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Abstract 

Soils in the urban environment are distinctive in that they are modified through waste 

amendments. Consideration has been given to how urban soil properties reflect current 

human influence; however, recent studies highlight their potential as historical archives. 

The impact of waste disposal on the nature, properties and formation of urban soils is 

significant, especially in historic small towns where the extent and complexity of refuse 

management practices is only just emerging. This study uses a multi-method approach 

to characterise and understand modes of urban anthrosol formation in three Scottish 

burghs; Lauder, Pittenweem and Wigtown. The objectives of this study are threefold; to 

establish the nature and diversity of urban anthrosols in and near to historic small towns, 

to characterise and account for the multiplicity of urban anthrosols in and near to historic 

small towns, and to elucidate the processes associated with waste management and 

disposal in historic small towns.  

 

Physical, chemical and micromorphological analysis of topsoil deposits indicate 

sustained addition of past waste materials to soils within and near to historic small 

towns. Soil characteristics were heterogeneous across burghs; however, distinct 

patterns according to past functional zones were identified. The burgh core and burgh 

acres are important areas of interest at all three burghs. Soil modification was most 

pronounced within burgh cores resulting in the formation of hortic horizons. Soils within 

burgh cores are characterised by neutral pH, increased organic matter content, 

enhanced magnetic susceptibility and elevated elemental concentrations such as 

calcium, phosphorus and potassium. In comparison the nature and extent of soil 

modification within burgh acres is more varied. At Lauder hortic soils were identified in 

the burgh acres suggesting pronounced soil modification through cultivation. Deepened 

topsoil in the burgh acres at Pittenweem provided evidence for application of mineral rich 

waste materials in the past. Moreover, magnetic and elemental enhancement (barium, 

phosphorus, lead, zinc) within the burgh acres south of Wigtown revealed historic soils 

based anthropogenic signal.  
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It is argued that changes in soil characteristics at Lauder, Pittenweem and Wigtown can 

be explained through processes of waste management and disposal in the past. 

Evidence from micromorphological analyses suggests that waste in burgh cores typically 

comprised domestic waste, animal waste, building materials and fuel residues. These 

materials were also identified within burgh acres, although it is noted that their 

abundances were significantly lower. Variation in urban anthrosol characteristics 

between burghs is attributed to differing industries and patterns of resource exploitation, 

for example marine waste associated with fishing was only identified in coastal burghs.  

 

The sustained addition of waste materials to soils within and near to historic small towns 

was an effective waste management strategy. Waste disposal in burgh cores was likely 

to be a combination of direct application and midden spreading in back gardens. This led 

to enhanced soil fertility which was important in the development of urban horticulture; 

particularly for poorer inhabitants who did not have access to arable farm land adjacent 

to the burgh. Dunghills acted as temporary stores of waste in the main thoroughfares of 

Lauder, Pittenweem and Wigtown. These dunghills were systematically transported to 

the burgh acres for further use as a fertiliser; hence, an early form of urban composting. 

Processes of waste disposal could not be deduced from soil characteristics alone; 

however, likely methods include direct waste deposition, storage and redistribution of 

midden waste, and storage and redistribution of dunghills.  

 

The limitations of soil classification systems and mapping are highlighted, for example 

urban soils are either omitted from soil maps or are misclassified. It is recommended that 

urban soils in historic towns should be incorporated into future regional soil maps. Urban 

soils represent a complex archive of past human behaviour not necessarily reflected in 

archaeological excavation or documentary analysis. It is argued that soil and artefacts 

are equally important, hence soil should be a consideration in urban heritage and 

conservation strategies.  
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Figures 
 
Figure 1   Cross section of terrace P1 Pseira Island, Crete showing Minoan potsherd 

scatters indicative of systematic spreading of household wastes across the 
cultivated landscape as a fertiliser (Bullock et al., 2001: 227)   
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Figure 2   16th century AD map of the Royal Burgh of Dumfries, Dumfries and 
Galloway shown as a single street of dwellings with burgage plots, taken 
from the Pont Manuscripts (Image © National Library of Scotland, Licensor 
www.scran.ac.uk) 

43
 
Figure 3   Edinburgh c1460AD comprising Town (Royal Burgh, Burgh of Canongait), 

School (Castle), and Cloister (Holyrood Abbey, St. Giles Cathedral) (Image 
© Patrick Geddes Centre for Planning Studies, University of Edinburgh, 
Licensor www.scran.ac.uk) 

43
 
Figure 4   Medieval Street Patterns: Newburgh, Fifeshire 1855-56AD example of 

single street system and burgage plots and Crail, Fifeshire 1855AD example 
of parallel street system and burgage plots (Image produced from the 
www.old-maps.co.uk service with permission of Landmark Information 
Group Ltd. and Ordnance Survey) 

44
 

Figure 5   Graphical Summaries of Potential Waste Sources in the Medieval/Post-
medieval Urban Environment (a) Reconstruction of market scene at St. 
Johns Kirk, Perth (b) Reconstruction of Upperkirkgate, Aberdeen backlands 
(c) Reconstruction of backland manufacturing in Meal Vennel, Perth (d) 
Reconstruction of Upperkirkgate, Aberdeen backlands (Images © Aberdeen 
City Council, Licensor www.scran.ac.uk) 

45
 
Figure 6   Mid 17th century AD view of Canongate, City of Edinburgh. Note differences 

in land use within and between burgage plots (Image © Royal Commission 
on the Ancient and Historical Monuments of Scotland, Licensor 
www.scran.ac.uk) 

48
 

Figure 7   Crail from the air (a) Deepened anthropogenic sediments, west end of 
Nethergate, (b) Shallower sediments, east end of Nethergate, (c) Deep soils 
with medieval and mixed medieval and post-medieval assemblages, 
attributed to medieval cultivation of the burghs infield and/or off loading 
ballast by Dutch herring traders (Lowe CE, 2001, Image © Colin J M Martin, 
Licensor www.scran.ac.uk) 

50
 
Figure 8  Depth of topsoil in and near the Burgh of Nairn (left), distribution of rigs in 

burgh acres 1790AD (right) (Davidson et al., 2006: 780) 
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Figure 9   ‘Rubbish Theory’ model showing cultural categories of objects and possible 
transfers between them (Thompson M 2003: 322, 1979: 10) 

55 
 
Figure 10  Flow model showing artefact histories and proposed rubbish categories 

(Schiffer 1972:162) 
57 

 
Figure 11  Flow model of adapted artefact life histories (LaMotta and Schiffer 2001:20) 
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Figure 12  Refuse cycle flow model for possible stages in artefact histories (Needham 

and Spence 1997:78) 
59 

 
Figure 13  Flow model of waste movement in small historic towns 
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Figure 14  Project aim, objectives and hypotheses 

68 
 
Figure 15  Location of preliminary field visits undertaken between 12/11/04 and 

04/01/05 
 69 

 
Figure 16  Location and situation of Lauder, Scottish Borders 

70 
 
Figure 17  Location and situation of Pittenweem, Fife 

72 
 
Figure 18  Location and situation of Wigtown, Dumfries and Galloway 

73 
 
Figure 19  Location of survey area at Lauder (black rectangle). Red boundary delimits 

1862AD urban extent taken from 1:10,560 scale Ordnance Survey map 
inset © Landmark information group, www.old-maps.co.uk 

76 
 
Figure 20  Location of survey area at Pittenweem (orange rectangle). Red boundary 

delimits 1855AD urban extent taken from 1:10,560 scale Ordnance Survey 
map inset © Landmark information group, www.old-maps.co.uk 

77 
 
Figure 21  Location of survey area at Wigtown (orange rectangle). Red boundary 

delimits 1850AD urban extent taken from 1:10,560 scale Ordnance Survey 
map inset © Landmark information group, www.old-maps.co.uk 

78 
 
Figure 22  Stratified grid survey at Lauder showing auger sample locations (red 

circles), soil pit locations (blue squares) and ‘reference’ soil pit locations 
(green squares) 
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Figure 23  Stratified grid survey at Pittenweem (left) and Wigtown (right) showing auger 
sample locations (red circles), soil pit locations (blue squares) and 
‘reference’ soil pit locations (green squares) 

81 
 
Figure 24  Example of field sketch, profile description and soil sampling undertaken for 

LA 2 (Lauder soil pit number 2) 
83 

 
Figure 25  Example of field sketch, profile description and soil sampling undertaken for 

‘reference’ soil pit PT 1 
83 

 
Figure 26  Example images of coarse mineral anthropogenic features in thin section 

from Lauder, Pittenweem and Wigtown. First row (left to right): pottery (OIL), 
pottery (PPL), mortar (OIL), mortar (PPL). Second row (left to right): shell 
(PPL), shell (XPL), bone (XPL), bone (PPL). Third row (left to right): 
clinker/slag (PPL), heated mineral (OIL) 

94 
 

Figure 27  Example images of coarse organic anthropogenic features in thin section 
from Lauder, Pittenweem and Wigtown. First row (PPL) (left to right): 
Charcoal, FR4, FR 6, and FR 2. Second row (PPL) (left to right): FR1 (XPL), 
FR7, FR5 and FR3. Third row (PPL) (left to right): FR 8, FR9, FR10 and FR 
10 (XPL) 

95 
 
Figure 28  Left: slide prior to grid overlay, Right: slide with grid overlay, grid squares 

selected through random number generation are highlighted with a blue 
mark 

96 
 
Figure 29  Mean void space of Wigtown thin sections calculated incrementally (every 

1%). Legend denotes town code (WG) and slide reference and context 
number (1/1) 
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Figure 30  Mean % coarse material of Lauder thin sections calculated incrementally 

(every 1%). Legend denotes town code (LA) and slide reference and context 
number (1/1) 

97 
 
Figure 31  Mean % relative abundance of selected anthropogenic features for soil pit 4, 

context 1 (4/1), Pittenweem 
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Figure 32  Mean % relative abundance of selected anthropogenic features for soil pit 4, 

context 1, Wigtown 
98 

 
Figure 33  Spatial distributions of P (mg/Kg) (a) and Log P (mg/Kg) (b) at Pittenweem. 

Red boundary delimits 1855AD urban extent 
100 

 
 

 - 17 -



Figure 34  Delineation of zones at Lauder. Red boundary delimits 1862AD urban extent 
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Figure 35  Delineation of zones at Pittenweem (a) and Wigtown (b). Red boundary 

delimits 1855AD and 1850AD urban extent respectively 
102 

 
Figure 36 Soil profile description of soil pit LA1 (see Appendix 1 for photographs) 

                         109 
Figure 37 Soil profile description of soil pit PT3 (see Appendix 1 for photographs) 

                         109 
Figure 38 Soil profile description of soil pit WG2 (see Appendix 1 for photographs) 

                         110 
 
Figure 39  Percentage abundance estimates of coarse mineral material within upper 

(Aht 1) and lower (Aht 2) topsoil deposits in the High Street and Hinterland 
Near zones at Lauder. Depth indicates the location of Kubiena tin samples 

114 
 
Figure 40  Percentage abundance estimates of coarse mineral material within upper 

(Aht 1) and lower (Aht 2) topsoil deposits in the Harbour and High Street 
zones at Pittenweem. Depth indicates the location of Kubiena tin samples 
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Figure 41  Percentage abundance estimates of coarse mineral material within upper 

(Aht 1) and lower (Aht 2) topsoil deposits in the High Street zone at 
Wigtown. Depth indicates the location of Kubiena tin samples 

116 
 
Figure 42  Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 1 for 

individual zones at Lauder (a) and Pittenweem (b), z values exceeding –Z or 
Z are significant at p<0.05 confidence level 

123 
 
Figure 43  Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 3 for 

individual zones at Lauder (a) and Pittenweem (b), z values exceeding –Z or 
Z are significant at p<0.05 confidence level 
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Figure 44  Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 4 & 6 

for individual zones at Lauder (a) and Pittenweem (b), z values exceeding –
Z or Z are significant at p<0.05 confidence level 
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Figure 45  Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 5 & 7 

for individual zones at Pittenweem, z values exceeding –Z or Z are 
significant at p<0.05 confidence level 
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Figure 46  Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 8 & 9 
for individual zones at Lauder (a) and Pittenweem (b), z values exceeding –
Z or Z are significant at p<0.05 confidence level 
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Figure 47  % FR (10-255µm) within topsoil deposits in the High Street, Hinterland Near, 

Hinterland Far and Thirlstane zones, and ‘reference’ soil at Lauder. Number 
range refers to depth of Kubiena sample (cm) 
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Figure 48  % FR (10-255µm) within topsoil deposits in the Harbour, High Street, 

Hinterland Near, and Hinterland Far zones, and ‘reference’ soil at 
Pittenweem. Number range refers to depth of Kubiena sample (cm) 
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Figure 49  % FR (10-255µm) within topsoil deposits in the Harbour, High Street, 

Hinterland Near, and Hinterland Far zones, and ‘reference’ soil at 
Pittenweem. Number range refers to depth of Kubiena sample (cm) 
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Figure 50  Percentage abundance estimates of coarse organic material (Fuel Residue 

categories) within upper (Aht 1) and lower (Aht 2) topsoil deposits in the 
High Street and Hinterland Near zones at Lauder. Number range indicates 
the depth (cm) of Kubiena tin samples  
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Figure 51  Percentage abundance estimates of coarse organic material (Fuel Residue 

categories) within upper (Aht 1) and lower (Aht 2) topsoil deposits in the 
Harbour and High Street zones at Pittenweem. Number range indicates the 
depth (cm) of Kubiena tin samples 
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Figure 52  Percentage abundance estimates of coarse organic material (Fuel Residue 

categories) within upper (Aht 1) and lower (Aht 2) topsoil deposits in the 
High Street zone at Wigtown. Number range indicates the depth (cm) of 
Kubiena tin samples 
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Figure 53  Distribution of topsoil depth at Lauder. Red boundary delimits 1862AD urban 

extent 
154 

 
Figure 54  Spatial distribution of topsoil depth at Pittenweem (a) and Wigtown (b). Red 

boundary delimits 1855AD and 1850AD urban extent respectively 
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Figure 55 (a) Boxplot of median topsoil depth for individual zones at Lauder; 

boundaries of boxes represent interquartile range, green shading indicates 
86.761% confidence interval for median, outliers identified as *, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder, Z values exceeding –Z or Z are significant at p<0.05 confidence 
level 

156 
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Figure  56 (a) Boxplot of median topsoil depth for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, green shading indicates 
86.761% confidence interval for median, outliers identified as *, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem, Z values exceeding –Z or Z are significant at p<0.05 
confidence level 
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Figure 57 (a) Boxplot of median topsoil depth for individual zones at Wigtown; 

boundaries of boxes represent interquartile range, green shading indicates 
80.529% confidence interval for median, outliers identified as *, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem, Z values exceeding –Z or Z are significant at p<0.05 
confidence level 
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Figure 58 Spatial distribution of soil pH at Lauder (a) 0-20cm and (b) 20-40cm depth. 

Red boundary delimits 1862AD urban extent 
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Figure 59 Spatial distribution of soil pH at Pittenweem (a) 0-20cm, (b) 20-40cm, (c) 40-

60cm and (d) 60-80cm depth. Red boundary delimits 1855AD urban extent 
160 

 
Figure 60 Spatial distribution of soil pH at Wigtown (0-20cm depth). Red boundary 

delimits 1850AD urban extent  
161 

 
Figure 61 (a) Boxplot of median pH for individual zones at Lauder; boundaries of 

boxes represent interquartile range, blue shading indicates 86.761% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder (0-20cm depth), Z values exceeding –Z or Z are significant at p<0.05 
confidence level 
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Figure 62 (a) Boxplot of median pH for individual zones at Pittenweem; boundaries of 

boxes represent interquartile range, blue shading indicates 86.761% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem (0-20cm) using, Z values exceeding –Z or Z are significant at 
p<0.05 confidence level 
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Figure 63 (a) Boxplot of median pH for individual zones at Wigtown; boundaries of 

boxes represent interquartile range, blue shading indicates 80.529% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown (0-20cm depth), Z values exceeding –Z or Z are significant at 
p<0.05 confidence level 

163 
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Figure 64 Boxplot of median pH for individual zones at Lauder for 0-20cm and 20-
40cm depth; boundaries of boxes represent interquartile range, outliers 
identified as * 
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Figure 65 (a) Boxplot of median pH for 0-20cm, 20-40cm, 40-60cm and 60-80cm 

depth at Pittenweem; boundaries of boxes represent interquartile range, 
blue shading indicates 86.761% confidence interval for median, outliers 
identified as *, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual depths at Pittenweem, Z values exceeding –Z or 
Z are significant at p<0.05 confidence level 
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Figure 66 Boxplot of median pH for individual zones  within 0-20cm, 20-40cm, 40-

60cm and 60-80cm depth at Pittenweem; boundaries of boxes represent 
interquartile range, outliers identified as * 
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Figure 67 Spatial distribution of % LOI at Lauder (a) 0-20cm and (b) 20-40cm depth. 

Red boundary delimits 1862AD urban extent 
168 

 
Figure 68 Spatial distribution of % LOI at Pittenweem (a) 0-20cm, (b) 20-40cm, (c) 40-

60cm and (d) 60-80cm depth. Red boundary delimits 1855AD urban extent 
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Figure 69 Spatial distribution of % LOI at Wigtown (0-20cm depth). Red boundary 

delimits 1850AD urban extent 
170 

 
Figure 70 (a) Boxplot of median % LOI for individual zones at Lauder; boundaries of 

boxes represent interquartile range, orange shading indicates 86.761% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder (0-20cm depth) , Z values exceeding –Z or Z are significant at 
p<0.05 confidence level 

172 
 
Figure 71 (a) Boxplot of median % LOI for individual zones at Pittenweem; boundaries 

of boxes represent interquartile range, orange shading indicates 86.761% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem (0-20cm depth), Z values exceeding –Z or Z are significant at 
p<0.05 confidence level 

173 
 
Figure 72 Boxplot of median % LOI for individual zones at Wigtown; boundaries of 

boxes represent interquartile range, outliers identified as * 
173 

 
Figure 73 Boxplot of median % LOI for individual zones at Lauder for 0-20cm and 20-

40cm depth; boundaries of boxes represent interquartile range, outliers 
identified as * 

174 
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Figure 74 Boxplot of median % LOI for individual zones at Pittenweem for 0-20cm, 20-

40cm, 40-60cm and 60-80cm depth; boundaries of boxes represent 
interquartile range, outliers identified as * 
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Figure 75 Spatial distribution of (a) Ҳ (10-6m3Kg-1) and (b) ҲFD (10-6m3Kg-1) at Lauder. 

Red boundary delimits 1862AD urban extent 
177 

 
Figure 76 Spatial distribution of (a) Ҳ (10-6m3Kg-1) and (b) ҲFD (10-6m3Kg-1) at 

Pittenweem. Red boundary delimits 1855AD urban extent. 
178 

 
Figure 77 Spatial distribution of (a) Ҳ (10-6m3Kg-1) and (b) ҲFD (10-6m3Kg-1) at Wigtown. 

Red boundary delimits 1850AD urban extent 
179 

 
Figure 78 (a) Boxplot of median Ҳ (10-6m3Kg-1) for individual zones at Lauder; 

boundaries of boxes represent interquartile range, red shading indicates 
86.761% confidence interval for median, outliers identified as *, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder, Z values exceeding –Z or Z are significant at p<0.05 confidence 
level  
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Figure 79 Boxplot of median and mean Ҳ (10-6m3Kg-1) for individual zones at 

Pittenweem; bar indicates median, black circle denotes mean, boundaries of 
boxes represent interquartile range, outliers identified as * 
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Figure 80 (a) Boxplot of median Ҳ (10-6m3Kg-1) for individual zones at Wigtown; 

boundaries of boxes represent interquartile range, red shading indicates 
80.529% confidence interval for median, outliers identified as *, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown, Z values exceeding –Z or Z are significant at p<0.05 confidence 
level 

181 
 
Figure 81 (a) Boxplot of median ҲFD (10-6m3Kg-1) for individual zones at Lauder; 

boundaries of boxes represent interquartile range, red shading indicates 
86.761% confidence interval for median, outliers identified as *, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder, Z values exceeding –Z or Z are significant at p<0.05 confidence 
level  

184 
 
Figure 82 (a) Boxplot of median ҲFD (10-6m3Kg-1) for individual zones at Pittenweem; 

boundaries of boxes represent interquartile range, red shading indicates 
86.761% confidence interval for median, outliers identified as *, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem, Z values exceeding –Z or Z are significant at p<0.05 
confidence level  

185 
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Figure 83 (a) Boxplot of median Ҳ (10-6m3Kg-1) for individual zones at Wigtown; 
boundaries of boxes represent interquartile range, red shading indicates 
80.529% confidence interval for median, outliers identified as *, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown, Z values exceeding –Z or Z are significant at p<0.05 confidence 
level 

185 
 
Figure 84 Scatterplot of Fe (mg/Kg) vs. Ҳ (10-6m3Kg-1) for Lauder, Pittenweem and 

Wigtown 
187 

 
Figure 85 Spatial distribution of Log Ba (mg/Kg) at Lauder. Red boundary delimits 

1862AD urban extent 
191 

 
Figure 86 Spatial distribution of Log Ba (mg/Kg) at Pittenweem (a) and Wigtown (b). 

Red boundary delimits 1855AD and 1850AD urban extent respectively 
192 

 
Figure 87 Boxplot of median and mean Ba (mg/Kg) for individual zones at Lauder; bar 

indicates median, black circle denotes mean; boundaries of boxes represent 
interquartile range, outliers identified as * 
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Figure 88 (a) Boxplot of median Ba (mg/Kg) for individual zones at Pittenweem; 

boundaries of boxes represent interquartile range, green shading indicates 
86.761% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem, -Z or Z are significant at p<0.05 confidence level 

194 
 
Figure 89 (a) Boxplot of median Ba (mg/Kg) for individual zones at Wigtown; 

boundaries of boxes represent interquartile range, green shading indicates 
80.529% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown, -Z or Z are significant at p<0.05 confidence level 

194 
 
Figure 90 Spatial distribution of Log Ca (mg/Kg) at Lauder. Red boundary delimits 

1862AD urban extent 
195 

 
Figure 91 Spatial distribution of Log Ca (mg/Kg) at Pittenweem (a) and Wigtown (b). 

Red boundary delimits 1855AD and 1850AD urban extent respectively 
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Figure 92 (a) Boxplot of median Ca (mg/Kg) for individual zones at Lauder; boundaries 

of boxes represent interquartile range, yellow shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder, -Z or Z are significant at p<0.05 confidence level 

197 
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Figure 93 (a) Boxplot of median Ca (mg/Kg) for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, yellow shading indicates 
86.761% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem, -Z or Z are significant at p<0.05 confidence level 

198 
 
Figure 94 (a) Boxplot of median Ca (mg/Kg) for individual zones at Wigtown; 

boundaries of boxes represent interquartile range, yellow shading indicates 
80.529% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown, -Z or Z are significant at p<0.05 confidence level 
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Figure 95 Spatial distribution of Log Pb (mg/Kg) at Lauder. Red boundary delimits 

1862AD urban extent 
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Figure 96 Spatial distribution of Log Pb (mg/Kg) at Pittenweem (a) and Wigtown (b). 

Red boundary delimits 1855AD and 1850AD urban extent respectively 
200 

 
Figure 97 (a) Boxplot of median Pb (mg/Kg) for individual zones at Lauder; boundaries 

of boxes represent interquartile range, green shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder, -Z or Z are significant at p<0.05 confidence level 

201 
 
Figure 98 Boxplot of median and mean Pb (mg/Kg) for individual zones at Pittenweem; 

bar indicates median, black circle denotes mean; boundaries of boxes 
represent interquartile range, outliers identified as * 

202 
 
Figure 99 (a) Boxplot of median Pb (mg/Kg) for individual zones at Wigtown; 

boundaries of boxes represent interquartile range, green shading indicates 
80.529% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown, -Z or Z are significant at p<0.05 confidence level 

202 
 
Figure 100 Spatial distribution of Log K (mg/Kg) at Lauder. Red boundary delimits 

1862AD urban extent 
203 

 
Figure 101 Spatial distribution of Log Pb (mg/Kg) at Pittenweem (a) and Wigtown (b). 

Red boundary delimits 1855AD and 1850AD urban extent respectively 
204 

 
Figure 102 (a) Boxplot of median K (mg/Kg) for individual zones at Lauder; boundaries 

of boxes represent interquartile range, pink shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder, -Z or Z are significant at p<0.05 confidence level 
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Figure 103 (a) Boxplot of median K (mg/Kg) for individual zones at Pittenweem; 

boundaries of boxes represent interquartile range, pink shading indicates 
86.761% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem, -Z or Z are significant at p<0.05 confidence level 
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Figure 104 (a) Boxplot of median K (mg/Kg) for individual zones at Wigtown; boundaries 

of boxes represent interquartile range, pink shading indicates 80.529% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown, -Z or Z are significant at p<0.05 confidence level 
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Figure 105 Spatial distribution of Log P (mg/Kg) at Lauder. Red boundary delimits 

1862AD urban extent 
207 

 
Figure 106 Spatial distribution of Log P (mg/Kg) at Pittenweem (a) and Wigtown (b). 

Red boundary delimits 1855AD and 1850AD urban extent respectively 
208 

 
Figure 107 (a) Boxplot of median P (mg/Kg) for individual zones at Lauder; boundaries 

of boxes represent interquartile range, purple shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder, -Z or Z are significant at p<0.05 confidence level 

209 
 
Figure 108 (a) Boxplot of median P (mg/Kg) for individual zones at Pittenweem; 

boundaries of boxes represent interquartile range, purple shading indicates 
86.761% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem, -Z or Z are significant at p<0.05 confidence level 

210 
 

Figure 109 (a) Boxplot of median P (mg/Kg) for individual zones at Wigtown; boundaries 
of boxes represent interquartile range, purple shading indicates 80.529% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown, -Z or Z are significant at p<0.05 confidence level 

210 
 
Figure 110 Spatial distribution of Log Sr (mg/Kg) at Lauder. Red boundary delimits 

1862AD urban extent 
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Figure 111  Spatial distribution of Log Sr (mg/Kg) at Pittenweem (a) and Wigtown (b). 

Red boundary delimits 1855AD and 1850AD urban extent respectively 
213 
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Figure 112 (a) Boxplot of median Sr (mg/Kg) for individual zones at Lauder; boundaries 
of boxes represent interquartile range, blue shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder, -Z or Z are significant at p<0.05 confidence level 
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Figure 113  (a) Boxplot of median Sr (mg/Kg) for individual zones at Pittenweem; 

boundaries of boxes represent interquartile range, blue shading indicates 
86.761% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem, -Z or Z are significant at p<0.05 confidence level 

215 
 
Figure 114 (a) Boxplot of median Sr (mg/Kg) for individual zones at Wigtown; 

boundaries of boxes represent interquartile range, blue shading indicates 
80.529% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown, -Z or Z are significant at p<0.05 confidence level 
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Figure 115 Spatial distribution of Log Zn (mg/Kg) at Lauder. Red boundary delimits 

1862AD urban extent 
216 

 
Figure 116  Spatial distribution of Log Zn (mg/Kg) at Pittenweem (a) and Wigtown (b). 

Red boundary delimits 1855AD and 1850AD urban extent respectively 
217 

 
Figure 117  (a) Boxplot of median Zn (mg/Kg) for individual zones at Lauder; boundaries 

of boxes represent interquartile range, cyan shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis 
analysis with Dunn’s test multiple comparisons for individual zones at 
Lauder, -Z or Z are significant at p<0.05 confidence level 

218 
 
Figure 118  (a) Boxplot of median Zn (mg/Kg) for individual zones at Pittenweem; 

boundaries of boxes represent interquartile range, cyan shading indicates 
86.761% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Pittenweem, -Z or Z are significant at p<0.05 confidence level 

219 
 
Figure 119  (a) Boxplot of median Zn (mg/Kg) for individual zones at Wigtown; 

boundaries of boxes represent interquartile range, cyan shading indicates 
80.529% confidence interval for median, outliers identified as*, (b) Kruskal-
Wallis analysis with Dunn’s test multiple comparisons for individual zones at 
Wigtown, -Z or Z are significant at p<0.05 confidence level 
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Figure 120 Dendrogram showing results of Cluster analysis for elemental data at 
Lauder. Seven main groups are identified; cluster 1 (red), cluster 2 (green), 
cluster 3 (blue), cluster 4 (orange), cluster 5 (magenta), cluster 6 (purple) 
and cluster 7 (cyan) 
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Figure 121 Dendrogram showing results of Cluster analysis for elemental data at 

Pittenweem. Five main groups are identified; cluster 1 (red), cluster 2 
(yellow), cluster 3 (green), cluster 4 (blue) and cluster 5 (brown) 

237 
 
Figure 122 Dendrogram showing results of Cluster analysis for elemental data at 

Wigtown. Six main groups are identified; cluster 1 (red), cluster 2 (green), 
cluster 3 (blue), cluster 4 (coral), cluster 5 (brown) and cluster 5 (magenta) 

192 
 
Figure 123  Wigtown harbour (above) was used primarily as a fishing port between the 

15th and 18th centuries (Simpson and Stevenson 1981b). The harbour fell 
into disuse in the early 19th century due to increasing sedimentation and was 
replaced by a new harbour 400m south of Wigtown (Image © Royal 
Commission on the Ancient and Historical Monuments of Scotland, Licensor 
www.scran.ac.uk) 
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Figure 124  The Old Boat Haven (left) was used as the main harbour of Pittenweem until 

1541AD. It was carved into the rocky shoreline and its pier was used as a 
natural outcrop with a road cut into it. Pittenweem harbour (right) was built in 
1541AD to accommodate expanding fishing fleets. The inner harbour 
comprises the west and east pier, both of which have been systematically 
rebuilt over the 17th to 19th centuries, and the outer harbour is enclosed by 
the south pier (Images © Royal Commission on the Ancient and Historical 
Monuments of Scotland, Licensor www.scran.ac.uk) 

249 
 

Figure 125  Map of Lauder extracted from the 1747-1755AD William Roy Military Survey 
of Scotland © The British Library Board, Licensor www.nls.uk/roy/style.html. 
Red boundaries represent buildings and man-made structures and parallel 
hatching indicates cultivated land. Burgh acres are represented by the 
delineation of strips of land running parallel to burgage plots 
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Figure 126  Map of Pittenweem extracted from the 1747-1755AD William Roy Military 

Survey of Scotland © The British Library Board, Licensor 
www.nls.uk/roy/style.html. Red boundaries represent buildings and man-
made structures and parallel hatching indicates cultivated land 
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Figure 127  Map of Wigtown extracted from the 1747-1755AD William Roy Military 

Survey of Scotland © The British Library Board, Licensor 
www.nls.uk/roy/style.html. Red boundaries represent buildings and man-
made structures and parallel hatching indicates cultivated land. Burgh acres 
are represented by the delineation of strips of land running parallel to 
burgage plots north and south of Wigtown 
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Figure 128  Aerial Image of Lauder showing (a) burgh core, (b) Hinterland Near zone, (c) 

Hinterland Far zone and (d) Thirlstane zone, image © Andrew Buchanan 
2004, www.holy-cow.co.uk/ 
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Figure 129  Invoice for the sale of ‘street manure’ at Pittenweem to a local farmer dating 

1919 AD, dunghills were therefore a persistent feature in burgh cores 
(Image  © Scottish Life Archive, Licensor www.scran.ac.uk) 
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Figure 130  Photograph of a man with a cart load of seaweed in the early 20th century 

Pittenweem. In previous centuries the right to collect seaweed was 
associate with land ownership, hence burgesses had rights to seaweed on 
particular stretches of beach (Image © National Museums Scotland, 
Licensor www.scran.ac.uk) 
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Figure 131  Revised flow model of resource and waste movement in historic small towns 
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Figure 132  Soil map of Lauder © Soil Survey of Scotland 1959. Soils within and 
adjacent to Lauder are mapped as a freely drained brown forest soil with low 
base status belonging to the Lauder (LA) soil series 
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Figure 133  Soil map of Pittenweem © Soil Survey of Scotland 1975. Soils within 

Pittenweem are not classified and adjacent soils are mapped as an 
imperfectly drained brown forest soil belonging to the Quivox (QX) soil 
series  
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Figure 134  Soil map of Wigtown © Soil Survey of Scotland 1971. Soils within Wigtown 

are not classified and adjacent soils are mapped as a freely draining brown 
forest soil belonging to the Linhope (LP1) soil series 
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Figure 135  Formation of the Urbic horizon (Nikolaevna and Vadimovna 2003) 
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Figure 136  Selected pottery finds from Pittenweem. First row (left to right), 16th century 

AD Valencian Lustreware bowl (Spain), 17th AD century pottery from 
Saintonge (south-west France), 17th century cooking pots (north Germany), 
17th century AD earthenware skillets (Scotland). Second row (left to right), 
17th century AD Green Glazed jars (Scotland), 17th century Loire Ware Jugs 
(west France), 17th century AD Westerwald AD monochrome stoneware 
(Germany), 17th century AD Westerwald polychrome stoneware (Germany) 
(Images © Colin J Martin, Licensor www.scran.ac.uk) 
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1 The Importance of Heritage and Conservation in 
Historic Small Towns 

This chapter presents a brief introduction to previous and current trends in urban 

heritage conservation. Specific attention is paid to the importance of soils within historic 

small towns. 

1.1 Trends in Urban Conservation 

Historic small towns are complex urban archaeological sites characterised by the legacy 

of successive inhabitants. Moreover, they are diverse in form, scale and location, and 

have unique identities deep-rooted in local tradition, industries and agriculture (Evans 

1999). Until recently little consideration has been given to conserving urban 

archaeology. Appreciation of the cultural value of urban heritage was especially lacking 

during the immediate post-war period in Britain when demands for new housing stock 

and infrastructural development led to the irreplaceable loss of countless historic 

buildings and urban deposits (Eydmann 1999).  

 

The emergence of urban archaeology as an established sub-discipline in the 1970s 

signified an increasing awareness of the need to investigate and preserve the cultural 

and visual roots of historic urban environments (Owen 1999). Conservation in Britain 

focussed largely on protecting surviving architecture and structural remains, for example 

the 1972 Town and Country Planning Act gave statutory protection for listed buildings 

(Lynch 1999). Moreover, in Scotland emphasis was placed on preserving ecclesiastical 

and municipal buildings and monuments. However, there was increasing recognition that 

such structures do not necessarily represent everyday life in past urban societies (Lynch 

1999).  

1.1.1 Historic Small Towns 

In 1976 the Scottish Burgh Survey was established by Historic Scotland as a response 

to concerns about increasing threats to the heritage of Scotland’s burghs (Dennison 

1999a). These surveys were progressive in that they evaluated the potential of urban 

archaeology both above and below ground (Coleman 1999). This approach viewed the 

urban environment as a collective rather than a series of independent structures, hence 

was useful for identifying sensitive zones and areas susceptible to future development.  
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Despite initial and ongoing work of the Scottish Burgh Survey, the legacy of past urban 

life within Scotland’s historic burghs is threatened, for example re-development within 

burgh cores and processes of peripheral expansion are leading to the loss of 

characteristic medieval street layouts. This is especially resonant considering that urban 

archaeological deposits located within these areas are vulnerable to damage and loss. 

Moreover, deposits within smaller burghs are identified as particularly susceptible given 

that they are often thinner and overlooked in favour of artefact rich sequences from 

larger burghs (Owen 1999). 

 

It is argued that soil deposits within historic burghs represent a heritage of everyday 

urban life not readily documented or represented by surviving structures and 

monuments. Moreover, it is expected that soils are heavily impacted by processes of 

waste disposal and management given it is estimated that up to 182,000 litres of urine, 

182,500 Kg of solid waste, 8100 Kg of ash from cooking and heating, and 36,500 Kg of 

human faeces were produced annually per 100 households in pre-industrial societies 

(Brothwell 1982). Investigation into the legacy of urban soils will enable characterisation 

of a unique and until recently, largely ignored archaeological archive.  

1.2 Thesis Structure 

The following study investigates the effect of waste in and around soils in small historic 

towns. A summary of the historical legacy of urban soils with specific reference to 

Scottish royal burghs is provided in Chapter 2, followed by presentation of the research 

framework including aims, objectives and hypotheses in Chapter 3. Chapter 4 outlines 

materials and methods used in this study with specific reference to site selection, field 

work, laboratory analyses, soil micromorphology and data analyses. Results soil 

micromorphology, physical and chemical properties, and elemental concentrations in 

Chapter 5, 6 and 7 respectively. Chapter 8 discusses the impact of waste disposal in 

and around Lauder, Pittenweem and Wigtown. To conclude some reflections on the 

wider significance of waste disposal in and around historic small towns are offered in 

Chapter 9.  
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2 The Historical Legacy of Urban Anthrosols with 
Specific Reference to Scottish Royal Burghs 

2.1 Urban Anthrosols 

Soil classification systems no longer use soil formation processes to discriminate between 

soil types, thus, the term ‘anthropogenic soils’ is technically redundant. However here it is 

argued that there is a case for re-examination of anthropogenic soil classification with 

specific reference to soils studied within this research (Dudal 2004).                                                  

2.1.1 Anthropogenic Soil Classification 

Anthropogenic soils are accounted for at the highest order within the Soil Classification for 

England and Wales as Man-made soils (Avery 1980). Similarly anthropogenic soils are 

separated at the highest level within the World Reference Base for Soil Resources (WRB) 

as the Anthrosol group (FAO 2006). Conversely, the North American based Soil 

Taxonomy (Soil Survey Staff 1999) does not have a separate category. Consequently, 

anthropogenic soils are separated at the sub-order level Anthrepts within Inceptisols using 

Anthropic and Plaggen epipedon diagnostic surface horizons. Nevertheless these 

systems are in agreement that anthropogenic soils occur as a result of human 

modification over time and secondly, such changes are attributable to permanent 

settlement and agricultural practises. Regarding the Soil Survey of Scotland (1984), 

provision for anthropogenic soils is absent from soil classification categories although 

discrete phases of deepened topsoil are mapped for Orkney.  

 

Dudal (2004:3) offers an alternative proposal suggesting 6 main types of anthropogenic 

soils namely; human induced changes of soil class, human made diagnostic horizons, 

human induced new parent material, human induced deep soil disturbance, human 

induced change of landform and human induced topsoil changes. The latter category, 

human induced topsoil changes, is particularly resonant to this study given that it is the 

impact of waste disposal on topsoil in historic Scottish Royal burghs which is of principal 

interest. However the importance of topsoil characteristics in soil classification systems 

has traditionally been marginalised with preference given to more stable subsurface 

horizons (Dudal 2004). Within the scope of this study, it therefore seems particularly 

important in the first instance to establish the range of physical and chemical 

characteristics of these modified topsoils.   

 - 35 -



2.1.2 Urban Soil Classification 

The soils studied in this research is located within the urban environment, specifically in 

Scottish Royal burghs, known to be urban for over 600 years. Soils in the urban 

environment are distinct from natural soils on account of their formation and location, in 

particular the scale and intensity of human impacts on them (Bullock and Gregory 1991, 

De Kimpe and Morel 2000). Despite the unique qualities of soils in the urban environment 

knowledge regarding the nature, diversity and extent is currently lacking (De Kimpe and 

Morel 2000, Hollis 1991. This is further reflected in the absence of sufficient provision for 

urban soils in both the Soil Classification for England and Wales and Soil Taxonomy. 

Regarding the WRB Soil Classification, an attempt at classifying urban soils has recently 

been made through the inclusion in 2006 of a new Reference Soil Group (RSG), 

Technosols. Technosols are defined as soils  

 

“whose properties and pedogenesis are dominated by their technical origin. They contain 

a significant amount of artefacts, or are sealed by technic hard rock. They include soils 

from wastes (landfills, sludge, cinders, mine spoils and ashes), pavements with their 

underlying unconsolidated materials, soils with geomembranes and constructed soils in 

human–made materials”.  

(FAO 2006:95)  

 

Technosols appear to be based on contemporaneous urban environments. Consequently 

it seems urban soils subject to human impacts over many centuries are largely ignored. 

Potentially, soils which do not meet Technosol requirements should be classed as 

Anthrosols. However the Anthrosol group primarily includes soils resulting from long 

standing practises of agriculture for example, organic material addition, irrigation and 

cultivation. Additionally, it seems that the Technosol RSG is not exclusive from the 

Anthrosol RSG given that in principle Technosols fulfil the remit of Anthrosols as “soils 

that have been modified profoundly through human activities” (FAO 2006:71).   

 

As previously mentioned, soil studied in this research has formed an intrinsic part of the 

urban landscape for many centuries and accordingly it is suggested that changes in 

physical and chemical soil properties may reflect past processes specific to the urban 

environment. It is therefore argued that these soils do not readily fit into the established 

models of soil classification presented here. Consequently soils investigated within this 

project are generically referred to as Urban Anthrosols. 
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2.1.3 Current Research into Urban Anthrosols 

Urban soils act as a sink for a variety of anthropogenic activities such as burning, vehicle 

emissions and industrial wastes resulting in soil contamination. These soils are often 

contaminated with carcinogenic, mutagenic and toxic elements and compounds which can 

be directly ingested, inhaled or consumed through home grown food (Alloway 2004, 

Hursthouse et al., 2004, Mielke et al., 2001). Hence the main concern regarding polluted 

urban soil is risk to human health (Chung Wong and Li 2004, Hough 2007, Liu et al., 

2005, Moller et al., 2006, Senesi et al., 1999, Yongming et al., 2006) . This problem has 

globally attracted the attention of governments and regulatory bodies (Li et al., 2004, 

Tijhuis et al., 2002) and is especially resonant in industrialising countries where 

urbanisation is accelerating (Lu et al., 2003). The need to develop regulations and 

standards to minimise subsequent risk is imperative (Ona et al., 2006). Consequently it is 

not surprising that current Urban Anthrosol research is focussed on aspects of soil 

contamination within modern towns and cities. These contaminants have largely been 

considered in two distinct groups, namely heavy metals and organic pollutants.  

2.1.3.1 Heavy Metals 
Urban soils exhibit elevated levels of certain elements for example Moller et al., (2005) 

comment that soils in Damascus city have significantly increased concentrations of Pb, Cu 

and Zn compared the surrounding rural areas. Similarly Chirenje et al., (2003) found that 

As is significantly greater in urban soils of Florida compared to non-urban areas. 

Accordingly attempts have been made to distinguish discrete associations of elements 

indicative of anthropogenic origin for example, Manta et al., (2002) discriminate between 

anthropogenic contributions of Pb, Zn, Cu, Sn and Hg and lithogenic inputs of Co, Ni, Cr 

and Mn in Palermo, Sicily. Likewise both Li et al., (2004) and Yongming et al., (2006) 

separate anthropogenic elemental signals from natural associations in Hong Kong and 

Xi’an, Central China, respectively. These anthropogenic groups routinely contain Pb, Zn, 

Cu and Hg (Moller et al., 2005, Tijhuis et al., 2001). Additionally, it is recognised that 

certain elements such as Cu, Zn and Pb are more mobile and bio-available in urban soils, 

thus increasing the potential of groundwater contamination (Lu et al., 2003, Manta et al., 

2002).  
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Elemental concentrations typically vary across urban soils (Li et al., 2004, Ona et al., 

2006), however certain distribution patterns have been identified such as contamination 

near industrial areas (Kelly et al., 1996, Moller et al., 2005, Tijhuis et al., 2001) and 

pollution pathways associated with vehicular emissions (Chung Wong and Li 2004, Kelly 

et al., 1996, Li et al., 2004, Manta et al., 2002).  

2.1.3.2 Organic Pollutants 
Similar to certain elements, organic pollutants such as Polycyclic Aromatic Hydrocarbons 

(PAHs) and Polychlorinated Biphenyls (PCBs) have been found in elevated levels in 

urban soils (Garcia-Alonso et al., 2003). Moreover, Mielke et al., (2001) identify a strong 

association between PAHs and heavy metals in urban soils of New Orleans. 

Consequently when assessing environmental quality it appears that urban soil 

contaminants should not be examined in isolation. Additionally, attempts should be made 

to integrate physical and biological properties when investigating urban soils, for instance 

Scharenbroch et al., (2005) suggest time since initial disturbance is inversely related to 

stability of physical, chemical and biological soil properties. This suggestion is supported 

by Nora et al., (2005) who advocate investigating soil chemical and physical properties 

collectively and linking those properties to the function of urban soils as plant, faunal and 

microbial habitats. 

2.1.4 The Historical Legacy of Urban Anthrosols 

Since the advent of urbanisation humans have inadvertently altered physical and chemical 

soil properties (Griffith 1980) the nature of which is determined by management and 

accumulation of anthropogenic waste materials (Alexandrovskaya and Alexandrovskiy 

2000, Rathje and Murphy 2001). Urban soils therefore provide a unique opportunity to 

reconstruct past activities, which traditionally may have been overlooked owing to lack of 

material evidence (Terry et al., 2004). Research on the historical legacy of urban 

Anthrosols is limited in comparison to the overwhelming focus on contamination of 

contemporary urban soils. However studies demonstrate the utility of urban soils in 

reconstructing human activities in space (Bull et al., 2001, Wells 2004) and time 

(Shahack-Gross et al., 2005, Alexandrovskaya and Panova 2003). Current knowledge 

regarding past urban soil amendments is reviewed hereafter. 

2.1.4.1 Occupational Sequences 
Permanent human settlement modifies urban soil properties resulting in elemental 

enhancement (Griffith 1980) and changes in certain physical properties such as colour, 

depth and organic matter content (Aston 1998). Investigation of these changes has 
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enabled the identification of distinct phases of site activity such as population decline and 

urban abandonment between the Roman and Medieval periods as inferred by ‘Dark Earth’ 

(Macphail et al., 2003, Ottaway 1992). Similarly Alexandrovskaya and Panova (2003) and 

Alexandrovskaya and Alexandrovskiy (2000) reconstruct soil formation history through 

characterisation of successive deposits in Moscow, for example the medieval habitation 

layer is enriched in construction debris and waste materials such as charcoal, lime and 

timber, and has maximum concentrations of Pb, Cu and As attributable to industrial 

processes. Analysis of soil and sedimentary sequences has also been used to explore 

how individual space within a site is used over time. Shahack-Gross et al., (2005) identify 

successive ‘fill’ and ‘floor’ depositional units from Late Iron Age I to Early Iron Age II in a 

public space at Tel Dor, Israel. The fill layers comprise domestic debris such as bone, 

charcoal, plaster and shells and the floor layers reflect a change from fish processing to 

livestock penning. These studies demonstrate the value of using anthropogenic waste 

inputs in soil characterisation and for reconstructing past activities. 

2.1.4.2 Elemental Enhancement  
Aston (1998) proposes five ways elemental composition influenced by past activities; 

human habitation, stalled animals, use of fires/hearths, metal working and other 

processing activities. It is therefore recognised that multi-element analysis of urban soils 

can provide information regarding the nature of past activities and the spatial distribution 

of their associated deposits. This is especially resonant when preservation of 

archaeological remains is limited, for example Cook et al., (2005) identify three elemental 

hotspots in a Roman house complex, Silchester providing evidence for previously 

unidentified working of copper alloys, gold and silver, and potentially lead. Where artefacts 

have been recovered examination of elemental distributions serves to substantiate space 

use patterning. Terry et al., (2004) associate midden refuse with elevated levels of P 

indicating areas of food preparation, consumption and storage at Aguateca, Guatemala. 

Moreover artefacts associated with crystal processing are linked to enhanced Fe 

concentrations indicative of specific workshops. 

2.1.4.3 Elemental Signatures 
Elemental signatures can be used to distinguish between anthropogenic deposits. Wells 

et al., (2000) differentiate between kitchen, workshop, craft and ceremonial middens using 

specific elemental signatures of ancient Anthrosols in residential areas of Piedras Negras, 

Guatemala. Wells (2004) also delineates manufacturing, ritual and domestic functional 

areas using elemental signatures and links these areas to their associated middens at El 

Coyote, Honduras. Analysis of elemental distributions in the urban environment, therefore, 
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provides a valuable tool for characterising and discriminating between deposits and for 

hypothesising which activities led to the formation of certain Urban Anthrosols. Spatial 

analysis of anthropogenic elements is identified as a necessary technique for more 

detailed investigation of waste disposal and management in Scottish Royal burghs. This 

recognition also follows Terry et al’s., (2004) recommendation that studies are needed in 

regional contexts to evaluate the effect of different climatic conditions and local soil 

properties on elemental concentrations. 

2.1.4.4 Soil Improvement 
The impact of past human activity is not confined to urban centres in isolation. Bull et al., 

(2001) present evidence to suggest that during the Minoan period domestic waste was 

transported from the main site of occupation on Pseira Island, Crete and applied to nearby 

agricultural terraces (Figure 1). Similarly the occurrence of Terra Mulata, an Amazonian 

Black Earth, is attributable to intentional application of anthropogenic wastes to 

agricultural fields surrounding high density pre-Columbian Amerindian settlements 

(Sombroek et al., 2002). Analyses of urban environments and associated waste disposal 

should therefore extend to surrounding areas likely to have been affected by central urban 

activities.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Cross section of terrace P1 Pseira Island, Crete showing Minoan potsherd scatters 
indicative of systematic spreading of household wastes across the cultivated landscape as 
a fertiliser (Bullock et al., 2001: 227) 
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2.1.5 Summary 

Urban Anthrosols are distinctive owing to their location and that their properties are 

modified through waste amendments. Much consideration has been given to how these 

properties reflect current human influence. However, recent studies indicate the potential 

of investigating Urban Anthrosols to reconstruct past human activities in space and time. It 

is therefore assumed that urban soils in and near to Scottish Royal burghs will exhibit a 

historical legacy. Accordingly the following sections provide an overview of Royal burghs, 

environmental conditions and existing evidence for soil modification.   
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2.2 Waste Sources and Management in Royal Burghs 

2.2.1 Medieval Origins of Urbanism  

Despite absence of evidence, it is likely that pre-urban nuclei existed in Scotland before 

the 12th century AD (Dicks 1983). However, it was not until David I (1124-1153AD) whose 

Anglo-Norman policies resulted in the founding of a series of Royal burghs in the central 

belt and lowlands, that urbanism in Scotland was clearly identifiable (Adams 1978). Royal 

burghs engaged in a reciprocal relationship with the crown, for example, property was 

granted under permanent feudal tenure to burgesses in return for rents and personal 

services for the security of public peace. Similarly charters detailing privileges such as the 

right to engage in overseas trade and hold markets were granted in return for payment of 

customs duties (Adams 1978).  Other burghs founded increasingly during the Medieval 

period include Baronial (burghs erected after royal petition from local barons) and 

Ecclesiastical burghs (burghs created by the church). These burghs shared many 

similarities with Royal burghs such as having planned towns and structured societies but 

differed in that overseas and regional domestic trade was prohibited. Unsurprisingly 

therefore, Royal burghs endured as the dominant economic force throughout the medieval 

period (Whyte 1997).  

