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Abstract 

Intensive aquaculture of Atlantic cod is fast developing in both Northern 

Europe and Canada. The last six years have seen major improvements in the larval 

rearing protocols and husbandry techniques for this species. Although breeding 

programmes are currently being developed by both governmental and private 

institutions in the main cod producing countries (i.e. Norway, Iceland and 

Canada), most hatcheries still rely on the mass spawning of their own broodstock. 

Mass spawning tanks are complex systems where fish are left to spawn 

naturally and fertilised eggs are collected with the overflowing water, with little or no 

control over the matings of the animals. Few published studies in other commercial 

marine species (i.e. turbot and sole) have attempted to analyse the output from such 

systems using microsatellite markers and several parentage analysis software 

programs. A review of these publications exposed a lack of consistency in the 

methods used to analyse such complex datasets. This problem was addressed by 

carrying out a detailed comparison of two analytical principals (i.e. assignment by 

strict exclusion and assignment by probabilities) and four parentage software 

programmes (i.e. FAP, VITASSIGN, CERVUS and PAPA), using the DNA profiles, 

at 5 loci, from 300 cod fry issued from the mass spawning of a large hatchery cod 

broodstock tank (consisting of 99 fish). This study revealed large discrepancies in the 

allocation outcomes between exclusion-based and probability-based assignments 

caused by the important rate of typing errors present in the dataset. Out of the four 

softwares tested, FAP (Taggart, 2007) was the most appropriate to use for handling 

such a dataset. It combined the most conservative method of assignment with the most 

informative output for the results displayed. 

In an attempt to study the breeding dynamics in a cod commercial hatchery, 

parental contributions to five groups of 300 fry (from five single days of spawning 
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and from two commercial mass spawning cod tanks) were analysed, based on the 

genotyping data from eight loci. The parentage results from the exclusion-based 

analyses revealed that, on a single day, at least 25 to 30% of the total breeding 

population contributed to fertilised eggs that resulted in viable offspring at 50 and 83 

days post-hatch. Family representations were highly skewed - with the marked 

dominance of a few males - and effective breeding populations were consistently low 

(approx. 5% of the total breeding population). Parental contribution to a group of 960 

codlings - produced following intensive commercial practices (i.e. including 

successive size gradings and mixing of batches) and belonging to a single graded 

group - was also analysed, based on the genotyping data from eleven loci. The 

effective breeding population size of the juvenile batch (c. 14% of the total 

broodstock population) was two to three times greater than the effective size observed 

on a single day of mass spawning. The per-generation rate of inbreeding was however 

relatively high, for this batch alone, at 2.5%. Based on these results, suggestions were 

made to manage hatchery cod broodstock populations and implement genetic 

selection. 

Early maturation of farmed cod in sea cages (at two or three years old) is a 

major concern for ongrowers. Understanding the mechanism(s) behind sex 

determination in cod would probably help the development of a method to control 

sexual maturation. In an attempt to elucidate sex determination in cod, a protocol to 

induce gynogenesis was developed. Gynogenetic fish were successfully produced by 

irradiating cod milt with UV and applying a cold shock (at -6oC) to newly fertilised 

eggs. However, due to poor survival during larval rearing, only one gynogenetic fish 

survived long enough to be sexed; not enough to conclude anything on the sex 

determination mechanism(s) in cod. 
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gold fish  Carassius auratus 
haddock  Melanogrammus aeglefinus 
herring   Clupea harengus 
Mozambique tilapia Oreochromis mossambicus 
Nile tilapia  Oreochromis niloticus 
Pacific cod  Gadus macrocephalus 
pollack   Pollachius virenscontains 
pollock  Theragra chalcogramma 
rainbow trout  Oncorhynchus mykiss  
gilthead seabream Sparus Aurata 
Senegalese sole Solea senegalensis 
turbot   Scophthalmus maximus 
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Glossary of abbreviations and acronyms 
 
 
 
ABI   Applied Biosystems 
AFLP   Amplified fragment length polymorphism 
approx.  approximately 
am   “ante meridian” (Latin) 
ANOVA  analysis of variance 
AS   “aksjeselskap” (Norwegian), translates to “stock company” 
bp   base pairs 
c.   “circa” (Latin) translates to “about” 
CCD   charge coupled device 
cf.   “confer” (Latin), translates to “consult” 
cm   centimetre 
cum.   cumulative 
oC   degree centigrade / degree Celsius 
oC days  degree days 
DNA   deoxyribonucleic acid 
dNTP   deoxyribonucleotide triphosphate 
dph   days post hatch 
EDTA   ethylene diamine tetra acetic acid 
e.g.   “exempli gratia” (Latin) translates to “for example” 
etc   “et cetera” (Latin) translates to “and other things” 
et al.   “et alii” (Latin) translates to “and others” 
FAO   Food and Agriculture Organization 
FAP   family assignment program 
FCR   feed conversion ratio 
Freq.   frequency 
F1   first generation 
F2   second generation 
g   gram 
HCl   hydrochloric acid 
i.e.   “id est” (Latin) translates to “in other words” 
Inc.   Incorporation 
IoA   Institute of Aquaculture, University of Stirling 
ID   identification 
KCl   potassium chloride 
KHCO3  potassium hydrogen carbonate 
kg   kilogramme 
L / l   litre 
M   mole / molar 
m   metre 
MAS   marker-assisted selection 
MERL   Machrihanish Marine Environmental Research Laboratory 
mg   milligram 
MgCl2   magnesium chloride 
min   minute 
ml   millilitre  
mm   millimetre 
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mM   millimolar 
MMF   Machrihanish Marine Farm Ltd 
MS222   tricaine Methanosulfonate 
mtDNA  mitochondrial DNA 
n, No or N  number 
NCBI   national center of biotechnological information 
ng   nanogram 
nm   nanometre 
Ltd.   Limited 
P   probability 
PAPA   package for the analysis of parental allocation 
PCR   polymerase chain reaction 
PF   post-fertilisation 
PIL   personal license 
PIT   passive integrated transponder 
ppm   parts per million 
QTL   Quantitative trait locus 
Rnase   ribonuclease 
rpm   revolutions per minute 
s   second 
SD   standard deviation 
SE   standard error 
Spz   spermatozoa 
T   T-test value 
TAE buffer  tris aetic acid EDTA 
Taq   Thermus aquaticus 
TE buffer  tris EDTA 
Tris buffer  Tris(hydroxymethyl)aminomethane buffer 
UER   uniform error rate 
UK   United Kingdom 
URL   uniform resource locator 
UV   ultra violet 
USA   United States of America 
VCR   video cassette recorder 
vs.   versus 
µg   microgram 
µl   microlitre 
µm   micrometre 
µM   micromolar 
µW   microWatt 
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1.1. The Atlantic cod and its potential for the 

aquaculture industry: 

1.1.1. Biology and Geographical Distribution 

The Atlantic cod, is a finfish which belongs - like haddock and pollack - to the 

Gadidae family. Gadoid fish are characterised by an elongated body, three dorsal fins 

and a barbel located under the jaw (Figure 1.1). 

 

Note: Figure from http://www.biologie.de (2007) 

Figure 1.1. Atlantic cod (Gadus morhua). 

Cod are benthopelagic brackish and marine fish widely distributed in the 

North Atlantic Ocean, the Baltic and the Barents seas (Walden, 2000). They are 

naturally encountered at depths of 1-600 m (FishBase, 2003) and are adapted to a 

temperate climate, with a temperature tolerance between 0 and 20°C (Walden, 2000). 

Atlantic cod is a very adaptable species with different stocks present in a large 

variety of habitats, from immediate shorelines to continental shelves. Cod stocks 

display annual migration patterns which coincide with both the onset and the end of 

the spawning season (Lawson and Rose, 2000). Migratory routes followed by fish 

shoals vary depending on geographic location and life history of stocks. Spawning 

grounds are mostly located in the shallow waters surrounding the Lofoten Islands, 

Norway, Greenland, Iceland and Newfoundland (Brander, 1994; see Figure 1.2). 
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Note: Figure adapted from Choa (2004) 

Figure 1.2. Global distribution of Atlantic cod (indicated by ). 

Cod females are extremely fecund.  Individual productions per spawning 

season range from hundreds of thousands to several millions of eggs (Hutchings et al., 

1999). Cod females are batch spawners, releasing 15 to 20 batches of eggs throughout 

a given spawning season (Walden, 2000), every 2 to 6 days (Hutchings et al., 1999). 

In the wild, females usually mature at 6 years old (when approx. 40-60 cm in length) 

while males have a tendency to mature at a younger age and smaller size. Cod eggs 

and larvae are extremely small and fragile. Survival rates, in the wild, are very poor: 

about 1 egg out of a million succeeds in completing the life cycle (Ryan, 1996). 

Cod are omnivorous. They naturally feed on a variety of fish and 

invertebrates. Growth rates remain highly heterogeneous between cohorts / 

individuals. 

1.1.2. Exploitation of the stocks by the fisheries 

Atlantic cod fishery history began around the 10th century, coinciding with the 

first Viking explorations into the North seas (Gallagher, 2003). Cod fishing became a 
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real international industry during the 16th century as European countries like Spain, 

Portugal, France and England started fishing annually for cod on the banks off 

Newfoundland (Ryan, 1996). This activity reached its golden age almost a century 

later as the demand for salted dried cod significantly increased worldwide. 

During the 19th century, major technical improvements were achieved and 

resulted in the steady increase of cod landings, until the 1970s, with an annual record 

of three million tonnes (Globefish, 2003b; Dybdal and Kennedy, 2003). Since then, 

catches have decreased dramatically over the years, as a direct consequence of 

overfishing activities. Overall, the total cod catch has fallen by two thirds in 30 years 

(Globefish, 2003b) and currently, most cod stocks are considered to be under threat of 

extinction (Walden, 2000; Svåsand et al., 2004). In several countries, measures have 

already been taken to reduce fishing pressure. Canada closed fisheries off 

Newfoundland as early as 1992 while Europe progressively introduced fishing quotas 

which are under review each year. 

Those measures became, over the recent years, a source of major political, 

economic and scientific debates. While scientists claim that cod is still overexploited 

in many areas, politicians are concerned about the threatened fishery economic sector 

if further cod fisheries are to be closed down (Esmark, 2004). 

1.1.3. Current status of the wild populations 

The pressure exerted by the fisheries, over the past decades, seems to have had 

detrimental and irreversible effects on most wild cod populations. Cod stocks in the 

North Sea, the Baltic Sea, the Irish Sea and the West of Scotland are reported to be 

below safe biological limits. In 2002, CITES (the Convention on International Trade 
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in Endangered Species of wild fauna and flora) threatened to add Atlantic cod to the 

list of species which can only be traded internationally under restrictions or tight 

control. 

As a result of years of overexploitation, it appears already that important 

biological parameters such as the age / size at first sexual maturity (Saborido-Rey and 

Junquera, 1999) or the proportion of recruit spawners have been shifted in several 

natural stocks. For example, in Norwegian cod stocks, both age and size at first 

maturation have decreased significantly (Godø and Haug, 1999) and, in the North 

Sea, the number of sexually mature cod has fallen by more than 90% (Globefish, 

2003a-b). Surveys of the Arcto-Norwegian cod stock underlined an important decline 

in the average age of the population accompanied by an increase in the percentage of 

first time spawners, from 20 to 80%, between 1930 and 1980 (Larsen, 2002). 

1.1.4. Market for cod in the Northern Europe 

Despite the alarming situation of the natural resource, the worldwide market 

for Atlantic cod remains as strong as ever. It is fuelled by a strong market demand 

originating, for a large part, from Europe (Hjaltason, 2003). In 2006, global catches of 

cod accounted for 831 000 tonnes (Sackton, 2006) of which 60% were sold in Europe. 

The United Kingdom is marketing about 100 000 tonnes of cod each year 

(Solsletten and Cameron, 2002; Globefish, 2007). A high proportion (~80%) is in fact 

imported from Iceland, Russia and Norway. The range of marketed cod products is 

extremely wide but the leading product remains frozen cod fillet (Globefish, 2007). 

Cod is generally regarded as a convenient family dish and does not suffer from any 

seasonality in its consumption (Hamnvik, 2004). Due to the collapse of the major cod 
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fisheries, the last few years have seen a significant increase in the retail prices of cod 

products (Walden, 2000; Globefish, 2003a-b). Indeed, the retail price of fresh cod 

fillet in the UK has risen to about £10/kg, which is more expensive than the price of a 

fresh salmon fillet (~£9/kg). The market size for cod varies between 2.5 and 5 kg.  

Two alternatives are currently being exploited in order to supply the cod 

markets without increasing the fisheries pressure. The first alternative consists in the 

partial substitution of the lost Atlantic cod catch by Pacific cod. The second and more 

promising alternative is the development of Atlantic cod commercial aquaculture 

(Globefish, 2003b). 

1.1.5. Aquaculture prospects: brief history, current situation 

and challenges 

Atlantic cod is considered by many aquaculture specialists as a serious 

candidate for intensive aquaculture in northern Europe and Canada. The recent 

renewal of interest in cod has been driven primarily by market considerations (Brown 

et al., 2003) and the opportunity to make cod aquaculture a profitable business. 

The first cultivation experiments with cod started as early as in the 1880s 

when Norwegian and Canadian fishermen were performing artificial fertilisation and 

incubation onboard of fishing vessels and releasing yolk-sac larvae to stock the sea. 

The first production of cod juveniles in an enclosed system was performed at the 

Fløviden Research Station, in Norway, in 1886 (Moksness et al., 2004). Semi-

intensive and intensive cod cultivation trials, at a commercial level, were initiated at 

the end of the 1980s, again in Norway. However, these attempts to start cod 

aquaculture failed in 1993 due to both the insufficient number of juveniles produced 
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and a sudden fall in cod market price caused by an unexpected increase in the supply 

of wild caught fish (Walden, 2000; Rosenlund and Skretting, 2006). 

However, since 2000, interest in Atlantic cod aquaculture has been revived 

worldwide. This time, the context seems to be more favourable for the cod 

aquaculture industry to finally take off. The considerable progress made in terms of 

hatchery techniques (thanks to the experience gained with both seabass and seabream 

mariculture over the preceding ten years) was decisive. The technology required to 

rear cod juveniles in intensive systems is now available even if scope for 

improvement still remains in areas such as larval nutrition and health management. 

Considerable investments have taken place over the last 6 years in Iceland, Norway, 

Canada and Scotland and rapid development of cod farming is underway. 

In Europe, Norway currently leads the cod aquaculture industry. More than 

300 licences for commercial farming were issued in 2005 by the Norwegian 

Directorate of the Fisheries (Standal and Bouwer Utne, 2007). In 2004, Norway 

produced 3200 metric tonnes of 2.5-5 kg farmed cod (Björnsson et al., 2005). This 

figure more than doubled two years later (i.e. 5 500 tonnes in 2005). The national 

production is expected to increase, in the years to come, to approx. 20 000 tonnes 

(Standal and Bouwer Utne, 2007). Optimistic projections for 2010 envisage a 

production of 150-200 000 tonnes worldwide (Standal and Bouwer Utne, 2007). 

However, despite a promising future, many challenges are still ahead for cod 

farming. To further develop, the aquaculture sector primarily requires further financial 

support and, in some countries like Norway, the task has been rendered more difficult 

since the beginning of the farmed salmon crisis in 2001. In terms of rearing 
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technologies, and despite the recent research inputs in larval rearing techniques, 

producing cod larvae is still expensive. Major costs are attributed to the production of 

enriched live feed (rotifers and brine shrimp) to rear cod larvae during the first few 

weeks post-hatch (Figure 1.3). Poor larval survival rates, high rates of larval 

deformities and cannibalism are other areas of concern when producing codlings. Cod 

ongrowers are also already facing difficulties associated with Vibriosis outbreaks, cod 

escapes and early maturation in net pens. 

Commercial cod aquaculture is still at an early stage of development which 

means that the industry is focusing mainly on rearing protocol “adjustments”, which 

are of immediate application. Long term management of the production, through 

genetic selection and improvement, starts to stir a lot of interest. Breeding 

programmes for cod were established in the last five years in Norway, Iceland and 

Canada (Björnsson et al., 2005; see also section 1.2.3). However, hatchery broodstock 

populations still almost exclusively consist of captured wild fish (Pavlov et al. 2004). 
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Note: Figure inspired by www.codgene.ca/latest.php (2007)  

Figure 1.3. Intensive cod aquaculture: an overview of the commercial production cycle. 
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1.2. Genetic management in aquaculture 

1.2.1. Domestication of fish species and management of 

genetic changes 

Although the cultivation of aquatic organisms (including fish, shellfish, algae 

and other aquatic organisms) began about 4 000 years ago in China, the domestication 

of fish - with humans controlling the entire life cycle of animals from selective 

breeding in hatcheries to feeding, growout and harvest - is a fairly recent phenomenon 

(Balon, 1995). Indeed, apart from common carp and gold fish which have both been 

domesticated for centuries (Balon, 1995; Suquet et al., 2004), the domestication of 

aquaculture species has, at most, 40 years of history. 

The process of domesticating a live organism begins with the establishment of 

a base population (initially sampled from the wild): both the source of the stock(s) and 

the initial population size define the framework in which domestication will take 

place. Then, as time goes on, inevitable genetic changes will affect the genetic make 

up of this base population (Vandeputte and Launey, 2004; Goodrich and Wiener, 

2005). The genetic mechanisms which accompany domestication are of four different 

types: 1) inbreeding / genetic drift, 2) inadvertent genetic selection, 3) relaxation of 

natural selection / emergence of selection in captivity and 4) artificial selection 

(Vandeputte and Launey, 2004). 

Both inbreeding and genetic drift arise from the breeding of small isolated / 

captive populations. Genetic drift represents the gradual changes which occur in the 

genome pool of a small population when bred repetitively. Losses of “rare” alleles 

and changes in allelic frequencies are among the most immediate consequences of 

breeding from a small number of parents. In extreme cases (i.e. only a few fish 
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contributing to the spawning), important changes in the genetic make up of a hatchery 

population can occur in a single generation of breeding (Gheyas, 2006). 

1.2.1.1. Inbreeding 

Inbreeding arises from the breeding of close relatives. Recurrent matings 

between related parents progressively increase the frequency of homozygous 

genotypes among offspring. Severe inbreeding rates in fish populations pose the risk 

of impairing the overall fitness of the stock in terms of survival, growth performance, 

disease resistance, etc. (Fessehaye et al., 2007). These deleterious effects due to 

inbreeding are also known as “inbreeding depression”. Inbreeding depression has 

been previously described in sub-populations of farmed Atlantic salmon (Rye and 

Mao, 1998) and rainbow trout (Su et al., 1996). 

1.2.1.2. Inadvertent genetic selection 

Inadvertent genetic selection refers to the selection which occurs 

“unintentionally” in a hatchery environment (Vandeputte and Launey, 2004). 

Unintentional selection in commercial hatcheries arises as a direct consequence of 

both hatchery designs and management decisions. Unintentional selection may either 

have positive or detrimental effects to the performances of a captive stock. For 

example, Brummett et al. (2004) showed how errors made while measuring fish 

growth could greatly influence the genetic composition of a small tilapia hatchery 

broodstock population. 

1.2.1.3. Relaxation of natural selection 

The rearing conditions experienced by captive fish are usually very different 

from the rearing conditions experienced by their wild counterparts. Selection 



Chapter 1. General Introduction 
 

Marine Herlin . Ph.D. Thesis 2007 
12

pressures operating in both environments can therefore differ greatly. The relaxation 

of natural selection corresponds to the reduction in selection pressure, which takes 

place in captivity, for traits of otherwise great importance in the wild. It can affect 

traits directly related to body colour, feed intake, reproductive and social behaviours 

(Vandeputte and Launey, 2004; Mignon-Grasteau et al., 2005). In the long term, the 

gene pools of wild and cultured livestocks are likely to become very distinct (Mignon-

Grasteau et al., 2005). 

1.2.1.4. Artificial selection 

Artificial selection refers to the process which consists in deliberately 

selecting for traits of commercial interest among hatchery broodstock populations. 

The most common traits currently being selected for, in commercial hatcheries, 

include improved growth rate, resistance to disease and delayed maturation (Su et al., 

1999; Henryon et al., 2005; Quinton et al., 2005; Gheyas, 2006). Over time, intensive 

unidirectional selection is likely to lead to a significant reduction in genetic diversity 

(Gheyas, 2006). In order to maximise genetic gains while mitigating inbreeding, 

artificial selection is often implemented as part of a monitored genetic selection 

programme (Figure 1.4). Genetic selection programmes can address a wide range of 

“breeding goals” depending on the nature of the aquaculture production (i.e. 

ornamental fish, fish for human consumption or fisheries restocking). They can be 

undertaken at various industrial levels: from programmes developed and run by 

private hatcheries (or group of hatcheries) to “national” programmes developed and 

run by governmental research institutes (Ponzoni et al., 2007). 
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Figure 1.4. Diagram representing the components involved in a genetic selection 
programme. 

1.2.2. Risks associated with poorly managed farmed stocks 

Virtually all decisions related to either broodstock management or broodstock 

replacement are likely to impact the genetic make-up of a given captive fish 

population. Being misguided and / or oblivious to the consequences of these decisions 

may ultimately result in the deterioration of the performances of the fish produced 

(Penman, 2005). Indeed, a poorly managed selection programme can be at least as 

detrimental to the hatchery production as a “non genetically informed” broodstock 

management (Sonesson, 2007). For example, in Vietnam, a genetic programme for 

growth improvement in carp recently had dramatic genetic impacts on the selected 

stock, after only six generations of mass selection (Penman, 2005). Apart from 

improving the growth rate of fish by 33% (compared to the base population), the 
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selection process also resulted in a drastic reduction of the realised genetic heritability 

(i.e. from 0.20-0.29 to nearly zero). 

1.2.3. Progress in the genetic selection of Atlantic cod 

Cod aquaculture is still a young industry (see section 1.1.5) which explains 

why very limited work on cod genetics has been yet published. However, research is 

currently being carried out, in three countries (i.e. Norway, Canada and Iceland). In 

East Canada, a three years research programme, co-financed by the Canadian 

government and several private aquaculture companies, started in 2006 (Codgene, 

2007). In Iceland, a national breeding programme (“Icecod”), founded by the 

Icelandic Marine Research Institute and three private companies, has been running for 

four years. Finally, in Norway, two breeding programmes have been operating since 

2002. The first programme is being carried out at the Fiskeriforskning Institute 

(Tromsø) and is financed by the Norwegian Ministry of Fisheries and Coastal Affairs. 

This programme has currently produced about 200 fullsib families from three distinct 

wild coastal and Arctic cod populations. Early results from the rearing of these 

families suggest a high heritability for fish growth and a moderate heritability for 

resistance to vibriosis (Kjersti Fjalestad, personal communication). A second 

programme is operated by Marine Breed AS (Sunndalsøra), a commercial breeding 

company partly owned by Akvaforsk Genetics Center AS (Sunndalsøra). Early 

published results suggest potential for genetic improvement in both growth 

performance and spinal deformities of Atlantic cod (Kolstad et al., 2006; Imsland and 

Jónsdóttir, 2002; Imsland and Jónsdóttir, 2003). 
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1.3. The use of DNA microsatellite markers in the 

management of aquaculture stocks 

1.3.1. DNA profiling 

Multilocus DNA microsatellite profiling is a powerful molecular tool which 

can be used to generate individual-specific genetic fingerprints in both humans and 

animals (Wright, 1997). It has a large spectrum of applications from species genome 

mapping to parentage analysis. This technique relies on the existence, throughout the 

genome, of highly polymorphic, non-coding, short DNA sequences (Park and Moran, 

1995; Wright, 1997). Among these polymorphic DNA fragments, some repetitive 

DNA short sequences containing tandemly repeated nucleotides have been isolated. 

They are referred to as both “simple sequence repeats” or “microsatellite DNA” (Park 

and Moran, 1995) for a wide range of animal and plant species. They constitute 

reliable genetic markers to generate DNA profiles. 

1.3.2. Parentage analysis 

DNA profiling allows for retrospective determination of parents in systems 

where products from different crosses are reared together. Parentage analysis, using 

multilocus DNA profiles, relies on the inheritance principle of alleles which was first 

uncovered by Mendel in 1865. By conducing various experiments on plant hybrids in 

the late 19th century, Mendel defined the concept of alleles as being alternative 

versions of a given gene / locus. He also demonstrated that diploid organisms have 

two alleles (identical or different) for each gene / locus they possess, each allele being 

directly inherited from either of both parents. Parentage analysis consists in matching 

offspring and parents based on their allelic arrangements. 
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The molecular analyses necessary to built DNA profiles have the enormous 

advantage that they can rely on non-destructive sampling methods. In aquaculture, 

such molecular techniques are already routinely used for several freshwater and 

marine fish species such as salmonids, carps, tilapia, catfish, seabass or halibut (Park 

and Moran, 1995; Fishback et al., 1999; Neff et al., 2000; Campos Ramos, 2002; 

Mickett et al., 2003). 

1.3.3. Other applications 

1.3.3.1. Population genetics 

DNA microsatellites are increasingly used in relatedness studies of natural and 

captive fish populations (Chistiakov et al., 2005). On several occasions, they proved 

more efficient than allozymes and / or mitochondrial DNA (mtDNA) in detecting 

genetic variations between fish stocks (Gheyas, 2006). In Atlantic cod for example, 

analyses of mtDNA between North American wild cohorts concluded on the existence 

of a “unique” stock. However, further analyses using microsatellite loci, revealed 

higher levels of genetic variation between cohorts, suggesting the existence of 

distinctive inshore and offshore wild cod populations (Beacham et al., 1999; Knutsen 

et al., 2003). 

1.3.3.2. Linkage mapping of Quantitative trait loci (QTLs) 

Most of the performance traits of commercial importance in aquaculture (i.e. 

growth, resistance to disease, feed conversion efficiency, etc.) are controlled by the 

combined expression of several genes and are inherited as quantitative traits (Liu and 

Cordes, 2004; Zimmerman et al., 2005). Historically, selecting for these complex 

traits required breeding the best performing individuals / families for generations, 

which ultimately represented large inputs in time, space and money. The development 
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of DNA-based genetic markers recently offered new tools to facilitate the selection of 

quantitative traits. In agriculture, marker-assisted selection (MAS) recently saw a 

large uptake in a wide range of crop species (including maize, beans and tomato) but 

still has limited applications in the commercial production of both terrestrial and 

aquatic livestocks (Ruane and Sonnino, 2007). One essential prerequisite for 

implementing MAS lies in the identification of loci / genes linked to the quantitative 

trait of interest (QTLs). To localise QTLs in the genome of plant or animal species, 

geneticists must resort to linkage mapping. DNA microsatellites are used - often 

alongside other types of genetic markers - to generate such maps. Genetic maps are 

available for several fish species including Nile tilapia, channel catfish and rainbow 

trout (Gheyas, 2006) but they are still of relatively low density (Sonesson, 2007). 

1.3.4. Use of DNA microsatellites in cod aquaculture 

Over the last ten years, a large number of microsatellite DNA markers were 

isolated from Atlantic cod DNA (Dahle 1994; Miller et al., 2000; O’Reilly et al., 

2000; Jakobsdóttir al., 2006; Wesmajervi et al., 2007). However, only a few of these 

markers were published at the start of this PhD project. Recent work carried out in 

Norway, resulted in the production of cod DNA profiles from a pentaplex assay (i.e. 

simultaneous amplification of 5 DNA microsatellites) (Delghandi et al., 2003; 

Delghandi et al., 2004). This standardised multiplexing technique was extensively 

used in the early stages of the Norwegian breeding programmes to solve the parentage 

of cod juveniles cohorts (Delghandi et al., 2004; Kolstad et al., 2004). In 2006, a 

research project aiming to construct a first genetic high density linkage map in 

Atlantic cod began at Fiskeriforskning (Madjid Delghandi, personal communication). 

As a first step of a project on “Disease resistance in Atlantic cod: construction of a 

genetic map, QTL mapping and implementing QTLs in a genetic improvement 
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programme”, new DNA microsatellites (approx. 100) were isolated and sequenced 

(no published data yet available). 

1.4. Addressing the problem of early maturation in 

farmed cod 

1.4.1. Current situation 

Early maturation constitutes a major problem for cod ongrowers. In net pens, 

virtually all cod mature at 2 years old (Chambers and Howell, 2006). Fast growing 

individuals reach sexual maturity at both lower age and shorter length. An increased 

growth rate, due to good nutritional status, is likely to promote early maturation 

(Godø and Haug, 1999). This may explain why farmed cod mature earlier than their 

wild counterparts. Other farmed species such as tilapia, salmon or halibut also mature 

early when farmed. In cod, it was reported that both males and females down to few 

hundred grams could mature in commercial seacages (Davie et al., 2007a). Sexual 

maturation is associated with major losses in body weight (up to 40%) (Hansen et al., 

2001; Davie et al., 2007b). Although, to some extent, compensatory growth takes 

place after the spawning season, both condition factor and FCR of mature fish are 

poor (Taranger et al., 2004). This increases the time necessary to bring the fish to 

market size and therefore represents a large loss in terms of profit (Hansen et al., 

2001). Early maturation and spawning activity potentially taking place in net pens 

raise also the problem of farmed egg release in the wild environment. In the near 

future this issue could be used against the cod farming industry (Esmark, 2004). 
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1.4.2. Perspectives for improvement 

1.4.2.1. Delaying cod maturation using continuous light 

There is no obvious external sexual dimorphism in cod, either among maturing 

or non-maturing individuals when fish are kept under natural conditions (Karlsen and 

Holm, 1994). However, experimental trials, using photoperiod as a mean to control 

maturation, suggested the existence of a sex-specific growth pattern. Immature 

females, kept under those artificial conditions, grow significantly faster than males 

(Davie et al., 2007b). Good results in delaying maturation were obtained, in tank 

trials, by applying continuous light (Davie, 2005). However, transposing this 

technique to seacages is proving extremely challenging and is not efficient. 

1.4.2.2. Culture of sterile fish 

Ploidy manipulation in Atlantic cod currently stirs a lot of interest. Inducing 

triploidy proved, over the years, to be an effective way to achieve sterility in several 

cultured fish species such as Atlantic salmon, rainbow trout, European sea bass and 

turbot (Ojolick et al., 1995; Cal et al., 2006). However, reported growth performances 

of triploids greatly vary between species (Peruzzi et al., 2007). A protocol to induce 

triploidy in cod was recently developed by Peruzzi et al. (2007). High triploidization 

rates (87%) were achieved by applying a 20 minutes heat shock treatment, at 20oC, on 

fertilised cod eggs, 20 minutes after fertilisation (Peruzzi et al., 2007). An ongrowing 

trial is currently underway with the aim to assess growth performances and confirm 

the sterility of cod triploids (Stefano Peruzzi, personal communication). If cod 

triploids prove of economic value and can be produced at a commercial scale (despite 

the technical problems which are likely to accompany the stripping of broodstock), 

they will be of major interest for cod ongrowers. 
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1.4.2.3. Monosex culture 

Monosex culture presents a clear economic interest not only in the production 

of fish species with sex-specific growth patterns but also in the production of fish 

susceptible to reproduce during the grow out period (as it alleviates the occurrence of 

reproduction altogether). In Nile tilapia, monosex male production significantly 

improves harvest yields (Mair et al., 1997) while in rainbow trout, monosex female 

production is economically more advantageous as it stops male from maturing 

(Galbreath et al., 2003). In cod, scientific evidence supports the existence of 

differentiated growth rates between sexes (Davie et al., 2007b; see also section 

1.4.2.1). Cultivating all sterile (triploid) females might well represent a way forward 

for cod aquaculture. 

1.4.2.4. Breeding programmes 

Progressively selecting fish for delayed maturation / increased weight can also 

prevent sexual maturation from occurring during ongrowing: fast growing fish reach 

market size earlier, before maturation occurs. This is already the case for Atlantic 

salmon (Fjalestad et al., 2003) and might also become a reality for cod. 

1.5. Introduction to the Thesis: aims and structure of 

the project 

As time will go on, cod breeding programmes are likely to further expand and 

improve the quality of cod strains dedicated to intensive rearing. As a result, more 

opportunities will be created for commercial hatcheries to purchase seeds from these 

specialised breeders. However, it seems reasonable to assume that a significant 

number of farms will choose to carry on managing their own broodstock. 
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Most of the cod juveniles currently produced by intensive hatcheries, in 

Northern Europe, originate from the mass spawning of captive wild broodstock 

populations (see section 1.1.5). In this system, fish reproduce spontaneously and 

fertilised eggs are collected at the tank overflow. In this case, very limited control 

over the reproduction dynamics of the stock can be exerted. Essential parameters - 

such as the effective breeding population size (Ne), the range of individual 

contributions to a spawning event, the mating success and the reproduction dynamics 

in force during a spawning season - are difficult to assess. Without this precious 

information, farmers are unable to conduct an “informed” broodstock management 

programme. 

In this context, the present research project primarily investigated the genetic 

transfers which take place in this type of hatchery. To do so, the following questions 

were addressed: 

1/ What is the parental contribution to single (daily) batches of fry produced 

by a mass spawning broodstock tank? 

2/ What are the effects of grading and mixing, during hatchery rearing, on 

family composition and genetic diversity of cod fry batches? 

3/ Which recommendations can be made regarding the development of a 

genetic management / selective breeding programme for this type of hatchery? 

