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AAbbssttrraacctt  

This thesis details the development and evaluation of a new photofitting approach. The 

motivation for this work is that current photofit systems used by the police – whether manual or 

computerized – do not appear to work very well. Part of the problem with these approaches is they 

involve a single facial representation that necessitates a verbal interaction. When a multiple presentation 

is considered, our innate ability to recognize faces is capitalized (and the potentially disruptive effect of 

the verbal component is reduced). The approach works by employing Genetic Algorithms to evolve a 

small group of faces to be more like a desired target. The main evolutionary influence is via user input 

that specifies the similarity of the presented images with the target under construction. 

The thesis follows three main phases of development. The first involves a simple system 

modelling the internal components of a face (eyes, eyebrows, nose and mouth) containing features in a 

fixed relationship with each other. The second phase applies external facial features (hair and ears) along 

with an appropriate head shape and changes in the relationship between features. That the underlying 

model is based on Principal Components Analysis captures the statistics of how faces vary in terms of 

shading, shape and the relationship between features. Modelling was carried out in this way to create 

more realistic looking photofits and to guard against implausible featural relationships possible with 

traditional approaches. The encouraging results of these two sections prompted the development of a full 

photofit system: EvoFIT. This software is shown to have continued promise both in the lab and in a real 

case. Future work is directed particularly at resolving issues concerning the anonymity of the database 

faces and the creation of photofits from the subject’s memory of a target. 

 

(292 words) 
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CChhaapptteerr  11::  RReevviieeww  aanndd  AApppprrooaacchh  

This chapter reviews the wealth of research investigating the utility of photofit systems. The 

manual systems are examined first and it is found that Identikit and Photofit are inherently limited by 

the available facial features. The computerized versions (e.g. Mac-a-mug and EFIT) have greater 

expression, but this advantage diminishes when attempts are made to create composites from memory (as 

necessary in use). It is shown that the feature-based approach adopted in all these systems is not only at 

odds with the holistic way faces are perceived generally but with strategies that are frequently adopted to 

remember a face. A novel approach is proposed that does not inherently decompose a face into its 

component parts. The approach creates a photofit by making inherently non-verbal judgments based on 

the presentation of multiple faces seen at the same time. Genetic Algorithms are used to “breed” these 

choices until an acceptable likeness is reached. An additional technique is suggested for situations 

requiring a more feature-based method of construction. 

Review of Photofitting 

Traditionally, a photofit is a visual representation of an assailant composed from a set 

of predefined facial parts. In a forensic setting, a verbal description of an assailant would be 

obtained from a witness to a crime. A photofit “operator” would then select the most likely 

combination of facial features that match the verbal description. This so-called facial 

“composite” would then be presented to the witness. The witness would then suggest changes 

necessary to this face until an acceptable likeness has been reached (Davies, Shepherd, 

Shepherd, Flin & Ellis, 1986).  

There are two broad systems for generating composites: the manual approaches, where 

a face is assembled by hand, and the computerization thereof. 

The Manual Systems 

Of the major manual systems, there are two well-known types: Identikit and Photofit2. 

In the Identikit system, facial features are printed on acetate transparencies. There are five sets 

                                                           
2 There is considerable variation in the literature regarding the spelling of photofit products. For example, 

the “Photofit” system has been written as Photofit, Photo-fit, Photo-Fit and even Photo-FIT. The style 

used in Shepherd & Ellis’s (1996) excellent review of photofitting systems has been adopted throughout 

this thesis. Hence, the terms Photofit, Identikit, EFIT and Mac-a-mug refer to specific photofit systems. 

Note that when I write “photofit” (i.e. with a lower case letter ‘p’), this refers to a photofit created from 

any photofit system (including EvoFIT). The only other generic term used in this thesis for “photofit” is 

“composite”. Note that the latter term has quite a general meaning that also includes representations 
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of facial features available: forehead and hair; eyes and eyebrows; nose; mouth and lips; and 

chins. A composite is constructed by laying acetates on top of each other. These “slides” can be 

exchanged until an acceptable likeness is obtained. Shepherd & Ellis (1996) explain that when 

first released by P.J. Dunleavy in 1959, features comprised of line drawings, but a more recent 

version in 1975 (called Identikit II) contained photographic elements. Whereas the Identikit 

system was used primarily in the US, Photofit was primarily adopted in this country.  

The Photofit system is similar to Identikit II in that photographic elements are used. 

However, rather than acetates, facial features in Photofit are printed on jigsaw-like pieces that 

slot into a template. The system was released in the late 60s and early 70s (Penry, 1970; and 

Penry, 1974). There are 550 facial features in this system, roughly the same as the 470 available 

in Identikit II (Shepherd & Ellis, 1996). Both systems make use of a marking pencil to elaborate 

facial features.  

Much research has been carried out in the 1970s and 1980s to establish the effectiveness 

of these systems. In general, this research has not been very positive. In one of the first studies, 

Ellis, Shepherd & Davies (1975) had subjects build composites using the Photofit system with 

the target present during construction or following a 10 second exposure. The resulting 

composites were rated for likeness to their target by independent judges on a 7-point scale. 

Rating scores were significantly higher when the target was visible during construction 

compared with photofits constructed from memory. In a following experiment, 12 of the 

original 32 subjects - the six who had performed the best and the six who had performed the 

worst - made new composites from memory. A different group of participants attempted to 

pick out the original photographs from 35 distractors with the composites on display. Overall 

performance was rather low at 12.5% correct, although composites made from subjects who 

were found to be good encoders in the previous experiment [those with higher rated 

composites] had a significantly higher success rate (16.2%) than the poor encoders. 

A low level of success was also observed by Ellis, Davies & Shepherd (1978a). Subjects 

constructed composites with differing target exposure (15 seconds or 2.5 minutes) and either 

intentional or non-intentional face learning. The resulting composites were rated on a 7 point 

scale by a different group of subjects and no significant differences were found across 

conditions. Overall, the average rating3 scores corresponded to the category between “below 

average” and “moderate” likeness to the target and were thus lower than the available 

categories of “good” and “very good”. Further problems with the Photofit system were 

                                                                                                                                                                         

produces from a Sketch Artist: “the term composite means any image produced by computerised systems 

or drawn” (ACPO(S), 2000, page 14). 
3 Throughout this thesis, unless otherwise specified, the average of a variable is assumed to refer to the 

mean. Frequently, angle brackets are used to represent the mean of a variable. For example, <rating> 

would refer to mean rating scores. 
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illustrated by no significant differences in rating scores of photofits created with the target 

visible and from memory. It is believed that the ability to constantly scrutinize a face [i.e. in the 

target visible condition] should enable finer adjustments to be made and result in an overall 

better rated composite. This was not found to be the case and the authors imply that it is the 

system that is limiting performance rather than the subject’s memory of a target. 

A similar discovery has been made using the Identikit system4. Laughery & Fowler 

(1980) observed no significant difference in rating scores between Identikit composites 

constructed with the target present and from memory. Their study employed the use of a 

sketch artist - often used as an alternative representation to a composite in a forensic setting - to 

create a drawing for each of their 71 target faces. They had reason to believe that the targets 

were not too difficult to represent visually since the sketches were rated significantly better 

[constructed with the target present or from memory] than the composites. 

Note that, like the photofit systems, the sketch artist typically works from a description 

provided by a witness (Shepherd & Ellis, 1996). The effectiveness of the verbal description itself 

has been compared against the manual systems. In Christie & Ellis (1981) for example, subjects 

viewed a target for 60 seconds, provided a description and then constructed a composite with 

the Photofit system. A different group of subjects attempted to identify all six targets in 18 

distractors given the description or the composite. The results clearly showed that verbal 

descriptions were superior (48% accuracy in this matching task) to photofits (23% accuracy).  

It is worth noting at this stage that the utility of a Photofit is believed to be primarily to 

limit the number of possible suspects, a so-called “type likeness” (e.g. Ellis, 1996; and Penry, 

1976), rather than to actually identify them. This notion is reflected in a study that asked police 

officers how valuable they thought Photofit was in solving 140 crimes (Darnborough, 1977 

[cited in Clifford & Davies, 1989]). In only 5% of cases the photofit was “entirely responsible” 

and in 17% was the photofit “very useful”. A later study in 1985 revealed that in less than 3% 

of reported cases was the photofit “of assistance to the investigating officer” (Bennett, 1985) 

and underscores the notion that photofit requires the use of supporting evidence to be of any 

general value. 

So, why use a visual representation in the first place? The main reason is that 

recognition performance can be near ceiling level (even when the image quality is poor) if the 

target is known to the person carrying out the identification (e.g. Bruce, 1988; Burton, Wilson, 

Cowan & Bruce, 1999; Hancock, Bruce & Burton, 2000; and Koehn & Fisher, 1997) and is 

                                                           
4 Although the Identikit II system arguably produces more realistic composites, since photographic 

elements are used instead of line drawings, no formal analysis of the Identikit II is known (Shepherd & 

Ellis, 1996). Note that research does indicate the benefit of more realistic representations to face 

recognition (e.g. Davies, 1982, 1983b; Leder, 1996; and Perrett, Benson, Hietanen, Oram & Dittrich, 1995). 
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therefore considerably higher than that obtained via a verbal description (Christie & Ellis, 

1981). Indeed, that Christie & Ellis (1981) found less than 50% accuracy in matching via a 

description does suggests people have difficulty in describing faces anyway. Note that this 

same level of accuracy has been reported elsewhere (Shepherd, Davies & Ellis, 1978). A second 

reason is that the visual memory of a face does not decay as fast and is known to be more 

robust against interference than a verbal one (e.g. Davies, 1983a; Davies, Ellis & Shepherd, 

1978; and Ellis, Shepherd & Davies, 1980). 

Christie & Ellis (1981), Ellis et al. (1978a) and Laughery & Fowler (1980) attribute their 

poor results to limitations in the composite system, including the limited number of features 

available. This can be illustrated with, for example, hairstyle. Despite the vast variation in 

possible hair colouring and style, in general there are only 204 different hairstyles in the 

original Photofit system and 130 in the Identikit system. The limited number of hairstyles is of 

particular interest due to the established role of hair in unfamiliar face recognition (e.g. Ellis, 

1986). 

Other concerns have been expressed by the lack of a decline in photofit performance 

when composites are created after much longer periods of time after target exposure. Davies, 

Ellis, & Shepherd (1978) found that their subjects’ recognition ability to a target face 

deteriorated significantly after a period of 3 weeks. However, there was no significant 

difference in the rating scores between composites made immediately (after a 15 second 

exposure) or after 3 weeks. The lack of deterioration in performance was suggested as a deficit 

in the Photofit system.  

It is interesting to note that McNeil, Wray, Hibler, Foster, Rhyne & Thibault (1987) also 

found no significant decline in performance with Identikit composites constructed after 3 

weeks. In another Identikit study, Green & Geiselman’s (1989) subjects constructed composites 

after a 15 second exposure to a target. Other subjects attempted to select the target face from a 6 

item photo spread using the composite. They found composites were identified at chance level 

after only a week’s delay. In fact, this later piece of research also found chance level of 

performance for composites rated as being salient or distinctive. Such a finding is contrary to 

research suggesting that distinctive faces are better remembered (e.g. Hancock, Burton & 

Bruce, 1996; Shapiro & Penrod, 1986; and Valentine & Endo, 1992). As an example, Light, 

Kayra-Stuart & Hollander (1979) report a significant increase in accuracy (an increase in hit rate 

and a decrease in false alarms) on a recognition task for distinctive faces compared with more 

average looking exemplars. As the memory of distinctive faces is better, one would expect 

higher quality composites that would be better identified than composites constructed from 

more typical faces. The lack of such an effect in Green & Geiselman’s study indicates yet 

another deficiency in the composite kit: the inability to represent faces which are atypical or 

salient. 
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Several attempts have been made to improve the relatively low matching and rating 

scores of composites (e.g. Christie & Ellis, 1981; Ellis, Davies & Shepherd, 1978b; and Ellis, 

Shepherd & Davies, 1975). In one successful study, Ellis, Davies & Shepherd (1978b) 

investigated the effect of feature demarcation lines present in Photofit constructions. They 

found that these lines reduced the identification rate (hit rate minus false alarm rate) in 

recognition tasks where subjects were required to report whether a face had been seen 

previously. This suggests that Photofit feature boundaries interference with face processing. 

Another study explored the limited number of features available in a composite kit. 

Gibling & Bennett (1994) had experienced operators construct composites using Photofit with 

the original photographs as a reference. These composites were then subjected to a standard 

method of artistic enhancement using acetates that both removed the presence of the photofit 

feature lines and added elaborative detail. Subjects were given the composites to pick out the 

targets from a 12 person photo spread. A 15% hit rate was found for the untouched Photofits 

but this increased significantly to 54% with acetate enhancement (the number of false alarms 

was found to reduce with enhancement as well). It would appear then that photofits can be 

more recognizable if enhancement techniques are employed. 

The Electronic Systems 

An alternative to artistic enhancement might be to increase the number of features 

available in the manual systems. This has been a consequence of the electronic variants. There 

are many such systems available to Police Forces globally. Examples include CADC, Futon, 

Mac-a-mug Pro, WHATISFACE, EFIT and PROfit (originally CD-FIT). Sadly, little research has 

been performed to date to establish their effectiveness. It would appear that most research has 

been carried out on the Mac-a-mug system (though data is now emerging for the EFIT system). 

The Mac-a-mug Pro (hereafter MAMP) runs on the Macintosh computer and contains 

palettes of facial features that an operator can select and assemble. The number of possible 

composites that can be constructed is about two orders of magnitude greater than the manual 

Photofit system (data extracted from Cutler, Stocklein & Penrod, 1988). Unlike the manual 

systems, features can be resized, moved and oriented in a freehand way. An additional 

Macintosh paint package, such as MacPaint or MacDraw, is available for elaboration work. 

Theoretically then an infinite number of faces can be created with the MAMP. The absence of 

the feature boundaries, together with an increase in the range and manipulability of features, 

plus the presence of a paint package, should in theory result in a high level of performance for 

this system. 

The first paper published to evaluate the MAMP was Cutler, Stocklein & Penrod 

(1988). In this study, an experienced operator created composites of 10 target faces. Each 

composite was made with the target in view and operators attempted to create the best 
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resemblance possible. In one of the recognition phases, subjects were shown the resulting 

composites and had to select which were the original photographs from among 60 distractors. 

The identification rate (hits minus false alarms) was 49% and this high level of performance led 

the authors to suggest that the MAMP system can perform well.  

The identification rate found by Cutler et al. is comparable therefore with the figure of 

54% found by Gibling & Bennett (1994) and suggests that performance of an electronic system 

is able to match that of a manual system when used with artistic enhancement. Caution must 

be applied in making generalizations from this study. Composites were made with the target in 

view, constituting a non-ecologically valid operational procedure.  

In a later study though, Wogalter & Marwitz (1991) had 54 subjects create multiple 

photofits using MAMP given a short (8 second) exposure to a target. All composites were later 

reworked with the target brought back into view to examine any decline in performance when 

facial memory was employed. A further 5 subjects decided which target each of the composites 

were based and five more subjects rated each composite for similarity. They found a significant 

increase in both matching and rating scores when composites were created “in-view” 

compared with memory (and these measures significantly increased as each subject created 

more photofits). It is interesting to note that there was a good overall matching ability of 40% 

for composites created from memory. This figure compares favourably with the matching 

scores of composites created with the target present in Glibling & Bennett and Cutler et al. It is 

believed that the reason the matching scores were so similar is due to the nature of the task. 

The lack of any distractors in the Wogalter & Marwitz study means that there were only 6 faces 

in the target array. Subjects could have matched with relative ease on a few facial features, 

inflating the matching scores. 

In contrast, two MAMP studies have examined composite performance in the presence 

of distractors. Koehn & Fisher (1997) had subjects create composites with the MAMP 2 days 

after a short target exposure (of several minutes5). Despite care in employing techniques 

believed to maximize performance – including minimal verbalization of face, use of a guided 

memory technique (in which subjects are encouraged to recreate the context of the event), trait 

encoding6 and assistance of an experienced operator – they found that subjects could only 

identify 4% of the original faces from a target array containing 5 distractors. They attribute this 

performance to construction under memory conditions, since composites created in-view by 

the experienced operator resulted in 77% recognition. This does indicate very poor 

performance for the Mac system.  

                                                           
5 The exact time was not specified in the paper. 
6 There is evidence though that trait encoding may not be the best method to adopt. For a feature-based 

composite system, it is likely the case that a more componential encoding would be better (Wells & 

Hryciw, 1984). 
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The result from Kovera, Penrod, Pappas & Thill (1997) is just as damning. In this study, 

10 subjects created photofits of 5 faculty members and 5 previous high school classmates. Other 

college students who knew these individuals were unable to identify the composites above 

chance from an array of 40 distractors. Also, further subjects who were not familiar with the 

targets were unable to pick them out in a 5 person photo-spread (the composite was displayed 

to the subjects for 30 seconds before presentation of the photo spread). It should be noted that 

composite creation was carried out with the use of an experienced operator and there was an 

opportunity for photographic elaboration in the MacPaint package (the importance of which 

has been highlighted by Gibling & Bennett, 1994). 

It can be seen then that the MAMP system appears to be problematic in the more 

forensically important condition of composite creation from memory. This observation has 

been seen with several other photofit systems, including CADC and EFIT. The CADC7 system 

contains a digitized version of the elements present in the Photofit system. It offers the ability 

to move and resize features in a freehand way (rather like the MAMP). Once again, CADC can 

overcome concerns regarding the limited number of faces possible in Photofit. Functions are 

also available to combine and manipulate multiple hairstyles and a blending routine ensures 

that the feature delimiting lines, characteristic of the Photofit system, are removed.  

The CADC performance was compared with the Photofit system itself by Christie, 

Davies, Shepherd & Ellis (1981). Subjects used either the Photofit or the CADC system to create 

a composite after a 1 minute target exposure and then with another target in-view. No 

significant differences in the overall identification rate between systems were found for a 

matching task with 18 distractors, except for subjects whose first attempt were composite 

constructions from memory, then there was a significant improvement for the CADC system 

(from 18% matching accuracy with Photofit to 28% for CADC). Comparing initial constructions 

from memory, it can be seen that the Photofit matching accuracy of 18% is comparable to that 

found by Ellis et al. (1975), but CADC’s performance at 28% is more impressive. It 

demonstrates a marked increase in success for an electronic system in a more ecologically valid 

situation. Sadly, no additional studies using this system are known and therefore it is unclear 

whether the CADC results are reliable. 

More reliable data is emerging from the EFIT system though. EFIT is currently in use 

by Police Forces globally, it runs on a PC and is similar to MAMP and CADC in that facial 

features can be selected, resized and manipulated in a freehand way until an acceptable 

likeness has been reached. Selection of these features is achieved through the use of verbal 

descriptions arranged in a standardized coding system: the ‘Aberdeen’ Index (Davies, 

                                                           
7 CADC is acronym for the Cambridge-based lab (UK) that created the photofit software: the Computer-

Aided Design Centre. 
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Shepherd, Shepherd, Flin & Ellis, 1986). Standard paint packages, e.g. Adobe Photoshop, can 

be used for artistic enhancement.  

Curiously, despite its widespread use, there are only a handful of papers published 

evaluating EFIT. Arguably the most useful is a comparative study with the Photofit system by 

Davies, van der Willik & Morrison (2000). Twenty-four subjects created a composite using both 

systems, first from memory and then with the target present8; 2 targets were used: one familiar 

and one unfamiliar. A further 24 subjects, who were familiar with the targets, attempted to 

recognize them and then match them with the original photographs. Overall, composites were 

recognized and matched better if the target was present and if the target was familiar to the 

subject during construction. Matching accuracy was 63% from memory, though this was 

carried out without distractors. Compared against Wogalter & Marwitz (1991), who also 

performed matching without distractors, the EFIT system is about 20% higher on this measure 

and suggests that EFIT is superior to Mac-a-mug.  

There is only one known direct comparison between the EFIT and the Mac-a-mug 

system. This formed part of Christine Koehn’s Ph.D. and only the abstract is available for 

inspection (Koehn, 1996). To quote,  

 

“A comparison of E-FIT and Mac-A-Mug Pro composites demonstrated that E-FIT composites 

were of better quality than Mac-A-Mug Pro composites. However, neither E-FIT nor Mac-A-

Mug Pro composites were useful for identifying the target person from a photograph lineup. 

Further, lineup performance was at floor level such that both E-FIT and Mac-A-Mug Pro 

composites were no more useful than a verbal description” (page 4640). 

 

This provides further evidence for the limited advantage of EFIT over MAMP, but 

underscores the poor performance of both systems. The other important message from the 

Davies et al. study is that there was no significant advantage for the EFITs over the Photofits 

(for naming and matching tasks), except for familiar targets created with the target in-view. 

This contrast is of little forensic relevance since composites are created from the memory of an 

unfamiliar person in a real case. This suggests that EFIT is no better than the older Photofit kit 

when tested appropriately. Overall, the average naming rate of composites created from 

memory was also low (17%). 

Sadly, even lower EFIT identification rates were found by Davies & Oldman (1999). 

Specifically, the study was exploring whether holding a positive or negative attitude towards a 

target created with EFIT would have an effect on future recognition. EFITs were initially 

constructed from memory of 4 famous faces by subjects who either strongly liked or disliked 

                                                           
8 The target was re-introduced for the target-visible condition and subjects worked with the operator to 

modify the composite. 
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them (the target was re-introduced later for the target-present condition). A significant effect of 

attitude (higher for the targets that were disliked) was found only for constructions made in 

the presence of the target. The resulting average spontaneous naming rate was found to be low 

at 6%. When construction was made with the target present, the average naming rate only 

increased to 10%. It is conceivable that this lower level of performance [compared with Davies 

et al. (2000)] is the combined result of using only a few targets and not knowing how many of 

the original targets were recognizable by subjects9. A follow-up study is obviously required to 

explore this issue. 

The only other known published EFIT study is Brace, Pike & Kemp (2000). This study 

also employed well-known or famous faces as targets. Interestingly, they found a relatively 

large effect of the verbal description on the subsequent identification of EFITs. Specifically, 

they found about a 10% increase in naming rate when composites were created by an operator 

alone compared with composites constructed by the normal interaction process involving 

another person (a “describer”). Although EFITs were constructed both from memory and with 

the target present, it is not possible from this study to extract the recognition rate for 

composites constructed just from the memory10. The paper does, however, quote a mean of 

24.95% for composites constructed via the “describer”. This provides a rough indication of 

performance that is not vastly different from that found by Davies et al. (2000). 

Of the remaining electronic systems, little evaluation has been carried out. Gillenson & 

Chandrasekaren (1975) examined WHATISFACE. This is claimed (by the authors) to be the 

first computerized photofit system and can be used by non-artists to produce sketch-like 

composites. They demonstrate an 81% matching accuracy with a large number of composites 

(60) created with the target visible; the composites were used to select the original photographs 

(with no distractors). This measure compares rather favourably with that found by Davies et al. 

(2000) for EFITs constructed with the target present (83%). As there is no other data available, it 

is assumed that this system is likely to be no better than EFIT.  

Summary 

In summary, it appears that the manual Photofit systems can perform reasonably well 

(as measured by matching accuracy) if artistic elaboration is permitted. Sadly, Gibling & 

Bennett’s (1994) study carried out enhancements with the target present and in itself provides 

little indication of performance if elaboration is carried out from memory. However, if 

                                                           
9 Davies (personal communication) points out that the study did not check whether subjects in the 

recognition phase actually knew the original celebrities. 
10 This is because subjects were shown pairs of composites to name, one constructed from memory and 

the another constructed with the target visible. It is not known which composite resulted in the 

identification (Pike, personal communication). 
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enhancement of this type serves to allow greater feature expression, then it may be valid to 

equate the “enhanced” performance of Photofit to that of the electronic systems. However 

when one looks at the performance first of the Mac-a-mug system, apparently good 

performance is only observed when a target is present during construction. Certainly the work 

of Kovera et al. (1997) and Koehn & Fisher (1997) demonstrate very poor results when 

construction and/or identification occurs from memory with the Mac-a-mug system.  

If one compares matching accuracy, Davies et al’s (2000) data suggests that EFIT is 

preferable to Mac-a-mug [being about 20% higher than that found by Wogalter & Marwitz 

(1991)] and is reinforced by Koehn (1996). Worryingly, Davies et al. found a low overall 

identification rate for the EFITs (17%) that was not significantly different compared with the 

Photofits when construction was carried out from memory. In addition, this figure is not 

markedly different from the identification rate of 25% found by Brace et al. (2000) with 

multiple composites used for recognition. The other EFIT study by Davies & Oldman (1999) 

revealed even lower naming rates from memory (6%). Even if EFIT is preferable to Mug-A-

Mug, and is no different to WHATISFACE, the likely performance via identification rates is at 

best low in the most valid mode of construction. The data available to date suggests therefore 

that the Herculean effort gone into computerization is largely wasted, since the older, manual 

photofit systems appear to perform just as well in the normal operating mode expected by 

witnesses. 

 

Holistic Notions 

A recurring reason given for the failings of the manual and electronic systems 

discussed so far concerns the method of construction itself (e.g. Ellis, Shepherd & Davies, 1975; 

Kovera et al., 1997; and Koehn & Fisher, 1997). Recall that in order to build a composite, 

features are selected from palettes, assembled into a face and then, in the case of the 

computerized systems, “jiggled” into an acceptable facial configuration. Ellis, Shepherd & 

Davies (1975) believe that decomposing and scrutinizing a face into its constituent parts is 

likely to result in interference in the internal representation of the face stored in a witness’s 

(subject’s) memory. This notion fits well into a large body of data that strongly suggests that 

faces are perceived as a conjunction of facial features viewed at the same time. In other words, 

it is the parallel processing of facial features (specific features in a given configuration) that 

leads to recognition; one might say that faces are perceived holistically. 

An early study by Davies & Christie (1982) demonstrated that consideration of facial 

features in isolation to the rest of the face could be problematic. In their study, subjects rated 

whether a pair of eyes or a mouth was present in a target. The ratings were collected both in 

isolation and within the context of a face (made from the Photofit kit), and the target was either 
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present during the rating or it was made following a 1 minute exposure. Analysis of the rating 

scores revealed high and significant inter-correlations (correlation coefficients were in excess of 

0.74) between the memory and target visible presentations in all conditions except ratings 

performed from memory with features in isolation. This suggests that the internal 

representation of the face is biased towards a complete or holistic face rather than by a set of its 

component parts.  