2.2.1.1 Morphology 
Burghs with medieval origins are morphologically distinct. The fundamental component of 

urban planning was the burgage plot. Burgage plots were units ownership manifested in a 

predetermined strip of land usually fronting onto the main street (Adams 1978, Hall 2002) 

(Figure 2, Figure 3). The dense nature of these long and narrow plots meant access for a 

maximum number of plots holders to the central main street. This ‘High Street’ often acted 

as the market place whereby traders operated from stalls and booths attached to the front 

of houses and workshops (Coleman and Smith 2004). Consequently most burgh plans 

exhibit the single street system, although some, mostly east coast burghs, comprise two 

parallel streets (Figure 4). Medieval planning is still clearly identifiable in many burghs 

today, especially those subject to minimal commercial development and infilling.  
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Figure 2: 16th century AD map of the Royal Burgh of Dumfries, Dumfries and Galloway 
shown as a single street of dwellings with burgage plots, taken from the Pont Manuscripts 
(Image © National Library of Scotland, Licensor www.scran.ac.uk)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Edinburgh c1460AD comprising Town (Royal Burgh, Burgh of Canongait), School 
(Castle), and Cloister (Holyrood Abbey, St. Giles Cathedral) (Image © Patrick Geddes Centre 
for Planning Studies, University of Edinburgh, Licensor www.scran.ac.uk)  
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Figure 4: Medieval Street Patterns: Newburgh, Fifeshire 1855-56AD example of single street 
system and burgage plots and Crail, Fifeshire 1855AD example of parallel street system and 
burgage plots (Image produced from the www.old-maps.co.uk service with permission of 
Landmark Information Group Ltd. and Ordnance Survey) 
 

2.2.2 Post-Medieval Urban Growth  

The post-medieval period, spanning 1500 to c1800AD (Darvill 2002, Starn 2002) is 

characterised by unprecedented urban growth emergent from a stagnant population at the 

turn of the 16th century AD (De Vries 1984, Whyte 1999) (see Table 1, Table 2). 

Consequently existing towns expanded, which often meant site intensification as opposed 

to outward growth (Whyte 1997, 1999) and increasing numbers of new Royal and Baronial 

burghs were created (Devine 2000). The resultant urban hierarchy was dominated by an 

abundance of small towns with comparatively few large centres and even less middle size 

settlements (Whyte and Whyte 1991).  

 
Table 1: Urban Percentage of total population of Scotland, 1500-1800AD and percentage 
increase in urban population from previous date (from De Vries 1984:39) 
 
Date AD 1500 1550 1600 1650 1700 1750 1800 
% Urban Population 1.6 1.4 3.0 3.5 5.3 9.2 17.3 
% Increase  * 0 130 17 51 124 132 
 
Table 2: Percentage of total population in Scottish towns, mid 17th century to late 18th 
century AD (from Whyte 1989:28) 

 
 
 
 
 
 
 
 
 

 

Date AD 1639 1690s 1755 1790s 
Capital 2.7 4.5 4.5 5.6 
Other towns >10,000 3.5 2.7 4.4 10.8 
5000-9999 3.3 1.6 3.2 3.2 
2000-4999 2.2 3.1 4.2 6.4 
1000-1999 ? 3.5 ? 6.3 
500-999 ? ? ? 3.4 
Total in towns >2,000 11.7 11.9 16.3 26.0 
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Sewerage and municipal rubbish collection was absent in most towns until the 19th 

century AD, hence alternative systems of waste management must have been in place to 

accommodate waste and any subsequent rises in volume. Given that changes in urban 

soil properties are determined by accumulation of anthropogenic wastes, it is proposed 

that investigation of soils in and near to Royal burghs will provide evidence for past 

processes associated with waste management. 

2.2.3 Waste Sources 

Royal burghs would have undoubtedly produced considerable volumes of rubbish from a 

variety of potential sources (Figure 5). The following section summarises the principal 

contributors.   

Food Stuffs 

Animal Excreta 

Industrial Activities 

Urban Livestock 

Plaster and Mortar 

Wattle and Daub 

Burning 

Thatch 

Domestic Fuel 
b

c d

a 

 
Figure 5: Graphical Summaries of Potential Waste Sources in the Medieval/Post-medieval 
Urban Environment (a) Reconstruction of market scene at St. Johns Kirk, Perth (b) 
Reconstruction of Upperkirkgate, Aberdeen backlands (c) Reconstruction of backland 
manufacturing in Meal Vennel, Perth (d) Reconstruction of Upperkirkgate, Aberdeen 
backlands (Images © Aberdeen City Council, Licensor www.scran.ac.uk) 
 

2.2.3.1 Human and Animal Excreta 
Absence of sanitation coupled with widespread holding of urban livestock meant that 

human and animal excrement was a significant source of organic urban waste (Croly 

2003, Ewan 1990). Comparable accounts from 16th century Prescott, England suggest 
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that filth was a pervasive feature of historic small towns, where human excrement is 

documented on pavements, in the church and piled property windows (King 1992). 

Likewise in Scottish burghs excreta accumulated on the burghs’ front streets forming so 

called dunghills (Croly 2003, Mair 1988). Annoyances pertaining to excreta were confined 

to issues of smell and access given that links between disease and health had not yet 

been established. Archaeological evidence for excreta and its management is limited 

hence analysis of certain soil properties should reveal the legacy of this material in Royal 

burghs.  

2.2.3.2 Building Materials 
Buildings typically comprised combinations of disposable materials such as wattle and 

daub, timber, clay, stone, turf, heather, straw and rushes (Reid 1909, Stones 1987) 

Accounts of early 18th century AD domestic dwellings at Monymusk, Aberdeenshire 

indicate the nature of materials used in domestic dwellings; reference is made to walls 

comprising “wooden supports packed with rough stones and clay topped with 1 to 2 feet of 

turf and the roof consisting of branches overlain with thinly pared turf which was in turn 

overlain with heather or thatch” (Hamilton 1945). Buildings were repaired and rebuilt on a 

regular basis, for example earth built houses in Kiltearn in the late 18th century AD are 

cited as “being razed to the ground once in every 5 or 7 years, when they are added to the 

dunghill” (Robertson 1791-99:289) likewise, the earthy parts of houses in Criech are 

referred to as being added to the dunghill and being rebuilt again (Rainy 1791-99:375-

376).  

2.2.3.3 Fuel 
Fuel was fundamental to daily life given that most domestic activity such as heating, 

lighting and cooking, and many industrial processes were dependant on fire. Peat, wood, 

moss and coal were principal sources however, the precise nature and abundance used 

varied in accordance with proximity to local resources, access rights, resource pressure 

and, with reference to coal, market forces (Bruce 1791-99, Molleson 1791-99, Ogilvy 

1791-99, Oram 2006). Constant burning ultimately produced considerable quantities of 

waste products including ash, charcoal and charred material, collectively referred to as 

fuel residues. 

2.2.3.4 Industrial Wastes 
Royal burghs supported a variety of industrial activities; some were common to all burghs 

especially those related to agriculture and processing animals (Spearman 1988) however, 

by the 16th century AD economic diversification resulted in burghs taking on distinct 

occupational structures (Whyte 1997). Accordingly both similarities and differences in 
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types of industrial waste are expected between towns. It is likely that processing and 

disposal of primary and secondary materials affected soil properties, however the nature 

and location of impacts remains largely unknown (Spearman 1988). It is proposed that 

basic distinctions between burghs with differing principal economies can be made, for 

example it is expected that coastal burghs generated higher levels of marine waste such 

as fine fish bones and shell compared to inland burghs. 

2.2.4 Waste Management 

Historical evidence for waste management is largely focussed on the occurrence of 

dunghills. Dunghills comprising human, animal, domestic and industrial waste were 

ubiquitous along the streets of historic small towns acting as storage points of urban 

rubbish (Croly 2003, Dillon 1953). These waste heaps were important sources of fertiliser 

and intrinsically held monetary value. Accordingly they were bought, sold and auctioned to 

farmers, exchanged for food by the poor and even confiscated by burgh councils to 

generate revenue or for application to burgh lands without payment (Cook 1867, Mair 

1988, Smout 2000). Application of dunghills to burgh acres, agricultural land belonging 

directly to the burgh, was therefore a common practice (McAlpine and Rolland 1791-99, 

Smout 2000, Stones 1987, Whyte 1997, Yeoman 1995).  

 

Burgage plots to the rear of burgesses’ houses flanking the central main street were a key 

area in terms of managing urban waste (Adams 1978, Coleman and Smith 2004, Ottaway 

1992) (Figure 6). This ‘Backlands’ zone was distinctive in Royal burghs in that it was used 

for a variety of activities including domestic and industrial accommodation, holding 

livestock, small scale cultivation and waste disposal (Ewan 1990). The precise nature and 

intensity of backland use differed within and between burghs, responding in space and 

time to economic and demographic factors (Coleman and Smith 2004, Hall 2002, Stones 

1987, Whyte 1997). Nevertheless garden cultivation was an enduring backland activity; 

hence it is likely that dunghills were applied to open burgage plots. Moreover, mixtures of 

straw and dung from adjacent yards and byres also provided an immediate and 

convenient source of fertiliser (Coleman and Smith 2004, Hall 2002, Oram 2006).  
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Figure 6: Mid 17th century AD view of Canongate, City of Edinburgh. Note differences in land 
use within and between burgage plots (Image © Royal Commission on the Ancient and 
Historical Monuments of Scotland, Licensor www.scran.ac.uk) 
 

2.2.5 Summary 

The generation of waste was an integral part of urban life during the medieval and post-

medieval periods. Limited aspects of the nature and management of waste sources can 

be extrapolated from documentary evidence and archaeological survey. However, 

considering that soil within and near Royal burghs presents a record of past waste 

disposal practises, it is proposed that investigation of soil properties will enable systematic 

insight into the legacy of waste both within and between historic small towns. The 

following section introduces existing evidence for urban soil modification in Scottish 

burghs.  
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2.3 Evidence for Past Soil Modification in Royal Burghs 

Understanding soil modification in Royal burghs is limited to subsidiary information gained 

from urban excavation and a small number of recent studies integrating archaeology and 

soil science (Carter 2004, 2001, Davidson et al., 2006, Golding and Davidson 2005). 

Nevertheless, collaborative evidence indicates the existence of distinct changes in certain 

soil properties attributable to past waste amendments.  

2.3.1 Deepened Soil Deposits  

Deepened soil deposits are a distinctive feature of Royal burghs occurring in both large 

(Bowler 2004, Carter 2004, 2001, Cachart 2000, Coleman and Smith 2004, Rains, Hall 

1997) and small (Dercon et al., 2005, Davidson et al., 2006, Golding and Davidson 2005, 

Hall and Bowler 1997, Hall et al., 1998, Lowe 2001, Spearman 1982) towns. Phases of 

deepened topsoil are characteristically varied resulting in pronounced spatial 

heterogeneity, for example accumulated deposits are identified across Holyrood, 

Edinburgh ranging from 0.8 to 2.2m (Carter 2004). Similarly, Lowe (2001) notes 

anthropogenic soils ranging in depth from 0.5 to 1.5m at Crail, Fife (Figure 7). The extent 

of topsoil depth spatial variability is further demonstrated at Nairn, Nairnshire (Davidson et 

al., 2006) and Pittenweem, Fife and Lauder, Borders (Golding and Davidson 2005) where 

topsoil depth survey results indicate stark differences both within and between burgage 

plots.  

 

It is proposed that deepened soil deposits result from sustained past waste material 

addition. Carter (2004) attributes deepened topsoil at Holyrood, Edinburgh to continual 

application of mineral material derived from ash and turf as indicated by the presence of 

burnt coal, burnt sedimentary fragments and fine burnt residues. Furthermore, considering 

the occurrence of pottery, bone, mortar and shell, it is argued that periodic spreading of 

midden material onto cultivated burgage plots was the dominant mechanism of 

accumulation. Aside from Carter (2001, 2004) there have been limited attempts to 

systematically understand how and why these deposits formed. Accordingly, this study will 

investigate the nature of deepened soil deposits spatially and through physical and 

chemical characterisation.  
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c) 1-1.5m

b) 0.4-0.8m

a) 1-1.8m

Figure 7: Crail from the air (a) Deepened anthropogenic sediments, west end of Nethergate, 
(b) Shallower sediments, east end of Nethergate, (c) Deep soils with medieval and mixed 
medieval and post-medieval assemblages, attributed to medieval cultivation of the burghs 
infield and/or off loading ballast by Dutch herring traders (Lowe CE, 2001, Image © Colin J M 
Martin, Licensor www.scran.ac.uk) 
 

2.3.2 Backland Garden Soils 

The term ‘garden soil’ refers to deep, homogenous, highly mixed soil resulting from 

intensive cultivation (Carter 2001, Wordsworth and Clark 1997). Although garden soils are 

recognised in many burghs, for example, Forfar, Angus (Spearman 1982), Elgin, Moray 

(Hall et al., 1998) and North Berwick, East Lothian (Hall and Bowler 1997), they have 

received most attention in St Andrews, Fife. It is accepted that garden soils represent 

deliberate and sustained improvement in the backlands of St Andrews (Cachart 2000) 

however, significant conjecture exists regarding processes leading to their accumulation.  

 

Clark (1997) proposes that these deposits imply a major change in post-medieval land 

use whereby backland activity ceased, land was turned over to cultivation and accordingly 

material was imported for horticulture, hence giving rise to the widely accepted ‘Imported 

Garden Soil Model’. Carter (2001) suggests an alternative ‘Occupation Deposit Model’ 

attributing accumulation of mineral sediments to continual replacement of building 

materials associated with intensive occupation of the backlands. Considering that 

differentiation between topsoil introduced for cultivation and turf used in building 

construction is problematical, resolution of this issue seems unlikely. Moreover, given that 
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both scenarios could have produced similar deposits, a potential third hybrid model of the 

two theories is plausible.  

2.3.3 Stratigraphy and Dating 

Garden soils comprising two distinct layers, a lower brown layer attributable to the 

medieval period and an upper darker layer to the post-medieval period, have been noted 

in several burghs (Cachart 2000, Carter 2001, Hall et al., 1998, Spearman 1982). Aside 

from differences in colour, differentiation of soil properties between these layers has not 

been elucidated. Accordingly this project will investigate differences in layer composition. 

Despite this elementary distinction within some garden soils, urban soils associated with 

Royal burghs do not exhibit definite stratification rendering relative and absolute dating 

ineffective.  

2.3.3.1 Relative Dating 
Analysis of artefacts from garden soils indicates that deposit accumulation occurred 

throughout the medieval and post-medieval periods, for instance, pottery dating to 14th-

15th centuries AD and clay pipe fragments typical of 17th-18th centuries AD have been 

identified at the Market Street excavation, St. Andrews (Hall 1997). Similarly, at the 

Rumford and Westgate sites in Crail, mixed assemblages of medieval and 17th century AD 

pottery sherds have been recovered in association with deep soil, bone and glass (Lowe 

2001). Nonetheless, reliable determination of deposit stratification is problematical, for 

example although Ross and Clark (1997) propose successive phases of cultivation from 

14-15th and 16-17th centuries AD at the Cinema House site, St. Andrews, a lack of 

dateable material from primary contexts impedes interpretation. In addition to residual 

finds, modern activities also hinder chronological establishment. Excavation at Castle 

Street, St. Andrews revealed intrusions resulting from modern services coupled with small 

quantities of modern pottery reworked into phase II soil deposits (Cox 1997). Moreover, it 

is recognised that dates of artefact manufacture and deposition are separate entities. Hall 

(1997) suggests that although phase V homogenous garden soil deposits at Market 

Street, St. Andrews are dominated by 14-15th AD century pottery sherds, it is possible that 

such artefacts may not relate to earlier occupation of the site if soil was imported and 

dumped. 
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2.3.3.2 Absolute Dating 
Utilisation of techniques such as radiocarbon (14C) and optically stimulated luminescence 

(OSL) is problematic for chronological dating of soils formed over the medieval and post-

medieval periods. This is especially true for urban soils in Royal burghs where it is argued 

that fundamental assumptions associated with these methods cannot be met. Primarily 

radiocarbon dating relies on intact stratigraphy with minimal reworking and bioturbation 

(Rapp and Hill 1998), yet presence of artefacts in residual contexts, modern intrusions 

and evidence for past cultivation in garden soils (Hall 1997, Ross and Clark 1997) infer 

high uncertainty as to whether this prerequisite can be met. Age contamination within 

these soils is also a possible problem especially from fossil carbon sources such as 

limestone associated with building mortar, paints and washes (Renfrew and Bahn 1997). 

Moreover, turf material associated with building construction and fuel has an existing 

radiocarbon age, hence soil would appear too old (Bokhorst et al., 2005). Radiocarbon 

dating is further dismissed as a viable technique for dating post-medieval deposits given 

its upper dating edge of 300 years BP (Taylor 2001). 

 

Dating post-medieval deposits is possible using OSL dating which spans 100 to           

100-200 000 years BP (Grϋn 2001). This method relies on the OSL signal of mineral 

grains being reset to zero upon exposure to daylight prior to deposition. However 

incorporation of material such as paired turf from building construction whose signal is not 

necessarily reset at deposition may affect sample age, though Bokhorst et al., (2005) 

suggest this effect is minor. The main concern using OSL to date post-medieval soils is 

low precision (Cluett 2007, Feathers 2003, Sommerville et al., 2001). This is not 

necessarily an issue when constructing age models over millennia however, dates with 

errors of ± 100-300 years would result in considerable overlap over this shorter time 

period. Aside from problems associated with absolute dating techniques, it is argued that 

dating urban soils associated with Royal burghs is ultimately meaningless considering the 

mixed and re-worked nature of deposits. Furthermore, given that Royal burghs originated 

and developed throughout the medieval and post-medieval periods, it seems logical that 

impacts on soil also date to those periods.  
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2.3.4 Hinterland 

Deepened soil deposits are not exclusive to the backlands as demonstrated at Nairn, 

Nairnshire (Davidson et al., 2006, Dercon et al., 2005), Pittenweem, Fife and Lauder, 

Borders (Golding and Davidson 2005). Evidence from deepened phases at Nairn 

indicates that these deposits are testament to sustained urban waste material addition. 

Dercon et al., (2005) attribute finer material in the A horizon to mineral accumulation 

through the addition of turves used in buildings, sand added to burgh dunghills and sand 

in association with seaweed application. Deepened topsoil in Nairn’s hinterland is in 

agreement with the location of burgh acres cultivated throughout the post-medieval 

period, indicating that urban waste was intentionally used to enhance soil quality 

(Davidson et al., 2006) (Figure 8) . Moreover, analysis of total phosphorus concentrations 

revealed a peak in the AP3 horizon corresponding to the lowest old cultivated layer. 

Despite these initial findings little is known about the occurrence, location and physical 

and chemical legacy of deepened hinterland soil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Depth of topsoil in and near the Burgh of Nairn (left), distribution of rigs in burgh 
acres 1790AD (right) (Davidson et al., 2006: 780) 
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2.3.5 Summary 

Results from archaeological excavation and geoarchaeological studies suggest that 

management of urban waste has had long lasting impacts on soil both within and near to 

Royal burghs. However, no attempt has been made to systematically identify, characterise 

and compare deposits arising from waste material addition. Consequently the following 

chapter provides a research framework detailing the project aims and objectives 

addressing these knowledge gaps. 

 - 54 -



3 Investigating Urban Anthrosols in Historic Small 
Towns: A Research Framework 

This chapter presents the adopted research framework for investigating urban anthrosols 

in small historic towns and outlines the project’s aims, objectives and hypotheses. The 

research framework is centred on a refuse flow model developed through a review of 

archaeological concepts of rubbish,  contemporary and historical perceptions of rural-

urban interaction and previously identified factors affecting material procurement, 

management and disposal in Royal burghs. 

3.1 Archaeological Concepts of Rubbish 

3.1.1 Defining Rubbish 

Rubbish can be defined socially as opposed to physically (Thompson 1979, 2003). This 

idea is manifested in Rubbish Theory (Figure 9) where it is proposed that everything we 

deal with can be divided into three categories, transient (things with an estimated lifetime 

within which they continually lose value to the point where they have none), durable 

(things that have an unlimited lifetime) and rubbish (all items that are neither transient nor 

durable). To accommodate constantly shifting social definitions of rubbish, transfers 

between categories are possible, for example from transient to rubbish and rubbish to 

durable. Rubbish Theory incorporates social and economic fluidity hence is a useful tool 

for conceptualising the status of material culture within past societies. Essentially 

understanding what constituted waste in particular cultures and periods is dependant on 

the ability to deduce past social perceptions however caution should be taken to avoid 

superimposing contemporary values. 

 

Durable 
Value increases with time 

 Transient 
Value decreases with time  

 

Rubbish 
No value, no time 

 

 

 

 

 
Figure 9: ‘Rubbish Theory’ model showing cultural categories of objects and possible 
transfers between them (Thompson 2003: 322, 1979: 10) 
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3.1.2 Garbology 

The study of rubbish is a recognised archaeological sub-discipline. More specifically it can 

be argued that garbology “the study of a community or culture analysing its refuse” 

(Soanes and Stevenson 2006) is a fundamental approach in understanding the nature 

and formation of archaeological records. Garbology was first pioneered in the 1970s by 

William Rathje (1974) who argued that present societies should be systematically 

investigated using archaeological enquiry to advance current understanding of past 

cultures. This was in contradiction to traditional archaeological theory where antiquity is 

understood using evidence from the past or correlates to the present. The University of 

Arizona Garbage Project (Rathje 1974) was the first systematic attempt to study 

contemporary discard behaviour. One of the key trends identified was that high income 

households are associated with low rubbish generation. This finding challenges 

established theories which assume conspicuous consumption in ancient societies is 

related to social elites. Moreover, it was found that different racial and economic groups 

exhibited different discard behaviour in terms of what and how much they threw away.  

 

This novel approach to understanding waste has been largely adopted by social 

anthropologists (for example, Edwards 2004, Harpet 2003, Pessel 2006, Rathje and 

Murphy 2001b). Within archaeology the impact of garbology has been less pronounced. 

Nevertheless, at a generic level its principal theories provoke enquiry into notions of race, 

place and status and their role in waste management and discard behaviour in past 

societies. 

3.1.3 Classification of Rubbish Deposits 

Concentrations of rubbish discovered on archaeological sites are usually referred to as 

midden deposits regardless of their spatial characteristics and content. However, it is 

argued that a basic distinction between middens and ‘refuse rich’ deposits exists. Middens 

are spatially discrete features and have identifiable modes of construction, constituents, 

resource roles and spatial associations (Needham and Spence 1997). In contrast, 

indistinct areas of general waste accumulation can be described as “deposits rich in 

refuse”. This basic distinction alludes to differences in discard behaviour.  

 

A systematic attempt to classify rubbish disposal according to artefact use and disposal 

histories is proposed by Schiffer (1972:156) in response to the consensus in traditional 

archaeology that “spatial patterning of archaeological remains reflects the spatial 

patterning of past activities”. Three categories of rubbish classification are proposed, 
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primary refuse (rubbish discarded at its location of use), secondary refuse (rubbish 

discarded away from its location of use) and de facto refuse (material abandoned at the 

use location but still having a perceived re-use value, for example large household items 

left upon site abandonment) (Figure 10). In addition, Haydon and Cannon (1983) propose 

a fourth addition to this system, provisional refuse (stored refuse having a perceived re-

use value) which differs from de facto refuse in that it infers intentional storage rather than 

intentional abandonment.  These categories are useful for understanding the social 

perception, use and discard behaviour associated with material culture. Moreover, this 

model provides a framework for investigating life cycle histories of material omitted from 

the archaeological record. 

 

 

 

 

 

 

 

    Use 

Opportunity for storage and/or 
transport 

Archaeological 
Context 

Systemic 
Context 

de facto  

Secondary  

Primary  

 Transport    

 Discard 

Manufacture   Procurement 

System under analysis  

 
Figure 10: Flow model showing artefact histories and proposed rubbish categories (Schiffer 
1972:162) 
 

3.1.4 Refuse Cycle Flow Models 

It is argued that the key to understanding past societies is through the ability to relate 

archaeological finds to systemic structures (Schiffer 1976). This has been realised in 

refuse cycle flow models, where ‘refuse cycle’ is defined as a “conceptualisation of refuse 

movement and management” (Needham and Spence 1997:77). These models make a 

basic distinction between the systemic context (life cycles) and archaeological context 

(incorporation and burial) (Figure 11 and Figure 12). Material flow moves generally left to 

right from system processes to the archaeological record. However re-routing is possible, 

for example recycling which refers to routing of an element at the completion of use to the 

manufacture process of a different element (Schiffer 1972).  

 

Alternatively, Rathje and Murphy (2001a) propose that rubbish management in antiquity 

can be accounted for by four universal methods; dumping, burning, turning a material into 
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Insight into the social and economic environment of historic towns is essential for 

understanding the nature and management of waste materials. Schematic models are 

identified as a useful tool for conceptualising and visualising material flow in small historic 

towns, although it is noted that such models are not prescriptive representations of reality.  

3.1.5 Summary 

Figure 11: Flow model of adapted artefact life histories (LaMotta and Schiffer 2001:20) 

 

 

 

 

 

 

 

 

something that can be useful and source reduction (minimising the volume of material 

goods that comes into existence in the first place). It is argued that all civilisations have 

used these methods simultaneously to some extent. These proposals do not discount 

refuse cycle models, conversely they reiterate fundamental concepts such as ‘dumping’ 

which is akin to discard processes and ‘turning material into something useful’ which is 

analogous to re-use flows. 
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Figure 12: Refuse cycle flow model for possible stages in artefact histories (Needham and Spence 1997:78) 
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3.2 The Nature and Significance of Rural-Urban Interaction 

In developing a research framework for investigating urban anthrosols in small historic 

towns it is important to consider what is meant by the terms rural and urban with specific 

reference to their relationship with each other. Determining the nature and significance 

of urban-rural interaction is vital in understanding resource flows, particularly for waste 

materials in historic towns. The following section looks at key concepts associated with 

rural-urban interaction derived from a brief review of contemporary and historical studies.   

3.2.1 Contemporary Research of Rural-Urban interaction 

Whilst the terms ‘rural’ and ‘urban’ serve as meaningful concepts for descriptive 

purposes, their value in understanding complex spatial, sectoral and economic trends is 

subject to debate (Lin 2001, Nivalainen and Schimdt-Thome 2003). Their comparability 

on an international level is also questioned given that nations discriminate between rural 

and urban according to varying population thresholds and densities (Tacoli 1998). It is 

proposed that investigating the nature of rural-urban interaction is a more objective 

approach than analysis of the spatial categories themselves (Gould 1987). Implicit within 

rural-urban interaction is the notion of a spatial rural-urban continuum (Aguilar and Ward 

2003). It is therefore argued that the idea of a rural-urban dichotomy in contemporary 

and historic towns is a false divide.  

3.2.1.1 Rural-Urban Fluxes 
Fluxes of people, commodities, knowledge, assets and social transactions form the 

basis of rural-urban interaction (Kaida and Maharjan 1990, Lin 2001). Determining the 

nature and significance of these linkages is vital in evaluating society and economy in 

towns both past and present. Current research focuses largely on population fluxes in 

developing countries with specific reference to migration scale, migration direction, 

gender, diaspora and age selectivity (Fekade 1995, Gould 1987, Lin 2002, Tacoli 1998, 

Tanner 2003). It is argued that understanding people as agents of change in rural-urban 

interaction is important considering their decisions economically, politically, socially and 

culturally define the urban environment (Coppack 1998). Reconstruction of population 

fluxes is problematic for historic towns considering the limited nature of past 

documentation in terms of the number of records which diminishes with time and the 

recognition that surviving sources do not necessarily record information relevant to 

certain study questions. 
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3.2.1.2 Rural-Urban Interaction Zones 
Physical manifestations of rural-urban interaction are noted in contemporary cities. 

Some examples are discussed hereafter for a variety of urban scales ranging from mega 

cities to local urban centres, whilst scale differs it should be noted that similarities exist in 

the nature and extent of rural-urban interactions. Lin (2001) delineates a zone of rural-

urban interaction adjacent to and in between metropolitan centres in the Pearl River 

delta, China. This area is characterised by functional duality comprising a mixture of 

agriculture and industrial activities. Moreover Aguilar and Ward (2003) note two distinct 

rural-urban interaction zones in Mexico City, Mexico collectively termed the peri-urban 

hinterland. The inner peri-urban zone is functionally integrated with the city core and is 

typified by a mixture of urban and rural land uses. In comparison the outer peri-urban 

zone consists of more remote settlements outwith the metropolitan area but crucially 

they remain contiguous to it. Urban-rural interaction zones are not specific to developing 

or industrialising cities. Nivalainen and Schmidt-Thome (2003) estimate that up to one 

quarter of Finland’s population live in distinct rural-urban interaction zones which are 

defined as neighbourhoods of urban centres consisting of a high proportion of 

commuters. Multi-agent system models of land-use/cover change (MAS/LUCC) are 

identified as important tools for investigating complex spatial relationships associated 

with rural-urban interaction. MAS/LUCC models are unique in that they integrate aspects 

of the physical landscape with political, economic and cultural decision making 

processes. Accordingly they can be applied to a variety of scenarios ranging from 

natural resource management and agriculture to modern and historical settlements (for a 

comprehensive review of MAS/LUCC models refer to Parker et al., 2003). 

3.2.1.3 Sectoral Interaction 
Principles of rural-urban interaction are also manifested in sectoral interactions. Sectoral 

interactions are classed as rural activities taking place in urban zones and urban 

activities occurring in rural zones (Tacoli 1998). One of the most prevalent cases of 

urban-rural sectoral interaction is the recent increase of urban agriculture in developing 

cities as a response to escalating poverty and food prices (Tacoli 1998). Likewise some 

rural areas are becoming more urban in nature, for example Tanner (2003) notes how 

competition among municipalities to present a more ‘modern’ and urban way of life has 

resulted in infrastructural developments such as water and electricity in the north-

western province of Jujuy, Argentina. 
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3.2.2 Rural-Urban Interaction in Historic Towns 

3.2.2.1 Hinterland Resource Flows 
Investigation of rural-urban fluxes in historic towns is limited to analysis of surviving 

physical remains. Accordingly most studies focus on flows of natural resources, 

foodstuffs and manufactured commodities between hinterland and town, for example 

bone evidence from medieval and post medieval Oslo, Norway suggests that cod was 

transported as cargo stock from the north whereas fish like haddock, ling, eel and flatfish 

were caught locally and brought in fresh (Schia 1994). Similarly archaeological and 

documentary evidence from medieval and post medieval Oxford indicates that although 

dairy herds were reared on the town’s common land, some cattle came from as far away 

as Berkshire as a result of cattle droving from Wales and the west of England (Wilson 

1994).  

 

The case study of Oslo also presents evidence for changes in hinterland resource 

supply and demand. Chemical analysis of 11-16th century AD iron suggests that 

hinterland production sites fell from 4 to 1 during this period. This can be explained 

through a decline in local bog iron sites coupled with increased dependence on Swedish 

mountain iron (Schia 1994). Moreover, it is recognised that reconstructing patterns of 

hinterland exploitation is useful for investigating society and economy of historic towns. 

This is demonstrated at Medieval Lϋbeck, Germany where shifts from local resource 

exploitation and agriculture to reliance on imported grain is explained by increased 

pressure on available space caused by accelerating urbanisation (van Haaster 1994). 

3.2.2.2 Evidence for Rural-Urban Zones and Sectoral Interactions 
Given the importance of rural-urban resource fluxes the existence of historic rural-urban 

interaction zones is not surprising, for example Wilson (1994) notes the importance of 

animal rearing and marketing at sub-urban and sub-rural zones within Medieval and 

Post-medieval Oxford. Moreover, Ciezar et al., (1994) identify a suburbanus on the 

periphery of Roman and Medieval Paris. It is suggested that this zone represents an 

urban food-belt which emerged as a response to declining or unstable rural food 

networks. This theory is supported by archaeological excavation which revealed 

habitation deposits, animal penning, animal bones and high soil phosphates.  

 

Regarding sectoral interactions, organic soil rich in phytoliths at the Roman Deansway 

Site, Worcester provide evidence for open air penning of herbivores and associated 

burning of animal manure and trampled soil from animal pens (Macphail 1994). 
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Moreover, high concentrations of faecal material and coprolites indicative of systematic 

dung spreading at 1st century AD Whittington Avenue Site, London infer that urban 

horticulture was an important practise in Romano-British towns (Macphail 1994). Soil 

management associated with urban horticulture is similarly recognised in late Medieval 

Lϋbeck, Germany where urban gardens were being intensively fertilised through dung 

application from as early as the 14th century AD (van Haaster 1994). 

3.2.3 Summary 

Evidence for resource fluxes, hinterland exploitation, suburbs and urban horticulture 

supports the notion of a rural-urban continuum in historic towns. Moreover considering 

that modern parallels are identified in contemporary towns and cities, it is argued that 

such rural-urban interactions are inherent in the development and continued existence of 

urban environments. The importance of appropriate nomenclature and provision for 

rural-urban interactions in developing a waste flow model for small historic towns is 

therefore recognised.   
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3.3 Research Framework 

3.3.1 Modelling Waste in Small Historic Towns  

The following section presents a flow model of waste movement in small historic towns 

(Figure 13) and discusses its component features. The purpose of this model is to act as 

a research framework for understanding management of different types of waste and to 

identify variables affecting waste procurement, movement and disposal, within and 

between historic small towns.  

 

 

 

 

 

 

 

 

 

 
Figure 13: Flow model of waste movement in small historic towns 
 

3.3.1.1 Town and Hinterland 
In the first instance a distinction is made between town and hinterland. The town zone 

corresponds to the built environment of historic towns hence is typically urban. In 

addition this zone encompasses areas characterised by rural-urban interactions and 

sectoral interactions accounting for activities traditionally classed as rural such as 

cultivation and animal rearing. The hinterland is a theoretical area of resource 

exploitation characterised by both rural-urban linkages and urban-urban linkages. The 

hinterland can therefore be defined at different scales ranging from national and regional 

to land immediately adjacent to the town. The town and hinterland are linked by rural-

urban fluxes of resources, goods and waste materials, hence are not mutually exclusive 

zones. The interdependence of town and hinterland is represented in the model by 

colour gradation as opposed to a definite boundary. Provision is therefore made for 
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shifting definitions of urban and rural, allowing reassessment of the nature and extent of 

town-hinterland interactions.  

3.3.1.2 Resource Flow 
Acquisition represents movement of materials from the hinterland to town. These 

materials range from locally available natural resources to manufactured trade goods. 

The precise nature and abundance of incoming materials is largely dependant on 

geographical location, proximity to local natural resources and industrial demand. These 

variables are often inextricably linked, for example fishing and trade being the dominant 

industries of coastal burghs. To a lesser extent materials can also be acquired from the 

town itself including animal meat, vegetables and dairy products. Acquired resources are 

incorporated into a cycle of use and re-use, for instance animal carcasses supply 

primary material for fleshers, tanners, leather workers, horners and candle makers. This 

is akin to LaMotta and Schiffer’s (2001) systemic context which features material reuse 

and recycling as key flows.  

3.3.1.3 Waste Flow and Deposition 
Materials with no remaining economic or cultural value are classed as waste (Thompson  

1979, 2003). Accordingly such materials transition to a cycle of waste management 

which is characterised by processes of storage and redistribution. Storage refers to 

temporarily holding waste at a given location, such as the use of dunghills. In contrast 

redistribution is concerned with material movement. Redistribution of waste can occur 

within the town itself, for instance to the backlands, and also in the hinterland.  

 

Deposition of waste falls into two categories, point and diffuse. This distinction 

discriminates between spatially discrete features such as middens and, deposits rich in 

refuse. Potentially these practises can occur in both the town and hinterland, for 

example town waste can be spread in town gardens and the burgh acres. Upon 

deposition, waste is incorporated in the soil matrix. It is suggested that the impact and 

magnitude of waste disposal diminishes with distance from the town core. The 

hypothesised distance decay effect of the impact of waste disposal on soil properties is 

reflected in graduation of colour from dark brown (town) to light brown (hinterland). After 

deposition, continual reworking of waste is expected in association with system loss of 

more mobile elements.  
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3.3.1.4 Model Limitations 
It is acknowledged that some scenarios do not readily follow the model, for example 

cattle have multiple roles such as producing milk, meat and as industrial raw materials. 

However it can be debated whether cattle dung is a resource or waste material given 

that it follows processes of storage, movement and deposition associated with waste 

material flows. Conversely dung is known to have held an economic value hence its 

place arguably belongs in the cycle of resource use and acquisition. Accordingly, it is 

expected that model modifications will be proposed upon discussion of the project 

findings.   

3.3.2 Aim and Objectives 

The project aim, objectives and hypotheses are stated below and are further presented 

in a hierarchical flow model (Figure 14). The proposed hypotheses are broad and relate 

to expected study outcomes.  

3.3.2.1 Aim  
Urban Anthrosols are distinctive owing to their location and that their properties are 

modified through waste material amendments. Much consideration has been given to 

how changes in soil physical and chemical properties reflect current human influence 

(Chapter 2) however, their role as a historical archive is only just being recognised. 

Recent studies indicate that urban soils reflect differences in past soil inputs over space, 

time and location. There has been no systematic attempt to account for the diversity and 

distribution of urban anthrosols either within or between historic towns. The aim of the 

study therefore is to characterise and understand the modes of urban anthrosol 

formation in historic small towns. 

3.3.2.2 Objective 1 
Discrete patterns in soil physical and chemical properties are identified both within and 

adjacent to historic towns. This is especially true for Scottish royal burghs where 

deepened phases of topsoil are identified in the medieval core and town hinterland. It is 

proposed that such trends are the legacy of past waste material inputs. The first study 

objective therefore is to establish the nature and diversity of urban anthrosols in and 

near to historic small towns. Accordingly it is hypothesised that differences in soil 

characteristics exist across burghs and their hinterland and that soil properties of urban 

anthrosols in and near to burghs are determined by past waste material amendments.  
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3.3.2.3 Objective 2 
Although trends in certain soil properties are replicated across historic towns, for 

example dark earth deposits and garden soils, differences both within and between 

historic towns are expected on account of past geographical, functional and economic 

diversity. Consequently, the second study objective is to characterise and account for 

the multiplicity of urban anthrosols in and near to historic small towns. It is expected that 

different types of urban anthrosol exist, that distributions of different urban anthrosols are 

related to functional zones and distributions of urban anthrosols are related to past burgh 

functions and economies.  

3.3.2.4 Objective 3 
Urban anthrosols present a historical archive of human activities in towns. It is argued 

that deposits formed through sustained application of waste materials reflect past waste 

management practises. The nature and location of such practises are influenced by 

burgh function and economy, and type, quantity and perceived utility of waste materials.  

Consequently the third study objective is to elucidate the processes associated with 

waste management and disposal in historic small towns. Additionally it is proposed that 

processes of waste disposal can be deduced from urban anthrosol properties and that 

processes of waste disposal were associated with economic and cultural functions of the 

royal burgh.  
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4 Materials and Methods  

This chapter outlines the materials and methods used in this study with specific 

reference to site selection, field work, laboratory analyses, soil micromorphology and 

data analyses.  

4.1 Site Selection 

To facilitate selection of suitable study sites a series of practical and theoretical criteria 

was developed. It was deemed important that potential burghs had limited modern urban 

development infill and peripheral expansion given the need for abundant and relatively 

unrestricted sampling opportunities both within and adjacent to medieval town cores. 

Moreover, to enable comparison of past functional zones preference was given to sites 

with characteristic medieval street layouts such as single street and parallel street 

systems. Geographical and functional diversity were also identified as important factors, 

for example it was desirable that towns had differing trading patterns, local resources 

and principal economies. Twelve potential study sites were identified through desk-

based studies and a series of preliminary field visits (Figure 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 15: Location of preliminary field visits undertaken between 12/11/04 and 04/01/05  
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Burghs with low sampling potential were discounted (Auchtermuchty, Ayr, Brechin, Crail, 

Kirriemuir and Newburgh). Burghs without characteristic medieval street morphologies 

were also excluded (Culross and Falkland). Of the remaining four burghs, Lauder, 

Pittenweem and Wigtown were identified as the most geographically and functionally 

diverse, hence New Galloway was eliminated from subsequent selection. 

4.1.1 Study Sites 

4.1.1.1 Lauder 

N

The royal burgh of Lauder, Scottish Borders, lies immediately east of the A68 which runs 

between Edinburgh and the English border. The town is located in a valley overlooked 

by the Lammermuir hills and is situated on the right bank of the River Leader (Figure 

16). The soil mapped at Lauder is a freely drained brown forest soil with low base status 

belonging to the Lauder (LA) soil series. This series is part of the Lauder (LA) 

association derived from conglomerates and sandstones of Upper Old Red Sandstone 

(O.R.S) age (Soil Survey of Scotland 1959). In the 2001 census the population of Lauder 

was recorded as 1087. The largest two employment sectors identified were retail and 

wholesale, and health and social work accounting for 26% of employed persons, 

followed by business services (12%), education (11%) and public administration (11%) 

(General Register Office for Scotland 2007).  
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Figure 16: Location and situation of Lauder, Scottish Borders 

 

 

 - 70 -



The origins of Lauder are unclear although it is suggested that its foundation lay in the 

12th century AD when Hugh de Moreville built a castle, church and mill complex for his 

followers in the barony of Lauderdale (Simpson and Stevenson 1980). The first 

documented existence of Lauder was in the late 13th century AD when Bishop William 

Lamberton of St. Andrews noted ‘duo burgagia in villa de Lawder’. This recognition 

indicates the presence of a settlement however; it does not necessarily confirm burghal 

status at that time (Pryde 1965). Lauder was officially elevated to burgh status with 

baronial privileges in the 14th century (1324x1325AD) and was subsequently granted 

royal status in 1455AD after being forfeited by the Douglas family to the crown.  

 

Throughout the medieval period the principal economy of Lauder was merchandising 

and trade. Prosperity associated with these activities was largely dependant on external 

factors, for example a 16th century AD burgh charter indicates the absence of foreign 

trade on account of war, assaults and fire (Turner-Simpson and Stevenson 1980). By the 

late 18th century AD Lauder held six yearly fairs and two weekly markets. Moreover, 

growing political stability resulted in an increase in the town’s population, foreign trade 

and traffic. In addition to trade, milling was a significant economic component in the 

development of Lauder. This is confirmed in various 16th century AD references which 

cite the existence of a corn mill, a waulk mill, a common Burn Mill belonging to town and 

a Mill belonging to a Lauder family. 

4.1.1.2 Pittenweem 
The royal burgh of Pittenweem, Fife, lies on the A917 coastal road which runs between 

Elie and St. Andrews on the East Neuk of Fife. The town is located 2 km south west of 

Anstruther and is situated on a raised beach overlooking the northern North Sea (Figure 

17). The soil mapped at Pittenweem is an imperfectly drained brown forest soil 

belonging to the Quivox (QX) soil series. This series is part of the Dreghorn association 

characterised by raised beach deposits derived mainly from Carboniferous sediments 

(Soil Survey of Scotland 1975). In the 2001 census the population of Pittenweem was 

recorded as 1747. The principal employment sectors identified were retail and wholesale 

and health and social work accounting for 16% and 12% of employed persons 

respectively. Other significant sectors included hotels and restaurants (10%), real estate 

(10%) and education (10%) (General Register Office for Scotland 2007). 
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Figure 17: Location and situation of Pittenweem, Fife 

 

The origins of Pittenweem can be traced to the 12th century AD when its lands were 

bestowed to monks resident on the Isle of May. This resulted in the transfer of the 

Augustinian priory from the Isle of May to the site of the current parish church (Simpson 

AT and Stevenson S 1981a). The development of the site over the following centuries is 

uncertain, however, a charter dating to 1526 AD indicates that by the late 15th century 

Pittenweem was a legitimate baronial burgh. In 1541 AD Pittenweem was subsequently 

changed ‘in liberum burgum regalen’ to royal burgh status (Pryde 1965). 

 

The principal economies of Pittenweem were fishing and trade, for example in 1537 AD 

Pittenweem paid £205 16s duty on hides, cod, herring, malt and English goods in 

contrast to nearby Kinghorn which paid £6 7s 4d (Simpson and Stevenson 1981a). The 

financial dominance of Pittenweem in the 16th century AD was further demonstrated in 

1542 AD when Pittenweem exported £432 19s in hides, salmon, cod, coal and herring 

compared to £139 5s 4d by Perth. Civil war and plague during the 17th century AD had a 

negative impact on Pittenweem’s population which in turn led to a decline in seafaring 

and export revenues. Consequently a ruined pier and harbour, empty houses and an 

absence of foreign trade were noted (Simpson and Stevenson 1981a). Nevertheless, by 

the mid 18th century AD the town had started to recover. This was reflected in renewed 

export of salt fish, herrings and malt to the Baltic, Mediterranean and Low Countries 

(Horsburgh 1865).   
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4.1.1.3 Wigtown 
The royal burgh of Wigtown, Dumfries and Galloway, lies on the A714 which connects 

Girvan in west Scotland to the Machars peninsula in south west Scotland. The town is 

located 11km south of Newton Stewart and is situated overlooking Wigtown Bay on the 

Solway Firth (Figure 18). The soil mapped at Wigtown is a freely drained brown forest 

soil belonging to the Linhope (LP1) soil series. This series is part of the Ettrick 

association derived from Ordovician and Silurian greywackes and shales and their 

associated drifts (Soil Survey of Scotland 1971). In the 2001 census the population of 

Wigtown was recorded as 987. The principal employment sectors identified were retail 

and wholesale (21%), construction (14%) and manufacturing (14%). Other important 

sectors included health and social work, and agriculture, hunting and forestry accounting 

for 17% of employed persons collectively (General Register Office for Scotland 2007).  

 

0.4 0 0.4 0.8 Kilometers

Although it is thought that Wigtown existed as a burgh during the 12th century AD, it was 

not until 1292AD that its status as a royal burgh was recognised by charter. However, 

Wigtown’s position as a royal burgh was short lived. In 1341AD it was granted to Sir 

Malcolm Fleming due to unpaid revenues (Pryde 1965). Ultimately Wigtown was 

restored to its former royal status in 1455AD after it was forfeited by the Douglas family 

to the crown. 

 

 

 

 

 

 

 

 
Figure 18: Location and situation of Wigtown, Dumfries and Galloway 
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The principal economies of Wigtown were trade and agriculture. During the 15th century 

AD Wigtown was one of the five principal west coast ports of Scotland including Ayr, 

Irvine, Dumbarton and Kirkcudbright. Throughout the 16th and 17th centuries AD trade 

steadily declined to the extent that in 1692AD foreign trade was absent and inland trade 

was limited. The main reason for this demise was that Wigtown did not participate in the 

herring trade which became a major export of rival west coat ports (Simpson and 

Stevenson 1981b). Nevertheless, Wigtown remained a dominant agricultural centre. This 

is attested to in the Old Statistical Account for Scotland where considerable 

documentation is devoted to land, farming practises and agricultural revolution at 

Wigtown (Duncan 1791-99). Towards the latter 18th century AD an increase in 

population associated with the onset of industrialisation and Irish immigration is noted 

along with the reinstatement of Wigtown’s markets (Simpson and Stevenson 1981b). 
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4.2 Soil Survey 

Special-purpose soil survey was identified as a useful tool for systematically 

investigating changes in soil properties across small historic towns (Bui 2004, Dent and 

Young 1981, McRae 1988). The survey objective was to determine variation in soil 

physical and chemical properties in historic urban landscapes. Furthermore, the intent of 

soil mapping was to reveal differences in specific soil properties indicative of past 

anthropogenic activities. The following section provides an overview of survey design 

and subsequent field methods.  

4.2.1 Survey Design 

In the first instance the location and extent of the survey area was determined for 

Lauder, Pittenweem and Wigtown (Figure 19, Figure 20 and Figure 21). The siting of 

each survey area represents the most effective compromise between three factors; 

historical land use, modern urban encroachment and abundance of potential sampling 

opportunities. Each survey area included the medieval burgh core and its adjacent land, 

whilst avoiding recent urban development.  The survey area consisted of a 200 x 800 m 

rectangle covering 160,000 m2 (0.16 km2). This was deemed large enough to reveal 

identifiable changes in soil properties associated with different past functional zones. 

Survey area dimensions were consistent for all burghs to maintain comparable sampling 

densities. It is suggested that 100 observations per km2 should be made for very 

detailed surveys (Bridges 1982, McRae 1988). This recommendation largely refers to 

natural soil variation which is more homogenous than urban anthrosols. Therefore, the 

adopted sampling density was 1 observation per 1600 m2, totalling 100 observations for 

each 0.16 km2 survey area.  

4.2.1.1 Stratified Grid  
The use of a grid system is an effective mechanism for structuring observations in areas 

with complex soil patterns (Dent and Young 1981). Moreover it is advantageous over 

free sampling in that regular spaced sampling results in equal statistical representation 

of soil variance (Bridges 1982). Grid surveys consist of four types, random survey, 

square grid survey, stratified random survey and stratified grid survey. Random survey is 

problematic for heterogeneous soil because observations are pre-determined through 

random number generation which can result in large areas remaining un-sampled (Tan 

1996). 



Figure 19: Location of survey area at Lauder (black rectangle). Red boundary delimits 1862AD urban extent taken from 1:10,560 scale Ordnance 
Survey map inset © Landmark information group, www.old-maps.co.uk  
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Figure 20: Location of survey area at Pittenweem (orange rectangle). Red boundary 
delimits 1855AD urban extent taken from 1:10,560 scale Ordnance Survey map inset © 
Landmark information group, www.old-maps.co.uk 
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Figure 21: Location of survey area at Wigtown (orange rectangle). Red boundary delimits 
1850AD urban extent taken from 1:10,560 scale Ordnance Survey map inset © Landmark 
information group, www.old-maps.co.uk 
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Square grid survey is also inappropriate for this study due to inflexibility of observation 

points and the potential that trends may go unnoticed if variations in soil properties 

coincide with orientation and spacing of the grid (Rudeforth 1982). Stratified random 

survey and stratified grid survey present a compromise between the latter approaches. 