4/ Early maturation of farmed cod in sea-cages raises concern among 

ongrowers (see section 1.4). Fundamental research is needed to elucidate the sex 

determination mechanism(s) operating in this species as it, in turn, will inform on the 
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best maturation control method to apply at a commercial level. In an attempt to study 

sex determination in cod, this project will investigate the induction of gynogenesis. 
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2.1. Collection of biological samples 

2.1.1. Presentation of the Broodstock populations studied 

Three distinct commercial broodstock populations were studied over the 

course of this research project. The choice of these stocks was made for both 

practical and technical reasons (i.e. possibility to access / sample the fish and 

feasibility to process all the samples). 

The first population, referred to as “Norwegian broodstock”, was held in a 

Norwegian intensive commercial cod hatchery near Bergen (Grieg Marine Farms 

AS, Nedstrand). The study focused on a breeding tank (5 m diameter x 1.5 m deep 

with a water capacity of about 27 m3) which contained 99 brood fish of wild origin 

(coastal North Sea around Rogaland). The fish were introduced into the hatchery in 

August 2002 at about 2-3 kg weight (age uncertain but estimated to be around three 

years old). At the time of the study, they had been held in captivity for about a year 

and progressively introduced to an artificial photoperiod regime to advance the 

spawning season to early winter.  

A second population, referred to as “farmed Scottish broodstock” consisted of 

249 broodfish which were bred and reared at Machrihanish Marine Farm Ltd., an 

intensive commercial cod hatchery located on the west coast of Scotland. According 

to farm records, the studied fish belonged to the second generation of farmed fish 

bred from originally less than ten wild cod captured in the coastal Scottish waters. 

This farmed F2 population supplied fertilised eggs to the hatchery for two years 

(between 2001 and 2003) before being killed and replaced by wild caught fish due to 

poor reproductive performances.  
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The third population, referred to as “wild Scottish broodstock”, was made up 

of 141 broodfish recruited from the wild, in 2003, by Machrihanish Marine Farm 

Ltd. These fish were caught in Scottish waters, in the Firth of Clyde (West coast). 

They were transferred to a commercial hatchery broodstock tank (5 m diameter x 

2 m deep with a water capacity of about 35 m3) during the winter 2003. They first 

spawned in captivity the following spring and were progressively introduced to an 

artificial photoperiod which brought forward the 2005 spawning season by few 

months (from the end of January to the end of March). 

2.1.2. Sampling of cod juveniles for parentage analysis 

Overall, three juvenile sample sets were collected and analysed for parentage 

during the course of this research project. 

The first set of offspring collected consisted of three hundred fry which 

originated from a single day of spawning (19/11/03) from the “Norwegian 

broodstock” tank held at Grieg Marine Farms AS. At the time of the sampling, the 

fry were 83 days post hatch. They already had been size graded (at 15 mm), as part 

of routine hatchery procedures, and belonged to the smallest graded group. 

The second set of fry collected consisted of four separate batches of three 

hundred fish taken at 50 days post hatch. The fish sampled originated from the mass 

spawning activities of the “wild Scottish broodstock” tank held in Machrihanish 

Marine Farm Ltd (MMF). The four fry batches each belonged to a single day of egg 

collection from the 2005 winter spawn (from the 21st of January to the 31st March). 

The fry were sampled before any size grading had taken place. 
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The third and final sample set consisted of 960 fin clips from codling (approx. 

20 g) held in a nursery tank at MMF. All the juveniles from the sampled tank 

originated from the “wild Scottish broodstock” 2005 winter spawn and had been 

reared under commercial intensive conditions (i.e. involving frequent size gradings 

and mixing of batches from different spawning dates). As a result, at the time the 

sampling took place (in July 2005), this nursery tank may have contained codlings 

from up to six different spawning dates (including the four dates previously 

sampled). 

2.1.3. Fish handling, collection of tissue samples 

Experiments involving fish handling complied with the Home Office Animals 

(Scientific procedures) Act (personal licence No. PIL 60/9637; project licence 

No.60/2911). Samples of commercial origin were provided by the commercial 

hatcheries. 

2.1.3.1. Anaesthesia 

Prior to any physical handling, the fish were systematically anaesthetised. 

Tricaine Methanesulfonate (MS222) or Benzocaine were both used on large cod. The 

juveniles however were only anaesthetised using MS222 since the use of benzocaine 

was reported to cause unexpected mortalities (William Roy, personal 

communication) in case of specific environmental conditions (i.e. high water 

temperature, low dissolved oxygen level). The anaesthetic dosage used for both 

benzocaine and MS222 was of 100 ppm. Minor adjustments to that dosage were 

made if necessary with large fish. 
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2.1.3.2. PIT-tagging 

Fish kept at the Marine Environmental research Laboratory (MERL) were 

each injected with a 11.5 x 2.1 mm glass encapsulated alphanumeric transponder 

supplied by Trovan® (Identify UK Ltd., UK). The transponders (PIT tags) were 

injected in the muscle located under the first dorsal fin. The ten digits alphanumeric 

tag codes were read using a Trovan® GR-250 High- Performance portable reader 

(Identify UK Ltd., UK). 

At the time the project started, commercial hatchery broodstock populations 

had already been tagged with PIT tags or T-bar Floytags, as part of routine 

procedure. 

2.1.3.3. Sampling for DNA analysis 

Non-invasive DNA samplings were performed, under anaesthesia, when the 

fish were of sufficient size (i.e. >5 g). For each individual, a piece of dorsal fin 

(< 0.5 cm2) was removed with dissecting scissors and placed in a 1.5 ml Eppendorf 

tube filled with 95% ethanol. 

For parentage analysis studies, batches of fifty and eighty days post hatch cod 

fry, sampled in 95% ethanol, were provided by the hatcheries. 

2.1.3.4. Monitoring of the broodstock populations 

The broodstock populations were regularly monitored as part of routine 

hatchery procedures. The fish were individually looked at on average twice a year: 

two months before and two months after the spawning season. Prior to the spawning 

season, each fish was individually sexed (using ultrasound scanning technology), 

weighted and, for the Norwegian stock only, measured. Complementary observations 
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on the general health status were also recorded. Following the spawning season, the 

fish were checked for physical damages and, in case of high stocking densities, the 

smallest males were culled. 

For better clarity throughout the reading of this thesis, the key information on 

each of the three broodstock population studied is summarised in Table 2.1. 
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Table 2.1. Summarised information on each of the three broodstock populations 
studied during the course of this research project. 

 “Norwegian” “wild Scottish” “farmed Scottish” 
Origin coastal North sea Firth of Clyde F2 of less than 10 fish of 

wild origin 
Hatchery Grieg Marine Farms Machrihanish Marine Farm Machrihanish Marine Farm 
Number of broodstock 99 141 249 
Holding tank one tank of 27m3 one tank of 35m3 two tanks of 35m3 
Mean age (years) 4+ 4+ 4 
Mean weight (kg) 6.3 4.6   NA* 
Spawning period October-December January-March NA 
Number of loci 
analysed (broodstock) 

8 11 5 

Number of fingerlings 
sampled 

300 four sets of 300 0 

Sampling dates 19/11/2003 04/02/2005, 18/02/2005, 
21/02/2005 and 26/02/2005

-- 

Age of the fingerlings 
at sampling 

83 days 
(size graded) 

50 days 
(not size graded) 

-- 

Number of loci 
analysed (fingerlings) 

8 8 -- 

Number of juveniles 
sampled 

0 960 0 

Sampling date -- July 2005 -- 
Age of the juveniles at 
sampling 

-- 5 months -- 

Number of loci 
analysed (juveniles) 

-- 11 -- 

*NA: information not available 
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2.2. From fish tissue samples to genetic profiling 

2.2.1. DNA extraction 

Overall, four different DNA extraction techniques were tested on cod samples 

of various natures (i.e. fin clip, cod larvae and cod eggs). Three techniques (i.e. 

phenol-chloroform, Chelex and Dynabeads) were chosen based on the published 

literature available on Atlantic cod (Miller et al., 2000; Clemmesen et al., 2003; 

Delghandi et al., 2003). The fourth technique (using the REAL pure extraction kit) 

was tested on cod samples after good results were obtained “in-house” for tilapia, 

salmon and carp fin samples. 

For a given type of cod tissue sample, the average yield of DNA extracted 

and the level of purification were not consistent between the four techniques tested 

(see Table 2.2). 

The following paragraphs describe each of the four techniques tested on cod 

samples and mention their main advantages and weaknesses. 
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Table 2.2. Assessment of four DNA extraction techniques on various types of cod samples. 

 
Sample type 

 DNA extraction method 
broodstock fin clip 

 
50dph* fry 

 
egg 

 
juvenile fin clip 

 

Maximum duration of storage at 4oC (to 
perform PCR amplification) 

quality of the genomic DNA extracted 
 very good not tested not tested very good 

average quantity of genomic DNA extracted 
 

12.50 µg 
± 1 µg -- -- 7.20 µg 

± 1 µg  
suitability for singleplex PCR amplification 
  -- --  

Phenol Chloroform 

suitability for multiplex PCR amplification 
  -- --  

several months 

quality of the genomic DNA extracted 
 poor quality not tested not tested poor quality 

average quantity of genomic DNA extracted 
 no data -- -- 10.20 µg 

± 3 µg 
suitability for singleplex PCR amplification 

X -- -- X 

Chelex 

suitability for multiplex PCR amplification 
 X -- -- X 

2 weeks 

quality of the genomic DNA extracted 
 very good not tested not tested very good 

average quantity of genomic DNA extracted 
 

11.00 µg 
± 6 µg -- -- 8.70 µg 

± 4.5 µg 
suitability for singleplex PCR amplification 
  -- --  

REAL pure 
extraction kit 

suitability for multiplex PCR amplification 
  -- --  

several months 

quality of the genomic DNA extracted 
 very good very good  very good very good 

average quantity of genomic DNA extracted 
 

1.00 µg 
± 0.5 µg 

2.40 µg 
± 1 µg 

0.05 µg 
± 0.03 µg 

0.12 µg 
± 0.1 µg 

suitability for singleplex PCR amplification 
     

Dynabeads Universal 
extraction kit 

suitability for multiplex PCR amplification 
   X X 

4 weeks 

*dph: days post hatch
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2.2.1.1. Phenol-chloroform extraction 

Considered by many geneticists as the standard procedure for extracting DNA 

from any organic tissue sample, this technique relies on the ability of neutralised 

phenol and chloroform to separate proteins from nucleic acids when they both 

coexist in solution. Phenol-chloroform extraction was previously successfully 

performed on adult cod fin clips by Clemmesen and colleagues (2003). 

This extraction protocol consisted of six consecutive steps and was designed 

to be carried out in 1.5 ml Eppendorf tubes. A small piece of tissue sample (approx. 

0.25 cm2) was first digested overnight, at 55°C, by 12 µl of proteinase K (20 mg/ml) 

in the presence of 340 µl of 0.2 M EDTA. The digested sample was further treated 

with 10 µl of RNase (2 mg/ml) for one hour at 37°C. DNA was then extracted using 

340 µl of pure phenol followed by 340 µl of pure chloroform. The aqueous phase 

containing the DNA was separated from the organic phase containing the rest of the 

organic material by centrifugation at 1200 rpm for 10 minutes. The upper aqueous 

phase, containing the DNA, was then pipetted out and placed in a new 1.5 ml 

Eppendorf tube. The DNA was consecutively precipitated by adding 900 µl of 92% 

ethanol and shaking vigorously. A washing step using 70% ethanol was then 

performed before the DNA was finally resuspended in 0.1x TE buffer (1x TE buffer 

is 10 mM Tris, 1 mM EDTA, pH 8.0). 

2.2.1.2. Chelex extraction 

Chelex is a chelatin resin which acts as a powerful adsorbent for separating 

charged ions or molecules from proteins. This property was used to develop an 

extraction protocol for DNA (Walsh et al., 1991; Estoup et al., 1996; Yue and Orban, 

2001) which is regarded as a quick and inexpensive method to obtain genomic DNA 
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from any organic substrate. Miller et al. (2000) reported using this technique to 

extract DNA from cod samples of blood, heart and muscle fibres. 

The following protocol was first designed to extract DNA from salmonid fin 

clips in 0.2 ml PCR 96 well plates (John Taggart, personal communication) and was 

later transposed to cod. 

A small piece of fin tissue (approx. 0.25 cm2) was digested overnight at 55°C, 

by 3 µl of proteinase K (10 mg/ml) in the presence of 100 µl 10% Chelex solution. 

Centrifugation (1200 rpm for 1 minute) at the end of the incubation achieved the 

separation of the proteins adsorbed onto the Chelex beads from the upper aqueous 

phase containing the DNA. 

2.2.1.3. DNA extraction using the REAL pure DNA extraction kit (Thistle 

Scientific, UK) 

This DNA extraction kit was specifically designed for the extraction of high 

quality genomic DNA from a wide variety of tissue and fluid samples. It was 

successfully tested on salmon, tilapia and carp fin samples in the Institute of 

Aquaculture (IoA) molecular biology laboratory. The kit included three solutions: a 

cell lysis buffer, a protein precipitate solution and a DNA resuspension buffer. 

The following protocol was adapted from the manufacturer’s instructions to 

perform extractions in 0.2 ml PCR 96 well plates (Ninh Huu Nguyen, personal 

communication). About 0.25 cm2 of tissue was digested overnight, at 55°C, in 3 µl of 

proteinase K (10 mg/ml) and 75 µl of cell lysis solution (part of the extraction kit). 

3 µl of RNase was then added to the digested sample and the solution was further 

incubated for 1 hour at 37°C. Protein residues were precipitated by adding 45 µl of 
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the protein precipitate solution and then centrifuging at 4100 rpm for 20 minutes. 

50 µl of the supernatant, which contained the DNA, was then transferred to a new 

PCR well filled with 75 µl of pure isopropanol. Centrifugation at 4100 rpm for 

10 minutes followed in order to precipitate the DNA from the aqueous phase (it 

formed a pellet at the bottom of the tube). The isopropanol was then washed off with 

150 µl of 70% ethanol. A last centrifugation at 4100 rpm for 5 minutes was carried 

out before entirely removing the ethanol from the well (by turning the plate upside 

down). The DNA pellet was finally resuspended in 15 to 105 µl of 0.1x TE buffer 

depending on the nature of the sample. 

2.2.1.4. DNA extraction using magnetic beads (Dynabeads® genomic 

universal DNA kit, Invitrogen, UK) 

Dynabeads® are uniform superparamagnetic monodisperse polymer particles 

which were designed to adsorb DNA molecules to their surface. This technique was 

previously reported to successfully extract DNA from Atlantic cod preserved tissue 

samples : blood, fertilised eggs and larvae (Delghandi et al., 2003). The following 

protocol was adapted to suit 0.2 ml 96 PCR well plate extraction (Madjid Delghandi, 

personal communication). 

Up to 0.25 cm2 fish tissue was digested by 4 µl of proteinase K (10 mg/ml) in 

the presence of 96 µl of Dynabeads slurry at 55°C for 4 hours (total volume of 

digestion buffer = 100 µl). The DNA/Dynabeads® complex was washed twice using 

the buffer provided in the extraction kit. The DNA was then separated from the 

magnetic beads by incubation at 60°C for 15 minutes in 10 to 40 µl of 0.1x TE buffer 

depending on the nature of the sample. 
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2.2.1.5. Selection of the best suited DNA extraction method for large 

scale genotyping 

Out of the four DNA extraction methods described above, the technique using 

magnetic beads (Dynabeads® DNA Direct™ universal kit, Invitrogen, UK) and the 

REAL pure extraction kit (Thistle Scientific, UK) were selected for large scale 

genotyping on cod larvae and fin clip tissue samples. 

The phenol-chloroform method, despite achieving high yields of very good 

quality DNA, could not be adapted to suit DNA extraction in 96 well plates. The 

Chelex extraction method failed to deliver consistently good quality DNA which was 

required in order to successfully perform multiplex polymerase chain reactions. 

The shelf life of the extracted DNA varied depending on the extraction 

method used. DNA molecules extracted by the Chelex method could be stored at 4oC 

for up to two weeks. However, when using both the phenol-chloroform and the 

REAL pure DNA extraction kit, the storage of extracted DNA at 4oC would lasts 

several months (see Table 2.2). 

2.2.2. DNA quantification 

The quantity and the purity of total genomic DNA extracted were assessed 

using a nanodrop ND-1000 spectrophotometer (Labtech International, UK). The 

nanodrop ND-1000 is a full spectrum (220-750 nm) spectrophotometer which 

operates by measuring the concentration of nucleic acids in 1µl samples. It also 

assesses the purity of DNA by measuring the ratio of sample absorbance at 260 and 

280 nm. A ratio which equals to 1.8 indicates that the extracted DNA is pure while a 

ratio below this value indicates that protein residues or other contaminants are 
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present in the sample. Figures 2.1 and 2.2 show the concentration and purity results 

for DNA extracted from cod juvenile fin tissues, using both phenol-chloroform and 

Chelex. The DNA samples extracted with Chelex beads (Figure 2.2) had a ratio of 

absorbance (260 nm/280 nm) of 1.51 suggesting that the purity of the sample was 

poor. 
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Figure 2.1. Concentration and purity of DNA extracted from cod juvenile fin tissue 
using phenol-chloroform. 

 
 
 

 
 

Figure 2.2. Concentration and purity of DNA extracted from cod juvenile fin tissue 
using Chelex. 
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2.2.3. Polymerase chain reaction 

The polymerase chain reaction or PCR is a molecular biology technique in 

which numerous copies of targeted DNA segments are synthesised using DNA 

polymerase. This technique was used to amplify polymorphic DNA microsatellite 

markers. 

2.2.3.1. DNA microsatellites used in the multilocus DNA profiling of cod 

samples 

When this project initially started, only seven polymorphic DNA 

microsatellites had been readily made available for Atlantic cod (Miller et al., 2000). 

Thirteen additional markers sequenced from the genomic DNA of walleye pollock 

were also reported to successfully cross amplify with Atlantic cod DNA (O’Reilly et 

al., 2000). Subsequently, a DNA profiling protocol, using a combination of six of 

these published markers, was developed and tested on small breeding cod 

populations (<20 individuals) by Delghandi et al. (2003). Following this study, 

Wesmajervi and colleagues (2006) solved the parentage of 2336 cod juveniles from a 

hundred potential parents, based on the genotyping data from 5 loci (i.e. one locus 

from the previously published hexaplex assay (Delghandi et al., 2003) was dropped). 

The rate of unambiguous allocations reported, with this pentaplex assay, was 91.2% 

using the parentage program PAPA (see section 2.4.2.1.). 

Towards the end of this project, Delghandi and collaborators reported the 

isolation of 105 new microsatellite sequences from genomic Atlantic cod DNA 

(Madjid Delghandi, personal communication) some of which were posted on the 

Genbank database in August 2006 (NCBI webpage, 2007).  
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In the first instance, the five DNA microsatellites used by Wemajervi et al. 

(2006), were employed to solve the parentage of cod fry (see Chapter 3). Then, as the 

project progressed, new markers were included in the genotyping analysis until a 

total of eleven markers were used to allocate juveniles to a single pair of parents. The 

list and description of the markers used in this research project are provided in Table 

2.3. Either the forward or the reverse primer, depending on the marker, was 

fluorescently labelled for detection of PCR products on an automated fragment 

analyser (see section 2.2.4.2). 

Part of the genotyping analyses were realised at the molecular biology 

laboratory in Fiskeriforskning, during two visits of 4 weeks (November 2004 and 

February 2007). All the DNA samples were processed and analysed by myself. 
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Table 2.3. Description of the polymorphic microsatellite markers used in the DNA profiling of Atlantic cod samples. 

 
Microsatellite Name Primer Sequence (5’-3’) Tandem repeat 

(bp) 
Allele size range 

(bp) 
Annealing temperature 

(oC) 
Reference 

Gmo8 F: GCA AAA CGA GAT GCA CAG ACA CC 
R: TGG GGG AGG CAT CTG TCA TTC A 4 126-322 50 Miller et al. (2000) 

Gmo19 F: CAC AGT GAA GTG AAC CCA CTG 
R: GTC TTG CCT GTA AGT CAG CTT G 4 120-224 50 ” 

Gmo35 F: GGA GGT GCT TTG AAG ATG 
R: CCT TAT CAT GTA CGT TGT TAA C 3 113-146 55 ” 

Gmo37 F: GGC CAA TGT TTC ATA ACT CT 
R: CGT GGG ATA CAT GGG TAC CT 4 236-320 46 ” 

Gmo3 F: AGG CAC GCA GGT GGA CAG GAA C 
R: GCA GCA CGA GAG AGC TAT TCC TC 4 182-211 46 ” 

Gmo34 F: TCC ACA GAA GGT CTC CTA A 
R: GGT TGG ACC TCA TGG TGA A 4 89-117 50 ” 

Gmo36 F: ACC GCA TGC CCT TTT CA 
R: GGT GAT GGA GGC TCT AGT 4 182-202 50 ” 

Tch11 F: ATC CAT TGG TGT TTC AAC 
R: TCG AGT TCA GGT GGA CAA 4 118-218 50 O’Reilly et al. (2000) 

GmoC18 F: AAGCATGCGTTTGTGTTATTAC 
R: ATCTGTTCTCGCTTTCCTTCATT 3 140-182 49 

53 Stenvik et al (2006) 

GmoC20 F: CTGCCAAAGCCTGTGACG 
R: GATGGTGGTGTTGATTGTGGTTGT 3 104-167 52 

57 ” 

GmoC42 F: CCCCCTTGATCCTGTAGACGGTTAT 
R: GTTTCGGAAGACGGATGGTG 3 155-176 59 

54 ” 

GmoC52 F: ATAACCCCATAGCTCCACGAAAACC 
R: GATAAGGCACCAGCAGGGAGACGA 3 283-304 60 

62 ” 

GmoC71 F: TGACGATACATTCAAGAGCACCAC 
R: GTTTCTTAAGAACCAGCACACGATTTGACA 2 203-233 56 

56 ” 

GmoC80 F: ACAACGCTGCTGAAGGAGGAA 
R: GTTTCTTACCCCGACACGTCAATCACC 2 126-213 56 

57 ” 

GmoC88 F: CAGCAATAGGACTGTTCACTGGAA 
R: GTTTCTTCACAAGATCAACCTGCATTTACCT 2 181-203 55 

54 ’’ 

GmoC90 F: TCC CCT GGC CCG TTG ATG TA 
R: GTT TCT TAC CAG GCG TGA TTG TGA TTA GCA G 2 252-342 56 Unpublished* 

 
*Unpublished: Delghandi (personal communication) 
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2.2.3.2. Multiplex PCR protocols 

This technique refers to a type of PCR which consists in co-amplifying 

several DNA microsatellites in a single reaction. Several multiplex assays were 

successively used for genotyping cod DNA samples. Three multiplex assay protocols 

were borrowed from both published and unpublished research works by Dr Madjid 

Delghandi and colleagues, when working at the Fiskeriforskning Institute (Norway, 

Tromsø) in November 2004 and February 2007. Three other multiplex assays (one 

tetraplex and two duplexes) were further developed at the IoA. 

Gmo8, Gmo19, Gmo35, Gmo37 and Tch11 were coamplified as a pentaplex 

assay as described by Wesmajervi et al. (2006). A tetraplex using the markers Gmo8, 

Gmo19, Gmo35 and Gmo37 was adapted from this pentaplex to suit the automated 

detection of up to four markers on the Beckman CEQ8800 (cf. section 2.2.4.2.1). The 

10 µl reaction contained 10-30 ng of DNA template, 1x PCR-buffer (10 mM Tris-

HCl; pH 8.3, 50 mM KCl), 400 µM of each dNTP, 1.5 mM MgCl2, 0.4 µM of each 

primer (i.e. forward and reverse) for Gmo19 and Gmo35, 0.2 µM of each primer for 

Gmo8, 0.3 µM of each primer for Gmo37 and 0.5 U of Taq polymerase (ABgene, 

UK). The PCR amplification program was: initial denaturation at 95oC for 5 minutes, 

34 cycles of 95oC for 35 seconds, 57oC for 35 seconds, 72oC for 1 minute, and a final 

extension step at 72oC for 10 minutes. 

Gmo3, Gmo34, Gmo36 and Tch11 were coamplified as two duplexes. The 

10 µl PCR reaction for the coamplification of the markers Gmo3 and Gmo34 

contained 10–30 ng of DNA template, 2x PCR-buffer, 150 µM of each dNTP, 

1.5 mM MgCl2, 1.3 M Betaine (Sigma Aldrich), 0.3 µM of each Gmo3 primer, 

0.6 µM of each Gmo34 primer and 0.5 U of Taq polymerase (ABgene, UK). The 
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PCR amplification was: initial denaturation at 95oC for 2.5 minutes, followed by 34 

cycles of 95oC for 50 seconds, 48oC for 50 seconds, 72oC for 1 minute, and a final 

extension step at 72oC for 10 minutes. The coamplification protocol for markers 

Gmo36 and Tch11 was identical to that for Gmo3 and Gmo34 except that all four 

primers were at a concentration of 0.6 µM and the annealing temperature within the 

PCR cycle was 50oC. 

GmoC18, GmoC20, GmoC42, GmoC52, GmoC71, GmoC80, GmoC88 and 

GmoC90 were coamplified as two tetraplex PCR reactions developed at the 

Fiskeriforskning Institute. Both 10 µl PCR reactions contained 10–30 ng of DNA 

template, 1x QIAGEN Multiplex PCR Master Mix (Qiagen, UK) and 0.1 µM of each 

GmoC18, GmoC20, GmoC42 and GmoC52 primers (or GmoC71, GmoC80, GmoC88 

and GmoC90 primers). Both PCR amplifications were: initial denaturation at 95oC 

for 15 minutes followed by 32 cycles of 94oC for 30 seconds, 56oC for 90 seconds, 

72oC for 1 minute, and a final extension step at 72oC for 30 minutes.  

PCR reactions were carried out on 96 well plate ThermoCyclers (T-gradient 

96 ThermoCycler, Thistle Scientific; Applied Biosystems 2720, Applied 

Biosystems). 

2.2.4. DNA fragment analysis 

Amplification of DNA fragments was checked on Ethidium bromide stained 

agarose gels before being analysed using an automated DNA sequencer.  

2.2.4.1. Agarose gel electrophoresis 

For a medium size gel (i.e. 35 ml), 0.42 g of agarose powder was diluted and 

boiled in 35 ml of 0.5x TAE buffer (1x TAE buffer = 40 mM Tris, 1 mM EDTA, 
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20 mM Acetic acid, pH 8.5). While the gel mix was still liquid, 0.7 µl of 10 µg/ml 

Ethidium bromide was added (in a fume cupboard). The gel was then poured in a 

casting tray with a comb inserted in one end and left to set. About 1.5 µl of PCR 

products and 3.5 µl of 3x Bromophenol blue dye (1x Bromophenol blue dye = 

25 mg/ml Ficoll 400, 83 µg/ml Bromophenol blue, 83 µg/ml Xylene cyanol FF) was 

loaded per well. The DNA samples were run against a DNA ladder (Phi X 174, 

digested with HaeIII, 100 µg/ml) in order to control the size of the fragments 

amplified (1 µl of the DNA ladder and 4 µl of 6x Bromophenol blue dye per well). 

After electrophoresis migration in 0.5x TAE buffer, PCR products could be 

visualised using a UV transilluminator (UVIdoc, Thistle Scientific, UK) as shown in 

Figure 2.3. 

 

 

Figure 2.3. Image of a 1.2% agarose gel showing multiplex PCR products (tetraplex 
of Gmo8, Gmo19, Gmo35 and Gmo37) and the Phi χ 174 DNA ladder. 
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2.2.4.2. Genetic analysis systems 

The PCR amplified DNA fragments were processed on two different laser-

based capillary electrophoresis instruments: an ABI 310 Avant Genetic analyser 

(Applied Biosystems) and/or the CEQ TM 8800 Genetic Analysis System (Beckman 

Coulter). Some markers were analysed using both the ABI 310 and CEQ 8800 for 

cross-calibration between the two instruments (see Chapter 4). 

2.2.4.2.1. Beckman-Coulter CEQ TM 8800 

The CEQ 8800 is fitted with a laser sensitive to the detection of four 

fluorescent wavelengths. Primers used in the synthesis of DNA fragments - for 

subsequent analysis on the CEQ 8800 - were extended with WellRED dye 

terminators (Beckman Coulter, UK). PCR products were processed on 0.2 ml 96 

well-plates, each well containing 0.8 µl of undiluted PCR products, 28 µl of 

formamide solution, 0.25 µl of labelled size standard (60 bp - 400 bp) and a drop of 

mineral oil (all chemicals supplied by Beckman Coulter, UK). Allele sizes of the 

amplified DNA fragments were called using the CEQ 8800 data analysis software 

(see Figure 2.4). 
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Figure 2.4. Genotyping traces of tetraplex PCR products analysed with the Beckman 
CEQ8800 automated sequencer. 

2.2.4.2.2. ABI 310 Avant 

Up to five fluorescent wavelengths could be detected by the ABI laser, thus allowing 

for the microsatellite primers to be labelled with up to four different dyes: 6-Fam, 

Vic, Ned and Pet (Applied Biosystems, Norway). PCR products were processed on 

0.2 ml 96 well-plates, each containing 3 µl of 20x diluted PCR products, 8 µl of 

formamide solution and 0.08 µl of GS500liz size standard (35 bp – 500 bp). Allele 

sizes were analysed using the software programs Genescan 3.7 and Genemapper 3.7 

from Applied Biosystems. 
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2.3. Characterisation of DNA microsatellites 

The DNA microsatellites used in this research project (see Table 2.3) were 

characterised by parameters which contributed to their suitability for being included 

in parentage analyses. Those parameters also provided a mean of comparison 

between the three broodstock populations studied. 

2.3.1. Verification of Mendelian inheritance 

Two test crossings were set up at MERL, alongside the gynogenesis 

experiments (see Chapter 6), to confirm the inheritance of the sixteen microsatellite 

markers used for parentage analysis in this research project. The first test crossing 

was set up during the 2004 spring spawning season to verify the Mendelian 

inheritance of the microsatellite markers Gmo8, Gmo19, Gmo35, Gmo37, Gmo3, 

Gmo34, Gmo36 and Tch11. A second test crossing was carried out during the spring 

season 2006 to verify the Mendelian inheritance of the markers GmoC18, GmoC20, 

GmoC42, GmoC52, GmoC71, GmoC80, GmoC88 and GmoC90. The two test 

crossings followed the same experimental protocol. One male and one female, from 

the cod broodstock kept at MERL (wild origin, 4+ years old in 2004, natural 

photoperiod), were stripped for eggs and milt. They were also fin clipped (for 

subsequent DNA analysis). About 1000 eggs were artificially fertilised by 3 ml of 

undiluted milt in a 25 ml universal vial containing 15 ml of seawater. The fertilised 

eggs were incubated in a 500 ml glass beaker (as described in Chapter 6, section 

6.2.3.1). Ten hatched larvae were sampled in 95% ethanol for subsequent DNA 

analysis. DNA profiles from both parents and offspring were analysed (see section 

2.2) and compared. All the 16 microsatellite markers complied with the Mendelian 

inheritance law (i.e. each offspring inherited one allele from its father and one allele 

from its mother; see Table 2.4). 
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Table 2.4. Results of the test crossing to confirm Mendelian inheritance for seven 
microsatellite markers. 

 
 Gmo8 Gmo19 Gmo35 Gmo37 Gmo3 Gmo34 Gmo36 
Female 150/295 121/196 128/137 269/293 195/195 101/105 194/201 
Male 150/158 121/157 122/134 269/293 195/195 110/110 194/201 
Offspring1 150/150 121/121 122/137 269/293 195/195 105/110 201/201 
Offspring2 150/158 121/157 122/128 269/293 195/195 101/110 194/201 
Offspring3 158/295 121/157 134/137 269/293 195/195 105/110 194/201 
Offspring4 158/295 121/157 128/134 269/293 195/195 101/110 194/201 
Offspring5  150/295 121/121 122/137 293/293 195/195 105/110 194/194 
Offspring6 150/150 121/121 122/137 269/293 195/195 105/110 194/201 
Offspring7 150/295 121/121 128/134 293/293 195/195 105/110 201/201 
Offspring8 150/295 121/196 122/128 293/293 195/195 105/110 201/201 
Offspring9 158/295 157/196 122/137 269/293 195/195 101/110 194/201 
Offspring10 150/158 121/121 128/134 269/293 195/195 105/110 194/201 
 
Note: allele sizes are expressed in base pairs. 

2.3.2. Polymorphism and allelic frequencies 

The concept of allelic polymorphism is synonymous to the number of alleles 

(n) encountered at a single locus. Allelic frequencies (F) were calculated, for a given 

fish population, using both the parentage analysis program VITASSIGN 

(Vandeputte, 2006) and the population genetics program GENEPOP (Raymond and 

Rousset, 1995). 

If “A”, “B” and “C” stand for the three different alleles encountered at a 

particular locus and if “F(AA)”, “F(AB)”, “F(AC)”, “F(BB)”, “F(BC)”and “F(CC)” 

represent the genotype frequencies for each possible allelic combination, then the 

frequency of allele “A” is: 

F(A) = F(AA) + 0.5F(AB) +0.5F(AC) 

with F(AA) + F(AB) + F(AC) + F(BB) + F(BC) + F(CC) = 1 
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2.3.3. Expected and observed heterozygosity 

Both the expected and the observed heterozygosity were calculated for each 

marker used to build the genetic profiles of the three broodstock populations studied. 

Both parameters were used in the first instance to assess and compare the genetic 

diversity of each stock (see Chapter 4). They also proved extremely useful in 

spotting high frequencies of typing errors (i.e. large allele dropouts and allele 

miscallings) in the Norwegian study case (see Chapter 3). 

