first, an improvement in the 

effects of the disease may result in less secondary infections affecting the host, 

especially where such secondary infection(s) can be vaccinated against, as is the 

case for furunculosis, ERM, and Vibriosis in rainbow trout.  This approach could be 

incorporated into future research towards PKD resistance, as diseases that already 

have well-developed vaccines require less attention in regards to selective breeding 

towards their resistance.  That is providing PKD does not have an adverse effect on 

the effectiveness of the vaccine administered, especially in the case of furunculosis 

as British farms are presently not allowed to booster; this area will undoubtedly 

require consideration in future research.  Where PKD resistance is improved 

through selection, the effect of A. salmonicida (and other pathogens acting as 

secondary infections) should be reduced, but it is important to re-estimate genetic 

parameters periodically in a selection programme to account for any changes in the 

genetic parameters initially measured; this is especially important when 

simultaneous selection is being applied (Gjedrem and Thodesen, 2005).  Following 

selection for PKD resistance, additional research on furunculosis resistance is 

advised prior to its inclusion in the breeding programme.  This does not mean the 

research conducted here has been uninformative.  The furunculosis data attained has 

provided evidence of additive genetic variation in the population, an indication as to 

the potential resistance of families, as well as identifying a potential relationship 



IoA  Chapter 6 – General Discussion 

PhD 171 GMB 

between PKD and furunculosis resistance.  Further, the information gathered can be 

retained as reference material so that the techniques and challenge design used can 

be mirrored in the future, allowing comparisons to be made. 

The favourable genetic and phenotypic correlations calculated between disease 

resistance, either in PKD or furunculosis, and production traits, as fork length or 

body weight, in the present project suggests it is feasible that selection for resistance 

will not create an unfavourable response in the production traits.  Although the 

correlations were not of a great magnitude, it would be beneficial if selection for a 

production characteristic improved disease resistance in the population.  Falconer 

and Mackay (1996) state that indirect selection has great potential providing there is 

sufficient genetic correlation between the two characters, and that the production 

trait holds a substantially higher heritability than the disease resistance trait.  As 

disease resistance traits are often expensive or difficult to measure, Fjalestad et al. 

(1993) had considered indirect selection to improve the efficiency of selection for 

disease resistance.  In order to reduce costs it was suggested that correlated or 

marker traits could be used to measure disease resistance, such as lysozymes (Røed 

et al., 1992, 1993; Lund et al., 1995), immunoglobulin levels (Strømsheim et al., 

1994a; Lund et al., 1995), plasma α2 – antiplasmin activity (Salte et al., 1993), 

antibody titres (Lund et al., 1995; Strømsheim et al., 1994b), haemolytic activity 

(Røed et al., 1990, 1992, 1993), and cortisol levels (Refstie, 1982; Fevolden et al., 

1994); all of which have shown genetic variation and a genetic correlation to 

survival.  However none of the genetic correlations exceeded ±0.37, suggesting the 

correlated response to improve disease resistance would not be particularly large 

(Gjedrem and Thodesen, 2005).  However, if an estimate of heritability is found to 

be particularly high in a production or correlated or marker trait, because the 

measurements can be taken from live individuals (ie the breeding candidates, and/or 

their full- or half-siblings), it would present an opportunity to use individual 

selection in disease resistance studies, or other studies where the methods for 

measuring the trait are critical (Fjalestad, 2005b).  Further, it would increase the 

opportunity to improve (and combine) selection methods, and therefore the response 

to selection. 
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To understand fully the interaction between PKD and furunculosis, a challenge 

using both infectious agents at the same time should be conducted.  This had been 

suggested in the present project, but due to time limitations, it did not take place.  

The very different effects seen in the two challenges could be masked or heightened 

by challenging with two diseases simultaneously; potentially leading to very 

different results.  Challenging with both infectious agents may provide a more 

representative situation of what occurs in the field situation where fish are first 

affected by PKD then furunculosis.  Future research should consider such a 

challenge.  