Similarly, Tanaka & Farah (1993) reveal a facilitation in recognition when facial 

features are recognized in their normal context. Their subjects learned 12 faces and then 

attempted to recognize the corresponding facial parts when displayed in a scrambled, inverted, 

isolated and a normal configuration. Recognition was significantly better only for whole faces 

displayed normally (and was over 10% higher than for the isolated feature presentation). The 

authors failed to find a comparable whole object advantage repeating the paradigm with 

computer generated pictures of houses and their “features” (i.e. doors and windows). This 

provided supporting evidence that holistic effects appear restricted to human faces. 

Tanaka & Sengco (1997) further explored the notion of “appropriate” facial contexts. 

Subjects learned 6 target faces (together with an associated name) and were tested on their 

ability to recognize individual features contained in those faces. Stimuli for the study and test 

phase were unfamiliar to subjects and were constructed from the MAMP software. Recognition 

was performed in faces with an appropriate facial configuration (i.e. same as the target), a facial 

configuration where the eyes were displaced horizontally (a new configuration) or with 

features in isolation. Once again, they found a significant advantage for the detection of eyes, 

noses and mouths in the original configuration over an isolated format (a 12% increase in hit 

rate). Although the new configuration was significantly worse than the original, it was 

significantly better than the isolated condition. This is an important finding, and suggests that 

even an “incorrect” facial context (i.e. the new configuration) can be beneficial to recognition of 

individual features seen previously11. This finding has been reported elsewhere (Bruce, Healey, 

Burton, Doyle, Coombes & Linney, 1991). 

There are several studies, using a similar paradigm of orientation and feature changes, 

providing further support for holistic facial representation (e.g. Yin, 1969; and Young, 

Hellawell & Hay, 1987). Another approach though has been to manipulate the instructions 

given to subjects to encourage different facial encoding strategies (e.g. Wells & Hryciw, 1984; 

Shapiro & Penrod, 1986 and Sporer, 1991). These studies directed attention towards the 

                                                           
11 The results of studies such as these have been influential in a change of procedure used to create 

composites (e.g. Davies, Shepherd, Shepherd, Flin & Ellis, 1986). The issue concerns the selection of facial 

features. Although it is entirely possible for eyewitnesses to select individual features from palettes, it 

appears advisable for features to be selected in the context of a whole face. That is, even for feature-based 

methods, improvement can be made if there is a bias towards a more holistic method of construction. 
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physical aspects of a face (referred to as analytical, componential or feature-based encoding) or 

encouraged the assignation of character trait (a holistic encoding). Bower & Karlin (1974) were 

the first to examine this effect with human faces. They had subjects identify gender (analytical) 

or report on a face’s honesty or likeability (holistic). A subsequent recognition task was best for 

honesty judgments, followed by likeability and worst for gender discriminations.  

Shapiro & Penrod (1986) performed a meta-analysis on a large number of mainly lab-

based studies (128 in total) in facial recognition and eyewitness identification. 19 main 

variables were analyzed, including factors such as subject age, gender of target, stimulus 

exposure and encoding instructions. In the 29 studies relevant to encoding, it was found that 

the hit rate was significantly greater if the instructions orientated a subject to encode a face 

with a personality trait rather than to locate a facial feature (a feature-based encoding). 

Similarly, Coin & Tiberghien (1997) investigated 26 studies comparing judgments about 

physical features or personality traits. They found that in 25 out of 26 studies, a significant 

increase in the identification rate (hits) for trait encoding was observed; 8 of these were 

published after Shapiro & Penrod (1986). Research has even found that performance can 

deteriorate if a feature-based analysis (as opposed to a trait-based analysis) is carried out at the 

same time as attempting to recognize a face (Berman & Cutler, 1998). 

Despite convincing evidence then for a holistic coding scheme for recognition, such an 

observation may not be pervasive in all face processing paradigms (e.g. Wells & Hryciw, 1984; 

Laughery, Duval & Wogalter, 1986; and Wells & Turtle, 1988). In Laughery, Duval & Wogalter 

(1986) for example, subjects studied a target face and then created a photofit using the Identikit 

system. A follow-up questionnaire examined, inter alia, the natural encoding strategy 

employed. The resulting photofits were then rated for likeness to their corresponding targets 

(by a different group of subjects). It was found that the highest rated photofits were produced 

from those subjects who utilized an analytical or feature-based method of encoding rather than 

a more trait-based (holistic) approach. 

Wells & Hryciw (1984) also manipulated the strategy used for encoding. Their subjects 

viewed a target under either feature or trait encoding. Half the subjects constructed a 

composite using Identikit while the other half attempted to recognize the photofits themselves 

from a 6 item photo spread. They discovered that hit rates were best under trait encoding (a 

30% increase) but construction was best under feature encoding (a 10% increase).  

Both Wells & Hryciw (1984) and Laughery et al. (1986) lend support to the notion that 

encoding prior to photofit construction is better if feature-based rather than trait-based. This is 

not surprising of course since all the systems discussed so far are componential. One possible 

criticism with both of these studies is that they employed the Identikit system and, along with 

the Photofit kit, may not be sensitive enough on their own (i.e. without artistic enhancement) in 

order to capture a likeness of sufficient quality. As mentioned above, much better results can 

be achieved with the electronic systems if the target is present during construction (e.g. Koehn 
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& Fisher, 1997; Davies et al., 2000; and Wogalter & Marwitz, 1991). A sensible test then would 

be to compare the electronic photofit performance under differing encoding conditions. 

Although this manipulation has not been performed, one would expect to observe better 

performance under feature encoding.  

In a naturalistic setting however, there is good reason to believe that individuals will 

more often choose a holistic over an analytic strategy when there is no expectation of a memory 

test; Olsson & Juslin (1999) found that a holistic approach was primarily adopted for 64% of 

their subjects. This is in contrast to Laughery et al. (1986), where subjects were aware of an 

ensuing memory task, and 62% were found to have adopted an analytical strategy. Taken 

together, these results suggest that the current photofitting approaches are biased against those 

witnesses who are not aware that they need to create a composite at a later date (and tend to 

adopt a holistic encoding) and those who are aware of a test and go onto encode holistically 

anyway. A further consequence is that a system with an exclusive holistic bias may not be the 

best system for analytical encoders. Overall then, a hybrid holistic-componential photofitting 

approach may be optimal for a witness. 

 

Parametrized Models 

The prior discussion brings into question the exclusive approach of feature-based 

methods for the 2D representation of a face for the purpose of facial imaging from memory and 

posits that a method that can allow a holistic representation may be more appropriate. 

However, in order to represent and manipulate a face, a parametrizable model is required. 

That is, there needs to be some way of specifying a face via a set of parameters.  

Valentine (1999) explains that the notion of a multidimensional similarity space 

(MDSS) has been a highly influential approach in the representation of stimuli. Research 

suggests that, with respect to faces, there exists a “typical” facial representation (e.g. Valentine 

& Bruce, 1986). In his “face space” model, such a representation is assumed to reside at the 

origin of the MDSS. Valentine justifiably attributes considerable weight to the existence of a 

face space based on the significant research in facial distinctiveness. The basic notion, as 

mentioned briefly earlier in the chapter, is that distinctive faces are better recognized than more 

typical faces (e.g. Hancock, Burton & Bruce, 1996; Shapiro & Penrod, 1986; and Valentine & 

Endo, 1992). Bruce, Burton & Dench (1994) found that distinctiveness ratings (of unfamiliar 

faces) were significantly correlated with physical deviations from an “average” face (provided 

that the effect of hair was controlled). Likewise, multidimensional scaling (MDS) - a technique 

that establishes relationships between items given similarity ratings - was employed by 

Johnston, Milne, Williams & Hosie (1997) with pairwise comparisons of similarity rating scores 

on 36 faces, half of which were distinctive. The resulting analysis revealed that the 18 faces that 



28 

were rated as distinctive were distributed further away [in the space created by the MDS] from 

the 18 that were considered more typical.  

Valentine posits that the “face space” framework contains three broad approaches that 

specify the physical aspects of a face, the psychological aspects of a face or provide a coding via 

Principal Components Analysis (a similar result is found with neural networks). For each 

approach, there is an average or prototypical face in the axial centres and movement away 

from this point provides a code that increases in intensity according to the appropriate metric 

specified. For example, a psychological model would employ dimensions that map onto 

psychological variables (Ashby & Townsend, 1986; and Nosofsky, 1986). It would appear that 

one or more of these dimensions are related to facial distinctiveness. As discussed above, there 

is considerable research to suggest that faces significantly different from an average face (a 

distinctive or salient face) enjoy an advantage in face perception. Also, work by Vokey & Read 

(1992) and O'Toole, Deffenbacher, Valentin & Abdi (1994) find that typicality12 has separate 

orthogonal components for both the familiarity13 and the memorability14 of a face. Vokey & Read 

(1992) go so far as to hypothesize that these components are reflected in the face space. 

In contrast to a psychological model, a physical face space models the physical aspects 

of the face. Valentine relates this model to Brennan’s caricature generator (Brennan, 1985). In 

the generator, 169 coordinate points are assigned to the outline of facial features and are 

connected by line segments. Each of these coordinate points can then be exaggerated with 

reference to an internal set of coordinates that represent the average facial location. The result 

is a line drawing that exaggerates distinctive facial features. Rhodes, Brennan and Carey (1987) 

find that caricatures of famous people were recognized faster (though not more accurately) and 

rated higher than the original line drawings. The reverse pattern of effect was likewise found 

for anti-caricatured faces (where the differences from the “average” are reduced). The main 

point here is that the physical face space comprises of a single dimension for each of the 169 

coordinate points contained in the model. Once again, the axes originate from an average or 

typical face in the centre of the model. 

Another example of a physical face space is employed in the relational manipulations 

possible in the main computerized photofit systems (e.g. EFIT, PROfit and MAMP). The face 

space model is being explored each time a feature is moved (e.g. moving the eyes closer 

together). In this case, there would be two main dimensions for each possible feature 

manipulation, one vertical and one horizontal (although other dimensions can be conceived for 

feature size, feature rotation and variation in intensity).  

                                                           
12 Typicality can be thought of as an inverse function inverse of distinctiveness. 
13 A measure based on the degree of confusion between faces. 
14 A measure depicting the ease by which a face may be remembered. 
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The third type of face space proposed by Valentine concerns the use of Principal 

Components Analysis (or neural networks15). Principal Components Analysis (PCA16) is a 

statistical technique that can be used for data representation and compression. An underlying 

assumption of PCA is that there exists a lower dimensional space or manifold in which data 

can fit. Computation normally involves an initial data normalization (to remove item scaling 

and bias) followed by the computation of a covariance matrix. The orthogonalization of the 

matrix results in a set of eigenvalues and eigenvectors. The eigenvectors are produced such 

that the first one captures the most variance in the data, the second captures most of the 

variance once the first has been removed, and so on. Re-construction of the original images is 

possible by a linear weighted sum of the eigenvectors. 

The PCA process has overcome what has been referred to as the “curse of 

dimensionality”. Murase & Nayar (1995) explain that even for a small image database of 100 

views of 100 images, this results in 10,000 images (or dimensions) being located in a highly 

sparse space. PCA would permit a compressed representation in (say) 10 dimensions, a 

compression ratio of over 1,600:1 (with an image size of 128x128 pixels). Projection to a lower 

dimensional space then vastly increases image density and also permits intermediate 

representations. This last point is important since it is the ability to generate new or novel faces 

(i.e. representations different from those in the database) that is of value should the technique 

be used as part of a photofit system.  

Sirovich & Kirby (1987) was the first study to demonstrate that faces could be 

represented well with PCA. They started with monochrome photographs of 115 full-face 

Caucasian males. Simple normalization was performed that aligned the head in the vertical 

plane17, the eyes in the horizontal plane and resized the image to make the width of the head 

the same in each photograph. They found that the first eigenvector (eigenpicture in their terms) 

represented the arithmetic mean intensity of the faces in the set and that the original images 

could be reconstructed with a good likeness using the first 50 parameters (to within a 4% 

normalized error18). This study cropped the images to reveal just the eyebrows, eyes and nose. 

In later work, Kirby & Sirovich (1990) extended the analysis to include the front part of the 

                                                           
15 Neural networks are a class of simulation techniques inspired by the morphology and/or function of 

neurons (Rumelhart & McClelland, 1986). As they have been found to produce results similar to that 

obtained by Principal Components Analysis (e.g. O’Toole, Abdi, Deffenbacher & Valentin, 1993; and 

Linsker, 1986), they will not be considered separately in this discussion. 
16 The technique is also known as the Karhunen-Loeve (LV) expansion and the Hotelling Transform and 

was first described in 1901 by Pearson (Kirby & Sirovich, 1990). 
17 This was achieved by manually aligning each image so that they overlapped about the line of vertical 

facial symmetry. 
18 This is the RMS error between the original image and the reconstructed image, divided by the vector 

length of the reconstructed image. 
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hair, the forehead and the mouth (by presenting the face as an oval cameo shape). Once again, 

the majority of the variance (about 95%) was captured in the first 50 eigenpictures.  

Craw & Cameron (1991) observed that Sirovich & Kirby (1987) and Kirby & Sirovich 

(1990) used an ad hoc method of image alignment. This was necessary in order to limit blurring 

effects that occur when interpolating between faces in the face space. These studies performed 

PCA on the pixels in the images of the database corpus. This necessarily means that unless all 

the facial features are aligned, the pixels defining the facial features in the eigenpictures will 

not completely overlap and a noticeable blurring effect will result when the eigenpictures are 

interpolated. The effect of their crude alignment procedure can be seen in the “smudged” 

appearance around the eyes of the average face (refer to Fig. 1 in Sirovich & Kirby, 1987).  

There are other methods of feature alignment (Brunelli & Poggio, 1993; Craw & 

Cameron, 1991; and Troje & Vetter, 1996). For example, Craw & Cameron (1991) located 

coordinate points (Craw & Cameron refer to them as control points) around the major facial 

features (eyes, eyebrows, nose and mouth) and the outline of the head including the ears, chin 

and jaw. The average position of each control point was computed across the image set and the 

image was triangulated to produce an image mesh. Each database image was then morphed to 

the common face shape before performing PCA. The common shape was achieved by 

distorting or morphing the areas of the image defined by triangles (a bilinear interpolation) such 

that all triangles had the same common shape (they refer to the resulting image as shape-free). In 

their study, they repeatedly demonstrate that faces not part of this image database can be 

constructed to an “almost identical” accuracy using a linear combination of eigenvectors. 

Hancock, Burton & Bruce (1996) argue that the control point information itself can 

form part of a PCA that models the relational aspects of the face (e.g. the distances between 

facial features). They refer to this process as a shape PCA model with the resulting eigenvectors 

termed eigenshapes. The second model, concerning the shape-free image intensities, is referred to 

as the texture PCA model (and the associated eigenvectors are referred to as eigenfaces). The 

term texture is used in a restricted sense in the paper, referring to the information in the image 

that remains after the face has been shape-normalized (i.e. made “shape-free”). Reconstruction 

of a face (or creation of a novel face), begins with a weighted recombination of the eigenfaces 

(i.e. from the texture PCA model) and the eigenshapes (i.e. from the shape PCA model), 

producing a shape-free face and an associated control point vector. The image is then morphed 

(from the average shape of the image) to a new shape defined by the control point vector. Thus, 

a fully parametrizable face model is available using these techniques.  

It is worth pointing out that PCA used on a dataset as described above naturally 

produces a global facial representation (Hancock, Bruce & Burton, 1997). Each dimension of the 

subspace (i.e. the eigenvectors) provides a representation that affects the entire image (rather 

than an isolated part of it). This is due to the computation of a covariance matrix that associates 

components of the face that change at the same time. For example, Hancock et al. illustrates 
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that the first subspace dimension for shape provides a representation that looks as though a 

head is “nodding”. This said, it is conceived that a more analytical or feature-based approach is 

also possible with this model. Recall that coordinate points were used to highlight the features 

of the face. It is entirely possible to “move” these features in a free-form way by simply 

morphing the image specified by the control points. This simple approach would permit a 

componential exploration of the face space (rather like the current electronic composite 

systems) and result in both a holistic and an analytical implementation. 

Which Method(s) to Adopt? 

Of the three broad approaches in the face space framework proposed by Valentine 

(1999), all three could offer a holistic solution for a photofit system. Intuitively, the most 

appealing is the psychological one as such a model could represent a coding scheme analogous 

to that found in human face perception. However, despite indications of the established 

importance of distinctiveness, familiarity and memorability, the nature of the dimensionality of 

this space is currently unknown. In contrast, the caricature generator of Brennan specifies the 

physical aspects of a face and is an inherently holistic approach. However, the generator 

requires an external facial image in order to create faces and therefore it is difficult to imagine 

how one would explore the face space without such an external reference. On the other hand, a 

method involving PCA seems the most promising since it can offer not just a holistic solution 

but an analytical one as well. Using Valentine’s terminology, this hybrid solution would 

implicate both a physical and a PCA approach. 

Interestingly, there is mounting evidence in the literature that links PCA and face 

perception (e.g. Hancock, Burton & Bruce, 1996; O’Toole, Abdi, Deffenbacher & Valentin, 1993; 

and O’Toole, Deffenbacher, Valentin & Abdi, 1994). For example, O’Toole et al. (1993) found 

that PCA performed on a mixed gender Caucasian database can be used for both gender 

classification and face recognition; O’Toole et al. (1994) has shown that such a model can 

parallel human performance in several measures such as typicality, familiarity and 

attractiveness. Furthermore, PCA has already been applied in a forensic setting to search for 

targets in mugshot albums (Baker & Seltzer, 1998); refer to Chapter 3 for details. 

Towards a New Approach 

The most promising route forward in producing a photofit system seems to be based 

on Hancock, Burton & Bruce’s dual shape-texture PCA model coupled with an analytic-type 

free-form feature manipulator. This would provide a holistic coding scheme in which, by the 

very nature of the linear PCA subspace, can be used to generate a potentially infinite number 

of interpolated faces. Arguably, the easiest method to explore the face space is to directly alter 

the coefficients of the Principle Components (PC) for both shape and texture. Such an approach 
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has been attempted by Brunelli & Mich (1996). In their prototype identification system called 

“Spot It!”, they provide a set of slider controls for a PCA performed on each facial feature. A 

constructed image is displayed for the combined set of slider settings along with an ordered set 

of mugshots that most closely match the constructed image. The effectiveness of the system is 

unclear and the authors report that the system is awaiting field test.  

Sadly, the PCs appear to exhibit generally complex representations. In his most recent 

model of a database of 20 Caucasian female faces, Hancock (2000) shows that the first 

eigenshape produces a “nodding” motion and the second changes face width. The third 

eigenshape is more complex, having both a rotational component (head tilt) and one that 

differentially changes the width at the top and bottom of the head. The other components have 

even more complex behaviours. It would appear therefore that the direct manipulation of the 

PCA space might not be ergonomic and it is unclear therefore how the Brunelli & Mich system 

might perform. 

The problem of complexity is confounded by the observation that the PCA can 

generate a very large (and potentially infinite) number of faces, as mentioned above. If one 

makes the assumption that a suitable representation of a target exists in the PCA space, then 

conducting an exhaustive search for it is likely to be costly in time. This is largely due to 

feedback being required from a user to indicate the “quality” of each representation. Overall, 

this approach appears too impractical to be used with a witness.  

There are a set of techniques however that have been developed over the last 20 years 

to explore potentially complex manifolds like the PCs’ under consideration. These come under 

the umbrella term of “Genetic Algorithms” (or more simply, GAs). GAs generally model 

processes that occur in nature such as the “mixing” of genetic materials from “parents” to 

provide one or more “offspring”. The GA approach is essentially a parallel one: a search of the 

problem space is carried out in multiple “places”. In a typical scenario, a large number of initial 

solutions are proposed and a “goodness” value is derived for each. A selection function 

operates such that the better individuals have a greater chance to take part in “mating”. Pairs 

of these “successful” solutions are taken and the components from which they comprise are 

mixed (cross-over) to generate a new solution (an offspring). Breeding continues until the 

previous population size is reached. An evaluation function is again applied and breeding 

continues as before. The whole process repeats until a further objective function is satisfied 

such that either the population as a whole or a single individual is of “sufficient” quality.  

This is a common procedure but there are numerous other techniques within GAs for 

exploring problem spaces. For example, it is possible for a small group of individuals to 

compete against each other in a “tournament selection” or breed with themselves via a-sexual 

selection. There are also many parameters within GAs open to manipulation. Mutation rate, the 

manipulation of a parameter under the influence of a noise source, is one. On one hand, one 

could explore the PCA space using a few examplars. In the limit, this was carried out by 
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Brunelli & Mich (1996) with a single image and is rather like the impractical exhaustive search 

method mentioned above. However, one general observation is that the more individuals there 

are in a population, the greater the chance of finding an acceptable solution. This suggests that 

Brunelli & Mich (1996) might not have adopted the most efficient approach using a single face. 

An approach that uses a relatively larger number of faces in a population has been 

developed by Hancock (2000); the number being limited to eighteen by the physical constraints 

of the computer monitor. In his prototype system, a small shape and texture PCA model was 

built (as described above) from 20 female faces. Eighteen novel faces were generated (with 

components that were generated from random numbers) and displayed on a computer 

monitor. Each face was associated with a slider that could be adjusted (by the computer’s 

mouse) to indicate “preference”, corresponding to a “fitness” rating between 0 and 10. The 

program would then select those faces with the higher rating (fitness proportional selection) as 

parents. The parameters from each offspring face were picked at random from either parent 

(uniform cross-over) and a small mutation rate was applied to the combined parameters. The 

author explains that the system is in the early stages of development and evaluation of the 

general approach is required. 

A photofit approach using a GA has already demonstrated good performance by 

Caldwell & Johnston (1991). Their method was to create a population of 20 faces assembled 

from selected components from the Photofit kit. As in Hancock (2000), parents were identified 

by fitness proportional selection, only this time  based on a 9 point rating scale (resemblance to 

a target), and a GA bred another population with uniform cross-over and a small mutation 

rate. Selection continued until an acceptable likeness was reached. The paper reports that 

subjects constructed a composite after viewing a simulated crime and “subjective evaluation” 

was carried out by independent judges. Sadly, their paper is rather limited regarding the 

experimental procedure and the results obtained, although they do illustrate one composite 

created after 10 generations (Fig. 4) that appears to have a good likeness with the target. No 

other known evaluation appears to have been carried out. 

A related procedure was adopted by Rakover & Cahlon (1989). Subjects were shown 

100 pairs of Photofit faces along with a target. For each pair, subjects selected the one that 

appeared most similar to the target. A composite was constructed from the features in the faces 

that were chosen most often. They found that subjects could create composites with about 80% 

of the features correct. This figure rose to 100% if the data from their 30 subjects was combined. 

At present, it is unclear how the results would be affected had the composites been created 

from memory. 

But, how can one be confident that faces similar to a target will be responded 

appropriately in such a parallel presentation? Clearly the utility of similarity rating scales 

employed in several of the above systems is unclear (Brunelli & Mich, 1996; and Caldwell & 

Johnston, 1991). However, in addition to the positive result found by Rakover & Cahlon (1989), 
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there is evidence from other systems that have demonstrated considerable benefit in the 

selection of whole faces from a presented set (e.g. Baker & Seltzer 1998; and Levi, Jungman, 

Ginton, Aperman & Noble, 1995). Details of these mugshot-based applications will be 

discussed in Chapter 3. 

Arguably the most compelling evidence of human abilities to select similar looking 

faces comes from cases in criminal law concerning proven wrongful conviction. Rattner (1988) 

has carried out a survey of 205 such cases and reports that mistaken identification (as opposed 

to other causes such as perjury or negligence) took place more than 50% of the time (Sporer, 

Koehnken & Malpass, 1996). Other, more direct evidence for the appropriacy of facial 

similarity judgments emerges from a cluster of studies that have reported confusion between 

faces during perceptual tasks (referred to as the “familiarity” dimension in Vokey & Read’s 

(1992) work).  

It is clear from lab-based research that any confusion between faces is not distributed 

randomly but met with a high degree of agreement among subjects (e.g. Davies, Shepherd & 

Ellis, 1979; and Goldstein, Stephenson & Chance, 1977). For example, Davies, Shepherd & Ellis 

(1979) had subjects sort faces into piles of similar faces. They carried out a multidimensional 

scaling analysis (HICLUS) and found that in a subsequent identification task, selecting faces in 

an array from memory, foils drawn from similar clusters resulted in higher misidentifications 

than foils drawn from different clusters. Indeed, the false alarm rate of common clusters foils 

accounted for over 70% of the errors, indicating a high degree of agreement across subjects. On 

the other hand, Laughery, Fessler, Lenorovitz & Yoblick (1974) selected foils based on either 

similarity ratings or physical similarity (more features in common). In either case, the ability to 

recognize a target in a sequential search task decreased when more similar foils were 

employed. Likewise, Courtois & Mueller (1981) found that the false alarm rate was 

significantly higher if both the target and foils had been previously rated as “typical” (as 

opposed to being rated as distinctive). This last study fits into a larger body of research 

(mentioned previously) suggesting that distinctive faces are better recognized (e.g. Shapiro & 

Penrod, 1986). Therefore, that subjects are able to confuse similar items (obtained by ratings, 

clustering algorithms or by virtue of their typicality), suggests that they should be able to 

identify those items that are similar. Such a hypothesis does of course require verification in the 

application of a face evolver. 

Despite the advantage of a more recognition-based approach, one problem with the 

use of the electronic photofit systems (adopted by Caldwell & Johnston and Rakover & Cahlon) 

is that it is possible to create composites that do not appear “very realistic” – as has been 

reported (to me) by photofit operators. The problem here is that it is possible to produce a face 

with unusual spatial relationships: for example, a face with an eye subjectively too high in the 

face or a mouth that is implausibly wide. As Ellis & Shepherd (1992) demonstrate (in Fig. 3.8), 

one can position facial features in arbitrary positions. Although Ellis & Shepherd’s example is 
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extreme, a system that does not inherently permit “configural extremities” is considered 

valuable. 

It is believed that the holistic model built by PCA would guard against such 

inappropriate effects. This is because the spatial relationships between facial features are based 

on the statistical variation of faces in the database. Sampling points in this face space then 

results in a novel face with plausible spatial relationships. Indeed, that these relationships are 

not specifically modelled and/or constrained in the electronic photofit kits is potentially 

problematic. 