The observed heterozygosity (Ho) for a given diploid population equals: 

Ho = ∑n
i=1 (1 if Ai1 ≠ Ai2) / n 

with “n” the number of individuals in the population and “Ai1”, “Ai2” the alleles 

possessed by the individual “i” at the locus of interest. 

The expected heterozygosity (He) for a given diploid population equals: 

He = 1 - ∑m
j=1 (fj)2 

with “m” the number of alleles at the locus of interest and “fj” the frequency of the jth 

allele. 

Both observed and expected heterozygosity were calculated using features of the 

parentage analysis software program CERVUS. 
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2.3.4. Effective number of alleles 

Effective numbers of alleles (AE) - at a given locus - were calculated from 

the expected heterozygosity values (Hexp) given by CERVUS in the “allele 

frequencies” analysis output: 

AE = 1 / (1 – Hexp) 

2.4. Parentage assignment 

In total four different parentage assignment software programs were used and 

compared (see Chapter 3) during the course of this research project. They can all be 

downloaded or directly requested from the authors free of charge.  

2.4.1. Exclusion-based programs 

2.4.1.1. Family Assignment Program 

FAP (Family Assignment Program) was developed “in-house” at the Institute 

of Aquaculture (Taggart, 2007). This program offers two complimentary functions: 

1) a predictive mode to calculate the resolving power of specific parental genotypic 

data sets for unambiguously discriminating among families / groups of families 

(achieved by complete enumeration of all possible genotypic combinations); and 2) 

an assignment mode to identify all possible parental combinations for each offspring 

based on the exclusion principle. The latter mode includes the option to allow a 

specified level of allele mismatch tolerance to accommodate / identify potential 

genotype scoring errors. Three classes of assignment are possible: “single-match” – 

where only one parental-pair is allocated; “multi-match” – where two or more 

potential parental-pairs are identified (all are listed); and “no-match” – where all 

potential parental-pairs are excluded (indicating errors in data provided). When 
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single or multiple allocations occur with mismatches, the program identifies the 

relevant problematic locus / loci. The program was primarily designed for a “closed” 

environment, i.e. all potential parents are known (genotyped). 

2.4.1.2. VITASSIGN 

VITASSIGN (Vandeputte, 2006) also allocates offspring to pairs of parents 

using the exclusion principle. Overall, the features offered by VITASSIGN are very 

similar to the ones provided by FAP. In assignment mode, VITASSIGN can take into 

account allelic mismatches in the analysis and in case of “multi-match” outcomes 

provides a list of the matching families. Like FAP, when allocations occur with allele 

mismatches, VITASSIGN identifies the problematic locus/loci. VITASSIGN also 

includes two additional features compared to FAP: it can generate a mating matrix 

based on the allocation results and provide a summary of allele frequencies for each 

analysed locus. Lastly, VITASSIGN can be used to run simulations of allocation 

based on the genotypes of the putative parents. The program first generates a given 

number (fixed by the operator) of offspring genotypes based both on the “declared 

matings’ matrix” and the parents’ genotypes. The “created” offspring are then 

assigned by the program and the rate of single-matches is calculated (i.e. corresponds 

to the predicted rate of successful allocation). 

2.4.2. Probability based programs 

2.4.2.1. PAPA 

PAPA v2.0 (Package for the Analysis of Parental Allocation; Duchesne et al., 

2002) uses likelihood scores to allocate parental-pairs. For each offspring a ‘breeding 

likelihood’ (Sancristobal and Chevalet, 1997) is calculated against each potential 

parental-pair. The pair with the highest likelihood is assigned parentage. Offspring 
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are not allocated when either all parents show zero likelihood (‘null likelihood’) or 

where two or more parental pairs share the highest positive likelihood (an 

‘ambiguity’). In both the simulation and the allocation modes, a degree of 

transmission error (i.e. allele mistyping and / or genetic mutation) can be 

accommodated. This transmission error rate can be either uniform (all errors 

assumed to be equally likely) or non-uniform (to reflect greater mis-scoring between 

alleles of similar mobility). Simulations run using the chosen error model / value can 

be used to evaluate the likely power of the allocation and provides a computed 

measure of ‘correctness’, i.e. the level of confidence / accuracy that can be expected 

from actual assignments. The program can run sexed/unsexed predictions and 

allocations in both “closed” and “open” systems (where only part of the parental 

genotyping data is available). 

2.4.2.2. CERVUS 

CERVUS 2.0 is a paternity /maternity allocation program (c.f. parental-pair 

allocation approach used by FAP and PAPA), which relies on likelihood-based 

assignments. It was originally designed to infer paternity in natural Scottish red deer 

populations (Marshall et al., 1998; Slate et al., 2000). The program derives likelihood 

ratios for paternity / maternity for each offspring which, taken with population allele 

frequency data, is used to define a statistic for allocating, with confidence, the most 

likely parent. CERVUS was originally designed for solving the parentage in a closed 

system where one parent is known (e.g. mother/offspring relationship). The program 

allocates one parent at a time. In studies where both parents need to be resolved, two 

consecutive allocations need to be performed. The first allocation attempts to find the 

most likely (and statistically robust) parent in the entire broodstock population (male 

or female). A second allocation can then be performed to assign the second parent 
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(informed by the now known genotype of the allocated first parent). For this study 

the default confidence levels were used for allocations i.e. 95% strict, 80% relaxed. 

Where applied, a genotyping error rate of 1% was assumed (the default suggested in 

user manual). 

2.5. Indicators to assess the degree of genetic diversity 

within a given population 

2.5.1. Hardy-Weinberg test 

Hardy-Weinberg test corresponds to a Chi-square test which compares the 

observed and expected allele frequencies within a given population and determines 

whether there is a statistically significant difference between the two. The model is 

based on five basic assumptions: 1) the studied population is large, 2) there is no 

gene flow between populations, from migration or transfer of gametes, 3) mutations 

are negligible, 4) individuals are mating randomly; and 5) natural selection is not 

operating on the population. If the test shows that there is no significant difference 

between the observed and expected allele frequencies, then the population is said to 

be at Hardy-Weinberg equilibrium (i.e. both its genotypes and allele frequencies will 

remain unchanged over successive generations).  

The web-based population genetics software GENEPOP (Raymond and 

Rousset, 2000) was used to performed Hardy-Weinberg and population 

differentiation tests. The genotyping data was submitted online following the 

authors’ instructions and the results were returned, via the web browser, as electronic 

mail. 
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2.5.2. Effective breeding population size 

To estimate the effective breeding population size (Ne) of a given population 

of cod fry or juveniles, an assumption of unequal individual contributions was made. 

Results from the parentage analyses were used to calculate Ne as follow: 

Ne = 1 / [2 x (0.5 x ∑ Ci
2 – 0.25 x (1 / 2Nm)2 – 0.25 (1 / 2Nf)2)] 

 parents 

     (Brown, 2003) 

where Ci stands for the fractional contribution of parents, Nm is the number of 

contributing males and Nf the number of contributing females. 

2.5.3. Per-generation rate of inbreeding 

The per-generation rate of inbreeding ∆F was also calculated following the 

formula given by Brown (2003). An assumption of population propagation in 

discrete generations - following random selection from a single broodstock 

population - was made: 

∆F = 0.5 x ∑ Ci
2 – 0.25 x (1 / 2Nm)2 – 0.25 (1 / 2Nf)2 

 parents 

Note: with Ne = 1 / (2∆F) 

where Ci stands for the fractional contribution of parents, Nm is the number of 

contributing males and Nf the number of contributing females. 

2.6. Statistics 

The statistical analyses were performed using the statistical package SPSS 

14.0.  

Before performing a statistical analysis, the data was tested for both normality 

and homogeneity of variance. The Kolmogorov-Smirnov test was used to verify the 
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data followed a normal distribution while a F-test was performed to verify the 

hypothesis of homogeneity of variance was true. 

2.6.1. T-test 

The unpaired T-test was used to compare the means from two independent, 

random populations (assuming they followed a normal distribution). The null 

hypothesis tested was that the means of the two populations were equal. Assuming 

equal variances, the test statistic was calculated as follow: 
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bar 2 are the sample means, s² is the pooled sample variance, n1 

e sizes and t is a Student t quantile with n1 + n2 - 2 degrees of 

were dependant a paired t-test was used. Assuming equal 

tistic was calculated as follow: 

 the average and standard deviation for the paired observations. 

thesis, the constant µ0 equals zero and the degree of freedom 
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2.6.2. Chi square test 

The Chi square test was employed to compare the frequency distribution of 

certain events observed in a sample with the frequency distribution of a particular 

theoretical model. The null hypothesis for this test was that the frequency 

distributions of the sample and theoretical model were equal. The Chi-square statistic 

was calculated as follow: 

 
 
 
 
 
 

where Oi is an observed frequency, Ei is an expected frequency (from the theoretical 

model) and n the number of possible outcomes of each event. 

The Chi-square statistic was then used in a p-value statistical test to compare the 

value of the Chi-square statistic with a Chi-square distribution. 

2.6.3. Analysis of variance (ANOVA) 

To compare the means between two or more groups / treatments, a one way 

ANOVA test was performed. This test was used providing that the following 

assumptions were met: 1) response variable were normally distributed, 2) the 

samples were random and independent and 3) the variance of the populations were 

equal. The null hypothesis for this test was that the means between the different 

groups / treatments compared were equal. 
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3.1. Introduction 

3.1.1. Multilocus DNA microsatellite profiles for parentage 

analysis 

DNA microsatellites are being increasingly used in both parentage allocation 

and relatedness studies of natural and captive fish populations (Chistiakov et al., 

2005). Initial fisheries-related publications reported on resolving parentage issues in 

situations where limited numbers of families were involved (e.g. Ferguson et al., 

1995; Herbinger et al., 1995; O'Reilly et al., 1998). However more complex systems 

are now being studied (e.g. mass spawning tanks containing a large number of fish in 

commercial hatcheries), where very large numbers of potential families need to be 

resolved. Recent publications on Senegalese sole, turbot and Nile tilapia have focused 

on describing the output of such large breeding populations (Borrell et al., 2004; 

Fessehaye et al., 2006; Porta et al., 2006). Using only five loci, Fessehaye (2006) and 

Porta (2006) successfully traced the pedigree of offspring produced from the mass 

spawning of 10 x 10, 20 x 20 and 25 x 12 crosses. In both case studies, the parentage 

allocation program PAPA was used and 90 to 98% of the offspring analysed were 

unambiguously allocated to a single pair of parents. In the study published by Borrell 

et al. (2004), the genotyping data from eight loci allowed CERVUS to solve the 

parentage of offspring issued from the mass spawning of 25 to 60 parents with a 

success rate of 70%. The authors suggested that both allele mutations and null alleles 

were responsible for most of the allelic mismatches observed between parents and 

offspring. 

3.1.1.1. Number and choice of microsatellite markers 

Recently a number of questions have been raised regarding the number of 

microsatellite loci required, the optimal level of variability at each locus and the 
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management of typing errors in parentage analyses (Castro et al., 2004; Pompanon et 

al., 2005). A common trend appears to be recommending the screening of a minimum 

number of markers (i.e. 4 to 6), in order to limit costs (e.g. Fessehaye et al., 2006; 

Porta et al., 2006). By reducing the number of markers used to compile a genetic 

profile, Borrell et al. (2004) have also argued that the occurrence of genotyping errors 

should also be reduced. 

3.1.1.2. Calling allele sizes and building pedigrees 

Characterising allele sizes is of paramount importance when performing 

parentage analysis. Indeed, the success of an allocation exercise relies largely on both 

the accuracy and the consistency of allele size calling. The tedious task of interpreting 

chromatogram traces can be assisted by using semi-automated detection software 

programs such as Genemapper (Applied Biosystems). Providing allele detection 

thresholds and bin sizes are carefully customised, the program will automatically 

generate genetic pedigrees. Relying on semi-automated detection of alleles has the 

advantage to readily build consistent parent and offspring profiles. However, it 

requires careful handling as it could also represent a source of errors (Pompanon et 

al., 2005). This is illustrated by the case study presented in this Chapter.  

3.1.2. Parentage analysis 

3.1.2.1. Methods of allocation 

There are two major methods of conducting parentage analyses: exclusion and 

likelihood-based approaches (Jones and Ardren, 2003). The exclusion principle relies 

solely on Mendelian genotypic incompatibilities between potential parents and 

offspring to filter out false parents / parental pairs. Where more than one set of non-

excluded parents remain, likelihood approaches may be applied to select the most 
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probable parent / parental pair (e.g. Meager and Thompson, 1986; Sancristobal and 

Chevalet, 1997). There are advantages and disadvantages to using either allocation 

method. The exclusion method is conceptually simple and transparent but is 

particularly sensitive to typing errors and / or allele mutations. However, provided the 

locus set has a high assignment power (>99%) and error rates are low (less than 4%), 

accurate allocation is feasible using software that can accommodate occasional 

mismatched alleles (Vandeputte et al., 2006). Likelihood computations allow for a 

less rigid approach to parental assignment, which often results in more apparent 

assignments from less genotypic data. The algorithms applied usually incorporate a 

means for dealing with some degree of transmission error and missing data. However, 

the relationships among 1) the mathematical models implemented, 2) the error level 

set by the user for running the allocation and 3) the resultant sensitivity / accuracy of 

the assignment are more difficult to predict, and extra care is needed when 

interpreting the outcomes. 

3.1.3. Aims of the study 

During a parentage assignment exercise involving cod fry from a commercial 

mass spawning broodstock tank, discrepancies were noticed between exclusion- and 

likelihood-based assignment outcomes. This prompted a more detailed comparison, 

reported in this Chapter. The aims for comparing these two allocation methods were 

1) to study and understand the origin of the discrepancies observed when assigning 

offspring using likelihood vs. exclusion, 2) to decide on the best method / software 

program to assign offspring issued from the mass spawning of a large number parents 

and 3) to study the influence, on the allocation results, of adding/removing loci from 

the analysis. Using a genotype dataset based on five multiplexed loci (Delghandi et 

al., 2003; Wesmajervi et al., 2006), we compared assignments produced by four 
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freeware parental assignment programs (CERVUS, Marshall et al. 1998; PAPA, 

Duchesne et al., 2002; VITASSIGN, Vandeputte et al., 2006 and FAP, Taggart, 

2007), already used in aquaculture contexts. 
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3.2. Materials and methods 

3.2.1. Presentation of the genotyping datasets 

3.2.1.1. Origin of the samples 

The study focused on one breeding tank from a Norwegian commercial cod 

hatchery (Grieg Marine Farms AS, Nedstrand). This broodstock population was 

chosen at the time (i.e. back in 2003) because sufficient number of eggs were 

produced on a daily basis to stock hatchery tanks with single batches of fry. This was 

not the case at the Scottish hatchery (to stock a hatchery tank, fry issued from several 

consecutive days of spawning were pooled). 

Farm records showed that the Norwegian cod population was made up of 38 

males, 54 females and 7 unsexed fish (see also Table 2.1). The fish had been sexed 

(using ultrasound technology) two month prior to the spawning season and PIT-

tagged. A fin tissue sample from each fish was taken for DNA analysis. The fin 

samples were stored in 95% ethanol at 4°C until being processed.  

Three hundred cod fry originating from a single day of spawning (19/11/03) 

were sampled. At the time of the sampling the fry were 83 days post-hatch. They had 

been size graded but kept as a single batch. The sampled fry, which were a random 

sample from the smallest size graded group (being the only group kept as a single 

batch after the grading took place), were stored in 95% ethanol at 4°C until analysed. 

3.2.1.2. Genotyping datasets 

The samples were processed at the Fiskeriforskning Institute, in Tromsø. Both 

the broodstock and the offspring were genotyped using five published DNA 

microsatellite markers (see Table 3.1) combined in a pentaplex assay, as described by 
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Wesmajervi et al. (2006). Three datasets, derived from the same genotyping data, 

were analysed with four parentage assignment programs (see Chapter 2). The first 

dataset is referred to as “five loci raw”. It corresponds to the genotyping data from 

five markers (Gmo8, Gmo19, Gmo35, Gmo37 and Tch11) obtained following 

automated allele scoring using Genemapper 3.7 (Applied Biosystems). Analytic 

parameters included the selection of the default advanced algorithm for allele peak 

detection and the cubic spline method for calling sizes. Bin sizes and allelic thresholds 

were both customised using advanced options in Genemapper. For trinucleotide 

tandem repeats the bin size was set to ± 1.45 base pairs of the actual allele size and for 

tetranucleotide tandem repeats, it was set to ± 1.90 base pairs. In order to discriminate 

between non specific amplification or gel artefacts and actual alleles an intensity 

threshold was applied which automatically disregarded any peak less than a third as 

intense as the prevalent allele. The second dataset, “five loci corrected” was obtained 

following rigorous manual scrutiny of chromatograms and adjustment of 

accompanying genotype output files, informed by initial allocation results produced 

by FAP (see Results section). The third dataset “four loci corrected” corresponds to 

the corrected dataset minus the data from one marker (Gmo37, a moderately 

informative marker as 13 distinctive alleles were encountered within the Norwegian 

broodstock population). 

These three datasets did not include genotypes from the seven unsexed fish in 

the parental files, since they were shown not to contribute to the offspring sampled 

(see Chapter 4). The fry which were not fully genotyped successfully for all the five 

markers (22 out of 300) were also removed from the offspring dataset. 



Chapter 3. Analysing the parentage of a complex genotyping dataset 

Marine Herlin . Ph.D. Thesis 2007 
63

Table 3.1. Description of the polymorphic microsatellite markers used in the present 
study. 

 
Microsatellite 

Name 
Allele size 
range (bp) 

Number of alleles identified in the 
Norwegian broodstock population (N = 99) Reference 

Gmo8 126-322 22 Miller et al. 
(2000) 

Gmo19 120-224 20 ” 
Gmo35 113-146  7 ” 

Gmo37 236-320 13 ” 

Tch11 118-218 19 O’Reilly et al. 
(2000) 

 
 

3.2.2. Parentage analysis programs 

The genotyping datasets were analysed using each of the four parentage 

programs presented in Chapter 2 (i.e. FAP, VITASSIGN, CERVUS and PAPA). FAP, 

VITASSIGN and PAPA were relatively easy to operate providing the 

recommendations and examples given by the authors were followed (cf. user guides 

for each program). Therefore, no further details will be provided in this chapter 

concerning those three programs. 

The use of CERVUS, however, proved to be more challenging. Since the 

program only solves a parent at a time, two successive allocations were performed for 

each analysed dataset. The first allocation aimed to attribute, to each analysed 

offspring, the most likely parent (male or female). Based on the results of this first 

allocation, new input files were generated for the second parental allocation. Those 

files took into account the identity of the first allocated parent, its sex and its 

attributed confidence level of allocation (i.e. 95%, 80% or “relaxed” confidence). In 

essence, the second allocation consisted in searching for the second most likely parent 

of opposite sex, knowing the identity of the first parent. A global confidence level for 
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the chosen family was then deduced from the confidence levels of both parental 

allocations. 

3.2.3. Simulated offspring datasets 

A set of 296 offspring genotypes was computed from the “5 loci corrected” 

broodstock data. Offspring genotypes were randomly generated - from the genotyping 

data of 24 parental pairs (so it matched the actual FAP results) - using a macro built in 

Windows Excel. The simulated offspring file was designed so that it reflected the 

FAP allocation results of the “5 loci corrected” dataset (both the contributing families 

and the percentages of contribution were identical). Genotyping errors were 

subsequently added to the simulated offspring file. Two error models were 

implemented: 1) a “real error” model which reflected the typing error levels 

encountered in the “5 loci raw” dataset (i.e. 17.5% error for Gmo19, 7% for Gmo8, 

61% for Gmo35, 2% for Gmo37 and 15% for Tch11) and 2) a “10% typing error” 

model which was characterised by 10% typing errors for 3 out of 5 markers (i.e. 

Gmo19, Gmo35 and Tch11). Results from these two simulated datasets were 

compared to allocation outcomes obtained with FAP and PAPA (see section 3.3.1.6) 

using the “5 loci corrected” parental files. 
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3.3. Results 

3.3.1. Comparison between FAP and PAPA parentage 

allocations 

3.3.1.1. Predictions and parentage allocations of the “five loci raw” 

genotyping dataset 

The “five loci raw” dataset initially generated by automated genotype scoring 

was first analysed using both FAP and PAPA. The parentage analysis using PAPA 

was carried out allowing for a uniform error value of 0.02 (the default value for 

uniform error rate in PAPA). A one allele mismatch tolerance was allowed for the 

FAP allocation. Despite predicting a similar assignment power for the five locus set 

(c. 90%), the two procedures showed striking differences in the proportions of 

offspring successfully allocated to a single family (Table 3.2). PAPA allocated a 

parental pair to 98% of offspring (with an expected “correctness” of > 0.98) whereas 

FAP only allocated 41% to a unique, single family. In all cases the exclusion-based 

allocations concurred with the likelihood assignments. Despite allowing for up to one 

allele mismatch in the exclusion-based allocation, 37% of the offspring were not 

matched to any family (Table 3.2). This suggested that a significant number of typing 

errors were present in the dataset (potentially from both offspring and parental data). 
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Table 3.2. Comparison of the prediction and allocation results for 278 cod offspring 
given by PAPA and FAP using the “five loci raw” dataset (automated genotype 
scoring). 

 
Predicted assignment Actual assignment 

PAPA 1 FAP 
Assignment 
outcome PAPA FAP 0.02 uniform error 1 allele mismatch 
Single-match 94.0% 90.0% 273 (98.2%) 114 (41.0%) 
Multiple-match 6.0% 10.0% 5 (1.8%) 60 (21.6%) 

No-match -- -- 0 104 (37.4%) 
Contributing 
families -- -- 74 29 

 
1 ‘Correctness’ computed as 0.98 (allocation and production error model values = 0.02) 
 

3.3.1.2. Dataset cleaning and origin of the genotyping errors 

Hardy-Weinberg tests (using Genepop; Raymond and Rousset, 1995) were 

performed on the raw parental genotypic data. These revealed highly significant 

excesses of homozygotes at most loci, but particularly for Gmo19 and Gmo35, which 

suggested at least one potential source of error, i.e. large allele dropout (Table 3.3). 

Consequently, all chromatograms were manually checked and many genotyping 

errors were identified (Table 3.4). Overall, Gmo35 genotypes were subjected to the 

most corrections (24% of the parental and 68% of the offspring genotypes). The main, 

but not only, source of error encountered for most loci was “technical” large allele 

dropout – i.e. where weakly fluorescing larger allelic PCR products were not detected 

because the peak detection threshold was set too high in the automated scoring macro 

employed. Another relatively common error encountered was the miscalling of allele 

size due to size standard calibration problems. Overall 400 changes were made, a 

detected error rate of 10.8%. 
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Table 3.3. Genepop analysis on the “5 loci raw” parental dataset showing the 
expected number of homozygotes vs. the observed number of homozygotes for each 
of the five loci genotyped. 

 
Locus 
ID 

Number of fish 
genotyped 

Number of 
observed alleles

Expected number of 
homozygotes 

Observed number of 
homozygotes 

Gmo8 921 23 10 14 
Gmo19 92 20   8   23* 
Gmo35 92   7 22   49* 
Gmo37 92 13 15 18 
Tch11 92 20   7   17* 

 
1 the seven unsexed broodstock were not included in the analysis 
* Difference statistically significant (Chi square test with two-tailed P value < 0.05) 
 

Table 3.4. Summary of the manual corrections made to the parental and offspring 
genotypes originally generated by automated allele scoring. Both the number (and 
percentage) of allele designations that were changed at individual loci are given. 

 

Number of genotypes corrected 
 

Gmo8 Gmo19 Gmo35 Gmo37 Tch11 
Parental alleles 3 (3.3%) 3 (3.3%) 22 (23.9%) 4 (4.3%) 14 (15.2%) 
Offspring alleles 21 (7.6%) 54 (19.4%) 188 (67.6%) 7 (2.5%) 42 (15.1%) 

 

3.3.1.3. Predictions and parentage allocations of the “5 loci corrected” 

genotyping dataset 

In order to evaluate the impact of the corrections made to the original dataset, 

Hardy-Weinberg tests (using Genepop; Raymond and Rousset, 1995) were run on the 

corrected parental genotypic data (Table 3.5). These showed that reviewing the 

chromatograms resulted in reducing by 50% the number of homozygotes observed for 

Gmo35 (Table 3.5). However, the difference between the “expected number of 

homozygotes” and the “observed number of homozygotes” was still significantly 

different for two loci out of five (i.e. Gmo19 and Tch11; see Table 3.5). 
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Table 3.5. Genepop analysis on the “5 loci corrected” parental dataset (genotypes 
manually corrected) showing the expected number of homozygotes vs. the observed 
number of homozygotes for each of the five loci genotyped. 

 
Locus 
ID 

Number of fish 
genotyped 

Number of observed 
alleles 

Expected number of 
homozygotes 

Observed number 
of homozygotes 

Gmo8 92 22 10 15 
Gmo19 92 20   7   22* 
Gmo35 92 7 18 25 
Gmo37 92 13 14 18 
Tch11 92 19   6   11* 

 
* Difference statistically significant (Chi square test with two-tailed P value < 0.05) 
 

The “five loci corrected” dataset was then reanalysed by both FAP and PAPA 

(Table 3.6). The corrections led to a similar increase in predicted power of assignment 

for the five loci (from c. 90% to c. 98 %) calculated by the two softwares. The 

percentage of offspring successfully allocated to one family, using FAP (allowing for 

up to one allele mismatch per assignment), increased from 41% to 77%. No-matches 

decreased from 37% to 14%. Both results suggest that the corrections made to the 

genotyping data improved the quality of the allocation analysis. Of the single family 

allocations identified, 24 were assigned on the basis of one allele mismatch. Those 24 

families all had a predicted assignment success of at least 78% according to FAP 

(Table 3.7). Re-examination of chromatogram traces from these allocations did 

identify further genotyping errors as predicted, or involved cases of suspected large 

allele dropout / null allele (i.e. either one of the parents or the offspring was 

homozygous for a small sized allele at the mismatched locus). Comparison between 

the percentages of homozygotes among the matched and non-matched offspring 

suggested that genotyping errors were likely to remain in the dataset - especially for 

the markers Gmo8 and Gmo19 - despite the extensive corrections undertaken (Table 

3.8). 
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In contrast the major corrections implemented made little difference to the 

overall allocations produced by PAPA. Predicted accuracy of assignments was 

virtually unchanged (“correctness” = 0.99). Perhaps somewhat counter-intuitively, the 

proportion of offspring successfully allocated to a single pair of parents actually 

decreased slightly (from 98% to 96%), while the number of ambiguous matches 

doubled to 3.6%. The number of offspring not matched to any family remained at 

zero. As with the “five loci raw” dataset, all FAP single family assignments concurred 

with PAPA allocations. Nevertheless, conspicuous differences still remained between 

the two analyses. PAPA identified more than double the number (54) of contributing 

families compared to only 24 single-match families with FAP (Table 3.6). Although 

the latter figure was derived from 54 fewer assignments, one or more of these 24 

families were also potential contributors in 18 of the additional 24 multiple matches 

identified by FAP. 

Table 3.6. Comparison of the prediction and allocation results for 278 cod offspring 
given by PAPA and FAP using the “five loci corrected” dataset. 

 
Predicted assignment Actual assignment 

PAPA 1 FAP 
Assignment 
outcome PAPA FAP 0.02 uniform error 1 allele mismatch 
Single-match 98.4% 97.0% 268 (96.4%) 214 (77.0%) 
Multiple-match  1.6%  3.0% 10 (3.6%) 24 (8.6%) 
No-match -- -- 0   40 (14.4%) 
Contributing 
families -- -- 54 24 

 
1 ‘Correctness’ computed as 0.99 (allocation and production error model values = 0.02) 
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Table 3.7. FAP predicted assignments for the 24 contributing families identified by 
FAP (using the “5 loci corrected” dataset with up toone allele mismatch allowed). 

 
Contributing family Percentage of predicted assignments by FAP 
F49xM10 0.984 
F40xM10 1.000 
F25xM14 0.789 
F40xM14 0.938 
F19xM14 0.969 
F63xM14 1.000 
F58xM15 1.000 
F29xM30 0.938 
F22xM30 0.902 
F40xM30 0.938 
F40xM38 1.000 
F51xM42 0.969 
F49xM42 0.918 
F82xM42 0.953 
F29xM42 0.936 
F19xM42 0.930 
F44xM54 1.000 
F51xM65 1.000 
F22xM65 0.969 
F29xM65 1.000 
F40xM65 0.984 
F51xM72 0.969 
F19xM72 0.969 
F51CxM83 1.000 

 
Notes: the percentage of predicted assignments is deduced from the identification and 
the counting of all possible shared genotypes for each pairwise family combination 
(Taggart, 2007). 
 

Table 3.8. Comparison of the percentages of homozygotes between the allocated and 
the non allocated offspring using the “5 loci corrected” dataset and based on FAP 
results (one allele mismatch). 

 
Offspring group Gmo19 Gmo8 Gmo35 Gmo37 Tch11 
Offspring not matched 35.9 21.9 10.9 34.4   9.4 
Offspring matched to a single family 13.6   7.5   7.0 34.1 12.6 
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3.3.1.4. Conservativeness of the allocation results  

After correcting the genotyping data, 49 offspring (17.6%) were allocated to a 

different family by PAPA, while only 4 (1.4%) of offspring were similarly reassigned 

with FAP. The number of contributing families found using PAPA was also more 

heavily influenced by the corrections made to the genotyping dataset. The number fell 

from 74 to 54, while with FAP it only decreased from 29 to 24. 

3.3.1.5. Predictions and parentage allocations of the “4 loci corrected” 

genotyping dataset 

In order to explore the consequences of using fewer loci, the assignments were 

recomputed (Table 3.9) with a reduced “four loci corrected” dataset. A moderately 

informative locus, with apparently low error rate (i.e. Gmo37), was removed from the 

dataset to intend estimating, at best, the influence of a single locus on the overall 

assignment success achieved by each of the four assignment programs studied. With 

only 4 loci, predicted assignment values fell by c. 12% for FAP, and by c. 6% for 

PAPA. The “correctness” estimate (allocation accuracy) for the latter remained high 

(c. 97%), similar to that computed for the full “five loci corrected” dataset. Omitting 

this locus only reduced the number of “successful” allocations computed by PAPA by 

11. The power of actual assignment was more significantly reduced for the FAP 

analysis, with 28 fewer assignments being made. In terms of conservativeness, PAPA 

parental-pair allocations changed for 34 (12%) of offspring while no allocations 

changed using exclusion-based analysis. 
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Table 3.9. Comparison of the prediction and allocation results for 278 cod offspring 
given by PAPA and FAP using the “four loci corrected” dataset. (i.e. Gmo8, Gmo19, 
Gmo35 and Tch11 only). 

 
Predicted 

assignment Actual assignment 

PAPA 1 FAP 
Assignment outcome 

PAPA FAP 0.02 uniform error 1 allele mismatch 
Single-match 91.9% 85.0% 257 (92.5%) 186 (66.9%) 
Multiple-match   8.1% 15.0% 21 (7.5%)  72 (25.9%) 
No-match -- -- 0 20 (7.2%) 

Contributing families -- -- 59 25 

 
1 ‘Correctness’ computed as 0.97 (allocation and production error model values = 0.02) 
 

3.3.1.6. Parentage allocations of simulated offspring datasets 

Differences between FAP and PAPA analysing methods were further 

investigated by comparing the allocation outcomes from two simulated offspring 

datasets (Table 3.10). As expected, the allocation results from the “real error” and the 

“5 loci raw” datasets concurred. Overall, PAPA allocated 97% of the simulated 

offspring to a single family while FAP only managed to allocate 59%. However, due 

to the extensive genotyping errors present in the offspring file, 18% of the families 

matched by PAPA were incorrect for either one or both parents (vs. only 5% for 

FAP). The allocation outcomes from the “10% typing error” offspring dataset were 

also as expected. By reducing the occurrence of genotyping errors in the simulated 

offspring file, the percentage of single-matches increased significantly, from 59% to 

86.5%, with FAP (Table 3.10) but remained almost identical with PAPA (96%). The 

reduction in typing errors however influenced greatly the correctness of the results 

given by PAPA since only 5% of the allocated families were incorrect this time 

around (vs. 1% for FAP). 
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Table 3.10. Assignment results for two simulated offspring datasets given by PAPA 
and FAP. 

 
“real error” dataset “10% typing error” dataset 

PAPA 1 FAP PAPA 1 FAP Assignment outcome 
0.02 uniform 

error 
1 allele 

mismatch 
0.02 uniform 

error 
1 allele 

mismatch 
Single-match 287 (97%) 174 (59%) 283 (96%) 256 (86.5%) 
Multiple-match  9 (3%)   70 (24%) 13 (4%)   34 (11.5%) 
No-match 0   52 (17%) 0 6 (2%) 
Incorrect family 
allocation 54 (18%) 14(5%) 14 (5%) 2 (1%) 

 
1 ‘Correctness’ computed as 0.99 (allocation and production error model values = 0.02) 
 

3.3.2. Comparison between FAP and CERVUS parentage 

allocations 

Predicted assignments were computed, using CERVUS, for the three 

genotyping datasets (“5 loci raw”, “5 loci corrected” and “4 loci corrected”). The 

predicted assignment power for CERVUS derived first parent allocations was high 

assuming the data was error free – but much lower if even a modest 1% error rate 

model was invoked (Table 3.11). For the ‘five loci corrected’ dataset only 70% first 

parent assignments were predicted at ‘relaxed’ confidence level, and 29% at strict 

level. Predicted assignment dropped even more dramatically for the four loci dataset 

(24%, “relaxed”; 4% “strict”). Predicted performance allowing for 3% error rate, still 

a relatively low value, was extremely poor (0-7% of sample likely to be assigned, 

even with relaxed confidence; Table 3.11). 