Also, a ‘natural’ PKD challenge was conducted in this project on the BRF stock.  

The challenge involved administering T. bryosalmonae via a peristaltic pump to 

naïve rainbow trout to asses the transmission and effect of PKD using this method.  

The T. bryosalmonae were sourced from T. bryosalmonae-infected bryozoa cultured 

at the Aquatic Research Facility (ARF), Institute of Aquaculture, University of 

Stirling.  As the bryozoa released spores into the surrounding water of their holding 

unit, the infected water was pumped into tanks holding rainbow trout.  This method 

was believed to mimic more closely what occurs in the farm situation.  However, 

due to an extremely low transmission rate, the number of infected fish was 

negligible and the data was not used.  There was however, evidence of PKD, 

apparent as swollen kidneys, and the presence of T. bryosalmonae, determined by 

PKD-PCR of kidney samples.  Although the direction of transmission from infected 

bryozoa to rainbow trout has been completed previously (Feist et al., 2001; McGurk 

et al., 2006; Morris and Adams, 2006), this method of transmission has rarely been 

used.  The method of using a peristaltic pump from T. bryosalmonae-infected water 

is believed to have been the downfall of the challenge.  The length of tubing from 

the peristaltic pump to some tanks is believed to have had an effect on the success 

of transmission.  With no other reports publicising these materials and methods, it 

was difficult to predict such an outcome.  Since the failure of the natural challenge, 

the problem has been reported in another study (Morris and Adams, 2007).  A 

number of factors are considered as causing the failure in transmission, including; 

parasites dying due to a lack of oxygen or increased temperature because of 

prolonged periods within the tubing; agglutination to the tubing, so that the 

organism never reached the outlet to infect the host; a filtering effect caused by the 
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build up of waste materials and algae within the tube, or due to the type of outlet tap 

connected to the tubing; or, areas of concentration where parasites have congested 

causing a filtering effect or blockage within the tube.  Having observed a similar 

problem when attempting to transmit T. bryosalmonae to rainbow trout, D. Morris 

(Institute of Aquaculture, University of Stirling) simply shortened the length of 

tubing used and was able to successfully transmit the parasite using a peristaltic 

pump and the same tubing, which evidently resulted in chronic PKD (Morris, 2007 

personal observation).  

Considering its effect on the industry and the fact it has been evident for over 90 

years (Plehn, 1924; Schäperclaus, 1954; Besse, 1956; Hedrick et al., 1984b), it is 

perhaps surprising that there are no feasible, legal, or environmentally-friendly 

methods for the control of PKD to date.  It is also surprising that this is the first 

study to consider the genetic component related to PKD resistance, considering 

previous work conducted on the genetics of disease resistance in rainbow trout 

(Gjøen et al., 1997; Henryon et al., 2002, 2005; Ødegård et al., 2007).  Historically, 

work on PKD has focussed on chemical and environmental methods of control only.  

For example, the use of Cyzine (Klontz, 1984), salination (O’Hara, 1985), malachite 

green (Clifton-Hadley and Alderman, 1987), fumagillin (Hedrick et al., 1988b; 

Wishkovsky et al., 1990; le Gouvello et al., 1999), and its analogue, TNP-470 

(Higgins and Kent, 1998; Morris et al., 2003a) have all been discussed with some 

degree of success.  However, the disadvantages associated with each chemical far 

outweigh the potential benefit to repress PKD; most are associated with health-

related issues, either to the fish or to the consumer.  In the case of salination, its use 

demonstrated great potential until the disease was observed in anadronomous 

species and the presence of T. bryosalmonae in saltwater was confirmed (Kent et 

al., 1995).  As a natural approach, aeration is used to increase the level of oxygen in 

the water, helping to minimise stress during endemic outbreaks, but temperature 

continues to be the only environmental factor that can minimise the effects of PKD 

directly.  Known to be imperative to the development of PKD (Ferguson, 1981), 

many authors suggest the disease is most prolific at 15oC or higher (Ferguson, 1981; 

Hedrick et al., 1984b; Clifton-Hadley and Alderman, 1987, 1988), with increased 

severity and development between 12oC and 20oC (Brown et al., 1991).  However, 

Gay et al. (2001) proved water temperatures as low as 8oC can be sufficient to 
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induce T. bryosalmonae infestation.  A reduction in water temperature will 

undoubtedly slow the development and at least some of the effects of PKD, but the 

majority of production sites would find controlling water temperature impossible.  