Stratified random and stratified grid survey use pre-defined grid squares to structure 

observations. Observations are chosen at random in the former method and 

systematically in the latter. Stratified grid survey was identified as the most appropriate 

choice for this study given that provision is made for sampling obstacles associated with 

urban environments, for example car parks, grave yards, roads and recreational ground. 

4.2.2 Field Methods 

4.2.2.1 Auger Sampling 
Soil sample acquisition through auguring was chosen as the primary method of soil 

survey because it is a relatively quick and easy technique for surveying both laterally 

and vertically (Bridges 1982). In addition it enabled field assessment of soil variation 

aiding subsequent location of representative soil pits. Auger sampling was structured 

through stratified grid survey. The grid consisted of 40 x 40 m grid units totalling 100 

potential observation locations per survey area. In some circumstances grid units were 

not sampled, for instance when covered by an impermeable surface or modern housing. 

Consequently, additional observations were made in emerging areas of interest. These 

areas corresponded to past functional areas and exhibited pronounced variability in 

certain field characteristics such as topsoil depth. The resulting sample distributions 

comprised 117 observations at Lauder (Figure 22), 102 at Pittenweem and 102 at 

Wigtown (Figure 23). 

 

To compare soil properties over space and depth, soil samples were taken at 0-20 cm, 

20-40 cm, 40-60 cm and 60-80 cm depth at each observation location or until the auger 

could go no further. Samples were taken at depth increments rather than from discrete 

horizons given that prior determination of horizon boundaries is impractical using a 

Dutch auger and mixing between boundaries is an unavoidable consequence of the 

barrelled auger tip. Soil samples were taken from the centre of the auger head at the 

lowest depth of each increment range. Sample volume was dictated by the auger 

headspace which equated to between 100-150 g of moist soil. In total 270, 377 and 158 

loose bag samples were obtained from Lauder, Pittenweem and Wigtown respectively.   
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Figure 22: Stratified grid survey at Lauder showing auger sample locations (red circles), soil pit locations (blue squares) and ‘reference’ soil pit 
locations (green squares)  

 



 
Figure 23: Stratified grid survey at Pittenweem (left) and Wigtown (right) showing auger 
sample locations (red circles), soil pit locations (blue squares) and ‘reference’ soil pit 
locations (green squares) 
 

Horizon depth(s), soil colour and presence of anthropogenic inclusions were also noted 

at each observation location to provide context to subsequent results and supplement 

field observations of soil characteristics. 
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4.2.2.2 Soil Pit Sampling 
To enable further investigation of areas with distinct soil characteristics, samples were 

taken from soil pits. The location and number of soil pits was determined by identification 

of emergent patterns in soil variability in association with the need to investigate 

comparable functional zones. Samples were also taken from so-called ‘reference’ soil 

pits to provide a comparison of soil with lesser anthropogenic modification. It was 

assumed that the impact and magnitude of waste disposal diminished with distance from 

the town core (as discussed in section 3.3). Consequently, reference pits were located at 

the far northern edge of each survey area with the exception of Lauder (Figure 22, 

Figure 23). In the latter case there is evidence to suggest that burgess acres extended to 

the rear of the survey area. Accordingly, topsoil samples were taken from a pit 1km 

northwest of the survey area and C horizon samples extracted from an exposed profile 

200m south of the survey area. 

 

Prior to sampling a brief site description was made at each soil pit location. The following 

information was recorded; profile identification number, grid reference, date, preceding 

weather conditions, elevation (m), locality and vegetation/land use. Soil pits were dug to 

a maximum of 1m or until the topsoil could be clearly distinguished from underlying 

horizons. Field sketches were made at each location in association with a soil profile 

description recording depth (cm), Munsell soil colour, macropores, mottling, stoniness, 

roots and exotic inclusions (Hodgson 1974, Munsell Color ® 1994) (Figure 24).  

 

To enable subsequent determination of physical and chemical soil properties, loose bag 

samples were taken from each horizon. Bulk samples were extracted from a depth range 

of 20cm allowing collection of sufficient material. To avoid incorporation of material from 

adjacent horizons a 2cm buffer zone was imposed at each horizon boundary. In some 

cases horizons were deeper than 44cm, hence, 20cm samples were taken in vertical 

succession. Moreover if horizons were less than 24cm the utility of sampling was 

decided on an individual basis. In total 18, 32 and 14 bulk samples were taken at 

Lauder, Pittenweem and Wigtown respectively. In addition Kubiena tin samples were 

taken for the purpose of micromorphological characterisation. Kubiena samples were 

extracted in accordance with recommendations outlined in Goldberg and MacPhail 

(1996: 328-333). Care was taken to ensure all Kubiena samples were contiguous with 

bulk samples.  
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As reference soil pits, three profile faces were described and sampled instead of one 

(Figure 25). This was done to increase confidence when characterising areas 

representative of lesser anthropogenic influence. Alternatively, additional reference soil 

pits could have been sampled; however, locations were limited in terms of space and 

suitability.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24: Example of field sketch, profile description and soil sampling undertaken for LA 
2 (Lauder soil pit number 2) 
 
 

 
Figure 25: Example of field sketch, profile description and soil sampling undertaken for 
‘reference’ soil pit PT 1 
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4.3 Laboratory Analyses 

The following section presents a summary of laboratory analyses undertaken on bulk 

soil samples obtained through auger and soil pit extraction. Prior to analysis all samples 

were air dried for a minimum of two weeks until steady state mass was achieved. 

Samples were then sieved to separate the fine fraction (<2mm) from the coarse fraction 

(>2mm) to remove larger roots and stones. Exotic inclusions such as pottery sherds and 

charcoal fragments were retained before discarding the coarse fraction. Considering 

time constraints it was not possible to take replicate measurements of all soil samples, 

therefore samples obtained through auger survey were analysed only once. Soil pit 

samples were analysed three times to assess data variability. In all cases anomalous 

values were systematically identified and re-checked. 

4.3.1 pH 

Soil pH is a measure of the concentration of hydrogen ions in a solution which is defined 

as ‘-log (H+) where (H+) is the activity of hydrogen ions in solution’ (Rowell 1994:159). 

Measurement of soil pH, therefore, allows determination of the degree of soil acidity or 

alkalinity. In the natural environment soil pH is controlled by climate where rainfall and 

temperature influence processes of nutrient leaching and weathering. Moreover 

additional variables such as parent material, hydrology and vegetation further act to 

influence pH at regional and local scales (Brady and Weil 1999).  

 

Although soil pH is largely controlled by environmental factors, anthropogenic activities 

can impact soil acidity, for example the use of ammonium based chemical fertilisers are 

known to react with organic wastes resulting in nitric and sulphuric acid accumulation 

(Brady and Weil 1999). Likewise, fossil fuel combustion and vehicular traffic are 

identified as causes of increased acidity in urban soils (Bridges 1991). Certain 

agricultural practices can result in an intentional reduction in soil acidity such as 

application of lime, marl, shells and ground limestone. Similarly, decreased soil acidity 

through addition of domestic refuse and fuel residues such as ash and soot is noted in 

domestic urban gardens (Bridges 1991). Nonetheless increased soil alkalinity can be 

problematic, for instance when salts drain insufficiently from soils irrigated with salty 

water (Brady and Weil 1999, Rowell 1994).   

 

Studies of soil pH in geoarchaeology are usually limited to issues of artefact preservation 

(Berna et al., 2004, Matthiesen 2004). However, it seems logical that variations in soil 

pH may reflect the historical legacy of past soil amendments such as shell, bone, fuel 
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residue and midden waste (Carter 2001, Cachart  2000, Davidson et al., 2006). Soil pH 

is also an important supplementary measure when interpreting spatial patterns in 

elemental concentrations, for example Entwistle et al., (1998) note a narrow pH range in 

soils both on and off site at Greaulin, Isle of Skye suggesting that on site variation in 

elemental concentrations is anthropogenic in origin.  

 

Soil pH can be described as a ‘master variable’ affecting a multitude of chemical, 

biological and physical soil properties (Brady and Weil 1999:252). Analysis of soil pH, 

therefore, presents a relatively quick and easy method for obtaining information about a 

multitude of soil properties including changes associated with past anthropogenic 

activities. Accordingly, soil pH was measured using a MK11 Series Analogue meter in 

accordance with procedures outlined by Rowell (1994:159-161). The meter was 

calibrated using pH 4 and pH 7 buffer solutions and subsequently recalibrated after 

every 40 readings to prevent instrumental drift.  

4.3.2 Loss on Ignition (% LOI) 

Loss on ignition (LOI) is a measure of the percentage mass of ‘soil organic matter (SOM) 

lost from oven dry soil when heated to between 105oC and 500oC (Rowell 1994:48). 

However, overestimation of SOM loss using the LOI method is possible, for example 

through loss of structural water from clay minerals and loss of CO2 from carbonates in 

calcareous soils. Ball (1964) proposes that error associated with CO2 loss can be 

minimised through ignition in the lower temperature region (375oC as opposed to 850oC) 

and suggests that variation in LOI is only 4-6% between soils with 5% clay and 50% clay 

content. This level of accuracy is considered acceptable for most archaeological and 

pedological studies (Ball 1964). LOI is therefore identified as a reliable and rapid 

technique for approximation of SOM. LOI was determined in accordance with 

procedures outlined in Rowell (1994:48) using the formula below. All results are 

expressed as g per 100g of oven dry soil i.e. % LOI. 
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In geoarchaeological studies LOI has been used in association with elemental analysis 

to identify areas cultivated in the past, for example it is suggested that a moderate 

positive correlation between LOI and phosphorus (P) at Knockaird, Isle of Lewis reflects 

sustained application of manure rich in organic matter and P (Entwistle et al., 2000). 

Areas with lower LOI levels compared to offsite control samples at Greaulin, Isle of Skye 
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are thought to reflect the practice of applying manure rich in nitrogen (N) to cultivated 

land resulting in rapid microbial decomposition of SOM (Entwistle et al., 1998). 

Cultivation and regular cropping also enhance SOM decomposition through changes in 

soil conditions such as increased soil aeration and disaggregation. Elevated levels of 

SOM in cultivated soil are likely to quickly disappear. It is therefore recognised that past 

soil enrichment may not necessarily be reflected in higher LOI values.  

4.3.3 Environmental Magnetism 

Environmental magnetism refers to the study of rock-magnetic properties of natural 

environmental materials such as soils, sediments, peat cores and ice cores, and 

anthropogenic wastes arising from agricultural and industrial processes (Oldfield 1999, 

Robinson 2002).  All these materials exhibit magnetic behaviour which can be measured 

and quantified allowing identification of processes associated with their formation and 

recognition of component minerals (Dearing 1999). In pedological and archaeological 

studies the most widely used measurements are low frequency magnetic susceptibility 

(ҲLF) and frequency dependant magnetic susceptibility (ҲFD). These techniques differ 

from most other mineral magnetic measurements in that they are determined in the 

presence of an induced magnetic field. In comparison parameters such as isothermal 

remanent magnetisation (IRM) and saturation isothermal remanence (SIRM) are a 

measure of magnetisation retained after removal from an external magnetic field (Smith 

1999). 

 

Magnetic susceptibility can be defined as a measure of ‘the ability of a substance to be 

magnetised’ (Rapp and Hill 1998:184). In the natural environment magnetic susceptibility 

is dependant on concentrations of ferrimagnetic minerals such as magnetite (Fe3O4) and 

maghaemite (Fe2O3) (Dearing 1999). Hence, magnetic susceptibility of soils and 

sediments is largely controlled by the nature and abundance of iron oxides originating 

from underlying parent material. Anthropogenic activities are known to enhance 

magnetic susceptibility of soils, for example burning can result in formation of 

ferrimagnetic minerals such as maghaemite and non-stoichiometric magnetite (Crowther 

2003).  
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Frequency dependant magnetic susceptibility reflects the percentage of viscous-

superparamagnetic (VSPM) grains present in a mineral magnetic assemblage (Dearing 

1999). This is based on the observation that relaxation times of superparamagnetic 

grains differ at high and low magnetisation frequencies (Jordanova et al., 2001). Low 

frequency (ҲLF) measures the combined response of stable single domain grains (SSD), 

pseudo-single domain grains (PSD), multidomain grains (MD) and superparamagnetic 

(SP) grains present within a sample. Conversely high frequency (ҲHF) measurements 

exclude the contribution made by SP grains (for a full explanation see Dearing 1999:60-

62).   

 

In geoarchaeological studies magnetic measurements have been used to discriminate 

artefact origins, for example Jordanova et al., (2001) identify differences in magnetic 

behaviour of burnt clay materials such as plaster and brick, and burnt soils between 

archaeological sites in northern and southern Bulgaria. Recognition that anthropogenic 

activity can lead to magnetic enhancement of soils has resulted in the use of magnetic 

susceptibility in archaeological site prospectation, for instance spatial patterns derived 

from underlying occupation and industrial sites are identified at Serra di Vaglio, Southern 

Italy (Chianese et al., 2004). Moreover magnetic measurements can be used to 

investigate use of individual dwellings, for instance Peters et al., (2000) associate hearth 

residues with selected internal floor deposits and external midden material from Late 

Iron Age houses at Galson site, Isle of Lewis. 

 

Magnetic measurements have also been extensively used to identify past evidence of 

burning including fuel residues. Dewar et al., (2002) use modern analogues to identify 

fuel sources contributing to deposits from Old Scatness Broch, Shetland. Although 

deposits comprised a mixture of minerals with differing magnetic properties, it was 

possible to identify inputs from ash derived from turf and furnace residues. Similarly 

Peters et al., (2001) demonstrate the utility of experimental data in investigating 

archaeological deposits at Calanais Farm, Isle of Lewis where techniques such as high 

temperature magnetic susceptibility were used to distinguish well humified peat and 

wood from fibrous upper peat and peat turf.  

 

Magnetic susceptibility and frequency dependant magnetic susceptibility are simple, 

non-destructive and rapid techniques for investigating anthropogenic impact on soils with 

particular reference to burning, fire histories and fuel residues.  
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4.3.3.1 Mass Dependant Magnetic Susceptibility 
To determine mass dependant magnetic susceptibility soil samples were dried at 105oC 

overnight to remove excess moisture prior to analysis. Measurements were undertaken 

on a Bartington MS2 Magnetic Susceptibility Meter according to procedures outlined in 

Bartington Instruments Ltd (1996). The chosen measurement interval was x0.1 which 

provides an average reading every 10 seconds. This measurement interval is more 

robust than taking individual readings and provides additional noise filtering. Corrections 

for any thermally induced drift were made using the formula below. 

 
2/)10()10()( 55 −− −= tmeasuremenairtmeasuremensampleRtmeasuremencorrected k

 

Measurements for mass dependant magnetic susceptibility (Ҳ) were taken under low 

frequency (0.4465 kHz) which measures the response of all magnetisable material in a 

sample. Mass dependant magnetic susceptibility was calculated using the following 

formula according to Dearing (1999:46).  

 
10/)(/)10()10( 5136 gweightsampleRKgm k

−−− =χ 

4.3.3.2 Frequency Dependant Magnetic Susceptibility 
The procedure outlined in section 3.3.3.1 was repeated under high frequency (4.65 kHz) 

conditions to enable calculation of frequency dependant magnetic susceptibility (ҲFD). 

Frequency dependant magnetic susceptibility was calculated using the following formula 

according to Dearing (1999:47) where KLF is the corrected measurement under low 

frequency and KHF under high frequency.  
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4.3.4 Elemental Concentrations 

Anthropogenic activities such as habitation, agriculture and industrial processing modify 

soil chemical properties (Aston 1998, Wilson et al., 2006a). Accordingly, identification of 

changes in elemental concentrations enable differentiation of former land use patterns in 

space (Bull et al., 2001, Wells 2004) and time (Shahack-Gross et al., 2005, 

Alexandrovskaya and Panova 2003). However, it should be noted that human induced 

elemental changes are affected by elemental retention rates, elemental fixation, climatic 

conditions and soil properties (Holliday and Gartner 2007). 

 

Phosphorus (P) is routinely used in geoarchaeological studies as an indicator of human 

activity considering its high soil retention rate and relative stability (Leonardi et al., 1999). 

Increased phosphorus concentrations occur through deposition of anthropogenic 

materials rich in organic matter including human and animal excreta, domestic refuse 

and fuel residue (Holliday and Gartner 2007). Accordingly, spatial analysis of enhanced 

phosphorus concentrations can be used to identify and delineate areas associated with 

human habitation in the past (Schlezinger and Howes 2000). However, it must be noted 

that although phosphorus can be used to identify areas of past human activity it cannot 

differentiate between specific land use practises, for example accumulation of debris 

from settlements and manuring practises both lead to elevated phosphorus 

concentrations (Entwistle et al., 2000a, Entwistle et al., 2000b).  

 

Conversely multi-element analysis enables investigation into a range of anthropogenic 

activities using elemental signatures to identify patterns of enhancement, for example 

Entwistle et al., (1998) identify four groups of elements representing differences in land 

use at a Greaulin, Isle of Skye. Similarly Wilson et al., (2006a) discriminate a suite of 

elements including barium (Ba), calcium (Ca), phosphorus (P), lead (Pb), strontium (Sr) 

and zinc (Zn) which are consistently indicative of former activity areas across a range of 

abandoned farms in Britain. Further it is suggested that emphasis should be placed on 

interpreting relative enhancement patterns rather than absolute elemental 

concentrations when comparing sites (Wilson et al., 2006a). This approach discounts the 

influence of differing geology and soil properties between sites.   
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Multi-element analysis is identified as a relatively quick tool for investigating differences 

in past land use at historic sites. Accordingly samples were prepared by nitric acid 

digestion as described in Wilson et al., (2005:1095). Pseudo-total acid extraction was 

preferred over weak acid or exchangeable fraction extraction considering Wilson et al’s., 

(2006b) finding that the latter methods impede the recovery of anthropogenic elements 

associated with historic land use. Accordingly elemental concentrations were measured 

with a Perkin Elmer Optima 3300RL Inductively Coupled Plasma-Atomic Emission 

Spectrometer (ICP-AES) using the in-house traces programme at the NERC ICP-AES 

Facility, Royal Holloway. Corrections for instrumental drift were subsequently made 

using procedural blanks. Elemental concentrations (mg/Kg) for Ba, Co, Cr, Cu, Li, Ni, 

Pb, Sc, Sr, V, Y and Zn were obtained using the following formula where the BCV is the 

blank corrected values and the sample mass is 5±.01g.  

 
( )gmasssampleKgmgBCVKgmgionconcentratelemental 01.05/)/()/( ±= 

 

The following formula was used to determine elemental concentrations (mg/Kg) for 

oxides (Al2O3, Fe2O3, MgO, CaO, Na2O, MnO, K2O, TiO2 and P2O5). The abbreviation 

BCV represents the raw blank corrected value. AMX stands for the total atomic mass of 

the element in question and AMY the total atomic mass of oxygen. 
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4.4 Micromorphological Analysis 

Soil micromorphology is the ‘study of the structure of spatial patterns in natural and non-

natural layers, deposits and soils using microscopic techniques’ (Kooistra and Kooistra 

2003:605). Micromorphology has been used since the 1950s as a routine analytical 

method in archaeological science for investigation of palaeosols (Kemp 1998, Macphail 

and Goldberg 1995), however, its use in geoarchaeological studies is still relatively 

recent (Courty et al., 1989, Davidson et al., 1992, French 2003). Micromorphological 

investigation into impacts of past human activities on soils and sediments is noted for a 

range of applications including, soil formation processes (Simpson et al., 2006, Simpson 

et al., 1998a), agriculture (Bryant and Davidson 1996, Davidson and Carter 1998, 

French and Whitelaw 1999, Simpson 1997, Simpson et al., 1998b), occupation deposits 

(Homsey and Capo 2006, Matthews 1995, Matthews et al., 1997) and cultural landscape 

studies (Simpson et al., 2003, Simpson et al., 2005). 

 

Micromorphological studies of urban contexts are limited although ‘dark earth’ deposits 

(Macphail 1994, Macphail 2003, MacPhail et al., 2003, Ottaway 1992), garden soils 

(Clark 1997, Carter 2001) and occupation sequences (Shahack-Gross et al., 2005) have 

received some attention. It is recognised that soils are often neglected in urban 

archaeology in favour of artefact recovery (Macphail and Goldberg 1995), however they 

provide an important resource for investigating anthropogenic processes of deposition, 

emplacement and modification (Courty et al., 1989). Anthropogenic features in thin 

section largely consist of waste materials associated with human occupation, for 

example fuel residues, domestic refuse and construction materials. Accordingly 

micromorphology is a useful tool for characterising urban anthrosols and investigating 

processes associated with waste management and disposal in historic small towns.  

4.4.1 Sample Preparation 

Thin sections were prepared from undisturbed soil samples at the Thin Section and 

Micromorphology Laboratory, University of Stirling according to standard procedures 

(http://www.thin.stir.ac.uk/methods.html, 2007). Samples were dried through solvent 

exchange (acetone) in the vapour phase and impregnated under vacuum using an 

epoxy resin (Araldite MY750 with hardener HY951). Subsequently impregnated blocks 

were cut and precision lapped to 30µm thickness prior to mounting.  
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4.4.2 Semi-Quantification of Anthropogenic Features 

There is a lack of an established protocol for analysing anthropogenic features in thin 

section. It should therefore be noted that the methodology presented hereafter was self 

evolutionary and guided by the study research objectives as recommended by Courty et 

al., (1989).  

 

In the first instance coarse mineral anthropogenic features were identified using a series 

of reference images and descriptions (Courty et al., 1989, Stoops 2003). The ascribed 

categories were verified by Dr Clare Wilson, University of Stirling. Key characteristics of 

each mineral anthropogenic feature are listed in Table 3 and example images are 

presented in Figure 26. Coarse organic anthropogenic features were categorised 

according to differences in morphology and optical properties between black carbon 

exotic inclusions termed ‘fuel residue’ (Table 4, Figure 27). In addition each category 

was divided into two size classes, for example FR Type 1 10-255 µm and FR Type 1 

255-500+ µm. Distinctions were based solely on descriptive differences in accordance 

with recommendations made by Kemp (1998); it should therefore be noted that 

classifications of fuel residue categories (FR) do not necessarily represent different fuel 

sources.  

 
Table 3: Mineral Anthropogenic Features (PPL: Plane polarised light, XPL: Cross polarised 
light, OIL: Oblique incident light) 
 

 

Feature Key Characteristics 

 
Shell (Mollusc) 
 
 
Clinker/Slag 
 
 
Bone 
 
Heated Mineral 
 
Pottery/Brick 
 
 
Mortar/Plaster 

 
Fibrous internal fabric (striations), very fine crystal size, high 
interference colours (XPL) 
 
Grey/brown/dirty yellow (PPL), bubbles in matrix, growth of some 
minerals (crystalline, skeletal, dendritic)  
 
Fibrous internal fabric, presence of abundant Haversian Canals 
 
Red in (OIL), high interference (XPL), mineral matrix 
 
Deep red/brown (PPL), diffuse strong/red (OIL), well sorted fabric, 
high density 
 
Grey/green-grey (PPL), grey (OIL), inclusions of straw, brick, 
bone, areas of cryptocrystalline calcite/calcitic fabric, well sorted 
matrix 
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Feature Key Characteristics 

 
Charcoal 
 
 
FR Type 1 
 
 
 
FR Type 2 
 
 
 
FR Type 3 
 
 
 
FR Type 4 
 
 
 
 
 
FR Type 5 
 
 
 
FR Type 6 
 
 
 
 
FR Type 7 
 
 
FR Type 8 
 
 
 
FR Type 9 
  
 
 
FR Type 10 
 

 
Complete cellular structure with little/limited decay, black (PPL), 
black (XPL), morphology ranges from rounded to semi-angular. 
 
Morphology is angular/sub-angular, well defined perimeter, black 
(PPL), black (XPL), limited-moderate evidence of internal 
cracking/fracturing. 
 
Morphology is rounded/sub-rounded, defined perimeter, internal 
degradation characterised by holes, black (PPL), black (XPL), 
internal mineral content high interference (XPL). 
 
Morphology is angular/sub-angular, well defined perimeter, black 
(PPL), black (XPL), limited- moderate evidence of internal 
cracking/fracturing, strong red bands present (PPL). 
 
Morphology can be angular, sub-angular, sub-rounded or 
rounded, black (PPL), black (XPL), pronounced internal 
degradation characterised by large rounded/elongated holes in 
close proximity, appearance almost ‘skeletal’ like, intermixture of 
groundmass, organic material/excrements adjacent to perimeter.  
 
Morphology is angular/sub-angular, well defined perimeter, black 
with areas of brown/red-brown (PPL), black (XPL), pronounced 
internal degradation. 
 
Morphology can be angular, sub-angular, sub-rounded or 
rounded, black (PPL), black (XPL), internal degradation 
characterised by rounded/sub-rounded holes, organic 
material/excrements adjacent to perimeter. 
 
Morphology is angular/sub-angular, well defined perimeter, black 
(PPL), Black (XPL), pronounced internal degradation. 
 
Morphology sub-angular/sub-rounded, ‘ragged’ perimeter edge, 
black (PPL), black (XPL), limited/moderate evidence of internal 
cracking/fracturing. 
 
Morphology sub-angular/sub-rounded, ‘ragged’ perimeter edge, 
black with areas of brown/red-brown (PPL), black (XPL), 
limited/moderate evidence of internal cracking/fracturing. 
 
Morphology sub-angular, black (PPL), black with high interference 
colours near perimeter (XPL), calcitic fabric near perimeter, 
limited-moderate internal degradation. 
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Table 4: Organic Anthropogenic Features (PPL: Plane polarised light, XPL: Cross 
polarised light, OIL: Oblique incident light), FR: Fuel Residue 
 



 

 

 

 

 

 

 
Figure 26: Example images of coarse mineral anthropogenic features in thin section from Lauder, Pittenweem and Wigtown. First row (left to 
right): pottery (OIL), pottery (PPL), mortar (OIL), mortar (PPL). Second row (left to right): shell (PPL), shell (XPL), bone (XPL), bone (PPL). Third row 
(left to right): clinker/slag (PPL), heated mineral (OIL) 
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Figure 27: Example images of coarse organic, anthropogenic features in thin section from Lauder, Pittenweem and Wigtown. First row (PPL) (left 
to right): Charcoal, FR4, FR 6, and FR 2. Second row (PPL) (left to right): FR1 (XPL), FR7, FR5 and FR3. Third row (PPL) (left to right): FR 8, FR9, 
FR10 and FR 10 (XPL) 

 

 



It is recommended that analysis of anthropogenic contexts should be holistic in approach 

and undertaken by experienced well trained analysts (Macphail 1998, Macphail and 

Goldberg 1995). However such interpretations often lack validation (Davidson and 

Simpson 2001). Moreover, it is argued increasing priority in micromorphological studies 

should be placed on experimental control, verification and quantification (Davidson and 

Carter 2000). Accordingly, a semi-quantitative approach to slide description was adopted 

using the methodology outlined hereafter.  

 

An acetate grid consisting of 165 5x5mm squares was placed over the surface of each 

slide covering 4125 mm2. A total of 66 numbers between 1 and 165 were independently 

generated for each slide using a random number generator (Daniels 2001-2003). 

Corresponding grid squares were subsequently highlighted with a blue transparent mark 

(Figure 28). Percentage abundance estimates of coarse mineral (>10µm), coarse 

organic (>10µm), pedofeatures, C:F ratio (coarse) and void space were made for each 

individual square using absolute numbers, for example 2=<2%, 5=2-5%, 10=5-10%, 

15=10-15%. This enabled calculation of a representative mean for each feature per 

slide. Abundance estimates were made using an Olympus BX 51 petrological 

microscope following procedures in Bullock et al, (1985) and Stoops (2003). 

Furthermore a range of magnifications (x10-x400) and light sources (plane polarised 

light, cross polarised light and oblique incident light) were utilised enabling feature 

description and identification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28: Left: slide prior to grid overlay, Right: slide with grid overlay, grid squares 
selected through random number generation are highlighted with a blue mark 
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Abundance estimates were made for 1650mm2 of the total slide surface (4125mm2) 

equating to 40% randomly distributed coverage. To verify whether 40% constitutes a 

representative sub-sample of the total slide area, % mean void space was calculated 

incrementally (1%) for Wigtown thin sections (Figure 29).  Initially (1-15%) the data are 

noisy and characterised by pronounced variation in estimated % mean void space. 

However as % slide area increases the estimated % mean void space becomes 

progressively steady resulting in nearly constant values between 30-40%. Similarly 

continuous measurement of the C:F ratio for Lauder thin sections indicates distinct  

variation in % coarse material between 0-20% slide area which becomes more uniform 

as slide area increases (Figure 30).  
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Figure 29: Mean void space of Wigtown thin sections calculated incrementally (every 1%). 
Legend denotes town code (WG) and slide reference and context number (1/1) 
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Figure 30: Mean % coarse material of Lauder thin sections calculated incrementally (every 
1%). Legend denotes town code (LA) and slide reference and context number (1/1) 
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Analysis of changes in mean % relative abundance of anthropogenic features for slide 

PT 4/1 (Figure 31) and WG 4/1 (Figure 32) also indicate relative stability in estimations 

exceeding 30% of the slide surface area. Accordingly it is proposed that 40% is an 

acceptable minimum representative area for anthropogenic features and soil 

characteristics. Conversely, VandenBygaart and Protz (1999) suggest an alternative 

method for determining the minimum representative area for quantitative analysis of 

pedofeatures using image analysis systems. This approach is useful for determining 

features readily identifiable when digitised, for example void space and soil pores. 

However, it is argued that insufficient provision currently exists for accurate and 

consistent identification of anthropogenic features using image separation techniques.  
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Figure 31: Mean % relative abundance of selected anthropogenic features for soil pit 4, 
context 1 (4/1), Pittenweem 
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Figure 32: Mean % relative abundance of selected anthropogenic features for soil pit 4, 
context 1, Wigtown 
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4.4.2.1 Revision of Coarse Organic Material Classification 
Size classes (10-255µm and 255-500µm) of coarse organic material were amalgamated 

due to a lack of discernable trends within the lower size classification. To investigate size 

differences in fuel residue more broadly the percentage of total fuel residue sized 10-

255µm was calculated for each thin section (% FR 10-255µm). In addition, certain 

coarse organic material categories were merged to enable better detection of differences 

in the abundance of fuel residue classes between zones and burghs. Categories FR 4 

and FR 6 (FE 4 & 6) were merged owing to their similar morphological characteristics. It 

is suggested that these two classes represent the same material albeit in different states 

of degradation. Categories FR 5 and FR7 (FR 5 & 7) were also combined due to 

similarities in their composition. The only difference between FR 5 and FR 7 is that FR 5 

has areas which are brown/red-brown (PPL); however, it is suggested that this may 

reflect variation caused through slide production rather than difference in the nature of 

material. Variation in colour may occur due to variations slide thickness over the surface 

area of the slide. Similarly, FR 8 and 9 (FR 8 & 9) were merged given the only difference 

between these two categories was limited to colour. These revised categories produced 

clearly identifiable patterns both within and between burghs. Results were summarised 

in the form of ‘blobby table’ diagrams to enable comparison of data between zones.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 - 99 -



4.5 Spatial Interpolation 

Spatial distributions of topsoil depth, pH, LOI, mass dependant magnetic susceptibility 

and frequency dependant magnetic susceptibility were plotted using the Inverse 

Distance Weighted (IDW) spatial interpolation function available within ArcView 3.2. IDW 

was identified as the most appropriate spatial interpolation method given that it is 

suitable data with pronounced variation over very short distances (ArcView 3.2 GIS 

2002). Consideration was given to the use of Spline interpolation; however, this 

technique is more suitable for data with limited variation (ArcView 3.2 GIS 2002). Spatial 

distributions of logged (LOG10) elemental concentrations (Ba, Ca, K, Sr, P, Pb and Zn) 

were also plotted using the IDW spatial interpolation function. Logged elemental 

concentrations were used to minimise the effect of geochemical ‘hotspots’ present in 

natural data (Figure 33). 

 

 
 

b) 

Log P (mg/Kg) 

a) 

Figure 33: Spatial distributions of P (mg/Kg) (a) and Log P (mg/Kg) (b) at Pittenweem. Red 
boundary delimits 1855AD urban extent 
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4.6 Statistical Analyses 

4.6.1 Zonal Delimitation 

To enable statistical comparison of data both within and between burghs, each town was 

divided into functional zones. Zones were delineated through a combination of historical 

review (section 2.2, section 2.3), field experience and spatial analysis of selected soil 

properties.  

 

Zones at Lauder consist of; High Street, Hinterland Near, Hinterland Far and Hinterland 

Thirlstane. The High Street zone is constrained by Lauder’s 1862 AD urban extent, 

hence represents the location of the old burgh core. The Hinterland Near zone 

corresponds to the immediate hinterland south of Lauder. Similarly the Hinterland 

Thirlstane zone corresponds to the immediate hinterland north of Lauder. The Hinterland 

Far zone represents the distant hinterland immediately south of Lauder.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 34: Delineation of zones at Lauder. Red boundary delimits 1862AD urban extent 
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b) a) 

Figure 35: Delineation of zones at Pittenweem (a) and Wigtown (b). Red boundary delimits 
1855AD and 1850AD urban extent respectively 
 
 

Zones at Pittenweem comprise; Harbour, High Street, Hinterland Near and Hinterland 

Far. The Harbour and High Street zones are constrained by Pittenweem’s 1855AD 

urban extent, hence represent the location of the old burgh core. The Hinterland Near 

and Hinterland Far zones correspond to the immediate and distant hinterland north of 

Pittenweem. 

 

Zones at Wigtown include; High Street, Hinterland Near and Hinterland Showfield. The 

High Street zone is constrained by Wigtown’s 1850AD urban extent, hence represents 

the location of the old burgh core. The Hinterland Near zone corresponds to the 

immediate hinterland north of Wigtown and the Hinterland Showfield corresponds to the 

immediate hinterland south of Wigtown. 
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4.6.2 Determination of Significant Differences between Zones    

Minitab (15) statistical software was used for all statistical analyses described hereafter. 

Statistical analyses of physical and chemical and elemental data were conducted on 0-

20cm depth soil data to enable direct comparison between burghs. Consideration was 

given to comparing zones to ‘reference’ soil pits in addition to each other. However, 

inclusion of ‘reference’ soil data was problematic given that it frequently overlapped with 

zone data which is more variable in nature. This resulted in very few significant 

differences between zones and ‘reference’ soil pits despite particular zones having 

considerably larger average values. Statistical analysis of soil micromorphology data 

was conducted on percentage abundance estimates of coarse organic material within 

zones and ‘reference’ soil pits.  

4.6.2.1 Physical and Chemical Data  
Topsoil depth, pH, LOI, mass dependant magnetic susceptibility and frequency 

dependant magnetic susceptibility data were tested for normality using the Anderson-

Darling normality test. In most cases data were non-normal and could not be 

transformed using logarithmic or square root transformations.  

 

Kruskal-Wallis analysis was identified as the most appropriate non-parametric method to 

test for significant differences between zones. One of the limitations of Kruskal-Wallis 

analysis is that it does not indicate which specific zones are different and in what way. 

Consequently Kruskal-Wallis analysis was performed in collaboration with Dunn’s test. 

Dunn’s test enables multiple comparisons to be made using non-parametric data with 

unequal sample populations (Wheater and Cook 2000). Results of Kruskal-Wallis 

analysis with Dunn’s test were presented in Pairwise Comparison diagrams. The test 

statistic (z score) of each comparison was plotted and z scores exceeding –z or z were 

classed as significant at p<0.05 (95%) confidence level. In cases where data were 

normal a One Way Analysis of Variance (One-Way ANOVA) with Tukey-Kramer (95% 

confidence) multiple comparisons was used to determine significant differences in 

sample means between zones.   
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4.6.2.2 Elemental Data 
All elemental concentrations were tested for normality using the Anderson Darling 

normality test. Elemental data were predominantly non-normal and could not be 

transformed using logarithmic or square root transformations. Kruskal-Wallis analysis in 

association with Dunn’s test was therefore used to identify significant differences in 

median elemental concentrations between zones. Results of Kruskal-Wallis analysis with 

Dunn’s test were presented in Pairwise Comparison diagrams. The test statistic (z 

score) of each comparison was plotted and z scores exceeding –z or z were classed as 

significant at p<0.05 (95%) confidence level. In cases where data were normal a One 

Way Analysis of Variance (One-Way ANOVA) with Tukey-Kramer (95% confidence) 

multiple comparisons was used to determine significant differences in sample means 

between zones.   

4.6.2.3 Soil Micromorphology 
Statistical investigation of significant differences between zones was limited to 

comparison of coarse organic material given the limited abundance of coarse mineral 

anthropogenic inclusions. Percentage abundance estimates of coarse organic 

anthropogenic inclusions (Charcoal, FR 1, FR 2, FR 3, FR 4 & 6, FR 5 & 7, FR 8 & 9, FR 

10 and % FR 10-255µm) were tested for normality using the Anderson-Darling normality 

test. In most cases data were non-normal and could not be transformed using 

logarithmic or square root transformations.  

 

Kruskal-Wallis analysis was identified as the most appropriate non-parametric method to 

test for significant differences between zones. One of the limitations of Kruskal-Wallis 

analysis is that it does not indicate which specific zones are different and in what way. 

Consequently Kruskal-Wallis analysis was performed in collaboration with Dunn’s test. 

Dunn’s test enables multiple comparisons to be made using non-parametric data with 

unequal sample populations (Wheater and Cook 2000). Results of Kruskal-Wallis 

analysis with Dunn’s test were presented in Pairwise Comparison diagrams. The test 

statistic (z score) of each comparison was plotted and z scores exceeding –z or z were 

classed as significant at p<0.05 (95%) confidence level. In cases where data were 

normal a One Way Analysis of Variance (One-Way ANOVA) with Tukey-Kramer (95% 

confidence) multiple comparisons was used to determine significant differences in 

sample means between zones.   
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4.6.3 Determination of Significant Differences between Depths 

Soil pH and % LOI data for 0-20 and 20-40cm depth at Lauder, and 0-20, 20-40, 40-60 

and 60-80cm depth at Pittenweem were tested for normality using the Anderson Darling 

normality test. All data were non-normal and could not be collectively transformed using 

logarithmic or square root transformations. Hence, Kruskal-Wallis analysis in association 

with Dunn’s test was used to identify significant differences between depths.  It should 

be noted that Wigtown was omitted from this analysis due limited sample numbers at 

lower depths.  

 

Furthermore, to investigate the relationship between depth and zone a Two Way 

Analysis of Variance with Tukey-Kramer multiple comparisons (Two Way ANOVA) was 

undertaken using a General Linear Model (GLM). A GLM was used in favour of a 

Balanced ANOVA because it does not assume equal sample populations. It is 

recognised that a Two Way ANOVA is a parametric test, hence not necessarily 

appropriate for non-normal data. However, there are no non-parametric analyses which 

test for interaction between variables. Accordingly, results from this analysis are 

discussed cautiously. 

4.6.4 Determination of Significant Differences between Burghs 

4.6.4.1 Physical and Chemical Data 
To investigate differences in topsoil depth, pH, LOI, mass dependant magnetic 

susceptibility and frequency dependant magnetic susceptibility between burghs a Two 

Way Analysis of Variance with Tukey-Kramer multiple comparisons (Two Way ANOVA) 

was undertaken using a General Linear Model (GLM). This analysis allows comparison 

of sample means between burghs and sample means between zones in addition to 

testing for interaction between burghs and zones. It should be noted that only the High 

Street and Hinterland Near zones were used in the model given that these are the only 

two zones which are present in all three burghs.  

 

As stated in section 4.6.2.1, soil physical and chemical data were predominantly non-

normal. It could therefore be argued that a non-parametric test should have been used 

to investigate data variation between burghs. However, there are no alternative non-

parametric methods which test for interaction between variables. The robustness of Two 

Way ANOVA was confirmed though comparison of data with and without outliers. 

Removal of outliers had minimal effect on the significance of data trends; hence outliers 

were kept within datasets. 

 - 105 -



4.6.4.2 Elemental Data 
To investigate differences in elemental concentrations between burghs consideration 

was given to the use of Two Way Analysis of Variance with Tukey-Kramer multiple 

comparisons (Two Way ANOVA). This technique allows investigation into differences 

between burghs and zones, in addition to testing for interaction. However initial analyses 

proved unreliable, for example the direction of relationships between multiple 

comparisons was incorrect. This problem was attributed to the presence of outliers 

which adversely skewed mean values. Consideration was given to excluding extreme 

data points; however, it is argued that these values are an integral component of 

elemental datasets. Therefore investigation into variation of elemental concentrations 

between burghs focussed on comparing spatial trends identified using non-parametric 

tests (section 4.6.2.2). 

4.6.4.3 Soil Micromorphology 
Statistical investigation of significant differences between burghs was limited to 

comparison of coarse organic material between High Street zones given that the High 

Street zone was the only area systematically sampled within each burgh. Percentage 

abundance estimates of coarse organic anthropogenic inclusions were tested for 

normality using the Anderson-Darling normality test. In all cases data were not normal 

and could not be transformed using logarithmic or square root transformations.  

 

Kruskal-Wallis analysis was identified as the most appropriate non-parametric method to 

test for significant differences between High Street zones. One of the limitations of 

Kruskal-Wallis analysis is that it does not indicate which specific zones are different and 

in what way. Consequently Kruskal-Wallis analysis was performed in collaboration with 

Dunn’s test. Dunn’s test enables multiple comparisons to be made using non-parametric 

data with unequal sample populations (Wheater and Cook 2000). Results of Kruskal-

Wallis analysis with Dunn’s test were presented in Pairwise Comparison diagrams. The 

test statistic (z score) of each comparison was plotted and z scores exceeding –z or z 

were classed as significant at p<0.05 (95%) confidence level.  
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4.6.5 Multivariate Analyses 

4.6.5.1 Cluster Analysis 
Cluster analysis is as an appropriate method for simplifying elemental datasets and 

grouping together elements with similar spatial distributions. Cluster analysis was 

undertaken on elemental data for Lauder, Pittenweem and Wigtown using the Cluster 

Variables function. This is an agglomerative hierarchical method which means that all 

variables begin as independent clusters which are subsequently amalgamated in a 

series of steps until there is only one remaining group.  

 

Correlation was the preferred distance measure over absolute correlation because it 

maximises the distance between positively correlated elements and negatively 

correlated elements. The linkage method used was median linkage which calculates the 

distance between clusters using the median distance between a variable in one cluster 

and a variable in the other cluster, hence reducing the effect of outliers. The final number 

of clusters for each burgh was determined through a combination of prior knowledge 

relating to patterns in elemental concentrations and identification of an abrupt drop 

between amalgamation steps. Results were displayed in the form of a dendrogram to 

visualise similarities between clusters. It should be noted that the median linkage 

method does not always produce a hierarchical dendrogram. In cases where 

amalgamation distances do not increase with each step cluster joins that are both 

upward and downward are produced.  

4.6.5.2 Discriminant Analysis 
Discriminant analysis is a useful tool for investigating whether predicted classifications 

are similar to those observed, hence is an appropriate method to determine the 

classification accuracy of zones delineated in section 4.6.1. Discriminant analysis was 

undertaken on elemental data for Lauder, Pittenweem and Wigtown using cross 

validation. The use of cross validation is important because it compensates for overly 

optimistic classification given that the data being classified is the same as that used to 

build the classification function. The summarised results were displayed in a 

classification matrix table.  
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5 Field Observations and Soil Micromorphology 

This chapter presents results obtained from micromorphological analysis of topsoil 

deposits including; semi-quantification of coarse mineral material, coarse organic 

material and pedofeatures, and characterisation of fine mineral material and soil 

structure.  

5.1 Soil Profile Characteristics  

Profile descriptions, field sketches and photographs of soil pits are presented in 

Appendix 1 for Lauder, Pittenweem and Wigtown. Soil profiles are typically varied in all 

three burghs; however, distinct horizons relating to certain zones are identified within 

and between towns.  

5.1.1 Variation within Burghs 

The High Street and Hinterland Near zones within Lauder are characterised by two deep 

dark horizons which comprise the topsoil. These layers are classed as hortic horizons, 

hence are ascribed the notation Aht 1 (upper topsoil) and Aht 2 (lower topsoil). The Aht 1 

horizon is characteristically black/dark brown in colour and ranges in depth from 30 to 

50cm. The Aht 2 horizon is dark brown/brown in colour and varies in depth from 20cm to 

50cm (Figure 36). The combined depth of horizons Aht 1 and Aht 2 result in topsoil 

deposits which are consistently over 60cm. Moreover, both of these horizons contain 

cultural debris such as fuel residue and pottery sherds. Topsoil within the Hinterland Far 

and Thirlstane zones consists largely of a singular horizon which ranges from dark 

reddish brown to brown in colour. This layer is ascribed the notation Ah on account of its 

dark colour indicating high organic matter content. Similarly, ‘reference’ soil pit LA 7 is 

characterised by an Ah horizon which is reddish brown in colour. In contrast to Aht 

horizons, Ah horizons contain limited cultural debris. 

 

Topsoil within the Harbour and High Street zones at Pittenweem comprises an upper 

(Aht 1) and lower (Aht 2) hortic horizon (Figure 37). The Aht 1 horizon is black and 

ranges in depth from 50-≥100cm in the Harbour zone and 30-40cm in the High Street 

zone. The Aht 2 horizon is very dark brown/dark brown in colour and varies in depth 

from 20-40cm. The combined depth of horizons Aht 1 and Aht 2 result in topsoil depths 

which are consistently ≥80cm within the Harbour zone and over 60cm in the High Street 

zone. Moreover, both of these horizons contain cultural debris such as fuel residue, 
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pottery sherds and shell. Topsoil within the Hinterland Near and Hinterland Far 

comprises an Ah horizon which is consistently very dark brown in colour. Typically this 

horizon ranges from 20 to 30cm in depth. The ‘reference’ soil pit PT 1 contains an Ah 

horizon which is dark brown and 25cm deep. In contrast to Aht horizons, Ah horizons 

contain limited cultural debris. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 36: Soil profile description of soil pit LA1 (see Appendix 1 for photographs) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 37: Soil profile description of soil pit PT3 (see Appendix 1 for photographs) 
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The High Street zone within Wigtown is characterised by topsoil consisting of an upper 

(Aht 1) and lower (Aht 2) hortic horizon (Figure 38). The Aht 1 horizon is 

characteristically black in colour and ranges in depth from 30 to 50cm. The Aht 2 horizon 

is very dark brown/dark brown and is 30-50cm deep. The combined depth of Aht 1 and 

Aht 2 horizons result in topsoils of over 70cm. Both of these horizons contain cultural 

debris such as fuel residue, pottery sherds and shell remains. Topsoil within ‘reference’ 

soil pit WG 5 comprises an Ah horizon which is brown and 27cm deep. In contrast to the 

High Street zone no cultural debris was identified within the ‘reference’ soil pit. Soil was 

not described for the hinterland north of Wigtown given that the ‘reference’ soil pit is 

located within the Hinterland Near zone. Accordingly it is suggested that the ‘reference’ 

soil pit provides a good indication of soil characteristics within the Hinterland Near zone. 

Additionally, soil was not described for the Showfield zone due to problems of restricted 

access. Nevertheless, soil descriptions made during the auger survey indicate the 

presence of an Ah horizon within the Showfield zone which is typically dark brown in 

colour and 15-25cm in depth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 38: Soil profile description of soil pit WG2 (see appendix 1 for photographs) 
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5.1.2 Variation between Burghs 

Topsoil within the burgh core at Lauder, Pittenweem and Wigtown is characterised by 

two hortic soil horizons. These horizons are typically dark (black/dark brown), deep and 

contain clearly identifiable cultural debris such as fuel residue and pottery. Hortic topsoils 

are limited to the burgh core at Pittenweem and Wigtown; however, they extend to the 

immediate hinterland south of Lauder (Hinterland Near).   
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5.2 Coarse Mineral Material 

The abundance of coarse mineral material within topsoil deposits at Lauder, Pittenweem 

and Wigtown is summarised in tables presented in Appendix 2. Differences in the nature 

and abundance of inclusions are identified and comparisons between zones, horizons 

and burghs are made.  

5.2.1 Variation within Burghs 

5.2.1.1 Zones 
Bone, pottery/brick, clinker/slag, mortar/plaster and heated mineral material are present 

within the High Street zone at Lauder (<2%). There is considerable variation in the 

occurrence of coarse mineral material between soil pits within this zone, for example 

mortar/plaster is present within all soil pits whereas bone, pottery/brick and clinker/slag 

are confined to soil pit LA 1. Heated mineral is present (<2%) within the Hinterland Near 

zone and clinker/slag is identified within the Hinterland Far zone (<2%). Contrastingly 

coarse mineral anthropogenic inclusions are absent within the Thirlstane zone and 

‘reference’ soil pit LA 7. These results indicate addition of anthropogenic mineral 

material to soils within the burgh core and hinterland south of Lauder (Hinterland Near, 

Hinterland Far). This finding is significant considering there are no coarse mineral 

inclusions within the ‘reference’ soil pit. Moreover, it is recognised that coarse mineral 

material is greater in abundance and diversity within the burgh core.  

 

Shell, bone, pottery/brick, clinker/slag, mortar/plaster and heated mineral are present 

within topsoils in the Harbour zone at Pittenweem. These materials are typically trace in 

abundance (<2%) although abundances of 2-5% are noted for shell and mortar within 

soil pit PT 5, and heated mineral within soil pit PT 4. Shell, bone, pottery/brick, 

clinker/slag, mortar/plaster and heated mineral are also present in topsoil deposits within 

the High Street zone. Shell, bone and clinker/slag are present in trace abundances 

(<2%) whereas pottery/brick and heated mineral inclusions vary in abundance from <2% 

to 2-5%, and mortar/plaster ranges from <2% to 5-10%. The Harbour and High Street 

zones contain the same classes of coarse mineral inclusions; however, shell is more 

abundant within the Harbour zone and pottery/brick and mortar/plaster inclusions are 

higher in number within the High Street zone.  
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There is a difference in the nature of coarse mineral material between the Hinterland Far 

zone and Hinterland Near zone at Pittenweem, for example only heated mineral material 

is present within the Hinterland Near zone (<2%) whereas pottery/brick, clinker/slag, 

mortar/plaster and heated mineral are identified within the Hinterland Far zone (<2%). 