In actual assignments, performance was poorer. For clarity only data for 

assignments allowing for a 1% error rate are presented (Table 3.12). In all cases when 

a first parent was identified CERVUS also managed to assign a second parent, at the 

same confidence level. Reassuringly, the “five loci corrected” dataset generated the 

highest number of allocations, i.e. 168 (60%) offspring were assigned to a family with 
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80% confidence. This dropped to 23% of offspring assigned parentage at 95% 

confidence level. In both these cases the vast majority of assignments concurred with 

those produced by FAP (Table 3.12). Assignments based on the four loci dataset were 

very low (18%, “relaxed”; 6% “strict”) and therefore concurred with the predicted 

results. 
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Table 3.11. CERVUS predictions for assignment power of first parent for each of the three datasets (based on simulations generated from 1000 
iterations, all parents known). 

 
 0% typing error  1% typing error  3% typing error 
1 Confidence: relaxed strict  relaxed strict  relaxed strict 
Dataset         

‘5 loci raw’ 99% 87%  44% 18%  7% 2% 
‘5 loci corrected’ 100% 83%  70% 29%  6% 0% 
‘4 loci corrected’ 90% 54%  24% 4%  0% 0% 

 
1 Relaxed = 80% confidence ; strict = 95% confidence 
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Table 3.12. Summary of parental-pair assignments identified by CERVUS for 278 cod offspring (assuming a 1% error rate), and comparison 
with FAP allocations. 

 
 Assignment outcome - 80% confidence level Assignment outcome - 95% confidence level 

Dataset 
Family allocations 

Number & (%) 
Number of 

contributing families. 
Concurs 

with FAP 1
Family allocations 

Number & (%) 
Number of 

contributing families. 
Concurs with 

FAP 1 
‘5 loci raw’ 134 (48%) 61 45 / 60 62 (22%) 32 23 / 31 
‘5 loci corrected’ 168 (60%) 66 110 / 117 64 (23%) 32 43 / 47 
‘4 loci corrected’ 50 (18%) 29 16 / 28 18 (6%) 14 5 / 8 

 
1 Number of family assignments that agreed / number of offspring assigned a parental-pair by both CERVUS and FAP  
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3.3.3. Comparison between FAP and VITASSIGN parentage 

allocations 

As expected, the allocation results given by FAP and VITASSIGN for the “5 

loci raw”, “5 loci corrected” and “4 loci corrected” datasets were identical. However, 

in predictive mode, the answers given by the two programs differed slightly due to the 

different algorithms they each used (see Chapter 2). Choosing between FAP and 

VITASSIGN to conduct exclusion-based parental assignment exercises mainly comes 

down to personal choice. In this research project, FAP was chosen to run exclusion-

based parental analyses simply because VITASSIGN was not made available until 

late 2006. 

3.3.4. Summary 

To conclude this section, the principal results of this Chapter are recapitulated 

in Table 3.13. 
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Table 3.13. Summary of parental pair assignments by FAP, VITASSIGN, PAPA and CERVUS for ‘5 loci raw’, ‘5 loci corrected’ and ‘4 loci 
corrected’ offspring datasets. 

 
FAP and VITASSIGN 

1 allele mismatch 
PAPA 

0.02 uniform error 
CERVUS 

80% confidence level 
Dataset 

Prediction 
Single-match Single-match Contributing 

families 
Prediction 

Single-match Single-match Contributing 
families 

Prediction 
Single-match 

1% typing error
Single-match Contributing 

families 

‘5 loci raw’ 90.0% 41.0% 29 94.0% 98.2% 74 44.0% 48.0% 61 
‘5 loci corrected’ 97.0% 77.0% 24 98.4% 96.4% 54 70.0% 60.0% 66 
‘4 loci corrected’ 85.0% 66.9% 25 91.9% 92.5% 59 24.0% 18.0% 29 
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3.4. Discussion 

It is clear that there were potentially serious flaws among the initial genotypes 

(i.e. ‘5 loci raw’ dataset) generated for this cod parentage assignment study. Indeed 

the extent of errors in the initial dataset (mean 20%) was much higher than that 

usually reported in the literature (from 0.25% to 2.0%; see Blouin, 2003). These 

errors were uncovered after the assignment results obtained with PAPA were 

challenged with FAP. The assignment program PAPA was used, in the first instance, 

following the results published by Wesmajervi and colleagues (2006), where 91.2% 

of assignments were solved by PAPA, based on the genotyping information from the 

same 5 loci analysed in this study. The discrepancies observed between the allocation 

results from FAP and PAPA prompted a detailed study of the performance of 

different assignment approaches under ‘extreme’ conditions. The success of parentage 

allocation in a closed system, such as that under investigation here, is dependent on 

both the number of genetic markers employed and their reliability / robustness during 

data collection. In the case of species recently introduced to aquaculture like Atlantic 

cod, the number of available markers can be a limiting factor. This serious constraint 

is clearly illustrated by the results of the present study. Initially 37% of the fry 

analysed with five markers could not be reconciled with any expected parental-pair by 

exclusion (even allowing for one allele mismatch). Two of the five markers (Gmo19 

and Gmo8) on later inspection, informed by assignment outcomes, were found to be 

prone to large allele dropout, a major recognised source of genotyping error (e.g. 

Blouin, 2003; Pompanon et al., 2005). This large allele dropout was mainly technical 

in nature. Minor allele peaks were evident, but not registered by the scoring software. 

Other sources of scoring errors were also detected, including size marker bands being 
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wrongly identified, evidence for null alleles and binning issues for similar sized 

alleles. However these were comparatively minor in frequency. 

It should be noted that even after extensive correction of the dataset (400 

allelic designations changed), more than 14% of offspring (n = 40) could still not be 

allocated to any expected parent-pair by exclusion, even allowing for one allele 

mismatch. Significant errors evidently remained in the corrected dataset. It required a 

tolerance of up to three mismatched alleles to ‘force’ an allocation for all these un-

matched progeny (data not shown). From inspection of genotypes it is likely that large 

allele dropout could account for most of these non-assignments. However, as detailed 

in Chapter 4, other causes such as misidentification of the sex of parents (i.e. due to 

the misreading of ultrasound scans), presence of extraneous fish in the spawning tank 

(i.e. due to unrecorded fish movements) and later sample contamination during farm 

rearing, cannot be ruled out as contributory factors. 

The performance of the four types of parentage analysis varied greatly both 

within and between the three datasets that were explored. Compared to the parental-

pair likelihood approach computed using PAPA, the exclusion-based analysis 

(computed either by FAP or VITASSIGN) was much more conservative in both the 

number of offspring for which an assignment could be made and for the overall 

number of parental-pairs involved during spawning over this single day. Assignment 

success for the error prone ‘five loci raw’ dataset was low, but nearly doubled (to 

77%) after major correction to the dataset. Crucially, while the overall number of 

assignments increased, only c. 1% of them were allocated to different parental-pairs. 

This was to be expected from exclusion principles. Genotyping errors are much more 

likely to result in false exclusions than false inclusions. The four loci dataset again 
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behaved as predicted, having reduced power, but where assignments were made these 

concurred with the five loci dataset. 

Likelihood based parental-pair assignments appeared, on first look, to provide 

a more powerful means of family allocation for cod fry from this mass spawning tank. 

Based on the ‘five loci raw’ genotypic dataset, parentage was assigned to the vast 

majority of fry (> 95%) with apparently high precision and accuracy. However 

similarly high assignment levels were attained from the five loci and four loci 

corrected datasets, with simulations again suggesting that these too were highly 

reliable allocations. Yet a fairly large number of assignments (up to 18%) changed of 

identified parental-pairs - for individual offspring - among the three analysed datasets. 

Since this later observation agreed with the analysis results obtained from a simulated 

offspring file reflecting a similar typing error level, the reliability of the outcomes 

generated by PAPA, as implemented in this study, must therefore be questioned. We 

opted to use the uniform error rate (UER) model and at the default 0.02 level as 1) 

most errors detected involved large allele drop out, and not mistyping of closely 

spaced alleles; and 2) this is the most widely used parameter and value quoted in 

published studies using PAPA for aquaculture / fisheries related work (Fessehaye et 

al., 2006; Johnson et al., 2007). In order to increase the reliability of assignments, 

Morrissey and Wilson (2005) have recently argued that likelihood equations should 

be applied with error rates set to values considerably lower than the rates at which 

genotype errors are believed to occur. We reanalysed the datasets (not shown) with a 

much reduced error value (UER = 0.0001) and obtained exactly the same allocations 

in each case as for a UER value of 0.02. This underlines the difficulty in defining 

what this parameter represents in error terms and how it is likely to modulate parental-

pair assignments. Single-family assignments identified by exclusion always concurred 
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with PAPA. Likewise in multiple-match cases identified by FAP (or VITASSIGN), 

the family assigned by PAPA was always represented. A few of these cases were 

explored by comparing the expected relative frequency of the offspring composite 

genotype in each of the potentially matched families (this frequency is calculated by 

FAP and stored in an ancillary file for inspection). In most cases the PAPA selected 

parental-pair was only twice as likely to be the parent c.f. another parental pair 

(assuming all families were equally represented in the sample). As PAPA reports only 

the most likely family, the output gives no indication as to the extent of close ties 

among different families. Confidence in the outcomes relies on the simulated 

‘correctness’ value, which was not found to be robust in this particular study. The 

PAPA 2.0 user guide recommends that the first allocation check should be run under 

the ‘no-error’ model, with more than 10% resultant no-match (‘null’) assignments 

being indicative of potential problems with the input data. This was the case for all 

three datasets used in this study (‘5 loci raw’ – 76% nulls; ‘5 loci corrected’ – 26% 

nulls; ‘4 loci corrected’ – 25% nulls). The major concern with the performance of this 

package was that allowing for apparently low levels of error (UER = 0.0001 – 0.02) 

appeared to solve these ‘issues’ with a predicted high level of confidence. Generally, 

the results of ‘no error’ model assignments are not detailed in published papers. 

In this study, CERVUS resolved parentage for the fewest number of offspring. 

The low numbers of confident allocations produced by CERVUS is not unexpected as 

the software was not designed specifically for parental-pair assignments, but rather to 

assign a single parent, where one is already known. The large numbers of potential 

parents and remaining genotype errors within the dataset were likely to be significant 

factors in the relatively poor performance of this software. CERVUS has been used to 

assign family to offspring in aquacultural contexts (e.g. Castro et al., 2006; Dong et 
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al., 2006; Porta et al., 2006). In these three publications alone, a number of points are 

worth mentioning. The number of potential families involved in those parentage 

studies was notably lower (100 to 400 families) than in our case study. In each case, 

the methodology followed to allocate parents using CERVUS was poorly described. 

Although the allocation outcomes were not transparent it was suggested by the 

authors that virtually all the offspring analysed were successfully and reliably 

allocated to a single family. Without any detailed numerical data on the assignment 

outcomes, it is difficult to assess whether the results of those studies were robust or 

not. 

Although considered far from ideal for routine parentage analysis due to high 

error levels (Jones and Ardren, 2003; Morrissey and Wilson, 2005), the five loci 

selected for DNA profiling were the best available for use at the start of this project. 

The papers published by Delghandi et al. (2003) and Wesmajervi et al. (2006) 

suggested that these markers were perfectly suitable to solve the parentage of a 

complex dataset (using the assignment program PAPA). Looking back now, 

developing new microsatellite markers would have most probably been a better 

approach to undertake rather than using this set. Unfortunately, the project was far too 

advanced when this issue emerged. 

A panel of new DNA microsatellites for cod have been recently isolated 

(Jakobsdóttir et al., 2006; Wesmajervi et al., 2007) and others are currently being 

tested / optimised for parentage assignment (M. Delghandi, personal communication; 

see also Chapter 5). These should allow improvements in the overall success of 

parentage studies in Atlantic cod, particularly in complex situations such as mass 

spawning tanks (see Chapter 5). 
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As parentage assignments studies become ever more complex and ambitious 

(i.e. involving more families, and hence more loci and samples) it is inevitable that 

greater reliance will be placed on automated or semi-automated screening procedures. 

This study (along with many others e.g. Hoffman and Amos, 2005; Pompanon et al., 

2005) has demonstrated that relying solely on automated allele detection can 

introduce substantial mistakes into genotyping data. Combined with the inappropriate 

use of, or reliance on, likelihood-based assignment, the potential for serious 

misinterpretation of datasets is likely to be significant. For example the question 

regarding the appropriate number of markers to include in an analysis is often 

discussed. With this particular issue, it is important to bare in mind that two factors 

must be considered: the number of markers and the level of polymorphism (which can 

greatly vary from one population to other). A number of recent publications for 

various species, have recommended the use of as few as 4 to 6 markers to successfully 

solve 99% of the allocations (Jackson et al., 2003; Borrell et al., 2004; Fessehaye et 

al., 2006; Porta et al., 2006). Authors of these studies advocated likelihood 

approaches for solving parentage. However, the results of the present study outline the 

substantial potential risks of an approach combining few markers with a likelihood 

analysis method that has not been sufficiently characterised / tested for the task being 

undertaken.  

The application of likelihood approaches to determine mating outcomes in 

mass spawning tanks is itself open to scrutiny. These methods invariably rely on a 

number of assumptions which may include: mating assumed to be random; equal 

productivity of parents; equal survival / performance of offspring; parental sex 

determination is error free; a closed system. Often, some of these factors are unknown 

and constitute the reason why the study is being carried out. Thus, likelihood-based 
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assignments may actually bias the outcomes in favour of the model assumptions. In 

the current study, although all 99 parents were present, it was not expected (from 

physiological grounds alone) that many females would actually spawn in any twenty 

four hour period. Also the reproductive output / fertilisation rate / survival rate among 

parents was likely to be highly skewed. For these reasons, power predictions (whether 

likelihood or exclusion based) should be interpreted with caution. Similarly such 

factors may explain, in part, the erratic performance of the likelihood based parental-

pair assignment observed for this mass spawning event. 
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3.5. Conclusions 

Few parental assignment exercises are likely to be conducted without error, 

especially when large numbers of samples are involved. However, the extent to which 

false assignments may be problematic will depend on the aims of the investigation 

(e.g. whether for detecting the main contributing families or identifying all offspring 

from a particular family / parent). Both the reliability of the data and the analytical 

approach taken must be carefully weighed up in context. Perceived error (or lack of) 

may have implications beyond the particular dataset being investigated. Apparent (but 

erroneous) assignment could lead to undue confidence being place on other data (e.g. 

population allele frequencies) derived using the same screening panel and protocols. 

In light of the conflicting assignments observed in this study we would recommend 

for future mass spawning assignment projects that 1) likelihood-based assignments be 

performed in conjunction with an exclusion-based method (see Jones and Ardren, 

2003 for suitable packages); 2) genotype errors are rigorously investigated, quantified 

and reported (as urged by Pompanon et al. 2005) and 3) assignment protocols 

employed are fully described and detailed in publications. 
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4.1. Introduction 

4.1.1. Physiology of reproduction 

4.1.1.1. Spawning behaviour in the wild environment 

Cod are long-lived iteropars which reproduce annually during several 

consecutive years. Males and females aggregate on spawning grounds and females 

spawn repeatedly over a period of 4 to 8 weeks (Hutchings et al., 1999; Bekkevold et 

al., 2002). Ovarian development starts on average 8-9 months prior to spawning 

(Pavlov et al., 2004). Cod females release from 15 to 20 batches of eggs throughout 

the spawning season (Walden, 2000) at intervals of 2 to 6 days (Hutchings et al., 

1999). Atlantic cod in Norwegian and Scottish waters spawn naturally between 

February and May, with a peak of egg production around April (Engen and Folstad, 

1999; Walden, 2000; Hansen et al., 2001). 

Cod mating behaviours are complex (see Figure 4.1) and still not fully 

understood (Hutchings et al., 1999). The few studies published suggested that cod 

display lekking behaviour (Hutchings et al., 1999; Nordeide and Folstad, 2000). The 

behaviour of males and females differs in terms of residence time and activity in 

spawning grounds (Robichaud and Rose, 2003). Males aggregate at the spawning 

ground and establish territories while females remain free to move in and out of the 

ground periodically (Robichaud and Rose, 2003). Cod do perform extensive 

courtship, including fin display, flaunting, prodding and sound production. Both fin 

display and sound production are believed to constitute criteria of selection for 

females (Nordeide and Folstad, 2000). Reproductive competition among cod males 

has frequently been observed both in the wild and in captivity and seems to be based 

upon aggressive interaction and body size (Hutchings et al., 1999; Hansen et al., 
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2004). Release of eggs has been suggested to mainly occur during the night (Engen 

and Folstad, 1999; Hutchings et al., 1999). 

Sex ratio within a given spawning ground is equal to 1:1 overall but a vertical 

segregation exists (females are found in the water column whereas males are nearer to 

the sea bed; Hutchings et al., 1999). Times of arrival and departure from the spawning 

grounds depend on both the sex and the size of the fish (Lawson and Rose, 2000). 

Males tend to arrive and leave the spawning ground earlier. 

4.1.1.2. Spawning behaviour in captivity 

Most captive cod, once adapted to enclosed tanks and aquaculture rearing 

conditions, display courtship behaviour and spawn naturally (Kjesbu et al., 1996; 

Pavlov et al., 2004) during both day and night (Kjesbu, 1989). 

Egg size, fecundity and duration of the spawning period generally increase 

with maternal size (Kjesbu et al., 1996). New recruit females usually have a short 

spawning duration. Their fecundity is generally inferior to repeat spawners and 

eggs/larvae produced are also smaller (Saborido-Rey and Junquera, 1999). Survival of 

cod larvae usually decreases as the spawning season reaches an end (Choa, 2004). It 

was also shown that egg size decreases with the number of batches shed (Kjesbu et 

al., 1996; Larsen, 2002; Choa, 2004).  

Male size rank, in both wild and captive cod populations, is believed to have a 

significant effect on paternity success of individual males (Engen and Folstad, 1999; 

Bekkevold et al., 2002). Nonetheless, sperm competition is often observed in tanks 

with satellite males releasing milt among female eggs without courting (Nordeide and 

Folstad, 2000; Hansen et al., 2004). Multiple paternity is common in any given egg 
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batch. This is rendered possible by the fact that unfertilised eggs remain viable in 

seawater for about one hour (Bekkevold et al., 2002). 

A recent study on captive broodstock behaviour suggested that not all 

individuals contribute equally to the spawn. One can expect that around 50% of 

females produce 90% of eggs (Hansen et al., 2004). Similarly some males may only 

display courtship behaviours without actually producing milt (Hansen et al., 2004). 



 

 91 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Figure inspired by Trippel (2003) 

Figure 4.1. Illustration of Atlantic cod spawning behaviours in the wild environment. 
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4.1.2. Marine hatchery practices regarding cod broodstock 

management 

Cod spawning strategy is typical of a so-called r-strategy where large numbers 

of small offspring are produced with little maternal investment in care and nutrients 

per egg (Choa, 2004). As a result, in the wild environment, the survival rate of cod 

eggs is extremely poor (about one egg out of a million succeeds in completing the life 

cycle). For a commercial cod hatchery, the foremost economical requirement, which 

consists in guaranteeing a year round supply of good quality eggs to meet the 

production target of juveniles, may therefore prove particularly challenging. Most 

commercial cod farms rely solely on their own broodstock to supply eggs. However, 

in Norway and Canada, cod hatcheries have now the opportunity to purchase cod eggs 

from private companies and / or governmental research institutions (i.e. MarineBreed 

AS in Norway; the Ocean Sciences Centre from the University of Newfoundland in 

Canada). 

Both the quality and the quantity of fertilised cod eggs produced under 

commercial conditions are largely affected by the rearing conditions of the captive 

broodstock populations (Pavlov et al., 2004; Salze, 2004). 

4.1.2.1. Nutrition 

Under natural photoperiod, gonadal growth starts during late autumn for cod. 

Broodstock feeding regime and quality are critical at that stage as they will both 

influence greatly the egg quality (i.e. lipid/energy content) (Bromage and Roberts, 

1994; Salze, 2004). Feeding during vitellogenesis is also believed to promote an 

increase in the total number of eggs produced by a captive female (Kjesbu, 1989). 
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4.1.2.2. Environment 

Fertilisation rates obtained by natural spawning are often high if the fish are 

spawning regularly (Bromage and Roberts, 1994). However, egg over-ripening in 

captivity may occur if the broodstock are subjected to stress (Morgan et al., 1999; 

Pavlov et al. 2004). Environmental factors such as water temperature, water salinity, 

mechanical and light stress or pathogen exposure can potentially affect both egg and 

larval survival (Bromage and Roberts, 1994; Eveillard, 2004). The use of artificial 

photoperiod, coupled with water temperature control, is commonly used in cod 

hatcheries to spread the production of eggs across the year (by advancing or delaying 

the natural spawning cycle). 

4.1.2.3. Mass spawning vs. hand-stripping 

Most commercial cod hatcheries rely on mass spawning in tanks coupled with 

automated egg collection. Generally no control over matings is realised, since 

stripping and artificial fertilisation are likely to result in casualties among the 

broodstock due to excessive handling stress (Richard Prickett, personal 

communication). Therefore, parameters such as the effective breeding population size, 

the spawning dynamics and the individual spawning performances are unknown. 

4.1.2.4. Hatchery broodstock populations: origin and characteristics 

The opinion is currently largely divided among cod breeders over the issue 

raised by using wild vs. farmed fish as broodstock. Several commercial hatcheries 

have reported poor reproductive performances of farm-bred stocks. Females may be 

mostly to blame as they are reported to frequently develop ovarian blockages and 

tumours (Richard Prickett, personal communication). As a result, cod hatcheries are 
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still widely relying on wild caught broodstock, even though this may not be 

sustainable in the long term. 

Commercial cod hatcheries tend to skew the sex ratio in broodstock tanks 

towards females: 3 ♀:1 ♂ is considered to be optimal for obtaining high yields of 

fertilised eggs (Pavlov et al., 2004; Richard Prickett, personal communication). The 

stocking densities of cod broodstock in commercial breeding tanks from the Marine 

Farms AS group are maintained between 10 and 15 kg/m3 (Richard Prickett, personal 

communication). 

4.1.3. Aims of the study 

The lack of information surrounding the management of Atlantic cod 

broodstock populations in commercial hatcheries motivated this study. The principal 

aims of this research work were: 1/ to study and compare the genetic diversity of three 

distinct cod broodstock populations 2/ to study the spawning dynamics in force in a 

mass spawning cod tank. 
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4.2. Materials and methods 

4.2.1. Collection of samples for DNA profiling 

4.2.1.1. Norwegian case study (wild broodstock): fry parentage 

assignment from a single spawning day 

The “Norwegian” broodstock population consisted of 99 fish of wild origin 

(see Chapter 2, Figure 2.1). Farm records showed that the population was made up of 

38 males, 54 females and 7 fish where the sex remained uncertain (these fish were 

considered as both males and females when performing parentage analyses, but 

eliminated from the size analysis of males and females). The fish were PIT-tagged as 

a routine farm procedure and a fin tissue sample was taken for DNA analysis.  

Three hundred cod fry originating from a single day of spawning (19/11/03) 

were sampled in 95% ethanol. At the time of sampling the fry were 83 days post 

hatch. They had already undergone size grading at 15 mm and belonged to the 

smallest group (average standard length = 1.3 cm; average wet weight = 97 mg). This 

particular group was chosen for being the only fry tank of unmixed origin in the 

hatchery.  

4.2.1.2. Scottish case study (wild broodstock): fry parentage assignment 

from four single spawning days 

The “wild Scottish” broodstock population consisted of 141 fish of wild origin 

(see Chapter 2, Figure 2.1). The population was made up of 55 males, 73 females and 

13 fish where the sex remained uncertain (these fish were considered as both males 

and females when performing parentage analyses, but eliminated from the weight 

analysis of males and females). The fish were PIT-tagged as a routine farm procedure 

and a fin tissue sample was taken for DNA analysis. 
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Four samples of three hundred cod fry, originating from four days of spawning 

(04/02/05, 18/02/05, 21/02/05 and 26/02/05), were sampled in 95% ethanol. These 

spawning dates correspond to the four unmixed egg batches (i.e. unique spawning 

date and broodstock tank origin) which were stocked in individual hatchery tanks 

during this particular season. At the time of sampling the fry were 50 days post hatch 

and had not undergone size grading. The sampling was done by the hatchery staff and 

the fry (preserved in 95% ethanol) were directly sent to the Institute of Aquaculture. 

There are no available records on their average size or their average wet weight. 

4.2.1.3. Farmed broodstock genotyping 

The “farmed Scottish” broodstock population consisted of 249 fish which 

were held in two broodstock tanks at MMF (see Chapter 2, Figure 2.1). Fin clips of 

the fish were sampled in 95% ethanol for subsequent DNA analysis. No fry were 

sampled from that particular stock. 

4.2.2. DNA profiling 

DNA was extracted from fin samples (all adults) and fry heads using the 

Dynabeads® genomic universal DNA kit (see Chapter 2). 

Five loci (Gmo8, Gmo19, Gmo35, Gmo37 and Tch11) were used to both 

assess and compare the genetic diversity from the three broodstock populations. The 

loci were coamplified as the pentaplex described by Wesmajervi and colleagues 

(2006). 

A total of eight loci (Gmo8, Gmo19, Gmo35, Gmo37, Tch11, Gmo3, Gmo34 

and Gmo36) were used for analysing the parentage of the offspring samples. The loci 

were coamplified as three separate multiplex PCR reactions (a tetraplex and two 
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duplexes) as described in Chapter 2. Part of the genotyping analyses was realised at 

Fiskeriforskning, Norway (i.e. the pentaplex amplification). 

The amplified DNA fragments were processed on two different laser-based 

capillary electrophoresis instruments: the ABI 310 Avant Genetic analyser (ABI) 

(pentaplex) and/or the CEQ 8800 Genetic Analysis System (Beckman Coulter) 

(tetraplex, two duplexes). The broodstock samples were run on three separate 

occasions (i.e. three PCR reactions per multiplex and per sample) to obtain high 

quality scores. Fry samples were screened only once. 

4.2.3. Additional information gathered from hatchery records 

Records from the commercial hatcheries were used to complete the 

information provided by the genotyping analyses. The data gathered concerned: 1) the 

age, gender, individual weights and total lengths of the “wild Norwegian” stock; 2) 

the age, gender, individual weights, daily collected egg quantities and fertilisation 

rates (2005 spawning season) of the “wild Scottish” broodstock. For the “farmed 

Scottish” stock, only the information related to the average age was disclosed (see 

Chapter 2, figure 2.1). 

4.2.4. Parentage analysis 

The genotyping data were analysed using the exclusion-based program FAP 

(see Chapter 3). An error tolerance of one allele mismatch was included in the 

parentage analyses. 

4.2.5. Video recording of cod mating behaviour 

Two CCD Night-Vision cameras 802C (Shenzhen Lianyida Science Co., Ltd.) 

were installed outside a cod breeding tank at MERL, during the spring season 2006. 
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The studied breeding tank was somewhat smaller than the commercial breeding tanks 

from both the Scottish and the Norwegian hatcheries (4 m in diameter, 1 m deep) and 

contained 16 cod males and 9 females of wild origin. Fish behaviours were recorded 

every other night, during April 2006, from 11pm to 3am (240 min video tape) on a 

VCR linked to one infrared camera, the other one only providing additional lighting. 

The recordings were made over 2 consecutive weeks. 
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4.3. Results  

4.3.1. Comparison of the genotyping profiles of three 

hatchery broodstock populations 

The degree of allelic polymorphism encountered at each of the five loci 

genotyped varied greatly amongst the three hatchery broodstock populations studied 

(Table 4.1). Both hatchery stocks of wild origin showed very similar levels of genetic 

diversity for four out of five loci. However, fewer alleles were accounted for, at all 

loci, for the “farmed Scottish” stock. For the locus Gmo19, eight alleles were found in 

the farm bred population versus 20 and 23 in the Norwegian and Scottish wild stocks 

(see Table 4.1). The degree of allelic polymorphism (adjusted to the population size), 

of the “farmed Scottish” stock was significantly different from the “wild Scottish” 

stock (T = -3.31, P = 0.03). Overall, the genetic diversity of the “wild Scottish” 

broodstock population was four times greater than the diversity of the farm bred stock 

for the five markers tested. 
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Table 4.1. Number of observed alleles, at five different loci, among three hatchery 
broodstock populations (semi automated allele detection followed by systematic 
manual correction of allele sizes). 

 

 
Note: format 11/4.4 where the first number refers to the number of alleles observed in 
the population and the second refers to the adjusted number of alleles for 100 fish 
(adjusted number of alleles = (number of alleles observed x 100) / N). 
 

The level of heterozygosity was somewhat more homogenous across the three 

broodstock populations (Table 4.2) except, perhaps, for the locus Gmo19 where a 

significant reduction of heterozygote genotypes was observed for the farmed 

population (29%) compared to the two wild stocks (94% and 76%). Overall, the level 

of heterozygosity, at all five loci, of the “farmed Scottish” stock was not significantly 

different from the “wild Scottish” stock (T = -1.90, P = 0.13). 

Table 4.2. Percentage of observed heterozygote genotypes, at five different loci, 
among three hatchery broodstock populations(semi automated allele detection 
followed by systematic manual correction of allele sizes). 

 

 

Figure 4.2 shows the distribution of allelic frequencies, at the locus Tch11, for 

the three hatchery broodstock populations. Both populations of wild origin showed 

very similar profiles. This was also the case for the four other markers genotyped 

Number of 
observed alleles 

Farmed Scottish stock 
N = 249 

Wild Scottish stock 
N = 141 

Wild Norwegian stock 
N = 99 

Gmo8 11/4.4   40/28.4 22/22.2 
Gmo19   8/3.2   23/16.3 20/20.2 
Gmo35  7/2.8   9/6.4 7/7.1 
Gmo37  8/3.2 14/9.9 13/13.1 
Tch11  9/3.6   20/14.2 19/19.2 
Overall 43/17.2 106/75.2 82/82.8 

Observed 
Heterozygosity 

Farmed Scottish stock 
N = 249 

Wild Scottish stock 
N = 141 

Wild Norwegian stock 
N = 99 

Gmo8 78.7 86.5 83.8 
Gmo19 29.3 93.6 75.8 
Gmo35 61.0 83.7 71.7 
Gmo37 59.0 77.3 79.8 
Tch11 93.6 90.1 87.9 
Overall 64.3 86.2 79.8 
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(data not shown). As expected, the allelic frequency profiles of the farmed bred stock 

differed from the two wild populations for four loci (Gmo8, Gmo19, Gmo37 and 

Tch11) out of five. For example, at the locus Tch11, three alleles were highly 

represented in the farmed bred population (i.e. Freq.>15%) while no allele dominated 

in both populations of wild origin (see Figure 4.2). 

 

 

Figure 4.2. Comparison of allelic frequencies between three hatchery broodstock 
populations for the locus Tch11. 

Out of the three hatchery populations, only the “wild Scottish” broodstock 

appeared to be in Hardy-Weinberg equilibrium (P = 0.22). The GENEPOP test on 

population differentiation revealed that all populations were different. 
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4.3.2. “Wild Norwegian” broodstock: parentage assignment 

study of fry from a single day spawning 

4.3.2.1. Broodstock genotyping data 

The genotyping data gathered from the “wild Norwegian” broodstock 

population showed striking differences in the degree of polymorphism amongst the 

markers. Four markers (Gmo8, Gmo19, Gmo37 and Tch11) displayed a large number 

of alleles (n≥12) while the others were much less polymorphic, thus limiting their 

informative value in the parentage analysis (see Table 4.3). Both from the parental 

genotype data and initial assignment trials it was apparent that scoring of three loci 

(Gmo8, Gmo19, and Gmo35) was compromised due to obvious large allele dropout 

and / or presence of null alleles (see Chapter 3). Efforts were made to minimise 

screening errors by optimising PCR conditions and careful manual checking of 

pertinent chromatograms. Nevertheless, scoring errors were expected to be present in 

the final dataset. 

Table 4.3. Description of the polymorphic microsatellite markers used to genotype 
the “Wild Norwegian” broodstock. 

 
Microsatellite Name Locus assignment set 1 Number of alleles identified in the “wild 

Norwegian” broodstock population 
Gmo8 5 22 
Gmo19 5 20 

Gmo35 5 7 

Gmo37 5 13 

Gmo3 5+3 6 

Gmo34 5+3 8 

Gmo36 5+3 3 

Tch11 5 19 

 
1  5 – used in original 5 loci multiplex (Wesmajervi et al., 2006). 
 5+3 – used for 8 loci assignment 
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4.3.2.2. Parentage assignment 

A very large number of families (n = 2745) could potentially be generated 

within the experimental tank holding 54 females, 38 males and 7 unsexed fish; i.e. 

(54x38) + (7x54) + (7x38) + (7x7). FAP predicted unambiguous allocation of 

offspring to a single pair of parents in 88.8% and 92.1% of cases, based on the 

parental genotype data for five and eight markers respectively. This gives only an 

approximate indication as to the resolution that would be achieved in the actual 

assignment as the figure was predicated on two assumptions (i.e. equal representation 

of all families in the sample and absence of genotyping errors / mutations), both 

unlikely to be met in this study. However, the prediction did confirm that the full set 

of eight polymorphic loci would not be sufficiently informative to fully resolve all 

parentage issues. 