Conclusion  

In conclusion, research suggests that the manual photofit systems produce poor quality 

composites and the computerization thereof appears not to have been an improvement in a 

“forensically friendly format” (i.e. constructions carried out from memory). A major problem is 

their analytical nature, given that face perception is inherently holistic and some people will 

tend towards a holistic facial encoding anyway. A holistic approach would therefore not only 

more closely match face perception but guard against the apparently strange spatial 

relationships achievable by the electronic composite systems. The ability to manipulate facial 

features voluntarily would also permit a more feature-based approach observed in some 

individuals. Thus, a dual shape-texture PCA model with a GA front end and a feature 

manipulation utility is believed to be the answer. This approach may overcome the “failure of 

composite systems to capitalize on the witness’s recognition abilities” (Davies, 1983a, page 

117). The following chapters develop an implementation. 
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CChhaapptteerr  22::  PPiilloott  WWoorrkk  ((MMaarrkk  II  FFaaccee  EEvvoollvveerr))  

It is unclear at present whether a holistic face model based on Principal Components Analysis 

with a Genetic Algorithm as a user interface is likely to be successful as an approach to implementing a 

photofit system. This section considers appropriate hardware architectures and software tools as an 

investigative framework for developing this kind of photofit system. Ultimately this work leads to a 

simple design that models only changes in image intensity (referred to as a shape-free or texture model) 

for a small database of faces. It will be seen that even for this “minimal” system that the design 

considerations are considerable. Ultimately, the pilot software (also referred to as the Mark I Face 

Evolver) looks very promising and several design improvements emerge, particularly concerning the use 

of rating scales and parental sampling, which serve to promote better implementations in further 

chapters. 

Design Considerations 

A crucial decision early in a project is the selection of appropriate equipment and tools. 

It has already been decided that a model using Principal Components Analysis (PCA) and a 

Genetic Algorithm (GA) be considered as key players in an initial solution to a new photofit 

system. As the operations necessary to generate images from a PCA model alone are too time 

consuming to be performed manually, the proposed approach lends itself to a computerized 

solution. Two additional design decisions naturally arise. The first involves the choice of 

computer system and the second, the selection of software that will run on the chosen 

computer.  

Computer System 

The choice of hardware in any project is likely to be important. If ultimately a solution 

becomes tractable for a photofit system, then it would be highly advantageous to have the 

"final solution" in a format that can operate directly on a user's computer. One would want to 

avoid a large and potentially costly exercise in the re-design of a system. This does not of 

course exclude the possibility of creating solutions for other computers, although this is 

perhaps preferable after a system has been accepted. 

There are a number of computer systems that could conceivably be used to run 

photofit software. Several have been mentioned already in the last chapter. These include a 

P.C. (e.g. currently running EFIT and PROfit), a Macintosh (running Mac-a-mug) and 

architectures that run the UNIX operating system (e.g. a Sun or an Apollo - used to develop 

Peter Hancock's prototype Face Evolver). All these systems are currently available to the police. 

It is generally accepted that a P.C. is the most widely used and generally pervasive computer in 
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the world. The observation that two of the leading photofit systems in this country (EFIT and 

PROfit) run on a PC is significant. In addition, the electronic version of the Identikit system 

also runs on a P.C. (Smith & Wesson, 1997) as do other systems available in America: 

Compusketch (Visatex, 2000), SuspectID (ImageWare, 2000) and comPhotofit (Sirchie, 2000). If 

it can be shown that a holistic approach can work, then it is sensible to have an initial 

implementation running on the same system as the majority of others. For this reason, a 

solution involving a P.C. appears to be the best. 

Software 

There are two main areas of choice for software selection. The first involves the type of 

Operating System and the second the programming languages used to create a software 

solution. An Operating System (O.S.) is the main software that runs a computer and allows 

other software packages to be executed. It also provides file management facilities, user 

accounts and peripheral control (e.g. enabling a keyboard and a mouse to be used). There are 

many O.Ss to choose that will run on a P.C. At the time of starting this project in 1998, 

Microsoft offered D.O.S., Windows 3.x (e.g. Windows 3.1 and 3.11), Windows 95 and Windows 

NT. In addition, there is IBM’s OS/2 available that can also run on a P.C. 

Arguably, Windows 95 and Windows NT are the most common O.S. for a P.C. Once 

again, PROfit and EFIT will run under these two systems, making either O.S. a sensible choice. 

Theoretically, it is the case that the same windows program will run under either system (or at 

least that has been a Microsoft design consideration). An essential difference between the two 

is that while Windows 95 has the same design philosophy as Windows 3.x and D.O.S., 

Windows NT permits greater stability, making it a preferable environment in which to develop 

(Kruglinski, 1997). NT is therefore selected as the initial O.S. for the project (verification of 

design for Windows 95 will be necessary if a product become feasible). 

The second consideration is the type of language or languages to be used in the 

development a solution. When the project was conceived, it was anticipated that two software 

components parts would be required. The first was a user interface, the second, was a 

manipulatable model containing the programming for the shape/texture PCA and the GA. 

Although a single program could be used to implement both (as in Hancock, 2000), it was 

envisioned that the tasks to be performed were quite different. 

To fit in with the style of operation common under windows, a windows-based 

application (aka a GUI or Graphical User Interface) would appear to be the most appropriate 

user presentation. It provides a high degree of commonality between applications. In a typical 

program, the mouse is used to select options from a menu bar, performing an action, often 

displaying another (child) window. The child window might contain another menu, with 
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buttons to perform other actions and text-boxes to enter information. In other words, skills that a 

user has developed in one program can be applied to another and (with good design) can 

considerably reduce a user’s cognitive load. Therefore a software design that promotes a 

windows-based application would appear to be preferable.  

The proposed design involves generating and displaying a set of faces (a “population” 

of faces) and the subsequent “breeding” within this population (followed by an update to 

display the “offspring” faces). There is a division of labour here. On the one hand, faces must 

be displayed and selection information collected, and on the other, a face model must initially 

be created by PCA and then manipulation of the eigenvector coefficients (as part of the GA) 

followed by recombination of the eigenfaces is necessary (to create a population of faces). 

Whereas the former is windows-based, the latter is largely numerical in nature (a “number 

crunching” exercise). It would appear desirable then to locate computer languages that can 

facilitate the design of these two tasks. 

The computation required to perform a PCA can be written as a set of matrix 

operations. In this case, a matrix takes the form of a representation of one or more photographs 

of faces. It is standard to represent photographs in an electronic format as a set of pixel 

intensities. The texture model will therefore comprise of operations on a collection of pixel 

intensities, one set per photograph. The matrix operations necessary include normalization - to 

make each image have a mean of zero and standard deviation of one; computation of the 

covariance matrix and the corresponding eigenvectors; and extraction of the eigenfaces by 

multiplying the eigenvectors with the original images. Generation of an image involves adding 

a weighted sum of eigenfaces to the average face, another matrix computation. A similar 

procedure is necessary to create the shape model for the feature coordinates (control points) 

defined for each face.  

One computer language that has been designed to operate on matrices is Matlab. It can 

run on a number of different types of computer, including a P.C. Matlab is also a procedural 

language19 and instructions have been optimized for execution speed. In addition, the 

instructions can be highly abstract. For example, the instruction cov computes the co-variance 

of a matrix; the manual writing and debug of such a function, even in a high-level scientific 

language like C, requires a very significant programming effort. For these reasons, Matlab 

(version 5.1) will be chosen as the language to generate and manipulate population images. 

Matlab has a set of software tools that enable GUI design (Matlab, 1997). This includes 

normal window components (such as menus, buttons, text boxes and sliders) plus visually 

                                                           
19 A procedural language contains explicit instructions for a computer to execute. This contrasts with a 

declatative language, like LISP and Prolog, where the problem is described and the computer “decides” 

how best to solve it.  
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based tools to facilitate the development of these components. However, despite the ease in 

matrix manipulation, it is arguably not the best language to use for GUI applications. This is 

based on an initial assumption that the programming effort for the GUI is likely to be 

considerable (involving several orders of magnitude more lines of programming than for the 

generation of images). For relatively large applications, current programming practices appear 

to be favouring an Object Oriented (OO) approach (Drozdek, 1996). One of the reasons for this 

is that OO languages tend to facilitate a more modular type of design (i.e. “encapsulation”) that 

encourages the re-usability of code either through the adaptation of data structures in a 

different context (i.e. “polymorphism”) or by the functionality acquired from their “parents” 

(i.e. “inheritance”).  

In OO, one writes a program as a set of classes. In this way, each class provides an 

abstraction to one aspect of the problem. For instance, one could have a class to display a 

population of faces on a monitor, another to record user selections and perhaps a third to 

“communicate” with the image production software (e.g. Matlab) to exchange selection scores 

and collect population faces when ready. Overall, development can proceed more rapidly (than 

non-OO languages – like Matlab, Pascal and C) and code tends to be more readable mainly due 

to inherent modularization. 

There are many OO languages available: Visual BASIC, Small Talk, Java and C++ are 

examples. All of these could offer a software solution. There exists a de facto industrial standard 

for writing Windows-based programs in OO: Microsoft Visual C++. It uses the C++ computer 

language and has a programming environment (the Developer Studio) that allows the rapid 

development of windows applications (Blaszczak, 1997). For instance, one can use the 

Developer Studio to rapidly design, compile and run a dialog window in C++ to collect a piece 

of user information (e.g. a rating score). It was envisioned that many such dialog windows 

would be necessary. One of the benefits of Microsoft Visual C++ is that it contains a very large 

set of classes that are provided as part of the language; the Microsoft Foundation Classes (MFC). 

This is advantageous since they can cut development time considerably by not having to write 

code from scratch. For example, MFC version 4.2 contains classes for string manipulation, 

system timing, file management and associated code for windows functions. In fact, the size of 

this class is over 2MB; a considerable size for a runtime library. 

In summary, although many hardware and software tools are available for the project, 

it would appear best that a solution should be carried out on a P.C. The P.C. should run the 

Windows NT operating system with Microsoft Visual C++ as a language used to display 

population faces and collect user input, and Matlab, for the creation of the face models and the 

generation of population faces. 



40 

Pilot Design 

It was thought sensible at this stage to run a pilot study consisting of a relatively 

simple program to evolve a population of faces. This would be achieved by using only the 

texture model. Given that the programming effort was considered significant to model a full 

shape-variant face, the effects of facial shape were left for future work. This necessarily means 

that the faces generated have the same facial shape. This has the benefit of investigating the key 

aspects of the proposed approach without the initial commitment of a large programming 

effort. 

With this simplified model, a target face could then be evolved. However, this does 

raise an issue regarding the origin of a target. Basically, the target can be either generated from 

within the Face Evolver or be external to it. In the former case, a face would be randomly 

generated from the face model (rather like a face would be produced in the initial population) 

and act as a target. In the latter, a face that was neither part of the original dataset nor was 

randomly generated from the resulting model would be selected as a reference image. This 

“external” target could further be either familiar or unfamiliar to the person creating the 

photofit. A familiar face could be a friend, colleague or a famous person such as a film star or 

sports celebrity. The origin of the target will serve to ask different questions. When the target is 

generated internally, evaluation would examine the ability of the system to “locate” that 

representation within model’s face space. Externally derived targets test the ability of a system 

to extrapolate beyond the original dataset or corpus. Whereas internally derived targets can be 

seen to always exist within the model, this is not necessarily the case for the externally derived 

version and this is therefore a potentially harder task. If the evolution process was found to be 

not successful with an external target, it would not be clear if this was due to an inability in the 

search mechanism or a lack of representation (or extensibility) in the face model. For this 

reason, the initial pilot will explore the use of an internally derived target. 

An associated issue is the type of encoding a subject might adopt [either implicitly or 

explicitly] to remember a target face. As discussed earlier, facial encoding appears to be based 

on either personality traits or the physical aspects of the face (e.g. Laughery, Duval & Wogalter, 

1986). It is hypothesized that the holistic-based photofit system under consideration would 

benefit from a trait-based encoding method. This is in opposition to current photofit systems, 

which appear to enjoy the latter, more componential approach when making photofit 

constructions from memory (Wells & Hryciw, 1984). Importantly, the encoding strategy may be 

difficult to “enforce” anyway and may be best avoided altogether at this stage. This can be 

achieved by having the target displayed all the time during the evolution process; an approach 

that reduces memory load and focuses evaluation on the system rather the user.  
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The face model was further limited to a small corpus of faces. Now, the shape 

normalizing process requires the manual positioning of coordinate points around the major 

facial features and is rather time consuming. Results from Craw & Cameron (1991) suggest that 

50 faces are sufficient to build a texture-type PCA model and to create a face that is not part of 

the original 50 (i.e. an “unknown” or “novel” face) with an “almost identical” approximation20. 

As the current task does not require this kind of extrapolation, 35 faces were ultimately chosen 

for the corpus (i.e. a sensible tradeoff between time taken to align coordinates and building a 

database of sufficient size to capture a good face model). If the approach proves successful, a 

larger and more realistic database could be assembled. 

In addition, the size of the face model was further simplified by discarding colour 

information. The use of colour information can triple the size of the PCA model21 and it is not 

necessary for face perception (e.g. Davies & Thasen, 2000; Kemp, Pike, White & Musselman, 

1996; and Perrett, Benson, Hietanen, Oram & Dittrich, 1995 – but refer to Chapter 6 for a 

discussion on this issue). Eight-bit grey scale values will be used for each pixel; i.e. an intensity 

value in the range of 0 to 255. 

There is also an issue regarding the demographic profile of faces in the corpus. In this 

case, what should the gender of the database be? Single gender, or like Blanz & Vetter (1999) 

and Troje & Vetter (1996), a mixture of males and females? How old should the face be and 

from what ethnic origin? A report by Gottfredson & Polakowski (1995) reveals that most crime 

is committed by males in their late teens and early 20s. A design that best fits the profile of the 

offender is considered most valuable and will be implemented here. Therefore young, male 

faces will be used. As most participants in this study are likely to be Caucasian and, to guard 

against potential cross-race effects22 (e.g. Bothwell, Brigham, & Malpass, 1989), the database 

will comprise of Caucasian faces. Interestingly, the first database in Jacques Penry’s original 

Photofit kit was Caucasian males (Penry, 1974). Later work could implement further databases.  

An associated issue is pose (orientation of the head) of faces in the database. In Shapiro 

& Penrod's meta analysis, there were 10 studies that investigated recognition ability in ¾ view 

compared with front or profile. Significantly more hits were found for a ¾ view compared with 

a frontal view (33% more) and significantly more hits were found for a frontal view compared 

with a profile view (100% more). It would appear therefore that a ¾ view is the best pose to 

construct a composite. On the other hand, photofit systems have focused on the creation of full-

frontal composites (as opposed to a profile or any other projection). This is an interesting 

                                                           
20 Craw & Cameron (1991) only provide a qualitative analysis of the reconstruction of unknown faces. 
21 One method is to create a PCA model for each of the three primary colours: red, green and blue (e.g. 

Perrett, Benson, Hietanen, Oram & Dittrich, 1995). This necessarily increases the size of the face model 

three-fold. 
22 The cross-race effect is a difficulty in identifying faces of a race other than our own. 
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observation since a full pose may not be best, but there is a move towards such an optimal 

approach with effort being made to implement ¾ view databases in the PROfit system23. 

Perhaps the best route for this project then, is to initially evaluate a full-face holistic model. 

This would provide compliance with other systems and enable comparison to be made against 

them by keeping pose a constant factor. Later research could investigate the effect of head 

orientation. 

A full-face model also featured in Peter Hancock’s prototype system. In that system, 

the selection of parents was guided by a simple 10 point Likert scale and rating (via a 

horizontally-oriented windows slider placed underneath the image) was carried out with all 

faces present. Another method is to rate faces in isolation to the population. This is likely to 

produce different results. Rating in the context of other faces can provide a frame of reference 

for comparison. This may encourage a greater use of the rating scale, resulting in a greater 

selection pressure and faster or better evolution. To investigate the effect of face presentation 

on rating (and subsequent evolutionary performance), two conditions were tested: sequential 

face presentation (Condition A) and simultaneous face presentation (Condition B). A simple 

slider would be positioned under each image for rating. 

Constructing a Holistic Face Model 

The Department of Psychology at Stirling University has a large database of 

photographs from the U.K. Home Office. The set contains mainly Caucasian faces of males and 

females each photographed in profile and full-face pose. The images are available on CD 

format and can be extracted in a range of image resolutions. Thirty-five of these Caucasian 

male faces (that were not currently being used for other research in the department) were 

exported at a relatively low resolution of 300 pixels wide by 400 pixels high (300x40024) and put 

through a shape normalizing process (morphing) that aligned facial features. As mentioned 

previously, this stage is necessary to avoid feature misalignment when faces are generated 

randomly. Forty-two coordinate points were positioned around the eyes, eyebrows, nose and 

mouth, plus the outline of the head and the four corners of the image. An example can be seen 

in Figure 1 - 

                                                           
23 Evaluation of a ¾ view database for PROfit is currently being carried out in the Face Perception Lab at 

Stirling University. 
24 The convention of specifying pixel-width x pixel-height for expressing image size will be used 

throughout the text. 
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Figure 1: An Example Alignment of Facial Feature Coordinate Points 

 
 

Following this, each face was morphed to the average shape of the data set and 

cropped to 176x171 pixels so that just the inner features of the faces remained, serving to limit 

further misalignment difficulties caused particularly by varying collar-lines and hairstyles. 

Figure 2 shows the first 5 shape-normalized faces cropped close to the eyebrows and mouth - 

Figure 2: Examples of Shape-Normalized Faces used to Construct Face Model 

     
 

These images were then used to construct a texture model using PCA (in Matlab). Each 

image was normalized to have a zero mean and unity standard deviation. The covariance 

matrix was computed for the image set followed by the extraction of the eigenvectors and 

eigenvalues. The eigenfaces were then computed by multiplying the eigenvectors by the 

original images. The eigenfaces were sorted by decreasing variance.  

Only the average database image plus the first half (17/34) of the principal 

components (eigenfaces) were used to generate a new or novel face. This was a deliberate 

design decision since it has been found to introduce error between the database images and the 

closest approximation generated by the PCA (Sirovich & Kirby, 1987). According to Kirby & 

Sirovich (1990), approximately 4% (normalized) error should be introduced by limiting the 

components to this range. This is aimed at providing a level of anonymity for the database 

images (and is of particular relevance in later versions of the software; e.g. refer to the section 

titled ‘Verifying Anonymity’ in Chapter 5). The purpose of the system is to generate novel 

faces, not the originals.  

To produce a novel face, 17 floating-point random numbers (drawn from a uniform 

Gaussian distribution with zero mean and unity standard deviation) were generated and 

scaled by the eigenvalue of the relevant eigenface. This has been found necessary to maintain 

an appropriate influence of each eigenface coefficient (Hancock, 2000). A new image is then the 

result of the weighted addition of the eigenface coefficients to the average intensity face. A final 

scaling stage was necessary to produce a consistent image brightness and contrast.  
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The following experiment serves to examine the performance of a simple evolutionary 

face generator. The experiment is detailed below but is summarized in Hancock & Frowd 

(1999). 

Experiment 1: Searching the Model 

It is proposed that a Genetic Algorithm (GA) similar to that used by Hancock (2000) be 

implemented. In his model, faces were initially randomly generated and a user would rate how 

good each was using a slider to define a value between 0 and 10. Similarly, a Likert scale was 

used in Caldwell & Johnston’s (1991) photofit approach. In both studies, the GA would select 

parents such that faces with higher ratings have a greater chance of being selected as parents 

for breeding (fitness proportional selection). An “offspring” face was composed of coefficients 

taken randomly from two parents (uniform cross-over). The system had the ability to replace or 

mutate a parameter at random with a small probability. 

This general approach was adopted, though it was decided that the range of the rating 

scale should be from 1 to 10 (rather than from 0 to 10). This would allow all the faces to take 

part in the selection process even if the rating scale was set to the minimum value (if zero was 

assigned as a rating, that face would have no fitness value and not be available for selection). 

This helped to maintain the diversity of faces in a population. 

It is also important to decide on a set of appropriate parameters for the system. This 

includes the number of faces in a population, the number of generations to run and the number 

of targets to evolve for each subject. A small pilot study revealed that a population of six faces, 

with 12 generations (the initial set of randomly generated faces plus 11 generations) and five 

targets would engage a subject for about half an hour. As the rating exercise was reasonably 

intensive, any longer was believed to be a burden for the participant. It was considered that 

these parameter settings would likely to result in sufficiently rich data to extract performance 

trends. 

It is acknowledged though that this is a rather small number of individuals for a 

population. Each member of a population represents an attempt at a solution to a given 

problem. Relatively larger populations naturally result in more individual solutions, increasing 

the likelihood of an acceptable solution being found. It is not uncommon for a GA to work with 

populations containing hundreds of individuals. For example, in Karl Sims’s work on evolving 

creatures that “move” and “behave” in 3D worlds, population sizes of 300 were typical and 

evolution was performed in blocks of 500-1000 generations (e.g. Simms, 1994). Conversely, 

with a smaller population size, there is a tendency for faster conversion to occur (as the re is 

less variability in the population). A relatively small population of six individuals then would 

allow many generations and targets to be used with relatively rapid convergence to a solution. 
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With such a small population size however, there is the risk that the distribution of solutions 

within the face space would become too concentrated too early in the evolution process – i.e. 

the variation of the population would be too low. In an attempt to compensate, a small 

mutation (that replaces a coefficient with a random number on average approximately once per 

face) will be used. 

Method 

Participants 

Eighteen students at the University of Stirling participated in the experiment. There 

were 11 females and 7 males; 9 were assigned to condition A and 9 to condition B. Their age 

ranged from 18 to 26 and the mean age for males was 21.3 (standard deviation of 2.5) and 

females was 21.3 (standard deviation of 2.7). They were paid at the rate of £5 per hour. 

Apparatus 

A Pentium PII PC clocked at 350MHz was used to run the experiment. Faces were 

displayed on an Ilyama 21” monitor. The PCA model was derived from 35 full-face Caucasian 

males (extracted at 8-bit monochrome with a resolution 176x171 pixels in BMP format). 

Targets 

To obtain the targets and to guard against them being too similar, and therefore not 

exploring the problem or face space thoroughly, a similarity elimination technique was 

employed. Fifty randomly generated faces were initially produced. A pruning strategy, similar 

to approaches found in neural networks (e.g. Brown, Hulme, Hyland & Mitchell, 1994; Le Cun, 

Boser, Denker, Henderson, Howard, Hubbard & Jackel, 1990; and Mozer & Smolensky, 1989), 

based on the “nearest neighbour” was adopted which repeatedly selected a face at random and 

then discarded the one from the remaining images that had the lowest mean-squared error. 

This was continued until only twelve faces remained, resulting in a set of highly dissimilar 

random target faces. Each face was normalized for equal brightness25 and contrast26 to avoid 

gross differences in image lighting effects. Seven of these were selected as targets: two for 

practice sessions and five for the experiment. The first five targets are shown in Figure 3 – 

                                                           
25 Set to a mid-range brightness level of 128 (i.e. a mean image intensity value of 128). 
26 Set to a contrast level of 25 (i.e. a value of 25 for the standard deviation of the image). 
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Figure 3: The Target Faces 

 
  

  

 

Procedure  

A further 6 faces were randomly generated (with similar normalization for brightness 

and contrast) and used as the initial population set to be presented to a subject along with a 

target face. A different set of initial random faces was used for each trial to guard against 

idiosyncratic performance. This can occur when one set of initial faces provides either a 

favourable or an unfavourable set of initial conditions. For example, evolution would tend to 

be considerably advanced if one or more faces in an initial population were by chance always 

in relatively close proximity to the target (in face space). Providing a different set of initial 

conditions for each target would therefore examine more general evolutionary performance. 

Subjects were randomly assigned to condition A (sequential presentation) or condition 

B (simultaneous presentation) and tested independently. They were asked to rate each face for 

likeness to the target using the slider provided. A demonstration was provided showing that 

faces more similar to each other were recorded by moving the slider further to the right. An 

“OK” button was provided to allow rating of the next face(s). No mention of the underlying 

evolutionary mechanism was provided. All subjects were given a short practice session at the 

start which involved a single evolutionary cycle for the first two of the seven target faces. 

Following rating of the six randomly generated faces, a new population was created. A 

GA employed a “roulette wheel” mechanism, based on the 6 rating scores, to select a pair of 

“parent” faces. Uniform crossover (that selected coefficients randomly from either parent) then 

selected new eigenface coefficients. A small probability of mutation (0.05) replaced 1 in 20 

coefficients with an appropriately scaled random value27. The resulting face was scaled for 

brightness and contrast as before. The procedure was repeated a further 5 times to generate a 

total of 6 new faces. These became the next population of faces and were presented for further 

rating. A total of 12 cycles of the evolutionary generator was run for each of the 5 target faces 

for each subject. 

                                                           
27 Scaled by the standard deviation of the corresponding eigenface. 
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Rating scores, population faces (eigenface coefficients and actual image files) and 

demographic information (age and gender) were collected for each subject. Data from the 

practice session was discarded. Prior to payment, subjects were debriefed with details of the 

underlying evolutionary system and the Independent Variable (method of rating). 

Results 

Three measures were used to evaluate performance of the Face Evolver: the mean-

square error between the target and the population faces (MSE), rating scores and timing data. 

Of these, the MSE was used as the primary measure; refer to Appendix A for a discussion 

regarding this metric. Although self paced, the time taken to complete was analyzed to indicate 

whether method of rating would naturally affect speed of rating. 

Mean Square Error (MSE) 

The MSE measure will first be considered on an individual subject basis, then overall.  

Individual (Subject) Analyses 

The performance in terms of MSE was obtained for each subject. An example is shown 

in Figure 4 for Subject 1 on Target 1. The MSE for each of the 6 faces in the population is shown 

for generations 1, 5 and 12; for clarity, other evolutionary generations are not shown. It can be 

seen that the MSE scores are generally become lower as the generation increases and is 

reflected in the average MSE scores. 

Figure 4: Performance of Subject 3, Target 1 
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The average MSE in the first generation is 355.0 (SD 112.9). By generation 5 (4 cycles of 

the evolutionary generator), the MSE dropped substantially to 192.8 (SD 50.6); this reduced 

further to 89.6 (SD 29.0) by the last generation. A between-subjects two-tailed t-test reveals a 

significant decrease in MSE at the 0.05 level28 between generations 1 and 5 (t=3.21, DF=10, 

p=0.009), and also between 5 and 12 (t=4.33, DF=10, p=0.001).  