Additionally, as poikilotherms, a severe reduction in growth would be observed in 

fish with reduced water temperature, resulting in major production losses 

throughout summer months when PKD is most prolific.  Presently, the only feasible 

way to utilise water temperature is to delay the exposure of fingerling fish to 

infected water with temperatures in excess of 15oC for prolonged periods; greater 

than 2 months.  This effectively vaccinates the fish, as a mild dose of PKD is 

contracted allowing an immune response to occur the following season (Ferguson, 

1981; Ellis et al., 1982; Hedrick et al., 1985; Foott and Hedrick, 1987; Morris et al., 

2003a).  Foott and Hedrick (1987) speculate that resistance following exposure may 

be more prominent when clinical disease is experienced at 15oC or higher, but 

Morris et al. (2003a) warn that timing must be vigilant for the technique, and that 

the method is not suitable for year-round production fish.  With the information 

gathered in the present project in terms of the timecourse of disease progression in 

families, and also size in relation to the effects of PKD (as discussed in the relevant 

chapters), additional techniques may now be available to the farmer to coincide with 

using natural vaccination. 

Out with chemical and environmental factors to control PKD, genetics and general 

farm husbandry have been considered.  Brown et al. (1991) found that feral 

landlocked salmon may have produced a genetic resistance to the disease due to 

continual exposure in the wild, indicating the potential to selectively breed for 

resistance to T. bryosalmonae, and having supported this theory through the 

identification of additive genetic variation to PKD resistance in the present project, 

the benefits to the British trout farming industry are obvious.  However, genetic 

control should not be a substitute for good husbandry practice, as Le Gouvello et al. 

(1999) observed increased mortality due to poor husbandry and the condition of 

equipment at PKD epidemics.  By minimising handling and husbandry stressors, as 

well as optimising environmental parameters, the mortality witnessed at PKD 

epidemics should be considerably reduced (Seagrave et al., 1981). 
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Additional genetic opportunities exist for research into both PKD and furunculosis 

resistance in rainbow trout via the Major Histocompatability Complex (MHC) and 

Quantitative Trait Loci (QTL).  As the understanding behind the genetics of 

resistance to disease in fish improves, numerous studies are beginning to 

concentrate on such areas, especially in salmonids.  Because the physiological 

and/or biochemical mechanisms responsible for disease resistance can have a strong 

genetic basis and show significant heritabilities (Kaastrup et al., 1991; Yamamoto et 

al., 1991), the ability to associate major genes with these traits would permit 

marker-assisted genetic selection for increased disease resistance in cultured fish 

(Lande and Thomson, 1990; Kono et al., 2000; Quillet et al., 2001).  In Atlantic 

salmon, numerous projects have studied specific alleles and genotypes relating to 

the effects of infectious agents on the MHC (Langefors et al., 2001; Lohm et al., 

2002; Kjøglum et al., 2006; Wynne et al., 2007).  For example, Langefors et al. 