Of 300 offspring that were screened initially for five loci, complete genetic 

profiles were obtained for 278 individuals. Only 64% of these were assigned to a 

single family without error tolerance (Table 4.4). Assignment was increased to 77% 

by allowing one allele mismatch. Re-examination of a subset of these chromatogram 

traces identified the expected genotyping errors (mostly large allele dropouts). Even 

allowing for one allele mismatch 40 individuals could not be assigned to any expected 

parental pair, suggesting significant genotyping problems remained. 
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Table 4.4. Outcome of first assignment round for 278 fully genotyped offspring from 
the “Wild Norwegian”broodstock, at five loci (a further 22 individuals were not 
included due to incomplete data). 

 
 Actual assignment with 

allele mismatch tolerance # 
Assignment 
outcome 

Predicted 
assignment 

 0 1 
Single-match 88.8%  179 (64%) 214 (77%) 
Multiple-match 11.2%    11 (  4%)   24 (  9%) 
No-match --    88 (32%)   40 (14%) 

 

To explore this further, the entire parental data set was re-screened for 8 loci 

(5 original + 3 additional) together with the 86 offspring not yet assigned to a single 

family when allowing for one mismatch allele (i.e. 24 multiple-matches + 40 no-

matches + 22 incomplete data). Fourteen offspring samples were not scored for all 

loci and were omitted from further analysis. Of the remaining 72 fry, 19 were 

assigned to a single family under the most stringent condition (no errors permitted; 

Table 4.5). Allowing one allele mismatch per assignment increased single family 

resolution to 28 individuals, though further relaxation of stringency had little effect on 

single-match numbers (Table 4.5). Again, re-examination of chromatogram traces 

from these additional nine single-mismatch family assignments did identify predicted 

genotyping errors. Sixteen offspring were assigned to multiple families (Table 4.5). In 

12 of these cases at least one identified single-match family was a candidate. Even 

with one allele mismatch allowed, 28 fry could not be reconciled to any potential 

family. Three mismatches were required to “force” assignment to all offspring (Table 

4.5). Not surprisingly, given the reduced power of the analysis, all but one of these 

assignments were to multiple-match families. 
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Table 4.5. Outcome of second assignment round for 72 fully genotyped offspring 
from the “Wild Norwegian” broodstock, at eight loci (a further 14 individuals were 
not included due to incomplete data). 

 
Actual assignment with 

allele mismatch tolerance # 
Assignment 
outcome 

Predicted 
assignment 

0 1 2 3 
Single-match 92.1% 19 (26%) 28 (39%) 28 (39%) 29 (40%) 
Multiple-match   7.9%   7 (10%) 16 (22%) 36 (50%) 43 (60%) 
No-match -- 46 (64%) 28 (39%)   8 (11%)   0 (  0%) 

 

4.3.2.3. Parental contributions 

Analysis of parentage (based on 242 offspring assigned to single-match 

families, allowing up to one allele mismatch) indicated that at least 27% of the males 

and 23% of the females present in the broodstock tank actually contributed to the fry 

analysed (Table 4.6). The range and extent of spawning contributions were 

comparable between the two sexes. Thus, one male (M42) predominated, siring 50% 

(n = 121) of assigned fry. A further six males made substantial contributions (siring 5-

41 offspring) while low levels of contribution (1-2 fry) were detected for another four 

males (Table 4.6). Similarly, a single female (F51) was responsible for 45% (n = 108) 

of offspring, five dams were assigned to 9-46 fry, while a further eight females had 

low level contributions (1-3 fry). This pattern of spawning has resulted in a markedly 

skewed contribution, with four males and five females (i.e. 9% of the fish in the tank) 

being responsible for 90% of successfully assigned fry. The most numerous family 

was M42 x F51 with 70 progeny, 29% of the total assigned (Table 4.6). 

Both sexes were involved in multiple fertilizations (7 of 11 sires; 5 of 14 

dams). Though more numerous in males, this likely reflects sampling bias, as there 

were more low frequency female assignments (8) c.f. males (4). For both sexes four of 

the top five most successful contributors were detected as multiple spawners. The 
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most successful male (M42) fertilised eggs from six different females, while the most 

successful female (F51) had eggs fertilised by three different males. 
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Table 4.6. Parental contribution to the offspring sample from the “Wild Norwegian” broodstock as determined by exclusion-based parentage, 
based on the genotyping of 5-8 DNA microsatellites. 

 
Males ID 

Females ID M42 M14 M72 M65 M83 M10 M30 M15 M38 M39 M54 M90 
No. of offspring % Cum. % 

F51 70/66 -- 27/20 11/5 -- -- -- -- -- -- -- -- 108 44.6 44.6 
F40 -- 35/33 -- 2/0 -- 4/4 2/1 -- 1/1 1/0 -- 1/1 46 19.0 63.6 
F29 35/34 -- -- 6/2 -- -- 1/1 -- -- -- -- -- 42 17.4 81.0 
F49 12/11 -- -- -- -- 1/0 -- -- -- -- -- -- 13 5.4 86.4 
F51C -- -- -- -- 11/3 -- -- -- -- -- -- -- 11 4.5 90.9 
F19 2/2 1/1 6/6 -- -- -- -- -- -- -- -- -- 9 3.7 94.6 
F22 -- -- -- 1/1 -- -- 2/1 -- -- -- -- -- 3 1.2 95.9 
F25 -- 3/3 -- -- -- -- -- -- -- -- -- -- 3 1.2 97.1 
F63 -- 2/0 -- -- -- -- -- -- -- -- -- -- 2 0.8 97.9 
F44 -- -- -- -- -- -- -- -- -- -- 1/0 -- 1 0.4 98.3 
F58 -- -- -- -- -- -- -- 1/0 -- -- -- -- 1 0.4 98.8 
F59A 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 0.4 99.2 
F68 -- -- -- -- -- -- -- 1/0 -- -- -- -- 1 0.4 99.6 
F82 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 0.4 100.0 
No. of offspring 121 41 33 20 11 5 5 2 1 1 1 1 
% 50.0 16.9 13.6 8.3 4.5 2.1 2.1 0.8 0.4 0.4 0.4 0.4 
Cum. % 50.0 66.9 80.6 88.8 93.4 95.5 97.5 98.3 98.8 99.2 99.6 100.0 

 

 
Notes: format 70/60 where the first number refers to the number of offspring allocated allowing up to one allelic mismatch and the second refers 
to the number of offspring allocated allowing no error. Results are based on FAP allocations, one allele mismatch allowed. 
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4.3.2.4. Influence of male and female sizes on reproductive success 

The average sizes (total length, mouth to tail) for the male and female 

broodstock were very similar (respectively 77 cm SD±7 cm and 76 cm SD±5 cm) and 

were not significantly different (T = -0.03, P = 0.98). The size distributions of the 

contributing males and females were not significantly different from the overall 

broodstock population (Figure 4.3; T = 0.06, P = 0.96 for contributing males vs. the 

rest of the male population; T <0.005, P > 0.99 for contributing females vs. the rest of 

the female population). Figure 4.4 shows the male and female reproductive successes 

(both as percentage of offspring produced and as number of successful matings) 

against the male-female size difference. It shows that a small, positive male-female 

size difference (0 to 5 cm) resulted in both the highest number of successful matings 

and the highest percentage of offspring sired. The hypothesis of size-assortative 

matings was tested further by comparing actual spawning data with simulated 

matings. The mean male-females size difference computed from 1000 sets of random 

matings (whereby each of the 14 known female spawners was paired with a randomly 

selected male, with replacement, from the spawning tank) was ranked (see Figure 

4.5). The observed male-female size difference (+ 2.7 cm) was mid ranking (629 of 

1000 simulations), suggesting no obvious size bias in the mating pattern. 
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Figure 4.3. Comparison of the size distribution of the “Wild Norwegian” broodstock 
male and female populations with the size distribution of the spawning males and 
females. 

 

 

Figure 4.4. Overall reproductive success and number of successful matings plotted 
against parental size difference (sire length - dam length; values are grouped into 5 cm 
intervals) for the “Wild Norwegian” broodstock. 
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Figure 4.5. Comparison of the distribution of parental size differences (sire length - 
dam length) between the “real” matings and 1000 sets of randomly generated pairings 
created from the “Wild Norwegian” tank population. 
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4.3.3. “Wild Scottish” broodstock: comparison of parentage 

assignments of fry sampled from four days of spawning 

4.3.3.1. Spawning season 

The 2005 spawning season of the “wild Scottish” broodstock lasted for 70 

days (i.e. from the 21st of January to the 31st of March). During this period, 99 kg of 

floating eggs were collected with an average fertilisation rate of 57%. A total of 19 

egg batches (each from a single day of collection) were stocked in hatchery incubators 

and, subsequently, 13 fry batches were transferred to larval tanks. The four fry 

batches sampled in this study originated from the first five weeks of egg production 

(Figure 4.6). Records provided by MMF indicated that at least 75% of the eggs from 

the first three batches sampled were fertilised vs. only 40% for the last batch (Figure 

4.8). 

Note: 1 to 4 indicates the sampling dates. Weights were recorded at collection. 
 

Figure 4.6. Records of daily egg collections for the “wild Scottish” broodstock during 
the 2005 spawning season (data provided by MMF). 
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4.3.3.2. Parentage assignment 

In theory, a maximum of 5848 families could have been generated within the 

“wild Scottish” broodstock tank holding 73 females, 55 males and 13 unsexed fish 

(i.e. (55x73) + (13 x 55) + (13 x 73) + (13 x 13)). Based on the genotyping data from 

eight loci, FAP predicted unambiguous allocation of offspring to a single pair of 

parents in 95.9% of cases (assuming both the equal representation of all families and 

the absence of genotyping errors / mutations). It also identified 156 families with a 

predicted allocation success of below 9%. Such low predictions -although they only 

concerned 2% of the possible families- could potentially affect the outcome of the 

allocation exercise. 

From the 1200 fry originally sampled, 915 were successfully typed for at least 

six loci (i.e. 76%). Individuals typed for less than six loci were not included in the 

parentage analysis. The allocation results of this set of data were very poor. Indeed, 

only 43% of the fry successfully typed for at least 6 loci were assigned to a single 

family without error tolerance (Table 4.7). The assignment rate increased to 56% 

when allowing for up to one allele mismatch. As expected, and despite re-examination 

of chromatogram traces, a large number of offspring (i.e. 285) could not be reconciled 

to any parental pair, suggesting that a significant amount of errors remained in the 

dataset. It took up to three allele mismatches to assign virtually all the offspring to at 

least one family (Table 4.7). 
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Table 4.7. FAP assignment outcome for 915 cod fry successfully genotyped for at 
least 6 markers. 

 
 Actual assignment with 

allele mismatch tolerance # 
Assignment 
outcome 

Predicted 
assignment 

 0 1 3 
Single-match 95.9%  390 (42.7%) 511 (55.9%) 549 (60.0%) 
Multiple-match  4.1%  48 (5.2%) 119 (13.0%) 359 (39.2%) 
No-match --  477 (52.1%) 285 (31.1%) 7 (0.8%) 
 

4.3.3.3. Parentage contributions 

Analysis of the parentage was carried out, for each of the four spawning dates, 

based on 511 offspring assigned to single-match families (see Tables 4.8, 4.9, 4.10 

and 4.11). Overall, 156 full-sib families were found to contribute to the fry analysed, 

with an average of 44 families participating on a daily basis. 78% of the breeding 

population was involved in at least one spawning event (i.e. 64 females and 47 males). 

On average, 28 females and 18 males (i.e. 26% ± 10% of the males and 32% ± 5% of 

the females) contributed to the daily production of eggs. The extent of spawning 

contributions was highly unbalanced between the sexes (Figures 4.7 and 4.8). Three 

spawning dates were largely dominated by the contribution of one male (tag ID: 

455F). This fish sired a total of 271 offspring (i.e. 53% of the fry analysed). The 

contribution of females appeared more balanced in comparison with on average 3 fish 

responsible for 50% of the fry produced on a daily basis (Figure 4.7). Overall three 

females dominated the four spawning dates analysed (tag IDs: E462, 7459 and 

F0CD). Together they contributed to 162 offspring (i.e. 32% of the fry analysed). On 

the other hand, 47 families (i.e. 26% of the total number of full-sib families) were 

only represented by a single offspring. 

As previously found in “wild Norwegian” broodstock case study, in each of 

the four samples analysed, both sexes were involved in multiple fertilisations (see 



Chapter 4. Spawning dynamics of cod broodstock in tank systems 
 

Marine Herlin . Ph.D. Thesis 2007 
114

Tables 4.8, 4.9, 4.10 and 4.11). The most successful male (tag ID: 455F) fertilised 

eggs from 40 different females, while the most successful female (tag ID: 7459) had 

eggs fertilised by only two different males. 

Out of the 13 unsexed fish, 12 were found to contribute to at least one 

offspring sampled. 5 unsexed fish were identified as females, 3 as males and the 

remaining four were identified as both male and female (tag IDs: BE0F, CE2E, CF7D 

and 6043). This last result confirmed the existence of false assignments in this 

parental allocation exercise. These four “problematic fish” were found to contribute to 

25 offspring (i.e. 4.9%). 
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Figure 4.7. Female contributions among the “wild Scottish” broodstock to the four 
fry samples, as determined by exclusion-based parentage, based on the genotyping of 
8 DNA microsatellites. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8. Male contributions among the “wild Scottish” broodstock to the four fry 
samples, as determined by exclusion-based parentage, based on the genotyping of 8 
DNA microsatellites. 
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Table 4.8. Parental contribution of the “wild Scottish” broodstock to the fry sample from the 4th of February, as determined by exclusion-based 
parentage, based on the genotyping of 8 DNA microsatellites. 
 

Males ID 
Females ID 455F 078B 3C58 DD7A 2AC0 CE2E DDE3 4CF2 B4B4 CBC8 EF82 4EE2 

No. of offspring % Cum. % 

E462 12/11 -- -- -- -- -- -- 1/0 -- -- -- -- 13 20.3 20.3 
E384 3/1 -- 1/0 1/1 2/2 -- -- -- -- -- -- -- 7 10.9 31.3 
4DF3 2/1 1/0 1/1 -- -- -- -- -- -- -- -- 1/1 5 7.8 39.1 
3F77 4/4 -- -- -- -- -- -- -- -- -- -- -- 4 6.3 45.3 
2E9C -- 1/1 1/1 -- -- 1/1 -- -- -- -- -- -- 3 4.7 50.0 
DDEF 3/3 -- -- -- -- -- -- -- -- -- -- -- 3 4.7 54.7 
BE0F 3/3 -- -- -- -- -- -- -- -- -- -- -- 3 4.7 59.4 
2361 1/1 -- -- -- -- -- -- -- -- 1/1 -- -- 2 3.1 62.5 
FD7B 2/0 -- -- -- -- -- -- -- -- -- -- -- 2 3.1 65.6 
E8BE 2/0 -- -- -- -- -- -- -- -- -- -- -- 2 3.1 68.8 
7459 -- -- -- -- -- -- 2/2 -- -- -- -- -- 2 3.1 71.9 
21D1 1/0 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 73.4 
2405 -- -- -- -- -- -- -- -- 1/0 -- -- -- 1 1.6 75.0 
28EB 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 76.6 
28F0 1/0 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 78.1 
3931 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 79.7 
409A -- -- -- -- -- 1/1 -- -- -- -- -- -- 1 1.6 81.3 
48CC -- 1/0 -- -- -- -- -- -- -- -- -- -- 1 1.6 82.8 
5686 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 84.4 
D861 -- -- -- -- -- -- -- -- -- -- 1/0 -- 1 1.6 85.9 
D8B6 1/0 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 87.5 
ED54 -- 1/1 -- -- -- -- -- -- -- -- -- -- 1 1.6 89.1 
F185 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 90.6 
C252 -- -- -- 1/1 -- -- -- -- -- -- -- -- 1 1.6 92.2 
CF7D 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 93.8 
F63F 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 95.3 
FEB1 1/0 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 96.9 
5272 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 1.6 98.4 
6D9F -- -- -- 1/0 -- -- -- -- -- -- -- -- 1 1.6 100.0 
No. of offspring 43 4 3 3 2 2 2 1 1 1 1 1 
% 67.2 6.3 4.7 4.7 3.1 3.1 3.1 1.6 1.6 1.6 1.6 1.6 
Cum. % 67.2 73.4 78.1 82.8 85.9 89.1 92.2 93.8 95.3 96.9 98.4 100.0 

 

Notes: format 12/11 where the first number refers to the number of offspring allocated allowing up to one allelic mismatch and the second refers 
to the number of offspring allocated allowing no error. Results are based on FAP allocations, one allele mismatch allowed. 
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Table 4.9. Parental contribution of the “wild Scottish” broodstock to the fry sample from the 18th of February, as determined by exclusion-based 
parentage, based on the genotyping of 8 DNA microsatellites. 

Males ID 
Females ID 455F 59D1 BE0F 2F10 3C58 4F52 F553 B8ED 31B3 3EFD 5330 E477 0626 CE2E EF82 4EE2 

No. of 
offspring 

% Cum. % 

45FA 25/25 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 25 20.3 20.3 
7459 22/18 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 22 17.9 38.2 
DDEF 8/8 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 8 6.5 44.7 
E0E5 7/5 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 7 5.7 50.4 
6043 6/4 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 6 4.9 55.3 
2E9C 3/3 -- -- 1/0 -- -- -- -- -- -- -- 1/1 -- -- -- -- 5 4.1 59.3 
DDF6 3/2 -- -- -- -- 2/1 -- -- -- -- -- -- -- -- -- -- 5 4.1 63.4 
DCA2 -- -- 3/0 -- 2/1 -- -- -- -- -- -- -- -- -- -- -- 5 4.1 67.5 
BE0F 3/3 -- -- 1/1 -- -- -- -- -- -- -- -- -- -- -- -- 4 3.3 70.7 
D506 4/4 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 4 3.3 74.0 
2405 1/1 2/2 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3 2.4 76.4 
F63F 1/1 1/0 -- -- -- -- -- -- -- -- -- -- -- -- 1/0 -- 3 2.4 78.9 
2361 1/1 -- -- -- -- -- -- -- -- 1/0 -- -- -- -- -- -- 2 1.6 80.5 
44DE 2/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 2 1.6 82.1 
042A -- -- -- -- -- -- -- -- 1/0 -- -- -- -- 1/1 -- -- 2 1.6 83.7 
0BE8 -- -- -- -- -- -- -- 2/1 -- -- -- -- -- -- -- -- 2 1.6 85.4 
E384 -- 2/2 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 2 1.6 87.0 
FEB1 -- -- -- 1/1 -- -- 1/0 -- -- -- -- -- -- -- -- -- 2 1.6 88.6 
39B2 -- -- -- -- -- -- -- -- -- -- 1/1 -- 1/0 -- -- -- 2 1.6 90.2 
28EB 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.8 91.1 
2E11 -- -- 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.8 91.9 
32DE 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.8 92.7 
409A 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.8 93.5 
48CC -- -- -- -- -- -- 1/1 -- -- -- -- -- -- -- -- -- 1 0.8 94.3 
5298 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.8 95.1 
E462 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1/0 1 0.8 95.9 
CE2E 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.8 96.7 
DB2F 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.8 97.6 
E9E4 -- -- -- -- 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 0.8 98.4 
F0CD 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.8 99.2 
5272 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.8 100.0 
No. of offspring 94 5 4 3 3 2 2 2 1 1 1 1 1 1 1 1 
% 76.4 4.1 3.3 2.4 2.4 1.6 1.6 1.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 
Cum. % 76.4 80.5 83.7 86.2 88.6 90.2 91.9 93.5 94.3 95.1 95.9 96.7 97.6 98.4 99.2 100.0 

 

Note : format 25/25, see Table 4.8. 
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Table 4.10. Parental contribution of the “wild Scottish” broodstock to the fry sample from the 21st of February, as determined by exclusion-
based parentage, based on the genotyping of 8 DNA microsatellites. 

 
Males ID 

Females ID 455F 078B 0625 41B4 B8ED 295C 5634 FA3D CE2E 2F10 39B8 3D0E 3EFD F6FB 02A4 BC8C CF7D 06A8 
No. of 
offspring 

% Cum. % 

7459 41/41 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 41 21.8 21.8 
E462 36/28 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 37 19.7 41.5 
E57B -- -- 7/7 2/1 -- -- -- 2/2 2/2 -- 1/0 -- -- -- -- -- -- 1/0 15 8.0 49.5 
0BE8 12/9 -- 2/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 14 7.4 56.9 
39B2 -- 11/11 -- -- -- -- -- -- -- -- -- -- -- 1/1 -- -- -- -- 12 6.4 63.3 
D506 12/4 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 12 6.4 69.7 
41A8 10/10 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 10 5.3 75.0 
E0E5 6/6 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 6 3.2 78.2 
3F42 3/3 -- -- -- -- -- -- -- -- -- -- -- 1/1 -- -- -- -- -- 4 2.1 80.3 
01B1 -- -- -- -- 1/0 1/0 2/2 -- -- -- -- -- -- -- -- -- -- -- 4 2.1 82.4 
389E 1/1 -- 1/1 -- -- -- -- -- -- -- -- -- -- -- -- 1/1 -- -- 3 1.6 84.0 
54E8 -- -- -- -- 3/2 -- -- -- -- -- -- -- -- -- -- -- -- -- 3 1.6 85.6 
CF7D 3/3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3 1.6 87.2 
E328 -- -- -- 3/3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3 1.6 88.8 
E8BE 2/2 -- -- -- 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- 3 1.6 90.4 
3931 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1/0 -- 2 1.1 91.5 
D8B6 1/1 -- -- -- -- -- -- -- -- 1/0 -- -- -- -- -- -- -- -- 2 1.1 92.6 
DDF6 2/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 2 1.1 93.6 
2361 -- -- -- -- -- -- 1/1 -- -- -- -- -- -- -- -- -- -- -- 1 0.5 94.1 
28EB 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.5 94.7 
2E9C 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.5 85.2 
32DE -- 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.5 95.7 
3EFB -- -- -- -- -- 1/1 -- -- -- -- -- -- -- -- -- -- -- -- 1 0.5 96.3 
3FC6 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.5 96.8 
3FE6 -- -- -- -- -- 1/1 -- -- -- -- -- -- -- -- -- -- -- -- 1 0.5 97.3 
48CC -- 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.5 97.9 
4DF3 -- 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.5 98.4 
5298 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1/0 -- -- -- 1 0.5 98.9 
DB2F 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.5 99.5 
F0CD -- -- -- -- -- -- -- -- -- -- -- 1/1 -- -- -- -- -- -- 1 0.5 100.0 
No. of offspring 134 15 10 5 5 3 3 2 2 1 1 1 1 1 1 1 1 1 
% 71.3 8.0 5.3 2.7 2.7 1.6 1.6 1.1 1.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
Cum. % 71.3 79.3 84.6 87.2 89.9 91.5 93.1 94.1 95.2 95.7 96.3 96.8 97.3 97.9 98.4 98.9 99.5 100.0 

 

Note : format 41/41, see Table 4.8. 
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Table 4.11. Parental contribution of the “wild Scottish” broodstock to the fry sample from the 26th of February, as determined by exclusion-
based parentage, based on the genotyping of 8 DNA microsatellites. 

 
Males ID Females ID 

3C58 DD79 F553 6043 7C60 F6FB D986 CF7D 48C1 4F52 2AC0 2C26 2F10 2FAF 3572 F818 295C 3D0E 59D1 FA3D 078B B5B1 B8ED D649 D7C4 
No. 

offsp. 
% Cum. 

% 
F0CD 44/44 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 44 32.4 32.4 
3FE6 -- 15/14 2/2 5/3 1/0 1/1 4/1 2/2 3/1 -- 2/2 -- -- 2/0 -- 1/0 -- 1/0 1/0 -- -- -- -- -- -- 40 29.4 61.8 
3EFB -- 2/1 1/1 -- -- -- -- 1/0 -- 3/1 -- 1/0 -- -- -- -- 1/0 -- -- -- 1/0 -- -- -- 1/0 11 8.1 69.9 
4D71 -- -- -- 1/1 1/0 4/0 -- 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- 1/0 -- -- -- 8 5.9 75.7 
58E3 3/3 -- 2/2 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 5 3.7 79.4 
5686 -- -- -- -- 3/2 -- -- -- -- -- -- -- -- -- -- 1/0 -- -- -- -- -- -- -- -- -- 4 2.9 82.4 
5272 4/3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 4 2.9 85.3 
F25C -- -- -- -- -- -- -- -- -- -- -- 1/1 -- -- 1/1 -- -- -- -- -- -- -- -- 1/1 -- 3 2.2 87.5 
E328 3/3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3 2.2 89.7 
303C -- -- 1/0 -- -- 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 2 1.5 91.2 
F083 -- -- -- -- -- -- -- -- -- -- -- -- 1/0 -- -- -- -- -- -- -- -- -- 1/1 -- -- 2 1.5 92.6 
2361 -- -- 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.7 93.4 
2E11 -- -- -- -- 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.7 94.1 
2E9C 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.7 94.9 
409A -- -- -- -- -- -- -- -- -- -- -- -- 1/0 -- -- -- -- -- -- -- -- -- -- -- -- 1 0.7 95.6 
41A8 -- 1/1 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.7 96.3 
483D -- -- -- -- -- -- 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.7 97.1 
5462 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1/1 -- -- -- -- -- 1 0.7 97.8 
D861 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.7 98.5 
DDEF -- -- 1/0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1 0.7 99.3 
E922 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 1/1 -- -- -- -- -- -- -- -- -- -- 1 0.7 100.0 
No. offsp. 56 18 8 6 6 6 5 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 
% 41.2 13.2 5.9 4.4 4.4 4.4 3.7 2.9 2.2 2.2 1.5 1.5 1.5 1.5 1.5 1.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 
Cum. % 41.2 54.4 60.3 64.7 69.1 73.5 77.2 80.1 82.4 84.6 86.0 87.5 89.0 90.4 91.9 93.4 94.1 94.9 95.6 96.3 97.1 97.8 98.5 99.3 100.0 

 

Note : format 44/44, see Table 4.8. 
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4.3.3.4. Effective breeding populations 

The average effective breeding population size, for the fish successfully 

allocated on the four spawning dates sampled, was 7 fish (representing 5% of the total 

breeding population; see Figure 4.9). This result was largely explained by the 

markedly skewed contributions to the spawning events by very few fish (especially 

amongst the males). The effective breeding population size appeared not to be 

correlated with the quantity of eggs collected (Figure 4.9). 

 

Figure 4.9. Effective breeding population sizes and egg production of the “wild 
Scottish” breeding tank.  

4.3.3.5. Influence of male and female weights on reproductive success 

The average weight of the “wild Scottish” broodstock population was 4.6 kg, 

the females being slightly heavier than the males (respectively 5.0 kg SD±1.5 kg and 

4.1 kg SD±1.1 kg). Figure 4.10 shows the male and female reproductive successes 

(both as percentage of offspring produced and as number of successful matings) 
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against the male-female weight difference. Both the percentage of offspring produced 

and the number of successful matings followed a normal distribution centred around -

1 to -0.1 kg which corresponds to the average weight difference between the males 

and females present in the tank. This later result indicates that there are no obvious 

weight biases in the mating pattern in the studied breeding tank. Finally, both the 

dominant male (455F weight = 4.7 kg) and the dominant females (E462 weight = 

3.1 kg; 7459 weight = 4.6 kg; F0CD weight = 4.9 kg) were of average weight. 

 

 

Figure 4.10. Overall reproductive success and number of successful matings plotted 
against parental weight difference (sire weight – dam weight; values are grouped into 
1 kg intervals) for the “wild Scottish” breeding tank. 
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4.3.4. Mating behaviour of wild cod broodstock in tank 

systems 

Both courtship behaviour and apparent mating behaviour were observed when 

analysing the video recordings gathered from the spawning activity of the breeding 

tank held at MERL. Over a recording session of four hours, on average, seven peaks 

of activity occurred. Those peaks of activity were relatively brief (3 minutes at most) 

and could involve up to 8 fish at a time. Behaviour associated with ventral mounting 

was clearly observed on one occasion (Figure 4.11). The video recordings also 

suggested the possible fertilisation of a single egg batch by several males. However, 

the distance of the camera from the water surface (approx. 1m) did not allow direct 

observation of release of gametes into the water. 

4.3.5. Summary 

The principal results of this Chapter are summarised in Table 4.12. 

Table 4.12. Summarised results of Chapter 4. 

 
 Wild Scottish stock 

N = 141 
Wild Norwegian stock 

N = 99 
Farmed Scottish stock 

N = 249 
N of observed alleles 
(5 markers) 

106 82 43 

Observed heterozygosity 
(5 markers) 

86.2% 79.8% 64.3% 

Number of offspring analysed 915 286 0 
N offspring assigned 
unambiguously (1 mismatch) 

511 
4 spawning dates 

242 
one spawning date 

-- 

N contributing families 156 overall 
44 daily 

28 -- 

N contributing parents     111/78% overall 
  46/33% daily 

26/26% -- 

N contributing females      64/74% overall 
  28/33% daily 

14/23% -- 

N contributing males      47/69% overall 
         18/26% daily 

12/27% -- 

Ne      7/5% daily -- -- 
Notes: format 111/78% where the first number refers to the number of contributing 
individuals and the second refers to the percentage it represents within the broodstock 
(female/male) population. 
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Figure 4.11. Sequence snap shots of the video recordings of MERL broodstock showing pair-mating and ventral mounting between a male and a 
female cod (real time length of the sequence: 165 seconds – time: 12.20am). 
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4.4. Discussion 

Assigning parentage to offspring produced under commercial hatchery 

conditions proved to be a challenging exercise mainly because of the very large 

number of potential parental pairs which needed to be resolved (2800 in the 

Norwegian case study and as many as 5800 in the Scottish case study). The limited 

choice of published microsatellites for Atlantic cod, at the start of this research 

project, also constituted an important limiting factor in these studies. Of the eight loci 

used, two loci (Gmo8 and Gmo19) showed evidence of frequent large allele dropout. 

This was not fully resolved by PCR optimisation / genotype calling programs. Despite 

manual re-inspection of problematic chromatograms, the rate of allocation success in 

the study of spawning dynamics was extremely poor (i.e. 55.9%). The presence of 

unsexed fish amongst both the “wild Scottish” and the “wild Norwegian” broodstock 

populations further complicated the exercise. Not only did these fish create additional 

artificial families, they were also responsible for false assignments in the study of 

spawning dynamics. Despite allowing for up to one allele mismatch to allocate a 

given offspring, 28 fry (c. 10% of the total number screened), in the Norwegian case 

study, and 285 fry (c. 31%), in the Scottish case study, could not be reconciled to any 

expected parental pair. This may be due to further unresolved genotyping errors in the 

parental and / or offspring genotype data. However, more basic problems with the 

sample set may also explain some of the non-assignments. Parents were sexed by 

ultrasound and this may not have been 100% accurate. Although no novel alleles were 

observed in the offspring dataset, the presence of extraneous parents in the spawning 

tank or offspring in rearing tanks (i.e. due to unrecorded fish movements) also cannot 

be completely ruled out. The FAP predictive analysis indicated that the eight loci used 

would not be completely discriminatory in both parental studies. Thus, the presence of 
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multiple-matches was to be expected. The observed multiple-matches in the 

Norwegian case study, 16 out of 258 parental pair matched offspring (c. 6%), was 

similar to that predicted (8%) by FAP. However, in the Scottish case study, the 

observed multiple-matches were three times greater than expected (13% observed vs. 

4% expected). This suggested that, in the Scottish case study, the loci used were not 

discriminatory enough. Due to the presence of these multiple matches and the fact that 

not all low level spawning participation is likely to have been represented in the 

samples taken, the data presented here represent the minimum numbers of parents 

involved in spawning events occurring on a daily basis. 

Although exclusion-based assignment is known to be particularly sensitive to 

genotyping errors and / or allele mutations (Jones and Ardren, 2003; Vandeputte et 

al., 2006), this method was still considered preferable to a likelihood-based approach. 

The offspring dataset from the “wild Norwegian” broodstock was assigned using the 

likelihood method (see Chapter 3). The conclusions from this exercise were that: 1) it 

was difficult to interpret likelihood assignments in light of the possibly extensive 

errors within the genotype dataset; 2) it forced a detailed documentation / assessment 

of the errors to be undertaken (see Chapter 3). 

For technical reasons (in terms of analysing costs and processing time), the 

number of offspring sampled per group was limited to 300 individuals. This means 

that none of the fry samples was statistically representative (i.e. hatchery tank 

populations ranged from 150 000 to 300 000 cod fry at the time of the sampling). 

The parentage results from the exclusion based analysis indicate that, on a 

single day, at least 25 to 30% of the total breeding population contributed to fertilised 
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eggs that resulted in viable offspring among the analysed groups (at 50 and 83 days 

post-hatching). Family representation was, however, highly skewed in the five 

samples analysed. One family comprised between 20% to 30% of the surviving 

progeny while over 90% of the allocated offspring were the progeny of on average 

only 10% of the broodstock population. The results of the parentage analyses were 

similar between the “wild Scottish” and the “wild Norwegian” broodstock populations 

(in terms of ranges of family / individual contributions), although the fry sampled 

from the Norwegian hatchery had already undergone size grading. It seems to indicate 

that the first hatchery size grading did not have a marked effect on family 

representations. However, the possible selective loss of families linked with poor egg 

or fry survival prior to 50 days post-hatch was however impossible to quantify. 

Cod females are batch spawners, shedding eggs on average once every 53 

hours (Kjesbu et al., 1996) over a period of 1-2 months (Bekkevold et al., 2002). It is 

known that, in cod mass spawning tanks, not all females are perfectly synchronised 

and they will start spawning at different points in time (Kjørsvik et al., 2004). The 

maximum daily egg production (by volume) of a commercial broodstock tank is 

typically reached six to eight weeks after the first egg collection occurred (Richard 

Prickett, personal communication; Figure 4.6). None of the five fry samples 

originated from the peak of egg production. In the Norwegian case study the fry 

sampled was spawned three weeks after the peak of production and, in the Scottish 

case study, all four samples were spawned in the first five weeks of egg collection. 