Although these data appears promising, other subjects did not perform so well. For 

example, Figure 5 displays the MSE for Subject 17 on Target 1. Although the data appear 

noisier, the MSE does appear to be increasing with increasing generation. Indeed, these scores 

do increase from a mean of 379.8 to 408.1 to 511.1; there is an approaching significant increase 

from generation 1 to generation 5  (t=2.10, DF=10, p=0.062) and a significant increase from 

generation 5 to generation 12 (t=3.33, DF=10, p=0.008). 

Figure 5: Performance of Subject 17, Target 1 
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To explore performance further, the average MSE in the first generation (for all targets 

and subjects) was subtracted from average MSE (<MSE>) in the last generation (again for all 

targets and subjects) and is shown below in Figure 6 (for convenience and comparison, the 

subjects have been sorted into groups A (1, 3, 5, 7, 9, 11, 13, 16 & 17) and B (2, 4, 6, 8, 10, 12, 14, 

15 & 18). It can be seen that 10 subjects exhibited a significant change in MSE between 

generation 1 and generation 12 over 5 targets (t>2, DF=58, p<0.05).  

                                                           
28 A significance level of 0.05 is observed throughout this thesis. Unless otherwise specified, all t-test are 

“between-subjects two-tailed” in this chapter. The assumption of homogeneity of variance is believed to 

be upheld. This is not because significant differences in variance may exist (in fact, there is good reason to 

believe that differences may exist since a population of faces may converge, reducing variance, with 

increasing generation), but because there is an equal number of subjects in each condition, making the test 

insensitive to a violation of the assumption (Shavelson, 1981). 
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Figure 6: Overall Mean Subject Performance (between First and Last Generation) 

-150

-100

-50

0

50

100

150

1 3 5 7 9 11 13 16 17 2 4 6 8 10 12 14 15 18

Subject

R
ed

uc
tio

n 
in

 <
M

SE
> 

(1
-1

2t
h 

G
en

er
at

io
n)

* indicates p<0.05 

* ** * ** * * * *

 

It is interesting to see a relatively large increase in MSE for Subject 14 and 17. It is 

possible to gain an understanding of this unexpected increase by examining the correlation 

between each MSE figure and the associated rating provided a subject; a measure referred to as 

the CMR (the Correlation between the MSE and Rating). One would always expect to see a 

negative CMR since images with higher error scores should be assigned lower values on the 

rating scale. In Figure 7, the CMR has been plotted along with the associated reduction in 

<MSE>. For clarity, the CMR bars (foreground plot) are shown negative correlations so as to be 

viewed in the same sense as the reduction in <MSE> bars (background plot). 

Figure 7: Correlation between MSE and Ratings (all Targets) 
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For Subject 17, it appears that the CMR is positive. It turns out that this subject has rated 

4 out of 5 targets with a positive correlation and Subject 18 seems to have used the rating scale 
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backward for the first target. These participants appear therefore to be using the rating scale 

backwards. It is proposed that the data from these be removed from further analysis since 

conformity to the intended instructions does not appear to have been followed.  

The question arises as to why, despite an appropriately negative CMR, did Subject 14 

exhibited a significant increase in MSE. Consider a plot of the average rating against the average 

reduction in the MSE (across the five targets) in Figure 8. From the figure, it is clearly seen that 

this subject had not only the highest average rating but also the worst error. At this point, it 

was interesting to see if there was a correlation between these two factors across all subjects. 

Figure 8: Average Rating Scores with the Corresponding Reduction in Average MSE 
for Each Subject (the graph is ordered by increasing rating) 
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Firstly, consider a re-display of Figure 8 as a scattergram (Figure 9). Clearly, there is 

one data point identifiable as an outlier. This is for Subject 14 and has occurred due to the large 

increase in MSE. Interestingly, ignoring this data point results in a non-significant and near-zero 

correlation (Pearson29) between variables (r=0.02; F=0.01, DF=13, p=0.936) and indicates that 

there is no relationship between the average rating and the average MSE. 

                                                           
29 Correlation is computed throughout this thesis using the Pearson statistic unless otherwise specified. 
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Figure 9: No Trend Between Mean Rating and Mean Reduction in MSE 
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A further interesting finding occurs from the relationship between the standard 

deviation of the rating scores and the average reduction in the MSE, plotted in Figure 10. Once 

again, Subject 14 is the only outlying data point. Interestingly, excluding this outlier now 

results in a medium-level positive correlation that approaches significance (r=0.44; F=3.06, 

DF=13, p=0.104). Note that the positive correlation indicates that greater coverage of the rating 

scale results in better evolutionary performance.  
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Figure 10: Positive Trend between the Standard Deviation of Rating Scores and the 
Average Reduction in MSE 
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In the light of these findings, the following discussion investigates possible reasons for 

the poor performance of Subject 14. This will begin by attempting to understand the reasons 

behind the worst performance of Target 2 for this subject. Consider a plot of average MSE 

against the CMR for this target (Figure 11). As before, one would expect the trend of a 

negative-going CMR and a decrease in MSE. However, despite a negative CMR for most of the 

time, especially concentrated in the first 5 generations, the average error generally becomes 

worse with increasing generation. In fact, between generations 3 and 4, a significant increase in 

MSE occurs (t=2.94, DF=10, p=0.015). A likely reason for this is the low correlation between the 

rating scores and the MSE for generation 3 (r=-0.25).  
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Figure 11: Subject 14's Rating-MSE Correlation and Reduction in MSE for Target 2  

 
 

Referring to Table 1 below, this resulted in only a small difference in breeding 

opportunities (0.64) between the best rated face (face 3 with an MSE of 293.15) and the worse 

rated faces (the other 5 faces all received the lowest rating of 6). But, when sampling for 

parents, Face 2 (with a relatively high MSE) actually received 4 breeding opportunities out of 6 

and the best rated face received only 1. These selections imposed a high MSE on the offspring 

faces resulting in a significant increase in MSE of 135. An additional effect of this over-

sampling of Face 4 was that much of the variability in the population was lost; the SD the MSE 

roughly halved from 101.1 in generation 3 to 49.9 in generation 4.  

 

Face Rating MSE Breeding 
Opportunities 

Actual 
Breeding 

1 6 463.95 1.89 1 

2 6 476.16 1.89 4 

3 8 293.15 2.53 1 

4 6 228.48 1.89 3 

5 6 311.27 1.89 2 

6 6 296.29 1.89 1 

Table 1: Performance of Subject 14 on Target 2, Generation 3 
 

A further example of over-selection of a high MSE population face was also found on 

generation 3 for Target 5. In general, the results indicate potential problems with using the 

Roulette Wheel method, where by chance lower rated faces are selected inappropriately often. 



54 

This effect is obviously undesirable. The subject has rated as requested (albeit higher than other 

subjects) but has been let down by the GA due to the selection method employed. Therefore it 

is reasonable to leave the subject in for rest of the analysis. 

General Analysis 

Turning now to the average performance for each generation and considering all data 

(except Subjects 17 and 18). Initially, the reduction in average MSE between each generation 

across targets was computed. Figure 12 indicates first that the <MSE> decreases with 

increasing generation. The decrease was largest for the first generation and became 

progressively less with time, appearing to asymptote on a value of approximately 55. A simple 

exponential function could be found to describe more than 97% of the variance in the graph30. 

Figure 12: Cumulative Reduction in Average MSE (all Targets) 
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Comparing performance on condition A (face rating in isolation) and B (rating in the 

presence of all six faces), it was found that group A had an initial <MSE> of 342.0 (SD 99.9) and 

a final <MSE> of 294.9 (SD 55.2). Similarly, the initial <MSE> of B was 342.7 (101.4) and the 

final <MSE> was 299.4 (53.2) - 

                                                           
30 The reduction in average MSE,  

 m = 55 * [ 1-EXP -g/2 ] - 10 

  and g = generation 
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Figure 13: Mean MSE for all Targets (graph bars indicate SD of MSE) 
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A 2 factor ANOVA was significant for generation (F=29.79, DF=(1,70), p<0.001) and 

target (F=4.53, DF=(4,70), p=0.003) but not for condition (F=0.08, DF=(1,70), p=0.785). Post-hoc 

analysis using Tukey HSD for target found a mix of significant differences (between targets) for 

generation 1 but no significant differences for generation 12. Overall, the decrease in MSE was 

45.2 from the first to the last generation. 

Another approach to evaluate performance is to look at the maximum scores assigned 

during each evolution, thus providing a measure of peak performance of a target. Recall that 

there were 5 targets and therefore there will be 5 maximum scores per subject. The average 

maximum rating is 9.1 (SD 1.1). Figure 14 below illustrates how the maximum rating scores 

were distributed. One can see that the lowest rating given was a six (there were no 

observations in the range from 1 to 5). Also, note that the proportion of maximum scores 

increased with increasing rating category, about 50% of the targets were given a maximum 

rating and 90% of the targets were assigned a rating in the upper quartile range (i.e. with a 

rating of 8 or more). The maximum high rating was assigned on average on generation 4.1. 
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Figure 14: Distribution of Maximum Ratings Assigned For Each Target 
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The last analysis compares the average MSE scores with the maximum ratings. The 

average MSE for each maximum rating category has been computed and is shown in Figure 15. 

Clearly a trend exists, such that as the maximum assigned rating increases, the average MSE 

decreases; a significant low-level correlation was found (r=0.28; F=6.93, DF=79, p=0.010).  

Figure 15: Average MSE Score for Faces Rated as Maximum 
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Rating 

Across all the rated faces, there is a low level significant correlation between the MSE 

(of the target and a population face) and the subject's rating scores (r=-0.2; F=13.85, DF=6478, 
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p<0.001). The average rating score for the first generation was 4.15, and 4.76 for the last 

generation. The mean for group A was 4.57 and for B was 4.35. A repeated-measures ANOVA 

(using the average rating of each generation to compute a subject's performance) was found to 

be significant for generation (F=14.82, DF=(1,70), p<0.001), but not for condition (F=0.44, 

DF=(1,70), p=0.508) nor target (F=0.76, DF=(4,70), p=0.555); no interactions were found 

(p>0.05). 

Timing data 

The time taken to rate faces was averaged over subjects and targets. This is shown in 

Figure 16: subjects were slowest on the first generation and then barely became any faster 

thereafter. A within-subjects t-test indicates that average ratings in generation 1 took 

significantly longer than in generation 2 (t=8.83, DF=17, p<0.001); for simplicity, no other t-tests 

were performed. The mean time to rate six faces for group A was 32.5s (SD 7.58) and 31.9s (SD 

10.08) for group B; this was not a significant difference (F=0.40, DF=88, p=0.690). 

Figure 16: Average Time Taken to Rate a Population of Faces 
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Discussion 

Data from the pilot work revealed a number of interesting findings. Firstly, two 

subjects appeared to use the rating scales backwards and therefore not as intended. The 

experiment had subjects make ratings without any assistance (after a short demonstration). 

This suggests that supervision is necessary to guard against incorrect use. This is not seen as a 

problem as photofitting in a forensic setting is carried out with the aid of an operator who is 

responsible for the correct entry of data. 
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Operator input can also be seen to be of value even when the scale was used as 

directed. There is clear evidence that better performance occurred for subjects who used a 

greater range of the scale (i.e. had a higher rating standard deviation). The reason for this lies in 

proportional fitness selection used in the Genetic Algorithm. This mechanism assigns a 

proportionally higher score (referred to as a fitness value) to faces with higher ratings. For a set 

of rating scores (e.g. with rating of six population faces), when the range between the lowest 

and highest rated faces increases, the ratio of low to high rating increases and the higher rated 

faces get a proportionally higher fitness values (and the lower rated faces get proportionally 

less). When the ratio of low to high rating increases, faces with proportionally higher fitness 

values have a greater chance to become parents. The consequence of which is that “better” 

faces tend to have more influence the breeding process.  

There are two main methods to improve the effectiveness. The first is to “spread out” 

rating scores mathematically. This can be done in a number of different ways, but necessarily 

involves transforming the data such that the range increases. One method is apply a linear 

scaling function31. Another is have the operator encourage greater use of the rating scale 

anyway. The latter may in fact be easier when rating is performed in the presence of all the 

population faces. In this method of image presentation, the operator could “encourage” 

subjects to search for the worst and best faces in a population and then guide responses 

towards the extremes of the scale (with other faces recorded intermediately). In effect, the 

subject could then “calibrate” their responses. 

There is evidence from the data that subjects did not do this naturally though. This is 

based on the lack of any significant difference in the rating scores between faces rated in 

isolation (Condition A) and faces rated in the presence of other population faces (Condition B). 

No extra instructions were given to Condition B subjects that requested them to consider all 

faces prior to making a judgement. It can be deduced therefore, that parallel rating of faces 

does not naturally lead to a difference in rating behaviours but could be valuable in conjunction 

with external influences (i.e. an operator).  

For the same reason, the use of an operator [or a data transform for the rating scores] 

could have been of extra value to Subject 14. Part of the problem was that this subject exhibited 

a low rating standard deviation. The other problem was due to the inappropriate chance over-

                                                           
31 For example, to completely fill the scale from 1 to 10, the following transform may be applied to each 

rating score (r) for a set of scores (S) 

R = 1 + [r – m]  * 9 / d 

 Where: 

  m = minimum rating of S 

  d  = (maximum rating of S) – (minimum rating of S) 
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selection of low-rated faces as a consequence of the Roulette Wheel method of parental 

selection. Occurring together, the MSE scores tended to increase for this subject. 

Fortunately, there are other methods available to select parents other than employing a 

Roulette Wheel mechanism. The problems associated with the Roulette Wheel arise due to the 

notion of numerical expectancy: that is, it is possible to get over-selection of a random state 

when few samplings occur, but when the number of samples increase (to infinity in the limit), 

the resulting random states are more equally distributed. This occurred in this study as only 12 

parents were selected for each generation (i.e. 6 pair of faces). Increasing the population size 

then will, inter alia, naturally result in more overall parental samplings and a more ideal 

sampling distribution.  

Another approach of course is to adopt a different sampling strategy that is not 

sensitive to expectancy. This problem has been addressed directly by Baker (1987). He has 

designed an algorithm that inherently avoids one individual receiving an inappropriate 

number of selections when the sampling rate is low. Essentially, the algorithm only selects a 

single starting point at random (rather than multiple points) and selects parents each time an 

integer boundary is crossed.  

Turning to the average performance, it was pleasing to see that the average MSE 

measure followed an asymptotic curve with increasing generation. The derived function 

provides a method for predicting the appropriate number of evolutionary cycles necessary to 

reduce most of the average error. In fact, 90% of the reduction in MSE occurred during the first 

6 generations. Of course, this figure may only be valid for the current settings. However, it 

does indicate that convergence is possible and can occur over a relatively few evolutionary 

cycles. Of course, the slope of MSE curve could have been much shallower, meaning that 

convergence would have taken longer.  

One of the design criteria is that convergence on an acceptable face be made as quickly 

as possible. Firstly, a witness is being presented with multiple faces and this format could have 

an adverse effect on the internal facial representation. The literature at first appears mixed on 

this issue. For example, Maudlin & Laughery (1981) find facilitation in recognition 

performance following the construction of an Identikit. No significant effect was observed by 

Davies et al. (1978) using the Photofit system, but Hall (1977) [cited in Maudlin & Laughery 

(1981)] found significantly worse recognition performance following the production of a 

suspect from a sketch artist. An important pattern emerges here: the more realistic the 

representation being constructed (line drawing elements to photographic elements to sketches), 

the worse the following recognition performance. If recognition performance can be related to 

the integrity of the internal facial representation, then caution must be observed in systems that 

attempt to produce more lifelike photofits (like that from a sketch artist and also the photofit 
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system under development here). Exposing such high quality facial material to a witness 

should therefore be minimised. All else kept constant, the number of generations should be 

limited as far as possible. 

In use, photofit systems still arrive at a solution iteratively. There is a clear starting 

point and changes are made to a single face until an acceptable likeness is achieved. Likewise, 

in the evolutionary approach, the "end point" would have been reached when one of the 

population faces is of acceptable quality. Although in use, a witness is likely to point out when 

a suitable likeness has been reached, the equivalent in Experiment 1 is seen to have occurred 

when a subject assigns a maximum value on the rating slider; recorded as a rating of 10 points. 

One can then get an indication of likely system success then by examining the number of 

maximum scores. In total, maximum rating was found nearly 50% (47%) of the time. If the top 

quartile ratings can be attributable as a "close enough likeness" (i.e. scores of 8 or more), success 

can be seen for 90% of the time. Overall, these data strongly suggest that the simple system is 

performing rather well. It is worth noting too that this does not appear to be a chance result 

due to the significant negative correlation between the maximum rating scores and MSE. 

Turning to the timing data, overall, it was found that it took 5.4 seconds on average to 

rate each face (32.2/6 seconds). There was no difference in time taken to rate faces in isolation 

(Condition A) or in the context of the other faces (Condition B). If rating time is linearly 

scaleable, this means that for much larger populations, rating can be accomplished rapidly. For 

example, if 18 faces were used, as in Peter Hancock’s (2000) prototype system, then rating 

could be achieved within a couple of minutes (5.4 seconds x 18 faces = 97 seconds = 1.6 

minutes).  

Summary and Further Work 

This chapter has examined a framework for evaluating a holistic photofit approach. It 

was decided that design should proceed on a P.C. running Windows NT with Microsoft Visual 

C++ and Matlab as the major software tools. Design of the Pilot System was detailed. Many 

simplifications were employed to limit the software engineering effort at this early stage. These 

included building a PCA model from a small database of full-frontal male Caucasian faces (35) 

of normalized shape (shape-free). A simple Genetic Algorithm operated for 12 generations on 

subject ratings from a small population of faces (i.e. 6).  

It was hoped that rating faces in the context of other faces would provide a preferable 

fitness method for the GA: no differences were found in terms of errors scores (MSE), rating 

scores and time to rate. Overall, performance was shown to be highly encouraging though, 

with the average MSE scores reducing asymptotically by a value of approximately 55. 

Interestingly, subjects were found to assign a maximum rating to at least one of the population 
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faces in 50% of the targets and a rating of 8 or more for 90% of the targets. In addition, a 

maximum rating was assigned on average before the 5th evolutionary generation.  

These results provide further evidence to allay concerns raised in the previous chapter 

regarding the ability to make facial similarity judgments. Recall that the evidence presented 

was based primarily on the observation that confusion between faces was not only common 

between subjects but also predictable (Courtois & Mueller, 1981; Davies, Shepherd & Ellis, 

1979; Goldstein, Stephenson & Chance, 1977; and Laughery, Fessler, Lenorovitz & Yoblick, 

1974). Clearly, that the Pilot System was able to evolve faces to become more like a target, not 

only indicates that subjects are able to make appropriate similarity judgments but also that the 

system is sufficiently sensitive to capitalize on this information. 

 There are clearly several areas where improvement could be made to the design. One 

area is the implementation of gross shape changes. Recall, that faces used in the pilot had all 

features “fixed” in a pre-specified location; so-called shape-free faces. In itself, limiting the 

configural32 changes in this way may have increased the difficulty of the task. Subjectively, 

several subjects commented on the apparent similarity of the faces. Obviously, much of the 

variation between faces is lost when merely the “texture” information is modelled. A better 

design would model the variation in facial shape, including (a) the shape of facial features and 

(b) the spatial relationship between facial features. This design is therefore proposed as one of 

the next developmental improvements. 

Another area of improvement is in the collection of user facial fitness information. It 

would appear that rating scales can be used inappropriately. It was decided that “backwards” 

rating could be overcome by the use of operator input and scaling techniques could improve 

the effectiveness of the scale. However, if a system is designed that will be evaluated without 

the use of constant supervision, a different method of facial selection should be considered. 

One method would be to use an “anchored” rating scale, containing labels to define the scale. 

The simplest type perhaps is to label the “end points”; for example one might use “low 

similarity” for the left-hand end and “high similarity” for the other. 

A further problem area was in the use of the Roulette Wheel sampling algorithm, 

causing an inappropriate number of “poor quality” faces to be selected as parents. This 

undesirable effect occurs due to the small number of parents that were selected (i.e. 12). One 

remedy would be to increase the population size, naturally resulting in the selection of more 

parents. Increasing the number of parents is likely to be a valuable improvement from the 

                                                           
32 Note that this term is ambiguous. Bruce (1995) explains that it can refer to the interaction of features 

(e,g, the perception of the mouth being altered by the shape of the nose); the “holistic” processing of faces; 

or the spatial relationships between facial features. It is this last definition, the spatial relationships 

between features, that is meant when the term “configural” is mentioned in this thesis.  
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perspective of the GA since this increases the number of points in “face space” and raises the 

probability of finding an acceptable solution (Goldberg, 1989). Of course, this needs to be 

balanced against the potential interference effects caused by over-exposure to faces (as 

mentioned previously).  

Improvements can be made in the use of a different sampling algorithm as well. The 

algorithm suggested by Baker (1987) would appear appropriate for implementation in further 

design. Note, this algorithm could be implemented along with an increase in population size to 

ensure that unwanted over-sampling still does not occur. 

The next chapter serves to implement and then evaluate these proposed changes. 
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CChhaapptteerr  33::  FFuullll--FFaaccee  SSyysstteemm  ((MMaarrkk  IIII  FFaaccee  EEvvoollvveerr))  

This chapter develops the Face Evolver software to evolve faces that change appropriately in 

both shape and texture. Evaluation is carried out with a larger population size than before, a simpler 

method of facial selection and a range of hairstyles. User rating scores indicate significant success over 

even a few evolutionary cycles (e.g. four generations), though targets obtained external to the face model 

did not perform as well. It is shown that the poor availability/selection of hair is a likely reason for this 

decrement in performance; another, is the simplified face model. It was estimated that 10 generations 

would be required to evolve one of the population faces to the category of “Faces could be easily 

confused”, indicating a likely upper operating limit, though this figure could be reduced by increasing 

the number of faces in a population. Overall, the approach is once again found to demonstrate 

considerable promise and serves to promote further development in future chapters. 

Increasing Utility 

The Pilot System (the Mark I Face Evolver) evaluated in the previous chapter indicated 

promise for a GA/Holistic approach used as a basis for a new photofit system. This was based 

on a significant improvement in overall rating and error scores with increasing generation, plus 

a high proportion of maximum ratings assigned for each target. This system is far from being 

useful in a forensic setting. Arguably one of the most important developments is a shape 

model, permitting statistical changes typically found in the relationship between facial 

features. Simply, a facial shape model is now required in addition to a texture model. 

An associated issue is that the faces produced in the previous chapter contained just 

the eyebrows, eyes, nose and mouth - the so-called “internal features” of a face (Bruce, 1988). 

Of course, faces in general also contain hair, ears and an outline of the head - the “external 

features” of a face. This limitation was imposed to simplify the programming effort. A natural 

effect of adding a shape-variant model and the external facial features is an expansion in the 

complexity of the face space. This would suggest that a “photofit” would tend to be further 

away from initial solutions in face space, necessitating longer search times.  

This chapter designs a full shape-variant face model (referred to as the Mark II Face 

Evolver). About this time, opportunities became available to design an exhibit demonstrating 

the principles of evolution with faces. The exhibit would be resident in a public gallery (at the 

Hatton Gallery, University of Newcastle) for a total of six weeks and permission was sought to 

record performance data. This permitted several exhibits to be designed, with evaluation. Part 

of the design strategy in the following section is based on the notion that such an exhibit would 

be run by members of the public without supervision. Considerable care is taken to minimize 

problems experienced previously with unsupervised operation (especially through the use of 

unanchored rating scales).  
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Design of a Mark II System 

Face Shape Model 

A primary improvement to the Pilot System would be the addition of changes to the 

gross shape of generated faces. In Hancock (2000), so-called shape-free faces were produced 

initially followed by the application of a shape morph. The shape morph was derived from a 

shape model built using PCA of the coordinate locations used to define the major facial 

landmarks. As with the texture, the shape model starts by normalizing the set of image 

coordinates (i.e. one coordinate vector per face) to zero mean and unity standard deviation. 

This is followed by the computation of the covariance matrix and the extraction of the 

eigenvectors. Eigenshapes (cf. eigenfaces) are computed by multiplying the eigenvectors by the 

original coordinate sets. The eigenshapes therefore capture the gross shape changes in the 

database of faces.  

Much as before with the texture model, construction of a novel face shape proceeds by 

the weighted addition of the eigenfaces to the average shaped coordinate vector. The 

weightings are produced from a vector drawn from a Gaussian random number generator with 

each element scaled to its corresponding eigenvalue. Production of a novel shape-free face (from 

the texture model) is followed by a bilinear interpolated shape distortion (i.e. a morph) from the 

average shape to that specified by the novel coordinate vector. 

Hair 

An inherent difficulty still remains with this approach regarding hair. The problem is 

that although facial shape and texture information tend to be largely consistent over time, more 

so for men than women because of the general reluctance of men to use makeup in this 

country, this is clearly not the case with respect to a person’s hair. It was considered best 

therefore that hair should be considered an independent feature to the face because the colour, 

length and style can be easily changed. A solution is proposed such that the structure and 

intensity of a face be modelled holistically, but the hair be represented in a more feature-based 

way. 

Clearly then, a diverse range of hairstyles should be available to accommodate the 

needs of a witness. A problem is how to include a selection of hairstyles that form part of the 

external features and can be fused with the internal features to produce a single face. Arguably 

one could assemble a large repertoire of hairstyles (say from photographs), though the easiest 

approach initially might be to make use of the hairstyles that form the corpus of faces. At this 

stage in development, there were 35 faces in the corpus and these hairstyles are all quite short 

and tidy. Naturally, this is quite a restricted set but can be of value at this early stage of system 

development. 
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Targets 

The design of the Mark I Pilot System considered the origin of the target images. 

Having the target generated from within the system explored whether it was possible to locate 

a face in the texture model. This sensible approach is continued to include both the shape 

model and also hairstyles as well. Once again, a face could be randomly generated and one of 

the hairstyles selected (at random) from the database as well. In fact, the entire set of external 

features from the reference images could be used, providing not just the hair but also a neck, 

collar-line and a pair of ears.  

Recall that the original set of images were first shape-normalized (to the average shape 

of the corpus) prior to creation of the texture model. To create a novel face, a randomly 

generated shape-free face would first be generated (as in the Pilot System) and its internal 

features then inserted into the selected shape-normalized reference background. The final step 

would be to apply a morph to this face with coordinates specified by a random location in the 

shape model. The result would be a randomly generated full shape-variant face with a 

hairstyle chosen from one of the corpus images. Like the Pilot System initially, both the 

population faces and target face could be created using this method (i.e. internal to the system). 