(2000) studied 120 full-sibling families for resistance to A. salmonicida.  Having 

identified high- and low-resistance families, their MHC class II beta genotypes were 

screened to find a significant association between specific alleles and furunculosis 

resistance, whilst Kjøglum et al. (2006) used 1966 fish from 7 families to asses the 

relationship between the MHC and the viral disease, Infectious Salmon Anaemia 

(ISA).  It was found that specific alleles of MHC class I demonstrated a significant 

resistance to the disease, while other alleles of MHC class I and alleles of class II 

alpha showed significantly more susceptibility to the disease.  It was concluded that 

specific genotypes in relation to MHC class I and class II alpha alleles can influence 

the effects of ISA in Atlantic salmon.  In rainbow trout, Palti et al. (1999) conducted 

a study to asses candidate DNA markers associated with Infectious Haematopoietic 

Necrosis (IHN) resistance in backcrosses of rainbow and cutthroat trout.  From the 

33 restriction fragment length polymorphism markers detected between mortalities 

and survivors, 17 were tested to find a significantly higher frequency of markers 

among fish more susceptible to IHN.  Although not directly related to the MHC, the 

rainbow trout study further identifies the potential for genetic information to be used 

in selective breeding programmes for disease resistance.  Similar studies have been 

conducted on the marine species, Dicentrarchus labrax (Gornati et al., 2004, 2005).  

As research continues, there will undoubtedly come a time when information is 

available on the MHC of rainbow trout in relation to disease resistance.  The 
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detected MHC genes will serve as good starting point to search for related QTL 

(Dunham, 2004). 

An extension of the characterisation of resistance to Infectious Pancreatic Necrosis 

(IPN) by Okamoto et al. (1987, 1993) was used by Ozaki et al. (2001) to report the 

first mapping of a QTL associated with disease resistance in rainbow trout.  Using 

microsatellite markers, two chromosomal regions associated with IPN virus 

resistance/susceptibility were identified, suggesting that marker-assisted selection 

can be used to improve the resistance of rainbow trout to the IPN virus.  In another 

study, Moen et al. (2004) reported a QTL with significant effects on resistance to 

ISA in Atlantic salmon.  Such studies demonstrate the suitability of models for the 

genetic characterisation of complex traits like disease resistance. The development 

of genomic tools for rainbow trout research has progressed rapidly in recent years, 

with genetic linkage maps already available (Young et al., 1998; Sakamoto et al., 

2000; Nichols et al., 2003).  Over 250 polymorphic microsatellite markers have 

already been developed for rainbow trout, and the addition of those designed for 

Atlantic salmon that work for rainbow trout, leaves the total in excess of over 500, 

providing substantial opportunity to research.  As the number of libraries 

concentrating on the rainbow trout genome continues to rise, the high-density 

genetic map and completed sequencing of the genome is expected in coming years, 

which will be extremely useful resources in rainbow trout breeding programmes.  

To date, most effort has been directed towards mapping QTL using markers from 

the genetic linkage maps.  By improving high density maps, required for fine 

mapping QTL with economic importance, such as growth rate, feed conversion, and 

disease resistance, the application of marker-assisted selection and gene 

introgression into rainbow trout breeding programmes is undoubtedly imminent.  

However, Hayes and Andersen (2005) warn that it is important to understand the 

magnitude of a proposed experiment to detect QTL.  Although QTL experiments 

have been successful in some livestock species, the QTL often displays only 

comparatively small effects even for those QTL displaying the larger effects for the 

trait (see Carlborg et al., 2003).  This suggests powerful mapping will be required.  

For QTL detection, the reproductive capacity and existing lines of the species is 

important.  For example, Ozaki et al. (2001) used backcross and F2 populations in 

fish from the intercrossing of different lines to map a QTL relating to disease 
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resistance; such populations are powerful resources for QTL mapping (Hayes and 

Andersen, 2005).  The recent and future developments in molecular genetics present 

the possibility of using genotype selection for performance traits (Gjerde, 2005).  

The tools and information surrounding QTL and the MHC system in rainbow trout 

will undoubtedly be of immense benefit to the British trout farming industry.  The 

optimum use of this information would require current breeding programmes to be 

modified in design (Gjerde, 2005), but where the opportunity of marker-assisted 

selection exists, especially as the rate of genetic gain is expected to be improved by 

10% to 50% in comparison to traditional animal breeding programmes (Kincaid, 

1983b; Weller, 1994; Ferguson and Danzmann, 1999; Danzmann et al., 1999; Davis 

and Hetzel, 2000), the integration of molecular technology should be considered, 

and further investigation is advised. 