Additionally, ‘reference’ soil pit PT 1 contains trace abundances (<2%) of pottery/brick, 

mortar/plaster and heated mineral. These results indicate addition of anthropogenic 

mineral material to soils within the burgh core and hinterland north of Pittenweem 

(Hinterland Near, Hinterland Far). Coarse mineral material is most abundant and diverse 

within the burgh core although subtle differences in shell, pottery/brick and 

mortar/plaster are identified between the Harbour and High Street zones. Moreover, it 

should be noted that inclusions of shell and bone are confined to zones within the burgh 

core.  

 

Shell, bone, pottery/brick, clinker/slag, mortar/plaster and heated mineral are present 

within topsoils in the High Street zone at Wigtown. These materials are consistently 

present within all High Street zone soil pits with the exceptions of pottery/brick and 

heated mineral which are absent in soil pit WG 4, and mortar/plaster which is absent in 

soil pit WG 3. Coarse mineral inclusions are typically trace in abundance (<2%) although 

abundances of 2-5% are noted for mortar/plaster in soil pit WG 1 and bone in soil pit WG 

4. In contrast coarse mineral inclusions are absent within ‘reference’ soil pit WG 5. 

These results indicate addition of mineral material to soils within the burgh core. This 

finding is significant given the lack of mineral inclusions within the ‘reference’ soil pit. 

Moreover, considering the ‘reference’ soil pit is located within the Hinterland Near zone, 

it is argued that coarse mineral inclusions are lacking in the hinterland north of Wigtown.  
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5.2.1.2 Hortic Horizons 

Lauder 
Differences in coarse mineral material classes are identified within Aht 1 horizons at 

Lauder, for example bone and heated mineral inclusions are identified at 20-28cm within 

soil pit LA 1 and pottery/brick and mortar/plaster inclusions are noted at 38-46cm (Figure 

39). Likewise pottery/brick and mortar/plaster inclusions are limited to 25-33cm within 

soil pit LA 6. Where materials are present throughout Aht 1 horizons their abundances 

are shown to differ. Clinker/slag is <1% at 20-28cm within soil pit LA 1 and <2% at 38-

46cm. Similarly, heated mineral inclusions are <1% at 10-18cm within soil pit LA 6 and 

<2% at 25-33cm. It is therefore argued that coarse mineral material varies in diversity 

and abundance within Aht 1 horizons. Furthermore it is recognised that coarse mineral 

material is limited to Aht 1 horizons at Lauder, for instance mineral inclusions are absent 

from the Aht 2 horizon within soil pits LA 4, LA 6 and LA 9.  
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Figure 39: Percentage abundance estimates of coarse mineral material within upper (Aht 
1) and lower (Aht 2) topsoil deposits in the High Street and Hinterland Near zones at 
Lauder. Depth indicates the location of Kubiena tin samples 
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Pittenweem 
Differences in coarse mineral material classes are identified within Aht 1 horizons at 

Pittenweem, for example shell and bone inclusions are limited to 41-49cm within soil pit 

PT 4. Likewise clinker/slag inclusions are exclusive to 62-70cm within soil pit PT 4 

(Figure 40). In cases where materials are present throughout Aht 1 horizons it is 

recognised that their abundances differ. Shell and mortar/plaster inclusions vary in 

abundance from 2-5% at 20-28cm within soil pit PT 5 yet are <2% at 40-48cm. Similarly, 

pottery/brick inclusions are <1% at 20-28cm within soil pit PT 5 but are <2% at 40-48cm. 

Accordingly, it is suggested that coarse mineral material varies in diversity and 

abundance within Aht 1 horizons at Pittenweem. 

 

Differences in coarse mineral material classes are identified between Aht 1 and Aht 2 

horizons, for instance bone inclusions are limited to the Aht 1 horizon within soil pit PT 3 

and shell inclusions are exclusive to the Aht 2 horizon. In addition, differences in 

abundances of coarse mineral anthropogenic material classes are recognised between 

Aht 1 and Aht 2 horizons. Pottery/brick is 2-5% abundant within the Aht 1 horizon at soil 

pit PT 3 and <2% within the Aht 2 horizon. Conversely mortar/plaster inclusions are <2% 

abundant within the Aht 1 horizon at soil pit PT 3 in contrast to 5-10% within the Aht 2 

horizon. Hence it is recognised that coarse mineral material varies in diversity and 

abundance between Aht 1 and Aht 2 horizons at Pittenweem. 
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Figure 40: Percentage abundance estimates of coarse mineral material within upper (Aht 
1) and lower (Aht 2) topsoil deposits in the Harbour and High Street zones at Pittenweem. 
Depth indicates the location of Kubiena tin samples 

 - 115 -



Wigtown 
Differences in coarse mineral material classes are identified within Aht 1 horizons at 

Wigtown, for example shell and bone are limited to 32-40cm within soil pit WG 1. 

Likewise clinker/slag inclusions are exclusive to 12-20cm within soil pit WG 1 (Figure 

41). In cases where materials are present throughout Aht 1 horizons it is recognised that 

their abundances differ. Mortar/plaster inclusions vary from 2-5% at 12-20cm within soil 

pit WG 1 and are <1% at 32-40cm. Similar to results obtained for Lauder and 

Pittenweem, it is recognised that coarse mineral material varies in diversity and 

abundance within Aht 1 horizons at Wigtown. 

 

Differences in coarse mineral material classes are identified between Aht 1 and Aht 2 

horizons, for instance shell, bone, pottery/brick, clinker/slag, mortar/plaster and heated 

mineral inclusions are limited to the Aht 1 horizon within soil pit WG 1. Similarly, 

pottery/brick and heated mineral are restricted to the Aht 1 horizon within soil pit WG 2. 

In addition, differences in abundances of coarse mineral anthropogenic material classes 

are recognised between Aht 1 and Aht 2 horizons. Bone is <1% within the Aht 1 horizon 

at soil pit WG 4 in contrast to abundances of  2-5% within the Aht 2 horizon. Coarse 

mineral material therefore varies in diversity and abundance between Aht 1 and Aht 2 

horizons at Wigtown.  
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Figure 41: Percentage abundance estimates of coarse mineral material within upper (Aht 
1) and lower (Aht 2) topsoil deposits in the High Street zone at Wigtown. Depth indicates 
the location of Kubiena tin samples 
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5.2.2 Variation between Burghs 

Coarse mineral anthropogenic material is typically most diverse and abundant within the 

burgh core at Lauder, Pittenweem and Wigtown. All three burghs have bone, 

pottery/brick, clinker/slag, mortar/plaster and heated mineral inclusions in zones 

corresponding to the burgh core (Harbour, High Street). In addition shell inclusions are 

identified within the burgh core at Pittenweem and Wigtown.  

 

Coarse mineral anthropogenic material is limited to the burgh core at Wigtown; however, 

selected inclusions are present within hinterland topsoils at Lauder and Pittenweem. 

Heated mineral and clinker/slag inclusions occur in the immediate hinterland south of 

Lauder (Hinterland Near) and far hinterland (Hinterland Far) respectively. Similar to 

results obtained for Lauder, topsoils within the immediate hinterland north of Pittenweem 

(Hinterland Near) contain trace abundances of heated mineral inclusions. Moreover the 

Hinterland Far zone and ‘reference’ soil pit at Pittenweem are characterised by 

pottery/brick, clinker/slag and mortar/plaster inclusions. It is suggested that the 

‘reference’ soil is of limited utility considering is location within the Hinterland Far zone. 

 

Considerable variation in coarse mineral anthropogenic material is also apparent within 

and between topsoil hortic horizons. Coarse mineral anthropogenic material classes vary 

in diversity and abundance within Aht 1 horizons and between Aht 1 and Aht 2 horizons 

at Lauder, Pittenweem and Wigtown. Differences within and between horizons appear 

random with the exception of Lauder where coarse mineral anthropogenic inclusions are 

absent from Aht 2 horizons.  
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5.3 Summary of Results: Coarse Mineral Material 

The following section presents a brief summary of key trends in the nature and 

abundance of coarse mineral material both within and between burghs. The significance 

of these results is discussed in sections 8.1.3 and 8.2.3; in particular consideration is 

given to differences in the nature and distribution of waste materials both within and 

between burghs.   

5.3.1 Variation within Burghs 

5.3.1.1 Lauder  
The main area of interest at Lauder is the High Street zone. This zone is characterised 

by trace abundances of bone, pottery/brick, clinker/slag, mortar/plaster and heated 

mineral inclusions. In addition, clinker/slag is present within the Hinterland Far zone and 

heated mineral is identified within the Hinterland Near zone (Table 5).  

5.3.1.2 Pittenweem 
The Harbour, High Street, Hinterland Near and Hinterland Far zones and ‘reference’ soil 

pit at Pittenweem contain coarse mineral inclusions. The burgh core is characterised by 

shell, bone, pottery/brick, clinker/slag, mortar/plaster and heated mineral inclusions. 

Abundances are typically <2% although it is noted that shell is most abundant within the 

Harbour zone (2-5%), and pottery/brick and mortar/plaster are most abundant within the 

High Street zone (2-5% to 5-10%) (Table 5). Coarse mineral material within the 

Hinterland Near zone is limited to trace abundances of heated mineral. However, 

inclusions within the Hinterland Far zone and ‘reference’ soil comprise trace abundances 

of pottery/brick, clinker/slag, mortar/plaster and heated mineral.  

5.3.1.3 Wigtown 
The High Street zone is characterised by trace abundances of shell, bone, pottery/brick, 

clinker/slag, mortar/plaster and heated mineral inclusions. Coarse mineral inclusions are 

absent from the hinterland north of Wigtown.  

5.3.1.4 Hortic Horizons 
Results presented in section 5.2.1.2 indicate that coarse mineral anthropogenic material 

classes vary in diversity and abundance within Aht 1 horizons and between Aht 1 and 

Aht 2 horizons at Lauder, Pittenweem and Wigtown. Differences within and between 

horizons appear random with the exception of Lauder where coarse mineral 

anthropogenic inclusions are absent from Aht 2 horizons. 
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Table 5: Summary of trends in coarse mineral material identified at Lauder, Pittenweem 
and Wigtown, summary abundances are given in brackets 
 

Inclusion Lauder Pittenweem Wigtown 

Shell Absent. Shell is present within 
the burgh core 
(Harbour <2% to 2-5%, 
High Street <2%). 

Shell present is within 
the burgh core (<2%). 

Bone Bone is present within 
the burgh core (<2%). 

Bone is present within 
burgh core (<2%). 

Bone is present within 
the burgh core (<2% 
to 2-5%). 

Pottery 
/Brick 

Pottery/Brick is present 
within the burgh core 
(<2%). 

Pottery/brick is present 
within the burgh core 
(Harbour <2%, High 
Street <2% to 2-5%) 
and far hinterland 
(<2%). 

Pottery/Brick is 
present within the 
burgh core (<2%). 

Clinker/ 
Slag 

Clinker/Slag is present 
within the burgh core 
and far hinterland 
(Hinterland Far) (<2%). 

Clinker/Slag is present 
within the burgh core 
and far hinterland 
(<2%). 

Clinker/Slag is present 
within the burgh core 
(<2%). 

Mortar/ 
Plaster 

Mortar/Plaster is 
present within the 
burgh core (<2%). 

Mortar/Plaster is 
present within the 
burgh core (Harbour 
<2% to 2-5%, High 
Street <2% to 5-10%) 
and far hinterland 
(<2%).  

Mortar/Plaster is 
present within the 
burgh core (<2% to 2-
5%).. 

Heated 
Mineral 

Heated Mineral is 
present within the 
burgh core and 
immediate hinterland 
(Hinterland Near) 
(<2%). 

Heated Mineral is 
present within the 
burgh core (2% to 2-
5%) and hinterland 
(Hinterland Near, 
Hinterland Far <2%). 

Heated Mineral is 
present within the 
burgh core (<2%). 
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5.3.2 Variation between Burghs 

All three burghs have bone, pottery/brick, clinker/slag, mortar/plaster and heated mineral 

inclusions in zones corresponding to the burgh core (Harbour, High Street) (Table 6). In 

contrast shell inclusions are limited to the burgh core at Pittenweem and Wigtown. 

Coarse mineral material is most abundant within burgh cores. Moreover, coarse mineral 

inclusions are most abundant within the burgh core at Pittenweem in comparison to 

burgh cores at Lauder and Wigtown. Coarse mineral anthropogenic inclusions are 

present in topsoils within the hinterland at Lauder and Pittenweem. Mineral material 

within the hinterland at Lauder is limited to isolated traces of heated mineral and 

clinker/slag; however, pottery/brick, clinker/slag, mortar/plaster and heated mineral 

inclusions are consistent within the far hinterland at Pittenweem. 

 
Table 6: Comparison of trends in the abundance of coarse mineral anthropogenic material 
at Lauder, Pittenweem and Wigtown, summary abundances are given in brackets 
 
 

Inclusion Comparison between Burghs 

Shell Shell is present within the burgh core at Pittenweem (<2% to 2-5%) 
and Wigtown (2%). 

Bone Bone is present within the burgh core at all three towns (Lauder and 
Pittenweem <2%, Wigtown <2% to 2-5%). 

Pottery/Brick Pottery/Brick is present within the burgh core at all three towns (Lauder 
and Wigtown <2%, Pittenweem <2% to 2-5%). 
Pottery/Brick is present within the Hinterland Far zone and ‘reference’ 
soil (<2%) at Pittenweem. 

Clinker/Slag Clinker/slag is present within the burgh core at all three towns (<2%). 
Clinker/slag is present in the Hinterland Far zone at Lauder and 
Pittenweem (<2%). 

Mortar/Plaster Mortar/plaster is present within the burgh core at all three towns 
(Lauder <2%, Pittenweem <2% to 5-10%, Wigtown <2% to 2-5%).  
Mortar/plaster is present within the Hinterland Far zone and ‘reference’ 
soil (<2%) at Pittenweem. 

Heated 
Mineral 

Heated mineral is present within the burgh core at all three towns 
(Lauder and Wigtown <2%, Pittenweem <2% to 2-5%).  
Heated mineral is present in trace abundance (<2%) within the 
immediate hinterland (Hinterland Near) at Lauder, and hinterland 
(Hinterland Near and Hinterland Far zones/’reference’ soil) at 
Pittenweem. 
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5.4 Fine Mineral Material 

The colour and limpidity of fine mineral material within topsoil deposits at Lauder, 

Pittenweem and Wigtown is summarised in tables presented in Appendix 2. Differences 

in fine mineral material characteristics are identified and comparisons between zones 

and burghs are made.  

5.4.1 Variation within Burghs 

Fine mineral material within the High street, Hinterland Near and Thirlstane zones at 

Lauder is brown/dark brown and dotted. In contrast fine mineral material within the 

Hinterland Far zone and ‘reference’ soil pit LA 7 is red/red brown and speckled, with the 

exception of topsoil within soil pit LA 3 which is brown and dotted.  

 

There is no difference in fine mineral material characteristics between zones at 

Pittenweem. Fine mineral material within the Harbour, High Street, Hinterland Near and 

Hinterland Far zones and ‘reference’ soil pit PT 1 is characteristically brown/dark brown 

and dotted.  

 

Fine mineral material within the High Street zone and ‘reference’ soil WG 5 at Wigtown 

is brown/dark brown. Despite similarities in colour, it is recognised that limpidity of fine 

mineral material differs between these areas. Fine mineral material within the High 

Street zone is dotted in contrast to the ‘reference’ soil which is speckled.  

5.4.2 Variation between Burghs 

Fine mineral material within the burgh core at all three towns is characteristically 

brown/dark brown and dotted. Similarities in the nature of fine mineral material are 

identified within the burgh core and immediate hinterland north (Thirlstane) and south 

(Hinterland Near) of Lauder. Additionally it is noted that there is no distinction in the 

nature of fine mineral material between zones at Pittenweem. Fine mineral material 

within the burgh core and hinterland (Hinterland Near/’reference’ soil) at Wigtown is 

similar in colour; however, a marked difference in limpidity is apparent.  
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5.5 Coarse Organic Material 

The abundance of coarse organic material within topsoil deposits at Lauder, Pittenweem 

and Wigtown is summarised in tables presented in Appendix 2. Differences in the nature 

and abundance of inclusions are identified and comparisons between zones, horizons 

and burghs are made.  

5.5.1 Charcoal 

5.5.1.1 Variation within Burghs 
Charcoal is present in trace abundances (<2%) within the High Street and Hinterland 

Near zones at Lauder. In contrast charcoal is absent from the Hinterland Far and 

Thirlstane zones, and ‘reference’ soil pit LA 7. Charcoal is therefore limited to the burgh 

core and immediate hinterland south of the historical burgh limits (Hinterland Near).  

 

Charcoal inclusions are <2% within the Harbour, High Street, Hinterland Near and 

Hinterland Far zones at Pittenweem. In comparison charcoal is absent from ‘reference’ 

soil pit PT 1. Nevertheless these results indicate that there is no difference in the 

abundance of charcoal between zones at Pittenweem.  

 

Charcoal occurs as trace abundances (<2%) within the High Street zone at Wigtown. 

However charcoal is absent from ‘reference’ soil pit WG 5. Charcoal inclusions are thus 

limited to the burgh core at Wigtown.  

5.5.1.2 Variation between Burghs 
Charcoal is <2% within zones corresponding to the burgh core (Harbour and High 

Street) at all three towns. Results of Kruskal-Wallis analysis with Dunn’s test multiple 

comparisons indicate no statistical difference in the abundance of charcoal between 

High Street zones at Lauder, Pittenweem and Wigtown. Charcoal inclusions are present 

within the immediate hinterland south (Hinterland Near) of the historical burgh limits at 

Lauder and across the hinterland (Hinterland Near, Hinterland Far) at Pittenweem. In 

contrast charcoal is limited to the burgh core at Wigtown.  
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5.5.2 Fuel Residue 1 (FR 1) 

5.5.2.1 Variation within Burghs 
FR 1 inclusions are identified within the High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones, and ‘reference’ soil pit LA 7 at Lauder. Abundances of FR 1 within the 

High Street zone range from <2% to 5-10%. Similarly FR 1 varies between <2% to 2-5% 

within the Hinterland Near zone. FR 1 inclusions are <2% within the Hinterland Far and 

Thirlstane zones and ‘reference’ soil pit. FR 1 is significantly more abundant within the 

High Street zone than the Hinterland Near, Hinterland Far and Thirlstane zones, and 

‘reference’ soil pit LA 7 (p<0.001) (Figure 42a). In addition FR 1 is significantly greater 

within the Hinterland Near zone than the Hinterland Far zone (p<0.01). There is no 

statistical difference in the abundance of FR 1 between the Hinterland Far and Thirlstane 

zones and ‘reference’ soil pit. FR 1 inclusions are therefore greatest within the burgh 

core followed in succession by the immediate hinterland south (Hinterland Near) of 

Lauder. 
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Figure 42: Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 1 for 
individual zones at Lauder (a) and Pittenweem (b), z values exceeding –Z or Z are 
significant at p<0.05 confidence level 
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FR 1 inclusions are present within the Harbour, High Street, Hinterland Near and 

Hinterland Far zones, and ‘reference’ soil pit PT 1 at Pittenweem. Abundances of FR 1 

within the Harbour and High Street zones range from 5-10% to 10-15%. FR 1 varies 

between 5 to 10% within the Hinterland Near and Hinterland Far zones, and between 2 

to 5% within the ‘reference’ soil. FR 1 is significantly more abundant within the Harbour 

and High Street zones than the Hinterland Near zone and ‘reference’ soil pit (p<0.001) 

(Figure 42b). In addition FR 1 is significantly greater within the Hinterland Far zone than 

the Hinterland Near zone (p<0.01) and ‘reference’ soil pit (p<0.001). There is no 

statistical difference in the abundance of FR 1 between the Harbour, High Street and 

Hinterland Far zones. FR 1 inclusions are therefore greatest within the burgh core at far 

hinterland (Hinterland Far) at Pittenweem. 

 

FR 1 inclusions occur within the High Street zone and ‘reference’ soil pit WG 5 at 

Wigtown. Abundances of FR 1 within the High Street zone range from <2% to 5-10%, 

although values of 2-5% to 5-10% are typical. FR 1 varies between <2% to 2-5% within 

the ‘reference’ soil pit. FR 1 is significantly greater within the High Street zone than the 

‘reference’ soil pit (p<0.001). FR 1 inclusions are therefore greatest within the burgh core 

at Wigtown.   

5.5.2.2 Variation between Burghs 
FR 1 inclusions are present within zones corresponding to the burgh core (Harbour and 

High Street) and the hinterland at all three towns. FR 1 inclusions are greatest in 

abundance within the burgh core at Lauder and Wigtown and within the burgh core and 

far hinterland (Hinterland Far) at Pittenweem. Results of Kruskal-Wallis analysis with 

Dunn’s test multiple comparisons indicate that FR 1 is significantly more abundant within 

the High Street zone at Pittenweem than High Street zones at Lauder and Wigtown 

(p<0.001). There is no statistical difference in the abundance of FR 1 between the High 

Street zone at Lauder and Wigtown.  
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5.5.3 Fuel Reside 2 (FR 2) 

5.5.3.1 Variation within Burghs 
FR 2 inclusions are <2% within the High Street zone at Lauder. In contrast FR 2 

inclusions are absent from the Hinterland Near, Hinterland Far and Thirlstane zones, 

and ‘reference’ soil pit LA 7. FR 2 inclusions are therefore limited to the burgh core at 

Lauder.  

 

FR 2 inclusions occur as trace abundances (<2%) within the Harbour, High Street and 

Hinterland Far zones, and ‘reference’ soil pit PT 1 at Pittenweem. FR 2 is absent from 

the Hinterland Near zone. There is no difference in the abundance of FR 2 inclusions 

between the burgh core and far hinterland (Hinterland Far/’reference’ soil) at 

Pittenweem.  

 

FR 2 inclusions are present in trace abundances (<2%) within the High Street zone at 

Wigtown. In comparison FR 2 is absent from ‘reference’ soil pit WG 5. FR 2 inclusions 

are therefore limited to the burgh core at Wigtown. 

5.5.3.2 Variation between Burghs 
FR 2 inclusions occur within zones corresponding to the burgh core (Harbour and High 

Street) at all three towns and within the hinterland at Pittenweem. Results of Kruskal-

Wallis analysis with Dunn’s test multiple comparisons indicate no statistical difference in 

the abundance of FR 2 between High Street zones at Lauder, Pittenweem and Wigtown. 

FR 2 inclusions are limited to the burgh core at Lauder and Wigtown; however, FR 2 is 

noted within both the burgh core and far hinterland (Hinterland Far/’reference’ soil) at 

Pittenweem.  
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5.5.4 Fuel Residue 3 (FR 3) 

5.5.4.1 Variation within Burghs 
Abundances of FR 3 within the High Street zone at Lauder range from <2% to 2-5%. FR 

3 inclusions are <2% within the Hinterland Near and Hinterland Far zones and 

‘reference’ soil pit.  FR 3 is significantly more abundant within the High Street zone than 

the Hinterland Far (p<0.01) and Thirlstane (p<0.001) zones and ‘reference’ soil pit LA 7 

(p<0.01) (Figure 43a). There is no statistical difference in the abundance of FR 3 

between the High Street and Hinterland Near zones. In addition there is no significant 

difference in FR 3 between the Hinterland Far and Thirlstane zones, and ‘reference’ soil 

pit. FR 3 inclusions are therefore greatest within the burgh core followed in succession 

by the immediate hinterland south (Hinterland Near) of Lauder. 

 

Abundances of FR 3 within the Harbour and High Street zones at Pittenweem vary 

between <2% and 2-5%. FR 3 inclusions are <2% within the Hinterland Near and 

Hinterland Far zones and ‘reference’ soil pit. FR 3 is significantly more abundant within 

the High Street zone than the Harbour (p<0.05), Hinterland Near (p<0.01) and 

Hinterland Far zones (p<0.01), and ‘reference’ soil pit (p<0.001) (Figure 43b). There is 

no statistical difference in the abundance of FR 3 between the Harbour, Hinterland Near 

and Hinterland Far zones and ‘reference’ soil pit. FR 3 inclusions are therefore greatest 

within the burgh core with specific reference to the High Street zone.  

 

FR 3 inclusions occur as trace abundances (<2%) within the High Street zone at 

Wigtown. In contrast FR 3 is absent from ‘reference’ soil pit WG 5. FR 3 inclusions are 

therefore limited to the burgh core at Wigtown. 
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Figure 43: Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 3 for 
individual zones at Lauder (a) and Pittenweem (b), z values exceeding –Z or Z are 
significant at p<0.05 confidence level 
 

5.5.4.2 Variation between Burghs 
FR 3 inclusions are present within zones corresponding to the burgh core (Harbour and 

High Street) at all three towns and within the hinterland at Lauder and Pittenweem. FR 3 

inclusions are greatest in abundance within the burgh core (High Street zone) at Lauder, 

Pittenweem and Wigtown. Results of Kruskal-Wallis analysis with Dunn’s test multiple 

comparisons indicate that FR 3 is more abundant within the High Street zone at 

Pittenweem in comparison to High Street zones at Lauder (p<0.05) and Wigtown 

(p<0.001). FR 3 is also significantly greater within the High Street zone at Lauder than 

the High Street zone at Wigtown (p<0.01). It is therefore recognised that FR 3 is greatest 

in abundance within the High Street zone at Pittenweem and least abundant within the 

High Street zone at Wigtown.  
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5.5.5 Fuel Residue 4 & 6 (FR 4 & 6) 

5.5.5.1 Variation within Burghs 
Abundances of FR 4 & 6 within the High Street zone at Lauder range from <2% to 5-

10%, although values between 2-5% and 5-10% are typical. FR 4 & 6 inclusions within 

the Hinterland Near and Hinterland Far zones vary from <2% to 2-5%. In contrast FR 4 & 

6 is <2% within the Thirlstane zone and ‘reference’ soil. FR 4 & 6 is significantly more 

abundant within the High Street zone than the Hinterland Near, Hinterland Far and 

Thirlstane zones and ‘reference’ soil pit (p<0.001) (Figure 44a). There is no statistical 

difference in the abundance of FR 4 & 6 between the Hinterland Near, Hinterland Far, 

and Thirlstane zones and ‘reference’ soil pit. FR 4 & 6 inclusions are therefore greatest 

within the burgh core. 

 

Abundances of FR 4 & 6 within the Harbour zone at Pittenweem range from 2-5% to 5-

10%. FR 4 & 6 inclusions within the High Street and Hinterland Far zones vary between 

<2% to 2-5%. In contrast FR 4 & 6 is <2% within the Hinterland Near zone and 

‘reference’ soil pit. FR 4 & 6 is significantly more abundant within the Harbour zone than 

the Hinterland Near (p<0.01) and Hinterland Far (p<0.05) zones and reference soil 

(P<0.001) (Figure 44b). In addition FR 4 & 6 is greater within the High Street and 

Hinterland Far zones than the ‘reference’ soil pit (p<0.001). There is no statistical 

difference in the abundance of FR 4 & 6 between the Harbour and High Street zones. 

Moreover there is no significant difference in the abundance of FR 4 & 6 between the 

High Street, Hinterland Near and Hinterland Far zones. FR 4 & 6 inclusions are therefore 

greatest within the burgh core with specific reference to the Harbour zone.  

 

Abundances of FR 4 & 6 within the High Street zone at Wigtown range from 5-10% to 

10-15%. FR 4 & 6 inclusions within the ‘reference’ soil pit vary between <2% and 2-5%. 

FR 4 & 6 is significantly more abundant within the High Street zone than the ‘reference’ 

soil pit (p<0.001).  FR 4 & 6 inclusions are therefore greatest within the burgh core at 

Wigtown. 
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Figure 44: Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 4 & 6 for 
individual zones at Lauder (a) and Pittenweem (b), z values exceeding –Z or Z are 
significant at p<0.05 confidence level 
 

5.5.5.2 Variation between Burghs 
FR 4 & 6 inclusions are identified within zones corresponding to the burgh core (Harbour 

and High Street) and selected hinterland zones all three towns. It is noted that FR 4 & 6 

inclusions are greatest in abundance within burgh cores at Lauder, Pittenweem and 

Wigtown. Results of Kruskal-Wallis analysis with Dunn’s test multiple comparisons 

indicate FR 4 & 6 is significantly more abundant within the High Street zone at Wigtown 

in comparison to High Street zones at Lauder and Pittenweem (p<0.001). There is no 

statistical difference in the abundance of FR 4 & 6 between the High Street zone at 

Lauder and Pittenweem. 
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5.5.6 Fuel Residue 5 & 7 (FR 5 & 7) 

5.5.6.1 Variation within Burghs 
Abundances of FR 5 & 7 within the High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones and ‘reference’ soil pit LA 7 at Lauder are <2%. Hence, there is no 

significant difference in the abundance of FR 5 & 7 between zones.  

 

Abundances of FR 5 & 7 within the Harbour zone at Pittenweem range from 5-10% to 

10-15%. In contrast FR 5 & 7 inclusions within the High Street, Hinterland Near and 

Hinterland Far zones and ‘reference’ soil pit are <2%. FR 5 & 7 is significantly more 

abundant within the Harbour zone than the High Street, Hinterland Near and Hinterland 

Far zones and ‘reference’ soil pit (p<0.001) (Figure 45). In addition FR 5 & 7 is 

significantly greater within the High Street zone compared to the ‘reference’ soil pit 

(p<0.01). It is therefore identified that FR 5 & 7 inclusions are greatest within the 

Harbour zone and to a lesser extent the High Street zone. 

 

FR 5 & 7 occur as trace abundances (<2%) within the High Street zone and ‘reference’ 

soil pit WG 5 at Wigtown. There is no statistical difference in the abundance of FR 5 & 7 

between the High Street zone and ‘reference’ soil pit.  
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Figure 45: Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 5 & 7 for 
individual zones at Pittenweem, z values exceeding –Z or Z are significant at p<0.05 
confidence level 
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5.5.6.2 Variation between Burghs 
FR 5 & 7 inclusions are present within both the burgh core and hinterland at all three 

burghs. There is no difference in the abundance of FR 5 & 7 between zones at Lauder 

and Wigtown; however it is noted that FR 5 & 7 is greatest in abundance within the 

burgh core at Pittenweem. Results of Kruskal-Wallis analysis with Dunn’s test multiple 

comparisons reveal that FR 5 & 7 is significantly more abundant within the High Street 

zone at Pittenweem than High Street zones at Lauder and Wigtown (p<0.001). There is 

no statistical difference in the abundance of FR 5 & 7 between High Street zones at 

Lauder and the High Street zone at Wigtown.  
 

5.5.7 Fuel Residue 8 & 9 (FR 8 & 9) 

5.5.7.1 Variation within Burghs 
Abundances of FR 8 & 9 within the High Street and Hinterland Near zone at Lauder 

range from <2% to 2-5%. FR 8 & 9 inclusions within the Hinterland Far and Thirlstane 

zones and ‘reference’ soil pit are typically <2%. FR 8 & 9 is significantly more abundant 

within the High Street zone than the Hinterland Far and Thirlstane zones and ‘reference’ 

soil pit (p<0.001) (Figure 46a). In addition FR 8 & 9 is significantly greater within the 

Hinterland Near zone than the Hinterland Far and Thirlstane zones (p<0.05) and 

‘reference’ soil pit (p<0.001). FR 8 & 9 is also significantly higher in the Hinterland Far 

and Thirlstane zones than ‘reference’ soil pit (p<0.01). There is no difference in the 

abundance of FR 8 & 9 between the High Street and Hinterland Near zones. FR 8 & 9 is 

greatest in abundance within the burgh core and immediate hinterland south (Hinterland 

Near) of Lauder.  

 

Abundances of FR 8 & 9 within the Harbour and High Street zone at Pittenweem range 

from <2% to 2-5%, although abundances within the Harbour zone are typically 2-5%. FR 

8 & 9 inclusions within the Hinterland Far zone and ‘reference’ soil pit range from <2% to 

2-5%. In contrast FR 8 & 9 is <2% within the Hinterland Near zone. FR 8 & 9 is 

significantly more abundant within the Harbour than the High Street (p<0.01), Hinterland 

Near (p<0.001) and Hinterland Far zones (p<0.001) and ‘reference’ soil pit (p<0.001). 

FR 8 & 9 is significantly greater within the High Street zone than the ‘reference’ soil pit 

(p<0.05) (Figure 46b). It is therefore recognised that FR 8 & 9 inclusions are greatest 

within the Harbour zone and to a lesser extent the High Street zone. 
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Abundances of FR 8 & 9 within the High Street zone at Wigtown range from <2% to 5-

10%. In contrast FR 8 & 9 within the ‘reference’ soil is typically <2%. FR 8 & 9 is 

significantly more abundant within the High Street zone than the ‘reference’ soil 

(p<0.001). FR 8 & 9 inclusions are, therefore, greatest within the burgh core.  

5.5.7.2 Variation between Burghs 
The burgh core and hinterland at all three burghs contain FR 8 & 9 inclusions. FR 8 & 9 

is greatest in abundance within the burgh core at Pittenweem and Wigtown and within 

the burgh core and immediate hinterland south (Hinterland Near) of the historical burgh 

limits at Lauder. Results of Kruskal-Wallis analysis with Dunn’s test multiple 

comparisons indicate that FR 8 & 9 is significantly more abundant within the High Street 

zone at Lauder in comparison to High Street zones at Pittenweem and Wigtown 

(p<0.001). In addition FR 8 & 9 is significantly greater within the High Street zone at 

Wigtown than the High Street zone at Pittenweem (p<0.001).  
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Figure 46: Kruskal-Wallis analysis with Dunn’s test multiple comparisons of FR 8 & 9 for 
individual zones at Lauder (a) and Pittenweem (b), z values exceeding –Z or Z are 
significant at p<0.05 confidence level 
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5.5.8 Fuel Residue 10 (FR 10) 

5.5.8.1 Variation within Burghs 
Trace abundances (<2%) of FR 10 inclusions are present within the High Street zone at 

Lauder. In contrast FR 10 inclusions are absent from the Hinterland Near, Hinterland Far 

and Thirlstane zones, and ‘reference’ soil pit LA 7. FR 10 inclusions are therefore limited 

to the burgh core at Lauder.  

 

FR 10 inclusions occur as trace abundances (<2%) within the Harbour, High Street and 

Hinterland Far zones, and ‘reference’ soil pit PT 1 at Pittenweem. FR 10 is absent from 

the Hinterland Near zone. There is no difference in the abundance of FR 10 inclusions 

between the burgh core and far hinterland (Hinterland Far/’reference’ soil) at 

Pittenweem. 

 

The High Street zone at Wigtown contains trace abundances (<2%) of FR 10 inclusions. 

However FR 10 inclusions are absent from ‘reference’ soil pit WG 5. FR 10 inclusions 

are therefore limited to the burgh core at Wigtown. 

5.5.8.2 Variation between Burghs 
FR 10 inclusions are present within zones corresponding to the burgh core (Harbour and 

High Street) at all three towns and within the hinterland at Pittenweem. Results of 

Kruskal-Wallis analysis with Dunn’s test multiple comparisons indicate no statistical 

difference in the abundance of FR 10 between High Street zones at Lauder, Pittenweem 

and Wigtown. It is recognised that FR 10 inclusions are limited to the burgh core at 

Lauder and Wigtown; however, FR 10 is noted within both the burgh core and far 

hinterland (Hinterland Far/’reference’ soil) at Pittenweem.  
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5.5.9 Fuel Residue 10-255 µm (%) 

5.5.9.1 Variation within Burghs 
The percentage of total fuel residue sized between 10 and 255µm within the High Street 

zone at Lauder ranges from 10 to 18% (Figure 47). In comparison the % of total fuel 

residue 10-255µm within Hinterland Near, Hinterland Far and Thirlstane zone varies 

between 27 to 59%. Similarly, the % of total fuel residue 10-255µm within the ‘reference’ 

soil pit LA 7 varies between 28 and 52%. Results of One Way Analysis of Variance 

(ANOVA) with Tukey-Kramer multiple comparisons indicate that the % of total fuel 

residue 10-255µm is significantly lower within the High Street zone in comparison to the 

Hinterland Near, Hinterland Far and Thirlstane zones and ‘reference’ soil pit LA 7 

(p<0.001). The % of total fuel residue 10-255µm is therefore lowest within the burgh core 

at Lauder.  
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Figure 47: % FR (10-255µm) within topsoil deposits in the High Street, Hinterland Near, 
Hinterland Far and Thirlstane zones, and ‘reference’ soil at Lauder. Number range refers to 
depth of Kubiena sample (cm) 
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The percentage of total fuel residue sized between 10 and 255µm within the Harbour 

and High street zone at Pittenweem varies between 4 and 16% (Figure 48). In 

comparison the % of total fuel residue 10-255µm within the Hinterland Near and 

Hinterland Far zones ranges from 21 to 26% with the exception of soil pit PT 2 which 

has a very low value of 7.7%. The % of total fuel residue 10- 255µm within ‘reference’ 

soil pit PT 1 has a mean value of 19%. Results of One Way Analysis of Variance 

(ANOVA) reveal that there is no statistical difference in the % of total fuel 10-255µm 

between zones at Pittenweem. 

 

The mean percentage of total fuel residue sized between 10 and 255µm within the High 

Street zone and ‘reference’ soil pit WG 5 at Wigtown is 12 and 18% respectively (Figure 

49). These results indicate a lower % of total fuel residue 10-255µm within the burgh 

core. However, results of One Way ANOVA reveal that there is no significant difference 

in the % of total fuel residue 10-255µm between zones at Wigtown. 
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Figure 48: % FR (10-255µm) within topsoil deposits in the Harbour, High Street, Hinterland 
Near, and Hinterland Far zones, and ‘reference’ soil at Pittenweem. Number range refers to 
depth of Kubiena sample (cm) 
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Figure 49: % FR (10-255µm) within topsoil deposits in the Harbour, High Street, Hinterland 
Near, and Hinterland Far zones, and ‘reference’ soil at Pittenweem. Number range refers to 
depth of Kubiena sample (cm) 
 

5.5.9.2 Variation between Burghs 
The percentage of total fuel residue sized between 10 and 255µm is variable within all 

three burghs ranging from 10.6 to 58.6% at Lauder, 4 to 26.5% at Pittenweem and 4.7 to 

28.5% at Wigtown. The % of total fuel residue 10-255µm is significantly lower within the 

burgh core at Lauder; however, there is no difference in % FR 10-255µm between zones 

at Pittenweem and Wigtown. Additionally results of One Way ANOVA indicate that there 

is no statistical difference in the % of total fuel residue 10-255µm between High Street 

zone at Lauder, Pittenweem and Wigtown. 
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5.5.10 Micromorphological Characteristics of Hortic Horizons 

5.5.10.1 Variation within Burghs 

Lauder 
Similarities in fuel residue classes exist within Aht 1 horizons at Lauder, for example FR 

1, FR 3, FR 4 & 6 and FR 8 & 9 are present at 20-28cm and 38-46cm within soil pit LA 1 

(Figure 50). Likewise, FR 1, FR 3, FR 4 & 6 and FR 8 & 9 are recognised at 10-18cm 

and 25-33cm within soil pit LA 6. It is noted that abundances of fuel residue classes are 

consistent throughout Aht 1 horizons. The total abundance of fuel residue at 20-28cm 

and 28-46cm within soil pit LA 1 is 15 and 15.5% respectively. Moreover, the total 

abundance of fuel residue within soil pit LA 6 is 14% at successive depths. Aside from 

trace abundances of infrequent fuel reside classes such as FR 2 and FR 10, it is argued 

variation in the diversity and abundance of fuel residue classes within upper topsoil 

hortic horizons is minimal.  
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Figure 50: Percentage abundance estimates of coarse organic material (Fuel Residue 
categories) within upper (Aht 1) and lower (Aht 2) topsoil deposits in the High Street and 
Hinterland Near zones at Lauder. Number range indicates the depth (cm) of Kubiena tin 
samples  
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Similarities in fuel residue classes are noted between Aht 1 and Aht 2 horizons, for 

example charcoal, FR1, FR 3, FR 4 & 6, FR 5 & 7 and FR 8 & 9 are present within both 

the Aht 1 and Aht 2 horizon within soil pit LA 4. Likewise FR1, FR 3, FR 4 & 6 and FR 8 

& 9 are present within the Aht 1 and Aht 2 horizon in soil pit LA 6. Fuel residue classes 

are less abundant within Aht 2 horizons than Aht 1 horizons. The total abundance of fuel 

residue within the Aht 1 and Aht 2 horizon in soil pit LA 6 is 13.1 and 10.4% respectively. 

Similarly, the total abundance of fuel residue within the Aht 1 horizon in soil pit LA 9 is 

6.4% in contrast to 3.7% within the Aht 2 horizon. It is argued that variation in the 

diversity of fuel residue classes between upper and lower topsoil hortic horizons is 

minimal. Furthermore, is it suggested that fuel residue is less abundant within the lower 

topsoil hortic horizon.  

Pittenweem 
Similarities in fuel residue classes are identified within Aht 1 horizons at Pittenweem, for 

instance FR 1, FR 2, FR 4 & 6, FR 5 & 7 and FR 8 & 9 are present at 41-19 and 62-

70cm within soil pit PT 4. Similarly charcoal, FR 1, FR 3, FR 4 & 6, FR 5 & 7 and FR 8 & 

9 and FR 10 are recognised at 20-28 and 40-48cm within soil pit PT 5 (Figure 51). It is 

identified that abundances of fuel residue classes typically vary within Aht 1 horizons, for 

example at FR 5 & 7 (5-10%) is the most abundant class at 20-28cm within soil pit PT 5 

yet FR 1 (10-15%) is the most abundant class at 40-48cm. Additionally it is noted that 

the total abundance of fuel residue within Aht 1 horizons is higher at lower depths.  

 

The total abundance of fuel residue at 20-28cm and 40-48cm within soil pit PT 5 is 21.8 

and 25.4% respectively. Similarly the total abundance of fuel residue at 41-49cm within 

soil pit PT 4 is 17% in contrast to 27% at 62-70cm. It is argued variation in the diversity 

of fuel residue classes within upper topsoil hortic horizons is minimal. Moreover, it is 

recognised that abundances of fuel residue classes are characteristically varied within 

upper topsoil hortic horizons; however, total fuel reside abundances are higher at lower 

depths.  
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Figure 51: Percentage abundance estimates of coarse organic material (Fuel Residue 
categories) within upper (Aht 1) and lower (Aht 2) topsoil deposits in the Harbour and High 
Street zones at Pittenweem. Number range indicates the depth (cm) of Kubiena tin 
samples 
 

Similarities in fuel residue classes are noted between Aht 1 and Aht 2 horizons, for 

example FR 1, FR 2, FR 4 & 6, FR 5 & 7 and FR 8 & 9 are present within both the Aht 1 

and Aht 2 horizon in soil pit PT 3. It is identified that abundances of fuel residue classes 

typically vary between Aht 1 and Aht 2 horizons. However, it is recognised that the 

abundance of individual fuel residue classes varies between horizons, for example FR 3 

ranges from 2-5% within the Aht 1 horizon at soil pit 3 to <1% within the Aht 2 horizon 

(Figure 51). Likewise FR 8 & 9 varies from 2-5% within the Aht 1 horizon to <2% within 

the Aht 2 horizon at soil pit PT 3. Despite differences in the abundance of individual fuel 

residue classes between the Aht 1 and Aht 2 horizons at soil pit PT 3, the total 

abundance of fuel residue of both horizons is consistent at 14%. It is argued that 

variation in the diversity of fuel reside classes between upper and lower topsoil horizons 

is minimal. Moreover, it is recognised that abundances of fuel residue classes are 

characteristically varied between upper and lower topsoil hortic horizons.  
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Wigtown 
Similarities in fuel residue classes exist within Aht 1 horizons at Wigtown, for example 

FR 1, FR 2, FR 3, FR 4 & 6, FR 5 & 7 and FR 8 & 9 are present at both 12-20 and 32-

40cm within soil pit WG 1. It is noted that abundances of fuel residue classes are 

consistent throughout Aht 1 horizons. Abundances of FR 1 (5-10%), FR 4 & 6 (10-15%) 

and FR 8 & 9 (2-5%) are the same at both sample depths within the Aht 1 horizon at soil 

pit WG 1 (Figure 52). In addition, the total abundance of fuel residue at 12-20cm and 32-

40cm within soil pit WG 1 is 27 and 25.2% respectively. It is therefore concluded that 

variation in the diversity and abundance of fuel residue classes within upper topsoil 

hortic horizons is minimal. 
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Figure 52: Percentage abundance estimates of coarse organic material (Fuel Residue 
categories) within upper (Aht 1) and lower (Aht 2) topsoil deposits in the High Street zone 
at Wigtown. Number range indicates the depth (cm) of Kubiena tin samples 
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Similarities in fuel residue classes are noted between Aht 1 and Aht 2 horizons, for 

example FR 1, FR 3, FR 4 & 6, and FR 8 & 9 are present within the Aht 1 and Aht 2 

horizon at soil pit WG 3. Similarly FR 1, FR 4 & 6, FR 5 & 7 and FR 8 & 9 occur within 

Aht 1 and Aht 2 horizons at soil pit WG 4. Fuel residue classes are less abundant within 

Aht 2 horizons than Aht 1 horizons. The total abundance of fuel residue within the Aht 1 

and Aht 2 horizon in soil pit WG 1 is 26.1 and 7.3% respectively. Similarly, the total 

abundance of fuel residue within the Aht 1 horizon in soil pit WG 3 is 15.2% in contrast 

to 5.9% within the Aht 2 horizon. However this trend is not observed at soil pit WG 2, for 

instance the total % abundance of fuel residue within the Aht 1 and Aht 2 horizon is 

19.6% and 19.4%. Nevertheless variation in the diversity of fuel residue classes between 

upper and lower topsoil hortic horizons is minimal. Furthermore, is it suggested that fuel 

residue is less abundant within the lower topsoil hortic horizon with the exception of soil 

pit WG 2. 

5.5.10.2 Variation between Burghs 
There is minimal variation in the nature of coarse organic anthropogenic material classes 

throughout Aht 1 horizons at Lauder, Pittenweem and Wigtown. Abundances of coarse 

organic anthropogenic materials at Lauder and Wigtown are consistent throughout Aht 1 

horizons. Conversely, the abundance of coarse organic anthropogenic materials within 

Aht 1 horizons at Pittenweem is characteristically varied. In addition total fuel residue 

abundances are higher at lower depths within Aht 1 horizons at Pittenweem. Similar 

classes of coarse organic anthropogenic material are identified in Aht 1 and Aht 2 

horizons at Lauder, Pittenweem and Wigtown. Abundances of coarse organic 

anthropogenic material are characteristically less abundant within Aht 2 horizons at 

Lauder and Wigtown. In comparison, the abundance of coarse organic anthropogenic 

materials between Aht 1 and Aht 2 horizons at Pittenweem is typically varied. Moreover, 

there is no difference in the total abundance of fuel residue between the Aht 1 and Aht 2 

horizons at Pittenweem.  
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5.6 Summary of Results: Coarse Organic Material 

The following section presents a brief summary of key trends in the nature and 

abundance of coarse organic material both within and between burghs. The significance 

of these results is discussed in sections 8.1.4 and 8.2.4; in particular’ consideration is 

given to differences in the nature and distribution of fuel residue both within and between 

burghs.   

5.6.1 Variation within Burghs 

5.6.1.1 Lauder  
Coarse organic material is present within topsoils in the High Street, Hinterland Near, 

Hinterland Far and Thirlstane zones at Lauder in addition to ‘reference’ soil pit LA 7 

(Table 29). FR 2 and FR 10 inclusions are limited to the burgh core. In addition charcoal 

is restricted to the burgh core and immediate hinterland south of Lauder (Hinterland 

Near). FR 1, FR 3, FR 4 & 6, FR 5 & 7 and FR 8 & 9 are present within all zones at 

Lauder; however, FR 4 & 6 is most abundant within the burgh core and FR 1, FR 3 and 

FR 8 & 9 are highest within the burgh core and immediate hinterland south of the 

historical burgh limits (Hinterland Near). In contrast there is no difference in the 

abundance of FR 5 & 7 between zones at Lauder.  

 

Accordingly two areas of interest are identified at Lauder, the High Street zone and the 

Hinterland Near zone. The High Street zone is characterised by charcoal, FR 2 and FR 

10 inclusions and significantly higher abundances of FR 4 & 6, FR 1, FR 3 and FR 8 & 9. 

The Hinterland Near zone is characterised by charcoal inclusions and significantly higher 

abundances of FR 1, FR 3 and FR 8 & 9. 

5.6.1.2 Pittenweem 
The Harbour, High Street, Hinterland Near and Hinterland Far zones at Pittenweem in 

addition to ‘reference’ soil pit PT 1 contain coarse organic material (Table 29). Charcoal, 

FR 1, FR 2, FR 3, FR 4 & 6, FR 5 & 7 and FR 8 & 9 are present within all zones at 

Pittenweem. There is no difference in the abundance of charcoal and FR 2 inclusions 

between zones. FR 3 is most abundant within the High Street zone and FR 4 & 6 

inclusions are greatest within the Harbour zone. FR 5 & 7 and FR 8 & 9 are most 

abundant within the burgh core. More specifically FR 5 & 7 and FR 8 & 9 are greatest 

within the Harbour zone followed in succession by the High Street zone. In addition, FR 

1 inclusions are significantly less abundant within the Hinterland Near zone. In contrast 

FR 10 is absent from the Hinterland Near zone. 
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Accordingly two areas of interest are identified at Pittenweem; the Harbour zone and the 

High Street zone. The Harbour zone is characterised by significantly higher abundances 

of FR 4 & 6, FR 5 & 7 and FR 8 & 9 in comparison to the High Street, Hinterland Near 

and Hinterland Far zones. The High Street zone is characterised by significantly higher 

abundances of FR 3 in comparison to the Harbour, Hinterland Near and Hinterland Far 

zones, and significantly more FR 5 & 7 and FR 8 & 9 inclusions than the Hinterland Near 

and Hinterland Far zones. 