Improving Image Quality 

When this was implemented however, several difficulties were observed. The first 

concerns the number of coordinates used to mark key facial locations. Only forty-two were 

used in the Pilot System and these were positioned mainly around the eyes, eyebrows, nose 

and mouth. This was a reasonable number considering that only the internal features were 

being displayed. The number of points marked on the external features was limited with the 

result that the outline of the head appeared jagged rather than a smooth contour. To model the 

external features more acceptably, the number of coordinates was increased to 211. An example 

can be seen in Figure 17. 
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Figure 17: Coordinate Point Locations for the Full Shape-Variant Model 

 
 

The other problem was that when inserting the randomly generate internal features 

into the shape-normalized head, an obvious discontinuity was present. A solution to this was 

found by “blending” the internal and external features at the edges where the internal and 

external feature overlapped. This was easily achieved by providing a “keying” mask that 

provided a graded blend across the contour of the internal and external boundary. The 

following mask was designed – 
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Figure 18: Keying mask used to create a composite image from the internal and external 
features 

 
 

This (Figure 18) was created manually in Adobe Photoshop. A composite image is 

formed exclusively from the external image when the pixels are black in the keying mask, and 

from the internal image when the pixels are white in the keying mask. A mixture of internal 

and external feature pixels forms at the boundary (the blurred areas of the mask appearing in 

grey). To produce good results, it was found that pixel blending needed to occur over 

considerably more pixels in the forehead and chin areas than in the region between the cheek 

and ears.  

Figure 19 illustrates the effect of keying 3 randomly generated textures into one of the 

shape-normalized backgrounds and then applying a randomly generated face shape. Note that 

the blending is very acceptable and the resulting faces are of high quality. 
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Figure 19: Examples of Randomly Generated Shape-Variant Faces 

 

Demo System 

It was mentioned earlier that there was an opportunity at this point in the project to 

provide a public demonstration of how an evolutionary process could be applied to a small 

population of faces. Since supervision could not be guaranteed at all times, the exhibit would 

need to be self running and sufficiently engaging for members of the public (who would 

generally be unaware of the project). In addition, the exhibit should take only a few minutes to 

complete (otherwise users are likely to get bored) and feedback should be given immediately 

after the evolution process. Permission was obtained for information to be collected regarding 

evolutionary performance, thereby enabling some evaluation of the new system to be carried 

out. 

The philosophy adopted in the Pilot Study, with the target present during evolution, 

was thought appropriate. Once again this would serve to explore whether the system was able 

to locate targets in the shape and texture models. In addition, the task of evolving from 

memory may be too hard and therefore not appropriate in an exhibition setting.  

One design factor thought sensible was to increase the number of faces in the 

population. Previously there were 6 faces, displayed as two rows of three (Condition B). It 

would be preferable to increase the population size as much as possible (so as to increase the 

number of solutions being explored in parallel by the GA). To avoid the potential confusion of 

seeing too many faces across too many screens, the population size was limited to that which 

could fit on single screen. The maximum number of faces displayed is of course limited by the 

size of the monitor: the more images displayed on a screen, the smaller they will tend to be. 

Ultimately, it was thought that images seen at least 45mm by 60mm on the monitor (i.e. physical 

image size) would allow general use of the exhibit.  

The highest density turned out to be a configuration with faces in three rows. As a 17” 

monitor was to be used, this enabled a maximum of 3 rows of 6 faces to be displayed within 
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the necessary size constraints – the same as Hancock (2000). The utility of this layout is 

underscored by Baker & Seltzer’s (1994) successful line drawing evolver and Baker & Seltzer’s 

(1998) successful mugshot album search that both employed a similar number of examples (20) 

on the same sized monitor. However, it was required that the target be presented along with 

the population faces. It seemed most natural to position the target in the middle of the display 

and have the population in the surrounding area. As there was not an odd number of faces in a 

row, the middle two population faces in the second row were replaced by the target. This 

resulted in sixteen population faces. An example illustrating this configuration is shown in 

Figure 20 – 
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Figure 20: Presentation Format for Faces (the target is displayed in the centre of the population) 

 
 

With this interface designed, concern was expressed as to the method by which users 

should weight the population fitness function. Recall that in the previous chapter, this was 

achieved via a simple 10-point rating scale. However, the lack of constant supervision suggests 

that this might once again result in undesirable rating behaviours. It was thought that a very 

simple method would be to ask people to merely select faces that they thought were closest to 

the target – rather than specify a rating.  



71 

This approach is rather like the apparently successful method adopted by Rakover & 

Cahlon (1989), though more faces could be selected in the current paradigm. The whole face 

selection method has featured in several other studies demonstrating utility in searching for 

targets (from memory) in mugshot albums (Baker & Seltzer 1998; and Levi, Jungman, Ginton, 

Aperman & Noble, 1995). In Levi et al’s (1995) feature-based retrieval system, a database of 

1200 faces was searched for a target by displaying a screen of 24 faces and having the witness 

select the closest five. These selections were used to adjust the weightings of the features to 

produce a further set of faces for selection. The process would continue until a match was 

achieved (occurring at least twice as fast as a traditional, linear search and with an 80% success 

rate). Baker & Seltzer (1998) also required five selections, this time from a set of 100 randomly 

chosen mugshots. Interestingly, the authors performed PCA on this 4500 item photo album and 

located the position of the target in this sub-space closest to the highest ranked face. It was 

found that the target occurred on average 3 times sooner compared with a linear search and 

with about an 80% success rate. The authors go on demonstrate even better performance (a 

higher hit rate and lower search time) if a top “composite” is used as a reference (instead of the 

highest ranked face). This image is selected as the best from 10 composites assembled 

randomly from the facial features of the five best selected mugshots.  

Overall, Baker & Seltzer (1998), Levi, et al. (1995) and Rakover & Cahlon (1989) 

illustrate the utility of making similarity judgments to a target. The implication is that a whole 

face selection mechanism may well be valuable for the Face Evolver. Further, that the selection 

mechanism has been used in a PCA setting, admittedly for face recognition rather than 

generation, provides additional confidence. 

Returning to the Face Evolver’s interface, this mechanism could be easily carried out 

by simply clicking on a face with the computer’s mouse. Selected faces could be indicated by 

changing the image’s border, providing sensible user feedback. A second click on the face 

could de-select it; useful when a mistake had been made or when a “change of mind” was 

required.  

Proportional fitness selection could be used again, with each selected face receiving an 

equal opportunity to take part in the breeding process. It was perceived however that some 

people might not select many faces at all – just selecting only one or two. The likely result 

would be that the population would converge early and not necessarily on the given target. A 

minimum should therefore be imposed on the number of faces selected. This minimum should 

be large enough to guard against early convergence but not so large so as to take too much 

time and be boring for a participant. After an early trial version, it emerged that people were 

generally comfortable with selecting half a dozen (six) faces. Although this requirement would 

be stipulated in the instructions, it was decided that user feedback would be provided when 

less than six faces had been chosen (by way of a message box that requested the selection of 

more faces). 
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An observation made from the Pilot System was that about half the participants gave a 

maximum rating sometime during evolution. This suggests that it might be appropriate to 

indicate those faces thought to be very good. One method would be to allow participants to 

make an initial selection of the face that was considered “perceptually closest” to the given 

target; Goldberg (1989) refers to such individuals as “best-of-generation”. This could then be 

followed by the selection of the remaining five. This simple approach results in a minimum of 6 

mouse clicks per generation. Selecting the “best” face at the start is an ergonomic solution since 

it allows more than 6 faces to be easily selected should a subject desire. Mechanisms should be 

put into place that would permit the simple re-selection of the best face should a change be 

necessary. Arguably, the simplest way would be to click on the best face again, like the de-

selection of a population face, followed by a click on another face, assigning that as the best. 

The selection of a best face also permits another mechanism in GAs to be used: elitism. 

In elitism, one carries forward to the next generation the individual(s) that were considered 

superior. This based on the notion that particularly good individuals are likely to be beneficial 

in future generations, since they have been of relative value previously, and also to avoid the 

population from becoming qualitatively worse (since the best face from a generation would be, 

at worst, still the best face in the next generation). So, it was decided to include the best face in 

the following generation. Therefore, the GA would operate by the replacement of fifteen parents 

from a previous generation, leaving the sixteenth as the best face from that last generation. 

Finally, the best face would be positioned in a random position within the population so as to 

remove any positional cues by placing this face in a fixed location. 

In addition to elitism, the best face could also be given a greater weighting than the 

other faces selected. In GA terms, the “selection pressure” would then be higher for this face, 

resulting in more breeding opportunities. This would lead to more offspring being produced 

with the influence from this “preferential” individual. The consequence is a decrease in 

convergence time. Although the amount of selection pressure is unknown at present, it is 

proposed simply that twice the weighting be attributed to the best face (i.e. a 2:1 selection 

pressure). 

The presence of this best face would allow another method of system evaluation. This 

could involve asking participants to rate their best face against the target face. The target face 

could be present during the rating exercise to avoid confounding effects by “holding” the 

target in memory. Once again, one would want to avoid the inappropriate use of rating scales. 

Therefore an “anchored” scale was suggested with a set of categories ranging conceptually 

from “a very poor similarity” to a “perfect match” with the target.  

It was important that this scale should be easy to use as members of the public would 

be the subjects. The most appealing design was a fully anchored scale, to encourage 

consistency between subject. Ultimately, a scale was designed containing 6 major categories 

and a single division within each of the intermediate categories for finer discrimination. A 
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small pilot study indicated that members of the public would be able to use it with ease. This is 

referred to hereafter as the Anchored Face Similarity Scale or AFSS and is shown in Table 2 - 

 

1  Very poor likeness between faces 
2 or 3  Few similarities 
4 or 5  Some similarities 
6 or 7 Many similarities 
8 or 9  Faces could be easily confused 
10  Faces are identical 

Table 2: The Anchored Face Similarity Scale (AFSS) used to Evaluate Performance  
 

The rating procedure has a further advantage of giving the user something to do while 

the faces are being computed, which took 4.5s on average33 using the P.C. that ran the Pilot 

System (refer to the Apparatus section, Chapter 2).  

Clearly, a good exhibit would be one that was able to demonstrate a desired effect in a 

short time. In this case, one would like to be able to show that the evolutionary system had 

become more similar to the presented target over a few evolutionary cycles. In the Pilot Study, 

peak performance was observed after 4 generations (as measured by the average generation 

that a maximum rating was assigned). Using this result as a guide, it was proposed to run 

participants through 4 generations of the software initially. However, to allow opportunities 

for further evolution for participants that were prepared to persevere, an option was proposed 

that enabled continuation of another 4 cycles. This has the added advantage of potentially 

being able to gather data for longer runs of the system. 

It is of importance to demonstrate evolution of a face for the exhibit. After 4 or 8 cycles 

of the software, several measures could be presented to the user to demonstrate evolutionary 

success. These could include reporting the subject’s rating scores or even the error score (MSE 

with respect to the target) of the best faces. Even the groups of selected faces could be shown, 

as these are likely to have changed with increasing generation. But, these measures are either 

too abstract (as with rating or MSE scores) or too confusing (as in the case of showing groups of 

selected faces). Arguably, the simplest method would be to show the progression of best faces 

over time along with the target face (to permit direct comparison). Of course if the system is 

working, then the best face should become perceptually more similar to the target.  

It was expected that some subjects would not continue evolving to 4 generations. This 

could be on account that they became bored, had to leave the exhibition, or most importantly, 

they were not serious about the exhibit. It was felt members of the public who were not serious 

about the exhibit are unlikely to provide useful insights into the Face Evolver’s performance. 

To guard against this, it was decided to collect and analyze data only from those subjects who 

completed the minimum number of evolutions. It was also decided that participant 

                                                           
33 This was based on the average (mean) of 6 replications of the evolutionary generator. 
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demographic information should be collected, though this should be optional and minimal: 

age, gender and user comments. It appeared best to collect this information following the 

presentation of the participant’s best faces. Opportunity for user feedback was considered a 

good idea, due to the lack of continual supervision. 

Experiment 2: Shape-Variant Face Model 

This experiment provides the first evaluation of the Mark II Face Evolver. It differs 

from the Mark I version by the inclusion of major facial shape variations, the addition of hair, 

user selection by faces (as opposed to rating scales), a larger population size (now 16 faces), 

and the use of Baker’s algorithm (to avoid inappropriate over-sampling of low rated faces). The 

evaluation is to be conducted in a public setting with targets generated internally and 

evolution continued over 4 or 8 generations. Assessment of performance is planned via the use 

of an anchored rating scale of the most fit (or best) individuals from each population. 

Method 

Overall, the Mark II Face Evolver was designed to parallel the Pilot System as much as 

possible – to facilitate comparison between studies as far as possible34. Hence, the PCA shape-

free (texture) model from the Pilot Study was carried forward and the first 17 coefficients (plus 

the average database image) were used for image generation. 

A PCA shape model was built from the original set of image coordinates and the first 17 

of these coefficients were used for shape generation (i.e. the same number as for texture 

generation). Creation of the 16 random faces and the target face proceeded with the shape-free 

images produced as before followed by the keying of the internal features into one of the 35 

original shape-free external features using the blending mask described previously (refer to 

Figure 18). A final shape de-normalizing morph was carried out by a shape vector defined by 

populating the first 17 coefficients with random numbers (drawn as normal from a uniform 

Gaussian distribution and scaled by the corresponding eigenvalues) from the shape model. The 

face selection procedure adopted, in contrast to rating scales used in Experiment 1, allowed 

each face to have an equal share of being a parent; the exception being the first (or best) 

selected face - receiving a weighting of twice the others (a higher selection pressure). 

Proportional selection fitness and uniform cross-over for both the shape and texture 

components was once again adopted, though Baker’s algorithm was implemented in place of a 

Roulette Wheel method of parent selection; mutation was set to a probability of 0.05, replacing 

the shape and texture coefficients with an appropriately scaled random value. 

                                                           
34 Although the creation of full shape-variant faces, a different rating method and Baker’s algorithm (for 

parent selection) may serve to cloud comparison. 
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Initial analysis of the system was planned using the rating scores of the best face 

assigned at the end of each evolutionary generation. Of particular interest is the distribution of 

“high” rating scores and whether significant differences could be found with increasing 

generation. The presence of significant effects would be of interest to the eighth generation as 

well, should sufficient participants decide to continue that far. 

Participants  

Twenty-two members of the public participated in the study, set up as an exhibit 

during the Science of the Face exhibition at the Hatton Gallery, Newcastle University (June-July 

1999). Participation was voluntary. There were 13 males and 9 females. Their ages ranged from 

10 to 43. 10 participants continued evolution beyond the fourth generation (the reminder 

terminated the evolution process after 4 generations). 

Apparatus 

A Pentium PII PC clocked at 350MHz was used to run the experiment. Faces were 

displayed on an Ilyama 17” monitor. Participants had use of the computer mouse (to select 

faces and move to the next screen) and keyboard (to enter rating scores and complete a short 

demographics section at the end of the experiment). 

Procedure 

Each participant was assigned to the next random target (a different set of external 

features were used for each subject, chosen sequentially from the original shape-free corpus). 

The first generation of faces presented to the participant was generated randomly. Instructions 

were presented at the start of each trial (via a Window’s Message box) that explained to first 

select the face that most closely resembled the target face, then 5 others that closely matched 

(Figure 21) -  

Figure 21: User Message Presented at Start of Experiment 

Create a Photofit by Evolution: Start 
 

The exhibit demonstrates how evolution works for a small group of human faces 
and how a Photofit may be created. 
 
You are about to see a target face (in the centre of the screen) and a population 
of faces with random features. Your task is to select parents for 4 generations. 
 
Press OK to see the first generation of faces... 
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Closing of this message displayed the population faces accompanied by the following 

message box to reinforce the required task (Figure 22) - 

Figure 22: User Message Presented In Front of the First Set of Faces  

These are an initial set faces with random features. 
 
What do I do now? 
1. Look at the target in the centre of the screen (behind these instructions) 
2. First, click on the face MOST similar to the target 
3. Then, click on 5 other faces (with similar features to the target) 
4. Finally, click the Make Next Generation button 
 

While the next generation of faces was being computed, the target was shown together 

with the user’s closest selected face (best face) and rating for similarity was carried out (using 

the AFSS, Table 2). To further reinforce the task, the following message was displayed in front 

of the second generation of faces (Figure 23) – 

Figure 23: User Message Presented In Front of the Second Set of Faces 

These are the 'offspring' faces 
 
What do I do now? 
 
1. As before, first select the face MOST similar to the target, then 5 others 
2. Click the Make Next Generation button when done.  

 

When 4 generations of faces had been evolved (the initial set plus three more), a 

request was made to continue for another 4 generations. When the evolution was complete, the 

set of best faces was displayed on a screen along with the target face. Demographic information 

(age and gender) was then collected along with user feedback. Debriefing involved explanation 

of the evolutionary process and its application in a forensic setting. The rating data and all 

faces were saved for participants that completed 4 or 8 generations; data from incomplete trials 

were over-written (with the next participant).  

Results 

Figure 24 shows a few examples of performance from the first six participants. A 

significant improvement can be seen subjectively from a “typical” face35 in the first generation 

to the best-rated face in a later generation - 

 

                                                           
35 This was an example (other than the best face) taken from the first generation. 
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Figure 24: Examples of Evolutionary Performance 
Target Generation 1: Typical Face35 Best rated face 

 
Target A 

  
Participant 1 (Rating 9) 

 
Target B 

  
Participant 2 (Rating 8) 

 
Target C 

  
Participant 3 (Rating 9) 

 
Target D 

  
Participant 4 (Rating 9) 
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Target E 

  
Participant 5 (Rating 7) 

 
Target F 

 
 

Participant 6 (Rating 7) 

 

 

The mean rating scores for the best faces have been plotted in Figure 25 below -  

Figure 25: Improvement in Rating Scores 
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Looking at the change in mean rating scores with successive generations, scores 

increased for the first two generations, remained nominally constant for a further two 

generations, increased and then remained roughly constant for the remaining time. Mean 

rating scores increased from 3.9 in the first generation to 5.5 in the fourth generation to 6.6 in 
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the eighth generation. A repeated-measures ANOVA for rating scores36 found a significant 

main effect of generation collected over the first 4 generations (F=11.4, DF=(3,21), p=0.003). A 

two-tailed within-subjects t-test37 revealed that rating scores in generation 4 were significantly 

higher than generation 1 (t=3.40, DF=21, p=0.003); for simplicity, no other t-tests were 

performed. A repeated-measures ANOVA also found a significant main effect of generation for 

rating scores between generations 5 and 8 (F=18.5, DF=(3,9), p=0.002) and a t-test indicated that 

rating scores in generation 8 were significantly higher than in generation 4 (t=2.8, DF=9, 

p=0.022). 

Consider the distribution of the highest score attributed to a best face for each 

participant. It can be seen from Figure 26 that approximately half the time the best scores 

occurred for rating of 6-7 ("many similarities") and half the time for ratings of 8-9 ("faces could 

be easily confused"); only one subject rated below either of these (in the upper category for 

“some similarities”). There were no maximum ratings assigned. 

Figure 26: Distribution of the highest rating for each participant  
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Consider next where these highest ratings were made. As it was sometimes the case 

that there was more than one face with an equally high rating, analysis considered the face 

                                                           
36 Although it is acknowledged that non-parametric statistics are preferred with rating scores (as the data 

is only ordinal and not (at least) interval), it is common practice in the psychological literature for 

parametric statistics to be used. Following this approach, parametric tests will be carried out for rating 

data throughout this thesis. 
37 For ease of readability, all subsequent t-tests in this chapter are the “two-tailed within-subjects” type 

unless otherwise specified. 
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from the higher generation38. The distribution where the highest rated face occurred reveals 

two clear peaks (Figure 27) occurring in generations 3 and 6 - 

Figure 27: Distribution of the Highest Rated Faces 
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In addition, there were 79 out of 106 occasions (74.5%) when participant ratings either 

increased or remained constant from one generation to the next; 42.4% of the total time scores 

increased and 32.1% it remained constant. Figure 28 indicates that increases in rating scores 

occurred proportionally more of the time especially from the third to the fourth generations - 

Figure 28: Proportion of Time that Participant Ratings Increased 
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38 This was based on the assumption that, as system performance tends to increase with generation, a 

preferable face is likely to occur in a later generation. That said, one reason for an equally high rating is 

that the same best face is re-selected in the following generation (recall that the elitist mechanism includes 

a best face from a previous generation) and the same rating applied. In fact, this was found to occur 16% 

of the time; 2.6 times greater than chance (equal to 1/16 or 6.25%). 
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 The increase in peak rating scores was then computed over successively longer 

generation spans. It can be seen from Figure 29 that the average peak rating always increased, 

although progressively less with increasing generation. A good fit was found for this curve 

with a logarithmic function (refer to the graph) that explained 99% of the variance in the 

average peak ratings.   

Figure 29: Increase in Peak Rating Scores for Increasingly Longer Generations 

y = 1.73Ln(x) + 4.0249
R2 = 0.9884
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Considering the pixel error scores (with respect to the given target), the average and 

standard deviation of MSE score were computed for each generation for subjects that 

continued to generation 8. Figure 30 shows that the average MSE scores follow a general trend 

of decreasing error with increasing generation but the SD scores fluctuate about a mean of 

about 250 –  
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Figure 30: Variability in Mean and Standard Deviation of MSE during Evolution 
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A repeated-measures ANOVA for the MSE data in generations 1 to 8 was found to be 

significant (F=11.11, DF=(7,9), p=0.009). Using a t-test, there was a significant decrease between 

generation 1 (mean 723.33) and 8 (mean 559.72; t=3.23, DF=9, p=0.010); no other tests were 

computed. An f-test39 indicates that there was no difference in the variance between the first 

and fourth generations (DF=21, f=1.46, p=0.195). 

Discussion 

The results of the mean rating scores of the best faces were seen to follow an increasing 

trend. This was supported by a significant main effect of generation and significant differences 

were confirmed between generations 1 to 4 and from 4 to 8. This suggests that the best face 

became perceptually more like the presented target over time and implies that the current 

evolutionary system is working. The overall size of the effect was found to be a modest 2.7 (out 

of 10 on the similarity rating scale) from the first to the eighth generation. Relating this to the 

semantic labels assigned to the rating scale, the average rating increased from the category of 

“Few similarities” in the first generation to “Many similarities” in the eighth. This provides a 

measure of the average peak system performance.  

Important findings also arise from the analysis of the highest rating score attributed by 

each participant (i.e. during each evolutionary run of the system). This is relevant, as was 

argued for the Pilot System, since a high rating can signify convergence to a target and 

completion of the evolutionary exercise. It was found that maximum best rating for each 

subject fell roughly equally between the categories of “Many similarities” and “Faces could be 

                                                           
39 An f-test indicates whether there is a significant difference in the variance of two populations. 
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easily confused”. This result is encouraging since it suggests that the target face could be 

evolved using the system to a high degree of likeness, especially for half the subjects who rated 

in the “Faces could be easily confused” category. Interestingly, the best-rated face tended to be 

assigned on the third or the sixth generation. If it can be assumed that the concentration of best-

rated faces is indicative of a significant evolutionary jump, then this data fits nicely with 

Darwin’s notion that evolution is slow and gradual with occasional significant adaptations in 

between (rather than being continuously rapidly increasing); (Dawkins, 1991). This notion that 

evolution is “slow” was reinforced by the observation that about a third of the time (32%) 

rating scores did not change from one generation to the next. Impressively, this figure was 

superseded only by the proportion of time (42%) that rating scores actually increased.It was 

found instructive to compute the increase in peak ratings over successively longer generations. 

This illustrated the continued contribution of evolution for longer periods of time. A log 

function was able to fit the curve exceedingly well. A prediction can be made such that 10 

generations are sufficient for subjects to rate one of the faces in a population in the category of 

“Faces could be easily confused." This suggests that 10 is an average operating upper limit for 

the number of generations required to obtain a high similarity between a target and a photofit. 

Further support of evolutionary success is provided by the MSE data. The analyses 

were computed from the average MSE score from each generation and therefore provide a 

guide to average population fitness (as opposed to peak performance - as measured by the 

rating scores of the best face). Clearly the trend was for faces to become significantly closer to 

the target (in terms of image intensity). This suggests that it is not just the best individual in the 

population that has improved, but the population itself has become more like the target. For 

evolutionary success, both of these effects are expected and are present. It was not surprising to 

find a lack of a significant difference in the standard deviation of the MSE scores. Though a 

significant difference had been found in Chapter 2, this was over 12 generations and with a 

much smaller population size (6 faces). The lack of any significant changes in the standard 

deviation scores in this study suggests that the variation in the population had not changed 

and implies that continued evolution (beyond 4 or 8 generations) would not be hampered by a 

lack of population diversity. 

Caution should be applied to the interpretation of the rating data however. It is 

possible for subjects to be driven by experimental expectation. In this case, they could have 

attributed higher rating scores due to the desire to see “improvement” (or were perhaps being 

more generous as the demonstration continued). Such behaviours would certainly weaken the 

above argument suggesting encouraging results. A counter argument to this could be the 

presence of the two “flattish” regions, or plateaux, where a lack of a significant difference was 

found (i.e. between generations 3-5 and 6-8); the so-called evolutionary “slow” periods. It 

would appear reasonable to assume that if participants were driven by expectation, then rating 

scores should always rise. It is interesting to note anyway that about a quarter of the time 
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(25.5%), rating scores decreased and this occurred frequently when participants would 

terminate the experiment; this occurred 12 out of a total of 27 times (44%) from generation 3 to 

4 and from generation 7 to 8. This notion will be further explored in the following experiment. 

Experiment 3: Confirmation of Rating Scores 

The previous experiment brought into question the validity of user rating scales for 

evaluation of the Face Evolver. Two effects were presented suggesting that this might not be 

the case: the presence of two plateaux in the rating distribution and a decrease in rating scores 

on the final generation in a large number of subjects (44%). The current study examines the 

ratings obtained from an independent group of subjects. 

Method 

It was decided that the easiest way to ascertain the validity of the rating scores from 

Experiment 2 would be to give the best faces to a group of independent subjects to rate for 

similarity against a target face using the same rating scale. Rating could be carried out with 

faces presented in a randomized order rather than a serial order (as was the case in Experiment 

2). Any differences in rating scores now could then be more confidently attributable to actual 

differences in system performance as opposed to undesirable subject effects. 