The research conducted here is only part of a large sector that requires attention 

relating to PKD in the British trout farming industry.  Although furunculosis has 

been repeatedly witnessed at outbreaks, other pathogens, including IPN virus 

(Hoffman and Dangschat, 1981), Ichthyophthirius, Flexibacter columnaris, gill 

bacteria (Hedrick et al., (1985), Saprolegnia, and Costia (O’Hara, 1985) have all 

been identified at PKD epidemics.  Undoubtedly, farmers would like resistance to 

all pathogens (ie a general resistance), and given that additive genetic variation has 

been demonstrated for the two diseases considered in this project, it is conceivable 

that resistance to other pathogens is possible; this has been the case for pathogens 

investigated to date (see reviews by Kinghorn, 1983; Gjedrem, 1992, 1997, 1998, 

2000; Gjerde, 1986; Chevassus and Dorson, 1990; Fjalestad et al., 1993).  Henryon 

et al. (2002) believe additive genetic variation to disease resistance is likely to exist 

within most, if not all, salmonid populations due to the successful history in its 

detection.  Where additive genetic variation exists, focus must be towards the most 

economically damaging diseases encountered in commercial production.  For 

example, in this project PKD was discussed and recognised as the greatest limiting 

factor to the production of rainbow trout in the Hampshire farms involved, whilst 

the evidence of furunculosis consistently present at sites suffering from PKD meant 

the two diseases selected here were deemed to be the most problematic.  With this 

in mind, populations should be tested for the presence of additive genetic variation 

to the most prominent disease, and where genetic variation exists, families should 
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be selected so that production generates fish with a higher, and general, tolerance 

towards the most damaging diseases.   

Further, it would be beneficial if earlier disease resistance was indicative of later 

disease resistance as a trait.  Future research in this area relating to the two diseases 

covered here would also benefit the industry.  Another potential advantage would be 

indirect selection for disease resistance via production traits.  Having provided 

evidence of correlations between disease resistance and fish size in the current 

project, indirect selection for disease resistance via size could eliminate the 

difficulty and expense of disease testing when such traits have a high and favourable 

genetic correlation (see Falconer and Mackay, 1996), and also where the economic 

risk of disease outbreak exceeds the cost of progeny testing (Perry et al., 2004), 

which is generally the case on sites suffering from PKD.  For the populations used 

in this project, specific management guidelines should be developed and a breeding 

plan implemented where the most efficient course of action is taken to alleviate the 

effects of PKD, and subsidiary effects of furunculosis.  Numerous selective 

breeding programmes have already shown the potential for the genetic improvement 

to commercially important diseases (Hershberger et al., 1990; Gjedrem, 1997, 2000; 

O’Flynn et al., 1999; Dunham et al., 2001; Vandeputte et al., 2002).  By 

considering the data presented in this thesis and discussing the results with the 

farms involved, the British Trout Association, scientists at the Institute of 

Aquaculture, and ongrowers interested in PKD and furunculosis resistant stock, 

there is every opportunity to initiate a selective breeding programme to improve the 

resistance to these two commercially important diseases within the British rainbow 

trout farming industry. 
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Appendix 1 
 

Institute of Aquaculture Standard Curve Procedure 
 

Materials and Equipment 

TSA Agar Plates 

0.85% sterile saline (w/v) 
Bacterial isolate to be tested (sample) 
Bacterial loop 
Bunsen 
Sterile pipettes 
Sterile pipette tips 
Discard jar 
Sterile plastic cuvettes 
Sterile plastic Pasteur pipettes 
Marker pen 
Spectrophotometer (wavelength 520nm) 
Centrifuge (bench top) 
Centrifuge tubes (sterile) 
 
Procedure 

Preparation of bacteria 

1. Prepare a bacterial broth suspension at log-phase growth (24-48 hours for most 

aquatic bacterial pathogens) in centrifuge tubes. 