5.6.1.3 Wigtown 
Coarse organic material is present within both the High Street zone and ‘reference’ soil 

pit WG 5 at Wigtown (Table 7). As previously stated in section 5.1.1, it is argued that the 

‘reference’ soil provides a good indication of soil characteristics within the Hinterland 

Near zone.  Charcoal, FR 2, FR 3 and FR 10 inclusions are limited to the burgh core at 

Wigtown. FR 1, FR 4 & 6, FR 5 & 7 and FR 8 & 9 are present with both the burgh core 

and hinterland north of the historical burgh limits; however FR 1, FR 4 & 6 and FR 8 & 9 

are significantly more abundant within the burgh core. In contrast there is no difference 

in the abundance of FR 5 & 7 between the burgh core and hinterland.  

 

The High Street zone is recognised as an important area of interest at Wigtown. The 

High Street zone is characterised by charcoal, FR 2, FR 3 and FR 10 inclusions and 

significantly greater abundances of FR 1, FR 4 & 6 and FR 8 & 9.  

5.6.1.4 Hortic Horizons 
Results presented in section 5.3.1.4 indicate that coarse organic material classes are 

consistent throughout Aht 1 horizons at Lauder, Pittenweem and Wigtown. Abundances 

of coarse organic material are relatively constant throughout Aht 1 horizons at Lauder 

and Wigtown; however, abundances of individual classes are more varied at 

Pittenweem. Similar classes of coarse organic material are also identified within Aht 1 

and Aht 2 horizons at Lauder, Pittenweem and Wigtown. It should be noted that coarse 

organic material is lower in abundance within Aht 2 horizons at Lauder and Wigtown. In 

contrast, there is minimal difference in total abundances of coarse organic material 

between Aht 1 and Aht 2 horizons at Pittenweem. 
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Table 7:  Summary of trends in coarse organic inclusions identified at Lauder, Pittenweem 
and Wigtown, summary abundances are given in brackets 
 

Inclusion Lauder Pittenweem Wigtown 

Charcoal Charcoal is present 
within the burgh core 
and immediate 
hinterland (Hinterland 
Near (<2%). 

Charcoal is present 
within the burgh core 
and hinterland 
(Hinterland Near, 
Hinterland Far) (<2%). 

Charcoal is present 
within the burgh core 
(<2%). 

FR 1 FR 1 is present within 
the burgh core (<2% to 
5-10%) and hinterland 
(<2% to 2-5%). 
FR 1 is most abundant 
within the burgh core 
and immediate 
hinterland (Hinterland 
Near). 

FR 1 is present within 
the burgh core (5-15%) 
and hinterland (2-10%).
FR 1 is most abundant 
within the burgh core 
(Harbour, High Street) 
and far hinterland 
(Hinterland Far). 

FR 1 is present within 
the burgh core (<2% 
to 5-10%) and 
hinterland (Hinterland 
Near/’reference’ soil) 
(<2% to 2-5%).  
FR 1 is most abundant 
in burgh core. 

FR 2 FR 2 is present within 
the burgh core (<2%). 

FR 2 is present within 
the burgh core and 
hinterland (Hinterland 
Near, Hinterland Far) 
(<2%). 

FR 2 is present within 
the burgh core (<2%). 

FR 3 FR 3 is present within 
the burgh core (<2% to 
2-5%) and hinterland 
(<2%). 
FR 3 is most abundant 
within the burgh core 
and immediate 
hinterland (Hinterland 
Near). 

FR 3 present within the 
burgh core (<2% to 2-
5%) and hinterland 
(<2%).  
FR 3 is most abundant 
in burgh core (High 
Street). 

FR 3 is present within 
the burgh core (<2%). 

FR 4 & 6 FR 4 & 6 is present 
within the burgh core 
(<2 to 5-10%) and 
hinterland (<2% to 2-
5%). 
FR 4 & 6 is most 
abundant within the 
burgh core. 

FR 4 & 6 is present 
within the burgh core 
(2-5%, to 2-10%) and 
hinterland (<2% to 2-
5%).  
FR 4 & 6 is most 
abundant within the 
burgh core (Harbour). 

FR 4 & 6 is present 
within the burgh core 
(5-10% to 10-15%) 
and hinterland 
(Hinterland 
Near/’reference’ soil) 
(<2% to 2-5%).  
FR 4 & 6 is most 
abundant within the 
burgh core. 

FR 5 & 7 FR 5 & 7 is present 
within the burgh core 
and hinterland (<2%). 

FR 5 & 7 is present 
within the burgh core 
(Harbour 5-10% to 10-
15%, High Street <2%) 
and hinterland (<2%). 
FR 5 & 7 is most 
abundant in burgh core 
(Harbour followed by 
High Street). 

FR 5 & 7 is present 
within the burgh core  
and hinterland 
(Hinterland 
Near/’reference’ soil) 
(<2%). 

FR 8 & 9 FR 8 & 9 is present 
within the burgh core 
(<2% to 2-5%) and 

FR 8 & 9 is present 
within the burgh core 
and hinterland (<2% to 

FR 8 & 9 is present 
within the burgh core 
(<2% to 5-10%) and 
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hinterland (<2% to 2-
5%). 
FR 8 & 9 is most 
abundant within the 
burgh core. 

2-5%).  
FR 8 & 9 most 
abundant in burgh core 
(Harbour followed by  
High Street) 

hinterland (Hinterland 
Near/’reference’ soil) 
(<2%).  
FR 8 & 9 is most 
abundant within the 
burgh core 

FR 10 FR is 10 present within 
the burgh core (<2%) 

FR 10 is present within 
the burgh and far 
hinterland (Hinterland 
Far) (<2%). 

FR 10 is present 
within the burgh core 
(<2%). 

 

5.6.2 Variation between Burghs 

All three burghs have charcoal, FR 1, FR 2, FR 3, FR 4 & 6, FR 5 & 7, FR 8 & 9 and FR 

10 in zones corresponding to the burgh core (Harbour and High Street). Coarse organic 

inclusions are also identified in the hinterland at Lauder, Pittenweem and Wigtown, for 

example abundances of FR 1, FR 3 and FR 8 & 9 inclusions are comparable between 

the burgh core and the immediate hinterland south of the historical burgh limits at Lauder 

(Hinterland Near). Likewise, there is no difference in the abundance of FR 1 inclusions 

between the burgh core and Hinterland Far zone at Pittenweem. Abundances of coarse 

organic material are most abundant within burgh cores, although in the case of 

Pittenweem differences in the nature of fuel residue classes between the Harbour and 

High Street are noted.  

 

It is proposed that differences in the abundance of selected coarse organic materials can 

be used to discriminate between High Street zones at Lauder, Pittenweem and Wigtown. 

FR 1, FR 3 and FR 5 & 7 inclusions are most abundant within the High Street zone at 

Pittenweem (Table 8). These inclusions share similar morphologies characterised by 

sharp, well defined angular/sub-angular perimeters (see Figure 27). FR 4 & 6 inclusions 

are most abundant within the High Street zone at Wigtown. These inclusions are 

typically sub-rounded with internally degraded holes. FR 8 & 9 inclusions are greatest 

within the High Street zone at Lauder. These inclusions range from sub-angular to sub-

rounded but are distinct in that they have a ‘ragged’ perimeter edge. There is no 

difference in the abundance of charcoal, FR 2 and FR 10 inclusions between High Street 

zones.  
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Table 8: Summary of trends in the abundance of coarse organic anthropogenic material 
between High Street zones at Lauder, Pittenweem and Wigtown as indicated by Kruskal-
Wallis analysis with Dunn’s test 
 
Inclusion  Comparison between High Street zones 

Charcoal There is no difference in charcoal between High Street zones 

FR 1 FR 1 is most abundant within Pittenweem (p<0.001) 

FR 2 There is no difference in FR 2 between High Street zones 

FR 3 FR 3 is most abundant within Pittenweem, followed in succession by Lauder 

FR 4 & 6 FR 4 & 6 is most abundant within Wigtown 

FR 5 & 7 FR 5 & 7 is most abundant within Pittenweem 

FR 8 & 9 FR  8 & 9 is most abundant within Lauder, followed in succession by 
Wigtown 

FR 10 There is no difference in FR 10 between High Street zones 
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5.7 Fine Organic Material 

The abundance of fine organic material within topsoil deposits at Lauder, Pittenweem 

and Wigtown is summarised in tables presented in Appendix 2. Differences in the nature 

and abundance of organic material are identified and comparisons between zones and 

burghs are made.  

5.7.1 Variation within Burghs 

Fine organic material at Lauder consists of cell residues and amorphous red organic 

material. Trace abundances (<2%) of cell residues are present within the High Street, 

Hinterland Near, Hinterland Far and Thirlstane zones and ‘reference’ soil pit LA 7. 

Hence, there is no difference in the abundance of cell residue between zones. 

Amorphous red organic material is <2% within the Hinterland Near and is absent from 

the High Street, Hinterland Far and Thirlstane zones and the ‘reference’ soil pit. 

Amorphous red organic material is therefore limited to the burgh core. 

 

Fine organic material at Pittenweem comprises cell residues, amorphous red organic 

material and amorphous yellow organic material. Trace abundances (<2%) of cell 

residues are identified within the Harbour, High Street, Hinterland Near and Hinterland 

Far zones and ‘reference’ soil pit PT 1. Hence, there is no difference in the abundance of 

cell residue between zones. Amorphous red organic material is <2% within Harbour, 

High Street and Hinterland Far zones and ‘reference’ soil pit. In contrast amorphous red 

amorphous organic material is absent from the Hinterland Near zone. There is no 

difference in the abundance of amorphous red amorphous organic material between the 

burgh core and far hinterland (Hinterland Far). Amorphous yellow organic material is 

<2% within Harbour and High Street zones, yet is absent from the Hinterland Near and 

Hinterland Far zones and the ‘reference’ soil pit. Amorphous yellow organic material is 

therefore limited to the burgh core. 

 

Fine organic material at Wigtown includes cell residues, amorphous red organic material 

and amorphous yellow organic material. Trace abundances (<2%) of cell residues occur 

within the High Street zone and ‘reference’ soil WG 5. There is no difference in the 

abundance of cell residue between zones. Trace abundances (<2%) of amorphous red 

and yellow organic material are confined to selected soil pits within the High Street zone. 

Amorphous red and yellow organic material is therefore limited to the burgh core at 

Wigtown. 
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5.7.2 Variation between Burghs 

There is no difference in the abundance of cell residues between zones at all three 

burghs. It is suggested that spatial distributions of red and yellow amorphous organic 

material are more site specific. Amorphous red organic material is present within the 

burgh core at Lauder, Pittenweem and Wigtown and within the immediate hinterland 

south of Lauder (Hinterland Near) and within the hinterland at Pittenweem (Hinterland 

Near/Hinterland Far). In contrast amorphous yellow organic material is restricted to 

individual soil pits within the burgh core at Pittenweem and Wigtown. 
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5.8 Pedofeatures 

The abundance of pedofeatures within topsoil deposits at Lauder, Pittenweem and 

Wigtown is summarised in tables presented in Appendix 2. Differences in the nature and 

abundance of pedofeatures are identified and comparisons between zones and burghs 

are made.  

5.8.1 Variation within Burghs 

Trace abundances (<2%) of spheroidal excremental pedofeatures and iron impregnated 

siltstone nodules are present within the  High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones and ‘reference’ soil pit LA 7 at Lauder. Hence there is no difference in 

the abundance of spheroidal excremental pedofeatures and iron impregnated siltstone 

nodules between zones at Lauder. Mammilate excremental pedofeatures are identified 

in trace abundances within the High Street and Hinterland Near zones (<2%) and are 

absent from the Hinterland Far and Thirlstane zones and ‘reference’ soil pit. Mammilate 

excremental pedofeatures are therefore limited to the burgh core and immediate 

hinterland south (Hinterland Near) of Lauder. In addition it is recognised that trace 

abundances (<2%) of iron impregnated amorphous organic material are restricted to the 

burgh core (High Street).  

 

Trace abundances (<2%) of spheroidal excremental pedofeatures, iron nodules and iron 

impregnated siltstone nodules are present within the Harbour, High Street, Hinterland 

Near and Hinterland Far zones, and ‘reference’ soil pit PT 1 at Pittenweem. Therefore 

there is no difference in the abundance of spheroidal excremental pedofeatures, iron 

nodules and iron impregnated siltstone nodules between zones at Pittenweem. 

Mammilate excremental pedofeatures are identified in trace abundances within the High 

Street and Hinterland Near zones (<2%) and are absent from the Harbour and 

Hinterland Far zones at ‘reference’ soil. Mammilate excremental pedofeatures are 

therefore limited to the burgh core (High Street) and immediate hinterland north of 

Pittenweem (Hinterland Near). Iron impregnated amorphous organic material  and 

organic heated coatings are present in trace abundance (<2%) within the High Street 

and Hinterland Far zones yet are absent from the Harbour and Hinterland Near zones 

and ‘reference’ soil pit. These materials are therefore limited to the burgh core (High 

Street) and far hinterland north of Pittenweem (Hinterland Far). In addition it is 

recognised that monomorphic organic coatings are present in trace abundances (<2%) 

within the Harbour and High Street zones and are absent from the Hinterland Near and 

Hinterland Far zones and ‘reference’ soil pit.  
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Trace abundances (<2%) of spheroidal and mammillate excremental pedofeatures and 

iron nodules are present within the High Street zone and ‘reference’ soil pit WG 5 at 

Wigtown. Therefore there is no difference in the abundance of spheroidal and 

mammillate excremental pedofeatures and iron nodules between the burgh core and 

hinterland north of Wigtown. In contrast it is identified that iron impregnated amorphous 

organic material (<2%) is limited to the ‘reference’ soil and heated organic coatings 

(<2%) are limited to the High Street zone.  

5.8.2 Variation between Burghs 

Spheroidal and mammilate excremental pedofeatures, iron impregnated amorphous 

organic material and organic coatings are identified within topsoils at all three burghs.  

There is no difference in the abundance of spheroidal excremental pedofeatures 

between zones at Lauder, Pittenweem and Wigtown. It is suggested that spatial 

distributions of mammilate excremental pedofeatures, iron nodules, iron impregnated 

siltstone nodules, iron impregnated amorphous organic material, monomorphic organic 

coatings and heated organic coatings are more site specific.  
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5.9 Structure 

5.9.1 Variation within Burghs 

The microstructure of topsoils within the High Street zone is channel and chamber with 

vughy elements. Similarly, topsoils within the Hinterland Near, Hinterland Far and 

Thirlstane zones and ‘reference’ soil pit LA 7 are characterised by channel and chamber 

microstructures. The coarse material arrangement of topsoils within all zones is random 

and the groundmass (b fabric) is stipple-speckled. The C:F related distribution of topsoil 

deposits at Lauder is close porphyric. The mean C:F ratio of the High Street, Hinterland 

Near, Hinterland Far and Thirlstane zones and ‘reference’ soil is 58:42, 53:47, 56:44, 

55:45 and 59:41 respectively. Results of One Way Analysis of Variance (ANOVA) reveal 

that there is no statistical difference in the C:F ratio between zones. The mean % void 

space of High Street, Hinterland Near, Hinterland Far and Thirlstane zones and 

‘reference’ soil pit is 29, 21, 22, 28 and 27%. There is no statistical difference in void 

space between the Harbour, High Street and Hinterland Near zones. 

 

The microstructure of topsoils within the Harbour, High Street and Hinterland Far zones 

and ‘reference’ soil PT 1 is channel and chamber with vughy elements. In contrast 

topsoil within the Hinterland Near zone is predominantly vughy. The coarse material 

arrangement of topsoils within all zones is random and the groundmass (b fabric) is 

stipple-speckled. The C:F related distribution of topsoil deposits at Pittenweem is close 

porphyric. The mean C:F ratio of Harbour, High Street, Hinterland Near and Hinterland 

Far zones and ‘reference’ soil pit is 55:45, 57:43, 63:36, 54:46 and 55:45. Results of 

One Way Analysis of Variance (ANOVA) reveal that there is no statistical difference in 

the C:F ratio between zones. The mean % void space of Harbour, High Street, 

Hinterland Near and Hinterland Far zones and ‘reference’ soil pit is 32, 32, 62, 22 and 16 

%. Mean % void space is significantly higher within the Harbour and High street zones 

than the ‘reference’ soil pit (p<0.01). In addition, mean % void space within the 

Hinterland Near zone is greater than the Hinterland Far zone and ‘reference’ soil pit 

(p<0.01). There is no statistical difference in void space between the Harbour, High 

Street and Hinterland Near zones.  
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The microstructure of topsoils within High Street zone is channel and chamber with 

vughy elements. In contrast the microstructure if topsoil within the ‘reference’ soil WG 5 

(Hinterland Near) is channel and chamber. The coarse material arrangement of topsoils 

within all zones is random and the groundmass (b fabric) is stipple-speckled. The C:F 

related distribution of topsoil deposits at Wigtown is close porphyric. The mean C:F ratio 

of both the High Street zone and ‘reference’ soil pit is 58%, hence there is no significant 

difference. Similarly there is no significant difference in mean % void space between the 

High Street zone and ‘reference’ soil which is 32% for both zones.  

5.9.2 Variation between Burghs 

The microstructure of topsoils within the burgh core at all three burghs is 

characteristically channel and chamber with vughy elements. In contrast the 

microstructure within the hinterland at Lauder, Pittenweem and Wigtown is channel and 

chamber, with the exception of soil pit PT 9 at Pittenweem (Hinterland Near) which is 

vughy. There is no difference in the coarse material arrangement, groundmass (b fabric), 

C:F related distribution and C:F ratio of topsoils either within or between burghs. In 

addition there is no difference in void space within topsoils at Lauder and Wigtown; 

however, it is recognised that void space is significantly higher within topsoils in the 

burgh core and immediate hinterland north of Pittenweem (Hinterland Near).  
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5.10  Summary: Soil Micromorphology 

A succinct overview of key findings resulting from micromorphological analyses 

presented in this chapter is provided in Table 9. The significance of these results is 

discussed throughout chapter 8 in association with soil physical and chemical properties 

and elemental concentrations.  

 
Table 9: Summary of trends in key micromorphological analyses of topsoils within Lauder, 
Pittenweem and Wigtown 
 

Analysis Summary of Key Trends 

Profile Characteristics All three burgh cores and immediate hinterland at Lauder 
characterised by hortic topsoil horizons 

Coarse Anthropogenic 
Mineral Material 

Coarse mineral material is most abundant and diverse in 
burgh cores 
Coarse mineral material is present in selected hinterland 
zones at Lauder and Pittenweem 
Shell inclusions are limited to Pittenweem and Wigtown 
Coarse mineral material is absent from Aht 2 horizons at 
Lauder 

Fine Mineral Material All three burgh cores are characterised by brown/dark 
brown, dotted fine mineral material 
Similarities in fine mineral material between burgh cores 
and selected hinterland zones exist at all three burghs  

Coarse Anthropogenic 
Organic Material 

Coarse organic material is most abundant and diverse in 
burgh cores 
Coarse organic material is present within the hinterland at 
all three burghs 
There are differences in principal fuel residue types 
between burghs 
Coarse organic material is lower in abundance within Aht 2 
horizons at Lauder and Wigtown 

Fine Organic Material All three burghs contain amorphous red and yellow organic 
material. Distributions of organic material are site specific  

Pedofeatures The nature and distribution of pedofeatures is site specific 

Structure All three burgh cores are characterised by channel and 
chamber microstructures with vughy elements 
There is no difference in coarse material arrangement, 
groundmass, C:F distribution or C:F ratio between burghs 
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6 Soil Physical and Chemical Properties 

This chapter presents results obtained from selected soil physical and chemical 

analyses including topsoil depth, pH, % loss on ignition, magnetic susceptibility and 

frequency dependant magnetic susceptibility. Data are presented collectively for Lauder, 

Pittenweem and Wigtown to facilitate visual and statistical comparisons.  

6.1 Topsoil Depth 

Spatial distributions of topsoil depth are presented for Lauder (Figure 53), Pittenweem 

(Figure 54a) and Wigtown (Figure 54b). Pronounced spatial variability in topsoil depth is 

observed for all three burghs; however specific patterns relating to distinct zones are 

identified both within and between towns. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 53: Distribution of topsoil depth at Lauder. Red boundary delimits 1862AD urban 
extent 
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a) b) 

Figure 54: Spatial distribution of topsoil depth at Pittenweem (a) and Wigtown (b). Red 
boundary delimits 1855AD and 1850AD urban extent respectively 
 

6.1.1 Variation within Burghs 

There is clear evidence for topsoil deepening within the High Street and Hinterland Near 

zones at Lauder. The median topsoil depth of the High Street zone is 75cm and 53cm 

for the Hinterland Near zone. Statistically there is no significant difference between these 

two zones, however both the High Street and Hinterland Near zones are significantly 

deeper than the Hinterland Far and Thirlstane zones (p<0.05). The Hinterland Far and 

Thirlstane zones have median topsoil depths of 38cm and 36cm respectively (Figure 

55). Deepened topsoil deposits are, therefore, identified in both the burgh core and land 

immediately adjacent to the historical burgh limits (Hinterland Near). 
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Figure 55: (a) Boxplot of median topsoil depth for individual zones at Lauder; boundaries 
of boxes represent interquartile range, green shading indicates 86.761% confidence 
interval for median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test 
multiple comparisons for individual zones at Lauder, Z values exceeding –Z or Z are 
significant at p<0.05 confidence level    
 
The median topsoil depth of the Harbour, High Street and Hinterland Near zones at 

Pittenweem is ≥80cm, ≥80cm and 72.5cm respectively. There is no significant difference 

in topsoil depth between these zones, however the Harbour, High Street and Hinterland 

Near zones are all significantly deeper than the Hinterland Far zone (p<0.05) (Figure 

56b). Accordingly deepened topsoil deposits are identified within both the burgh core 

and land immediately adjacent to the historical burgh limits (Hinterland Near).  

 

The median topsoil depth of the High Street, Hinterland Near and Showfield zones at 

Wigtown is 55cm, 18cm and 17cm respectively. The High Street zone is significantly 

deeper than the Hinterland Near and Showfield zones (p<0.05). In addition it is evident 

that the Hinterland Near and Showfield zones are spatially homogenous with minimal 

variation in topsoil depth values (Figure 57a). A clear contrast in topsoil depth between 

the burgh core and the hinterland is therefore noted. 
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Figure 56: (a) Boxplot of median topsoil depth for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, green shading indicates 86.761% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Pittenweem, Z values exceeding 
–Z or Z are significant at p<0.05 confidence level    
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Figure 57: (a) Boxplot of median topsoil depth for individual zones at Wigtown; boundaries 
of boxes represent interquartile range, green shading indicates 80.529% confidence 
interval for median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test 
multiple comparisons for individual zones at Pittenweem, Z values exceeding –Z or Z are 
significant at p<0.05 confidence level   
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6.1.2 Variation between Burghs 

The results of a Two Way Analysis of Variance (ANOVA) undertaken using a General 

Linear Model (GLM) indicate that mean topsoil depth is significantly different between 

burghs (p<0.001). Tukey-Kramer (95% confidence intervals) multiple comparisons 

reveal that the mean topsoil depth at Pittenweem is significantly greater than Lauder 

(p<0.005) and Wigtown (p<0.001), and the mean topsoil depth at Lauder is significantly 

greater than Wigtown (p<0.001). It is therefore argued that mean topsoil depth varies 

between different burghs with Pittenweem having the deepest mean topsoil depth and 

Wigtown the shallowest.   

 

Results presented in section 6.1.1 show differences in topsoil depth between certain 

zones within each burgh. These findings are supplemented by ANOVA which confirms a 

significant difference in mean topsoil depth between the High Street and Hinterland Near 

zones (p<0.001). Tukey-Kramer multiple comparisons indicate a greater mean topsoil 

depth for the High Street zone compared to the Hinterland Near zone (p<0.001). 

Conversely results from Kruskal Wallis pairwise comparisons suggest that there is no 

significant difference between the High Street and Hinterland Near zones at Lauder and 

Pittenweem. This discrepancy may reflect differences in measurement of central 

tendency between parametric and non-parametric tests. Nevertheless, all three towns 

have significantly deepened deposits corresponding to the burgh core and in the case of 

Lauder and Pittenweem, significantly deepened deposits in the Hinterland Near zone.  

 

Statistical analysis also indicates significant interaction between individual ANOVA test 

factors, burgh and zone (p<0.001). This association implies that topsoil depth variation 

cannot be fully explained by either burgh or zone as factors in isolation. Moreover it can 

be argued the influence of one factor is dependant on the nature of the other factor. 

Accordingly it is suggested that although topsoil depth is consistently enhanced within 

the burgh core, the nature and extent of topsoil deepening in this area differs between 

burghs.  
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6.2 Soil pH 

Spatial distributions of soil pH are presented for Lauder (Figure 58), Pittenweem (Figure 

59) and Wigtown (Figure 60) at selected depths. Patterns in soil pH associated with 

discrete zones and depths are subsequently identified and comparisons between towns 

are made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 58: Spatial distribution of soil pH at Lauder (a) 0-20cm and (b) 20-40cm depth. Red 
boundary delimits 1862AD urban extent 

b) 

a)  
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Figure 59: Spatial distribution of soil pH at Pittenweem (a) 0-20cm, (b) 20-40cm, (c) 40-60cm and (d) 60-80cm depth. Red boundary delimits 1855AD 
urban extent  

a) b)   c) d)

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 60: Spatial distribution of soil pH at Wigtown (0-20cm depth). Red boundary 
delimits 1850AD urban extent  

6.2.1 Variation within Burghs 

6.2.1.1 Zone 
There is clear evidence for enhanced soil pH within the High Street zone at Lauder. The 

median soil pH of the High Street, Hinterland Near, Hinterland Far and Thirlstane zones 

is 6.9, 5.4, 5.3 and 5.4 respectively (Figure 61). There is no difference in soil pH 

between the Hinterland Near, Hinterland Far and Thirlstane zones, however these three 

zones are all significantly lower than the High Street zone (p<0.001). A distinct contrast 

between neutral soils associated with the burgh core and acidic hinterland soils is 

therefore identified.  
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Figure 61: (a) Boxplot of median pH for individual zones at Lauder; boundaries of boxes 
represent interquartile range, blue shading indicates 86.761% confidence interval for 
median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Lauder (0-20cm depth), Z values exceeding –Z or Z 
are significant at p<0.05 confidence level 
 
The median soil pH of the Harbour, High Street, Hinterland Near and Hinterland Far 

zones at Pittenweem is 7.2, 7.05, 5.4 and 5.3 respectively. There is no statistical 

difference between the Harbour and High Street zones, however both these zones have 

a significantly higher  soil pH than the Hinterland Near and Hinterland Far zones 

(p<0.001) (Figure 62b). Similar to results identified at Lauder, there is a clear distinction 

between neutral soils in the burgh core with acidic soils in the hinterland.  

 

There is a significant difference in soil pH between the High Street, Hinterland Near and 

Showfield zones at Wigtown (p<0.001). The median soil pH of the High Street, 

Hinterland Near and Showfield zones is 6.9, 5 and 4.7 respectively (Figure 63a). The 

High Street has a neutral median soil pH which is significantly greater than the acidic 

Hinterland Near and Showfield zones (p<0.001). Additionally there is a significant 

difference between the Hinterland Near and Showfield zones (p<0.05), of which the 

Hinterland Near zone has slightly higher pH values. Nevertheless the principal trend at 

Wigtown is comparable to Lauder and Pittenweem in that there is a distinct contrast in 

soil pH between the burgh core and surrounding hinterland.   
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Figure 62: (a) Boxplot of median pH for individual zones at Pittenweem; boundaries of 
boxes represent interquartile range, blue shading indicates 86.76% confidence interval for 
median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Pittenweem (0-20cm) using, Z values exceeding –Z or 
Z are significant at p<0.05 confidence level 

Figure 62: (a) Boxplot of median pH for individual zones at Pittenweem; boundaries of 
boxes represent interquartile range, blue shading indicates 86.76% confidence interval for 
median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Pittenweem (0-20cm) using, Z values exceeding –Z or 
Z are significant at p<0.05 confidence level 
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Figure 63: (a) Boxplot of median pH for individual zones at Wigtown; boundaries of boxes 
represent interquartile range, blue shading indicates 80.52% confidence interval for 
median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Wigtown (0-20cm depth), Z values exceeding –Z or Z 
are significant at p<0.05 confidence level 

Figure 63: (a) Boxplot of median pH for individual zones at Wigtown; boundaries of boxes 
represent interquartile range, blue shading indicates 80.52% confidence interval for 
median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Wigtown (0-20cm depth), Z values exceeding –Z or Z 
are significant at p<0.05 confidence level 
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6.2.1.2 Variation in pH with Depth 
At Lauder it is identified that soil pH increases with depth. Results of Kruskal-Wallis 

statistical analysis indicate a significantly higher (p<0.001) median soil pH for 20-40cm 

compared to 0-20cm depth. In addition it is recognised that spatial trends identified for 0-

20cm are apparent at 20-40cm depth (Figure 64), for example the High Street zone has 

a significantly higher (p<0.001) soil pH than the Hinterland Near, Hinterland Far and 

Thirlstane zones.  

 

Results of a Two Way ANOVA undertaken using a GLM indicate a significant difference 

(p<0.001) in pH between zones at Lauder, where the High Street has significantly higher 

(p<0.001) pH values than the Hinterland Near, Hinterland Far and Thirlstane zones. 

These results support spatial trends identified using the appropriate non-parametric 

Kruskal-Wallis analysis and Dunn’s test in section 6.2.1.1. Moreover in supplementation 

to results outlined in the above paragraph, 20-40cm is identified as having significantly 

higher  pH values compared to 0-20cm (p<0.001).  

 

Statistical analysis also indicates that there is no significant interaction between zone 

and depth at Lauder. It is therefore argued that while pH varies between depths, the 

nature of this variation between zones is consistent.  
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Figure 64: Boxplot of median pH for individual zones at Lauder for 0-20cm and 20-40cm 
depth; boundaries of boxes represent interquartile range, outliers identified as * 
 

 - 164 -



Similar to results obtained for Lauder, soil pH increases with depth at Pittenweem. 

Results of Kruskal-Wallis analysis and Dunn’s test indicate a significantly higher soil pH 

for 20-40cm (p<0.05), 40-60cm (p<0.001) and 60-80cm depth (p<0.001) compared to 0-

20cm. However, there is no statistical difference in soil pH between 20-40cm, 40-60cm 

and 60-80cm (Figure 65). In addition spatial trends noted for 0-20cm remain consistent 

at subsequent depths (Figure 66), for example there is a distinct contrast between the 

neutral burgh core and acidic hinterland zones at each successive depth.  

 

Results of Two Way ANOVA undertaken using a GLM indicate that the Harbour and 

High Street zones have a significantly greater pH than Hinterland Near and Hinterland 

far zones. These results support spatial trends identified using the appropriate non-

parametric Kruskal-Wallis analysis and Dunn’s test in section 6.2.1.1. Moreover in 

supplementation to results outlined in the above paragraph 0-20cm has lower pH values 

than 20-40cm (p<0.005), 40-60cm (p<0.001) and 60-80cm (p<0.001).  

 

Statistical analysis also indicates that there is no significant interaction between zone 

and depth at Pittenweem. Similar to results obtained for Lauder it is suggested that 

variation in pH between zones is consistent at successive depths. 
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Figure 65: (a) Boxplot of median pH for 0-20cm, 20-40cm, 40-60cm and 60-80cm depth at 
Pittenweem; boundaries of boxes represent interquartile range, blue shading indicates 
86.76% confidence interval for median, outliers identified as *, (b) Kruskal-Wallis analysis 
with Dunn’s test multiple comparisons for individual depths at Pittenweem, Z values 
exceeding –Z or Z are significant at p<0.05 confidence level 
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Figure 66: Boxplot of median pH for individual zones  within 0-20cm, 20-40cm, 40-60cm 
and 60-80cm depth at Pittenweem; boundaries of boxes represent interquartile range, 
outliers identified as * 
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6.2.2 Variation between Burghs 

The results of a Two Way ANOVA undertaken using a GLM indicate that mean soil pH is 

significantly different between burghs (p<0.001). Tukey-Kramer (95% confidence 

intervals) multiple comparisons reveal that the mean soil pH at Pittenweem is 

significantly greater than Lauder (p<0.05) and Wigtown (p<0.001). It is therefore 

recognised that mean soil pH differs between burghs.  

 

Results presented in section 6.2.1.1 highlight a stark difference in soil pH between the 

burgh core and surrounding hinterland zones at each town. These findings are 

supported by ANOVA which verifies a significant difference in mean pH between the 

High Street and Hinterland Near zones (p<0.001). Tukey-Kramer multiple comparisons 

confirm a significantly higher mean pH for the High Street zone compared to Hinterland 

Near zone (p<0.001). It is therefore argued that all three towns exhibit similar patterns in 

spatial distributions of soil pH, where the burgh core is characterised by neutral pH 

values in contrast to the hinterland which is acidic.  

 

Statistical analysis suggests that there is no interaction between the individual ANOVA 

test factors, burgh and zone. It is therefore argued that although differences in soil pH 

are identified between the High Street and Hinterland Near zones, the nature and extent 

of variation is consistent within each town.  
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Figure 67: Spatial distribution of % LOI at Lauder (a) 0-20cm and (b) 20-40cm depth. Red 
boundary delimits 1862AD urban extent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spatial distributions of Loss on Ignition (% LOI) are presented for Lauder (Figure 67), 

Pittenweem (Figure 68) and Wigtown (Figure 69) at selected depths. Trends in LOI 

associated with discrete zones and depths are subsequently identified and comparisons 

between towns are made. 

6.3 Loss on Ignition  

a) 

b) 
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    d)c)b)a)

Figure 68: Spatial distribution of % LOI at Pittenweem (a) 0-20cm, (b) 20-40cm, (c) 40-60cm and (d) 60-80cm depth. Red boundary delimits 1855AD 
urban extent  
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Figure 69: Spatial distribution of % LOI at Wigtown (0-20cm depth). Red boundary delimits 
1850AD urban extent 

6.3.1 Variation within Burghs 

6.3.1.1 Zones 
The median % LOI of the High Street, Hinterland Near, Hinterland Far and Showfield 

zones at Lauder is 13.88, 12.82, 10 and 11.37% respectively (Figure 70a). The High 

Street zone has significantly higher % LOI than Hinterland Far (p<0.001) and Thirlstane 

zones (p<0.01). Moreover the Hinterland Near zone has significantly higher % LOI 

compared to the Hinterland Far (p<0.001) and Thirlstane zones (p<0.05). However, 

there is no statistical difference between the High Street zone and Hinterland Near zone 
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(Figure 70b). These results provide clear evidence for increased levels of % LOI in the 

burgh core and land immediately adjacent to the historical burgh limits (Hinterland Near). 

  

The median LOI of the Harbour, High Street, Hinterland Near and Hinterland Far zones 

at Pittenweem is 13.9, 12.8, 10.8 and 7.9% respectively (Figure 71a). The Harbour has 

significantly greater % LOI than the Hinterland Near (p<0.01) and Hinterland Far zones 

(p<0.001). Moreover, both the High Street and Hinterland Near zones have significantly 

higher % LOI compared to the Hinterland Far zone (p<0.001) (Figure 71b). There is no 

statistical difference in % LOI between the High Street and Harbour zones, and High 

Street and Hinterland Near zones. These results indicate enhanced % LOI in the burgh 

core and land immediately adjacent to the historical burgh limits (Hinterland Near). 

Furthermore variation between enhanced zones is noted, for example although there is 

no difference in median % LOI between the High Street and Harbour zones, and High 

Street and Hinterland Near zones, there is a significant difference between the Harbour 

and Hinterland Near zones. This supports the observation that the Harbour zone has the 

highest median % LOI, followed by the High Street and Hinterland Near zone. 
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Figure 70: (a) Boxplot of median % LOI for individual zones at Lauder; boundaries of 
boxes represent interquartile range, orange shading indicates 86.761% confidence interval 
for median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Lauder (0-20cm depth) , Z values exceeding –Z or Z 
are significant at p<0.05 confidence level 
 
 
The mean % LOI of the High Street, Hinterland Near and Hinterland Far zones at 

Wigtown is 17.8, 15.6 and 16.1% respectively. Results of One Way ANOVA with Tukey-

Kramer multiple comparisons indicate that the High Street has a significantly higher 

mean % LOI than the Hinterland Near zone (p<0.05). However, there is no statistical 

difference in % LOI between the High Street and Showfield zones. A boxplot of median 

LOI values at Wigtown is presented in Figure 72. Differences between median LOI 

values suggest a greater contrast between the High Street (18.3%) and Showfield 

(15.5%) zones in addition to minimal variation between the Hinterland Near and 

Showfield zones. Similar to results obtained for soil pH in section 6.2.1.1, a distinct 

contrast in % LOI is noted between the burgh core and surrounding hinterland.  
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Figure 71: (a) Boxplot of median % LOI for individual zones at Pittenweem; boundaries of 
boxes represent interquartile range, orange shading indicates 86.761% confidence interval 
for median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Pittenweem (0-20cm depth), Z values exceeding –Z or 
Z are significant at p<0.05 confidence level 
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Figure 72: Boxplot of median % LOI for individual zones at Wigtown; boundaries of boxes 
represent interquartile range, outliers identified as * 
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6.3.1.2 Variation in LOI with Depth 
It is identified that % LOI decreases with depth at Lauder. Results of Kruskal-Wallis 

statistical analysis with Dunn’s test indicate a significantly higher (p<0.001) median % 

LOI for 0-20cm compared to 20-40cm depth. In addition, it is recognised that spatial 

trends identified at 0-20cm are not maintained at 20-40cm. The median % LOI for the 

High Street, Hinterland Near, Hinterland Far and Thirlstane zones at 20-40cm is 8.83, 

7.03, 8.21 and 10.71% respectively (Figure 73). In contrast to trends identified at 0-

20cm, there is no significant difference between the High Street and Hinterland Far 

zone, High Street and Thirlstane zone, and Hinterland Near and Hinterland Far zone. 

Moreover, at 20-40cm depth the Hinterland Near zone has a significantly higher % LOI 

compared to Thirlstane zone (p<0.05).   

 

Results of a Two Way ANOVA undertaken using a GLM indicate a significant difference 

(p<0.001) in % LOI between zones at Lauder, where the High Street zone has a 

significantly higher % LOI than the Hinterland Far zone (p<0.05). Notably results from 

this analysis do not reveal a difference between the Hinterland Near zone with either the 

Hinterland Far or Thirlstane zone as identified using the appropriate non-parametric 

Kruskal-Wallis analysis and Dunn’s test in section 6.3.1.1. This may reflect differences in 

the measurement of central tendency between parametric and non-parametric tests. 

Moreover, in supplementation to results outlined in the above paragraph, 0-20cm is 

identified has having a significantly higher % LOI compared to 20-40cm depth (p<0.001).  
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Figure 73: Boxplot of median % LOI for individual zones at Lauder for 0-20cm and 20-40cm 
depth; boundaries of boxes represent interquartile range, outliers identified as * 
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Statistical analysis indicates significant interaction (p<0.001) between the individual 

ANOVA test factors, zone and depth. This association implies that variation in % LOI at 

subsequent depth increments cannot be fully explained by zone as a factor in isolation.  

 

The median % LOI for 0-20cm, 20-40cm, 40-60cm and 60-80cm depth at Pittenweem is 

10.13, 7.86, 5.38 and 3.37% respectively. Results of Kruskal-Wallis analysis and Dunn’s 

test indicate a significantly higher median % LOI for 0-20cm compared to each 

successive depth (p<0.001). Similarly 20-40cm has a significantly higher % LOI than 

both 40-60cm and 60-80cm (p<0.001). These results indicate a sustained decrease in % 

LOI associated with depth. In addition it is recognised that spatial trends identified at 0-

20cm remain consistent at subsequent depths (Figure 74), for example at 40-60cm 

depth the Harbour zone has a significantly higher % LOI compared to the Hinterland Far 

zone (p<0.001). Moreover at 40-60cm depth both the High Street and Hinterland Near 

zones have significantly higher % LOI than Hinterland Far zone (p<0.001). 
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Figure 74: Boxplot of median % LOI for individual zones at Pittenweem for 0-20cm, 20-
40cm, 40-60cm and 60-80cm depth; boundaries of boxes represent interquartile range, 
outliers identified as * 
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Results of a Two Way ANOVA undertaken using a GLM indicate that the Harbour, High 

Street and Hinterland Near zones have significantly higher % LOI compared to the 

Hinterland Far zone (p<0.001). These results support trends identified using the 

appropriate non-parametric Kruskal-Wallis analysis and Dunn’s test in section 6.3.1.1. 

Moreover in supplementation to results outlined in the previous paragraph, 0-20cm has a 

significantly higher % LOI than 20-40, 40-60 and 60-80cm depths (p<0.001), 20-40cm 

has a significantly greater LOI than 40-60cm and 60-80cm (p<0.001), and 40-60cm has 

a significantly higher % LOI than 60-80cm (p<0.05).  

 

In contrast to findings obtained at Lauder, statistical analysis using ANOVA indicates 

that there is no significant interaction between zone and depth at Pittenweem. This 

confirms the observed trend that variation in % LOI between zones is consistent at 

successive depths. 

6.3.2 Variation between Burghs 

The results of a Two Way ANOVA undertaken using a GLM indicate that mean % LOI is 

significantly different between burghs (p<0.001). Tukey-Kramer (95% confidence 

intervals) multiple comparisons reveal that Wigtown has a significantly higher mean LOI 

compared to both Lauder and Pittenweem (p<0.001). However, there is no statistical 

difference in mean % LOI between Lauder and Pittenweem.  

 

Results presented in section 6.3.1.1 indicate increased levels of % LOI within the burgh 

core of each town, and in the case of Lauder and Pittenweem enhancement within the 

Hinterland Near zone. These findings are supported by ANOVA which reveals a 

significant difference in % LOI between the High Street and Hinterland Near zones 

(p<0.001). Furthermore, Tukey-Kramer multiple comparisons confirm a significantly 

higher mean % LOI for the High Street zone compared to Hinterland Near zone 

(p<0.001). It is argued that spatial distribution of % LOI at Lauder and Pittenweem is 

characterised by decreasing % LOI values in association with distance from the burgh 

core.  

 

Statistical analysis suggests that there is no interaction between the individual ANOVA 

test factors, burgh and zone. It is, therefore, argued that although differences in % LOI 

are identified between the High Street and Hinterland Near zones, the nature and extent 

of this variation is consistent in each town. 
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6.4 Magnetic Susceptibility 

Spatial distributions of mass dependant magnetic susceptibility (Ҳ) and frequency 

dependant magnetic susceptibility (ҲFD) are presented for Lauder (Figure 75), 

Pittenweem (Figure 76) and Wigtown (Figure 77). 
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Figure 75: Spatial distribution of (a) Ҳ (10-6m3Kg-1) and (b) ҲFD (10-6m3Kg-1) at Lauder. Red 
boundary delimits 1862AD urban extent 
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Figure 76: Spatial distributio
Red boundary delimits 1855A
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Figure 77: Spatial distribution of (a) Ҳ (10-6m3Kg-1) and (b) ҲFD (10-6m3Kg-1) at Wigtown. Red 
boundary delimits 1850AD urban extent 
 

6.4.1 Mass Dependant Magnetic Susceptibility (Ҳ) 

6.4.1.1 Variation within Burghs 
The median Ҳ of the High Street, Hinterland Near, Hinterland Far and Thirlstane zones 

at Lauder is 2.29, 2.17, 0.54 and 0.58 (10-6m3Kg-1) respectively (Figure 78a). There is no 

statistical difference in median Ҳ between the High Street zone and Hinterland Near 

zone. However, both High Street and Hinterland Near zones have significantly higher Ҳ 

than the Hinterland Far (p<0.001) and Thirlstane zones (p<0.001) (Figure 78b). These 

results provide clear evidence for increased Ҳ within the urban core and land 

immediately adjacent to the historical burgh limits (Hinterland Near). 
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Figure 78: (a) Boxplot of median Ҳ (10-6m3Kg-1) for individual zones at Lauder; boundaries 
of boxes represent interquartile range, red shading indicates 86.761% confidence interval 
for median, outliers identified as *, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Lauder, Z values exceeding –Z or Z are significant at 
p<0.05 confidence level    
 
The mean Ҳ of the Harbour, High Street, Hinterland Near and Hinterland Far zones is 

2.21, 2.03, 1.99 and 1.14 (10-6m3Kg-1) respectively (Figure 79). Results of One Way 

ANOVA with Tukey-Kramer multiple comparisons indicate the Harbour, High Street and 

Hinterland Near zones all have a significantly higher mean Ҳ than the Hinterland Far 

zone (p<0.001). However, there is no statistical difference in mean Ҳ between the 

Harbour, High Street and Hinterland Near zones. Similar to results obtained for Lauder, 

elevated Ҳ is noted within both burgh core and in the immediate hinterland (Hinterland 

Near). 

 

There is a significant difference between the High Street, Hinterland Near and Showfield 

zones at Wigtown (p<0.001). The median Ҳ of the High Street, Hinterland Near and 

Showfield zones is 7.26, 1.71 and 1.95 (10-6m3Kg-1) respectively (Figure 80a). The High 

Street zone has a significantly higher (p<0.001) Ҳ than both the Hinterland Near and 

Showfield zones (Figure 80b). There is no significant difference between the Hinterland 

Near and Showfield zones. These results indicate elevated Ҳ within the burgh core at 

Wigtown. 
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Figure 79: Boxplot of median and mean Ҳ (10-6m3Kg-1) for individual zones at Pittenweem; 
bar indicates median, black circle denotes mean, boundaries of boxes represent 
interquartile range, outliers identified as * 
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Figure 80: (a) Boxplot of median Ҳ (10-6m3Kg-1) for individual zones at Wigtown; 
boundaries of boxes represent interquartile range, red shading indicates 80.529% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Wigtown, Z values exceeding –Z 
or Z are significant at p<0.05 confidence level 
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6.4.1.2 Variation between Burghs 
Results of a Two Way ANOVA undertaken using a GLM indicate that mean Ҳ is 

significantly different between towns (p<0.001). Tukey-Kramer (95% confidence 

intervals) multiple comparisons reveal that mean Ҳ at Wigtown is significantly higher 

than Lauder and Pittenweem (p<0.001). Additionally, there is no statistical difference in 

Ҳ between Lauder and Wigtown. It should be noted that variation in mean Ҳ between 

burghs does not necessarily reflect differences in the duration and intensity of 

anthropogenic enhancement. It is more likely that absolute differences indicate a 

contrast in underlying geology.  

 

Results presented in section 6.4.1.1 indicate increased Ҳ within the burgh core of each 

town, and in the case of Lauder and Pittenweem, enhancement within the Hinterland 

Near zone. This finding is supplemented by ANOVA which confirms a significant 

difference in mean Ҳ between the High Street zone and Hinterland Near zone (p<0.001). 

Tukey-Kramer multiple comparisons indicate a higher mean Ҳ for the High Street zone 

compared to the Hinterland Near zone (p<0.001). Conversely, results from Kruskal-

Wallis pairwise comparisons suggest that there is no significant difference between the 

High Street and Hinterland Near zones at Lauder and Pittenweem. This discrepancy 

may reflect differences in measurement of central tendency between parametric and 

non-parametric tests. Nevertheless it is evident that all three towns have elevated Ҳ in 

the burgh core, and in the case of Lauder and Pittenweem enhanced Ҳ in land 

immediately adjacent to the historical burgh limits (Hinterland Near).   

 

Statistical analysis indicates significant interaction (p<0.001) between the individual 

ANOVA test factors, burgh and zone. This association implies that variation in Ҳ cannot 

be explained by either burgh or zone as factors in isolation. It is therefore argued that 

although a difference between the High Street and Hinterland Near zone is identified 

using ANOVA, the nature and extent of this difference is not consistent for all three 

burghs.   
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6.4.2 Frequency Dependant Magnetic Susceptibility (ҲFD) 

6.4.2.1 Variation within Burghs 
The median ҲFD of the High Street, Hinterland Near, Hinterland Far and Thirlstane zones 

at Lauder is 0.12, 0.16, 0.05 and 0.04 (10-6m3Kg-1) respectively (Figure 81a). The High 

Street has a significantly higher ҲFD than the Hinterland Far (p<0.001) and Thirlstane 

zones (p<0.01). In addition, the Hinterland Near zone has a significantly greater median 

ҲFD than the High Street (p<0.05), Hinterland Far (p<0.001) and Thirlstane zones 

(p<0.001) (Figure 64b). There is no statistical difference between the Hinterland Far and 

Thirlstane zones. These results reveal enhancement of ҲFD in both the burgh core and in 

land adjacent to the historical burgh limits (Hinterland Near). Moreover, it is recognised 

that ҲFD is significantly higher in the Hinterland Near zone in comparison to the burgh 

core.  

 

Similar to trends identified at Lauder, enhancement of ҲFD is noted within the burgh core 

and Hinterland Near zone at Pittenweem. The median ҲFD of the Harbour, High Street, 

Hinterland Near and Hinterland Far zones at Pittenweem is 0.06, 0.07, 0.09 and 0.04 

(10-6m3Kg-1) respectively. The High Street has a significantly higher ҲFD than the 

Hinterland Far zone (p<0.01). Moreover, the Hinterland Near zone has a significantly 

higher ҲFD than both the High Street (p<0.01) and Hinterland Far zones (p<0.001) 

(Figure 82b). There is no statistical difference in ҲFD between the Harbour zone with the 

High Street, Hinterland Near or Hinterland Far zones. This is attributable to pronounced 

data variability as indicated by a large interquartile range (Figure 82a). In addition, there 

is considerable overlapping between the Harbour zone confidence interval with the High 

Street, Hinterland Near and Hinterland Far zones. These results provide clear evidence 

for enhanced ҲFD in the burgh core and land immediately adjacent to the historical burgh 

limits (Hinterland Near). In addition, it should be noted that ҲFD is significantly higher in 

the Hinterland Near zone compared to the burgh core. 
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Figure 81: (a) Boxplot of median ҲFD (10-6m3Kg-1) for individual zones at Lauder; 
boundaries of boxes represent interquartile range, red shading indicates 86.761% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Lauder, Z values exceeding –Z or 
Z are significant at p<0.05 confidence level   

 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Lauder, Z values exceeding –Z or 
Z are significant at p<0.05 confidence level   
  

The median ҲFD of  the High Street, Hinterland Near and Showfield zones at Wigtown is 

0.47, 0.12 and 0.18 (10-6m3Kg-1) respectively Figure 83a). The High Street has a 

significantly higher ҲFD than the Hinterland Near (p<0.001) and Showfield zones 

(p<0.001) (Figure 83b). Additionally the Showfield zone has a significantly higher ҲFD 

than the Hinterland Near zones (p<0.05). Despite the difference in ҲFD between the 

Showfield and Hinterland Near zone, neither are enhanced in comparison to the High 

Street zone. It is, therefore, argued that these results highlight a clear contrast in ҲFD 

between the burgh core and its hinterland.  