Therefore, it is perhaps not surprising that, on average, only 35% of the females were 

found to contribute to the five spawning dates studied. The low percentage of males 

(31%) involved in the progeny of all five fry batches sampled is perhaps more 

surprising. It is known that cod males are capable of continuously producing milt 
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during the spawning season (Rakitin et al., 1999; Trippel, 2003). Therefore, they are, 

in theory, capable of fertilising eggs during the entire spawning season. The study of 

spawning dynamics brought to light the occurrence of male dominances within a 

population of captive cod but did not show any clear effect of the timing of the 

spawning season. Indeed, in the Scottish case study, for three spawning dates (out of 

the four studied), the same male fertilised on average 71% of the fry. This dominance 

had an extremely negative impact on the effective breeding population sizes. This 

observation is backed up by several publications on cod which have all showed the 

existence of male competition in spawning aggregations, whether in the wild or in 

small captive groups (Hutchings et al., 1999; Nordeide and Folstad, 2000; Bekkevold 

et al., 2002). In a broader context, evidence of low effective breeding populations in 

mass spawning tanks has also been reported in both gilthead and the red seabream 

commercial hatcheries (Perez-Enriquez et al., 1999; Brown et al, 2003; Nugrohoa and 

Taniguchi, 2004). In gilthead seabream, consistent low effective breeding 

populations, over a given spawning season, were attributed to a large number of non-

contributing fish, particularly amongst males (Brown et al., 2003). 

The data gathered in this study was not best suited for studying the possible 

occurrence of size-assortive mating in cod as described by Rakitin et al. (2001). Cod 

mating behaviour has been documented in both its natural wild environment and 

experimental tank-based rearing systems (Engen and Folstad, 1999; Hutchings et al., 

1999; Nordeide and Kjellsby, 1999; Bekkevold et al., 2002). It is associated with 

complex sequences of events including courtship dance performance, sound 

production by the males, fin display and both dorsal and ventral mounts. The 

observations made using the infrared cameras showed that pair matings involving 

ventral mountings also occurred in large commercial breeding tanks. In this situation, 
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males in the same size range as the spawning females may benefit from an increased 

probability of successfully mating compared to bigger or small males. The data 

presented in this chapter did not allow to draw any firm conclusion on size-based 

mating choices. However it appears to rule out the assumption of male dominance 

based on larger body size (Hutchings et al., 1999) as the dominant males were never 

the largest. Furthermore, the close match between the number of successful matings 

and the percentage of offspring sired (Figures 4.4 and 4.10) suggests very little 

success of “sneaky” males - if we assume that sneaky males are less well matched in 

size than a male fertilising the bulk of the eggs in a ventral mount position. In that 

case we can expect the number of successful matings to be more broadly spread than 

the percentage of offspring sired (Figure 4.4). This is somewhat surprising as this 

result does not echo the strong evidences (provided by the analyses of parentage and 

video recordings) in favour of the existence of frequent matings between single 

females and multiple males. Overall, the spawning population matched the size 

distribution of the entire broodstock population, suggesting that reproductive success 

in cod is not skewed towards larger or smaller fish for either sex. 

The genetic make-up of commercial cod breeding tanks is very heterogeneous 

not only between hatcheries but also between tanks within a same hatchery. For 

captive populations of wild origin, genetic differences might be attributed to the 

geographical origin of the stocks. The hypothesis of significant structuring of wild 

Atlantic cod populations was indeed reported in the literature on cod. It might be 

linked to the complex migratory patterns and fidelity to spawning grounds of wild 

cohorts (Nordeite and Folstad, 2000; Sarvas et al., 2004). The significant reduction of 

genetic diversity observed in the farm-bred stock illustrated the risks associated with 

“non-informed” decisions in managing hatchery breeding populations. Two 
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generations of inbreeding were sufficient to induce a significant genetic drift. Finally, 

out of the three breeding tanks studied, only the “wild Scottish” population was in 

Hardy-Weinberg equilibrium. It does suggest that even captive populations of wild 

origin might be subjected to genetic drift. 
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5.1. Introduction 

5.1.1. Stocking of larval tanks in Marine Farms ASA cod 

hatcheries 

In cod hatcheries belonging to Marine Farms ASA (i.e. Grieg Marine Farms 

AS and Machrihanish Marine farm Ltd), initial stocking densities range from 50 to 

100 larvae per litre (Richard Prickett, personal communication). A larval tank (8 m3 

average capacity) is typically stocked with 400,000 to 800,000 newly hatched larvae. 

In an ideal case scenario, a larval tank is to be stocked with fry originating from a 

single day of spawning from a broodstock population / tank. However, insufficient 

numbers of larvae may lead to the mixing of batches from several breeding 

populations and / or several days of spawning. Mixing of ages and / or origins is also 

likely to occur later on during hatchery rearing, as a direct consequence of size 

grading / pooling of similar size graded fish batches. 

5.1.2. Growth dispensation 

Under commercial rearing conditions, fish growth within the same age group 

and / or the same rearing unit can be very variable. Heterogeneous growth rates are 

likely to arise at a very early stage (Brown, 2003) and may progressively increase the 

variance of size distribution within a fish batch if no measures of control are taken. 

This phenomenon, referred to as growth dispensation, has been reported in various 

marine species including seabream, haddock and Atlantic cod (Goldan et al., 1997; 

Hamlin et al., 2000; Watson et al., 2006). 

The reasons behind growth dispensation are not clearly understood and may be 

related to genetic variation, parental effects, environmental conditions and / or fish 

behaviour (Björklund et al., 2003). 
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5.1.2.1. Genetic variation for growth in farmed fish 

The existence of an additive genetic variation for growth rate has been 

extensively documented in several fish species including Atlantic salmon (Thodesen 

et al., 2001), rainbow trout (Henryon et al., 2002), channel catfish (Silverstein et al., 

2001), turbot (Gjerde et al, 1997) and, most recently, cod (Gjerde et al., 2004). In a 

paper published in 2004, Gjerde and colleagues studied the heritability for body 

weight and survival of 200 days post hatch Atlantic cod juveniles issued from two 

geographically distinct wild broodstock populations. Two mathematical models were 

created to calculate the heritability for body weight, including or not a fixed “region 

effect”. The first model which included the “region effect” gave an heritability 

estimate for body weight of 0.29, SE± 0.27. The second model which did not include 

the “region effect” gave an heritability estimate of 0.52, SE± 0.26. As a result, the 

practice which consists in rearing together mixed families and / or mixed stock types 

of cod fry, is very likely to induce some range in fish sizes of genetic origin. 

5.1.2.2. Parental effects 

Panagiotaki and Geffen (1992) reported the existence of important size 

variation in newly hatched herring larvae which they attributed to parental effects. 

These effects are broadly described as the non-genetic influences derived from both 

maternal and paternal phenotypes (Bang et al., 2006). Since Panagiotaki and Geffen’ s 

work, parental effects have been described in several other species including rainbow 

trout and haddock (Henryon et al., 2002; Probst et al., 2006). Parental effects are often 

exclusively attributed to females as they are responsible for the energetic content of 

eggs (Brown, 2003). The existence of a maternal effect in cod is still argued by 

scientists. Larsen (2002) stated that the spawning history of cod females did not have 

an influence on egg size or larval survival while previous studies suggested the 
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opposite (Kjesbu et al., 1996; Saborido-Rey and Junquera, 1999). However, even if 

parental effects are apparent at hatching, they are often progressively lost or masked 

by overriding environmental and / or behavioural effects (Brown, 2003). 

5.1.2.3. Environmental parameters affecting fish growth 

Environmental factors play a major role in the productivity of intensive 

hatchery rearing systems. Growth performances and survival of cod juveniles are 

known to be profoundly affected by water quality and temperature (Anderson and 

Dalley, 2000; Foss et al, 2004). Poor water quality and sub-optimal water temperature 

will both slow down cod juvenile growth (Rosenlund and Halldórsson, 2007). For 

example, Kling et al. (2007) showed that 80 days post hatch cod fry had a higher feed 

efficiency when reared at 10oC compared to 16oC. High stocking densities may also 

be detrimental to fish growth (Ashley, 2007), although this does not seem to be the 

case for cod juveniles providing feed is not a limiting factor (Puvanendran and 

Brown, 1999; Baskerville-Bridges and Kling, 2000). Intensive cod hatchery 

operations widely rely on artificial photoperiod to increase feed intake and promote 

growth in juveniles. Applying continuous light regime during first feeding was shown 

to have a positive effect on both cod juvenile growth and survival (Puvanendran and 

Brown, 2002; Rosenlund and Halldórsson, 2007). However, Monk et al. showed that 

better feed efficiency was achieved if the light regime was reduced from 2200 lux to 

600 lux after day 28 post hatch.  

Environment conditions can interfere with the expression of genetic variation 

for growth in fish. Saillant et al. (2006) recently found that heritability estimates for 

growth in European sea bass juveniles varied depending on both stocking densities 

and water temperature. Genotype x environment interactions have also been described 
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when studying heritability for growth in other fish species including common carp 

(Wang and Li, 2007).  

5.1.2.4. Fish behaviour 

Atlantic cod juveniles are aggressive feeders. In case of noticeable variances in 

growth and / or feed shortage, cannibalism is likely occur in hatchery larval tanks 

(Baskerville-Bridges and Kling, 2000). Cannibalism can lead to important mortalities, 

especially within the first four months of rearing (Brown et al, 2005; Höglund et al, 

2005). 

5.1.3. Size grading as a mean to control growth dispensation 

In commercial farming, grading fish according to size is a well established 

procedure to control growth dispensation and simplify the feeding of tanks (i.e. by 

using the same type / particle sizes of feed) (Goldan et al., 1997). The effect of size 

grading on the growth rate of biomass remains unclear, although some studies suggest 

that size grading does not promote faster growth (Martins et al., 2005). 

In Marine Farms cod hatcheries, cod fry are first size graded when reaching 50 

days post hatch (Richard Prickett, personal communication). Grading boxes (supplied 

by Catvis, Netherlands) with interchangeable grids are used for sorting small sizes. 

The grading grids consist of parallel bars separated by spaces of standard width (to let 

small fish go through). The frequency of size grading is adapted to the growth 

performances of the batches. Limiting the number of gradings during larval rearing 

remains however in the hatchery’s best interest since grading is a labour demanding 

task. 
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Size grading was recently reported to have a detrimental effect on the genetic 

diversity of commercially farmed barramundi (Frost et al, 2006). Results from this 

study suggested that family representation within the various size grades could 

significantly differ (caused by the existence of genetic variation for growth in this 

species). Although no such results have been yet reported for cod, the possible 

negative impact of repeated size gradings on the genetic diversity of commercially 

produced cod juveniles can not be ruled out.  

In commercial hatcheries, grading of fish is often followed by the mixing of 

different batches of fry (i.e. different ages and / or different origins). To date, no 

published data describes the combined effect of size grading and mixing on the 

genetic diversity of commercially produced fish juvenile batches. 

5.1.4. Aim of the study 

The aims of this experimental study were first to analyse the genetic diversity 

of a cod juvenile batch produced by a commercial hatchery and, second, to test new 

DNA microsatellite markers for parentage analysis. To do so, the parentage of 960 

cod juveniles produced by MMF (mean weight of 20g) was analysed using a “new” 

set of eleven loci. The allocation outcomes were compared with the results previously 

obtained using the set of eight loci (see Chapter 4). Parental contributions to the 

juvenile sample were analysed and compared with the contributions to the four fry 

batches analysed in Chapter 4. On this occasion, the effects of hatchery rearing 

procedures (i.e. size grading and mixing of batches) were investigated. Finally, the 

genetic diversity of the juvenile batch was assessed to determine whether or not this 

population was a suitable candidate for broodstock replacement.  
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5.2. Materials and methods 

5.2.1. Collection of samples for DNA profiling 

A parentage study was carried out on a batch of commercially produced 20g 

cod juveniles from MMF. Fin clips from 960 fish (i.e. corresponding to ten 96 well 

plates for DNA extraction and PCR amplifications) were sampled in 95% ethanol for 

subsequent DNA analysis. The batch sampled originated from the “wild Scottish” 

broodstock 2005 winter spawn (see Chapters 2 and 4) and regrouped juveniles from 

up to six different spawning dates (including the four dates previously sampled and 

analysed for parentage in Chapter 4). These fish were fin clipped towards the end of 

July 2005 (at an average age of 5 months). Other information concerning the batch 

sampled (for example the overall number of fish constituting the batch or the grading 

group) were not disclosed by the hatchery. 

5.2.2. DNA profiling 

DNA was extracted from fin samples using the Dynabeads® genomic 

universal DNA kit (see Chapter 2). 

Eleven loci (GmoC18, GmoC20, GmoC42, GmoC52, Gmo35, Gmo37, Tch11, 

GmoC71, GmoC80, GmoC90 and GmoC88) were used for analysing the parentage of 

the cod juvenile samples. The loci were coamplified as 3 separate multiplex PCR 

reactions. GmoC18, GmoC20, GmoC42, GmoC52, GmoC71, GmoC80, GmoC90 and 

GmoC88 were coamplified as two tetraplexes as described in Chapter 2. Gmo35, 

Gmo37 and Tch11 were coamplified as a triplex derived from the pentaplex assay 

according to Wesmajervi et al (2006). 
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The amplified DNA fragments were processed on the ABI 310 Avant Genetic 

analyser (ABI). The broodstock samples were run on three separate occasions to 

obtain high quality scores. Juvenile samples were screened only once unless PCR 

reactions had failed. 

5.2.3. Parentage analysis 

The genotyping data were analysed using the exclusion-based program FAP 

(see Chapter 3). An error tolerance of two allele mismatches was included in the 

parentage analysis after the presence of null alleles among several broodstock DNA 

profiles was discovered (see section 5.3.1.1.). 
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5.3. Results 

5.3.1. Analysis of the parental contribution to a batch of 

commercially produced cod juveniles 

The parentage exercise involved a larger set of loci than in previous studies 

(eleven vs. eight; cf. Chapter 4). Overall, this set of eleven loci showed a greater level 

of allelic polymorphism among the “wild Scottish” broodstock population (Table 5.1). 

However, although eight markers (GmoC18, GmoC20, Gmo37, Tch11, GmoC71, 

GmoC80, GmoC90 and GmoC88) displayed at least 12 alleles (vs. four markers in the 

previous set of eight loci), the effective number of alleles was notably low for four 

markers (GmoC42, GmoC52, GmoC90 and GmoC88; see Table 5.1). 

Table 5.1. Description of the eleven polymorphic microsatellite markers used to solve 
the parentage of commercially produced cod juveniles. 

 

 

Microsatellite Name Number of alleles identified in the 
“wild Scottish” broodstock 

population 

Effective number of alleles (AE)

GmoC18 15 9 
GmoC20 20 9 

GmoC42 6 3 

GmoC52 8 3 

Gmo35 9 5 

Gmo37 14 5 

Tch11 20 15 

GmoC71 12 7 

GmoC80 18 10 

GmoC90 25 3 

GmoC88 12 4 
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5.3.1.1. Parental allocation 

Based on the genotyping information provided by the “new” set of eleven loci, 

FAP predicted unambiguous allocation of offspring to a single pair of parents in 

99.9% of cases. 

A total of 951 cod juveniles - out of the 960 screened - were genotyped for at 

least 6 loci and were subsequently included in the parentage analysis. Of these 951 

juveniles, 591 (i.e. 62%) were allocated by FAP to a single pair of parents with two 

allele mismatches allowed (Table 5.2). Allocation success varied according to the 

number of markers genotyped per offspring. The less markers were typed, the less 

single-matches were attributed; this became even more evident as the number of 

allelic incompatibilities between parents and offspring increased (see Table 5.2). 

Table 5.2. FAP assignment success according to the number of markers typed per 
offspring and the number of allelic mismatches allowed. 

 
Actual assignment with allele mismatch tolerance # Number of loci typed 

0 1 2 
Total 

11 256/256 89/89 56/56 401/401 
10 32/32 17/17 5/5 54/54 
9 14/14 6/7 3/6 23/27 
8 10/10 5/6 0/6 15/22 
7 62/62 28/35   0/29  90/126 
6 6/9 2/3 0/1   8/13 
Total 380/383 147/157  64/103 591/643 

 
Note: format 256/256 where the first number refers to the number of offspring 
allocated to a single family and the second refers to the number of offspring allocated 
to one or more families. 
 

380 offspring (i.e. 40%) were allocated by FAP to a single pair of parents with 

no allele mismatch (Table 5.3).The manual inspection of chromatograms, which took 

place after the first round of FAP allocations, revealed the existence of at least seven 

null alleles among the broodstock population. A null allele (Ø) was exposed when a 
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parent appeared homozygous at a given locus but this allele was apparently not 

transferred to the offspring (for example: Male genotype: 119/Ø, Female genotype: 

137/140 and Offspring genotype: 137/Ø). These null alleles were exposed at five 

different loci: GmoC20 (2), GmoC52 (2), Gmo37 (1), Tch11 (1) and GmoC90 (1). 

More importantly, null alleles were identified in the genotype profiles of two main 

contributing parents (i.e. males 455F and DD79). Consequently, an error tolerance of 

two allele mismatches was allowed in the final FAP analysis to account for the errors 

possibly generated by the presence of null alleles. When allowing for up to two 

mismatches, assignment was further increased to 62% (Table 5.3). However, a large 

number of offspring (32%) still remained unassigned. Up to six allele mismatches 

were necessary to “force” assignment to all juveniles. 

Table 5.3. FAP assignment outcome for 951 cod juveniles successfully genotyped for 
at least 6 markers (out of 11). 

 

 

Overall, the outcome of this allocation exercise was very similar to the 

previous case study which only employed eight loci (section 4.3.5). Introducing new 

polymorphic loci did not improve the percentage of offspring successfully assigned to 

a unique parental pair when up to one allele mismatch was allowed (Table 5.4). It did 

however significantly reduce the number of multiple matches (13% with eight loci vs. 

only 2% with eleven loci in case of one allele mismatch). The percentage of no-

matches was always greater in the case of 11 loci, which immediately suggested that 

additional typing errors had been introduced as more loci were genotyped (Table 5.4). 

Actual assignment with 
allele mismatch tolerance # 

Assignment 
outcome 

Predicted 
assignment 

0 1 2 3 6 
Single-
match 99.9% 380 (39.9%) 527 (55.4%) 591 (62.1%) 693 (72.8%) 791 (83.2%)

Multiple-
match 0.1% 4 (0.4%) 14 (1.5%) 53 (5.6%) 61 (6.4%) 160 (16.8%)

No-match -- 567 (59.7%) 410 (43.1%) 307 (32.3%) 197 (20.8%) 0 (0%) 
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Table 5.4. Comparison of FAP assignment outcomes between the two parentage 
exercises realised on offspring produced by the “wild Scottish” broodstock. 

 
 
 
 
 
 
 
 
* refers to the set of markers used in the parentage analysis. 

5.3.1.2. Parental contributions 

157 families were found to contribute to the juvenile sample analysed. 108 fish 

(77% of the total breeding population) were identified as parents (i.e. 50 males and 58 

females). As expected, individual contributions were extremely uneven for both sexes 

(Table 5.5). The dominant male 455F - identified previously through the study of 

spawning dynamics (Chapter 4) - sired 228 of the juveniles analysed (i.e. 39%). Once 

again, in comparison, the range of female contributions was more balanced with 7 fish 

responsible for 52% of the juveniles produced (Table 5.5). However, as many as ten 

females and thirteen males (16% of the breeding population) were found to be only 

represented by a single offspring. Not surprisingly, family contributions were also 

highly skewed (Table 5.6). The most represented family accounted for 11.5% of the 

juveniles analysed. On the other hand, 90 families (i.e. 57% of the total number of 

contributing families) were only represented by a single juvenile in the sample 

analysed. 

 

Assignment with 0 
mismatch 

Assignment with 
1 mismatch 

Assignment with 
3 mismatches 

Assignment 
outcome 

8 loci* 11 loci* 8 loci 11 loci 8 loci 11 loci 
Single-match 43% 40% 56% 55% 60% 73% 
Multiple-match   5%   0% 13%   2% 39%   6% 
No-match 52% 60% 31% 43%   1% 21% 
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Table 5.5. Parental contributions to the juvenile sample (produced by the “wild 
Scottish” broodstock), as determined by FAP, based on the genotyping of 11 DNA 
microsatellites. 

 

Contributing 
Females 

No. of 
offspring 

%age Cumulative 
%age 

Contributing 
Males 

No. of 
offspring 

%age Cumulative 
%age 

38A6 92 15.6 15.6 455F 228 38.6 38.6 
7459 68 11.5 27.1 DD79 68 11.5 50.1 
3FE6 36 6.1 33.2 078B 28 4.7 54.8 
FEB1 34 5.8 38.9 F553 21 3.6 58.4 
41A8 31 5.2 44.2 9619 20 3.4 61.8 
39B2 24 4.1 48.2 7C60 20 3.4 65.1 
E0E5 24 4.1 52.3 0626 19 3.2 68.4 
0BE8 22 3.7 56.0 CE2E 19 3.2 71.6 
F0CD 19 3.2 59.2 3C58 18 3.0 74.6 
E462 17 2.9 62.1 2AC0 11 1.9 76.5 
E57B 14 2.4 64.5 2C26 10 1.7 78.2 
D506 14 2.4 66.8 B8ED 10 1.7 79.9 
58E3 13 2.2 69.0 2FAF 8 1.4 81.2 
6043 13 2.2 71.2 46A8 8 1.4 82.6 
45FA 12 2.0 73.3 F818 7 1.2 83.8 
DCA2 12 2.0 75.3 295C 6 1.0 84.8 
5462 10 1.7 77.0 51E0 6 1.0 85.8 
DDEF 10 1.7 78.7 2F10 5 0.8 86.6 
409A 9 1.5 80.2 41B4 55 0.8 87.5 
2E9C 8 1.4 81.6 57B1 5 0.8 88.3 
5686 8 1.4 82.9 BE0F 5 0.8 89.2 
CF7D 8 1.4 84.3 CF7D 5 0.8 90.0 
4D71 6 1.0 85.3 FB92 5 0.8 90.9 
3EFB 5 0.8 86.1 3EFD 4 0.7 91.5 
3F77 5 0.8 87.0 4F52 4 0.7 92.2 
F25C 5 0.8 87.8 CBC8 4 0.7 92.9 
01B1 5 0.8 88.7 D7C4 4 0.7 93.6 
21D1 4 0.7 89.3 E9E4 4 0.7 94.2 
28EB 4 0.7 90.0 48C1 3 0.5 94.8 
3F42 4 0.7 90.7 5634 3 0.5 95.3 
F083 4 0.7 91.4 06A8 3 0.5 95.8 
E328 4 0.7 92.0 211A 2 0.3 96.1 
48C1 3 0.5 92.6 5330 2 0.3 96.4 
F185 3 0.5 93.1 E475 2 0.3 96.8 
042A 3 0.5 93.6 FA3D 2 0.3 97.1 
CBC8 3 0.5 94.1 D986 2 0.3 97.5 
0082 3 0.5 94.6 6043 2 0.3 97.8 
2668 2 0.3 94.9 3458 1 0.2 98.0 
3916 2 0.3 95.3 3776 1 0.2 98.1 
44DE 2 0.3 95.6 39B8 1 0.2 98.3 
483D 2 0.3 95.9 3D0E 1 0.2 98.5 
48C9 2 0.3 96.3 4CF2 1 0.2 98.6 
48CC 2 0.3 96.6 59D1 1 0.2 98.8 
DDF6 2 0.3 97.0 DD7A 1 0.2 99.0 
BE0F 2 0.3 97.3 E477 1 0.2 99.2 
E8BE 2 0.3 97.6 B5B1 1 0.2 99.3 
F1F6 2 0.3 98.0 C483 1 0.2 99.5 
516A 2 0.3 98.3 EF82 1 0.2 99.7 
2361 1 0.2 98.5 45B5 1 0.2 99.8 
247B 1 0.2 98.6 4EE2 1 0.2 100.0 
26D4 1 0.2 98.8 
323B 1 0.2 99.0 
5298 1 0.2 99.2 
D861 1 0.2 99.3 
E922 1 0.2 99.5 
02A4 1 0.2 99.7 
E9E4 1 0.2 99.8 
F63F 1 0.2 100.0 
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Table 5.6. Contributing families to the juvenile sample (produced by the “wild 
Scottish” broodstock), as determined by FAP, based on the genotyping data provided 
by 11 DNA microsatellites. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Family 
(female x male) 

No. of offspring Percentage Cumulative %age 

7459 x 455F 68 11.5 11.5 
38A6 x DD79 45 7.6 19.1 
E0E5 x 455F 23 3.9 23.0 
3FE6 x DD79 21 3.6 26.6 
39B2 x 078B 20 3.4 29.9 
41A8 x 455F 18 3.0 33.0 
0BE8 x 455F 17 2.9 35.9 
E462 x 455F 16 2.7 38.6 
F0CD x 3C58 16 2.7 41.3 
D506 x 455F 14 2.4 43.7 
38A6 x 7C60 13 2.2 45.9 
6043 x 455F 13 2.2 48.1 
38A6 x CE2E 12 2.0 50.1 
45FA x 455F 12 2.0 52.1 
FEB1 x F553 12 2.0 54.1 
DDEF x 455F 10 1.7 55.8 
E57B x 0625 10 1.7 57.5 
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5.3.1.3. Evolution of the genetic diversity of a commercially produced cod 

juvenile batch throughout hatchery rearing 

Table 5.7 compares the number of contributing parents / families as well as the 

effective breeding population sizes between the four fry samples previously analysed 

(see Chapter 4) and the present juvenile sample. Overall, the genetic diversity of the 

juvenile sample was greater than the diversity of any of the four fry samples. The 

number of contributing families identified in the juvenile sample was, on average, 

four times greater than the number of families represented in any of the four fry 

samples (see Table 5.7). The effective breeding population size of the juvenile sample 

represented 14% of the breeding population (i.e. 20 fish) which was two to three times 

greater than the effective population size of a single day of spawning (i.e. 7 to 10; see 

Table 5.7). 

Table 5.7. Contributing parents / families and effective breeding population sizes for 
four samples of cod fry (representing 4 days of spawning) and a batch of 591 
juveniles, issued from the production of the “wild Scottish” broodstock. 

 

 

The number of contributing families identified in the juvenile sample was 

almost identical to the number of families found to have contributed to the combined 

four fry samples previously analysed, if we remove all duplicate families which 

appear to contribute in more than one spawning date (i.e. respectively 157 vs. 156 

families; see Chapter 4 section 4.3.3.3). However, only 47 families were shared 

 Fry spawn on 
the 04/02/05 

Fry spawn on 
the 18/02/05 

Fry spawn on 
the 21/02/05 

Fry spawn on 
the 26/02/05 

Juveniles sampled 
on the 22/07/05 

No. of offspring 
assigned 

64 123 188 136 591 

No. of contributing 
families 

39   43   46   50 157 

No. of contributing 
males 

12   16   18   25   50 

No. of contributing 
females 

29   31   30   21   58 

Ne 7.20 5.90 6.27 10.05 20.03 
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between the fry and the juvenile samples analysed (i.e. approx. 30%). Each of the 

“original” 109 families found in the fry samples, and subsequently “lost” in the 

juvenile batch analysed, were only marginal contributors (contributing at most to 1% 

of the fry analysed). Amongst the additional 110 families identified in the juvenile 

sample, only four contributed to more than 1% of the juveniles analysed. The second 

most contributing family found in the juvenile sample (i.e. 38A6 x DD79) was one of 

them (with 7.6%). 

Table 5.8 compares the family representations in the fry and juvenile samples 

(with the four fry samples combined together), for the sixteen most contributing 

families identified in the fry samples. Overall, these families accounted for 58% of the 

fry and 44% of the juveniles analysed. Only one of these sixteen “original” families 

(i.e. 3FE6 x 6043) was no longer detected amongst the juveniles. The most 

represented family in the fry batches analysed (i.e. 7459 x 455F) maintained its level 

of contribution throughout hatchery rearing (i.e. 12.3% amongst the fry vs. 11.5% 

amongst the juveniles). However, both the families E462 x 455F and F0CD x 3C58 

saw their contributions significantly decrease (from 9% to 3%; see Table 5.8). None 

of the marginally represented families in the fry samples saw a significant increase of 

its contribution in the juvenile batch analysed (data not shown). 
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Table 5.8. Family contributions to both the fry and juvenile samples -issued from the “wild Scottish” broodstock production- as determined by 
exclusion-based parentage, based on the genotyping of 8-11 DNA microsatellites. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: only the 16 most contributing families figure in this Table. 
 
 
 

Four fry samples combined Juvenile sample Family 
(female x male) No. of 

offspring 
Percentage Cumulative 

%age 
No. of 

offspring 
Percentage Cumulative 

%age 
7459 x 455F 63 12.3 12.3 68 11.5 11.5 
E462 x 455F 48   9.4 21.7 16   2.7 14.2 
F0CD x 3C58 44   8.6 30.3 16   2.7 16.9 
45FA x 455F 25   4.9 35.2 12   2.0 19.0 
D506 x 455F 16   3.1 38.4 14   2.4 21.3 
3FE6 x DD79 15   2.9 41.3 21   3.6 24.9 
E0E5 x 455F 13   2.5 43.8 23   3.9 28.8 
0BE8 x 455F 12   2.3 46.2 17   2.9 31.6 
39B2 x 078B 11   2.2 48.3 20   3.4 35.0 
DDEF x 455F 11   2.2 50.5 10   1.7 36.7 
41A8 x 455F 10   2.0 52.4 18   3.0 39.8 
E57B x 0625   7   1.4 53.8 10   1.7 41.5 
BE0F x 455F   6   1.2 55.0   1   0.2 41.6 
6043 x 455F   6   1.2 56.2 13   2.2 43.8 
3FE6 x 6043   5   1.0 57.1   0   0.0 43.8 
DDF6 x 455F   5   1.0 58.1   1   0.2 44.0 
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5.3.1.4. Genetic makeup of the juvenile batch 

Table 5.9 compares the number of alleles observed, at 11 loci, between the 

juvenile batch sampled and the “wild Scottish” broodstock. Overall, there was no 

significant losses of alleles in the first generation of farmed juveniles analysed. Four 

markers (GmoC18, GmoC42, GmoC52 and GmoC71) maintained the same level of 

polymorphism in the F1 batch analysed. The reduction of allelic polymorphism was 

the most important in the case of two markers (Gmo37 and GmoC80), with 3 alleles 

less being observed in the F1 (Table 5.9). Allelic frequencies - at each of the 11 loci 

typed - for the juvenile batch and the “wild Scottish” broodstock were not 

significantly different (Table 5.10). These results suggested that there was no major 

loss of genetic diversity between the broodstock of wild origin and the F1 population 

sampled. 

Table 5.9. Comparison of allelic diversities, at 11 loci, between the “wild Scottish” 
broodstock and the batch of commercially produced F1 juveniles. 

 
Locus “wild Scottish” broodstock Juvenile sample 
GmoC18 15 15 
GmoC20 20 19 
GmoC42   6   6 
GmoC52   8   8 
Gmo35   9   7 
Gmo37 14 11 
Tch11 20 18 
GmoC71 12 12 
GmoC80 18 15 
GmoC90 25 24 
GmoC88 12 10 
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Table 5.10. Results of Paired T-tests realised on the allelic frequencies, at 11 loci, 
between the “wild Scottish” broodstock and the batch of commercially produced F1 
juveniles. 

 
Locus T-Value P-Value 
GmoC18 0.00 1.00 
GmoC20 0.00 1.00 
GmoC42 0.00 0.99 
GmoC52 0.00 1.00 
Gmo35 0.00 1.00 
Gmo37 0.00 0.99 
Tch11 0.00 0.99 
GmoC71 0.00 0.99 
GmoC80 0.00 1.00 
GmoC90 0.01 0.99 
GmoC88 0.00 0.99 

 

However, both the calculation of the per-generation rate of inbreeding and the 

outcome of the Hardy-Weinberg test suggested that the juvenile population studied 

was subjected to a certain degree of inbreeding. Indeed, the Hardy-Weinberg test 

revealed that the juvenile batch analysed was not at equilibrium (data not shown) and 

the rate of inbreeding, ∆F, reached 2.5%. 
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5.4. Discussion 

The assignment exercise proved to be, once again, a challenging task despite 

introducing a new set of loci with a greater number of polymorphic alleles. Although 

the FAP predictive analysis seemed to indicate that the set of eleven loci was 

discriminatory enough for the dataset considered (i.e. 99.9% of predicted 

assignments), the rate of assigned offspring remained very low (i.e. 62% with two 

mismatches allowed). Moreover, quite surprisingly, the addition of new polymorphic 

loci made little difference to the percentage of offspring successfully assigned to a 

single pair of parents, when compared to the previous assignment exercise employing 

just eight loci (section 4.3.5). Both the high number of potential families (i.e. 5800) 

and the presence of 13 unsexed fish among the broodstock population remained 

essential problems. In addition, the manual inspection of chromatograms revealed the 

presence of null alleles among parental genotypes. Null alleles were uncovered at four 

different loci and, more worryingly, affected the genotypes of two main contributing 

parents (males 455F and DD79). The presence of null alleles further complicated the 

allocation exercise by adding substantial errors to the dataset. As a result, it was 

decided to allow for up to two mismatches for assigning offspring. However, despite 

raising the error level to two allelic mismatches, 307 juveniles (c. 32%) could not be 

reconciled to an expected parental pair, suggesting that unresolved genotyping errors 

remained in the parental and / or offspring genotype data. It is also worth mentioning 

at this point that other reasons including the presence of extraneous parents / offspring 

in the sampled populations may also explain some of the non-assignments. 