As a total of 128 rating scores had been collected40, and a small pilot was proposed, 

only the best faces from the first and last generation of the first 12 participants from 

Experiment 2 were used as stimuli. The same rating scale would be used to permit valid 

comparison between studies. 

Participants 

Sixteen participants agreed to complete the experiment, comprising visitors to the 

MacRobert Centre at the University of Stirling. As there was hostility regarding the collection 

of age, no demographic information is available. Participation was voluntary. 

Procedure 

Each of the 24 best faces (from the first and last generation from the first twelve 

subjects) was printed on a separate page along with the corresponding target face. These were 

shuffled for each participant and shown one at a time for rating using the AFSS as before. 

                                                           
40 This comprised of four ratings for each of the 22 subjects (for the first 4 generations) and a further four 

ratings for the ten subjects that continued to the eighth generation (4x22 + 10x4 = 128). 
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Results 

The mean rating was 5.26 (SD 2.49) for faces taken from the first generation and 5.76 

(SD 2.45) for faces taken from the last generation; this was a significant increase using a t-test 

(t=1.97, DF=191, p=0.005). Although the average rating scores were significantly higher for the 

initial generation in Experiment 3 compared with Experiment 2 (t=3.14, DF=214, p=0.002), 

there was not a significant difference between the rating scores of the final generation (t=0.68, 

DF=214, p=0.496); between-subjects t-tests were used. 

Discussion 

The increase in rating for faces between first and final generations provide evidence 

that the increases reported in Experiment 2 were not solely due to participant expectancy 

effects. That the effect size was smaller (by 0.3341), coupled with a significant difference 

between the rating scores in the initial generation of faces, requires explanation. 

The reason for the significantly lower rating scores for faces in Experiment 2 compared 

with Experiment 3 is likely to be based on methodological differences between the two studies 

(rather than differences in subject performance caused by the use of different population types 

– i.e. university students versus members of the public). One obvious difference is that 

participants in Experiment 2 had exposure to a set of faces prior to rating; i.e. they viewed and 

selected six faces from the initial set of faces prior to rating of the best face. When making a 

judgment regarding similarity, this is likely to be affected by the variation in the population 

under comparison. For example, two faces could be considered to be less similar if they were 

known to be drawn from a family photo album rather than from photographs in general (since 

smaller differences between family members would be considered more salient and spaced 

further apart on a rating scale). This in general would allow Experiment 2 participants to gauge 

the likely variation before making a rating judgment and is likely to be more marked the more 

dissimilar the faces: especially the first generation. As the presented faces in Experiment 2 

represent a sub-set of Caucasian males, and are more similar to each other than faces in 

general, it is not unreasonable then for Experiment 2 subjects to rate faces in the first generation 

significantly less than those from Experiment 3.  

In conclusion, the presence of a significant increase in rating scores in Experiment 3 

does indicate a lack of participant expectancy effects in Experiment 2. The use of rating scales 

in the manner prescribed (as in Experiment 2) is therefore taken as a valid method of system 

assessment and that the encouraging results of Experiment 2 stand. However, the results have 

                                                           
41 The average difference in rating score was 0.83 in Experiment 2 for the first 12 subjects, and 0.5 in 

Experiment 3; a difference of 0.33. 
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limited generalizability since the targets were generated from within the face space model. The 

next experiment (Experiment 4) is designed to explore this shortcoming. 

Experiment 4: Celebrity Targets 

Experiment 2, and the follow-up study (Experiment 3), served to demonstrate promise 

for an evolutionary photofit system using a holistic face model. The potential of the system to 

generalize beyond the face model is tested in this experiment by exploring performance with 

the target obtained externally. To maximize comparability between studies, the origin of the 

target is the only change planned. 

Method 

Experiment 2 and Experiment 3 used targets that had been generated from within the 

face model. These targets were themselves new or novel as they were not part of the original set 

used to construct the model. It was discussed previously that this approach serves to explore 

the ability to locate a face that is known to exist within the face space (as the face had been 

generated from within the model in the first place) but is not informative about the 

generalizability of the model. Namely, is the model capable of generating any Caucasian male 

face? Of course, in a forensic setting, photofits are constructed from facial features not pre-

defined in the photofit system. Testing with an unknown or novel face in this way is therefore 

more realistic. This experiment evaluates the ability of the photofit system under construction 

to achieve this goal. Once again, the Face Evolver would be used in the form of an exhibit (in 

the Hatton Gallery, Newcastle University) and the design should be appropriate for members 

of the public. Data could once again be collected. 

A question arises as to how familiar the target faces should be to someone creating a 

photofit: should the target face be familiar or unfamiliar? Of course, a familiar face is someone 

who is either personally known (e.g. a friend) or a famous person (e.g. a celebrity). It is 

generally believed that familiar faces enjoy a special status in human face perception (e.g. 

Bruce, 1988; Burton, Wilson, Cowan & Bruce, 1999; Bruce, & Young, 1986; and Ellis, Shepherd 

& Davies, 1979). In particular, Ellis, Shepherd & Davies (1979) showed that the memory of the 

internal features of a familiar face is significantly greater than for a face of limited exposure. In 

addition, for briefly encountered faces, it is the external features – especially the hair  - that 

tend to be preferentially remembered. It was decided that this issue could be resolved at this 

stage by continual presentation of the target (as before). Differences in familiarity of the targets 

should therefore be eliminated if the target is always present for reference. System performance 

with a target evolved from memory could be the focus of a future study. 

It was decided to use generally well-known or famous faces as targets. This has the 

advantage that the evolved photofits could be given to different subjects for identification and 
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provide a method of system evaluation in addition to rating scores. It was also anticipated that 

the use of famous faces was likely to be more interesting to participants than evolving someone 

unknown. 

Six famous faces in a full-face pose were located (on the Internet). These were scaled to 

180x240 pixels and converted to monochrome. These are shown below - 

Figure 31: Famous Male Celebrities used as Targets. These are (left to right, top to bottom): 
Robbie Williams, Tim Henman, Pierce Brosnan, Robert Carlyle, George Clooney and Hugh 

Grant. 
 

 

Recall that in Experiment 2, the target's hairstyle was automatically chosen for each of 

the population faces. This was not possible for the celebrity targets, as the exact hairstyle does 

not appear in the training data. It appeared easiest to make available the 35 hairstyles from the 

training set for selection; a so-called hairstyle palette. Now, in the two major photofit systems, 

EFIT and PROfit, each facial feature is selected by swapping out the current selection from the 

composite under construction. That is, features are always seen and modified in the context of 

a whole face. This is considered appropriate as it is beneficial to the recognition of individual 

features (e.g. Bruce, Healey, Burton, Doyle, Coombes & Linney, 1991; Davies & Christie, 1982; 

Homa, Haver & Schwartz, 1976; Tanaka & Farah, 1993; and Tanaka & Sengco, 1997). A similar 

approach was adopted therefore.  

Although one could make available the original database images for selection of the 

hair, this was not permissible as identity would be inappropriately revealed. A simple 

alternative was to key the external facial features onto another face – like the method adopted 

in Experiment 2 to add the external features to the internal features. The best approach 

appeared to be to use the internal features from the database’s average shape and textured face. 

This face would be correctly unrecognizable as any of the originals but providing an 

appropriate context in which to select the hair. 

As discussed in Experiment 2, the physical dimensions of the monitor permitted 18 

faces of this image resolution to be displayed together. Therefore, 2 screens would be required 

to display all the available hairstyles. An example of the first six hairstyles keyed onto the 

average shape and textured face used can be seen in Figure 32 - 
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Figure 32: The First Six Hairstyles Available for Selection 

   

   

 

Participants 

Nineteen members of the public visiting the Hatton Gallery, Newcastle University 

participated. There were 11 males and 8 females and their ages ranged from 17 to 37 (though 7 

participants did not complete their age; it was an optional demographic request). 7 participants 

continued evolution beyond the fourth generation. 

Apparatus 

The apparatus was the same as in Experiment 2, except that the 6 target faces were 

obtained on the Internet. 

Procedure 

The experimental procedure was the same as Experiment 2, except that initially a 

target was selected from a list of six celebrities (Figure 31), followed by a hairstyle (Figure 32). 

Participants were able to change the hairstyle at any time during the experiment (a button was 

present to permit re-selection); the current set of population faces were re-computed to reflect 

any changes in hairstyle. Evolution continued as in Experiment 2 with the best face being 

selected first, followed by 5 others from a population of 16 faces. Either 4 or 8 generations were 
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evolved per person and rating scores of the best faces were recorded. The (famous) target face 

was on display in the centre of the screen as before during the selection of population faces and 

whilst rating against the best face. 

Results 

It can be seen in Table 3 that Robbie Williams and George Clooney were the most 

selected celebrities for evolution - 

Table 3: Distribution of Celebrities Chosen for Evolution 
Robbie Williams Tim 

Henman 

Pierce Brosnan Robert Carlyle George 

Clooney 

Hugh 

Grant 

5 2 3 1 5 3 

 

 

Examination of the rating data revealed an inconsistency for participant 5. The ratings 

were 10, 9, 8, 2, 10, 10, and 2. The participant was clearly experiencing difficulty with the rating 

procedure (or not being serious about the task) since a rating from 10 to 2 on successive 

generations is inconceivable since the best face is always presented in the next generation. It 

was considered best that data from this person be removed from further analysis. The 

remainder of this section considers only 18 subjects, 6 of whom continued to the last available 

generation. Note also that an unfortunate collection difficulty resulted in the loss of participant 

ratings for the eighth generation; analysis can only be considered for the first 7 generations in 

this experiment therefore. 

Figure 33 below shows the rating scores averaged for all celebrities and participants – 

Figure 33: Mean Rating Scores for the 6 Celebrities (data from Subject 5 omitted) 
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Looking at the graph, it can be seen once again that the average rating scores generally 

increased with increasing generation. A repeated-measures ANOVA for rating scores for 

generation 1 to 4 was found to be significant (F=5.29, DF=(3,51), p=0.034). A t-test, revealed 
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that rating scores in generation 4 (mean 4.32) were significantly higher than generation 1 (mean 

3.26; t=2.44, DF=17, p=0.026); for simplicity, no other analysis were performed over this range. 

Although analysis is possible for rating scores above four generations, the low number of 

participants (6) suggests this unwise. 

Consider the distribution of the highest score attributed to the best face for each 

participant. It can be seen from Figure 34 that during evolution, one of the best faces most often 

fell into the category of “Many Similarities” (6-7 rating bracket). Also about 30% of the time, a 

face fell into “Some Similarities” (4-5 rating bracket). Interestingly, one can see that about 60% 

of the time, the peak rating was in the category of “Many Similarities” or higher (41% + 6% + 

12% = 59%) and also 12% of the time an “identical” face match was reported. The average peak 

rating scores were less than in Experiment 2 though. Recall that 95% of the time one face was 

rated as “Many Similarities”, much more than the 60% reported here. Considering results from 

the first 4 generations42, this experiment (mean 3.6) was found to have significantly lower 

average ratings than Experiment 2 (mean 4.9; t=6.15, DF=158, p<0.05). 

Figure 34: Distribution of the Highest (Peak) Rating for Each Participant  
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The average MSE score was computed for each generation (with respect to the relevant 

target) for subjects that evolved for the first 4 generations and is shown in Figure 35. As in 

Experiment 1, the average MSE scores reveal a general trend of decreasing error with 

increasing generation. A repeated-measures ANOVA for the MSE data in generations 1 to 4 

was found to be significant (F=14.40, DF=(3,51), p<0.001). Using a t-test, there was a significant 

                                                           
42 Analysis would have been skewed should data have been included from generations 5 to 8. This is 

because there are different numbers of subjects continuing to the eighth generation in this experiment (6 

subjects) and Experiment 2 (10 subjects). 
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decrease between generation 1 (mean 730.2) and 4 (mean 589.44; t=5.89, DF=17, p<0.001); no 

other tests were computed. 

Figure 35: Decrease in MSE Scores with Increasing Generation 
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Discussion 

It was expected to find the trend of increasing rating scores (Figure 33) with increasing 

generation (as in the previous experiment) and it was satisfying to see that this increase was 

statistically reliable. With this limited system, it was also pleasing to see that most of the time 

(59%), participants believed that one of their population faces exhibited at least “Many 

similarities” to the target face. 

Several factors are likely to account for the significantly lower average and peak rating 

scores of the celebrities compared with the randomly generated targets. The most obvious is 

that the targets for Experiment 2 were generated from the face model, so that it is clearly 

possible to produce an exact match. As discussed previously, only 35 faces were used to 

construct the face model and this limited number may not be sufficient to create an acceptable 

likeness in general. Note that other PCA studies have used more faces in their corpora (Blanz & 

Vetter, 1999; Brunelli & Mich, 1995; Kirby & Sirovich, 1990; Sirovich & Kirby, 1987; and Troje & 

Vetter, 1996), suggesting that a larger database might be preferable. 

Irrespective of model size, the fact remains that the number of hairstyles available for 

selection was rather limited (35). Clearly, hairstyle is of significance, with lower ratings likely 

to be attributed when differences can be seen in this feature. Note, in this simple task, 

participants were not instructed to ignore hairstyle changes while rating. In general, there 

appears to be greater variation, in not just hair, but head pose, head size, lighting and 

expression than in Experiment 2. Such variations are likely to reduce the subjective quality of 

the match, resulting in lower recognition rates (e.g. Bruce, 1982; Bruce, Healey, Burton, Doyle, 
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Coombes & Linney, 1991; Bruck, Cavanagh & Ceci, 1991; Davies & Milne, 1982; Hill & Bruce, 

1996; Krouse, 1981; and Wagenaar & Schrier, 1996). Despite these observations, the significant 

increase in rating scores over 4 generations is an encouraging result for the Face Evolver. The 

next experiment serves to explore how well these evolved celebrities are recognized by others. 

Experiment 5: Recognition of Evolved Celebrities 

Analysis of Experiment 4 reveals a significant improvement in the quality of the 

evolved faces. The acid test of system performance however is the ability to recognize the 

evolved famous faces. This study therefore tests the ability to recognize the most highly rated 

faces. 

Method 

The objective of this experiment was to establish how well people's attempts at 

evolving the celebrities [from Experiment 4] could be recognized by other people. For the same 

reasons as Experiment 2, it was decided to select the highest rated face from each subject as the 

“photofit”; if two faces were found to have the same peak rating, the one in the higher 

generation was preferred. 

As a small pilot study revealed considerable difficulty in recognizing the photofits, it 

was though to be of little value to test just the spontaneous or un-cued recognition 

performance. There are a number of methods that can make such a task easier for subjects. 

These include the presentation of a semantic cue (e.g. “this person is an American Actor”), a 

multiple-choice of possible identities, and tasks that match the photofit with the original target. 

The simplest approach appeared to be to present a list of possible famous people for selection 

should naming prove fruitless. This has the advantage that the same list could be used for each 

of the six famous faces. As a further simplification, a “target present” condition was adopted 

such that the famous person always present for selection in the list. There is considerable 

justification forensically for the so-called “target absent” arrays (Malpass & Devine, 1981) but 

this will not be addressed here. It was also decided that a number of other famous people 

should appear as “foils” so as not to make the task too easy. Ultimately, ten foils were found, 

comprising an arbitrary selection of other white, male celebrities known in the UK. The 

following table (Table 4) is a complete list of target names plus foils - 
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Liam Neeson 

Tom Cruise 

Robert Carlyle (*) 

Ewan McGregor 

Robbie Williams (*) 

Ronan Keating 

Pierce Brosnan (*) 

Brad Pitt 

Hugh Grant (*) 

Michael Owen 

Brian Adams 

Timothy Dalton  

Tim Henman (*) 

John Travolta 

George Clooney (*) 

David Duchovny 

Table 4: List of Celebrities Used in the Forced-Choice Task (an asterisk * indicates celebrities 
that were targets in Experiment 4, the remaining items are foils) 

 

Recall that all except George Clooney were selected for evolution more than once. 

Now, if all photofits from all Experiment 4’s participants were shown to subjects, it is likely 

that “cueing” would occur (even if the faces were shuffled) and recognition performance might 

be artificially inflated. As much as possible, it was thought best to avoid this effect. The easiest 

way appeared to create several “packs” of testing materials, each containing a photofit from 

one celebrity. Subjects could be (randomly) allocated to one of these test packs. In the end, 4 

test packs were created, containing 4 randomly chosen highest rated evolved faces for each 

famous person. 

Participants 

Thirty-two visitors to the MacRobert Centre at University of Stirling participated. No 

demographic information is presented (refer to Experiment 3). Each was approached and asked 

if they would like to participate in a study involving the naming of famous faces. Participation 

was voluntary.  
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Procedure 

Each participant was randomly allocated to one of the four test packs. The six photofits 

in the pack was shuffled before use. The first photofit was presented to a participant and they 

were asked to identify it (the un-cued naming task). The celebrity list was then presented and 

the participant asked to select who they thought was the likely target (the multiple-choice 

task). If the person was still incorrect, they were informed as to the correct identity43 at this 

point. 

Results 

No one guessed the correct identity of any photofit in the un-cued naming task. For the 

multiple-choice task, 25 celebrities were correctly identified out of 192 possible attempts 

(13.02%44); chance performance was 6.3%45. The distribution of correct identifications is shown 

in Figure 36. The figure reveals that Robbie Williams was not picked out of the list at all, while 

the other five were all at least double the chance level of 2 identifications46; this pattern of 

observations was significantly above chance using a Chi-Square test (X2=42.5, DF=5, 

X2crit=11.07). The figure also reveals that there were 5 occasions when a face was recognized 

once and 9 occasions when a face was recognized two or more times. 

                                                           
43 At this point in the design, it seemed interesting to see how people might rate the photofits from 

memory without seeing the original targets and then with original as a guide. These two tasks were 

carried out in this order after the multiple-choice task. The data was collected but was put aside for future 

analysis. 44 As there were 32 participants, each shown 6 faces, this resulted in 192 possible identifications 

in the forced-choice task. 25/192 * 100% = 13.02%. 
45 As there were 16 celebrities in the forced-choice list, chance level was 1/16 or 6.25%. 
46 Chance level was 6.25% x 32 subjects = 2.0. 
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Figure 36: Distribution of Correct Guesses in the Forced-Choice Identification Task 
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Examples of the most frequently identified photofits (Figure 37) and those not 

identified at all (Figure 38) can be seen below - 
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Figure 37: Examples of the Most Frequently Recognized Evolved Targets (identification at least 
2/8 or 25%; ratings assigned during evolution) 

Celebrity Target Evolved Target 

Pierce Brosnan  

 

Rating = 7 

Identified 3x 

Hugh Grant  

 
Rating = 7 

Identified 3x 

Tim Henman  

 
Rating = 6 

Identified 2x 
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Robert Carlyle  

 
Rating = 1 

Identified 2x 

George Clooney  

 
Rating = 4 

Identified 2x 
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Figure 38: Unsuccessfully Identified Evolved Targets 
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Hugh Grant 

 
Rating 6 

 
Rating 7 

 

It can also be seen that the most frequently identified celebrity (those that were selected 

3 times) was Pierce Brosnan (Pack 4) and Hugh grant (Pack 3). A low correlation was not 

significant (r=-0.28; F=1.20, DF=23, p=0.296) between the rating scores (in Experiment 4) and 

the identification rate in Experiment 5. 
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Discussion 

Although none of the targets were spontaneously identified, the overall identification 

rate of 13% was encouraging from the multiple-choice exercise, especially considering the lack 

of supervision that participants received during the evolution process. This figure is 

comparable with the identification rate of 12.5% found from Ellis et al.’s (1975) work, though in 

that study Photofits were created from memory and selection was made from a target array of 

36 composites rather than a list of 16 names. It was also interesting to observe that about two-

thirds of the time (64%) when a face was identified, it was identified by at least one other 

observer. This indicates that when a face is recognized, it is recognized well (25% of the time or 

more).  

It was observed that Robert Carlyle received poor ratings in Experiment 4 (i.e. all 

ratings were the minimum possible (1) from a single participant). However, the evolved face 

tested in Experiment 5 was identified (5/32) 15.6% and indicates that the participant was 

experiencing problems with the use of rating scales rather than in the face evolution process. 

Once again, this stresses caution with the ubiquitous use of rating scales for this research. 

A major problem with the photofits is believed to concern the hairstyle used during 

evolution. Recall that none of the hairstyles used was an exact match – as was the case for 

Experiment 2. The possible effects of hairstyle on identification will be explored in the 

following experiment. 

Experiment 6: Appropriacy of the Hairstyle 

Recall that in Experiment 5, the photofits were not recognized spontaneously and the 

identification rate was only 13% when matching faces to a list of names. Part of the reason for 

these deficits is believed to lie in the chosen hairstyle. If it is the case that changes in hairstyle 

result in a decrement in recognition - as suggested by Cutler, Penrod & Martens (1987), Hill & 

Bruce (1996) and Walker-Smith (1978) - then better quality hairstyles may result in better 

matching. This notion can be explored by obtaining rating scores for the celebrity photofits and 

testing for a significant difference in ratings between those photofits that were matched and 

those that were not. It is expected that rating scores would be significantly higher for the 

photofits that were successfully matched in Experiment 5.  

Method 

The AFSS used for evolution (Table 2, this chapter) was proposed as a basis for 

hairstyle rating since this scale has been used considerably and was considered reliable. A new 

scale (Table 5) was created by changing the word “face” to “hairstyle” in the AFSS. 
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Table 5: The Anchored Hairstyle Similarity Scale  
 

1  Very poor likeness between hairstyles 
2 or 3  Few similarities 
4 or 5  Some similarities 
6 or 7 Many similarities 
8 or 9  hairstyles could be easily confused 
10  hairstyles are identical 

 

Simply, the photofits could be shown to a group of independent subjects and asked 

whether the hairstyle is believed to be “appropriate” for the relevant celebrity. Working from 

memory in this way has the advantage of avoiding “picture matching” (as might be the case if 

the original celebrity target was shown along with the celebrity) whilst allowing stereotypical 

hairstyles for that celebrity to be expressed. Two groups were employed: photofits that were 

not matched (Group A) and photofits that were matched twice or more (Group B) in 

Experiment 5.  

Participants 

Ten participants agreed to complete the experiment, comprising of members of the 

Psychology Department, University of Stirling. Participation was voluntary. 

Procedure 

The rating scale (Table 5) was shown and described to the participant. Each photofit 

was then presented to the participant for rating. The twenty photofits were shuffled before 

each trial. 

Results 

The overall mean rating was 5.56 (SD 2.15). The mean rating for hairstyles was 5.52 (SD 

2.10) for Group A and 5.61 (SD 1.80) for Group B; this difference was not significant using a t-

test (t=0.976, DF=184, p=0.516). The reason for the lack of significance between conditions 

becomes apparent when one considers a plot of the average ratings grouped by celebrity. From 

Figure 39, it can be seen that the average ratings for George Clooney are outliers: appearing 

much higher than the other celebrities in Group A and (less so but) much lower than the mean 

in Group B. Evidence that the George Clooney photofits were outliers is indicated by (1) the 

rating scores for George Clooney being significantly greater for Group A (mean 7.85) than 

Group B (mean 4.65) using a t-test (t=6.40, DF=20, p<0.001); and (2) when the data from George 

Clooney is excluded from the analysis, rating scores for Group B (mean 5.98) are significantly 

greater than for Group A (mean 4.76) using a t-test (t=3.73, DF=144, p<0.001). 
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Figure 39: Hairstyle Ratings for each Evolved Celebrity (Group A in white bars, Group B in 
grey bars) 
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Discussion 

It appeared initially that there was no significant effect of hairstyle rating in this 

experiment with the ability to match a photofit (to a name) in the previous experiment 

(Experiment 5). A closer inspection revealed outlying rating data from the George Clooney 

photofits. His photofits exhibited a “swamping” effect on the rating scores with respect to the 

other data: the effect size of the George Clooney photofits were large (3.2), significant and in 

the opposite direction. For this reason the rating data from George Clooney’s photofits were 

treated separately. Then, it was found that the average rating scores were significantly higher 

for photofits that were relatively well matched compared with photofits that were not matched 

at all. This demonstrates that hairstyle is an important feature.  

It was also demonstrated is that sometimes a poorly recognized photofit can have what 

is believed to be a very good hairstyle. The other interesting finding was that the overall rating 

for hair was 5.56. This corresponds to a rating between “Some similarities” and “Many 

similarities”. This is generally rather poor and is believed to contribute to the floor level 

spontaneous naming and the above chance but still poor identification from a list of celebrity 

names (13%). 

The experiments in this chapter have tested face evolution with population of 16 faces. 

The following experiments are designed to test the effect of increasing the number of faces 

furthermore: Experiment 7 employs randomly generated targets while Experiment 8 employs 
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celebrity targets. It is expected that performance should be better for a larger population (given 

that there is more chance of evolving a fitter individual with a larger population size). For 

simplicity, the analyses of Experiment 7 and Experiment 8 will consider just the average rating 

scores of the best faces and compare these data against those obtained from Experiment 2 and 

Experiment 4. 

Experiment 7: Increasing the Population Size, Random Targets 

 

This experiment explores the performance of the evolutionary system with a larger 

population size. More specifically, it will be designed to replicate Experiment 2 with just the 

number of faces being increased. This will enable a direct investigation of the effect of 

population for face evolution. With more faces available for selection, it was expected that the 

population variability should be greater and evolutionary success higher. In other words, 

rating scores should be significantly higher than the previous studies that employed smaller 

populations. 

Method 

Ergonomically, it was thought best to simply double the number of population faces 

from 16 to 32; a significantly large increase, it was thought, but not too large to overwhelm a 

participant. 32 was considered an upper limit at this point since any more computational time 

might be too irritating for a participant; a population of this size took about 10-11 seconds to 

generate (using the same computing resources). Simply, this would mean adding another 

screen to contain the second set of 16 faces and a pair of buttons to navigate between screens. 

Lastly, it was decided that a simple check be introduced that ensured that the second screen 

was visited before breeding commenced.  

Participants 

Eighteen members of the public participated in the study, set up as an exhibit during 

the Science of the Face exhibition at the Hatton Gallery, Newcastle University (June-July 1999). 

There were 8 males and 10 females. Their ages ranged from 14 to 65. There were only 4 who 

chose to continue evolution to generation 8. Participation was voluntary. 