The median ҲFD of  the High Street, Hinterland Near and Showfield zones at Wigtown is 

0.47, 0.12 and 0.18 (10-6m3Kg-1) respectively Figure 83a). The High Street has a 

significantly higher ҲFD than the Hinterland Near (p<0.001) and Showfield zones 

(p<0.001) (Figure 83b). Additionally the Showfield zone has a significantly higher ҲFD 

than the Hinterland Near zones (p<0.05). Despite the difference in ҲFD between the 

Showfield and Hinterland Near zone, neither are enhanced in comparison to the High 

Street zone. It is, therefore, argued that these results highlight a clear contrast in ҲFD 

between the burgh core and its hinterland.  
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Figure 82: (a) Boxplot of median ҲFD (10-6m3Kg-1) for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, red shading indicates 86.761% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Pittenweem, Z values exceeding 
–Z or Z are significant at p<0.05 confidence level   
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Figure 83: (a) Boxplot of median Ҳ (10-6m3Kg-1) for individual zones at Wigtown; 
boundaries of boxes represent interquartile range, red shading indicates 80.529% 
confidence interval for median, outliers identified as *, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Wigtown, Z values exceeding –Z 
or Z are significant at p<0.05 confidence level 
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6.4.2.2 Variation between Burghs 
Results of a Two Way ANOVA undertaken using a GLM indicate that the mean ҲFD is 

significantly different between burghs (p<0.001). Tukey-Kramer (95% confidence 

intervals) multiple comparisons reveal that the mean ҲFD at Wigtown is significantly 

higher than Lauder and Pittenweem (p<0.01). Furthermore, Lauder has a significantly 

greater (p<0.01) mean ҲFD than Pittenweem. 

 

Statistical analysis also reveals a significant difference between the High street and 

Hinterland Near zone (p<0.001). Results of ANOVA indicate significantly higher ҲFD for 

the High Street zone in comparison to the Hinterland Near zone (p<0.001). This finding 

is contradictory to trends identified for Lauder and Pittenweem in section 6.4.2.1 which 

are characterised by higher ҲFD in the Hinterland Near zone. This discrepancy arises 

from the computation of ANOVA which collectively tests High Street and Hinterland Near 

zone data for all three burghs. It is suggested that differences in the relationship 

between the High Street and Hinterland Near zone data between burghs may produce 

contradictory results to those obtained using Kruskal-Wallis analysis and Dunn’s test.  

 

Statistical analysis indicates significant interaction between the individual ANOVA test 

factors, burgh and zone. This finding supports results presented in 6.4.2.1 which reveal 

the occurrence of higher ҲFD in the Hinterland Near zone at Lauder and Pittenweem, and 

comparatively higher ҲFD in the High Street zone at Wigtown.  

6.4.3 Natural Variation of Magnetic Susceptibility 

Magnetic susceptibility of soil is influenced by a range of geological and pedological 

factors which determine Iron (Fe) content and abundance of magnetic minerals 

(Crowther 2003, Crowther and Barker 1995). Consequently areas of increased magnetic 

susceptibility can be attributed to environmental factors such as a change in underlying 

geology, and human activities. Correlation between Fe (mg/Kg) and Ҳ (10-6m3Kg-1) 

(Figure 84) shows a distinction between Wigtown and Lauder, and Wigtown and 

Pittenweem.   

 

This finding supplements results presented in section 6.4.2.1, which indicate that there is 

no significant difference in mean Ҳ between Lauder and Pittenweem, but do reveal a 

significant difference in mean Ҳ between Wigtown with Lauder and Pittenweem. It is 

therefore suggested that variation in mean Ҳ between burghs reflects differing geology. 

In addition it is apparent that there are different phases in the relationship between Ҳ 

and Fe at Lauder and Wigtown. Further analysis of data indicates that there is 
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separation of the High Street and Hinterland Near zones at Lauder, and High Street 

zone at Wigtown. This is in agreement with results presented in section 6.4.1.1. In the 

natural environment Ҳ is largely determined by concentrations of ferrimagnetic minerals. 

It is therefore expected that variations in Ҳ are strongly correlated with Fe 

concentrations. Results of Spearman Rank statistical analyses indicate a weak positive 

correlation between Ҳ and Fe at Lauder (rs 0.253), Pittenweem (rs 0.206) and Wigtown 

(rs 0.380). These results suggest that spatial distributions of Ҳ are not closely related to 

Fe concentrations. It is therefore argued that trends in Ҳ and ҲFD identified in sections 

6.4.1 and 6.4.2, can be partially attributed to factors other than natural variation.  

 

Comparison between ‘reference’ soil profile Ҳ with functional zones in each burgh also 

confirm enhancement exceeding natural conditions. At Lauder Ҳ is five times higher in 

the High Street (2.29) and Hinterland Near (2.03) zone compared to reference profile LA 

7 (0.33). At Pittenweem Ҳ is nearly double in the Harbour (2.04), High Street (2.21) and 

Hinterland Near (1.99) zones compared to reference profile PT 1 (1.01). Similarly Ҳ is 

four times higher in the High street (7.06) zone at Wigtown in comparison to reference 

soil profile WG 5 (1.46). 
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Figure 84: Scatterplot of Fe (mg/Kg) vs. Ҳ (10-6m3Kg-1) for Lauder, Pittenweem and 
Wigtown 
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6.5 Summary of Results: Soil Physical and Chemical Properties 

The following section presents a brief summary of key trends in soil physical and 

chemical properties both within and between burghs. The significance of these results is 

discussed in section 8.1.1 and 8.2.1. Consideration is given to differences in soil 

modification between burgh cores and their hinterland as a result of past waste disposal.  

6.5.1 Variation within Burghs  

6.5.1.1 Lauder 
Two zones are identified as important areas of interest at Lauder; the High Street zone 

and the Hinterland Near zone. Both of these zones are characterised by deepened 

topsoils, higher % LOI and enhanced mass dependant magnetic susceptibility (Table 

10). Enhancement in ҲFD is also noted within the High Street and Hinterland Near zones, 

however ҲFD is comparatively higher in the Hinterland Near zone. Moreover a distinct 

contrast in soil pH is noted between these two zones. The High Street has 

characteristically neutral soils in comparison to Hinterland Near zone which is acidic.  

6.5.1.2 Pittenweem 
The Harbour, High Street and Hinterland Near zones are identified as important areas of 

interest at Pittenweem. These zones are characterised by deepened topsoils, enhanced 

mass dependant magnetic susceptibility and higher % LOI (Table 10). The Harbour zone 

has the highest % LOI, followed in succession by the High Street and Hinterland Near 

zones. Enhancement of ҲFD is identified in all three zones at Pittenweem, however it 

should be noted that ҲFD is comparatively higher in the Hinterland Near zone. Moreover 

a distinct contrast in soil pH is noted between the Hinterland Near zone which is acidic, 

with the Harbour and High Street zones which have neutral soil pH. 

6.5.1.3 Wigtown  
The High Street zone is identified as an important area of interest at Wigtown. 

Compared to the surrounding hinterland the High Street zone has deepened topsoils, a 

neutral soil pH, higher % LOI, and enhanced magnetic susceptibility and ҲFD (Table 10). 

6.5.1.4 Depth 
Results presented in section 6.2.1.2 reveal a significant difference in soil pH between 

depths at Lauder and Pittenweem (Table 11). In both cases soil pH increases with depth 

whilst retaining spatial trends identified at 0-20cm, for example there is a consistent 

distinction between neutral soil pH values in the burgh core with acidic hinterland soils.  
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Results presented in section 6.3.1.2 show a decrease in % LOI associated with depth at 

both Lauder and Pittenweem, however, the relationship between zone and depth differs 

between these two burghs. Given the absence of interaction between depth and zone at 

Pittenweem it is argued that spatial trends identified at 0-20cm are consistent at 

successive depths. Conversely statistical interaction between depth and zone at Lauder 

signifies that variations in % LOI at subsequent depths are not fully attributable to 

differenced associated with zones. 

 
Table 10: Summary of trends in soil physical and chemical properties identified at Lauder, 
Pittenweem and Wigtown 
 

 

Measurement Lauder Pittenweem Wigtown 

Topsoil Depth 
(cm) 

Deepened topsoil in 
burgh core (High 
Street zone) and 
immediate hinterland 
(Hinterland Near 
zone) 

Deepened topsoil in 
burgh core (Harbour 
and High Street 
zones) and 
immediate hinterland 
(Hinterland Near 
zone) 

Deepened topsoil in 
burgh core (High 
Street zone) 

pH Neutral pH in burgh 
core (High Street 
zone) and acidic pH 
in the hinterland 
(Hinterland Near, 
Hinterland Far and 
Thirlstane zones) 

Neutral pH in burgh 
core (Harbour and 
High Street zones) 
and acidic pH in the 
hinterland (Hinterland 
Near and Hinterland 
Far zones) 

Neutral pH in burgh 
core (High Street 
zone) and acidic pH 
in the hinterland 
(Hinterland Near and 
Showfield zones) 

% LOI Enhanced % LOI in 
burgh core (High 
Street zone) and 
immediate hinterland 
(Hinterland Near 
zone) 

Enhanced % LOI in 
burgh core (Harbour 
and High Street 
zones) and 
immediate hinterland 
(Hinterland Near 
zone) 

Enhanced % LOI in 
burgh core (High 
Street zone) 

Ҳ (10-6m3Kg-1) Enhanced Ҳ in burgh 
core (High Street 
zone) and immediate 
hinterland (Hinterland 
Near zone) 

Enhanced Ҳ in burgh 
core (High Street 
zone) and immediate 
hinterland (Hinterland 
Near zone) 

Enhanced Ҳ in 
burgh core (High 
Street zone) 

ҲFD (10-6m3Kg-1) Enhanced ҲFD in 
burgh core (High 
Street zone) and 
immediate hinterland 
(Hinterland Near 
zone). Enhancement 
greatest in Hinterland 
Near zone 

Enhanced ҲFD in 
burgh core (High 
Street zone) and 
immediate hinterland 
(Hinterland Near 
zone). Enhancement 
greatest in Hinterland 
Near zone 

Enhanced ҲFD in 
burgh core (High 
Street zone) 
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Table 11: Comparison of trends in pH and LOI associated with depth at Lauder and 
Pittenweem 
 

 

Measurement Lauder Pittenweem 

pH Increase in pH associated with 
depth. Spatial trends present at 
0-20cm occur at 20-40cm. 
No significant interaction 
between zone and depth 

Increase in pH associated with 
depth. Spatial trends identified at 
0-20cm are present at 20-40, 40-
60 and 60-80cm depth. No 
significant interaction between 
zone and depth 

% LOI Decrease in % LOI associated 
with depth. Spatial trends 
identified at 0-20cm are not 
consistent at 20-40cm. 
Significant interaction between 
zone and depth 

Decrease in % LOI associated 
with depth. Spatial trends 
identified at 0-20cm are present 
at 20-40, 40-60 and 60-80cm 
depth. No significant interaction 
between zone and depth 

6.5.2 Variation between Burghs 

All three burghs have deepened topsoil, higher % LOI, and enhanced magnetic 

susceptibility and ҲFD in zones corresponding to the burgh core (Harbour and High 

Street). Trends identified in the burgh core at Lauder and Pittenweem are also replicated 

in land immediately adjacent to the historical burgh limits (Hinterland Near), although it 

should be noted that ҲFD is comparatively higher in the Hinterland Near zone (Table 12). 

Moreover, a distinct contrast in soil pH is noted between the burgh core and Hinterland 

Near zone at all three burghs. The burgh core has characteristically neutral soil in 

contrast to the Hinterland Near zone which has typically acidic soils.  

 
Table 12: Comparison of trends in soil physical and chemical properties identified at 
Lauder, Pittenweem and Wigtown 

Measurement Comparison between Burghs 

Topsoil Depth 
(cm) 

All three burghs have deepened topsoil deposits in the burgh core. 
Lauder and Pittenweem have deepened deposits in the immediate 
hinterland (Hinterland Near zone) 

pH All three burghs have higher a pH in the burgh core. 
All three burghs show a contrast between neutral pH in the old 
burgh core and acidic pH in the hinterland 

% LOI All three burghs have enhanced LOI in the burgh core. 
Lauder and Pittenweem have enhanced LOI in the immediate 
hinterland (Hinterland Near zone) 

Ҳ (10-6m3Kg-1) All three burghs have higher Ҳ in the burgh core. 
Lauder and Pittenweem have enhanced  Ҳ in the immediate 
hinterland (Hinterland Near zone) 

ҲFD (10-6m3Kg-1) All three burghs have enhanced ҲFD in the burgh core. 
Lauder and Pittenweem have enhanced ҲFD in the immediate 
hinterland (Hinterland Near). Enhancement of  ҲFD is most 
pronounced in the Hinterland Near zone at Lauder and Pittenweem
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7 Elemental Analyses 

This chapter presents the results of a series of elemental analyses including multiple 

comparisons of anthropogencially significant elements, cluster analysis and discriminant 

analysis. Data are presented collectively for Lauder, Pittenweem and Wigtown to 

facilitate visual and statistical analysis. 

7.1 Elemental Concentrations 

The following section presents spatial distributions of selected elemental concentrations 

including, barium (Ba), calcium (Ca), lead (Pb), potassium (K), phosphorus (P), 

strontium (Sr) and zinc (Zn). These elements were selected for detailed analysis 

because of their utility in characterising areas of past human activity (Entwistle et al., 

2000a, Entwistle et al., 2000b, Entwistle et al., 1998, Wilson et al., 2006a).  

7.1.1 Barium 

Spatial distributions of barium (Ba) are presented for Lauder (Figure 85), Pittenweem 

(Figure 86a) and Wigtown (Figure 86b). Patterns in Ba associated with zones are 

subsequently identified and comparisons between burghs are made.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 85: Spatial distribution of Log Ba (mg/Kg) at Lauder. Red boundary delimits 1862AD 
urban extent 
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a) b)  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 86: Spatial distribution of Log Ba (mg/Kg) at Pittenweem (a) and Wigtown (b). Red 
boundary delimits 1855AD and 1850AD urban extent respectively 
 

7.1.1.1 Variation within Burghs 
The mean Ba concentration of the High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones at Lauder is 256, 189, 151 and 228 mg/Kg respectively (Figure 87). 

Results of One Way ANOVA with Tukey-Kramer multiple comparisons indicate that both 

the High Street and Thirlstane zones have significantly higher Ba than the Hinterland 

Near and Hinterland Far zones (p<0.001). Moreover, Ba is significantly higher in the 

Hinterland Near zone compared to the Hinterland Far zone (p<0.001). There is no 

significant difference in mean Ba concentration between the High Street and Thirlstane 

zones. These results indicate similar patterns of Ba enhancement in the burgh core and 

immediate hinterland north of Lauder (Thirlstane). To a lesser extent Ba is also 

enhanced in the immediate hinterland south of Lauder (Hinterland Near). 
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Figure 87: Boxplot of median and mean Ba (mg/Kg) for individual zones at Lauder; bar 
indicates median, black circle denotes mean; boundaries of boxes represent interquartile 
range, outliers identified as * 
 

The median Ba concentration of the Harbour, High Street, Hinterland Near and 

Hinterland Far zones at Pittenweem is 153.4, 147.7, 62.5 and 61.6 mg/Kg respectively 

(Figure 88a). Both the Harbour and High Street zones have significantly higher Ba  than 

the Hinterland Near and Hinterland Far zones (p<0.001) (Figure 88b). There is no 

significant difference in median Ba concentrations between the Harbour zone and High 

street zones. Similarly, there is no statistical difference in Ba between the Hinterland 

Near and Hinterland far zones. These results provide clear evidence of Ba enhancement 

within the burgh core at Lauder. 

 

The median Ba concentration for the High street, Hinterland Near and Showfield zones 

at Wigtown is 236.6, 48.9 and 94.9 mg/Kg respectively (Figure 89a). The High Street 

zone has significantly higher Ba than the Hinterland Near and Showfield zones 

(p<0.001). In addition the Showfield zone has significantly higher Ba than the Hinterland 

Near zone (p<0.001) (Figure 89b). These results indicate enhanced levels of Ba in the 

burgh core and to a lesser extent the immediate hinterland south of Wigtown 

(Showfield). 
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Figure 88: (a) Boxplot of median Ba (mg/Kg) for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, green shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Pittenweem, -Z or Z are 
significant at p<0.05 confidence level 

Figure 89: (a) Boxplot of median Ba (mg/Kg) for individual zones at Wigtown; boundaries 
of boxes represent interquartile range, green shading indicates 80.529% confidence 
interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test 
multiple comparisons for individual zones at Wigtown, -Z or Z are significant at p<0.05 
confidence level 
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7.1.1.2 Variation between Burghs 
All three burghs have enhanced levels of Ba in zones corresponding to the burgh core 

(Harbour and High Street). Enhancement of Ba is confined to Pittenweem’s burgh core; 

however, both Lauder and Wigtown have additionally enhanced zones in the hinterland. 

Ba is enhanced in the immediate hinterland north of Lauder (Thirlstane) to a level 

comparable with the burgh core, and to a lesser extent in the immediate hinterland south 

of the historical burgh limits (Hinterland Near). Similarly Ba is enhanced in the immediate 

hinterland south of Wigtown (Showfield), albeit significantly less than the High Street 

zone. 

7.1.2 Calcium 

Spatial distributions of calcium (Ca) are presented for Lauder (Figure 90), Pittenweem 

(Figure 91a) and Wigtown (Figure 91b). Patterns in Ca associated with zones are 

subsequently identified and comparisons between burghs are made.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 90: Spatial distribution of Log Ca (mg/Kg) at Lauder. Red boundary delimits 1862AD 
urban extent 
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a) b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 91: Spatial distribution of Log Ca (mg/Kg) at Pittenweem (a) and Wigtown (b). Red 
boundary delimits 1855AD and 1850AD urban extent respectively 
 

7.1.2.1 Variation within Burghs 
The median Ca concentration of the High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones at Lauder is 9076, 2959, 1844 and 2458 mg/Kg respectively (Figure 

92a). The High Street has significantly higher Ca than the Hinterland Near, Hinterland 

Far and Thirlstane zones (p<0.001). The Hinterland Near zone has significantly higher 

Ca than the Hinterland Far zone (p<0.001) (Figure 92b). However there is no statistical 

difference in median Ca concentrations between the Hinterland Near and Thirlstane 

zones. These results indicate enhancement of Ca within Lauder’s burgh core. Elevated 

Ca levels are also identified in the immediate hinterland south of Lauder (Hinterland 

Near); however it should be noted that Ca concentrations in the Hinterland Near zone 

are significantly lower than the High Street zone. 

 - 196 -



ThirlstaneHint FarHint NearHigh Street

20000

15000

10000

5000

0

C
a 

(m
g/

K
g)

Hint Far

Hint Near

High Street

Thirlstane

Thirlstane

Hint Far

Thirlstane

Hint Far

Hint Near

Z0-Z

Boxplots w ith Sign Confidence Intervals
Desired Conf idence: 86.761

Family  Alpha: 0.2
Bonf erroni Indiv idual Alpha: 0.033

Pairw ise Comparisons

|Bonf erroni Z-v alue|: 2.128

b) a) 

Figure 92: (a) Boxplot of median Ca (mg/Kg) for individual zones at Lauder; boundaries of 
boxes represent interquartile range, yellow shading indicates 86.761% confidence interval 
for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Lauder, -Z or Z are significant at p<0.05 confidence 
level 
 

The median Ca concentration of the Harbour, High Street, Hinterland Near and 

Hinterland Far zones is at Pittenweem is 17414, 11756, 2580 and 2608.6 mg/Kg 

respectively (Figure 93a). Both the Harbour and High Street zones have significantly 

higher Ca than the Hinterland Near and Hinterland Far zones (p<0.001). There is no 

significant difference in median Ca concentrations between the Harbour and High Street 

zones. Moreover, there is no statistical difference in Ca concentrations between the 

Hinterland Near and Hinterland Far zones (Figure 93b). These results provide a clear 

indication of Ca enhancement within the burgh core at Pittenweem. 

 

The median Ca concentration of the High Street, Hinterland Near and Showfield zones 

at Wigtown is 17038, 1522 and 1143 mg/Kg respectively (Figure 94a). The High Street 

has significantly higher Ca than the Hinterland Near and Showfield zones (p<0.001). In 

addition, there is no significant difference in median Ca concentrations between the 

Hinterland Near and Showfield zones. Similar to results identified at Pittenweem, there is 

distinct enhancement of Ca within the burgh core at Wigtown.  
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Figure 93: (a) Boxplot of median Ca (mg/Kg) for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, yellow shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Pittenweem, -Z or Z are 
significant at p<0.05 confidence level 
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Figure 94: (a) Boxplot of median Ca (mg/Kg) for individual zones at Wigtown; boundaries 
of boxes represent interquartile range, yellow shading indicates 80.529% confidence 
interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test 
multiple comparisons for individual zones at Wigtown, -Z or Z are significant at p<0.05 
confidence level 
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7.1.2.2 Variation between Burghs 
Similar to trends identified for Ba in section 7.1.1, all three burghs have significant 

enhancement of Ca in zones within the burgh core (Harbour and High street). Increased 

Ca concentrations are characteristically limited to the burgh core within Pittenweem and 

Lauder. However, comparatively higher Ca levels are noted in the immediate hinterland 

south of Lauder (Hinterland Near). Nevertheless it should be noted that this area has a 

significantly lower median Ca concentration than the High Street zone.  

7.1.3 Lead 

Spatial distributions of lead (Pb) are presented for Lauder (Figure 95), Pittenweem 

(Figure 96a) and Wigtown (Figure 96b). Patterns in Pb associated with zones are 

subsequently identified and comparisons between burghs are made.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 95: Spatial distribution of Log Pb (mg/Kg) at Lauder. Red boundary delimits 1862AD 
urban extent 
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 a) b) 

 
 
Figure 96: Spatial distribution of Log Pb (mg/Kg) at Pittenweem (a) and Wigtown (b). Red 
boundary delimits 1855AD and 1850AD urban extent respectively 

7.1.3.1 Variation within Burghs 
The median Pb concentration of the High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones at Lauder is 209.9, 77.7, 32.35 and 59.1 mg/Kg respectively (Figure 

97a). The High Street zone has significantly higher Pb than Hinterland Near (p<0.05), 

Hinterland Far (p<0.001) and Thirlstane (p<0.001) zones. The Hinterland Near zone has 

significantly higher Pb than Hinterland Far (p<0.001) and Thirlstane zones (p<0.05). 

Moreover, the Thirlstane zone has significantly higher Pb than the Hinterland Far zone 

(p<0.001) (Figure 97). These results indicate significant enhancement of Pb within the 

burgh core. To a lesser extent, elevated levels of Pb are also identified in the immediate 

hinterland south (Hinterland Near) and north of Lauder (Thirlstane). 

 - 200 -



ThirlstaneHint FarHint NearHigh Street

1800

1600

1400

1200

1000

800

600

400

200

0

P
b 

(m
g/

K
g)

Hint Far

Hint Near

High Street

Thirlstane

Thirlstane

Hint Far

Thirlstane

Hint Far

Hint Near

Z0-Z

Boxplots w ith Sign Confidence Intervals
Desired Conf idence: 86.761

Family  Alpha: 0.2
Bonf erroni Indiv idual Alpha: 0.033

Pairw ise Comparisons

|Bonf erroni Z-v alue|: 2.128

a) b) 

Figure 97: (a) Boxplot of median Pb (mg/Kg) for individual zones at Lauder; boundaries of 
boxes represent interquartile range, green shading indicates 86.761% confidence interval 
for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Lauder, -Z or Z are significant at p<0.05 confidence 
level 
 

The mean Pb concentration of the Harbour, High Street, Hinterland Near and Hinterland 

Far zones at Pittenweem is 221, 182, 43.3 and 34.866 mg/Kg respectively (Figure 98). 

Results of One Way ANOVA with Tukey-Kramer multiple comparisons indicate that Pb 

levels are significantly higher in the Harbour zone compared to the Hinterland Near and 

Hinterland Far zones (p<0.001). Likewise the High Street zone has significantly higher 

Pb than the Hinterland Near and Hinterland Far zones (p<0.001). There is no statistical 

difference between the Harbour and High Street zones, and the Hinterland Near and 

Hinterland Far zones. These results provide clear evidence of enhanced Pb 

concentrations within Pittenweem’s burgh core.  

 

The median Pb concentration of the High Street, Hinterland Near and Showfield zones 

at Wigtown is 373.9, 63.18 and 151.31 mg/Kg respectively (Figure 99a). The High Street 

zone has significantly higher Pb than the Hinterland Near (p<0.001) and Showfield 

zones (p<0.01). Moreover, the Showfield zone has a significantly higher median Pb 

concentration compared to the Hinterland Near zone (p<0.001) (Figure 82b).  
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Figure 98: Boxplot of median and mean Pb (mg/Kg) for individual zones at Pittenweem; 
bar indicates median, black circle denotes mean; boundaries of boxes represent 
interquartile range, outliers identified as * 
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Figure 99: (a) Boxplot of median Pb (mg/Kg) for individual zones at Wigtown; boundaries 
of boxes represent interquartile range, green shading indicates 80.529% confidence 
interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test 
multiple comparisons for individual zones at Wigtown, -Z or Z are significant at p<0.05 
confidence level 
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These results indicate enhanced Pb levels within the burgh core at Wigtown. To a lesser 

extent enhanced Pb levels are identified in the hinterland south of Wigtown (Showfield), 

however it should be noted that median Pb concentrations are significantly lower 

compared to the burgh core.  

7.1.3.2 Variation between Burghs 
All three burghs have significant enhancement of Pb concentrations in zones within the 

burgh core (Harbour and High Streets). Enhancement of Pb at Pittenweem is confined to 

the burgh core; however, both Lauder and Wigtown have additionally enhanced zones in 

the hinterland. Pb levels are elevated in the immediate hinterland south (Hinterland 

Near) and north of Lauder (Thirlstane). Similarly Pb is enhanced in the immediate 

hinterland south of Wigtown (Showfield). It should be noted that Pb concentrations in 

these hinterland areas are significantly less than the High Street zone. 

7.1.4 Potassium 

Spatial distributions of potassium (K) are presented for Lauder (Figure 100), Pittenweem 

(Figure 101a) and Wigtown (Figure 101b). Patterns in K associated with zones are 

subsequently identified and comparisons between burghs are made.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 100: Spatial distribution of Log K (mg/Kg) at Lauder. Red boundary delimits 1862AD 
urban extent 
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 a) b) 

 

Figure 101: Spatial distribution of Log Pb (mg/Kg) at Pittenweem (a) and Wigtown (b). Red 
boundary delimits 1855AD and 1850AD urban extent respectively 
 

7.1.4.1 Variation within Burghs 
The median K concentration of the High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones at Lauder is 854.3, 474.36, 205.6 and 284.6 mg/Kg respectively (Figure 

102a). The High Street zone has significantly higher K than the Hinterland Near, 

Hinterland Far and Thirlstane zones (p<0.001). Moreover K is significantly higher in the 

Hinterland Near zone compared to the Hinterland Far zone (p<0.001) (Figure 102b). 

There is no statistical difference in K concentrations between the Hinterland Far and 

Thirlstane zones. These results provide evidence for enhancement of K in the burgh 

core. To a lesser extent K is also enhanced in the immediate hinterland south of Lauder 

(Hinterland Near). 
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Figure 102: (a) Boxplot of median K (mg/Kg) for individual zones at Lauder; boundaries of 
boxes represent interquartile range, pink shading indicates 86.761% confidence interval 
for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Lauder, -Z or Z are significant at p<0.05 confidence 
level 
 

The median K concentration of the Harbour, High Street, Hinterland Near and Hinterland 

Far zones at Pittenweem is 636, 348, 79. and 126 mg/Kg respectively (Figure 103a). 

The Harbour zone has significantly higher levels of K than the Hinterland Near and 

Hinterland Far zones (p<0.001). Likewise the High Street zone has significantly higher K 

than the Hinterland Near and Hinterland Far zones (p<0.001) (Figure 103b). There is no 

significant difference in median K concentrations between the Harbour and High Street 

zones, and the Hinterland Near and Hinterland Far zones. These results provide clear 

evidence for enhancement of K within Pittenweem’s burgh core.  

 

The median K concentration for High Street, Hinterland Near and Showfield zones at 

Wigtown is 870.2, 284.8 and 300.6 mg/Kg respectively (Figure 104a). The High Street 

zone has significantly higher K than the Hinterland Near and Showfield zones (p<0.001). 

There is no significant difference in median K between the Hinterland Near and 

Showfield zones (Figure 104b). Similar to results identified at Pittenweem, there is 

distinct enhancement of K within the burgh core at Wigtown.  
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Figure 103: (a) Boxplot of median K (mg/Kg) for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, pink shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Pittenweem, -Z or Z are 
significant at p<0.05 confidence level 

Figure 104: (a) Boxplot of median K (mg/Kg) for individual zones at Wigtown; boundaries 
of boxes represent interquartile range, pink shading indicates 80.529% confidence interval 
for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Wigtown, -Z or Z are significant at p<0.05 confidence 
level 
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7.1.4.2 Variation between Burghs 
All three burghs have significant enhancement of K concentrations in zones within the 

burgh core (Harbour and High Street). Increased concentrations of K are confined to the 

burgh core in Pittenweem and Wigtown; however, elevated levels of K are identified in 

the immediate hinterland south of Lauder (Hinterland Near). It should be noted 

enhancement of K in the Hinterland Near zone is significantly less than the burgh core at 

Lauder. 

7.1.5 Phosphorus 

Spatial distributions of phosphorus (P) are presented for Lauder (Figure 105), 

Pittenweem (Figure 106a) and Wigtown (Figure 106b). Patterns in P associated with 

zones are subsequently identified and comparisons between burghs are made.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 105: Spatial distribution of Log P (mg/Kg) at Lauder. Red boundary delimits 1862AD 
urban extent 
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a) b) 

 

 
Figure 106: Spatial distribution of Log P (mg/Kg) at Pittenweem (a) and Wigtown (b). Red 
boundary delimits 1855AD and 1850AD urban extent respectively 

7.1.5.1 Variation within Burghs 
The median P concentration of the High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones is at Lauder is 3129, 1798, 903.4 and 1658 mg/Kg respectively (Figure 

107a). The High Street zone has significantly higher P than the Hinterland Near, 

Hinterland Far and Thirlstane zones (p<0.001). The Hinterland Near and Thirlstane 

zones have significantly higher median P concentrations than the Hinterland Far zone 

(p<0.001). Moreover, there is no significant difference in P between the Hinterland Near 

and Thirlstane zones (Figure 107b). 
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Figure 107: (a) Boxplot of median P (mg/Kg) for individual zones at Lauder; boundaries of 
boxes represent interquartile range, purple shading indicates 86.761% confidence interval 
for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Lauder, -Z or Z are significant at p<0.05 confidence 
level 
 
These results indicate significant enhancement of P within the burgh core. Areas with 

elevated P are also identified in the immediate hinterland north (Thirlstane) and south 

(Hinterland Near) of Lauder, however it should be noted that P levels in these two areas 

are significantly lower than the High Street zone 

 

The median P concentration of the Harbour, High Street, Hinterland Near and Hinterland 

Far zones at Pittenweem is 1741, 2147, 964.5 and 960.1 mg/Kg respectively (Figure 

108a). The Harbour zone has significantly higher P than the Hinterland Near zone 

(p<0.01) and Hinterland Far zone (p<0.05). In addition, the High Street zone has 

significantly higher P levels than the Hinterland Near and Hinterland Far zones 

(p<0.001) (Figure 108b). There is no significant difference in median P concentrations 

between the Harbour and High Street zones. These results provide clear evidence for 

enhancement of P within Pittenweem’s burgh core.  
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Figure 108: (a) Boxplot of median P (mg/Kg) for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, purple shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Pittenweem, -Z or Z are 
significant at p<0.05 confidence level 
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Figure 109: (a) Boxplot of median P (mg/Kg) for individual zones at Wigtown; boundaries 
of boxes represent interquartile range, purple shading indicates 80.529% confidence 
interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test 
multiple comparisons for individual zones at Wigtown, -Z or Z are significant at p<0.05 
confidence level 
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The median P concentration of the High Street, Hinterland Near and Showfield zones at 

Wigtown is 5001, 1492.5 and 2553 mg/Kg respectively (Figure 109a). The High Street 

has significantly higher P than the Hinterland Near (p<0.001) and Showfield zones 

(p<0.01). In addition the Showfield zone has significantly higher P than the Hinterland 

Near zone (p<0.001). These results indicate significant enhancement of P within the 

burgh core. Moreover increased P is noted in the immediate hinterland south of Wigtown 

(Showfield), although it should be noted that P concentrations in this area are 

significantly lower than the High Street zone.  

7.1.5.2 Variation between Burghs  
All three burghs have significant enhancement of P concentrations in zones within their 

burgh cores (Harbour and High Streets). Enhancement of P at Pittenweem is confined to 

the burgh core; however, both Lauder and Wigtown have additionally enhanced zones in 

the hinterland. P levels are elevated in the immediate hinterland south (Hinterland Near) 

and north of Lauder (Thirlstane). Similarly P is enhanced in the immediate hinterland 

south of Wigtown (Showfield). It should be noted that P concentrations in hinterland 

areas within Lauder and Wigtown are significantly less than the High Street zone 
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7.1.6 Strontium 

Spatial distributions of strontium (Sr) are presented for Lauder (Figure 110), Pittenweem 

(Figure 111a) and Wigtown (Figure 111b). Patterns in Sr associated with zones are 

subsequently identified and comparisons between burghs are made.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 110: Spatial distribution of Log Sr (mg/Kg) at Lauder. Red boundary delimits 
1862AD urban extent 
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 a) b) 

 

 
Figure 111: Spatial distribution of Log Sr (mg/Kg) at Pittenweem (a) and Wigtown (b). Red 
boundary delimits 1855AD and 1850AD urban extent respectively 

7.1.6.1 Variation within Burghs 
The median Sr concentration of the High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones at Lauder is 78.4, 26.8, 12.1 and 13.4 mg/Kg respectively. The High 

street zone has significantly higher Sr than the Hinterland Near zone (p<0.01) and the 

Hinterland Far and Thirlstane zones (p<0.001) (Figure 112). In addition the Hinterland 

Near zone has significantly higher Sr than the Hinterland Far and Thirlstane zones 

(p<0.001). There is no significant difference between the Hinterland Far and Thirlstane 

zones. These results indicate enhancement of Sr in the burgh core and land adjacent to 

the historical burgh limits (Hinterland Near). However, it should be noted that 

enhancement is comparatively higher within the burgh core. 
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Figure 112: (a) Boxplot of median Sr (mg/Kg) for individual zones at Lauder; boundaries of 
boxes represent interquartile range, blue shading indicates 86.761% confidence interval 
for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Lauder, -Z or Z are significant at p<0.05 confidence 
level 
 
The median Sr concentration of the Harbour, High Street, Hinterland Near and 

Hinterland Far zones at Pittenweem is 102.9, 91.5, 28.5 and 31.5 mg/Kg respectively 

(Figure 113a). The Harbour and High Street zones have significantly higher Sr levels 

than both the Hinterland Near and Hinterland Far zones (p<0.001). There is no 

significant difference in median Sr concentrations between the Harbour and High Street 

zones (Figure 113b). These results provide clear evidence for Sr enhancement within 

the burgh core. 

 

The median Sr concentration of the High Street, Hinterland Near and Showfield zones at 

Wigtown is 153, 11.5 and 13.6 mg/Kg respectively (Figure 114a). The High Street has 

significantly higher Sr than the Hinterland Near and Showfield zones (p<0.001). There is 

no significant difference in median Sr concentrations between the Hinterland Near and 

Showfield zones (Figure 114b). These results indicate significant enhancement of Sr in 

Wigtown’s burgh core. 

 

 - 214 -



 

Hint FarHint NearHigh StreetHarbour

200

150

100

50

0

S
r (

m
g/

K
g)

Hint Near

High Street

Harbour

Hint Far

Hint Far

Hint Near

Hint Far

Hint Near

High Street

Z0-Z

Boxplots w ith Sign Confidence Intervals
Desired Conf idence: 86.761

Family  Alpha: 0.2
Bonf erroni Indiv idual Alpha: 0.033

Pairw ise Comparisons

|Bonf erroni Z-v alue|: 2.128

Figure 113: (a) Boxplot of median Sr (mg/Kg) for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, blue shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Pittenweem, -Z or Z are 
significant at p<0.05 confidence level 
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Figure 114: (a) Boxplot of median Sr (mg/Kg) for individual zones at Wigtown; boundaries 
of boxes represent interquartile range, blue shading indicates 80.529% confidence interval 
for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Wigtown, -Z or Z are significant at p<0.05 confidence 
level 
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7.1.6.2 Variation between Burghs 
All three burghs have significant enhancement of Sr concentrations in zones within the 

burgh core (Harbour and High Street). Elevated Sr levels are confined to the burgh core 

in Pittenweem and Wigtown. However, an area with increased Sr concentrations is 

identified in the immediate hinterland south of Lauder (Hinterland Near). It should be 

noted that this area has a significantly lower median Sr concentration compared to the 

High Street zone. 

7.1.7 Zinc 

Spatial distributions of zinc (Zn) are presented for Lauder (Figure 115), Pittenweem 

(Figure 116a) and Wigtown (Figure 116b). Patterns in Zn associated with zones are 

subsequently identified and comparisons between burghs are made.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 115: Spatial distribution of Log Zn (mg/Kg) at Lauder. Red boundary delimits 
1862AD urban extent 
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a) b)  

 
 
Figure 116: Spatial distribution of Log Zn (mg/Kg) at Pittenweem (a) and Wigtown (b). Red 
boundary delimits 1855AD and 1850AD urban extent respectively 
 

7.1.7.1 Variation within Burghs 
The median Zn concentration of the High Street, Hinterland Near, Hinterland Far and 

Thirlstane zones at Lauder is 267.8, 93.8, 45.32 and 53.2 mg/Kg respectively (Figure 

117a). The High Street has significantly higher Zn than the Hinterland Near zone 

(p<0.01) and Hinterland Far and Thirlstane zones (p<0.001). In addition the Hinterland 

Near zone has significantly higher Zn than the Hinterland Far and Thirlstane zones 

(p<0.001) (Figure 117b). There is no significant difference between the Hinterland Far 

and Thirlstane zones. These results provide clear evidence for enhancement of Zn 

within the burgh core. Elevated Zn levels are also identified in land immediately adjacent 

to the historical burgh limits (Hinterland Near), although it should be noted that 

enhancement is significantly higher within the burgh core.  
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Figure 117: (a) Boxplot of median Zn (mg/Kg) for individual zones at Lauder; boundaries of 
boxes represent interquartile range, cyan shading indicates 86.761% confidence interval 
for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test multiple 
comparisons for individual zones at Lauder, -Z or Z are significant at p<0.05 confidence 
level 
 

At Pittenweem the median Zn concentration of the Harbour, High Street, Hinterland Near 

and Hinterland Far zones is 205.3, 168.7, 49.3 and 41.7 mg/Kg respectively (Figure 

118a). The Harbour zone has significantly higher Zn than the Hinterland Near (p<0.05) 

and Hinterland Far zones (p<0.001). Similarly the High Street zone has significantly 

higher Zn levels than the Hinterland Near and Hinterland Far zones (p<0.001) (Figure 

118b). There is no statistical difference in median Zn concentrations between the 

Harbour and High Street zones. These results provide clear evidence for Zn 

enhancement within the burgh core. In addition, the Hinterland Near zone has 

significantly higher Zn than the Hinterland Far zone (p<0.01). Elevated Zn levels are 

therefore identified in land adjacent to the historical burgh limits at Pittenweem 

(Hinterland Near), although it should be noted that enhancement is significantly higher 

within the burgh core.  
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Figure 118: (a) Boxplot of median Zn (mg/Kg) for individual zones at Pittenweem; 
boundaries of boxes represent interquartile range, cyan shading indicates 86.761% 
confidence interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with 
Dunn’s test multiple comparisons for individual zones at Pittenweem, -Z or Z are 
significant at p<0.05 confidence level 
 
The median Zn of the High Street, Hinterland Near and Showfield zones at Wigtown is 

418, 52.9 and 84.8 mg/Kg respectively (Figure 119a). The High Street zone has 

significantly higher Zn then the Hinterland Near and Hinterland Far zones (p<0.001). 

Moreover, the Showfield zone has significantly greater Zn than the Hinterland Near zone 

(p<0.01) (Figure 119b). These results indicate enhancement of Zn in Wigtown’s burgh 

core and to a lesser extent the immediate hinterland south of Wigtown (Showfield). 
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Figure 119: (a) Boxplot of median Zn (mg/Kg) for individual zones at Wigtown; boundaries 
of boxes represent interquartile range, cyan shading indicates 80.529% confidence 
interval for median, outliers identified as*, (b) Kruskal-Wallis analysis with Dunn’s test 
multiple comparisons for individual zones at Wigtown, -Z or Z are significant at p<0.05 
confidence level 
 

7.1.7.2 Variation between Burghs 
All three burghs have significant enhancement of Zn concentrations in zones within the 

burgh core (Harbour and High Street). In addition, elevated Zn concentrations are 

identified in land adjacent to the historical burgh limits at Lauder and Pittenweem 

(Hinterland Near). Enhanced Zn levels are also identified in the immediate hinterland 

south of Wigtown (Showfield). It should be noted that Zn enhancement in the 

aforementioned hinterland areas is significantly lower compared to the burgh core within 

each town. 

 

 

 

 

 

 

 

 - 220 -



7.2 Summary of Results: Elemental Concentrations  

The following section presents a brief summary of key trends in selected elemental 

concentrations (Ba, Ca, Pb, K, P, Sr, and Zn) both within and between burghs. The 

significance of these results is discussed in section 8.1.2 and 8.2.2; specifically the utility 

of elemental concentrations as indicators of past waste disposal is considered.  

7.2.1 Variation within Burghs  

7.2.1.1 Lauder 
The High Street, Hinterland Near and Thirlstane zones are identified as important areas 

of interest at Lauder. Both the High Street zone and Hinterland Near zone are 

characterised by significantly enhanced levels of Ba, Ca, Pb, K, P, Sr and Zn (Table 8). 

In addition, the Thirlstane zone has typically elevated concentrations of Ba, Pb and P. 

Elemental enhancement is statistically greatest within the High Street zone, followed by 

the Hinterland Near zone and Thirlstane zone in succession. These results indicate 

distinct elemental enhancement within the burgh core and to a lesser extent in the 

immediate hinterland south (Hinterland Near) and north (Thirlstane) of Lauder. 

7.2.1.2 Pittenweem 
Two zones are identified as important areas of interest at Pittenweem; the Harbour zone 

and High Street zone. These zones are characterised by significantly elevated levels of 

Ba, Ca, Pb, K, P, Sr and Zn (Table 8). There is no evidence for elemental enhancement 

within the hinterland at Pittenweem, with the exception of Zn which is slightly elevated in 

the Hinterland Near zone. These results provide clear evidence for elemental 

enhancement within the burgh core.  

7.2.1.3 Wigtown 
The High Street zone and Showfield zone are identified as important areas of interest at 

Wigtown. Similar to results obtained for Lauder and Pittenweem, the High Street zone is 

characterised by significantly enhanced concentrations of Ba, Ca, Pb, K, P, Sr and Zn. In 

addition, the Showfield zone has typically elevated levels of Ba, Pb, P and Zn (Table 13). 

Considering elemental enhancement is statistically highest within the High Street zone, 

these results indicate distinct elemental enhancement within the burgh core and to a 

lesser extent in the immediate hinterland south (Showfield) of Wigtown.  
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Table 13: Summary of trends in selected elemental concentrations identified at Lauder, 
Pittenweem and Wigtown 

 

Element Lauder Pittenweem Wigtown 

Ba Enhancement of Ba in 
burgh core (High Street 
zone) and immediate 
hinterland (Hinterland 
Near and Thirlstane 
zones). Enhancement 
greatest in burgh core 
and Thirlstane zone. 

Enhancement of Ba in 
burgh core (Harbour 
and High Street 
zones). 

Enhancement of Ba in 
burgh core (High Street 
zone) and immediate 
hinterland (Showfield 
zone). Enhancement 
greatest in burgh core. 

Ca Enhancement of Ca in 
burgh core (High Street 
zone) and immediate 
hinterland (Hinterland 
Near). Enhancement 
greatest in burgh core. 

Enhancement of Ca in 
burgh core (Harbour 
and High Street 
zones). 

Enhancement of Ca in 
burgh core (High Street 
zone). 

Pb Enhancement of Pb in 
burgh core (High Street 
zone) and immediate 
hinterland (Hinterland 
Near and Thirlstane 
zones). Enhancement 
greatest in burgh core. 

Enhancement of Pb in 
burgh core (Harbour 
and High Street 
zones). 

Enhancement of Pb in 
burgh core (High Street 
zone) and immediate 
hinterland (Showfield 
zone). Enhancement 
greatest in burgh core. 

K Enhancement of K in 
burgh core (High Street 
zone) and immediate 
hinterland (Hinterland 
Near). Enhancement 
greatest in burgh core. 

Enhancement of K in 
burgh core (Harbour 
and High Street 
zones). 

Enhancement of K in 
burgh core (High Street 
zone). 

P Enhancement of P in 
burgh core (High Street 
zone) and immediate 
hinterland (Hinterland 
Near and Thirlstane 
zones). Enhancement 
greatest in burgh core. 

Enhancement of P in 
burgh core (Harbour 
and High Street 
zones). 

Enhancement of P in 
burgh core (High Street 
zone) and immediate 
hinterland (Showfield 
zone). Enhancement 
greatest in burgh core. 

Sr Enhancement of Sr in 
burgh core (High Street 
zone) and immediate 
hinterland (Hinterland 
Near). Enhancement 
greatest in burgh core. 

Enhancement of Sr in 
burgh core (Harbour 
and High Street 
zones). 

Enhancement of Sr in 
burgh core (High Street 
zone). 

Zn Enhancement of Zn in 
burgh core (High Street 
zone) and immediate 
hinterland (Hinterland 
Near). Enhancement 
greatest in burgh core. 

Enhancement of Zn in 
burgh core (Harbour 
and High Street zones) 
and immediate 
hinterland (Hinterland 
Near). Enhancement 
greatest in burgh core. 

Enhancement of Zn in 
burgh core (High Street 
zone) and immediate 
hinterland (Showfield 
zone). Enhancement 
greatest in burgh core. 
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7.2.2 Variation between Burghs 

All three burghs have enhanced concentrations of Ba, Ca, Pb, K, P, Sr and Zn in zones 

corresponding to the burgh core (Harbour and High street). Elemental enhancement is 

limited to the burgh core at Pittenweem however; trends in certain elements are 

identified within the hinterland at Lauder and Wigtown, albeit to a lesser magnitude. 

Elevated concentrations of Ba, Pb and P are noted in the immediate hinterland south 

(Hinterland Near) and north (Thirlstane) of Lauder, and in the immediate hinterland 

(Showfield) south of Wigtown. Moreover, enhanced concentrations of Ca, K and Sr are 

identified within the Hinterland Near zone at Lauder.  

 
Table 14: Comparison of trends in selected elemental concentrations identified at Lauder, 
Pittenweem and Wigtown 

 

Element Comparison between Burghs 

Ba All three burghs have enhanced Ba in the burgh core 
Lauder and Wigtown have enhanced Ba in the immediate hinterland 
(Lauder: Hinterland Near and Thirlstane, Wigtown: Showfield).  

Ca All three burghs have enhanced Ca in the burgh core 
Lauder has enhanced Ca in the immediate hinterland (Hinterland Near). 

Pb All three burghs have enhanced Pb in the burgh core 
Lauder and Wigtown have enhanced Pb in the immediate hinterland 
(Lauder: Hinterland Near and Thirlstane, Wigtown: Showfield) . 

K All three burghs have enhanced K in the burgh core 
Lauder has enhanced K in the immediate hinterland (Hinterland Near). 

P All three burghs have enhanced P in the burgh core 
Lauder and Wigtown have enhanced P in the immediate hinterland (Lauder: 
Hinterland Near and Thirlstane, Wigtown: Showfield). 

Sr All three burghs have enhanced Sr in the burgh core 
Lauder has enhanced Sr in the immediate hinterland (Hinterland Near). 

Zn All three burghs have enhanced Zn in the burgh core  
Lauder and Pittenweem have enhanced Zn in immediate hinterland 
(Hinterland Near), Wigtown also has enhanced Zn in immediate hinterland 
(Showfield). 
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7.3 Multiple Comparisons  

This section presents results obtained from a series of multi-element analyses including 

multiple comparisons, cluster analysis and discriminant analysis. Multi-element analyses 

were conducted for Lauder, Pittenweem and Wigtown using all 21 measured elemental 

concentrations. 