It is more than likely that not all family contributions were detected in the 

sample of juveniles analysed. Therefore, the data presented here represent the 

minimum numbers of parents involved in the production of the studied cod juvenile 
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batch. The results from the exclusion-based parentage analysis showed that at least 

77% of the “wild Scottish” broodstock population contributed to the juvenile batch 

analysed. However, family representations were highly skewed with 57% of the 

contributing families only represented by a single offspring. Not surprisingly (given 

the outcomes of previous analyses presented in Chapter 4), 39% of the juveniles 

analysed were sharing a common parent. This parent was the previously identified 

dominant male 455F (see Chapter 4).  

The number of families identified in the juvenile sample was equivalent to the 

number of families found in the combined four spawning dates analysed (respectively 

157 vs. 156 families). Only 30% of the families initially present in the four fry 

batches analysed were represented in the “ongrown” juvenile population sampled. 

These however included the ten most contributing families initially identified amongst 

the fry. Repetitive size grading were previously reported to have marked effect on the 

genetic diversity of commercially produced barramundi juvenile: Frost et al. (2006) 

showed that repetitive size grading alone (without mixing of batches) were 

responsible for significant losses of families within a single fish cohort (i.e. slow 

growing families were progressively separated from the main cohort). Although the 

family losses observed in this case study might well be directly related to size 

grading, it is impossible to rule out other possible causes including sampling bias, 

selective mortalities and cannibalism. 

Frost et al. (2006) showed that size grading modified the relative family / 

parental contributions over time in a population of barramundi juveniles. The data 

presented in this Chapter was unfortunately not best suited to compare to these 

findings since it was impossible to separate the likely effect of size grading from the 



Chapter 5. Influence of hatchery practices on the genetic diversity of the 
juvenile production from a commercial mass spawning broodstock tank 
 

Marine Herlin . Ph.D. Thesis 2007 
151

effect of mixing fry batches (since part of the information regarding the history of the 

juvenile batch was not disclosed by MMF). However, it is interesting to note that the 

dominant family initially identified among the four fry batches analysed appeared to 

have maintained its level of contribution throughout hatchery rearing. 

The juvenile batch analysed in this study was noticeably more genetically 

diverse than any of the four individual fry samples previously analysed. The effective 

breeding population size of the juvenile batch was two to three times greater than the 

effective size observed on a single day of mass spawning (this will be further 

discussed in Chapter 7). The most immediate conclusion is that the mixing of fry 

batches from different days of spawning did override the possible adverse effect of 

size grading. 

The effective breeding population size of the juvenile batch remained 

relatively low (i.e. represented approx. 14% of the breeding population), despite the 

diversity brought in by mixing fry batches from several spawning dates. This result 

was similar to the findings of Brown (2003) for gilthead seabream. According to 

Meuwissen and Woolliams (1994), the effective population size which contributed to 

the juvenile sample analysed was, however, not sufficient to prevent detrimental 

effects caused by inbreeding (i.e. decline in fitness traits). The per-generation rate of 

inbreeding (∆F = 2.5%) was six times greater than the rate of inbreeding which would 

be expected in an “idealized” population subjected to random matings and where no 

selection occurred (Falconer, 1986; with ∆F = 1/8Nm + 1/8Nf = 0.4%). 

The analysis of allelic frequencies at eleven loci showed no significant 

difference between the “wild Scottish” broodstock and the juvenile batch analysed. 
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Despite the relatively low Ne and the high ∆F, the juvenile population studied could 

still be considered for broodstock replacement providing the variance in family size 

was altered. By removing fish from the most represented families, the individual 

parental contributions would become more homogeneous (Brown, 2003). Indeed, by 

bringing the contributions of the three most represented females and the two most 

represented males down to 30 offspring each, the effective breeding population size 

would increased to 101 fish while the rate of inbreeding would be brought down to 

0.5% (data not shown). This simple measure would minimise inbreeding and make 

the juvenile population a good candidate for broodstock replacement (Falconer, 1986; 

Jørstad and Naevdal, 1996). 
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5.5. Conclusions 

This study highlighted once again the difficulties associated with solving the 

parentage of extremely large and complex genotyping datasets (i.e. a set of offspring 

issued from the mass spawning of more than a hundred broodstock). Adding new 

microsatellites, quite surprisingly, did not improve the overall success of this 

particular allocation exercise. The most plausible explanation for this was that 

additional errors were introduced to the dataset as more markers were genotyped 

(Borrell et al., 2004). Despite the problems associated with this parentage exercise, 

interesting results were obtained from analysing family contributions. Repeated size 

grading and mixing of fry batches had an overall positive effect on the genetic 

diversity of the juvenile batch produced (compared to the genetic diversity from a 

single day of mass spawning). However, family contributions remained highly 

skewed. This made the juvenile population a rather unsuitable candidate for 

broodstock replacement (as 39% of the offspring shared a common parent) unless fish 

from excessively represented families were removed. 
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6.1. Introduction 

The presence of two to three years old sexually mature males and females, in 

sea cages, is a growing concern for cod ongrowers. Although different approaches to 

control maturation are being investigated (including the use of photoperiod, selective 

breeding and the production of triploids), no clear-cut method has yet been identified. 

Uncovering the sex determination mechanism(s) which operates in cod would most 

probably help inform on the best suited method of maturation control to implement 

for this species. 

6.1.1. Sex determination and identification of sex 

chromosomes / genes 

6.1.1.1. Sex determination mechanisms in fish 

Sex determination refers to the sum of genetic elements responsible for the 

existence of gonads (Piferrer, 2001). The so called “sex determining” genes can either 

be spread throughout the genome or mostly concentrated in a pair of chromosomes 

(i.e. sex chromosomes). Contrary to mammals, there is no evidence of the existence of 

a unique sex gene in fish. This said, several fish species (including rainbow trout and 

common carp) present sex chromosomes in a early stage of differentiation (Nada et 

al., 1992; Ezaz, 2002). It is commonly believed that morphologically differentiated 

chromosomes - which constitute a characteristic of higher vertebrates (such as the sex 

chromosomes X and Y in humans) - have evolved from originally identical 

homologues. So far, eight chromosomal systems have been identified in fish, some 

involving more than one pair of sex chromosomes or different numbers of 

chromosomes depending on the sex (Nanda et al., 1992; Piferrer, 2001; Devlin and 

Nagahama, 2002). Studies of sex ratios among offspring can give clues about the 

likely system in place. In species where individual crosses yield 1:1 sex ratios, 
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monofactorial determination of sex, with sex determining genes located on a single 

chromosome, can be suspected. However, many fish species like tilapia or seabass 

display, under certain conditions, unbalanced sex ratios suggesting the existence of a 

more complex polyfactorial system (Campos Ramos, 2002; Devlin and Nagahama, 

2002), possibly involving environmental factors. In cod, due to the poor survival of 

larvae at the age of sex differentiation, it might not be appropriate to solely rely on the 

study of sex ratios, obtained from single crossings, in order to elucidate sex 

determination mechanisms. 

6.1.1.2. Tools to elucidate sex determination 

6.1.1.2.1. Cytogenetic 

Cytogenetical studies have been performed on more than 1700 fish species so 

far. Only 10% were found to possess distinct sex chromosomes (Devlin and 

Nagahama, 2002). However, many commercially cultured fish, such as carps and 

salmonids, exhibit the commonly encountered XX/XY system (Dunham et al., 2000). 

Extended research has been carried out in Mozambique and Nile tilapia to isolate sex 

determining genes. As these species do not possess apparent differentiated mitotic sex 

chromosomes, examination of chromosomes pairing in synaptonemal complexes, 

were carried out. They revealed the existence of sex-chromosome regions on the 

largest chromosome pair but no specific sex genes have been so far identified and 

sequenced (Campos Ramos, 2002; Ezaz, 2002; Campos Ramos et al., 2003; Ezaz et 

al., 2004). However, such techniques are still rarely performed (Devlin and 

Nagahama, 2002). In cod, chromosome spreads revealed the existence of 46 

chromosomes (2n) (Klinkhardt et al., 1995) but no published information is yet 

available on its sex determination system. 
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6.1.1.2.2. Molecular markers 

Molecular approaches, focusing exclusively on DNA, can also be used to 

elucidate sex determination mechanisms. Indeed, DNA markers have been 

extensively used and proved useful for examining sex linkage in fish (Nanda et al., 

1992; Dunham et al., 2000; Hulata, 2001; Devlin and Nagahama, 2002). Among these 

DNA-based tools, the AFLP technique presents numerous advantages. It is based on 

the selective PCR co-amplification of high numbers of restriction fragments from 

genomic DNA (Vos et al., 1995). This technique is able to generate DNA fingerprints 

regardless of its origin or its complexity and does not require prior knowledge of its 

sequence (Mickett et al., 2003). AFLP techniques have already been used with 

success on plant and animal species (Singh et al., 2002) and more recently on fish 

such as channel catfish (Mickett et al., 2003) and tilapia (Agresti et al., 2000; Ezaz et 

al., 2004). Such a technique could be also applied to cod in order to localize potential 

sex-linked or sex-specific sequences. 

6.1.1.2.3. Gynogenesis 

Gynogenesis refers to the process whereby offspring which exclusively 

possess genetic information of maternal origin are produced. Gynogenesis can either 

occur naturally by exclusion of the paternal genetic input from the zygote, or be 

induced experimentally by the destruction of spermatozoa’s DNA with UV light or 

ionizing radiation (Devlin and Nagahama, 2002). In all cases, spermatozoa remain 

able to fertilise the egg and activate embryonic development but do not provide any 

genetic material to the zygote. Two types of gynogenesis can occur (see Figure 6.1). 

In mitotic gynogenesis, the fertilised egg goes through the first mitotic cell division 

and the application of a physical shock (i.e. pressure or temperature) prevents the cell 

from physically dividing, thus re-establishing the diploid state. Alternatively, meiotic 
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gynogenesis is achieved by applying a shock treatment (i.e. pressure or temperature) 

to the fertilised egg - at the stage of the second meiotic division - which results in the 

retention of the second polar body (Figure 6.1). Mitotic gynogenetics are homozygous 

for all loci while meiotic gynogenetics are not. Gynogenesis can be used to elucidate 

sex determination in fish by studying the sex ratio of gynogenetic offspring. 

Gynogenetic experiments have been carried out extensively, with success, in 

numerous fish species belonging to both fresh and marine water environments (e.g. 

Chourrout, 1984; Hollebecq et al., 1986; Pongthana et al., 1995). Extensive 

gynogenetic works in marine fish have been already done on European seabass 

(Peruzzi and Chatain, 2000; Peruzzi et al., 2004; Francescon et al., 2004) and Atlantic 

halibut (Tvedt et al., 2006). 
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Figure 6.1. Induction of gynogenesis in fish. Figure adapted from Hussain (1992). 
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6.1.2. Aims of the study 

The aims of this Chapter were: 1) to develop a successful protocol to induce 

gynogenesis in cod using temperature shocks, 2) to induce gynogenesis on a large 

batch of cod eggs and ongrow the gynogenetic cod fry until sexing was possible, 3) to 

study the sex ratio of ongrown gynogenetics and possibly conclude on the sex 

determination mechanism(s) operating in cod. First, a protocol to artificially induce 

gynogenesis was developed at a relatively small experimental scale using a 

combination of UV irradiation treatment (milt) and cold temperature shock (fertilised 

eggs). Gynogenesis was then induced on a large batch of cod eggs (approx. 200 000) 

in order to both test the efficacy of the technique and to study the sex ratio of 

ongrown gynogenetics. 
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6.2. Materials and methods 

The experiments described in this Chapter took place over three consecutive 

spring seasons (from 2004 to 2006) at the Marine laboratory facilities in 

Machrihanish (MERL). Milt and eggs were collected from captive broodstock held at 

the laboratory. The fish (approx. 80 males and 60 females) were of both wild (West 

Scottish coast) and farmed origin (issued from MMF juvenile production) and kept in 

six breeding tanks (4m in diameter, 1m deep). The farmed origin cod were first year 

spawners in 2004 (i.e. approx. two years old). The wild origin cod first spawn in 

captivity during the spring season 2004 (age unknown but estimated to be 4+ years 

old). Both farmed and wild origin broodstock were kept under natural photoperiod. 

6.2.1. Milt collection and treatments 

6.2.1.1. Fish handling and stripping 

Cod milt was collected from mature cod males, held at MERL, during the 

course of the spring seasons 2004 to 2006. The fish were anaesthetised (benzocaine, 

100 ppm) and subsequently stripped for milt into 25 ml universal tubes. Any sample 

contaminated with either water or urine was discarded. Up to five different males 

were stripped on a given occasion (depending on the nature of the experiment). For 

the fertilisation trials, the milt from a single male was used but up to three males 

were stripped, at times, to obtain both the quantity and the quality of milt desired. 

6.2.1.2. Mounib’s extender 

Milt samples were diluted to a fixed concentration of gametes in a formulated 

extender developed by Mounib (1978) and later modified by Degraaf and Berlinsky 

(2004). The “modified” Mounib’s extender (10 g/L KHCO3, 2 g/L glutathione 

reduced, 42.7 g/L sucrose, pH 7.8) was chosen for this experiment since it had 
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previously been reported to suit both the dilution and the storage of milt from several 

marine fish species including seabass, turbot and cod (Suquet et al., 2000). 

The extender was prepared at the IoA and stored at 5oC, in aliquots of 50 ml, 

until being used. Its shelf life lasted for several months. 

6.2.1.3. Estimation of the percentage of spermatozoa activated by 

seawater 

Freshly collected milt samples were checked for activation using seawater. 

4 µl of milt and 5 µl of seawater were thoroughly mixed on a microscope slide and 

the percentage of activated spermatozoa was estimated (using a compound 

microscope, x400 in magnification) after approx. 10 seconds. The entire slide was 

checked rapidly at a lower magnification (i.e. x100 or x200) to find an adequate zone 

to study (i.e. a zone representative of the global level of spermatozoa activity with a 

concentration in cells low enough for counting). In the selected zone, at x400 

magnification, the number of motile spermatozoa, within a randomly chosen group 

of 100 cells, was counted (using a hand counter). This number was used as an 

estimate, for the milt sample, of the percentage of spermatozoa activated by 

seawater. 

6.2.1.4. Estimation /adjustment of the concentration in spermatozoa 

Concentrations of milt samples were estimated based on the average result of 

three spermatozoa counts. Semen samples were first diluted 500-fold in Mounib’s 

extender (i.e. 1 µl of milt in 499 µl of extender). About 15 µl of diluted milt were 

then loaded on a hemacytometer. Samples were allowed to settle for approx. three 

minutes before beginning to count (so that the cells had stopped drifting and were in 
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the same focal plan). Spermatozoa were hand-counted in five 0.04 mm2 squares 

across the principal chamber of the hemacytometer (using a compound microscope, 

x400 in magnification). For each milt sample, three spermatozoa counts were made 

(from three different hemacytometer preparations) and the average was used to 

calculate the concentration as follow: 

Spermatozoa concentration / ml = Average of the total cell count in five 

0.04 mm2 squares x 50 000 x dilution factor 

Based on the previous result, samples were adjusted to working 

concentrations using Mounib’s extender. 

6.2.1.5. UV treatments 

The collected milt was irradiated using a 254 nm ultraviolet lamp (UVP Inc., 

USA). The intensity of the radiation delivered to the sperm was adjusted to 

240 µW/cm2 with a UV radiometer (UVP Inc., USA). The intensity used in this 

project was voluntarily set in the range of the radiation intensities used by Ezaz 

(2002) to produce gynogens in Nile Tilapia. Two millilitres aliquots of diluted cod 

milt were exposed to the UV light (from 10s up to 25min) while being stirred in a 

5 cm Petri dish (see Figure 6.2). Constant stirring during irradiation ensured that the 

samples were homogeneously treated (i.e. all the spermatozoa received the same 

dose of UV). 

The treated milt was kept for the shortest time possible at 5oC until being 

used for fertilising eggs as the damaged spermatozoa suffered from a short lifespan 

(less than 3 hours in this trial). 
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Figure 6.2. Picture showing the experimental set up used to perform UV irradiation 
of cod milt samples. 
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6.2.2. Collection of eggs, fertilisation and temperature shock 

treatments 

6.2.2.1. Fish handling and stripping 

Ripe cod females, held at MERL, were stripped for eggs during the course of 

the spring seasons 2004 to 2006. They were anaesthetised (benzocaine, 100 ppm) 

and subsequently stripped for eggs in either 25 ml universal tubes or 500 ml glass 

beakers. Ripe females were identified in the tanks by their swollen abdomen. Two to 

four females were fished and anaesthetised each time eggs were needed. On 

occasions, cod females started release eggs while being anaesthetised. This was a 

sign the females were ripe and the quality of the eggs collected from these “running” 

females was most of the time very good. Generally speaking, it was more difficult to 

obtain good quality eggs towards the end of the spawning season (i.e. end of May). 

“Egg binding” was observed on several occasions in females of farmed origin. Eggs 

stripped from these fish were always overiped and of very poor quality (most of the 

time they were dead). A fertilisation trial was realised with the eggs from only one 

female (to avoid any “female effect” on egg survival). Therefore, the quantity of eggs 

collected constituted another critical parameter. On several occasions, an experiment 

was abandoned because either the quantity or the quality of the eggs was insufficient. 

A piece of fin, from the stripped females whose eggs were used for the fertilisation 

trials, was sampled in 95% ethanol for further DNA analysis. The eggs were kept in a 

cool box (temperature maintained at approx. 6oC) until being fertilised. 

6.2.2.2. Artificial fertilisation 

Eggs were fertilised in 25 ml universal tubes. Kjørsvik et al. (2004) 

recommended a ratio of 200 000 spermatozoa per ovule for achieving an optimum 

fertilisation rate of cod eggs. Based on this theoretical ratio and the assumption that 
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there are 500 000 eggs per litre (Moksness et al., 2004), a fertilisation protocol was 

decided. In a 25 ml vial containing 3 ml of seawater, 2 ml of eggs (approx. 

1000 eggs) were fertilised by 2 ml of diluted milt (adjusted concentration of 

9x108 spermatozoa/ml). The contact time between the gametes was standardised to 

three minutes while the temperature was maintained at 7oC throughout. The fertilised 

eggs were then directly transferred, without being rinsed or disinfected, to 500 ml 

glass beakers which played the role of incubators (see section 6.2.3). 

6.2.2.3. Temperature shock treatment 

Cold temperature shock treatments were used in this study, based on the 

promising results published by Kettunen et al. (2004) on cod triploidy induction. 

Cold shocks were applied to fertilised eggs in order to block one cell division (either 

the second meiotic division of the ovule or the first mitotic cell division of the 

fertilised egg). Three temperatures were tested: -1oC, -3oC and –6oC. Figure 6.3 

presents the profiles of the three cold shocks tested in this study. The shocks were 

carried out in 25 ml universal vials, each containing approx. 1000 fertilised eggs and 

15 ml of seawater. The tubes were stacked horizontally in a ventilated incubation 

chamber. A control panel located on the door of the chamber was used to adjust its 

temperature. The cooling rate of the eggs was monitored using a waterproof 

thermometer probe inserted in a test vial containing approx. 15 ml of seawater. 

Different shock durations (i.e. 30 min, 60 min, 90 min and 120 min) and starting 

times (i.e. 10 min, 15 min, 20 min, 30 min, 40 min, 50 min and 60 min post-

fertilisation) were tested. 
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Figure 6.3. Temperature profiles of three cold shocks designed to induce 
gynogenesis in cod eggs fertilised with UV irradiated milt. 

6.2.2.4. Diploid and haploid controls 

One or two control treatments were used for each fertilisation trial performed. 

A diploid control - consisting of eggs fertilised with non irradiated milt - was 

included in each trial which aimed to produce haploid cod eggs. Both a diploid and 

an haploid control (i.e. eggs fertilised with UV irradiated milt (240 µW/cm2 intensity, 

4 min duration)) were included in the trials which aimed to produce gynogenetic cod 

fry. 

6.2.3. Egg incubation and larval ongrowing 

6.2.3.1. Egg incubator design and management 

Eggs were incubated in 500 ml glass beakers. An air stone provided the water 

current necessary to maintain the eggs in motion in the water column (see Figure 

6.4). The beakers were kept in a shallow water bath with a water recirculation system 

(including a water pump and a water cooler). By doing so, the water temperature of 

the beakers was maintained between 7oC and 11oC (corresponding to the optimum 
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temperature range for incubating cod eggs). The temperature varied at most ± 1oC in 

24 hours. The daily maintenance of the incubation system consisted in renewing the 

water of the beakers and removing the dead eggs (using a 1.5ml Pasteur pipette). The 

eggs were exposed to artificial light (natural photoperiod) during the entire 

incubation time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4. Picture showing the experimental set up for incubating cod eggs in 
500ml beakers. 
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6.2.3.2. Calculation of fertilisation and hatching rates 

Both fertilisation and hatching rates per incubator / treatment were back 

calculated from both the number of surviving hatched fry and the egg mortality (i.e. 

sum of the daily egg mortality counts). 

6.2.3.3. Larval rearing protocol 

The eggs were transferred into two 1 m3 circular larval tanks before hatching 

(i.e. a control treatment and a gynogenetic treatment tank). The larvae were then 

reared following a commercial rearing protocol developed by MERL / MMF and 

described by Fletcher et al. (2007). 

The newly hatched larvae were fed live prey (rotifers and / or Artemia), three 

times a day, for the first 55 days. During this period, the tanks were kept under 

continuous light and the water temperature was progressively increased from 8 to 

12oC. From day 56 onwards, the juveniles were exclusively fed on commercially 

formulated diets (“Gemma micro” and “Europa” diet ranges from Skretting, UK). 

Because of low stocking densities (due to logistic limitations in the number of eggs 

treated and poor larvae survival(i.e. <1%)), the fish were kept for the entire duration 

of the experiment (i.e. seven months) in the same experimental tanks. 

6.2.4. DNA profiling 

DNA profiling was used for two different purposes: 1) to verify the ploidy 

status of eggs fertilised by UV treated milt and 2) to confirm the presence of diploid 

gynogenetic fish among the fry ongrown. 
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6.2.4.1. Identification of haploids 

Thirty eggs - issued from a trial experiment looking at the survival of cod eggs 

fertilised with UV irradiated milt- were sampled, at 65 degree days (oC days) and 

stored in 95% ethanol for subsequent DNA analysis. Fin clips from both parents were 

also similarly sampled while stripping for gametes. 

DNA was extracted from fin samples and each individual egg using the 

Dynabeads® genomic universal DNA kit (see Chapter 2).  

Four loci (Gmo8, Gmo19, Gmo35 and Gmo37) were used to check the ploidy 

status of each egg. The loci were coamplified as a tetraplex assay for fin clip samples 

(see Chapter 2) and as separate singleplex reactions for eggs (due to the law amount 

of DNA extracted from eggs). Singleplex amplifications were carried out in 10 µl 

reactions. Each contained 2-5 ng of DNA template, 2x PCR-buffer (10 mM Tris-HCl, 

pH 8.3, 50 mM KCl), 300 µM of each DNTP, 2 mM MgCl2,1 µM of each forward 

and reverse primer and 0.5 U of Taq polymerase (ABgene, UK). The PCR 

amplification program was: initial denaturation at 95oC for 5 minutes, 40 cycles of 

95oC for 35 seconds, 57oC for 35 seconds, 72oC for 1 minute, and a final extension 

step at 72oC for 10 minutes. 

Amplified DNA fragments were analysed on the CEQ 8800 Genetic Analysis 

System (Beckman Coulter). Samples were run three times to verify repeatability. 

6.2.4.2. Detection of gynogenetics 

Eggs and tissue samples were collected from an ongrowing trial of 

gynogenetic fish. Samples included: 25 eggs (60oC days) from the haploid control 

treatment (i.e. eggs fertilised with UV irradiated milt (240 µW/cm2 intensity, 4 min 



Chapter 6. Preliminary testing of gynogenesis induction in Atlantic cod 
 

Marine Herlin . Ph.D. Thesis 2007 
171

duration)) 10 fin clips from fish belonging to the diploid control treatment (i.e. eggs 

fertilised with non treated milt) and 7 tissue samples (fin or head) from fish belonging 

to the diploid gynogenetic treatment (i.e. eggs fertilised with UV irradiated milt + 

cold shock). The number of collected fin clips samples for both the diploid control 

and gynogenetic treatments corresponded to all the surviving fish in these two groups 

at 120 days. 

DNA was extracted from tissue samples and individual eggs using the 

Dynabeads® genomic universal DNA kit (see Chapter 2).  

Seven loci (GmoC18, GmoC20, GmoC42, GmoC52, Gmo35, Gmo37 and 

Tch11) were used to genotype the samples. The loci were coamplified as two separate 

PCR reactions: a tetraplex (GmoC18, GmoC20, GmoC42 and GmoC52) assay and a 

triplex (Gmo35, Gmo37 and Tch11) assay (see Chapter 2). 1x QIAGEN Multiplex 

PCR master mix was used in the reaction mix, for both PCR assays, as it made it 

possible to coamplify loci from cod egg DNA. 

Each 10 µl PCR reaction contained 5-30 ng of DNA template, 1x QIAGEN 

Multiplex PCR Master MIX (Qiagen, UK) and 0.1 µM each of GmoC18, GmoC20, 

GmoC42 and GmoC52 primers (or Gmo35, Gmo37 and Tch11 primers). Both PCR 

amplification conditions were: initial denaturation at 95oC for 15 minutes followed by 

35 cycles of 94oC for 30 seconds, 56oC for 90 seconds, 72oC for 1 minute, and a final 

extension step at 72oC for 30 minutes. 

Amplified DNA fragments were analysed on the ABI Avant Genetic analyser 

(Applied Biosystems). Samples were run three times to verify repeatability. 
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6.2.5. Sexing cod fry 

6.2.5.1. Histology preparation 

Six dead fry recovered from the “gynogenetic” larval tank were sampled in 

10% neutral buffered formalin (10% formaldehyde in Phosphate buffered saline). 

Samples were sent to the IoA laboratory of histology for processing. Histological 

sections were stained with hematoxylin / eosin. 

6.2.5.2. Gonad squash 

The surviving fish from the gynogenesis ongrowing trial at 264 days post-

hatch (i.e. 10 fish from the control treatment and one fish from the diploid 

gynogenesis treatment) were dissected for gonads. Fresh dissected tissues were 

“squashed” between a microscope slide and a cover glass. Observations were made, 

using a compound microscope, at x400 magnification. 

6.2.6. Summary of the experiments carried out in this study 

To facilitate the reading of this Chapter, a summary of all the experiments 

carried out in this study is given in Table 6.1. 
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Table 6.1. Summary of the experiments carried out for the gynogenesis induction study. 

Experiment N replicate 
experiments 

N broodstock 
stripped Treatments N offspring sampled for DNA profiling Other parameters studied 

Evaluation of sperm concentration 16 16 males NA NA sperm concentration 
Activation of spermatozoa motility 
in seawater / extender 

5 5 males fresh, stored 24h non diluted, stored 
24h diluted in extender 

NA motility, dilution in 
extender, storage at 5oC 

Determination of an optimum milt 
concentration to perform UV 
treatments 

3 3 males four standard concentrations for each 
milt sample and exposition time varies 
from 10s to 25min 

NA sperm motility  

Egg fertilisation using UV treated 
milt, short irradiations 

4 4 males 
4 females 

diploid control, 10s, 30s, 1min, 
1.5min, 2min, 2.5min and 3min, 4min 
irradiation 

NA survival at blastula, eye 
pigmentation and hatching 

Egg fertilisation using UV treated 
milt, long irradiations 

3 3 males 
3 females 

diploid control, 10s, 30s, 1min, 
1.5min, 2min, 2.5min, 3min, 3.5min, 
4min, 5min, 6min, 7min, 9min, 11min, 
13min and 15min irradiation 

30 eggs from the third replicate 
experiment (i.e. 10 eggs from the 
diploid control, ten eggs from the 
1.5min treatment and 10 eggs from the 
4min treatment) 

daily survival during 
incubation and at hatching. 
 
morphology study of 
haploid eggs 

Effects of the cold shock timing on 
larvae survival 

2 
(shock at -3oC for 
60 minutes) 

2 males 
2 females 

diploid control, haploid control 10min, 
15min, 20min, 30min, 40min, 50min 
and 60min PF 

NA daily survival during 
incubation and at hatching 

Effects of the cold shock duration 
on larvae survival 

1 
(shock at -3oC, 
applied 10min PF) 

1 male 
1 female 

diploid control, haploid control, 
30min, 60min, 90min and 120min 
duration 

NA daily survival during 
incubation and at hatching 

Effects of the shock intensity on 
larvae survival 

1 
(shock of 60min) 

1 male 
1 female 

diploid control, haploid control, 10min 
PF/-6oC, 20min PF/-6oC, 30min PF/-
6oC, 10min PF/-1oC, 20min PF/-1oC, 
30min PF/-1oC 

NA daily survival during 
incubation and at hatching 

Induction of gynogenesis on a 
“large” scale 

3  
but 2 unsuccessful 

attempts 

3 males 
3 females 

diploid control (approx. 50 000 eggs), 
haploid control (approx. 1 000 eggs), 
gynogenesis treatment (approx.  
140 000 eggs) 

25 eggs from the haploid control, 10 fin 
clips from the diploid control and 7 fin 
clips from the gynogenesis treatment 

sexing of the control and 
gynogenetic fry (gonad 
squash and histology) 

PF: post-fertilisation 



Chapter 6. Preliminary testing of gynogenesis induction in Atlantic cod 
 

Marine Herlin . Ph.D. Thesis 2007 
174

6.3. Results 

6.3.1. Cod milt properties 

Cod milt was readily available throughout the spawning seasons during which 

the experiments described in this chapter took place. Large quantities of milt - 5 to 

20 ml - were stripped from ripe males. Direct observation of spermatozoa required the 

use of a compound microscope (x400 magnification). The length of sperm cells was 

in the range of 10 to 20 µm (see Figure 6.5). 

 

 

Figure 6.5. Atlantic cod spermatozoa as seen through a compound microscope 
(magnified x400). 

6.3.1.1. Sperm concentration 

The concentration of semen samples varied from 4.5 to 19.2x109 spz/ml (data 

not shown). Variation in sperm concentration was observed among 1) individual 

males belonging to the same breeding population and 2) across the spawning season 

(see Figure 6.6). The concentration in semen increased as the spawning season 

progressed (from 8.4x109 spz/ml on the 16th of March 2004 to 19.2x109 spz/ml on the 

6th of April 2004). The production of gametes from a given broodstock tank was 

synchronised between both sexes, the optimum of egg production coinciding with the 

peak in semen concentration (Figure 6.6). 

16µm
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Notes: (5) indicates the number of milt samples (from different males). The number of 
males stripped on a given date varies from 1 to 5 according to the trials realised. 
Where the data from more than one males is available, the standard error is indicated. 
 

Figure 6.6. Variation in sperm concentration among milt samples collected during the 
2004 spring spawning season. 

6.3.1.2. Activation of spermatozoa motility in seawater 

The activation rate of fresh milt samples was extremely variable, ranging from 

30% to 80%. On average, cod spermatozoa remained motile in sea water for a little 

less than two minutes (Table 6.2). However, motility was only efficient during the 

first 70 seconds (i.e. with spermatozoa moving actively in one direction). The 

activation rate of milt samples significantly decreased as storage time increased. 

Within 24 hours of storage at 5oC, the rate of activation dropped, on average, by 60% 

while the duration of motility was shortened by 40 seconds (see Table 6.2). The 

maximum shelf life of undiluted milt samples, stored at 5oC, was approximately 72 

hours. 
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6.3.1.3. Milt extender 

Mounib’s extender was successful in diluting cod milt samples without 

activating gametes. It also greatly improved the storage conditions of cod semen. By 

diluting one part of fresh milt in 5 parts of extender, the overall rate of sperm 

activation only decreased by 16% after 24hrs of storage, compared to 60% for 

untreated milt (Table 6.2). 

Table 6.2. Motility of cod semen after activation with sea water and effects of storage 
conditions. 

 

 
Note: the average values are based on data from five replicate milt samples (from five 
different cod males). 
 

6.3.2. Ultra-violet treatments of cod milt 

6.3.2.1. Determination of an optimum working concentration to perform 

UV treatments 

A motility index was designed to quantify the effects of UV irradiation on milt 

samples (see Table 6.3). A score of 4 was given to samples which showed no effects 

related to UV irradiation. As spermatozoa were exposed to greater UV doses, the 

score attributed to milt samples decreased until reaching 0, when virtually no motile 

spermatozoa were observed (see Table 6.3). 

Sample Proportion of activated spz 10s 
after addition of seawater 

(%age ± SE) 

Extinction of 
efficient motility 
(seconds ± SE) 

Total extinction 
of motility 

(seconds ± SE) 
Fresh milt 58 ± 22 73 ± 18 116± 10 
Stored milt at 5oC 
24hrs / no dilution 24 ± 16 53 ± 22   77 ± 47 

Stored milt at 5oC 
24hrs / diluted in 
Mounib’s extender 
(1/5 dilution) 

49 ± 27 53 ± 11   79 ± 32 
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Table 6.3. Details of the motility index used to quantify the impact of UV irradiation 
on cod milt samples. 