Results 

The data followed the general trend of increasing rating scores with increasing 

generation (refer to the combined data chart, Figure 41). A repeated-measures ANOVA for 

rating scores for generation 1 to 4 was found to be significant (F=8.41, DF=(3,30), p=0.007). 
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Using a within-subjects t-test, there was a significant increase between generation 1 (mean 4.32) 

and 4 (mean 5.94; t=2.44, DF=17, p=0.026); for simplicity, no other analysis were performed 

over this range. Although analysis is possible for rating scores above 4 generations, the 

infrequency of participants (4) once again suggests this unwise. 

 

Experiment 8: Increasing the Population Size, Celebrity Targets 

Method 

The experiment was set up the same as Experiment 4, except that the population size 

was increased to 32 faces. As another 6 famous faces was available, the number of celebrities 

was increased to 12: Brad Pitt, Bryan Adams, John Travolta, Timothy Dalton, Alec Baldwin and 

Ewan McGregor were added. This was believed to help increase the level of interest in the 

exhibit. The additional target images used can be seen in Figure 40 below – 

Figure 40: Additional Celebrities used For Experiment 8. These are (left to right, top to bottom): 
Brad Pitt, Bryan Adams, John Travolta, Timothy Dalton, Alec Baldwin and Ewan McGregor 

  

 

 

   

 

 

Participants 

Thirteen members of the public participated in the study, set up as an exhibit during 

the Science of the Face exhibition at the Hatton Gallery, Newcastle University (June-July 1999). 

There were 5 males and 8 females. Their ages ranged from 20 to 79. There were only 5 who 

chose to continue evolution to generation 8. Participation was voluntary. 

Results 

With the exception of Pierce Brosnan and Alec Baldwin, all celebrities were selected as 

targets for evolution at least once. The data follows the general trend of increasing rating scores 

with increasing generation (Figure 41). A repeated-measures ANOVA for rating scores for 

generation 1 to 4 was found to approach significance (F=4.28, DF=(3,11), p=0.063). Using a 

within-subjects t-test, there was a significant increase in rating scores between generation 1 

(mean 3.42) and 4 (mean 4.58; t=2.55, DF=11, p=0.027); for simplicity, no other analysis were 
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performed over this range. Although analysis is possible for rating scores above 4 generations, 

the infrequency of participants (5) once again suggests this unwise. 

Comparison of Chapter Experiments 

The effect of generation on rating for Experiment 2 (Random Target, 16 Population 

Faces), Experiment 4 (Celebrity Target, 16 Population Faces), Experiment 7 (Random Target, 32 

Population Faces) and Experiment 8 (Celebrity Target, 32 Population Faces) is shown in Figure 

41. The figure clearly shows that there is a general trend of increasing rating with increasing 

generation. It can be seen here, and also in Figure 42 for overall means, that rating scores were 

higher for random targets compared with celebrity targets, and also where the population size 

was increased from 16 to 32; data compiled from the first 4 generations only. The random 

targets (mean 5.77) were rated significantly higher than the celebrities (mean 4.18; t=6.69, 

DF=372, p<0.001); a difference of 1.59. The faces evolved from the population of 32 faces (mean 

5.52) were rated significant higher overall than for a population size of 16 (mean 4.75; t=3.16, 

DF=372, p=0.002); a difference of 0.77. The random targets with 32 population faces (mean 6.27) 

were rated significantly higher than the random target population of 16 (mean 5.35; t=3.13, 

DF=214, p<0.001); a difference of 0.92. The celebrity targets with 32 population faces (mean 

4.54) were rated significantly higher than the celebrity target population of 16 (mean 3.90; 

t=3.13, DF=214, p<0.001); a difference of 0.64. 

Figure 41: Comparison of Rating Scores between Experiment 2, Experiment 4, Experiment 7 
and Experiment 8 
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Figure 42: Rating Performance for Target Type and Population Size (data from generations 1 to 
4 only) 
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Discussion 

There was a significant increase in rating scores (of 0.77) when the population size was 

increased from 16 to 32, indicating the importance of larger populations for this type of 

methodology. An interesting question is whether this could continue further? It appears from 

De Jong's pioneering work in Genetic Algorithms that the best population size appears to lie in 

the range of 50-100, though when on-line factors (e.g. the time taken to create a population) are 

taken into account, there is evidence from Grefenstette (1986) that 30 is an appropriate number 

of individuals (Mitchell, 1996).  

Although the current study employed a population size similar to that of Grefenstette, 

could the benefit of enhanced performance (over a smaller population) be the consequence of 

more individuals being present in the first generation only, with no added benefit to a larger 

population for the remaining time? Note that although not mentioned in the results, there is a 

first generation advantage since the rating scores for generation 1 were significantly higher in 

the larger population (mean of 4.40) compared against the smaller population (mean of 3.43; 

t=2.14, DF=68, p=0.018); a difference of 0.98. Anyway, the question posed above can be 

addressed by comparing rating scores in studies with 16 faces (i.e. Experiment 2 and 

Experiment 4) and 32 faces in the population (i.e. Experiment 7 and Experiment 8) after 

subtraction of the rating score assigned in the initial generation.  

When this pre-processing is performed, a one-tailed between-subjects t-test reveals an 

approaching significant increase for the larger population size in generations 2 to 4 (t=1.51, 

DF=208, p=0.066); an increase of 0.46. This suggests that a constantly larger population size is 
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of most benefit47. Obviously, this finding fits the notion that a larger population throughout the 

evolution process should be beneficial since the diversity in the population would generally be 

greater, increasing the chances of producing “superior” individuals. Note, however, that an 

examination of the effect size reveals that most improvement (in an increase in population size) 

occurred in the first generation: the average ratings increased by 0.98 in the first generation but 

only 0.46 for following four generations; a difference of more than 100% (113%). This suggests 

that the initial population size is relatively more important than ones that follow. 

 It is also apparent that, overall, the random targets were evolved significantly better 

than the celebrities (by 1.59 rating points). As discussed previously, this effect could be due to 

limitations in model complexity but other factors are known to be important here: differences 

in lighting, head size, head orientation, facial expression, and poor availability of hairstyles. 

There is also a potential confounding effect of a participant having to select a hairstyle (and not 

choosing the most appropriate), the deficiency of methods available for “improving” the 

quality of the hair anyway (e.g. by modification in a photographic editing facility such as 

Adobe Photoshop) and a lack of an operator to assist. 

General Discussion 

The set of four evolutionary experiments (Experiment 2, Experiment 4, Experiment 7 

and Experiment 8) found consistent results for the Mark II Face Evolver. Firstly, the rating 

scores significantly increased from generation 1 to generation 4 for each experiment and the 

trend of increasing rating was present in the few subjects that continued to the eighth 

generation. Additional confirmation of this significant increase in rating scores was provided 

by independent subjects in Experiment 3. A peak rating score, the maximum rating for a 

evolutionary run, in at least the “Many similarities” category was recorded for 95% of subjects 

with the random targets with 16 population faces.  

These results suggest that the selection of whole faces, rather than via rating scales, is a 

valid method of user input. In addition, unlike rating scales, there are no known problems with 

this method of selection (i.e. whole face selection). Of course, there are other schemes that one 

could adopt. For example, a more fine-tuned approach that ranked the selected faces, as 

implemented in Baker & Seltzer (1998), might provide a faster convergence. The current 

version of the Face Evolver did use a coarse ranking scheme such that the most perceptually-

similar face (i.e. the best face) received twice the influence of the others. However, the 

effectiveness of this bias is unknown and is one of the issues explored in the following chapter. 

                                                           
47 It is assumed that only an approaching significance was found due to an insufficient number of subjects. 

This is not considered to be of real importance here; it is the trend that is taken to be relevant. 



107 

It was not surprising however to see a drop off in performance for the celebrity 

photofits given that the face model was rather limited. Though, even with 35 faces, the majority 

of people (60%) reported evolving one of their faces to exhibit at least “Many similarities” with 

the celebrity. Even so, the “photofits” from Experiment 4 were clearly not sufficiently close to 

the target for any of the subjects in Experiment 5 to spontaneously recognize them. It was 

shown that for them to be correctly identified from the list, hairstyle was an important feature. 

But, in an interesting way: when the data from George Clooney was removed, the relatively 

well recognized photofits (those with two or more correct in the multiple-choice list) were 

rated as having a hairstyle significantly more appropriate to the celebrity than the 

unrecognized ones; in fact the reverse was true for George Clooney. This demonstrates that 

overall hairstyle is important for identification, though sometimes even a photofit with a 

relatively low-rated hairstyle can enjoy relatively good recognition. This observation is 

reflected in a comment left by Participant 2 in Experiment 8, “Matched really well from the first 

generation ... hair was a problem though.” Note overall, though that subject ratings were quite 

low (5.55), between the categories of “Some similarities” and “Many similarities”, and may be 

one factor responsible for spontaneous naming remaining at floor level. 

The studies were also able to demonstrate a marked effect of population size. When the 

number of faces in a population was increased from 16 to 32, the rating scores did not just 

continue to increase as before, but increased at a greater rate (just falling short of significance). 

This indicates the value of a constantly larger population, providing considerably more 

opportunities to produce superior individuals, resulting in faster evolution. When the 

population size was doubled though, it was curious that a much larger increase in rating scores 

(over 100%) occurred in the first generation compared with the increase over the other 

generations. This is presumably because, in this paradigm, an initially closer likeness can be 

found by the random generation of faces rather than by evolution. 

It is possible though to characterize the effect of population size on the best face 

produced for the initial generation, using the minimum MSE measure. Recall that Experiment 7 

involved 32 population faces presented to 18 subjects, providing a pool of 576 different 

randomly generated faces in the first population. It is possible then to conduct a non-

replacement re-sampling of this set with varying population size to explore the quality of the 

best face. For example, for a population size of 10, a set of 10 population faces would first be 

selected randomly and the minimum MSE identified. This would be repeated until all complete 

sets of 10 faces (570 in total) had been sampled (the 6 remainders would be ignored at this 

stage). The average minimum MSE would be calculated for this population size. The process 

could then be repeated a number of times (e.g. 10), taking the average, to limit sampling 

anomalies (e.g. chance inappropriate clustering of relatively good or poor samples) and to take 

into account ‘remainders’.  
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The following plot was obtained when applying this analysis to population sizes 

between 2 and 576 – 

Figure 43: Reduction in minimum MSE with increasing population size (randomly 

generated faces)
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It can be seen that most benefit in an increase in sample or population size occurs over 

the first 50 faces. This suggests that generating a larger population is unlikely to result in a face 

that is markedly better than one already generated. A relatively straightforward equation can 

be computed relating the population or sample size (s) and average minimum MSE (e), 

explaining 96% of the variance in the data - 

e = 494 s ^ -0.132   … (1) 

The equation also predicts that, compared to a unity sized population, the minimum MSE will 

have decreased on average by 50% with a population size of 14, 71% for a population size of 50, 

and 80% for a population size of 100. This suggests that an initial population size of about 50 is 

a sensible trade off between generating a relatively good best face and not exposing (a subject 

to) too many facial stimuli.  

In addition to the trend of convergence of the best faces to the target, a measure of peak 

performance, it was found that the average error score of the face population in Experiment 2 

became significantly less with increasing generation. This indicates that the population as a 

whole was becoming more like the target face (i.e. the average pixel intensity of the images 

approached that of the target). The other observation was that there was a lack of any 

significant differences in the standard deviation of the MSE. This later finding suggested that 

there is no evidence that the variation in the population had been “lost” and therefore 

evolution could continue for more generations, successfully improving the target match.  

One influence though that increases variability in a population is the presence of 

mutation. A small mutation was introduced during breeding to encourage population 

variability. The parameter was set to a “guesstimated” value of 0.05; though the effect was not 

known. Indeed, with the exception of the initial population size and gross changes to the 



109 

population size, the effect of most evolutionary parameters is not known: is the mutation rate 

really a useful feature and is 0.05 appropriate? Is elitism really effective here? As mentioned 

above, is it appropriate to use a 2:1 selection pressure for the best face compared with the other 

selected faces? How many faces should be selected? Is it even more beneficial to increase the 

size of the initial population still further? These are of course major issues for an evolutionary 

photofit system.  

In addition to establishing optimal parameter settings, there are naturally further 

developments that need carrying out in order to move closer to a practical photofit system. 

Two major areas of development have been identified so far. These are both related to the 

evolution of celebrity faces: better hairstyles and an increase in the complexity of the face 

model. The hairstyle itself illustrates a necessary change in the method by which photofits need 

to be created. Up to now, evolution has been done “automatically”, with little external 

influences, but the hair is a highly idiosyncratic feature and will necessarily involve much 

detailed work to obtain an acceptable likeness. This is likely to be achieved via a large 

repertoire of hairstyles followed by manipulation in a photographic editing package. It will be 

necessary therefore for an operator to be present to “guide” hairstyle creation. Indeed, the use 

of an operator is likely to be of considerable importance anyway: what should a user do if the 

set of initial faces are so poor (by chance) to be of little value to a witness? It would be 

necessary then for more faces to be “created” – a likely job for an operator.  

It is proposed though, that before more development is carried out, that effort be spent 

exploring the appropriacy of the current set of evolutionary parameters. One could 

systematically manipulate each parameter in the experimental paradigm used to date. The 

normal duration of experiments suggests that this approach is intractable in the time available 

for the project (i.e. 3 years). An alternative is to run separate simulations to validate these 

parameters. To achieve these objectives, the following chapter (Chapter 4) explores the 

parameter space of the evolutionary system and the one after that (Chapter 5) continues system 

development and considers system performance in more ecological ways (esp. photofitting 

from memory). 
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CChhaapptteerr  44::  SSiimmuullaattiioonnss  

This chapter explores the performance of the Face Evolver through a series of short computer 

simulations. Each simulation is carefully set up to investigate the effect of each parameter setting. 

Overall, it is found that the population size, elitism and selection pressure (of the face with the best 

likeness) have parameters set appropriately in the previous chapter, but that the mutation rate should be 

increased (to 0.1) and the number of faces selected by a user could be justifiably reduced (to a minimum 

of three or four). Also, it is found that similar performance results from population sizes in the range of 

10 to 32 faces when evolved for an equivalent length of time. In addition, the use of coefficient pruning 

and the separate selection of shape and texture components appear to make a significant impact on 

convergence. These findings become valuable for further development carried out in the following chapter 

(Chapter 5). 

Appropriacy of Parameter Settings 

The Mark I and Mark II versions of the Face Evolver of the previous chapters have 

demonstrated encouraging results. These programs were designed with extreme care with the 

aim of producing optimum results. Parameters were based on what was believed to be 

"appropriate" settings. But, was 0.05 the best value for the mutation rate? Was six an 

appropriate number of faces to be selected for each generation? Was a two-to-one (2:1) 

selection pressure on the best face reasonable? 

One way to finalize these parameters would be to run a separate evolution experiment 

for each. The problem with this approach is that it is exceedingly time consuming. For 

example, one may wish to try a range of mutation settings to gain a good understanding of this 

parameter: perhaps from 0.00 to 0.2 in 0.05 steps. This naturally results in 5 separate 

experiments (including the zero mutation baseline). If each experiment collected data from a 

sufficient number of subjects to obtain statistically reliable data, for example 20, just this 

manipulation is likely to take a month to complete. More experiments would be required to 

understand the role of other parameters. 

Such an investigation would tend to restrict further development on the photofit 

system. What is required is a mechanism to indicate suitable parameter settings on a much 

shorter time scale. A compromise must of course be made, since it is unlikely that any 

alternative approach would provide data as valid as that obtained experimentally. The best 

compromise appears to reside in a set of computer simulations. This approach attempts to 

provide a model that is as close as possible to one or more aspects of the real world. This model 

can then be considered "real" and explored experimentally. The advantage is that the model 

can be computerized and be much faster to investigate than the real world.  



111 

To run the Face Evolver system as a simulation, automatic selection of the population 

faces is required. In GA terminology, each population face is selected via a score or fitness 

obtained by a fitness function. The higher the fitness, the greater the influence of a face. 

Arguably, the simplest fitness function would be derived via MSE scores of faces in the 

population. It seemed from Chapters 2 and 3 that MSE was a reasonable indicator of system 

performance (see also Appendix A). Recall that scores became significantly less with increasing 

generation, indicating that the population faces became on average significantly closer to a 

target. Used in this way, lower MSE values would indicate greater fitness and a better chance 

of being selected as a parent. Arguably, a natural consequence of this approach is that the face 

with the lowest MSE in a population would be selected as the highest similarity face: the so-

called “best” face for a generation.  

If these notions are valid, then the MSE measure should select the same faces as 

participants in one of the previous experiments. When this is attempted, it is found that the 

model correctly predicts 180 out of a possible 348 selections (or 52%) made by subjects in 

Experiment 2; this is a significant increase from the chance level of 6/16 or 37.5% (X = 18.78, 

DF=1, Xcrit = 3.84). The model also predicts 45 out of a possible 348 best selections (13%); once 

again, this is a significant increase from the chance level of 1/16 or 6.25% (X = 24.85, DF=1, 

Xcrit = 3.84). As this simple model predicts performance significantly above chance, it will be 

used as a basis for simulation. It is understood that it is not a perfect reflection of the pattern of 

face selection made by subjects. The results are therefore taken as performance “indicators”. 

The Simulations 

Simulations will begin by looking at the effect of modifying the number of faces in a 

population: to provide baseline data for the following parameter manipulations. Further 

simulations will then explore selection pressure, mutation rate, the number of faces selected 

and elitism. Subsequently, more simulations will be run to re-investigate the effect of 

population size and two novel approaches: coefficient pruning and a modified selection 

mechanism. System performance will be assessed by average and peak MSE scores. The 

programming will be carried out in Matlab, since the main non-windows part of the Face 

Evolver software is also resident in Matlab (and no complex windows-based interface is 

required).  

Simulation 1: Population Size 

The first set of simulations is designed to look at the general effect of increasing the 

number of individuals used for evolution: the number of faces in the population. These initial 

simulations are designed with “flat” settings: no mutation, no elitism and unity selection 

pressure (i.e. the best face has the same opportunity of breeding as the other faces selected). 
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Following this procedure results in a baseline performance that enables comparison against 

other parameter manipulations.  

It is proposed that the investigation into population size be carried out from 4 to 32 

faces in order to gain a good understanding of performance. Further, it is suggested that the 

number of generations should be increased beyond 8 (used in prior experiments) until a 

stabilization in performance is reached. For these simulations, this occurs when the MSE scores 

no longer change. However, in later work, the presence of mutation in the shape or texture 

coefficients of a face will constantly add variability to the generated faces, resulting in 

fluctuations in the MSE. Even for small mutation rates, for example 0.01, these fluctuations will 

be present. Convergence is then assumed to have occurred when the major MSE changes can 

be seen to have taken place48. In practice, it was decided sensible to run the Face Evolver for a 

large number of generations, many more than would ever be imagined to run in a photofit 

session with a witness. To this end, 40 generations were run. 

It is proposed therefore that system performance be measured via the mean and 

minimum MSE scores from faces in a generation. These data will provide a measure of average 

and peak system performance respectively. Of these two measures, it is the minimum MSE that 

is considered more important since the primary purpose of a photofit system is to create one 

face that can be used as a photofit. Analysis of the average MSE is considered fruitful as lower 

values indicate a concentration of solutions in locations closer to the target in face space. The 

result should be an increase in the probability of locating highly fit individuals and be reflected 

in lower scores in the average minimum data.  

Further, to keep the analysis tractable, since data tends to be “semantically rich”, 

emphasis will be on the initial, early and ultimate (or converged) generations. Note that 

variations in the initial generation are not relevant to mutation, elitism or selection pressure 

since these factors affect populations following breeding. Analysis of “early” generations, 

defined to be the first ten, is especially relevant since this figure is taken as a likely guideline to 

the number of generations required to achieve a good target likeness49.  

The simulator would be run for 40 generations, with each run increasing the number of 

population faces by a small amount: 4, 8, 12, 16, 20 and 32. To gain a measure of consistent 

performance, each population size was run with a selection of targets. Ultimately, the original 

                                                           
48 In the limit, one might expect the evolutionary system to converge on a given target. Due to time 

constraints, this notion was not investigated since a trend of asymptotic performance was observed for 

small mutation rates in Simulation 3 extending beyond 40 generations. Later work could of course explore 

performance after a very large number of generations (e.g. several thousand). 
49 This figure was chosen to match the estimated number of generations (from Chapter 3) for a face to be 

bred to a rating of 8 or more on the FRSS. This level corresponds to the categories of “Faces could be 

easily confused” and “Faces are identical.” 
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35 targets that featured in Experiment 2 were used, with each target being evolved twice. Each 

trial (i.e. a run of 40 generations for a specified target) would commence with a different set of 

random faces. As before, this serves to avoid idiosyncratic behaviour occurring when an initial 

set of faces are either relatively desirable or relatively poor (compared with a target) due to the 

chance selection of parameter values.  

With different numbers of faces in a population, the actual number of faces selected 

would need to be carefully chosen. If 6 faces were always chosen, as was the case in Chapter 3, 

then 3/4 of the total faces would be selected for a population size of 8 but only 1/5 if the 

population size was increased to 32. This means that most of the faces would be chosen for the 

smaller population but only the most fit would be chosen in larger one. The consequence is that 

the larger population is likely to converge very much faster because of the preferentially better 

faces being selected as parents. The chosen solution is to keep constant the proportion of 

selected to total number of faces. This appropriately results in an equal proportion of fitter 

individuals being selected for each population size. In keeping with Chapter 3, the fraction 

6/16 (or 37.5% of the population size) can be used50. This results in 2 faces (⎡1.5⎤  = 2) being 

selected for a population size of 4, 3 faces for a population size of 8, and so on.  

Running the simulator over the proposed population range and computing average 

MSE scores over 70 runs resulted in Figure 44. This plot reveals that there is no difference in 

the mean MSE scores for the starting generation. This is an expected result because each point 

is calculating the average of a set of random faces, which will be the same, barring noise. 

 For other generations, there is an initial rapid decrease in the average MSE and this 

rate of change becomes progressively less over time. Also, it can be seen that increasing the 

population size increases the time for the MSE to converge (about 6 generations are required 

for 4 population faces, 14 generations for 12 faces, and 20 generations for 32 faces). Further, 

note that increasing the population size not only produces faster convergence (for example, a 

mean MSE of 250 takes about 10 generations for a population size of 12 but only 6 generations 

with 16 population faces) but also the ultimate MSE is less (from 411 for 4 faces, 235 for 12 

faces, and 157 for 32 faces). Over the early generations (from generation 2 to 10), there is no 

significant difference in the average MSE scores between 12 and 16 faces (t=0.63, DF=628, 

p=0.530), and 16 and 20 faces (t=0.35, DF=628, p=0.726), but there is a significant difference 

between 16 and 32 faces (t=3.31, DF=628, p<0.001). Overall, the results suggest that population 

size is important, but large changes are required (e.g. doubling the population from 16 to 32) if 

significant increases in performance are to be found.  

                                                           
50 Mathematically, the number of selected faces, Ns = ⎡6/16*Np⎤ 

 Np = number of faces in the population 

 ⎡x⎤ is the upper function of x; the presence of a non-zero fraction of x will return the next integer, 

otherwise x is returned. For example, ⎡1.001⎤  = 2 and ⎡6.0⎤  = 6. 
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Figure 44: Effect of Varying Population Size on Average MSE (1:1 selection pressure, mutation 
probability of 0.0, no elitism and ⎡6/16*population size⎤ selected faces)  
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Turning now to the data for the average minimum MSE. From Figure 45, it can be seen 

that with increasing population size, the average minimum MSE is less in all generations 

including the first. This graph backs up an observation from Experiment 7 and Experiment 8 

that a larger initial population size is preferable since it increases the likelihood of fitter 

individuals being generated. Much the same as the average MSE data, the rate of change of the 

average minimum MSE becomes progressively less rapid with time and the terminal value 

decreases with increasing population size.  

These data demonstrate that evolution appears to be working. Consideration of the 

appropriate number of population faces to use will be made later when suitable parameters for 

the mutation rate and selection pressure have been established in conjunction with the use of 

elitism. Selection pressure will be examined first. 
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Figure 45: Effect of Varying Population Size on Average Minimum MSE (1:1 selection pressure, 
mutation probability of 0.0, no elitism and ⎡6/16*population size⎤ selected faces) 
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Simulation 2: Selection Pressure 

It is proposed to test the effect of selection pressure of the best face using the 

parameters of Simulation 1 with 16 population faces. Using this procedure, the six faces with 

the lowest MSE in a population were attributed a fitness value of 1.0. However, the face with 

the lowest MSE overall was taken as the best face and assigned a fitness of 2 for one simulation, 

and 3 for the next: a selection pressure of 2:1 and 3:1 respectively. A further simulation for a 

unity or 1:1 selection pressure was not necessary since this has already been carried out in 

Simulation 1 (i.e. the simulation for 16 population faces).  

The seed value used to initially set the random number generator was kept the same as 

in Simulation 1. In addition, this same seed value was used again at the start of simulations 

with selection pressures of 2:1 and 3:1. This serves to improve comparability of results by 

ensuring that all simulations begin with the same set of faces. 

When the simulator is run, Figure 46 indicates an advantage for progressively higher 

selection pressures on the average MSE only in the first part of the early generations: up to the 

first 6 generations (3:1 curve) or 7 generations (2:1 curve). Later generations appear better with 

unity selection pressure. In contrast, the average minimum MSE (Figure 47) indicates no 

benefit over generations 1 to 3 and worse performance thereafter for either of the non-unity 

selection pressures.  

For a 2:1 selection pressure, there is no significant difference in the average MSE scores 

over the early generations compared with the 1:1 baseline condition (t=1.14, DF=628, p=0.255), 

though there is an approaching significant decrease over generations 2 to 6 (t=1.88, DF=628, 

p=0.061). In contrast, the average minimum MSE is significantly worse over the early 
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generations for 2:1 and 3:1 selection pressures (t=3.31, DF=628, p<0.001). At this stage, it 

appears best if a 2:1 selection pressure is not used in the Face Evolver.  