2. Centrifuge the culture at 3,500 rpm (maximum) for 15 min at 40C. 

3. Switch on the spectrophotometer and follow instructions (green sheet on wall). 

4. Once the centrifugation is finished, remove the supernatant carefully and resuspend 

the pellet using 5 ml of sterile physiological saline or sterile PBS. 

5. It may be necessary to repeat step 2 if you are using the bacterial suspension for fish 

challenge work. 

6. Place 1-2mls of sterile saline or PBS in a sterile cuvette and use this as the blank. 

Set the wavelength (610 nm for most aquatic bacteria and 520nm for the cytophaga-

like organisms). 

7. Remove 1-2mls of the resuspended bacterial suspension (from step 4) and place this 

into another sterile cuvette.  Place this into the spectrophotometer and record the 

optical density (OD). 
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Performing drop counts 

 

1. Dilute the bacterial suspension until you have an OD = 1.00.  Remove 0.5mls of this 

and place it into the 1st dilution.  Put the tip into the discard jar and then invert the 

1st dilution and remove 0.5mls and place this into the 2nd dilution and remove the 

tip.  Continue this until you have completed 1st to 6th dilution (Table 1). 

 

Table A1 - Dilutions 

1st Dilution 2nd Dilution 3rd Dilution 4th Dilution 5th Dilution 6th Dilution 

10-1 10-2 10-3 10-4 10-5 10-6 

 

2. Mark 3 agar plates into 6 sections and label them OD = 1, 10-4, 10-5, 10-6.   

3. Remove 20ul of the 4th dilution and place this onto each of the six segments. 

Remove the tip and do the same for the 5th and 6th dilutions.  Keep these agar plates 

flat and then seal them and incubate them at the correction temperature. This is 

called drop counts. 

4. Dilute the bacterial suspension at OD = 1 to OD =0.9 and repeat steps 7-11, but this 

time label the 3 agar plates at OD = 0.9 10-4, 10-5, 10-6.   

5. Continue doing this until you have the OD values and have performed the drop 

counts for OD 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1.   

6. Incubate all of the drop count plates overnight, maximum for 2 days and then 

remove then and count the colonies. 

7. Normally only count the 5th dilution with confidence.  Count the number of colonies 

in each of the 6 segments.  Then find the average number of colonies and multiply 

this by 50 and by the dilution factor.  This will give you the total number of viable 

colonies at that OD value. 

 

Example 

Calculation: average of 20 cfu X 50 = 1000 X dilution factor (10-5) = 

100000000 cfu at OD = 1 

This means that there were 1 x 108 cfu per ml at the OD = 1 
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Record Table 

OD wanted OD actual Dilution factor cfu per ml 

1.0 1.100 10-5 1 x 108 cfu  

0.9 0.903 10-5 1 x 107 cfu 

 

8. The standard curve is produced by plotting the actual OD values against the  

 number of cfu per ml using an Excel spread sheet.  

9. Right click on the line and click “add trendline”. 

10. Then click on options and tick the 3 lower boxes.  This will give you the R2  

 value of the line and display the line and equation on the graph.  The closer  

 the R2 value is to 1 the better the standard curve. 

11. Use the equation to calculate the number of colonies required or the OD  

 value required to obtain a certain number of colonies. 

12. Record all results in lab book.   
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Appendix 2 
 

� Euthanase fish and remove section of posterior kidney 

� Using forceps repeatedly ‘dab’ the cross-section on to a glass slide until 
excess blood no longer remains 

� Allow to air dry 

� Dip slide five times in fixative solution 1 (1 dip per second) 

� Dip slide five times in red staining solution; solution 2 (1 dip per second) 

� Dip slide five times in blue staining solution; solution 3 (1 dip per second) 

� Rinse in buffered water (pH 7.0) 

� Blot dry, and place in Xylene 

� Mount 

� Observe under microscope 