 
 
 
 
 
 
 
 
 

Figure 6.7 shows the effects of UV irradiation on cod milt. Three samples, 

originating from different males, were diluted down to four standard concentrations 

(i.e. 1x109 spz/ml, 9x108 spz/ml, 1x108 spz/ml, 1x107 spz/ml) and exposed to 

increasing doses of UV irradiations. 

 

 

Figure 6.7. Effects of UV radiations (240 µW/cm2) on cod milt samples. The results 
plotted are average values for three milt samples from different males; milt samples 
were diluted in Mounib’s extender. 

Cod spermatozoa were extremely sensitive to the damaging effects of UV 

irradiation. The three milt samples tested behaved the same way. Sperm motility 
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0 no cell movement  
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rapidly declined during the first three minutes of treatment for all four concentrations 

tested (Figure 6.7). However, the damage caused by UV radiations was more 

accentuated as the dilution factor increased. A lethal dose of UV was delivered in 

only 10s for milt samples diluted down to 1x107 spz/ml while 25 minutes were 

necessary to deliver a similar dose to samples diluted down to 9x108 spz/ml (see 

Figure 6.7). Samples diluted to 1x109 spz/ml were non-homogeneously irradiated by 

UV (i.e. not all the cells of the preparation were scoring equally using the motility 

index), suggesting they were too concentrated to receive an efficient treatment. On the 

other hand, both the dilutions 1x108 and 1x107 were too penetrant to UV radiations, 

with extensive damage to the motility functions of gametes occurring within the first 

60 seconds of treatment. 

Of the four concentrations tested, 9x108 spz/ml was selected as the most 

suitable to conduct UV treatments which aimed at destroying the genetic material of 

cod gametes without altering their motile functions and fertilisation power. 

6.3.2.2. Egg fertilisation using UV treated milt 

Overall, egg batches fertilised with irradiated sperm had lower hatching rates 

than diploid control batches fertilised with non-irradiated sperm. Figure 6.8 illustrates 

the large discrepancies in survival rates which arose, at hatching, between treated and 

diploid control batches. In this particular trial, the survival rate for the control 

treatment was 52% and 0% for eggs fertilised with milt irradiated for at least 1.5 min. 

Incubation of eggs was punctuated by two episodes of mortality: from 0 to 30oC days 

and from 63 to 81oC days. These mortality episodes were much more pronounced 

when eggs were fertilised with irradiated sperm (Figure 6.8). 
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Figure 6.8. Variation in daily egg survival, during incubation, for a batch of cod eggs fertilised with UV irradiated milt (240 µW/cm2). Milt 
concentration was adjusted to 9x108 spz/ml. 
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Table 6.4 shows average survival rates of eggs - based on the results from four 

replicate experiments - at three different stages of embryogenesis. In this trial, three 

shorter UV irradiation durations than in the previous experiment were tested: 1 min, 2 

min and 3 min. Like in the previous experiment (see Figure 6.8), differences in 

survival were apparent at early stages of embryogenesis (although in this trial the 

survival rates were, on average, a lot lower in both the diploid control and the UV 

treatments, thus most probably reflecting an egg quality issue). At 20oC days (blastula 

stage) an average rate of 19% survival was observed for UV treated batches vs. 30% 

for control batches (see Table 6.4). These differences in survival increased further, 

until they became highly significant, at hatching. On average, 22% of eggs hatched 

from control treatments vs. 0.9% from UV treated batches. As the exposure time of 

milt samples to UV increased, survival rates at hatching decreased (from 1.5% for 1 

min treatment to 0.6% for 3 min treatment). For two replicate experiments out of four, 

the survival rate at hatching was zero for egg batches fertilised with milt samples 

exposed to 3 minutes of UV. By applying longer UV treatments (i.e. at least 4 

minutes), hatching rates eventually became zero. 

Table 6.4. Average survival of cod eggs fertilised with UV irradiated milt 
(240 µW/cm2) - based on four replicate experiments - at three stages of 
embryogenesis. Milt concentration were adjusted to 9x108 spz/ml. 

 
Survival 

(%age ± SE) Treatment 
Blastula 

(20oC days) 
Eye pigmentation 

(63oC days) 
Hatching 

(90oC days) 
Diploid control 30.7 ± 18.9a 22.8 ± 17.2a 21.8 ± 16.6a 

1 min UV 18.0 ± 22.0b 1.9 ± 2.7b 1.5 ± 2.3b 

2 min UV 20.0 ± 13.3b 3.8 ± 3.5b 0.7 ± 0.8b 

3 min UV 19.5 ± 14.7b 3.9 ± 3.9b 0.6 ± 1.1b 

 
Note: common superscripts in the same column identifies means which are not 
significantly different (P<0.05), based on the results from one-way ANOVA statistical 
analyses. 
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Figure 6.9 presents the survival data of three egg batches, at eye pigmentation 

stage (approx. 60oC days), when fertilised with milt exposed to increasing UV doses. 

The pattern of the survival curves (especially for the replicates 2 and 3) is 

characteristic of the “pseudo Hertwig” effect (Porter, 1998). When subjecting cod milt 

to low doses of UV (time exposure below 3 min), survival of embryos at 60oC days 

was extremely low. With exposition time to UV further increasing to 4 - 5 min, 

survival of embryos increased and reached a peak (see Figure 6.9). Survival then 

decreased with UV doses exceeding six minutes.  

Based on the results presented in Figure 6.9, UV doses of 4 to 5 mins 

maximised the percentage of viable eggs at 60oC days. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Relative survival = (survival of the treatment x 100)/survival of diploid control. 

 
Figure 6.9. Effects of increased UV exposure times on the sperm motility and the 
survival of cod eggs at eye pigmentation stage (approx. 60oC days). Milt 
concentrations were adjusted to 9x108 spz/ml. 
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6.3.2.3. Haploidy in cod eggs 

Three egg batches fertilised with milt irradiated for four minutes were sampled 

at 61oC days. The time of collection coincided with the peak of mortality, previously 

described in section 6.3.2.2, which occurred at the eye pigmentation stage. Treated 

embryos were observed under a dissecting microscope and compared with eggs 

sampled from the control treatment (Figure 6.10). Eggs fertilised with treated milt 

possessed several distinctive morphological features which normally characterise the 

haploid syndrome in fish: an enlarged yolk sac, a short deformed body and a small 

deformed head (see Figure 6.10). Most of these suspected haploid eggs died before 

hatching. 
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Figure 6.10. Comparative morphology of diploid vs. haploid cod embryos at 61oC days. Eggs were observed under a dissecting microscope (x20 
in magnification). 
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From the 30 eggs originally sampled to study ploidy, 24 were successfully 

genotyped for at least two loci. The analysis of chromatograms revealed that the eggs 

genotyped from the 4 min irradiation treatment were all haploids (Table 6.5), the only 

allele expressed being of maternal origin (detailed data not shown). However, quite 

surprisingly - given the previous results from the survival and morphology studies - 

all the eggs genotyped from the 1.5 min treatment were diploids. 

Table 6.5. Ploidy status of 65oC days cod eggs -fertilised with UV irradiated milt 
(240 µW/cm2)- based on the genotyping data from four DNA microsatellites. 

 
 Diploid control 1.5 min UV 4.0 min UV 
Number of eggs genotyped 8 10 6 
Number of haploids 0   0 6 

 

6.3.3. Egg shocks 

6.3.3.1. Effects of the cold shock timing on larvae survival 

The highest survival rate at hatching was observed among egg batches which 

were exposed to a cold shock 10 minutes after being fertilised (Table 6.6). The timing 

of cold shocks influenced greatly the survival of cod larvae at hatching. A shock 

initiated ten minutes after an egg batch was fertilised resulted in an average hatching 

survival rate of 3.1% (equivalent to 44% of the survival rate observed in the diploid 

control treatment). By beginning the shock only 5 minutes later (i.e. 15 minutes post-

fertilisation), the average survival rate fell below 0.7% (i.e. 10% of the survival rate 

observed in the diploid control treatment). 
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Table 6.6. Effects of cold shock starting times on the survival of cod eggs, at three 
stages of embryogenesis. 

 
Survival (%) 

Treatment 
 

Blastula 
(20oC days) 

Eye pigmentation 
(63oC days) 

Hatching 
(90oC days) 

Relative survival of the 
treatments to the survival 

of the diploid control 
at hatching (%) 

Diploid control 30.3 22.2 7.1 100.0 
Haploid control 33.7 13.5 0.0     0.0 
10 min PF 37.2 10.6 3.1   43.7 
15 min PF 28.4   7.0 0.5     7.0 
20 min PF 26.1   9.7 0.7     9.8 
30 min PF 20.9   4.6 0.4     5.6 
40 min PF 26.5   2.5 0.1     1.4 
50 min PF 20.4   0.6 0.1     2.4 
60 min PF 16.1   3.2 0.4     5.6 

PF: post-fertilisation 
 
Notes: the results presented are based on the data provided by two replicate 
experiments; treated eggs were exposed to a cold shock at -3oC for 60 minutes. 
Relative survival = (survival of the treatment x 100)/survival of diploid control. 
 

6.3.3.2. Effect of the cold shock duration on larvae survival 

A shock duration of 30 or 60 minutes led to the highest survival rate at 

hatching (i.e. equivalent to 27% of the survival rate observed in the diploid control 

treatment). Virtually no difference existed, in terms of survival, between conducting a 

shock of 30 min or a shock of one hour (based on the data provided by the results of a 

single experiment). The tolerance of cod eggs to longer exposition times was however 

extremely limited: applying a cold shock of two hours was lethal to the entire batch 

(Table 6.7). 



Chapter 6. Preliminary testing of gynogenesis induction in Atlantic cod 
 

Marine Herlin . Ph.D. Thesis 2007 
186

Table 6.7. Effects of the duration of cold shocks (at –3oC, initiated 10min post-
fertilisation) on the survival of cod eggs, at three stages of embryogenesis. 

 
Survival (%) 

Treatment Blastula 
(20oC days) 

Eye pigmentation 
(63oC days) 

Hatching 
(90oC days) 

Relative survival of the 
treatments to the survival 

of the diploid control 
at hatching (%) 

Diploid control 15.2 9.0 8.3 100.0 
Haploid control 12.2 8.0 0.0     0.0 
-3oC / 30 min 14.2 9.1 2.2   26.5 
-3oC / 60 min 19.1 6.7 2.3   27.7 
-3oC / 90 min 10.7 6.3 0.7     8.4 
-3oC / 120 min   9.5 0.0 0.0     0.0 
 
Note: the results presented are based on the data from a single experiment. 
 

6.3.3.3. Effects of the cold shock intensity on larvae survival 

Important discrepancies in hatching survival rates arose as both the intensity 

and the starting time of cold shocks varied. The highest rate of survival, at hatching, 

was achieved after exposing cod eggs to a shock at -6oC, for one hour, 10 minutes 

post-fertilisation (see Table 6.8). The coldest temperature tested in this experiment    

(-6oC) was by far the most efficient (7.3% hatching survival for -6oC vs. 1.2% for -

1oC when treatments were initiated 10 min post-fertilisation). 
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Table 6.8. Effects of the intensity and the starting time of cold shocks on the survival 
of cod eggs, at three stages of embryogenesis. 

 
Survival (%) 

Treatment Blastula 
(20oC days) 

Eye pigmentation 
(63oC days) 

Hatching 
(90oC days) 

Relative survival of the 
treatments to the survival 

of the diploid control 
at hatching (%) 

Diploid control 27.9 22.8 8.5 100.0 
Haploid control 24.1 10.1 0.0     0.0 
10 min PF / -6oC 14.5   9.2 7.3   85.9 
20 min PF / -6oC   8.3   3.0 2.1   24.7 
30 min PF / -6oC 21.8   6.4 0.9   10.6 
10 min PF / -1oC 18.6   8.3 1.2   14.1 
20 min PF / -1oC 22.0 12.2 1.1   12.9 
30 min PF / -1oC 22.2   9.0 0.0     0.0 
PF: post-fertilisation 
 
Notes: the results presented are based on the data from a single experiment; cold 
shocks lasted for 60 minutes. Only two temperatures could be compared for technical 
reasons. 

6.3.4. Induction of gynogenesis on a large scale 

Three attempts were made to induce gynogenesis on a large batch of eggs. The 

firsts two attempts were unsuccessful due to the extremely low survival of eggs at 

hatching. Therefore, the data presented in this section is based on the results from a 

single experiment. 

6.3.4.1. Induction of gynogenesis 

Gynogenesis was artificially induced in a batch of approx. 140 000 cod eggs, 

following the conditions previously established. The experiment also included both a 

diploid (approx. 50 000 eggs) and a haploid (approx. 1 000 eggs) control treatment. 

6.3.4.2. Survival 

Survival at hatching was poor in both diploid control and diploid gynogenetic 

treatments. Less than a thousand hatched larvae were stocked in each of the two 

experimental tanks (i.e. diploid gynogenetic and diploid control treatments). The 
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course of the experiment was further affected by high mortalities of fry during early 

stages of rearing (i.e. live prey / dry feed weaning transitions). The trial was 

terminated after 264 days with only ten fish in the diploid control and one fish in the 

diploid gynogenetic treatment having survived. 

6.3.4.3. DNA analysis 

Genetic profiles for the seven loci screened were obtained for all the 17 fry 

analysed (i.e. 10 “control” and 7 “gynogenetic” fish). 23 out of the 25 eggs sampled 

from the haploid control were also successfully genotyped for at least three loci. 

The genotyping data gathered from these samples informed on the partial 

success of the experiment. Based on the typing information from the seven loci 

screened, only three out of the seven fish sampled from the gynogenesis treatment 

were true diploid gynogenetics (Table 6.9). The four remaining fish possessed at least 

an allele of paternal origin. The partial success of the experiment was further 

confirmed by the results of the genotyping analysis carried out on eggs collected from 

the haploid control. Only 10 eggs out of the 23 successfully genotyped for at least 3 

markers (i.e. 43%) were haploids (the only allele expressed being of maternal origin). 
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Table 6.9. DNA profiles of seven cod fry sampled from the gynogenesis treatment. 

 
DNA profiles (allele sizes in bp)  

GmoC18 GmoC20 GmoC42 GmoC52 Gmo35 Gmo37 Tch11 
Female 149/161 119/119 164/173 292/292 116/122 268/292 162/194 
Male 158/161 113/119 167/173 295/298 119/128 264/292 166/170 
G1 149/158 113/119 164/173 292/298 116/119 268/292 162/170 
G2 149/158 119/119 167/173 292/292 116/122 268/268 162/194 
G3 149/161 119/119 173/173 292/295 122/128 264/292 170/194 
G4 158/161 113/119 167/173 292/298 116/119 292/292 166/194 
G5 161/161 119/119 164/173 292/292 116/122 268/292 162/194 
G6 161/161 119/119 173/173 292/292 122/122 268/292 162/194 
G7 149/149 119/119 164/173 292/292 116/122 292/292 162/194 

G: gynogenetic 
 
Note: format 158, in the offspring profiles, for alleles of paternal origin. 
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6.3.4.4. Observed sex ratio 

The sex of fish sampled at 264 days post hatch was easily assessed by gonad 

squash. As expected, the sex ratio of the diploid control was balanced (i.e. 6 females 

and 4 males out of 10 fish sampled). The sex of the surviving gynogenetic fish 

(confirmed via DNA profiling at seven loci) was female. The histology study of the 

recovered mortality from the gynogenesis treatment (i.e. six fry aged between 120 

and 203 days) remained however inconclusive (see Figure 6.11). The gonads 

observed were all undifferentiated. 

 

 

Figure 6.11. Undifferentiated Atlantic cod gonad at 203 days post hatch (compound 
microscope x400). 

 



Chapter 6. Preliminary testing of gynogenesis induction in Atlantic cod 
 

Marine Herlin . Ph.D. Thesis 2007 
191

6.4. Discussion 

This study suffered from several major drawbacks and rescheduling due to the 

lack and / or the poor quality of cod eggs. Although gametes could be collected from 

up to six different breeding tanks at times (each containing approx. 10 females), 

experiments had to be cancelled, on several occasions, due to the lack of available 

eggs (especially towards the end of the spawning season). The important variability in 

egg survival proved equally problematic. Hatching rates of diploid control batches 

varied from 0 to 52%, which means that part of the collected data had no real 

scientific value and, therefore, was not included in subsequent analyses. The 

incubating system is unlikely to be the sole factor responsible for the variability in 

hatching rates observed. Inconsistencies in both egg sizes and percentages of floating 

eggs suggested that the egg quality greatly fluctuated between collected batches. This 

might be related to the timing of stripping and / or the time of the season. As a result, 

not all experiments were carried out in triplicates. 

Through a succession of experiments, a protocol to artificially induce 

gynogenesis in Atlantic cod was established. This protocol consisted of three main 

steps: 1) diluting cod milt to a working concentration of 9x108 spz/ml in Mounib’s 

extender; 2) delivering to the diluted milt a UV dose equivalent to 240 µW/cm2 for 

four minutes; 3) conducting a temperature shock sustained for one hour, at -6oC, ten 

minutes after fertilisation. 

Cod sperm was extremely sensitive to UV irradiation. When increasing the 

exposure time to UV and / or the diluting factor of the semen, the percentage of 

activated spermatozoa decreased dramatically. Similar results were previously 
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reported in several other marine species including turbot and Atlantic halibut (Piferrer 

et al., 2004; Tvedt et al., 2006).  

A “pseudo Hertwig” effect was observed when cod eggs were fertilised with 

milt which had been irradiated with low doses of UV (see Figure 6.9). Low UV doses 

- in this case below three minutes - did not totally destroy the sperm DNA. The 

partially potent paternal DNA was then passed on to the eggs (during fertilisation) and 

the created aneuploid embryos died prior to the eye pigmentation stage. Higher UV 

doses, comprised between 4 and 5 minutes, resulted in the complete destruction of the 

sperm DNA and allowed for the development of haploid embryos, viable at 60oC 

days. With UV doses exceeding 6 minutes, further damage was inflicted to the sperm 

(i.e. progressive destruction of proteins). These damages progressively decreased the 

capacity of the milt to fertilise eggs, which in turn explained the decrease in egg 

survival observed with prolonged UV exposure (> to 6 min). 

Cold shocks (ranging from -2 to 0oC) were successfully used on several cold 

water marine species to artificially induce both gynogenesis and triploidy (Piferrer et 

al., 2004; Rani, 2005). For Atlantic cod, promising results were first obtained by 

Kettunen et al. (2004) when using cold shocks on fertilised eggs to induce triploidy: 

up to 14% triploids were produced by applying a cold shock of two hours at -1.7 ± 

0.1oC. The choice to use cold shocks for inducing gynognesis in this study was 

primarily motivated by the results of this early publication. However, later work by 

Peruzzi et al. (2007) failed to achieve the same level of success, in using cold shocks 

to induce triploidy in cod, and proved that 20oC heat shocks were far more efficient. 

In the present study, cold shocks of greater intensity than previously reported in the 

literature on cod were tested. The best result, in terms of egg survival at hatching, was 
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achieved with the coldest temperature applied (i.e. -6oC). However, the tolerance of 

cod eggs to such extreme temperatures was limited: survival rates, at - 3oC, decreased 

with exposure times exceeding 60 minutes. The protocol used to shock eggs at these 

temperatures was somewhat unusual: the eggs were not directly immersed in seawater 

at the shock temperature but rather progressively cooled (see section 6.2.2.3). This 

method was adopted after a trial which consisted in immersing fertilised eggs directly 

in seawater at -3oC proved unsuccessful (i.e. lethal to all eggs including eggs from the 

control treatment; data not shown). 

Multilocus DNA microsatellite profiles were successfully used to assess the 

ploidy status of both cod eggs and fry. DNA profiling was chosen over other available 

techniques (including chromosome preparation and flow cytometry) because of the 

possibility it offered to detect alleles of paternal origin in the genomes of offspring 

(Tvedt et al., 2006). Although quantities of DNA extracted from 60oC days cod eggs 

were extremely low (i.e. on average 0.05 µg ± 0.03 µg ), PCR amplifications of loci 

were successfully conducted. The best results, in terms of both quality and quantity of 

PCR products, were obtained when using the QIAGEN Multiplex PCR master mix in 

the PCR reaction mix (see section 6.2.4.2). Being able to obtain genotyping 

information from cod eggs, at such an early stage of development, made it possible to 

confirm the haploid status of “suspected haploid” embryos. DNA profiling was also 

used to detect the presence of diploid gynogenetics among fish sampled from the 

“large scale” gynogenesis experiment. On this occasion, as many as seven loci were 

screened so the chance of having at least one “decisive” locus (with no shared alleles 

between the parents) was high. In this particular case study, the two parents shared no 

common alleles at three loci (GmoC52, Gmo35 and Tch11) which made the detection 

of diploid gynogenetics highly reliable. 
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Inducing gynogenesis at a relatively large scale proved extremely difficult. 

Three attempts were necessary before enough hatched larvae were produced to stock 

two 1 m3 larval experimental tanks (i.e. approx. 1000 hatched larvae per tank / 

equivalent to a total survival rate of just 1.4%). Such a result was not totally 

unexpected as poor hatching survival rates of gynogenetics were reported in several 

other freshwater and marine fish species (Tvedt et al., 2006; Komen and Thorgaard, 

2007). 

In addition, both the control and the gynogenesis treatments suffered from 

high mortalities during the first 100 days of rearing. Among the factors likely to have 

affected the survival of fry, egg quality and rearing conditions largely prevailed: 1) 

the eggs used in this large scale trial were collected at the very end of the spawning 

season for technical reasons (i.e. when egg quality is known to be at its lowest); 2) 

larval feeding proved extremely challenging, two weeks into the rearing trial, due to a 

sudden shortage in live rotifers. 

The DNA analyses undertaken on the surviving fish from the experimental 

groups revealed that the gynogenesis induction was only partially successful. The UV 

treatment was clearly to blame as only 43% of the eggs from the “UV / no cold 

shock” group genotyped were found to be gynogenetic haploids. The other 57% were 

mosaics, with at least one allele of paternal origin detected, implying that the intensity 

of the UV treatment was not sufficient to entirely incapacitate the DNA material 

contained in the male gametes. This result was not totally unexpected given the 

difficulties encountered, in this experiment, when calibrating the intensity of 

radiations, delivered by the UV lamp (the radiometer used in the previous 

experiments had to be replaced, following several inaccurate readings). 
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Lastly, since only one diploid gynogenetic was sexed, no conclusion on the 

sex determination mechanism(s) operating in cod could be drawn. 
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6.5. Conclusion 

In this study, a protocol to induce gynogenesis in Atlantic cod was tested using 

extreme cold shocks (-6oC). Although promising results were obtained from small 

scale experimental trials (approx. 1000 eggs treated), scaling up the experiment 

proved extremely difficult.  

In early 2007, further work on the induction of gynogenesis in cod was 

undertaken at the University of Bodø (Norway) - using the results from this study - by 

Professor Igor Babiak and colleagues. A second protocol, using a combination of UV 

radiations (on sperm) and pressure shocks (on fertilised eggs), was developed (Igor 

Babiak, personal communication).This work will be resumed next year in an attempt 

to study the sex ratio of at least one cohort of cod gynogenetics and possibly uncover 

the mechanisms behind sex determination in Atlantic cod. 

To conclude, if I could rewind time, I would 1) try to better plan the 

experiments so they would all coincide with the optimum peak of the spawning 

season, 2) work on both warm and cold temperature egg shocks and 3) dedicate more 

time to this study (I think I truly underestimated the amount of work that was required 

to carry out all the experiments I planned at the start of this project). 
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7.1. Summary of the findings 

In this project, a substantial effort was put into the development of a robust 

parentage assignment system which could support the analysis of large and complex 

genotyping datasets. A review of recently published work exposed a lack of 

consensus / coherence in the analytical methodologies adopted to analyse parentage in 

case of complex aquaculture mating systems (Borrell et al., 2004; Fessehaye et al., 

2006; Porta et al., 2006). In light of this observation, a detailed comparison of two 

assignment principles (i.e. strict exclusion and probabilities) and four parentage 

software programmes was conducted, using a dataset representing the output of a 

mass spawning cod tank. This study highlighted the discrepancies which could arise 

between assignments based on strict exclusion and assignments based on 

probabilities, when typing errors were present in the dataset. Based on these results, a 

“three steps” method to analyse large genotyping datasets was developed. This 

method consisted in: 1/ performing an exclusion-based analysis - using the software 

programme FAP - in order to assess the quality of the genotyping dataset, 2/ 

reviewing and correcting the typing errors according to the results of the previous 

analysis and 3/ running a second and definite exclusion-based analysis. This study 

was also an occasion to challenge and eventually disagree with the recommendation 

recently made by several authors to screen less loci for parentage analyses in order to 

limit costs (e.g. Fessehaye et al., 2006; Porta et al., 2006). 

A total of five samples, issued from five single days of mass-spawning of two 

captive broodstock populations, were analysed for parentage (following the method 

previously described). Information on the ranges of individual contributions, the 

spawning behaviour and dynamics of captive cod populations were gathered (see 

Chapter 4). The main findings are summarised in the four following points: 1/ on a 
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single day, at least 25 to 30% of the total breeding population contributed to fertilised 

eggs that resulted in viable offspring, 2/ individual contributions were highly skewed, 

mostly because of male dominance, 3/ male dominance was not based on size or 

weight and 4/ effective breeding populations were consistently low (approx. 5% of the 

breeding population). These results mostly agree with the information already 

published from smaller scale studies on cod (i.e. Hutchings et al., 1999; Nordeide and 

Kjellsby, 1999; Nordeide and Folstad, 2000; Bekkevold et al., 2002) and also concur 

with suggestions made by commercial breeders. 

The analysis of parental contributions to a batch of commercially produced 

cod fingerlings was the occasion to assess the impacts of hatchery practices (i.e. 

repetitive size gradings and mixing of batches) on the genetic diversity. The main 

findings of this analysis were that: 1/ the effective breeding population size of the 

juvenile batch was two to three times greater than the effective size observed on a 

single day of mass spawning, 2/ the effective breeding population size of the juvenile 

batch represented approx. 14% of the breeding population and 3/ the per-generation 

rate of inbreeding (∆F), based on broodstock replacement using this single batch of 

fingerlings, equalled to 2.5%. The effective breeding population size of the batch 

analysed was comparable to the findings of Brown (2003) for gilthead seabream. 

Finally, in an attempt to study the sex determination mechanism(s) operating 

in cod, a protocol to induce gynogenesis was developed. This protocol consists of 

three main steps: 1) diluting cod milt to a working concentration of 9x108 spz/ml in 

Mounib’s extender, 2) delivering to the diluted milt a UV dose equivalent to 

240 µW/cm2 for four minutes, 3) giving a temperature shock sustained for one hour, at 

-6oC, starting ten minutes after fertilisation. Although the expectations from the 
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ongrowing trial were not entirely met (i.e. in terms of the number of surviving 

gynogenetic fish which could be sexed), gynogenetic fish were successfully produced 

(verified by molecular analyses). The protocol used to shock eggs (using cold 

temperature shocks) was inspired by early work on triploidy induction in cod, by 

Kettunen et al. (2004). However, it was later on suggested that heat shocks (at 20oC) 

were more efficient than cold shocks in inducing triploidy in cod (Peruzzi et al., 

2007). Due to time constraints, the induction of gynogenesis via heat or pressure 

shocks could not be investigated further and only one ongrowing trial of gynogenetic 

fish could be carried out. 

7.2. Recommendations for improving genetic 

management and implementing selective breeding in 

cod hatcheries 

Based on the findings of this PhD research project, recommendations can be 

made regarding both the genetic management and the implementation of selective 

breeding in intensive commercial cod hatcheries. 

7.2.1. Short-term broodstock management 

In mass spawning systems, the fry production is likely to be largely dominated 

by the spawning activity of very few males. Since spawning dominance in cod is not 

based on size, the common practice which consists in culling small males after the 

spawning season (to reduce stocking densities or to partially replace the breeding 

stock), might be detrimental to the production. In that sense, being able to identify 

dominant fish (based on the results of behaviour and / or parentage studies) might 

prove extremely useful for optimising the management of commercial mass spawning 

cod broodstock tanks. 
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Another question which arose from the results of this research project 

concerns the “optimum” broodstock population size necessary to maintain in a 

commercial cod hatchery to: 1) meet its needs in terms of daily volume of fertilised 

eggs produced, 2) ensure a sufficient genetic diversity level among the juveniles 

selected for broodstock replacement. The results of the parentage exercise realised on 

offspring sampled from the “wild Scottish” broodstock seem to indicate that a large 

number of males per breeding tank (i.e. N=55) encourages the establishment of 

spawning dominances (see Chapter 4).In addition, the parentage analyses realised on 

offspring sampled from both the “wild Scottish” and the “wild Norwegian” 

broodstock populations also suggest that, on a daily basis, only 25 to 30% of the fish 

contribute to viable 50 days post hatch fry. Given these two results, it might be 

preferable for a hatchery to stock two breeding tanks with 50 cod each (i.e. approx 30 

females and 20 males) rather than one tank with a hundred fish. 

7.2.2. Long-term broodstock management: implementing 

genetic selection for improving growth of Atlantic cod 

produced in an intensive commercial hatchery 

The following “enhanced” mass selection model is based on the results from 

the study cases presented in this thesis and takes MMF hatchery as a model. This 

model presents a set of measures which do not take into account both the space 

availability (i.e. number of tanks) and the financial constraints of the farm. 

Providing the broodstock population held in the hatchery is suitable to select 

from (i.e. genetically diverse enough), the programme begins with the establishment 

of a F1 population which reflects the genetic pool of the farm. This can be achieved 

by retaining a fraction of several mixed and graded fry groups, at the end of hatchery 
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rearing, from the overlap production of all four hatchery broodstock tanks held at 

MMF (see Figure 7.1). In each cohort, age and environmental effects would be 

minimised during hatchery rearing. 

A fast growing fraction of the base population (approx. 20 000 fish) would 

then be retained following the first nursery size grading (see Figure 7.1). Parentage 

contribution to this elite line would be assessed by sampling fin clips from approx. 

1000 fry and realising DNA profiles (using an adequate set of DNA microsatellite 

markers and an exclusion-based parentage analysis). A fraction of the slow growers 

(i.e. small grade) would be also retained for comparison of growth performances over 

time. Environmental variances between the fast and the slow growing groups would 

be kept minimal during nursery rearing, as well as the variances between selected 

groups and the rest of the commercial production (i.e. in terms of fish density, feeding 

regime, water temperature, health status, etc.). 

The selected fast and slow growing lines would then be sent to sea cages for 

ongrowing and a representative sample of this line would be kept in the hatchery for 

broodstock replacement (Figure 7.1). Information on the harvest time, average weight 

of the fish and possibly other quality parameters gathered on the filleting / processing 

lines would be collected. If possible, fin samples from the best performing fish would 

also be taken post mortem, on the processing lines, to identify the best performing 

families. Heritability for growth would be estimated based on these data. 

In the meanwhile, the fish retained in the hatchery for broodstock replacement 

would be tagged and genotyped. Family contributions would be evened out by 

removing fish from over-represented families. 
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Based on the performance results of the elite line in sea cages, fast growing 

families would progressively be introduced in the hatchery broodstock tanks (see 

Figure 7.1). 

All the fish used in this selection programme (except the fish ultimately 

retained for broodstock replacement) can eventually rejoin the commercial production 

and be sold (in order to minimise costs). 
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Figure 7.1. Diagram of an “enhanced” mass selection programme for the genetic improvement of growth in Atlantic cod. 
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7.3. Scope for future work 

The following paragraph lists some research aspects which could be further 

explored in a follow-up to this project: 

1/ refinement of the parentage analysis (i.e. by working on primer designs / PCR 

conditions to remove null alleles) to find a better suited set of DNA microsatellite 

markers to analyse the parentage of fry batches issued from the mass spawning of 

commercial cod breeding tanks. 

2/ establishment of a fry population, in MMF hatchery, to study the genetic variation 

for traits of commercial interest in cod (i.e. improved growth, increased disease 

resistance, late sexual maturation). 

3/ refinement of the protocol to induce gynogenesis on a large scale to further study 

the sex determination mechanism(s) operating in cod. 
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Appendix 

 



 

 

Communications to conferences and workshops 

 

3rd November 2004 British Marine Finfish Association workshop, Oban, 
Scotland. 

Oral presentation: “Introduction of genetic management in 
new marine farm hatcheries: the case of Atlantic cod”. 

17th June 2005   Marine Farms Technical meeting, Machrihanish, Scotland. 

Oral presentation: “Introduction of genetic management in 
new marine farm hatcheries: the case of Atlantic cod”. 

27th October 2005 British Marine Finfish Association workshop, Oban, 
Scotland. 

Oral presentation: “Introduction of genetic management in 
new marine farm hatcheries: the case of Atlantic cod”. 

19th May 2006-10-13 Aquaculture International Exhibition 2006, Glasgow, 
Scotland. 

Oral presentation: “Genetic management of Atlantic cod 
broodstock”. 

25th-30th June 2006-10-13 International Symposium for Genetics in Aquaculture IX, 
Montpellier, France. 

 Oral presentation: “Analysis of parental contribution and 
spawning dynamics in commercial Atlantic cod (Gadus 
morhua) breeding tanks”.  

12th-13th September 2006  Sustainable Animal Breeding Conference, Edinburgh, 
Scotland. 

 Poster (1st prize in the Genesis Faraday Associates poster 
competition): “Genetic management of Atlantic cod 
broodstock”. 

14th-15th November 2007 British Marine Finfish Association workshop, Inveraray, 
Scotland. 

Oral presentation: “Genetic management of Atlantic cod 
hatchery populations”. 
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