7.3.1 Lauder 

Average elemental concentrations of individual zones within Lauder are presented in 

Table 15. There is no significant difference in median Aluminium (Al) and Lithium (Li) 

concentrations between the High Street, Hinterland Near, Hinterland Far and Thirlstane 

zones. Accordingly these elements were excluded from subsequent multiple 

comparisons. The results of multiple comparisons between the High Street, Hinterland 

Near, Hinterland Far and Thirlstane zones at Lauder are summarised in Table 16. Zones 

with significant enhancement are highlighted ( ) and elements with similar spatial 

distributions are grouped accordingly.  
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Table 15: Average elemental concentrations (mg/Kg) of individual zones at Lauder (median 
used for non-parametric data, mean used for parametric data). Test indicates whether 
Kruskal-Wallis (KW) or One Way ANOVA (ANOVA) used to compare elemental 
concentrations between zones  
 

 

 
Element  

 
High 

Street 

 
Hinterland 

Near 

 
Hinterland 

Far 

 
Thirlstane 

 
Test 

 
Test 

Statistic  

 
P 

Value 
Al 10128 10324 9889 9921 KW H 6.95 0.073 

Fe 16953 16324 15890 15149 KW H 9.4 0.024 

Mg 3835 2882.5 3027.2 3327.2 KW H 29.21 <0.001

Ca 9076 2959 1844 2458 KW H 66.32 <0.001

Na 103.9 44.51 44.51 44.51 KW H 58.63 <0.001

K 854.3 474.6 205.6 284.8 KW H 56.03 <0.001

Ti 35.37 11.791 11.791 11.791 KW H 82.28 <0.001

P 3129 1798 903.4 1658 KW H 77.47 <0.001

Mn 518.9 789.9 534.4 588.6 ANOVA F 17.36 <0.001

Ba 257.6 191.8 144.9 225.4 ANOVA F 30.75 <0.001

Co 22.4 20.2 20 21.8 KW H 61.23 <0.001

Cr 46.7 25.2 13.3 16.8 KW H 22.51 <0.001

Cu 16.2 14.4 15.6 14.6 KW H 77.84 <0.001

Li 34.4 25.6 20.2 21.2 KW H 6.8 0.078 

Ni 2.8 2.4 1.8 2 KW H 60.75 <0.001

Sc 78.4 26.8 12.1 13.4 KW H 57.34 <0.001

Sr 78.4 26.6 12.1 13.4 KW H 79.79 <0.001

V 23.3 20.8 17.8 21.8 KW H 25.89 <0.001

Y 7.7 5.4 4.3 5.6 KW H 65.27 <0.001

Zn 267.8 93.8 45.2 53.2 KW H 86.39 <0.001

Pb 209.9 77.7 33.25 59.1 KW H 72.81 <0.001
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Table 16: Multiple comparisons for individual zones at Lauder (Dunn’s test used for non-
parametric data, Tukey-Kramer post-hoc analyses for parametric data) 
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Summary 

Al     No significant difference between zones 

Li     No significant difference between zones 

Fe 
 

   High Street has significantly higher Fe than Hinterland Far (p<0.05) and 
Thirlstane (p<0.01) 

Na 
 

   High Street has significantly higher Na than Hinterland Near, Hinterland Far and 
Thirlstane (p<0.001) 

Mn     Hinterland Near has significantly higher Mn than High Street, Hinterland Far and 
Thirlstane (P<0.001) 

Ca 
    High Street has significantly higher Ca than Hinterland Near, Hinterland Far and 

Thirlstane (P<0.001) 
Hinterland Near has significantly higher Ca than Hinterland Far (p<0.001) 

Co 
    High Street has significantly higher Co than Hinterland Far and Thirlstane 

(p<0.001) 
Hinterland Near has significantly higher Co than Hinterland Far and Thirlstane 
(p<0.01) 

Cu 
    High Street has significantly higher Cu than Hinterland Near (p<0.05), Hinterland 

Far and Thirlstane (p<0.001) 
Hinterland Near has significantly higher Cu than Hinterland Far and Thirlstane 
(p<0.001) 

K 
    High Street has significantly higher K than Hinterland Near, Hinterland Far and 

Thirlstane (p<0.001) 
Hinterland Near has significantly higher K than Hinterland Far (p<0.001) 

Ni 
    High Street has significantly higher Ni than Hinterland Near (p<0.01), Hinterland 

Far and Thirlstane (p<0.001) 
Hinterland Near has significantly higher Ni than Hinterland Far and Thirlstane 
(p<0.001) 

Sr 
    High Street has significantly higher Sr than Hinterland Near (p<0.01), Hinterland 

Far and Thirlstane (p<0.001) 
Hinterland Near has significantly higher Sr than Hinterland Far and Thirlstane 
(p<0.001) 

Ti 
    High Street has significantly higher Ti than Hinterland Near, Hinterland Far and 

Thirlstane (p<0.001) 
Hinterland Near has significantly higher Ti than Hinterland Far (p<0.001) 

Zn 
    High Street has significantly higher Zn than Hinterland Near, Hinterland Far and 

Thirlstane (p<0.001) 
Hinterland Near has significantly higher Zn than Hinterland Far and Thirlstane 
(p<0.001) 

Mg 
 

   
High Street has significantly higher Mg than Hinterland Near (P<0.001) and 
Hinterland Far (p<0.001) 
Thirlstane has significantly higher Mg than Hinterland Near (p<0.01) and 
Hinterland Far (p<0.05) 

Cr 
    

High Street has significantly higher Cr than Hinterland Near and Hinterland Far 
(p<0.001) 
Hinterland Near has significantly higher Cr than Hinterland Far (p<0.001) 
Thirlstane has significantly higher Cr than Hinterland Near and Hinterland Far 
(p<0.001) 

P 
    

High Street has significantly higher P than Hinterland Near, Hinterland Far and 
Thirlstane (p<0.001) 
Hinterland Near has significantly higher P than Hinterland Far (p<0.001) 
Thirlstane has significantly higher P than Hinterland Far (p<0.001) 

Pb 
    

High Street has significantly higher Pb than Hinterland Near (p<0.01), Hinterland 
Far and Thirlstane (p<0.001) 
Hinterland Near has significantly higher Pb than Hinterland Far (p<0.001) and 
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Thirlstane (p<0.05) 
Thirlstane has significantly higher Pb than Hinterland Far (p<0.001) 

Sc 
    

High Street has significantly higher Sc than Hinterland Near (p<0.05), Hinterland 
Far and Thirlstane (p<0.001) 
Hinterland Near has significantly higher Sc than Hinterland Far (p<0.001) and 
Thirlstane (p<0.05) 
Thirlstane has significantly higher Sc than Hinterland Far (p<0.05) 

Y 
    

High Street has significantly higher Y than Hinterland Near, Hinterland Far 
(p<0.001) and Thirlstane (p<0.05) 
Hinterland Near has significantly higher Y than Hinterland Far (p<0.001) 
Thirlstane has significantly higher Y than Hinterland Far (p<0.001) 

Ba 
    

High Street has significantly higher Ba than Hinterland Near, Hinterland Far and 
Thirlstane (p<0.001) 
Hinterland Near has significantly higher Ba than Hinterland Far (p<0.001) 
Thirlstane has significantly higher Ba than Hinterland Far (p<0.001) 

V 
    

High Street, Hinterland Near and Thirlstane all have significantly higher V than 
Hinterland Far (p<0.001) 

 

Eight groups of elements with distinct patterns of spatial enhancement are identified at 

Lauder. The first group contains Al and Li which are relatively homogenous and show no 

pattern of spatial enhancement within the sample area. The second group is 

characterised by statistically higher levels of Fe and Na within the High Street zone. 

Although Na is significantly enhanced compared to the other three zones, there is no 

significant difference in Fe concentrations between the High Street and Hinterland Near 

zones. The third group identified is dominated by elevated Mn concentrations within the 

Hinterland Near zone. None of the other elements share a similar spatial distribution with 

Mn. The fourth group contains Mg which is highest within the High Street zone followed 

by the Thirlstane zone. 

 

The fifth group comprises Ca, Co, Cu, K, Ni, Sr, Ti and Zn. Elements within this group 

are primarily enhanced within the High Street zone and to a lesser extent within the 

Hinterland Near zone. It can be argued that Ti does not necessarily belong in this group 

considering median values for the Hinterland Near, Hinterland Far and Thirlstane zones 

are all 11.791 mg/Kg. However results of multiple comparison analysis indicate a 

significant difference between the Hinterland Near zone and Hinterland Far and 

Thirlstane zones. This is because statistical analyses use all data within a zone not just 

the median value.  

  

The sixth group includes Cr, P, Pb, Sc and Y. These elements are enhanced primarily 

within the High Street zone followed in succession by the Hinterland Near and Thirlstane 

zones. Similarly the seventh and eighth groups which contain Ba and V respectively are 

also enhanced within the High Street, Hinterland Near and Thirlstane zones. However, 

Ba is highest within the High Street zone followed by the Thirlstane zone and Hinterland 

Near zone, and V is statistically enhanced within all three zones.      
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7.3.2 Pittenweem 

Average elemental concentrations of individual zones within Pittenweem are presented 

in Table 17. There is no significant difference in median Li and V concentrations 

between the Harbour, High Street, Hinterland Near and Hinterland Far zones. 

Accordingly these elements were excluded from subsequent multiple comparisons. The 

results of multiple comparisons between the Harbour, High Street, Hinterland Near and 

Hinterland Far zones at Pittenweem are summarised in Table 18. Zones with significant 

elemental enhancement are highlighted ( ) and elements with similar spatial 

distributions are grouped accordingly.  

 
Table 17: Average elemental concentrations (mg/Kg) of individual zones at Pittenweem 
(median used for non-parametric data, mean used for parametric data). Test indicates 
whether Kruskal-Wallis (KW) or One Way ANOVA (ANOVA) used to compare elemental 
concentrations between zones   
 
Element  Harbour High 

Street 
Hinterland 

Near 
Hinterland 

Far 
Test Test 

Statistic  
P 

Value 

Al 5024 5659 6734 6544 KW H 18.76 <0.001 

Fe 17268 14981 16016 15331 KW H 9.61 0.022 

Mg 2708 2394 1887 1700.5 KW H 33.65 <0.001 

Ca 17417 11756 2580 2608.6 KW H 53.07 <0.001 

Na 267.1 244.8 89 59.35 KW H 60.45 <0.001 

K 363.9 348.1 79.1 126.57 KW H 34.29 <0.001 

Ti 64.9 82.5 70.75 47.17 KW H 37.44 <0.001 

P 1741 2147 964.5 960.1 KW H 43.84 <0.001 

Mn 441.4 395 480.2 294.3 KW H 58.47 <0.001 

Ba 153.4 147.7 62.5 61.6 KW H 57.11 <0.001 

Co 6.1 5.3 4.6 4.3 KW H 39.76 <0.001 

Cr 16.1 16 15 16.6 KW H 15.48 0.001 

Cu 44.2 44.1 23.5 23.4 KW H 44.33 <0.001 

Li 6 5.6 6.4 6.4 KW H 1.29 0.732 

Ni 27.5 24.7 19.6 18.8 KW H 37.34 <0.001 

Sc 2.3 2.8 2.6 2.6 KW H 15.84 0.001 

Sr 102.9 91.5 28.5 31.5 KW H 51.2 <0.001 

V 23.6 24.4 27.6 25.6 KW H 6.76 0.080 

Y 7.5 7.8 5.8 5.8 KW H 38 <0.001 

Zn 205.3 168.7 49.3 41.7 KW H 66.29 <0.001 

Pb 221 182 43.3 34.866 ANOVA F 14.85 <0.001 
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Table 18: Multiple comparisons for individual zones at Pittenweem (Dunn’s test used for 
non-parametric data, Tukey-Kramer post-hoc analyses for parametric data) 
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Summary 

Li     No significant difference between zones 

V     No significant difference between zones 

Mn 
    Hinterland Near has significantly higher Mn than High Street and Hinterland Far 

(p<0.001) 
Harbour and High Street have significantly higher Mn than Hinterland Far 
(p<0.001) 

Ba 
    Harbour and High Street have significantly higher Ba than Hinterland Near and 

Hinterland Far (p<0.001) 

Ca 
    Harbour and High Street have significantly higher Ca than Hinterland Near and 

Hinterland Far (p<0.001) 

Cu 
    Harbour and High Street have significantly higher Cu than Hinterland Near and 

Hinterland Far (p<0.001) 

K 
    Harbour has significantly higher K than Hinterland Near (p<0.01) and Hinterland 

Far (p<0.001) 
High Street has significantly higher K than Hinterland Near and Hinterland Far 
(p<0.001) 

Ni 
    Harbour and High Street have significantly higher Ni than Hinterland Near and 

Hinterland Far (p<0.001) 

P 
    Harbour has significantly higher P than Hinterland Near (p<0.05) and Hinterland 

Far (p<0.01) 
High Street has significantly higher P than Hinterland Near and Hinterland Far 
(p<0.001) 

Pb 
    Harbour and High Street have significantly higher Pb than Hinterland Near and 

Hinterland Far (p<0.001) 

Sr 
    Harbour and High Street have significantly higher Sr than Hinterland Near and 

Hinterland Far (p<0.001) 

Y 
    Harbour and High Street have significantly higher Y than Hinterland Near and 

Hinterland Far (p<0.001) 

Co 
    Harbour has significantly greater Co than Hinterland Near (p<0.01) and 

Hinterland Far (p<0.001) 
High Street has significantly greater Co than Hinterland Far (p<0.001) 
Hinterland Near has significantly greater Co than Hinterland Far (p<0.01) 

Mg 
    Harbour has significantly higher Mg than Hinterland Far (p<0.001) 

High Street has significantly higher Mg than Hinterland Near (p<0.05) and 
Hinterland Far (p<0.001) 
Hinterland Near has significantly high Mg than Hinterland Far (p<0.001) 

Na 
    Harbour has significantly higher Na than Hinterland Near and Hinterland Far 

(p<0.001) 
High Street has significantly higher Na than Hinterland Near and Hinterland Far 
(p<0.001) 
Hinterland Near has significantly higher Na than Hinterland Far (p<0.001) 

Ti     High Street has significantly higher Ti than Hinterland Far (p<0.001) 
Hinterland Near has significantly higher Ti than Hinterland far (p<0.001) 

Zn 
    Harbour has significantly higher Zn than Hinterland Near (p<0.01) and Hinterland 

Far (p<0.001) 
High Street has significantly higher Zn than Hinterland Near and Hinterland Far 
(p<0.001) 
Hinterland Near has significantly higher Zn than Hinterland Far (p<0.01)  

Cr 
    

Harbour and High Street have significantly higher Cr than Hinterland Near 
(p<0.05) 
Hinterland Far has significantly higher Cr than Hinterland Near (p<0.001) 

Sc 
    Harbour has significantly higher Sc than Hinterland Near and Hinterland Far 

(p<0.001) 
High Street has significantly higher Sc than Hinterland Far (p<0.05) 
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Al     
Hinterland Near has significantly higher Al than Harbour (p<0.05) and High 
Street (p<0.001) 
Hinterland Far has significantly higher Al than Harbour (p<0.001) and High 
Street (p<0.05) 

Fe 
 

   Harbour has significantly higher Fe than High Street (p<0.05) 
Hinterland Near has significantly higher Fe than High Street (p<0.05) 

 

Seven groups of elements with distinct patterns of spatial enhancement are identified at 

Pittenweem. The first group contains Li and V which are relatively homogenous and 

show no pattern of spatial enhancement within the sample area. The second group is 

characterised by significantly higher levels of Mn within the Hinterland Near zone and to 

a lesser extent in the Harbour and High Street zones. None of the other elements share 

a similar spatial distribution with Mn. 

 

The third group comprises Ba, Ca, Cu, K, Ni, P, Pb, Sr and Y. Elements within this group 

are significantly enhanced within the Harbour and High Street zones. There is no 

statistical difference in enhancement between these two zones.  

 

The fourth group includes Co, Mg, Na, Ti and Zn. Typically these elements are primarily 

enhanced within the Harbour and High Street zones and to a lesser extent are elevated 

within the Hinterland Near zone. It could be argued that Ti should not be included within 

this group considering the Harbour is not statistically enhanced comparative to the 

Hinterland Near or Hinterland Far zones. However multiple comparisons indicate that 

there is no significant difference in Ti concentrations between the Harbour and High 

Street zone (Table 18).  

 

The fifth group contains Cr and Sc. Statistical analysis indicates that Cr is enhanced 

within the Harbour, High Street and Hinterland Far zones and Sc is elevated in the 

Harbour and High Street zones. Nevertheless, median values of these two elements are 

relatively comparable between zones (Table 17). It is therefore suggested that these two 

elements do not show a distinct pattern of spatial enhancement within the survey area. 

The sixth and seventh groups contain Al and Fe respectively, of which Al is enhanced 

within the Hinterland Near and Hinterland far zones and Fe is elevated in the Harbour 

and Hinterland Near zones.  
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7.3.3 Wigtown 

Average elemental concentrations of individual zones within Wigtown are presented in 

Table 19. There is no significant difference in median Al between the High Street, 

Hinterland Near and Showfield zones. Accordingly Al was excluded from subsequent 

multiple comparisons. The results of multiple comparisons between the High Street, 

Hinterland Near and Showfield zones at Wigtown are summarised in Table 20. Zones 

with significant elemental enhancement are highlighted ( ) and elements with similar 

spatial distributions are grouped accordingly. 
 
Table 19: Average elemental concentrations (mg/Kg) for individual zones at Wigtown 
(median used for non-parametric data, mean used for parametric data). Test indicates 
whether Kruskal-Wallis (KW) or One Way ANOVA (ANOVA) used to compare elemental 
concentrations between zones    
 

Element  High 
Street 

Hinterland 
Near 

Showfield Test Test 
Statistic  

P 
Value 

Al 12928 12886 12870 KW H 1.84 0.399 

Fe 22493 21479 22884 KW H 9.9 0.01 

Mg 5535.8 4903 4529 KW H 36.35 <0.001 

Ca 17038 1522 1143 KW H 65.68 <0.001 

Na 222.6 59.35 66.77 KW H 65.82 <0.001 

K 870.2 284.8 300.6 KW H 56.59 <0.001 

Ti 165.08 53.06 47.17 KW H 61.15 <0.001 

P 5001 1492.5 2553 KW H 79.29 <0.001 

Mn 967.4 673.8 867.4 KW H 36.78 <0.001 

Ba 236.6 48.9 94.9 KW H 74 <0.001 

Co 8.4 4.6 4.6 KW H 58.49 <0.001 

Cr 32.2 34.6 27 KW H 16.82 <0.001 

Cu 78.4 18.2 32.5 KW H 73.20 <0.001 

Li 7.4 7 5.3 KW H 14.93 <0.001 

Ni 42.2 24.8 22.2 KW H 59.31 <0.001 

Sc 3.2 1.8 2 KW H 68.05 <0.001 

Sr 153 11.5 13.6 KW H 66.02 <0.001 

V 37 30.8 22.1 KW H 28.34 <0.001 

Y 10.6 4.2 5 KW H 66.08 <0.001 

Zn 418 52.9 84.8 KW H 74.57 <0.001 

Pb 373.9 63.18 151.31 KW H 76.51 <0.001 

 

 - 231 -



Table 20:  Multiple comparisons for individual zones at Wigtown (Dunn’s test used for non-
parametric data, Tukey-Kramer post-hoc analyses for parametric data)  
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Summary 

Al    No significant difference between zones 

Fe 
 

  
High Street has significantly higher Fe than Hinterland Near (p<0.01) 
Showfield has significantly higher Fe than Hinterland Near (p<0.05) 

Ca 
 

  High Street has significantly higher Ca than Hinterland Near and Showfield (p<0.001) 

Co 
 

  High Street has significantly higher Co than Hinterland Near and Showfield (p<0.001) 

K 
 

  High Street has significantly higher K than Hinterland Near and Showfield (p<0.001) 

Mg 
 

  High Street has significantly higher Mg than Hinterland Near and Showfield (p<0.001) 

Na 
 

  High Street has significantly higher Na than Hinterland Near and Showfield (p<0.001) 

Ni 
 

  High Street has significantly higher Ni than Hinterland Near and Showfield (p<0.001) 

Sr 
 

  High Street has significantly higher Sr than Hinterland Near and Showfield (p<0.001) 

Ti 
 

  High Street has significantly higher Ti than Hinterland Near and Showfield (p<0.001) 

Cr 
   High Street has significantly higher Cr than Showfield (p<0.01) 

Hinterland Near has significantly higher Cr than Showfield (P<0.001) 
Li 

   High Street has significantly higher Li than Showfield (p<0.001) 
Hinterland Near has significantly higher Li than Showfield (P<0.01) 

V 
   High Street has significantly higher V than Hinterland Near (p<0.01) and Showfield 

(p<0.001) 
Hinterland Near has significantly higher V than Showfield (P<0.01) 

Ba 
 

  
High Street has significantly higher P than Hinterland Near and Showfield (p<0.001) 
Showfield has significantly P than Hinterland Near (p<0.001) 

Cu 
 

  
High Street has significantly higher Cu than Hinterland Near and Showfield (p<0.001) 
Showfield has significantly higher Cu than Showfield (p<0.001) 

Mn 
 

  
High Street has significantly higher Mn than Hinterland Near (p<0.001) 
Showfield has significantly higher Mn than Hinterland Near (p<0.001) 

P 
 

  
High Street has significantly higher P than Hinterland Near (p<0.001) and Showfield 
(p<0.01) 
Showfield has significantly P than Hinterland Near (p<0.001) 

Pb 
 

  
High Street has significantly higher Pb than Hinterland Near (p<0.01) and Showfield 
(p<0.001) 
Showfield has significantly higher Pb than Hinterland Near (P<0.001) 

Sc 
 

  
High Street has significantly higher Sc than Hinterland Near and Showfield (p<0.001) 
Showfield has significantly higher Sc than Hinterland Near (p<0.05) 

Y 
 

  
High Street has significantly higher Y than Hinterland Near and Showfield (p<0.001) 
Showfield has significantly higher Y than Hinterland Near (p<0.05) 

Zn 
 

  
High Street has significantly higher Zn than Hinterland Near and Showfield (p<0.001) 
Showfield has significantly higher Zn than Hinterland Near (p<0.01) 
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Four groups of elements with distinct patterns of spatial enhancement are identified at 

Wigtown. The first group contains Al and Fe. Al concentrations are relatively 

homogenous and show no pattern of spatial enhancement within the sample area. Fe is 

statistically enhanced within the High Street and Showfield zones; however, median 

values are relatively comparable between zones (Table 19). Accordingly it is suggested 

that Fe concentrations do not exhibit a distinct spatial distribution at Wigtown. The 

second group of elements comprises Ca, Co, K Mg, Na, Ni, Sr and Ti. These elements 

are characteristically enhanced within the High Street zone.  

 

The third group of elements contains Cr, Li and V. Elements within this group are 

statistically enhanced within the High Street zone and Hinterland Near zone. There is no 

significant difference in Cr and Li between the High Street and Hinterland Near zones, 

though V is elevated to a lesser extent within the Hinterland Near zone. The fourth group 

of elements includes Ba, Cu, Mn, P, Pb, Sc, Y and Zn. These elements are primarily 

enhanced within the High Street zone and to a lesser extent are elevated within the 

Showfield zone.  
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7.4 Cluster Analysis 

Cluster analysis was undertaken on all elemental data for Lauder, Pittenweem and 

Wigtown to simplify data sets and group together elements with similar spatial 

distributions.  

7.4.1 Lauder 

Seven elemental clusters with statistically distinct patterns of spatial enhancement are 

identified at Lauder (Table 21). The first cluster includes Al, Fe, Mg, Cr and Li (Figure 

120). Although multiple comparisons indicate a significant difference in Fe, Mg and Cr 

between particular zones (section 7.3.1) it is argued that variation in median values 

between zones is relatively limited compared to other elements, for example Ca and P 

(Table 15). Moreover, considering Mg and Cr are 89.02% similar to Al, Fe and Li it 

suggested that these elements are characteristically heterogeneous with no real pattern 

of spatial enhancement at Lauder 

 

Cluster 2 consists of Ca, Na, K, Ti, P, Co, Cu, Ni, Sc, Sr and Zn. These elements are 

significantly enhanced within the High Street zone and to a lesser extent are elevated 

within the Hinterland Near zone. This cluster is directly comparable with group four 

identified in section 6.3.1. Cluster 2 includes all elements present within group four and 

additionally incorporates Na, P and Sc. Na has similar characteristics to Ca, Ti, Sr and 

Zn (89% similarity), P is similar to K (88%) and Sc is similar to Co and Ni (94%). P and 

Sc are primarily enhanced within the High Street zone and are slightly elevated within 

the Hinterland Near zone. Conversely elevated Na levels are confined to the High Street 

zone. Cluster 3 comprises Mn which is significantly enhanced within the Hinterland Near 

zone. This cluster is comparable to group 3 identified in section 7.3.1.  

 

Clusters 4 and 5 which contain Ba and V respectively are analogous to groups seven 

and eight. Ba is enhanced within the High Street, Thirlstane and Hinterland Near zones 

and is most similar to the cluster 2 element K (83% similarity). There is no significant 

difference in V between the High Street, Hinterland Near and Thirlstane zones, hence is 

80.69% similar to cluster 1 elements which are not spatially enhanced. However, it is 

suggested that V was clustered independently on account of the High Street, Hinterland 

Near and Thirlstane zones being significantly higher than the Hinterland Far zone.  

Clusters 6 and 7 which contain Y and Pb respectively are primarily elevated within the 

High Street zone and to a lesser extent the in Thirlstane and Hinterland Near zones. Y is 

80% similar to Ba and Pb is 75% similar to Mn.  
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Table 21 Summary of Cluster analysis amalgamation steps for elemental data at Lauder 
 
Step No. of 

Clusters 
Similarity 

Level 
Distance 

Level 
Clusters 
Joined 

New 
Cluster 

No. 
Observations 

1 20 96.4 0.071 20 17 2 
2 19 95.2 0.095 15 11 2 
3 18 94.9 0.100 17 7 3 
4 17 94.7 0.105 16 11 3 
5 16 91.7 0.165 14 2 2 
6 15 91.3 0.172 7 4 4 
7 14 91.1 0.176 2 1 3 
8 13 89.8 0.202 5 4 5 
9 12 89.1 0.217 11 4 8 
10 11 89.9 0.200 13 4 9 
11 10 91.8 0.163 8 4 10 
12 9 88.3 0.233 6 4 11 
13 8 88.3 0.233 12 3 2 
14 7 89.0 0.219 3 1 5 
15 6 80.6 0.386 18 1 6 
16 5 80.6 0.386 19 10 2 
17 4 83.1 0.337 10 4 13 
18 3 84.5 0.308 4 1 19 
19 2 75.2 0.494 21 1 20 
20 1 66.9 0.661 9 1 21 
 
 

 

Figure 120: Dendrogram showing results of Cluster analysis for elemental data at Lauder. 
Seven main groups are identified; cluster 1 (red), cluster 2 (green), cluster 3 (blue), cluster 
4 (orange), cluster 5 (magenta), cluster 6 (purple) and cluster 7 (cyan) 
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7.4.2 Pittenweem 

Five elemental clusters with statistically distinct patterns of spatial enhancement are 

identified at Lauder (Table 22). The first cluster includes Al, V, Cr and Sc (Figure 121). 

Although multiple comparisons indicate a significant difference in Al, Cr and Sc between 

particular zones (section 7.3.2) it is argued that variation in median values between 

zones is relatively limited compared to other elements, for example Ba and Ca (Table 

17). Moreover, considering Cr and Sc are 83 % similar to V and Al it is suggested that 

these elements are characteristically heterogeneous with no real pattern of spatial 

enhancement at Pittenweem. 

 

Cluster 2 comprises Fe which is statistically elevated within the Harbour and Hinterland 

Near zones. This cluster is comparable to group 7 identified in section 6.3.2. 

 

Cluster 3 contains Mg, Na, Ca, Sr, P, Cu, Ba, Zn, Co, Ni, Y, K, Pb and Ti. These 

elements are significantly enhanced within the Harbour and High Street zones. Moreover 

Co, Mg, Na, Ti and Zn are elevated to a lesser extent within the Hinterland Near zone. 

This cluster is directly comparable with groups three and four identified in section 7.3.2. 

The strongest similarities between elements within this group exist between Co and Ni 

(97%), Mg and Na (96%), Ca and Sr (94%), P and Cu (94%) and Ba and Zn (93%). 

 

Cluster 4 comprises Mn which is significantly enhanced within the Hinterland Near zone. 

This cluster is comparable to group 2 identified in section 7.3.2. Cluster 5 contains Li, of 

which there is no distinct spatial enhancement pattern over the sample area. Li is 80 % 

similar to Mn and 80 % to Fe. 
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Table 22: Summary of Cluster analysis amalgamation steps for elemental data at 
Pittenweem 
 
Step No. of 

Clusters 
Similarity 

Level 
Distance 

Level 
Clusters 
Joined 

New 
Cluster 

No. 
Observations 

1 20 97.3 0.052 15 11 2 
2 19 96.2 0.075 5 3 2 
3 18 94.2 0.114 17 4 2 
4 17 94.0 0.118 13 8 2 
5 16 93.5 0.129 19 11 3 
6 15 93.3 0.132 20 10 2 
7 14 93.6 0.126 10 8 4 
8 13 90.8 0.183 11 8 7 
9 12 88.1 0.236 8 4 9 
10 11 87.3 0.252 6 4 10 
11 10 84.5 0.308 18 1 2 
12 9 82.6 0.347 21 4 11 
13 8 81.1 0.376 4 3 13 
14 7 85.2 0.295 7 3 14 
15 6 80.0 0.398 12 1 3 
16 5 83.4 0.330 16 1 4 
17 4 79.3 0.412 3 1 18 
18 3 80.0 0.399 2 1 19 
19 2 80.6 0.386 9 1 20 
20 1 65.8 0.682 14 1 21 
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Figure 121: Dendrogram showing results of Cluster analysis for elemental data at 
Pittenweem. Five main groups are identified; cluster 1 (red), cluster 2 (yellow), cluster 3 
(green), cluster 4 (blue) and cluster 5 (brown) 
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7.4.3 Wigtown 

Six elemental clusters with statistically distinct patterns of spatial enhancement are 

identified at Lauder (Table 23). The first cluster is directly comparable to group 1 

identified in section 7.3.3 in that it contains Al and Fe (Figure 122). Although multiple 

comparisons indicate a significant difference in Fe between particular zones (section 

7.3.3) it is argued that variation in median values between zones is relatively limited 

compared to other elements, for example Ba, Ca and P (Table 19). Moreover, 

considering Fe is 81% similar to Al, it is suggested that these elements are 

characteristically heterogeneous with no distinct pattern of spatial enhancement at 

Wigtown. 

 

The second cluster includes Mg, Ca, Na, K, Ti, P, Ba, Co, Cu, Ni, Sc, Sr, Y, Zn and Pb. 

These elements are all significantly enhanced within the High Street zone. In addition 

Ba, Cu, P, Pb, Sc, Y and Zn are elevated within the Showfield zone, albeit to a 

significantly lesser extent. This cluster is directly comparable with groups 2 and 4 

identified in section 7.3.3, with the exception of Mn. The strongest similarities between 

elements within this cluster are Ca and Sr (98%), Sc and Y (98%), Co and Ni (96%) and 

Zn and Pb (99%). 

 

Cluster 3 contains Mn which is significantly enhanced within the High Street and 

Showfield zones. Clusters 4, 5 and 6 comprise Cr, Li and V respectively. These 

elements are statistically elevated within the High Street and Hinterland Near zones. 

However, variation in median values is minimal especially when compared to elements 

in cluster 2. Moreover, considering Cr and V are 76% and 77% similar to cluster 1 

elements Al and Fe it is argued that clusters 4, 5 and 6 do not exhibit a distinct spatial 

distribution at Wigtown.  
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Table 23: Summary of Cluster analysis amalgamation steps for elemental data at Wigtown 
 

Step No. of 
Clusters 

Similarity 
Level 

Distance 
Level 

Clusters 
Joined 

New 
Cluster 

No. 
Observations 

1 20 99.0 0.019 21 20 2 
2 19 98.3 0.033 19 16 2 
3 18 98.0 0.038 17 4 2 
4 17 97.0 0.058 16 7 3 
5 16 96.7 0.065 15 11 2 
6 15 96.5 0.069 5 4 3 
7 14 95.9 0.080 7 4 6 
8 13 95.8 0.083 10 4 7 
9 12 94.8 0.103 8 4 8 
10 11 92.0 0.158 6 4 9 
11 10 91.0 0.179 13 11 3 
12 9 88.7 0.225 11 4 12 
13 8 81.6 0.367 20 4 14 
14 7 83.0 0.339 4 3 15 
15 6 81.1 0.376 2 1 2 
16 5 76.6 0.467 12 1 3 
17 4 77.2 0.454 18 1 4 
18 3 77.8 0.443 3 1 19 
19 2 79.2 0.415 14 1 20 
20 1 68.1 0.636 9 1 21 
 

Figure 122: Dendrogram showing results of Cluster analysis for elemental data at 
Wigtown. Six main groups are identified; cluster 1 (red), cluster 2 (green), cluster 3 (blue), 
cluster 4 (coral), cluster 5 (brown) and cluster 5 (magenta) 
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7.5 Discriminant Analysis 

Discriminant analysis was undertaken on all elemental data for Lauder, Pittenweem and 

Wigtown to investigate whether predicted classifications of sample points are similar to 

those observed. It is expected that zones with spatially distinct patterns of elemental 

enhancement will have a high percentage of observations correctly classified, for 

example 22 sample points (observations) are located within the High Street zone at 

Lauder (true zone), of which 21 (95.5%) were successfully predicted as belonging to the 

High Street zone (predicted zone).  

7.5.1 Lauder 

The results of discriminant analysis for zones within Lauder are presented in Table 24.  

The discriminant analysis identified the correct zone for 111 of 116 observations within 

the survey area (95.7%). The Hinterland Far zone has the highest probability of correct 

classification (97.2%) followed in succession by the Hinterland Near (96.8%), High 

Street (95.5%) and Thirlstane (92.6%) zones. The high accuracy of classification at 

Lauder suggests that zones can be successfully distinguished according to differences 

in their elemental concentrations.   

  
Table 24: Summary of discriminant classification for individual zones within Lauder; ‘true 
zone’ indicates the location of observations (sample points), ‘predicted zone’ indicates the 
predicted location of observations, ‘No. observations’ indicates the total number of 
observations per zone and ‘No. observations correct’ signifies the number of observations 
correctly classified per zone 
 

 

 True Zone 

Predicted Zone High Street Hint Near Hint Far Thirlstane 

High Street 21 0 0 0 
Hint Near 0 30 1 1 
Hint Far 1 1 35 1 
Thirlstane 0 0 0 25 
No. Observations 22 31 36 27 
No. Observations Correct 21 30 35 25 
% Observations Correct 95.5 96.8 97.2 92.6 
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7.5.2 Pittenweem 

The results of discriminant analysis for zones within Pittenweem are presented in Table 

25. The discriminant analysis identified the correct zone for 91 of 96 observations within 

the survey area (94.8%). Similar to results obtained for Lauder, the Hinterland Far zone 

has the highest probability of correct classification (100%) followed by the Hinterland 

Near (78.6%) and High Street zones (70.8%). The high classification accuracy of 

hinterland zones indicates that these zones have differing elemental characteristics. 

Classification of the Harbour (50%) and High Street (70.8%) zones is less successful. 

75% of misclassified observations within the harbour were assigned to the High Street 

zone and 57% of misclassified observations within the High Street were assigned to the 

Harbour Zone. This indicates that there are similarities in elemental concentrations 

present within Harbour and High Street zones.  
 
Table 25: Summary of classification for individual zones within Pittenweem; ‘true zone’ 
indicates the location of observations (sample points), ‘predicted zone’ indicates the 
predicted location of observations, ‘No. observations’ indicates the total number of 
observations per zone and ‘No. observations correct’ signifies the number of observations 
correctly classified per zone 

 True Zone 

Predicted Zone Harbour High Street Hint Near Hint Far 

Harbour 4 4 0 0 
High Street 3 17 2 0 
Hint Near 1 3 22 0 
Hint Far 0 0 4 36 
No. Observations 8 24 28 36 
No. Observations Correct 4 17 22 36 
% Observations Correct 50 70.8 78.6 100 

7.5.3 Wigtown 

The results of discriminant analysis for zones within Wigtown are presented in Table 26.  

The discriminant analysis identified the correct zone for 95 of 99 observations within the 

survey area (96%). The High Street zone has the highest probability of correct 

classification (97%) followed in succession by the Showfield (88.9%) and Hinterland 

Near (85.4%) zones. The high accuracy of classification at Wigtown suggests that zones 

can be successfully distinguished according to differences in their elemental 

concentrations.   
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Table 26: Summary of classification for individual zones within Wigtown; ‘true zone’ 
indicates the location of observations (sample points), ‘predicted zone’ indicates the 
predicted location of observations, ‘No. observations’ indicates the total number of 
observations per zone and ‘No. observations correct’ signifies the number of observations 
correctly classified per zone 
 

 

 

 

 

 

 

 

 True Zone 

Predicted Zone High Street Hint Near Showfield 

High Street 32 0 0 
Hint Near 0 41 2 
Showfield 1 7 16 
No. Observations 33 48 18 
No. Observations Correct 32 41 16 
% Observations Correct 97 85.4 88.9 

7.5.4 Discrimination between Burghs 

7.5.4.1 High Street Zone 
The results of discriminant analysis between High Street zones at Lauder, Pittenweem 

and Wigtown are presented in Table 27. Observations within each High Street zone 

were assigned to the correct burgh (100% accuracy) indicating that although similarities 

in elemental enhancement patterns are identified between burghs, there are distinctive 

differences in elemental concentrations between High Street zones.  

 
Table 27: Summary of classification for the High Street zone at Lauder, Pittenweem and 
Wigtown; ‘true burgh’ indicates the location of observations (sample points), ‘predicted 
burgh’ indicates the predicted location of observations, ‘No. observations’ indicates the 
total number of observations within each High Street zone and ‘No. observations correct’ 
signifies the number of observations correctly classified per burgh 
 
 True Burgh 

Predicted  Burgh Lauder Pittenweem Wigtown 

Lauder 22 0 0 
Pittenweem 0 24 0 
Wigtown 0 0 33 
No. Observations 22 24 33 
No. Observations Correct 22 24 33 
% Observations Correct 100 100 100 
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7.5.4.2 Hinterland Near Zone 
The results of discriminant analysis between Hinterland Near zones at Lauder, 

Pittenweem and Wigtown are presented in Table 28. The Hinterland Near zone at 

Pittenweem has the highest percentage classification accuracy (100%) followed in 

succession by Lauder (96.8%) and Wigtown (95.8%). The high accuracy of classification 

suggests that there are distinctive differences in elemental concentrations between 

Hinterland Near zones. 

 
Table 28: Summary of classification for Hinterland Near zones at Lauder, Pittenweem and 
Wigtown; ‘true burgh’ indicates the location of observations (sample points), ‘predicted 
burgh’ indicates the predicted location of observations, ‘No. observations’ indicates the 
total number of observations within each Hinterland Near zone and ‘No. observations 
correct’ signifies the number of observations correctly classified per burgh 
 
 True Burgh 

Predicted  Burgh Lauder Pittenweem Wigtown 

Lauder 30 0 1 
Pittenweem 1 28 1 
Wigtown 0 0 46 
No. Observations 31 28 48 
No. Observations Correct 30 28 46 
% Observations Correct 96.8 100 95.8 
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7.6 Summary of Results: Multi-Element Analyses 

The following section summarises the principal results of multi-elements analyses. The 

significance of elemental associations within and between burghs is discussed in section 

8.1.2 and 8.2.2.  

7.6.1 Variation within Burghs 

7.6.1.1 Lauder 
The results of multi-element analyses for zones within Lauder are summarised in Table 

29. Both the High Street and Hinterland Near zones are characterised by significantly 

enhanced levels of Ca, K, Ti, Co, Cu, Ni, Sr, Zn, Ba, P, Pb, Sc and Y. In addition, the 

Thirlstane zone has typically elevated concentrations of Ba, P, Pb, Sc and Y. Elemental 

enhancement is statistically greatest within the High Street zone followed by the 

Hinterland Near zone and Thirlstane zone in succession. There is no significant 

enhancement within the Hinterland Far zone. These results indicate pronounced 

elemental enhancement within the burgh core at Lauder. Moreover, similarity in the 

range of elements enhanced in the High Street zone and Hinterland Near zone suggest 

comparable enhancement patterns between the burgh core and immediate hinterland 

south (Hinterland Near) of the historical burgh limits. There are two exceptions to this 

generalisation, Na which is limited to the burgh core and Mn which is restricted to the 

immediate hinterland south of Lauder (Hinterland Near). The immediate hinterland north 

(Thirlstane) of Lauder is typically enhanced in a smaller number of elements and to a 

lesser extent than the High Street and Hinterland Near zones.  
 
Table 29: Summary of elemental enhancement within zones at Lauder; pink indicates 
enhancement within the High Street zone only, green indicates enhancement within 
Hinterland Near zone only, orange indicates enhancement within High Street and 
Hinterland Near zones, and blue indicates enhancement within High Street, Hinterland 
Near and Thirlstane zones 
 

 Elements 

High Street  Na Ca K Ti Co Cu Ni Sr Zn Ba P Pb Sc Y

Hinterland Near Mn Ca K Ti Co Cu Ni Sr Zn Ba P Pb Sc Y

Hinterland Far  

Thirlstane Ba P Pb Sc Y 
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7.6.1.2 Pittenweem 
The results of multi-element analyses for zones within Pittenweem are summarised in 

Table 30. The Harbour and High Street zones are characterised by significantly 

enhanced concentrations of Ba, Ca, Cu, K, Ni, O, Pb, Sr, Y, Co, Mg, Na, Ti and Zn. 

There is no difference in the range of elemental concentrations or degree of 

enhancement between these two zones. Enhancement of Mn is restricted to the 

Hinterland Near zone. Moreover, the Hinterland Near zone has elevated concentrations 

of Co, Mg, Na, Ti and Zn. Elemental enhancement is statistically greatest within the 

Harbour and High Street zones followed by the Hinterland Near zone. There is no 

significant enhancement within the Hinterland Far zone. These results indicate 

pronounced elemental enhancement within the burgh core at Pittenweem. In addition, 

the immediate hinterland north (Hinterland Near) of the historical burgh limits is typically 

enhanced in a smaller range of elements and to a lesser extent that the Harbour and 

High Street zones. 

 
Table 30: Summary of elemental enhancement within zones at Pittenweem; green 
indicates enhancement within the Hinterland Near zone only, orange indicates 
enhancement within the Harbour and High Street zones and blue indicates enhancement 
within the Harbour, High Street and Hinterland Near zones 
 

 Elements 

Harbour Ba Ca Cu K Ni P Pb Sr Y Co Mg Na Ti Zn

High Street Ba Ca Cu K Ni P Pb Sr Y Co Mg Na Ti Zn

Hinterland Near Mn Co Mg Na Ti Zn

Hinterland Far  

 

7.6.1.3 Wigtown 
The results of multi-element analyses for zones within Wigtown are summarised in Table 

31. The High Street zone is characterised by significantly enhanced concentrations of 

Ca, Co, K, Mg, Na, Ni, Sr and Ti. These elements are restricted to the High Street zone; 

however, Ba, Cu, Mn, P, Pb, Sc, Y and Zn are elevated within the High Street and 

Showfield zones. Elemental enhancement is statistically greatest within the High Street 

zone followed by the Showfield zone. There is no enhancement within the Hinterland 

Near zone. These results indicate pronounced elemental enhancement within the burgh 

core at Wigtown. In addition, the immediate hinterland south (Showfield) of the historical 

burg limits is enhanced in a smaller range of elements and to a lesser extent that the 

High Street zone.  
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Table 31: Summary of elemental enhancement within zones at Wigtown; pink indicates 
enhancement within the High street zone only and orange indicates enhancement within 
the High Street and Showfield zones 
 
 Elements 

High Street Ca Co K Mg Na Ni Sr Ti Ba Cu Mn P Pb Sc Y Zn

Hinterland Near  

Showfield Ba Cu Mn P Pb Sc Y Zn 

 

7.6.2 Variation between Burghs 

All three burghs have enhanced concentrations of Ba, Ca, Na, K, Ti, Co, Cu, Ni, P, Pb, 

Sr Y and Zn within the High Street zone. This finding indicates comparable patterns of 

elemental enhancement between burgh cores. In addition, there are no discernable 

patterns in Al, Fe Cr, Li and V at Lauder, Pittenweem and Wigtown. Elemental 

enhancement is most pronounced within burgh cores; however enhancement is noted 

within certain hinterland zones, albeit to a lesser extent. Zones of enhancement are 

identified in the immediate hinterland south (Hinterland Near) and north (Thirlstane) of 

Lauder, in the immediate hinterland north of Pittenweem (Hinterland Near) and in the 

immediate hinterland south of Wigtown (Showfield). The range of elemental 

concentrations and magnitude of enhancement within these zones is characteristically 

diverse. It should also be noted that all three burghs have one zone which is not 

enhanced; namely the Hinterland Far zone at Lauder and Pittenweem, and the 

Hinterland Near zone at Wigtown.    
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8 The Impact of Waste Disposal on Soils in and Around 
Lauder, Pittenweem and Wigtown 

This chapter examines the impact of waste disposal on urban anthrosols within and 

adjacent to Lauder, Pittenweem and Wigtown. The following discussion is centred on 

two contrasting areas of importance, the burgh core and its hinterland. The historical 

legacy of waste disposal within these two areas is considered and comparisons between 

burghs are made. 

8.1 The Impact of Waste Disposal on Burgh Cores 

8.1.1 Soil Modification 

Deepened topsoils at Lauder, Pittenweem and Wigtown provide clear evidence for 

sustained application of waste material within burgh cores. Accumulation of topsoils can 

be explained through addition of waste rich in mineral material for example, turf used in 

building construction, ash from hearths, sand used in byres and sand associated with 

seaweed. Topsoils within burgh cores are characteristically neutral. It is suggested that 

deposition of calcium rich materials such as mortar, plaster and lime washes used in 

building construction, and shell and bone associated with kitchen waste account for the 

transformation of topsoils from acidic to neutral pH. Furthermore, it seems likely that 

these calcareous waste materials are reflected in enhanced concentrations of calcium 

within burgh cores.  

 

High organic matter content and enhanced concentrations of phosphorus within burgh 

cores indicate addition of human and animal excreta, domestic refuse and fuel residues. 

It is proposed that sustained application of these materials resulted in the formation of 

hortic horizons within topsoils at Lauder, Pittenweem and Wigtown. According to the 

World Reference Base (WRB) for soil classification Hortic horizons reflect processes of 

deep cultivation, intensive fertilisation and/or sustained addition of human and animal 

wastes and other organic residues (FAO 2006). Enhancement of topsoil magnetic 

susceptibility within burgh cores signifies input of materials which have been heated to 

high temperatures, for example charcoal, ash and charred remains (fuel residues) 

resulting from burning of peat, wood, moss and coal in domestic and industrial hearths. 

Moreover, it is suggested that sherds of fired ceramic materials such as pottery and brick 

contribute to magnetic enhancement within burgh cores.  
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8.1.2 Elemental Signatures 

Two elemental signatures are identified at Lauder, Pittenweem and Wigtown. Elements 

within first group (Al, Fe, Cr, Li and V) do not exhibit distinct spatial distributions, hence 

are not indicative of anthropogenic activity. It is proposed that elements within the 

second group (Ba, Ca, Na, K, Co, Cu, Ni, P, Pb, Sr, Ti, Y and Zn) are related to past 

anthropogenic activities given that they show consistent patterns of enhancement within 

burgh cores. It is suggested that enhanced concentrations of phosphorus reflect burning 

of woody material (Aston 1998), human and animal wastes, and domestic rubbish 

(Wilson et al., 2008). However, considering the wide range of enhancement within burgh 

cores it is difficult to assign individual elements to specific materials and activities.  

 

Elemental enhancement within burgh cores can be attributed to multiple factors; 

concentration of elements through combustion of fuel in domestic and industrial hearths, 

industrial activities such as craft and metal working, deposition of building materials 

including mortar, plaster and lime, and disposal of human and animal wastes. Industries 

noted during the mid 16th century in Pittenweem brewing, fishing, butchery, tanning, 

cloth production, and gold, silver and iron smithing (Simpson and Stevenson 1981a). 

Certain industries such as tanning and metalworking produced wastes are associated 

with distinct elemental compositions; however, it is argued that elemental signatures are 

not readily identifiable due to pre-depositional integration of domestic and industrial 

wastes and post–depositional mixing of elements within the soil matrix.  

8.1.3 Waste Materials 

Micromorphological analysis of topsoils at Lauder, Pittenweem and Wigtown confirms 

that building materials, domestic rubbish and industrial wastes were routinely deposited 

within burgh cores. Waste materials types are largely consistent between burghs, for 

example bone, pottery, brick, clinker, slag, mortar, plaster and heated stones are present 

within all three burgh cores. In contrast shell is limited to Pittenweem and Wigtown. It is 

argued that shell reflects the historical legacy of fishing within these towns and their role 

as ports (Figure 123, Figure 124). It is likely that shell remains constituted kitchen waste 

given their location within back gardens and association with other domestic wastes. It is 

also recognised that shell was used as a fertiliser on local farms within Wigtown, for 

instance Duncan (1791-99) notes that shells ranging in price from 1s 4d per ton to 1s 6d 

and of various qualities were sold at Wigtown harbour.  
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Figure 123: Wigtown harbour (above) was used primarily as a fishing port between the 15th 
and 18th centuries (Simpson and Stevenson 1981b). The harbour fell into disuse in the 
early 19th century due to increasing sedimentation and was replaced by a new harbour 
400m south of Wigtown (Image © Royal Commission on the Ancient and Historical 
Monuments of Scotland, Licensor www.scran.ac.uk) 

Figure 124: The Old Boat Haven (left) was used as the main harbour of Pittenweem until 
1541AD. It was carved into the rocky shoreline and its pier was used as a natural outcrop 
with a road cut into it. Pittenweem harbour (right) was built in 1541AD to accommodate 
expanding fishing fleets. The inner harbour comprises the west and east pier, both of 
which have been systematically rebuilt over the 17th to 19th centuries, and the outer 
harbour is enclosed by the south pier (Images © Royal Commission on the Ancient and 
Historical Monuments of Scotland, Licensor www.scran.ac.uk) 
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8.1.3.1 Harbour and High Street zones 
Waste material types are consistent between the Harbour and High Street zones at 

Pittenweem; however, shell is more abundant within topsoils in the Harbour zone. It is 

expected that industries associated with fishing were situated within the harbour 

backlands. Cleaning and processing clams, mussels, cockles and whelks for local 

markets and export would have led to considerable quantities of waste. Bait preparation 

using shellfish may also explain why higher volumes of shell material occur within 

topsoils in the harbour zone. In addition the practise of cleaning and drying fishing nets 

suspended across the back gardens could have led to in-situ deposition of marine 

derived waste.    

 

In contrast pottery, brick, mortar and plaster materials are more concentrated within the 

High Street zone. These materials became more important during the 17th century when 

buildings were increasingly made of stone and lime mortar. Utilisation of these materials 

would have depended on their availability and affordability. Houses within the High 

Street zone were primarily occupied by burgesses who were considerably wealthier than 

fisherman who rented cottages adjacent to the harbour (Horsburgh 1856). It is 

suggested that higher abundances of building waste reflects the social and economic 

disparity of inhabitants. Higher abundances of building waste can be attributed to earlier 

and more intensive utilisation of materials such as lime mortar and brick within the High 

Street zone. In contrast, the tradition of using turf and clay mortar for building repairs 

may have endured longer within the Harbour zone. 

8.1.3.2 Topsoil Horizons 
Fuel residue is present in upper and lower topsoil horizons at Lauder indicating continual 

deposition of waste materials produced through domestic and industrial combustion. 

Absence of coarse mineral material from lower topsoil horizons provides clear evidence 

for basic stratification of deposits within the burgh core. More recent inputs of domestic 

and industrial wastes and building debris suggest a change in either land use within the 

backlands or in the management and disposal of waste.   
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8.1.4 Fuel Residue 

Fuel residue within topsoils at Lauder, Pittenweem and Wigtown provides clear evidence 

for sustained application of materials resulting from domestic and industrial combustion 

to soils within burgh cores. Fuel resources common to all three burghs include peat, turf 

and coal. The importance of peat deposits are reflected in the royal burgh foundation 

charter of Pittenweem (1546AD) which grants ownership of all surrounding moors to the 

burgesses and inhabitants of the town. Turf and peat are cited as the principal fuel 

resources at Lauder and Wigtown until the introduction of coal in the latter 18th century 

(Duncan 1791-99, Ford 1791-99). Moreover, Nairne (1791-99) reports that coal was 

progressively taken from seams underlying Pittenweem until industrialisation of coal 

extraction in 1770AD. It is expected that locally available fuel resources such as timber 

and mosses were exploited in addition to peat and coal at all three burghs despite 

lacking documentary evidence.  

 

Types of fuel residue waste are consistent between burghs, for example charcoal, FR1, 

FR 2, FR 3, FR 4 & 6, FR 5 & 7, FR 8 & 9 and FR 10 inclusions are present within all 

three burgh cores. This indicates that similar fuel sources were exploited at Lauder, 

Pittenweem and Wigtown. However, results of micromorphological analysis reveal 

differences in principal fuel residue types between burgh cores. It is suggested that 

variation in fuel residues indicate preferential exploitation of certain fuel resources. It is 

equally probable that fuel residue types are linked to differences in firing temperatures 

and combustion processes associated with industrial activities. The effect of varying 

temperature on ceramics (Tobert 2007) and archaeological sediments (Berna et al., 

2007) is well documented. It therefore seems reasonable to suggest that changes in 

associated fuel residues are affected by similar processes. Furthermore, it is argued that 

post-depositional processes are not responsible for selective preservation of fuel 

residues given similarities in soil physical and chemical properties between burgh cores.  

8.1.4.1 Harbour and High Street Zones 
Fuel residue types are consistent between the Harbour and High Street zones at 

Pittenweem; however, FR 4 & 6, FR 5 & 7 and FR 8 & 9 are more abundant within the 

Harbour zone and FR 3 is greatest within the High Street zone. Differences in principal 

fuel types may reflect the social and economic disparity of inhabitants, for example 

burgesses within the High Street zone may have adopted the use of coal earlier than 

poorer residents of the Harbour zone. Analogous evidence from Wigtown highlights the 

relationship between social standing and fuel resources. Duncan (1791-99:485) notes 

‘the common people, both in the town and country, burn peat, of which indeed there is 
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abundance within this parish’ and that ‘the better sort of inhabitants within the town, 

though they used peat in their kitchens, burn coal in their rooms’. It is probable that 

variation in fuel residue types are linked to differences in firing temperatures and 

combustion processes associated with differing industrial activities between zones.  

8.1.4.2 Topsoil Horizons 
Fuel residue is present in upper and lower topsoil horizons within all three burghs. This 

indicates continual disposal of waste materials associated with domestic and industrial 

combustion. However, fuel residue is less abundant within lower topsoil horizons at 

Lauder and Wigtown. Differences in the concentration of fuel residue may reflect 

changing patterns in the availability and affordability of fuel resources, for example the 

introduction of turnpike roads at Lauder led to widespread adoption of coal as the main 

fuel resource during the latter 18th century (Ford 1791-99:77). It is also suggested that 

an increase in fuel waste could be linked to population growth or intensification within 

burgh cores. Ford (1791-99:74) notes a general increase in the population of Lauder 

since the opening of turnpike roads. Moreover, at Wigtown the population grew from 

1032 in 1755AD to 1350 in 1793AD (Duncan 1791-99:488). Increasing industrialisation 

may account for increased deposition of fuel waste; however, industries such as coal, 

lime and woollen manufacturers were still lacking at both Lauder and Wigtown during the 

1790s (Duncan 1791-99:485, Ford 1971-99:76).  
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8.2 The Impact of Waste Disposal on Burgh Hinterlands 

This section focuses on the impact of waste disposal within the Hinterland Near zone at 

all three burghs, the Hinterland Far zone at Pittenweem and the Showfield zone at 

Wigtown. These zones correspond to the location of the burgh acres which were strips 

of arable land owned by burgesses (see section 2.3.4). The burgh acres, known as 

burgess acres at Lauder, were located immediately beyond the burgh core and 

extended to the common grazings (Romanes 1914, Johnston 1920) (Figure 125). There 

is no direct reference to the location of the burgh acres at Pittenweem although their 

existence is noted (Cook 1867, Leighton 1840, Webster 1819). It is suggested that the 

burgh acres extended over the Hinterland Near and Far zones given the delineation of 

land running parallel to burgage plots (Figure 126). This is supported by Leighton 

(1840:108) who states that ‘the lands of Greendikes, Waterless and Coalfarm, lying to 

the north-west and west of the burgh are the property of Sir Wyndham Carmichael 

Anstruther, baronet’ and that ‘the other lands in the parish consist of burgh acres’. 

Similar to Lauder and Pittenweem the burgh acres at Wigtown were located immediately 

beyond the burgage plots within the burgh core (Duncan 1791-99:474, Brewster 1832: 

521) (Figure 127). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 125: Map of Lauder extracted from the 1747-1755AD William Roy Military Survey of 
Scotland © The British Library Board, Licensor www.nls.uk/roy/style.html. Red boundaries 
represent buildings and man-made structures and parallel hatching indicates cultivated 
land. Burgh acres are represented by the delineation of strips of land running parallel to 
burgage plots 
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Figure 126: Map of Pittenweem extracted from the 1747-1755AD William Roy Military 
Survey of Scotland © The British Library Board, Licensor www.nls.uk/roy/style.html. Red 
boundaries represent buildings and man-made structures and parallel hatching indicates 
cultivated land 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 127: Map of Wigtown extracted from the 1747-1755AD William Roy Military Survey 
of Scotland © The British Library Board, Licensor www.nls.uk/roy/style.html. Red 
boundaries represent buildings and man-made structures and parallel hatching indicates 
cultivated land. Burgh acres are represented by the delineation of strips of land running 
parallel to burgage plots north and south of Wigtown 
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8.2.1 Soil Modification 

Deepened topsoils adjacent to the historical burgh limits at Lauder and Pittenweem 

provide clear evidence for sustained application of mineral material to the burgh acres. 

Accumulation of topsoils can be explained through addition of waste rich in mineral 

material, for example turf used in building construction, ash from domestic and industrial 

fires, sand used in animal byres and in the case of Pittenweem, sand associated with 

addition of seaweed. In contrast there is no evidence for topsoil deepening within the 

Hinterland Near and Showfield zones at Wigtown. This finding indicates that waste rich 

in mineral material was not routinely applied to the burgh acres. It is possible that waste 

may have been preferentially deposited within the burgh core or within the burgh acres 

beyond the extent of the survey area. Additionally, waste may have been sold for use as 

fertiliser to other burghs.   

 

High organic matter and enhanced concentrations of phosphorus within the Hinterland 

Near zone at Lauder and Showfield zone at Wigtown indicate addition of human and 

animal excreta, domestic refuse and fuel resides. In the case of Lauder sustained 

application of such materials may explain the formation of hortic horizons within topsoils 

in the burgh acres. There is no association between organic matter and phosphorus 

within the Hinterland Near zone at Pittenweem. Considering its current use as managed 

grassland, elevated organic matter within the Hinterland Near zone may be the result of 

modern inputs such as decomposing plant matter. Phosphorus concentrations may have 

decreased due to past cultivation, for example intensive cropping which exceeds 

phosphorus deposition rates. Nevertheless it is possible that increased organic matter 

content may reflect past inputs such as animal dung; even though it is argued more 

modern sources of phosphorus are more likely.   

 

Enhancement of topsoil magnetic susceptibility within the Hinterland Near zone at 

Lauder and Pittenweem and Showfield zone at Wigtown indicates input of materials 

which have been heated to high temperatures, for example charcoal, ash and charred 

remains (fuel residues) resulting from burning peat, wood, moss and coal in domestic 

and industrial hearths. Additionally sherds of fired ceramic materials such as pottery and 

brick may contribute to magnetic enhancement within the burgh acres.  

 

 

 - 255 -



8.2.1.1 Variation within Burgh Acres 
The median depth of topsoils within the Hinterland Near and Hinterland Far zones at 

Pittenweem is greater than 50cm, thus providing evidence for the additional of mineral 

waste within the burgh acres. Nevertheless there is a significant difference in topsoil 

depth, organic matter and magnetic susceptibility between these two zones. It is 

proposed that the impact of waste diminishes with distance from the burgh core resulting 

in a distance decay effect across the burgh acres. Differences in the impact of waste 

disposal are also apparent within the burgh acres at Wigtown, for example enhancement 

of organic matter content and frequency dependant magnetic susceptibility is limited to 

the Showfield zone. This may reflect selective deposition of wastes such as fuel residue, 

domestic refuse and human and animal excreta to the burgh acres south of Wigtown.  

8.2.2 Elemental Signatures 

The Hinterland Near zone at Lauder is enhanced in elements associated with past 

anthropogenic activity (Ba, Ca, K, P, Pb and Zn). There is no difference in the range of 

elements enhanced between the burgh core and burgh acres thus indicating similarities 

in the nature of waste material inputs. It is suggested that domestic and industrial waste 

generated within the burgh core was deposited within the burgh acres at Lauder for the 

purpose of soil improvement. Elements enhanced within the Thirlstane zone include Ba, 

P and Pb; nevertheless, it is difficult to assign these elements to particular sources of 

waste or anthropogenic activities given their limited range. Land within this zone is 

associated with Thirlstane Castle (Figure 128). Thirlstane Castle was built in the 16th 

century AD on the original site of Lauder Fort and has been successively occupied until 

present day (Simpson and Stevenson 1981c). The grounds of Thirlstane Castle were 

primarily used for recreation (Cosens 1834-45), although more recently additional uses 

include keeping rare breed livestock and hosting horse trials.  

 

Enhancement within the burgh acres at Pittenweem is limited to elevated concentrations 

of Mn, Co, Mg and Zn within the Hinterland Near zone. This is in contrast to the burgh 

core which is characterised by a range of anthropogencially significant elements (Ba, 

Ca, Na, K, Co, Cu, Ni, P, Pb, Sr, Ti, Y and Zn). Differences between these areas may 

reflect preferential deposition of certain wastes. It is possible that domestic and industrial 

waste generated within the burgh core was deposited within the burgh acres at 

Pittenweem; however, post-depositional processes such as leaching and past land 

management within the burgh acres may adversely affect elemental retention rates.  
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Figure 128: Aerial Image of Lauder showing (a) burgh core, (b) Hinterland Near zone, (c) 
Hinterland Far zone and (d) Thirlstane zone, image © Andrew Buchanan 2004, www.holy-
cow.co.uk/ 
 

The Showfield zone at Wigtown is enhanced in a range of elements associated with past 

anthropogenic activity including, Ba, Cu, Mn, P, Pb and Zn. Comparable patterns of 

elemental enhancement within the burgh core and Showfield zone signify similar waste 

material inputs. It is noted that Ca, K and Sr are not elevated within the Showfield zone; 

this may be due to preferential leaching within the burgh acres. Moreover, absence of 

elevated elemental concentrations within the Hinterland Near zone support the proposal 

that waste was selectively applied to the burgh acres south of Wigtown (section 8.2.1.1).   

8.2.3 Waste Materials  

As discussed in section 8.1.3, building materials, domestic rubbish and industrial wastes 

were routinely deposited within burgh cores. Evidence for these materials within the 

burgh acres at Lauder and Wigtown is limited, suggesting selective application of waste 

material. In contrast pottery, brick, clinker, slag, mortar, plaster and heated mineral 

material occur within the burgh acres at Pittenweem. This indicates deposition of similar 

types of waste materials within the burgh core and burgh acres. Higher abundances of 

waste materials within the Hinterland Far zone may reflect preferential deposition of 
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certain wastes away from the burgh core. It is also possible that post-depositional 

processes such as ploughing and tilling within the Hinterland Near zone resulted in 

increased fragmentation of exotic inclusions.  

8.2.4 Fuel Residue 

Fuel residue within the burgh acres at Lauder, Pittenweem and Wigtown provides clear 

evidence for addition of materials resulting from domestic and industrial combustion. In 

addition, fuel residue is identified within the Hinterland Far and Thirlstane zone at Lauder 

and Hinterland Far zone at Pittenweem. A distinction in fuel residue types between the 

burgh core and hinterland is noted at Lauder and Wigtown. Inclusions of charcoal, FR 2 

and FR 10 are absent from the hinterland at both of these burghs suggesting preferential 

deposition of certain fuel residues within the burgh core. It is also possible that such 

materials could have been deposited in the hinterland but have either been subject to 

selective preservation or exist in abundances beyond the limit of detection. In contrast 

there is no difference in the nature of fuel residue between the burgh core and hinterland 

at Pittenweem. Fuel residue types are generally consistent between burghs, for example 

FR1, FR 4 & 6, FR 5 & 7 and FR 8 & 9 are present within all hinterland zones. Moreover 

there is no difference in the abundance of fuel residue types either within or between 

burgh hinterlands.  
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8.3 Waste Disposal 

8.3.1 Burgh Core 

Based on the micromorphological and chemical results there are general similarities in 

waste types between burgh cores, for example building materials, human and animal 

excreta, kitchen refuse, industrial wastes and fuel residue. Nevertheless, differences in 

waste materials are apparent between burghs. Principal fuel residue wastes vary 

between burghs reflecting differing fuel resources and/or industrial processes. In 

addition, the occurrence of shell at Pittenweem and Wigtown is indicative of industrial 

processes related to fishing.  

 

Sustained addition of waste materials in burgh cores led to improvement of topsoil, 

facilitating widespread cultivation of garden soils. Production of crops was of economic 

importance; crops were needed for the sustenance of livestock and for sale at market. In 

addition, urban horticulture was socially significant. Given that backland plots were often 

divided and sublet, poorer inhabitants were able to reliably produce foodstuffs within a 

concentrated area thus enhancing food security.  

 

Although it is accepted that soils in burgh cores reflect sustained deposition of waste 

materials, it is not possible to attribute any one method to their formation. It is likely that 

domestic refuse associated with individual households and mixtures of straw, sand and 

dung from byres were applied to the backlands as a convenient source of fertiliser. 

Considering the diversity of materials in burgh core topsoils, it is also suggested that 

middens comprising domestic and/or industrial wastes may have been periodically 

spread across the backlands. Potentially waste from dunghills may have been added to 

burgage plots; however, it is argued that they chiefly acted as stores of urban waste prior 

to redistribution within the hinterland.  

 

This discussion has focussed on the role of cultivation in the formation of ‘garden soils’ 

within burgh cores. Nevertheless, it is contested that such deposits reflect accumulation 

of sediments resulting from intensified occupation of the backlands (Carter 2001). Given 

the formation of hortic horizons within burgh cores it is argued that soils at Lauder, 

Pittenweem and Wigtown were formed predominantly through urban horticulture. In 

addition, it is proposed that intensified backland occupation would have led to growing 

demand for additional foodstuffs thus increasing cultivation rather than replacing it.   
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8.3.2 Hinterland 

Sustained addition of waste materials to the hinterland at all three burghs resulted in 

enhanced soil fertility within the burgh acres. The degree of soil improvement within the 

burgh acres is reflected in its letting cost, for example Duncan (1791-99:479) notes that 

arable land arable land at Wigtown is let at 10 to 20 shillings per acre rising to between 

50 shillings and 3 pounds within the burgh acres. Similarly, the burgh acres at Lauder 

are three to four times more expensive than arable land in the rest of the parish (Ford 

1791-99:73). Crops provided an important source of revenue for burgesses and their 

success was vital for meeting the consumption needs of inhabitants and their livestock. 

The deliberate addition of burgh wastes would have improved the quality and yield of 

crops, in addition to improving sustainability of cultivation.  

 

Although not conclusive, it is proposed that dunghills were routinely applied to soils 

within the burgh acres (see section 2.2.4). The application of dunghills would have 

resolved problems associated with the formation of dunghills in burgh cores, in particular 

their obstruction of thoroughfares (Cook 1867). In addition dunghills held an economic 

value hence were often traded or sold to farmers or confiscated by the burgh authorities 

(Figure 129). This is especially true at Pittenweem where legislation throughout the 17th 

and 18th centuries repeatedly cites forfeiture of dunghills without compensation (Cook 

1867: 86, 99, 152). It is most likely that dunghills were transferred to the burgh acres 

using horse and cart although the additional use of labourers cannot be ruled out. In 

addition to dunghills it is acknowledged additional sources of fertiliser could be sought 

from the sea, for example shells of various qualities could be bought from Wigtown 

harbour for manure on farms (Duncan 1791-99). Similarly seaweed was gathered and 

collected from the beach at Pittenweem for sale to local farmers (Figure 130).  

 

In agreement with Davidson et al., (2006), soil improvement within the burgh acres 

reflects an early form of urban composting. This is particular resonant in light of 

agricultural reform during the 18th and 19th centuries. Past land management systems 

were considered ineffective; however, at Wigtown Duncan (1791-99:477) notes how 

‘improvements to farms using manure have made it possible to raise bere barley. No 

bere was previously raised in this parish except for the burgh acres’.  
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Figure 129 Invoice for the sale of ‘street manure’ at Pittenweem to a local farmer dating 
1919 AD, dunghills were therefore a persistent feature in burgh cores (Image © Scottish 
Life Archive, Licensor www.scran.ac.uk) 
 

 

 
Figure 130 Photograph of a man with a cart load of seaweed in the early 20th century 
Pittenweem. In previous centuries the right to collect seaweed was associate with land 
ownership, hence burgesses had rights to seaweed on particular stretches of beach 
(Image © National Museums Scotland, Licensor www.scran.ac.uk) 
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9 The Wider Significance of Waste Disposal in and 
Around Historic Small Towns 

This chapter discusses the wider significance of waste disposal in and around historic 

small towns. Key study findings are presented and recommendations for further work are 

made accordingly. In addition, the significance of waste disposal in and around historic 

towns is discussed in reference to urban soil classification, rural-urban interactions and 

trends in archaeology.  

9.1 Study Findings 

9.1.1 Objective 1  

The first objective of this study was to establish the nature and diversity of urban 

anthrosols in and near to historic small towns. It was found that soil characteristics are 

varied within and near to Lauder, Pittenweem and Wigtown (Hypothesis 1.1). Distinct 

patterns in spatial distributions of topsoil depth, pH, organic matter content, magnetic 

susceptibility and selected elemental concentrations are identified at all three burghs. 

Soil properties within and near to Lauder, Pittenweem and Wigtown are determined by 

sustained addition of waste materials (Hypothesis 1.2). Waste material inputs include 

human and animal excreta, domestic waste, industrial waste, building materials and fuel 

residues. 

9.1.2 Objective 2  

The second objective of this study was to characterise and account for the multiplicity of 

urban anthrosols in and near to historic small towns. It was found that urban anthrosol 

characteristics vary within burghs according to past functional zones (Hypothesis 2.1 

and 2.2). The burgh core and burgh acres are important areas of interest at all three 

burghs. Soil modification is most pronounced within burgh cores reflecting a greater 

diversity and abundance of waste material inputs. Differences in urban anthrosol 

characteristics are evident between burghs. The nature and extent of soil modification 

differs between burgh acres. It is suggested that shell waste at Pittenweem and Wigtown 

is linked to their past function as fishing ports (Hypothesis 2.3). In addition variation in 

principal fuel residue types between burghs may indicate differences in resources 

exploitation and/or combustion processes associated with industry. Further work is 
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needed to resolve this issue; it is recommended that visual and elemental comparisons 

of key fuel residue types should be made with reference materials. 

9.1.3 Objective 3  

The third objective of this study was to elucidate the processes associated with waste 

management and disposal in historic small towns. It is proposed that addition of waste 

materials to soils within and near to Lauder, Pittenweem and Wigtown was an effective 

waste management strategy. Waste disposal led to enhanced soil fertility within the 

burgh core and to a lesser extent the burgh acres at all three towns. This is important 

given that urban horticulture and arable farming was central to resource production in 

historic small towns. It was hypothesised that processes of waste disposal could be 

deduced from properties of soils (Hypothesis 3.1). This proposal was overly ambitious 

considering similarities in waste management strategies between burghs in addition to 

the impact of post-depositional processes. It is likely that direct waste deposition, 

storage and redistribution of midden waste, and storage and redistribution of dunghills 

were important modes of waste disposal at all three burghs. It is expected that 

differences in the nature and modes of waste management existed between burghs; 

however, this information could not be ascertained from soil properties alone 

(Hypothesis 3.2). It is recommended that detailed documentary analysis may resolve this 

issue.  

9.1.4 Model Revision 

A revised model of resource and waste material flow in historic towns is presented in 

Figure 131. In the context of this research the town zone corresponds to the built 

environment within burgh cores. This town encompasses areas characterised by urban-

rural interaction and sectoral interactions, for example backlands were used for urban 

horticulture and animal rearing. The hinterland is a theoretical area of resource 

exploitation which differs from town to town. All three towns are similar in that the 

immediate hinterland encompasses the burgh acres, an area explicitly linked with urban 

inhabitants through processes of fertilisation, crop/vegetable growth and animal rearing, 

and procurement of foodstuffs. In addition each town exploited a wider area to acquire 

fuel sources and trade items, for instance Pittenweem had direct trading links with the 

continental Europe and Wigtown had contacts with Ireland and Cumbria. The burgh and 

its hinterland are linked by rural-urban fluxes of resources, goods and waste materials; 

hence, are not mutually exclusive zones.      
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Figure 131: Revised flow model of resource and waste movement in historic small towns 
 
Acquisition represents movement of materials from the hinterland to the town. These 

materials range from locally available natural resources to manufactured trade goods. 

Fuel sources were obtained from the hinterland in all three burghs through activities 

such as peat cutting, moss harvesting, coal mining and wood felling. The utilisation of 

these materials varied from town to town, and was dependant on a range of geographic 

and economic factors. Materials could also be acquired from within the town itself. There 

is geoarchaeological evidence in the form of hortic topsoils to suggest urban horticulture 

was an important source of foodstuffs within the burgh core at Lauder, Pittenweem and 

Wigtown. Acquired resources are incorporated into a cycle of use and re-use until they 

hold no remaining social or economic value.   

 

Materials with no remaining economic or social value are classed as waste and 

transition to a cycle of waste management characterise by processes of storage and re-

distribution. The two common storage mechanisms at all three burghs were middens in 

the backlands and dunghills in the main thoroughfares. The constituents of middens 

both within and between burghs remain unresolved given the homogeneous nature of 

backland topsoil deposits. It is possible that specific middens were used for differing 

waste types such as domestic and industrial rubbish. Dunghills are documented in all 

three burghs with repeated legislation referring to their nuisance. These dunghills were 

removed from the burgh either voluntarily through sale to burgesses or under forfeiture, 

 - 264 -



and applied to the burgh acres as fertiliser. Processes of midden spreading in the 

backlands and dunghill movement to the burgh acres are classed as redistribution of 

waste.  

 

Deposition of waste falls into two categories; point and diffuse. At all thee burghs there is 

evidence for point deposition of domestic/kitchen wastes in back gardens, for example 

bones, shell and pottery fragments. Similarly there is evidence for diffuse deposition in 

the form of hortic topsoil in burgh cores and modified topsoil in the burgh acres. Upon 

deposition waste is incorporated into the soil matrix and subject to reworking and system 

loss. One of the main limitation of the original flow model presented in chapter 3 (Figure 

13) was that waste materials had no function upon incorporation into the soil matrix 

aside from involvement in post-depositional processes. Given that waste was used for 

soil improvement in the burgh acres it is argued that resource production and waste 

management within and near to historic towns were inextricably linked. Accordingly flow 

arrows linking soils to town and hinterland resource cycles are proposed as suitable 

model amendments (Figure 131).  
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9.2 Rural-Urban Interaction 

9.2.1 Modern Significance of Rural-Urban Interaction 

Parallels in the nature and management of organic wastes are evident between past and 

present urban environments. The main sources of organic waste in historic and modern 

towns include kitchen refuse, human excreta, and horticultural and agricultural waste. 

Similarities in urban organic waste management strategies are outlined in Table 32. 

Organic waste in Lauder, Pittenweem and Wigtown, comprised domestic/kitchen refuse, 

dung from urban livestock, human excreta and wastes from industrial processes. Whilst 

there are broad similarities in the nature of organic waste between burghs the volume of 

waste was likely to differ. The amount of waste produced would have depended on 

population size and livestock numbers. 

 

In modern towns organic waste is dealt with in a variety of ways including; organised 

composting of solid and/or animal wastes prior to application, direct application of solid 

waste onto soil, and application of animal wastes onto soil. It is evident from this study 

that urban organic waste recycling is not a recent phenomenon. Waste management 

strategies in historic towns similarly involved composting, for example animal wastes 

and kitchen refuse in byres and middens.  

 
Table 32: Comparison of urban organic waste recycling practises in modern and historic 
towns, modern examples taken from Cofie and Bradford (2006)  
 

Modern Towns Historic Towns 

Use of fresh waste from vegetable 
markets, restaurants, hotels and food 
processing industries as feed for urban 
livestock 

Use of kitchen refuse, waste from markets 
and waste from horticulture as feed for 
urban livestock 

Direct application of solid waste on and 
into the soil 

Application of human and animal waste to 
backlands and/or hinterland via dunghills 

Mining of old waste dumps for application 
as fertiliser on farmland 

Use of landfills not a key feature of historic 
towns 

Application of animal manure such as 
poultry/pig manure and cow dung 

Application of waste from stalled animals 
and other urban livestock to backlands 
and/or hinterland via dunghills 

Direct application of human excreta or bio-
solids to the soil 

Application of human waste to backlands 
and/or hinterland via dunghills 

Organised composting of solid waste or 
co-composting of solid waste with animal 
manure or human excreta 

Accumulation of human and animal waste 
in middens and dunghills prior to soil 
application 
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Waste was applied directly to gardens in the burgh core and transported to the burgh 

acres for use as fertiliser. Composting and soil improvement remain key strategies in 

managing organic waste in modern towns; however, one of the key differences is the 

utilisation of human wastes. In the past there was limited awareness of dangers 

associated with using human faecal material as a source of compost. In contrast, human 

waste in contemporary towns is processed and disposed by means of urban sewerage 

systems which are subject to governmental regulations. Another difference in organic 

waste management between historic and modern towns is the use of landfill sites (Table 

32). It is suggested that landfill sites were not in burghs for disposal of organic wastes 

given the economic and social value of waste as a fertiliser.   

 

Urban horticulture is an activity deep-rooted in past urban environments. In Lauder, 

Pittenweem and Wigtown the ability to grow food within the urban area was vital in the 

supply of foodstuffs, especially for poorer inhabitants who could not afford to rent arable 

land in the burgh acres. Similarly cultivation in developing cities is increasingly seen as a 

key strategy for enhancing food security of present and future populations. This is 

especially resonant in urban environments currently lacking an environmentally 

sustainable solution to waste management of organic materials (Tixier and Bon 2006).  
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9.3 Soil Classification 

This section discusses problems associated with mapping urban soils and classifying 

soils in historic small towns with specific reference to key findings at Lauder, Pittenweem 

and Wigtown.  

9.3.1 Mapping Urban Soils 

Conventional soil mapping is simplistic in its approach to urban soils, whereby soils are 

either assigned to local soil series or are omitted from soil classification maps 

completely. Soils in and near to Lauder are mapped as freely drained brown forest soil 

with low base status belonging to the Lauder (LA) soils series (Figure 132). However, 

results of this study indicate distinct changes in soil properties within and adjacent to 

Lauder through processes of anthropogenic modification. It is argued that hortic soils in 

the burgh core and burgh acres differ significantly from local soils. In Pittenweem and 

Wigtown soils within the burgh core are not mapped (Figure 133, Figure 134). Results 

from this study confirm the presence of hortic anthrosols at both burghs. It is suggested 

that such soils have clearly identifiable physical and chemical soil properties and should 

not be omitted from future classifications.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 132: Soil map of Lauder © Soil Survey of Scotland 1959. Soils within and adjacent 
to Lauder are mapped as a freely drained brown forest soil with low base status belonging 
to the Lauder (LA) soil series 
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Figure 133: Soil map of Pittenweem © Soil Survey of Scotland 1975. Soils within 
Pittenweem are not classified and adjacent soils are mapped as an imperfectly drained 
brown forest soil belonging to the Quivox (QX) soil series  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 134: Soil map of Wigtown © Soil Survey of Scotland 1971. Soils within Wigtown are 
not classified and adjacent soils are mapped as a freely draining brown forest soil 
belonging to the Linhope (LP1) soil series 
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Soil within and near to Lauder, Pittenweem and Wigtown are modified through past 

waste amendments; hence differ from surrounding ‘natural’ soils. It is therefore 

recommended that soils associated with urban environments should be included in soil 

maps. This would require a comprehensive system of classification distinguishing 

between historic and modern soil modification (see section 9.3.2). Moreover, specific 

attention should be paid to soils modified through past and present urban activities 

which are not located in towns, for example historic improvement of arable land and 

modern refuse dumping on landfill sites. 

9.3.2 Classification of Soils in Historic Towns 

Classification of soils in historic towns is problematic due to conflicting terminology both 

within and between soil classification systems. Soils in and around Lauder, Pittenweem 

and Wigtown are classified as Anthrosols within the World Reference Base for Soil 

Resources (WRB) classification system despite the recent introduction of a Technosols 

(Urban/Mine) group (Table 33). It is argued that Anthrosols is more appropriate for soils 

in historic towns given they account for processes of waste disposal, soil improvement 

and cultivation. In contrast Technosols are concerned with waste amendments resulting 

from modern urban environments such as landfills, impermeable road surfaces and mine 

spoil. The Australian Soil Classification System makes a distinction between Hortic, 

Garbic and Urbic Anthroposols (Table 33). Under this system soils in burgh cores could 

potentially be classed as Hortic or Garbic Anthroposols. Similar to the WRB classification 

Urbic Anthroposols are not appropriate for classifying soils in historic towns. It is 

suggested that conflicting terminology is a result of modern definitions of urban and rural 

soil characteristics. In the past cultivation and associated improvements in soil fertility 

were urban features; however, these are currently viewed as rural qualities. Likewise, 

characteristics which are viewed as urban, such as industrial wastes and concrete 

pavements are modern in origin. 
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Table 33: Summary of soil classification terminology relevant to soils in historic towns 
(FAO 2006, Gong 1999, Isbell 2002, Nikolaevna and Vadimovna 2003) 
 

 
System 

 
Term 

 
Definition 

Australian Hortic Anthroposol Soils that have additions of organic residues 
such as organic wastes, composts and 
mulches that have been incorporated into 
the soil and have obliterated pre-existing 
pedological features. 

Australian  Urbic Anthroposol Mineral soil or regolithic materials that are 
underlain by land fill of a predominantly  
mineral nature. 

Australian Garbic Anthroposol Mineral soil or regolithic materials that are 
underlain by land fill of manufactured origin 
and which is predominantly of an organic 
nature. These materials may be of domestic 
or industrial origin. 

Chinese Anthropic Surface 
Horizon 

Diagnostic surface horizons that are the 
result of agricultural activities that have 
caused major changes in soil processes at 
or near to the soil surface. 

Chinese Cumulic Epipedon Formed by long-term cultivation, applying 
manure or adding soil material rich in 
organic matter or other mud’s to the soil. 

Chinese Mellowic Epipedon Formed by planting vegetables and/or 
adding night soil, organic trash or manure to 
the soil under intensive cultivation and 
frequent irrigation over a long period.   

World Reference 
Base for Soil 
Resources  

Anthrosols Soils that have been modified profoundly 
through human activities, such as addition of 
materials or household wastes, irrigation and 
cultivation. 
 

World Reference 
Base for Soil 
Resources 

Technosols 
(Urban/Mine Soils) 

Soils whose properties and pedogenesis are 
dominated by their technical origin. They 
contain a significant amount of artefacts 
(something in the soil recognizable made or 
extracted from the earth by humans), or are 
sealed by technic hard rock.

World Reference 
Base for Soil 
Resources 

Kitchen Soils Anthrosols having a hortic horizon >50cm. 
Horizon is thoroughly mixed with original 
strata usually not preserved. Artifacts and 
cultural debris commonly occur. 

Russian Urban 
Soil 
Classification 
System 

Urbanozem A genetically individual soil which combines 
properties of natural soils in neighbouring 
areas and specific properties developed in 
the urban environment. 
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It is proposed that the term Urbanozem within the Russian Urban Soil Classification 

System offers a suitable solution to soil classification in both historic and modern towns. 

This system theorises that urban soils develop in three major ways; on loose artificial 

deposits, on the cultural layer/anthropic material and by transforming natural soils 

(Figure 135). Further, it is suggested that evolution and transformation of urban soils is 

controlled by land-use, substrate type and time. The incorporation of time as a key factor 

in urban soil formation accounts for differing intervals of soil modification in ancient, 

historic and recent urban environments. Soils in and around Lauder, Pittenweem and 

Wigtown are formed by transforming natural soils and through development of a clearly 

identifiable cultural layer. These processes occurred over a time period spanning the 

medieval and early modern periods, prior to the introduction of sewerage. In contrast 

soils formed through recent activities such as urban landscaping are formed on loose 

artificial deposits and consolidate over tens of years. The former historical example and 

latter modern urban example are both accounted for under the term Urbanozem. It is 

argued that a more subjective approach to soil classification in historic environments is 

needed which takes into consideration site specific characteristics such as land use, 

period of use/occupation and geographical location.  

 

 

  

 

 

 

 

 

 

 

 

 
Figure 135 Formation of the Urbic horizon (Nikolaevna and Vadimovna 2003) 
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9.4 Soil: An Archaeological Resource 

This section evaluates the contribution of soil as an archive of waste deposition and 

management within historic small towns. More specifically evidence obtained from the 

soils based cultural record is compared to information derived from archaeological 

excavation and documentary evidence.   

9.4.1 Comparison of Soils and Archaeological Excavation 

Archaeological excavation is primarily concerned with recovery of artefacts. Accordingly 

lack of artefacts is often interpreted as absence of archaeology, for example results of a 

watching brief at High Vennel, Wigtown indicate that no deposits relating to the medieval 

burgh core were located despite identification of deposits ranging in depth from 60 to 

110 cm (Appendix 3). In contrast, results from this study suggest the occurrence of 

deposits modified through past waste amendments within the burgh core at Wigtown.  

The results of an archaeological evaluation at 64a High Street, Pittenweem infer 

deposits have little significance aside from containing limited ceramic finds (Appendix 4). 

Nevertheless analysis of soil pit PT 6 which is located in the garden of 64a High Street 

provides clear evidence for sustained addition of domestic and industrial wastes.  

 

Concentrations of rubbish discovered on archaeological sites are usually referred to as 

middens regardless of their spatial characteristics and content. Misidentification of 

middens can be attributed to the site specific nature of urban excavation, for example 

excavations within the back garden at 5 Mid Shore, Pittenweem refer to a 17th century 

midden containing pottery, clay pipes, animal bones and miscellaneous ironwork (Martin 

1978, Martin 1979). In comparison, analysis of soils within the burgh core indicates the 

occurrence of ‘refuse rich’ deposits. It is expected that spatially discrete middens are 

present in addition to widespread refuse rich soils within burgh cores. Confusion 

surrounding the use of these terms needs to be resolved, particularly in archaeology.  

 

Both archaeology and soil analyses can be used to examine interaction between historic 

towns and their hinterland. One of the key advantages of excavation it that it enables 

recovery of artefacts which can be linked to source locations and assigned to specific 

periods in time. Ceramic finds from Pittenweem infer trading connections with mainland 

Europe in the 16th and 17th centuries (Figure 136). Moreover, soil analyses enable 

investigation into the relationship between towns and their local hinterland through 

resource and waste material flow.  



- 274 -

 

 

 
Figure 136: Selected pottery finds from Pittenweem. First row (left to right), 16th century AD Valencian Lustreware bowl (Spain), 17th AD century 
pottery from Saintonge (south-west France), 17th century cooking pots (north Germany), 17th century AD earthenware skillets (Scotland). Second 
row (left to right), 17th century AD Green Glazed jars (Scotland), 17th century AD Loire Ware Jugs (west France), 17th century AD Westerwald AD 
monochrome stoneware (Germany), 17th century AD Westerwald polychrome stoneware (Germany) (Images © Colin J Martin, Licensor 
www.scran.ac.uk)  
 

 



9.4.2 Comparison of Soils and Documentary Evidence 

It can be argued that analysis of soils is unnecessary for investigating resource and 

waste material flow in historic towns particularly in cases where documentary evidence 

is abundant. However, historical sources are restricted to what contemporaries deemed 

important at the time, for example legislation, taxation and issues relating to the nobility. 

Consequently historical sources in this study were used to support discussions based on 

soil analyses rather than as a primary research tool. It is suggested that the historical 

legacy of soil enables insight into activities such as waste disposal and soil improvement 

not generally accounted for by other means.  

9.4.3 Conservation 

Urban archaeology is rescue driven favouring maximum recovery of artefacts within a 

limited timeframe; accordingly urban deposits are often overlooked. This study shows 

that urban soils contain a wealth of information not readily available through excavation 

or documentary analysis alone. It is proposed that sampling urban soils should be a 

routine procedure in archaeological excavation to promote comparisons between sites 

and supplement information derived from finds. Conservation in historic towns is heavily 

centred on preserving surviving structures such as statues, churches and civic buildings; 

however, it is argued that ‘monumentalism’ does not represent the daily experience of 

urban life in the past. Conversely, soils represent a unique and valuable archive of 

everyday life which has largely been ignored. It is argued that soil is as important as 

individual artefacts and should be treated as such in respect to issues of heritage and 

conservation. It is recognised that this is not an easy task considering soils lay beneath 

existing communities. In addition, further discussion is needed to resolve preservation 

and utilisation strategies.  
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9.5 Summary of Key Findings and Future Recommendations 

9.5.1 Summary of Key Findings 

Urban anthrosols in and around Lauder, Pittenweem and Wigtown have been modified 

through sustained addition of waste. Soil modification is most pronounced in burgh cores 

resulting in the formation of hortic soil horizons. Soils within all three burgh cores are 

characterised by deepened topsoil, neutral pH, increased organic matter content, 

enhanced magnetic susceptibility and elevated elemental concentrations such as 

calcium, phosphorus and potassium. These amended soil physical and chemical 

properties are attributable to a variety of wastes. Deepened topsoil indicates 

accumulation of mineral rich materials such as turf, ash from hearths, sand added to 

byre waste, and sand associated with seaweed. Increased organic matter content and 

elevated phosphorus concentrations suggest addition of animal and human excreta, and 

domestic rubbish. Modification of soil pH from acidic to neutral conditions imply 

deposition of calcium rich materials such as mortar, plaster and lime washes used in 

building construction, and shell and bone associated with kitchen waste. Furthermore 

magnetic enhancement of topsoils indicates addition of materials heated to high 

temperatures such as domestic and industrial fuel residues. The nature and extent of 

soil modification within burgh acres is more varied. At Lauder hortic soils were identified 

in the burgh acres suggesting pronounced soil modification through cultivation. 

Deepened topsoil in the burgh acres at Pittenweem provided evidence for application of 

mineral rich waste materials in the past. Moreover, magnetic and elemental 

enhancement (barium, phosphorus, lead, zinc) within the burgh acres south of Wigtown 

revealed historic soils based anthropogenic signal.  

 

Although processes associated with waste disposal could not be deduced directly from 

urban anthrosol properties, micromorphological analyses provided an insight into the 

nature and distribution of deposited wastes. Waste materials were most abundant and 

varied in burgh cores comprising domestic waste, animal waste, building materials and 

fuel residues. These materials were found to varying extents in the burgh acres at all 

three burghs; however, they were notably less abundant. Variation in urban anthrosol 

characteristics between burghs is attributed to differing industries and patterns of 

resource exploitation, for example marine waste associated with fishing was only 

identified in coastal burghs. Similarly, variation in the abundance of marine waste and 

building materials within the burgh core at Pittenweem may reflect differences in the 

location of industries associated with fishing, and contrasting building traditions. 

 - 276 -



Sustained addition of waste materials to soils within and around Lauder, Pittenweem 

and Wigtown was an effective waste management strategy. Waste disposal in burgh 

cores was likely to be a combination of direct application and midden spreading in back 

gardens. This led to enhanced soil fertility which was important in the development of 

urban horticulture; particularly for poorer inhabitants who did not have access to arable 

farm land adjacent to the burgh. Dunghills acted as temporary stores of waste in the 

main thoroughfares of Lauder, Pittenweem and Wigtown. These dunghills were 

systematically transported to the burgh acres for further use as a fertiliser; hence, an 

early form of urban composting.  

9.5.2 Recommendations 

Discussions presented in sections 9.1, 9.2 and 9.3 highlight future areas of research in 

which the findings of this study could be applied. In the first instance, there is a need for 

re-evaluation of traditional soil classification and soil mapping in relation to historic and 

urban soils. It is suggested that the Russian Urban Soil Classification outlined in section 

9.3.2 could be used to better understand historic urban soils given that it encompasses 

time and humans as a key factors in soil formation. It is also recommended that future 

soil maps should include urban soils as distinct entities rather than omitting or 

misclassifying them, although the outcome will largely be dependant on the soil 

classification system used. Another significant contribution of this study is that it 

highlights the role of soils in historic towns as unique archives of past human activities. 

As discussed in section 9.4, soils based cultural records contain information not readily 

available in documentary sources. Furthermore they provide an additional environmental 

context to archaeological finds. It is argued that soil and artefacts are equally important, 

hence exploration of soils based cultural records should be a future consideration in 

urban heritage and conservation strategies. Implementation of this recommendation will 

be dependant on the ability of individual archaeologists, planners and conservationists to 

recognise the importance of soils as a record of the human past. It is anticipated that the 

Soil Analysis Support System for Archaeologists (SASSA) developed at the University of 

Stirling will serve as a useful introduction for archaeologists and curators with limited 

geoarchaeological knowledge.  
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Appendix 1: Soil Profile Descriptions  
 

Soil profile descriptions and field sketches are presented for soil pits at Lauder, 

Pittenweem and Wigtown.  

Lauder 

High Street Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Profile description and photographs (knife inserted at 25cm) of soil pit LA 1 
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Profile description and photographs (knife inserted at 30cm) of soil pit LA 4 
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Profile description and photographs (knife inserted at 15cm) of soil pit LA 6 

 - 295 -



Hinterland Near Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Profile description and photographs (knife inserted at 25cm) of soil pit LA 9 
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Hinterland Far Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Profile description and photographs (knife inserted at 30cm) of soil pit LA 2  
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Profile description and photographs (knife inserted at 25cm) of soil pit LA 3 
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Thirlstane Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Profile description and photographs of soil pit LA 5 
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‘Reference’ Soil Profile 

 

 
 
Profile description and photographs (knife inserted at 15cm) of soil pit LA 7 
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Pittenweem 

Harbour Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Profile description and photographs (knife inserted at 50cm) of soil pit PT 4 
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Profile description and photographs (knife inserted at 50cm) of soil pit PT 5 
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High Street Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Profile description and photographs (knife inserted at 30cm) of soil pit PT 3 
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Profile description and photographs (knife inserted at 50cm) of soil pit PT 6 
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Hinterland Near Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Profile description and photographs (knife inserted at 15cm) of soil pit PT 9 
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Hinterland Far Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Profile description and photographs (knife inserted at 30cm) of soil pit PT 7 
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Profile description and photographs of soil pit PT 8 
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‘Reference’ Soil Profile 

 

 
Profile description and photographs (knife inserted at 22cm) of soil pit PT 1 
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Wigtown 

High Street Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Profile description and photographs (knife inserted at 30cm) of soil pit WG 1 
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Profile description and photographs (knife inserted at 30cm) of soil pit WG 2 
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Profile description and photographs (knife inserted at 30cm) of soil pit WG 3 
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Profile description and photographs (knife inserted at 30cm) of soil pit WG 4 
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‘Reference’ Soil Profile 

 

 
 
Profile description and photographs of soil pit WG 5 
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 Appendix 2: Micromorphology Summary Tables  
 

Thin section micromorphology descriptions of topsoil deposits in Lauder, percentage abundance estimates of coarse mineral and organic 
anthropogenic material and pedofeatures are simplified as; <2% t (trace), 2-5% , 5-10%  and 10-15% 
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Thin section micromorphology descriptions of topsoil deposits in Pittenweem, percentage abundance estimates of coarse mineral and organic 
anthropogenic material and pedofeatures are simplified as; <2% t (trace), 2-5% , 5-10%  and 10-15% 
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Appendix 3: Watching Brief at High Vennel, Wigtown                   
© SUAT Archaeology 
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Appendix 4: Archaeological Evaluation of 64a High Street, 
Pittenweem © Scotia Archaeology 

 

The following report is an archaeological evaluation of 64a High Street Pittenweem 

conducted by Scotia Archaeology, 11/11/04.  

 

Introduction 
This report describes the results of an archaeological evaluation undertaken prior to the 

construction of a new domestic residence to the immediate east of 64 High Street, 

Pittenweem, Fife. The evaluation was a condition attached by Fife Council to ensure that 

any surviving archaeological record was taken into consideration during the proposed 

development. It was understood that should features or deposits of archaeological 

significance be uncovered during the evaluation a further phase of mitigation fieldwork 

might be required by the planning authority. The field evaluation was carried out on 9th 

November 2004 by John Lewis of Scotia Archaeology, on behalf of Mr James Martin. 

Before fieldwork commenced, a desk assessment of the site was undertaken by John 

Terry, also of Scotia Archaeology. 

 

The Site 
The site, which was centred on NO 5468 0248, lay at the western limit of the medieval 

burgh and comprised a triangular area of ground measuring approximately 22m 

east/west by a maximum 15m north/south. It was defined on its west by 64 High Street, 

its north by a stone wall separating it from the High Street and its south-east by a wall on 

West Wynd, a footpath leading down to the shore. The solid geology of the area consists 

of calciferous sandstone measures of Carboniferous age, over which lie late glacial drift 

deposits of alluvium, mostly sand and clay. At the time of the evaluation, the site was 

covered with rough grass and other vegetation. 

 

The Desk Assessment 
Pittenweem is first mentioned in written records dating to c1143 when David I granted 

Petenweme and Inverrin (St Monans) to the Priory of May (Lawrie 1905, 120) although it 

did not achieve burgh status until 1526 (Pryde 1965, 57). The layout of Pittenweem’s 

centre has changed little since the 16th century, many of the burgage plots still being 

visible (Simpson & Stevenson 1981, 9). Recent developments have concentrated on the 

east and west extremities of the village, beyond the limits of the medieval burgh. 
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Archaeological investigations in Pittenweem have been limited to excavation within the 

garden of 5 Midshore (NO 548 025) where a 17th-century midden, containing Dutch, 

French and local wares (DES 1978, 7), overlay a stone-built wynd and associated 

structures believed to date to the early 16th century. Some 12th-century pottery was 

recovered from levels below these features (DES 1979, 10). 

 

A few archaeological sites have been identified within a short distance of the site: pits 

and other features, possibly associated with coal extraction, are visible in aerial 

photographs at NO 540 024; a former gasworks stood at NO 5452 0245; and two 

Edward I pennies were retrieved by metal detector at NO 5435 0235.A study of early 

editions of Ordnance Survey maps (1855, 1895, 1914, 1938 and 1965) showed no 

changes within the site itself over the past 150 years. 

 

The Evaluation 

The principal aim of the evaluation was to determine whether there were any structures, 

features or deposits relating to the medieval burgh or its post-medieval expansion within 

the area of proposed development. This consisted of the excavation of three trenches, 

covering a total area of 8m2 which comprised 5% of the site. All trenches were 

excavated by hand. They were left open at the end of the excavation. 

 

Trench 1 

Trench 1, located near the centre of the site, measured 5m east/west by 1m wide. Below 

the turf, was up to 0.6m of very dark, humic topsoil which overlay a thin layer of lighter, 

more clayey soil, possibly the result of bioturbation, and very thin lenses of undisturbed 

glacial clay. Bedrock was exposed at a depth of 0.5-0.8m, dipping slightly towards the 

west but steeply towards the south. It was very friable and fractured easily, resembling 

deliberately laid masonry in places although its natural origins were in no doubt. Three 

sherds of pottery were retrieved from the base of the topsoil in Trench 1, two rim sherds 

of post-medieval reduced ware and one body sherd of post-medieval oxidised ware. 

 

Trench 2 

This small trench was located towards the north-east corner of the site and measured 

2m north/south by 1m wide. The dark humic topsoil was 0.35-0.40m deep and overlay 

glacial deposits of coarse yellow sand and pale brown clay. Bedrock was not exposed in 

Trench 2. 
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Trench 3 

Trench 3, which measured 1m square, was located near the north boundary of the site. 

Topsoil was 0.40-0.45m deep and overlay about 0.1-0.2m of rubble which included 

fragments of brick and 19th-century pottery. Below the rubble lay glacially deposited 

sand. 

 

Conclusions 

No evidence of any pre-19th-century structures or features was uncovered in any of the 

trenches. Although three sherds of post-medieval pottery (perhaps dating to the 17th 

century) were retrieved, they were found in garden soil and were clearly in a residual 

context, there being nothing to suggest that they formed part of a midden. On this 

evidence, it is believed that extending the investigation within the area adjacent to 64 

High Street, Pittenweem would reveal little, if anything, of archaeological significance. 
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