Figure 46: Effect of Varying Selection Pressure (of best face) on Average MSE (16 population 
faces with 6 faces selected per generation, mutation probability of 0.0 and no elitism)  
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Figure 47: Effect of Varying Selection Pressure (of best face) on Average Minimum MSE (16 
population faces with 6 faces selected per generation, mutation probability of 0.0 and no 

elitism)  
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Simulation 3: Mutation Rate 

It is proposed to test the effect of mutation rate using the parameters of Simulation 1 

with a selection pressure of 2:1 (maintained the same as in Experiment 2 at this stage). A range 

of mutation rates was tried: 0.01, 0.05, 0.1, and 0.2. Figure 48 shows that compared with the 
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reference (a mutation rate of 0.00), there is no benefit of a mutation rate of 0.2 mutation on the 

average MSE. The mutation rate of 0.1 only appears valuable after about 20 generations. Of the 

remaining settings, 0.01 appears to decrease the fastest but the final value appears no better 

than a 0.05 rate.  

On the other hand, the terminal scores (Figure 49) reveal that some mutation is 

beneficial to minimum MSE performance. The lowest average minimum scores can be seen for 

rates of 0.05 and 0.1 but mutation settings on either side of this value result in much worst 

scores. It is the case that too little or too much mutation is undesirable. As the effect of 0.05 and 

0.1 rates is very similar, and is non-significantly different over 2 to 10 generations (t=0.44, 

DF=628, p=0.658), it is proposed at this stage that the value of 0.05 be kept the same as previous 

experiments in Chapters 2 and 3. 

Figure 48: Effect of Varying Mutation on Average MSE (16 population faces with 6 faces 
selected per generation, no elitism and 2:1 selection pressure) 
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Figure 49: Effect of Varying Mutation on Average Minimum MSE (16 population faces with 6 
faces selected per generation, no elitism and 2:1 selection pressure) 
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Simulation 4: Number of Selected Faces 

The next batch of simulations are designed to explore the benefit of selecting different 

numbers of faces from a population. Recall that six faces were selected in Simulations 2 and 3. 

The effect will be examined by incrementally increasing the number of faces selected from 3 to 

8. A mutation rate of 0.151 and a 2:1 selection pressure will be used. Results from the graphs of 

the average MSE (Figure 50) and average minimum MSE (Figure 51) reveal that reducing the 

number of selected faces down to 4 is of benefit in the early generations52. With 3 faces 

selected, there is an initial benefit to 6 generations (on both measures) but after this, there 

appears no difference compared with 4 faces selected for average MSE and worse performance 

for average minimum MSE. There is a significant decrease in minimum MSE over generations 2 

to 10 from 6 to 5 faces selected (t=1.99, DF=628, p=0.047), from 5 faces to 4 faces selected 

(t=2.76, DF=628, p=0.006), but not from 4 faces to 3 faces selected (t=0.02, DF=628, p=0.982).  

Concern was expressed that the selection of as few as 3 population faces might lead to 

an inappropriate reduction in the population diversity. The result of an ANOVA for the 

standard deviation of the MSE scores for populations of faces over the 10 generations was not 

significant (F=0.56, DF=(9,419), p=730). This indicates that there is no evidence to suppose that 

the population diversity is significantly different in any of the conditions, including the 

selection of 3 faces. 

                                                           
51 This choice between a mutation of 0.05 and 0.1 was arbitrary. 
52 To simplify the graphical presentation, only the first 10 generations are shown. 
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The strong suggestion then is that the number of faces should be limited for faster 

conversion, with 3 or 4 faces being a sensible lower limit. The exact number is not considered of 

great importance – knowledge of the potential inappropriacy of selecting too many faces is the 

take home message. 

For the remaining simulations, the number of selected faces will be kept at six (to 

maintain comparison between studies).  

Figure 50: Effect of Varying the Number of Faces Selected on Average MSE (16 population 
faces, mutation probability of 0.1, no elitism and 2:1 selection pressure) 
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Figure 51: Effect of Varying the Number of Faces Selected on Average Minimum MSE (16 
population faces, mutation probability of 0.1, no elitism and 2:1 selection pressure) 
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Simulation 5: Elitism 

The experiments of Chapter 3 designed a simple elitist mechanism where the best face 

was always carried forward to the following generation. Such a notion makes intuitive sense as 

it prevents any “superior” faces from being “lost” through crossover or mutation operators. All 

the simulations to date have not used this parameter with good reason: the presence of an 

elitist face will prevent the average minimum MSE scores ever increasing, as the lowest MSE 

will be carried forward, and may mask any undesirable increases53. 

Running the simulator with elitism-enabled resulted in an unexpected result for 

average minimum MSE: when compared against the condition with elitist disabled, the 

performance is overall worse; referring to Figure 52, this is especially apparent after generation 

25. One would expect the most fit individual to be of benefit to evolution. A closer examination 

revealed a programming error occurred that, although it relocated the image correctly, it failed 

to correctly copy the relevant shape and texture parameters to the next generation. Subsequent 

re-selection of that face would result in the incorrect coefficients being used, leading to a 

decrement in performance. 

 

Figure 52: Initial Effect of Enabling Elitism on Average Minimum MSE (16 population faces, 
mutation 0.1 and 2:1 selection pressure) 
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With this mechanism repaired and the simulator re-run, the average minimum MSE 

appears to be less after the third generation (refer to Figure 53); though this is not statistically 

reliable over generations 2 to 10 (t=0.84, DF=628, p=0.404). Similarly, the average MSE was 

                                                           
53 As an example of an increasing average minimum MSE, refer to the plot for “0.2” between the 14th and 

15th generation in Figure 49. 
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noticeably less with mutation enabled (Figure 54); this difference approached significance over 

generations 2 to 10 (t=1.82, DF=628, p=0.069) and was significant over generations 3 to 10 

(t=2.25, DF=558, p=0.025). The results indicate that elitism, although not reliably better on 

locating a best face, can be considered valuable in improving average fitness and should 

therefore feature in the Face Evolver. 

 

Figure 53: Effect of Repaired Elitism Mechanism on Average Minimum MSE (16 population 
faces, mutation 0.1 and 2:1 selection pressure)  
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Figure 54: Effect of the Elitism Mechanism on Average MSE (16 population faces, mutation 0.1 
and 2:1 selection pressure) 
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Simulation 6: Combined Effects with Elitism Enabled 

It is known that parameters in an evolutionary system tend to interact with each other 

(e.g. Mitchell, 1996), the consequence of which is that parameters should be evaluated when 

varied together. Up to this point, the effect of elitism has been largely ignored. It was noted in 

Simulation 3 that either a mutation rate of 0.05 or 0.1 would appear to be an appropriate setting 

for this parameter. The effect of elitism has a profound effect though. If simulation is run again 

with the parameters of Simulation 3 set with a mutation rate of 0.05 and elitism enabled, it is 

found that the higher mutation rate condition (0.1) results in a lower minimum MSE score that 

approaches significance over the early generations (t=1.84, DF=628, p=0.066). This finding is 

not unreasonable since higher mutation rates tend to enlarge the area searched by the GA 

through increases in population diversity. Enlarging the region of search, especially early on in 

the evolutionary process, can increase the probability of finding a preferable solution. 

However, higher mutation rates can be too disruptive to performance without the presence of 

an elitist face. In summary, the higher mutation rate of 0.1 is believed to be a reasonable setting 

for the Face Evolver especially when used in conjunction with elitism. 

On the other hand, it was proposed in Simulation 2 that the selection pressure 

mechanism on the best face be set to unity (rather than 2:1 or even 3:1) since the minimum MSE 

measure was significantly lower with this setting.  However, re-running the simulation for 

elitism enabled (0.1 mutation rate) with a 2:1 selection pressure results in a lower minimum 

MSE compared with a unity selection pressure; although the effect size is small (4.3) and non 

significant (t=1.00, DF=628, p=0.313). Overall, it was not considered detrimental then to leave 

this parameter setting at 2:1 in the Face Evolver. 

Simulation 7: Population Size (Revisited) 

Now that a set of parameters have been proposed for mutation (0.1), selection pressure 

(2:1) and elitism (enabled), the investigation returns to the appropriate number of faces 

required in a population. The important finding from Experiment 7, Experiment 8 and 

Simulation 1 was that an increase in population size tended to result in a higher rate of 

decrease in the mean MSE and a lower overall terminal value. One may ask therefore whether 

there is any benefit in employing a larger population for fewer evolutionary cycles? It was 

estimated in Chapter 3 that 10 generations of 16 faces is likely to be sufficient to produce a face 

of “acceptable” likeness; the generation of 160 faces. Could this number of faces be better 

distributed then over fewer cycles with a larger population? 

This notion can be explored in simulations that study performance when the number 

of generations is manipulated, with the number of population faces adjusted accordingly, so 

that 160 faces are always generated. Ultimately, this was tested by increasing the number of 
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generations (Ng) from 1 to 24. In each case, the number of faces in a population (Np) was 

computed by the equation – 

 

Np = 160 / Ng   … (2) 

 

 In simulations, the equation was rounded to the nearest integer. For example, with 7 

generations, a population size of 23 (22.9) faces would be required. This necessarily leads to 

error, the maximum occurring for a population size of 15, with 5 more faces than the average 

(160) being produced. This error (3.1%) is considered too small to be of significance. 

 The simulator was then run.  

The data in Figure 55 was calculated by averaging the minimum MSE taken from the 

last generation for each target. It can be seen from the graph that the average minimum MSE 

appears roughly equivalent in the range of 10 to 20 population faces. Outside this range, the 

error becomes worse, especially for the relatively larger population sizes. T-tests revealed no 

significance difference in the average minimum MSE in the range 10 to 32 population faces 

compared with a population size of 16 (p>0.05).  

This should mean that if the number of faces presented is taken into account, then the 

benefit of doubling the population size found in Chapter 3 should be eliminated. This can be 

easily verified by comparing the rating scores from generations 1 to 3 for a population size of 

32 (Experiment 7 and Experiment 8) with those from generation 2, 4 and 6 for a population size 

of 16 (Experiment 2 and Experiment 4). When this analysis was run, a two factor ANOVA was 

significant for familiarity (famous or randomly-generated targets; F=25.0, DF=(1,185), p<0.001), 

but not for population size (16 or 32 population faces; F=0.01, DF=(1,185), p<0.927) and there 

was no interaction (F=0.71, DF=(1,185), p<0.401). As seen before, the famous targets were 

evolved better than randomly generated ones, but as predicted, when the number of faces 

presented was kept constant, there is no longer a benefit for an increase in population size. The 

result is therefore consistent with the prediction arising from simulation. 
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Figure 55: Effect of Varying the Population Size on Average Minimum MSE (mutation 0.1, 2:1 
selection pressure, 6 faces selected and elitism enabled); the white bars indicate a non-

significant difference compared with a population size of 16 faces. 
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 Comparing the average minimum MSE (Figure 55) for a population size of 16 and 160 

does illustrate the benefit enjoyed by evolution (a 38% decrease in MSE). It is interesting to note 

that even a single cycle of evolution (i.e. 80 faces bred together once) results in a large decrease 

in MSE (14%). Note also that although evolution is of value, the change from a “flat” 

evolutionary system (i.e. Simulation 1: no mutation, no elitism and unity selection pressure) to 

an “optimized” one (a mutation rate of 0.1 with elitism and a 2:1 selection pressure) does not 

represent a huge reduction (14%) in the average minimum measure; the difference is 

nonetheless significant (t=7.76, DF=768, p=0.006).  

Overall, this result suggests that photofits are best produced by evolution (rather than 

the random generation of faces). In addition, at least 5 generations (with 32 faces) would 

appear necessary to achieve good performance; more evolutionary cycles with relatively 

smaller populations seem to make little difference (down to a minimum of 10 faces and 16 

generations). In conclusion, the currently adopted value of 16 population faces would seem to 

be appropriate, although there is no evidence for significant differences over the range 10 to 32 

faces. 

The following simulations explore two more aspects of face evolution and suggest 

ways to further increase performance. 

Simulation 8: Coefficient Pruning 

It is clear from Simulation 1 that increasing the number of population faces, with the 

number of generations kept constant, results in better performance. However, if many of the 

faces have a high degree of similarity, then the effective size of a population will be reduced. 

What might be desirable then would be to identify and remove those faces that are very similar 
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to each other. Of course, this process will necessarily reduce the number of population faces. 

Therefore, it appears sensible to pre-generate more faces than are ultimately required and to 

eliminate the most similar ones.  

One method to decide which faces should be eliminated is to compute a distance error 

score (e.g. MSE) between all possible combinations of faces and then to remove those with the 

closest error. As this is likely to be time consuming, especially with a large number of starting 

faces, a simple iterative method is proposed: rather than computing all possible combinations 

of error score, one computes the error scores from one of the faces chosen at random. The face 

that has the lowest error score is then removed or “pruned” from the population. The process 

is then repeated until the desired population size is reached.  

One problem is that it is computationally expensive to morph a face (about 300ms) and 

it could result in excessive delays in creating a population. To overcome this difficulty, it was 

decided to eliminate similar faces based on face coefficients rather than their reconstructed 

representations. Hence, an excess of shape and texture coefficients would be produced and the 

most similar ones removed. It appeared sensible to examine the “pruning” of texture and 

shape coefficients separately; pruning could be performed on populations that were twice and 

three times larger than required. Other system parameters were set as in Simulation 6 (with 

elitism enabled).  

For the shape coefficients (Figure 56), the result of pruning on the minimum MSE can 

be seen to be better for a 2:1 prune compared with either a 3:1 prune or the baseline condition 

(no prune) up to about generation 10. Beyond this point, the baseline condition appears better. 

Indeed, there is a significant reduction in the average minimum MSE for the 2:1 prune 

condition over generations 2 to 10 compared with the baseline (t=3.31, DF=628, p=0.001). 

Similarly, for the texture coefficients (Figure 57), there appears facilitation in performance up to 

generation 5 (not as marked as for shape) but fails to reach significance (t=1.05, DF=278, 

p=0.295). It is proposed that a 2:1 pruning mechanism be implemented for the face shape 

components of the Face Evolver, but left optional for texture. 

 



126 

Figure 56: Effect of Shape Pruning on Average Minimum MSE (16 population faces, mutation 
0.1, elitism enabled and 2:1 selection pressure) 
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Figure 57: Effect of Texture Pruning on Average Minimum MSE (16 population faces, mutation 
0.1, elitism enabled and 2:1 selection pressure) 
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Simulation 9: Separate Selection Mechanisms 

In situations where the probability of mutation is set to the maximum of 1.0, no 

evolution can occur as random faces are produced (i.e. shape and texture coefficients always 

take on random values). A curious result was observed when comparing simulations run with 

the mutation rate set to 1.0, first for the shape coefficients and then for the texture coefficients; 
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run with no coefficient pruning, no elitism and the remaining parameters of Simulation 8. A 

plot of the average minimum MSE (Figure 58) reveals that there is no benefit of evolution with 

100% shape mutation. In contrast, there appears little difference in the performance to the 

baseline with 100% texture evolution over the first 3 generations, then performance is 

noticeably worse. Taken together, this indicates that (1) evolution of texture is dependent on 

evolution of shape (and not vice versa) and (2) shape is more important initially with texture 

playing an increasingly more important role later.  

 

Figure 58: Effect of the Maximum Mutation Rate (probability of 1.0) on Average Minimum 
MSE (16 population faces, mutation 0.1, elitism off and 2:1 selection pressure) 
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Clearly, shape evolution results in a tendency for pixels in a population to become 

coincident with those of the target. In other words, features tend to become aligned. The 

alignment of features is likely to result in lower error scores, especially for the overall head 

shape and hairstyle due to the relatively large proportion of the image occupied by them 

(Bruce & Young, 1986). It was noted that 32 (out of 35) of the targets have qualitatively darker 

hair anyway and will result in proportionally high error scores for mis-alignment in this 

feature than with more average intensity styles (such as mid brown). It would appear sensible 

then for the shape and texture components of a face to be treated more independently during 

evolution. One can easily imagine a situation where one of the population faces has a relatively 

good texture but a poor shape; the current implementation would tend not to select such a 

candidate (as the error from the shape is too high). A simple solution appears to be to select the 

texture components independently of shape components.  

This hypothesis can be tested in simulation by choosing face shapes with the lowest 

MSE with respect to shape, and face textures with the lowest MSE with respect to texture. As 
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previous simulations have tended to select 6 faces per population, it is proposed that the same 

number of shape and texture components be used (6 sets of texture components and 6 sets of 

shape components). The only complicating factor is how to select the best face overall. The 

simplest solution appears to be to use the existing method of choosing the population face that 

has overall the lowest MSE.  

When run again, with just the method of face selection changed, only 22% of the time 

was the same face selected (for both shape and texture); an average of 1.3 faces per 6 selected. 

In contrast, the overall best face was found to be selected for both shape and texture 70% of the 

time among those selected for both. The effect on the average MSE is minimal (Figure 59), and 

non significant (t=0.71, DF=628, p=0.480) over generations 2 to 10, but is far more pronounced 

for the average minimum MSE (Figure 60) and approaches significance over the same range 

(t=1.80, DF=628, p=0.073). The poor overlap of jointly selected faces (22%) together with an 

approaching significant improvement on the minimum MSE measure suggests that separate 

mechanisms for evolution would be a worthwhile development to the Face Evolver. 

 

Figure 59: Effect of Separate Evolution for Shape and Texture Components on Average MSE 
(16 population faces, mutation 0.1, elitism off and 2:1 selection pressure) 
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Figure 60: Effect of Separate Evolution for Shape and Texture Components on Average 
Minimum MSE (16 population faces, mutation 0.1, elitism off and 2:1 selection pressure)  
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General Discussion 

The simulations in this chapter have been instrumental in beginning to understand the 

role of parameter settings in the Face Evolver. It was found that settings of 0.05 and 0.1 were 

appropriate for mutation. Elitism was also found to be of value - both in itself and also 

enabling the higher mutation rate of 0.1 to be preferable to the 0.05 setting. The selection 

pressure was initially proposed kept constant for all selected faces but, in the presence of 

elitism, was found to be slightly beneficial at the 2:1 value used in Chapter 3.  

Initially, the population size was also found to be positively related to the average and 

peak system performance, with the error scores of larger populations appearing to decrease 

faster and to a lower terminal value than smaller populations. However, when the number of 

faces generated by the Face Evolver was kept constant (160 faces), it was found that there were 

no significant differences in peak system performance (via the minimum MSE) for population 

sizes over the range of 12 to 32 faces. This indicates that 16 population faces used for the Face 

Evolver is not an inappropriate size. Indeed, a re-analysis of the evolution data from Chapter 3 

revealed that once the number of faces generated was controlled, there was no longer any 

benefit for increases in population size. 

It was also found that the clustering of faces was important. A process of two-fold 

over-generation and the successive selection and pruning of faces that were most similar 

resulted in significantly better peak performance for the shape components and, to a lesser 

degree, the texture components. 
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Another area indicating change to the current approach was in the number of faces 

selected from a population. The data clearly indicates the benefit to the average and peak 

performance for selecting fewer faces. In fact, just reducing the number to 5 faces made a 

significant impact on the minimum error scores; the lower limit was suggested to be either 3 or 

4 faces. 

 

Finally, a further simulation established that it was valuable to implement separate 

selection mechanisms for shape and texture. Anecdotally, from an operator’s perspective, it 

was clearly apparent when a composite was being created that sometimes a population face 

would be generated with a relatively good texture (to a target) but not a good shape (and vice 

versa). When this happened, a witness would be forced to grudgingly accept a poor quality 

representation or make another choice. Separating shape from texture not only avoids 

dissonance, but also acknowledges the role of featural and configural information in face 

perception.  

Of course, both the features of a face and their configuration are modeled separately in 

EvoFIT: while shape models configural changes, texture models featural changes. It is clear that 

the information about features plus the information about the relationships between features 

are important in face perception (e.g. Bruce & Young, 1999). Interestingly, Cabeza & Kato 

(2000) suggest that features and configuration have equal salience. Their work involved 

prototype faces. One type, a “featural” prototype, contains facial features taken from the 

different faces seen at study. Research has frequently demonstrated that subjects tend to mis-

identify these prototypes at test, even though they have not been seen in the composite form 

previously (e.g. Cabeza, Bruce, Kato & Oda, 1999; Inn, Walden & Solso, 1993; & Solso & 

McCarthy, 1981). Cabeza & Kato demonstrated that the false alarm rate for a featural prototype 

was the same as a configural prototype (a face with the same configuration as the test set), 

indicating equivalent importance for features and their configuration in face perception.  

Parameter settings 

A summary of suggested parameter values is shown in the table below – 
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Parameter Setting 

Population Size (Np) 10-32 

Generations (Ng) 5-12 (depending on population size) 

Mutation Rate 0.1 

Selection Pressure 2:1 

Elitism  

Component Pruning 2:1 Shape and (optionally) 2:1 Texture  

Selected Faces Fewer is better (lower limit 3 or 4) 

Separate Selection of Shapes and Textures  

Table 6: Summary of Suggested Parameter Values (values in bold indicate new settings and 
features) 

 

The parameters with a bold highlighting in Table 6 indicate settings that could be 

changed (i.e. population size, number of generations, mutation rate and the number of selected 

faces) or where new features could be added (i.e. pruning and the separate selection of face 

shapes and textures). Note that all the parameters listed in the table except the last two 

concerns the generation of faces. The latter two, the number of selected faces and the separate 

selection of shapes and textures, are issues more closely associated with system usability. The 

following chapter develops the Face Evolver with these changes in mind as well as the ones 

proposed in the previous chapter (e.g. hairstyle modification). The result is an implementation 

that can be thought of as a photofit system: EvoFIT.  
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CChhaapptteerr  55::  TThhee  EEvvooFFIITT  SSyysstteemm  

The objective of this chapter is to implement the changes proposed in the previous two chapters 

of this thesis. In addition to these points, further design features are added, particularly those likely to 

promote rapid convergence to a target. These include the availability of four more face palettes and a 

utility that can directly manipulate facial features. The result is a photofit system: EvoFIT.  

During the evaluation of this system, encouraging results were found using EvoFITs created 

from the memory of unfamiliar faces. A later evaluation involved famous faces also constructed from 

memory and demonstrated a spontaneous naming rate of about 10%. This was found to be about 7% less 

than EFITs constructed under the same conditions. Evidence is presented demonstrating that celebrity 

age was a factor preventing better EvoFIT performance. It was shown that around 30 years is a likely 

upper age limit for the implemented EvoFIT database. A follow-up study found spontaneous naming 

rates at 25% for novice operators working with the target present during the construction of more 

appropriately aged famous faces. This study also demonstrates that facial distinctiveness is expressed in 

photofits composed with EvoFIT. Interesting results are also presented where EvoFIT was used in a real 

case. 

What Must Be Done? 

Analysis of data from Chapter 3 indicated that if photofitting is carried out from 

targets obtained external to the Face Evolver, a necessary condition for real life situations, then 

improvements need be made to allow the use of better hairstyles as well as to provide more 

complex shape and texture models. Chapter 4 recommended that the parameter settings for 

mutation (0.1), selection pressure (2:1) and elitism should be adopted. It was also proposed 

that, for faster convergence to a solution, shape and texture coefficient pruning should be used, 

the number of selected faces should be limited as far as possible (to a minimum of 3 faces) and 

the selection procedure should be made on the basis of separate shape and texture information.  

Multiple Face Palettes 

Intuitively, it is quite natural for shape and texture information to be selected 

separately: there is of course a separate model implemented for each and there is no immediate 

reason to suppose that information should be related between the two models. One would not 

expect within a Caucasian database, for example, that the colour of a mouth would be related 

to its size or spatial location. But, how should separate texture and shape information be 

presented to a user? In much the same way as faces are displayed currently, a simple design 

would involve the presentation of one screen or “palette” for facial shape, and another for 

facial texture; referred to hereafter as the Facial Shape Palette (FSP) and the Facial Texture 

Palette (FTP) respectively.  
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A representation potentially relevant for the texture palette (FTP) is already available. 

Recall in the generation of a face that a “shape-free” (texture) image is initially produced from 

the texture model (prior to a morph with a shape vector defined by the shape model). This 

texture representation could be used on the FTP. In contrast, to produce an FSP, one could 

create a set of “wire-frames” based on the shape vectors for each face. There is however 

evidence from face recognition studies that a drop off in performance can occur when an image 

is reduced to a line drawing (Bruce, Hanna, Dench, Healey & Burton, 1992; Davies, 1982, 1983b; 

Davies, Ellis & Shepherd, 1978; Leder, 1996; Perrett, Benson, Hietanen, Oram & Dittrich, 1995; 

and Rhodes, Brennan & Carey, 1987) and this suggests that another representation may be 

preferable. 

It was thought that the average texture (of the database) could be used as a basis on 

which to produce a shape morph. Recall that Experiment 4 and Experiment 8 (in Chapter 3) 

contained a palette where each hairstyle had been superimposed onto the average texture of 

the database. As there appeared to be no reported problems with this representation for the 

selection of hairstyle54, the average texture was used. Facial shapes could then be produced by 

a morph defined by a face’s shape vector on the average texture. An example of an FSP and an 

FTP is shown in Figure 61 and Figure 62 overleaf – 

                                                           
54 This is based on personal discussion with participants coupled with a lack of comments (left by 

participants) regarding difficulties in the selection of hair. 



134 

Figure 61: An Example Facial Shape Palette (FSP) Displaying a set of Randomly Generated 
Shapes 
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Figure 62: An Example Facial Texture Palette (FTP) Displaying a set of Randomly 

Generated Textures 
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The overall result is that there are now 3 representations for each face: one for shape, 

one for texture and one displaying both shape and texture. The combined representation of 

shape and texture is the same as that used in Chapter 3 and is now referred to as the Facial 

Normal Palette (FNP). The FNP would have the function of highlighting those faces selected 

for shape and texture. A simple colour-coding scheme was adopted: a blue border would be 

assigned to faces selected for shape, a green border for texture, and a red border for both shape 

and texture. As before, provision could be made to de-select any unwanted shape and/or 

texture selections (on any of the palettes).  

It is still required though for the user to select a face that is perceptually the closest (i.e. 

a best face). As separate selections are now to be made for shape and texture, it appears logical 

that the assignation of the best face be carried out on the FNP after visiting the FSP and FTP. 

Note that this procedure now differs from the Mark II system, where the best face was made 

before other selections. This procedure has the advantage that it reduces the search complexity 

by selecting the best face from only the most similar faces rather than an entire population. This 

procedure is similar to Baker & Seltzer (1998) who asked subjects initially to select 5 faces (that 

were most similar to an assailant from a set of 100 images), before putting them into rank 

order. 

Experiment 9: Separate Shape and Texture Selection 

As this modified selection procedure was rather radical, it was decided to run a small 

pilot experiment to test the effectiveness of the new interface. To achieve this, a total of 9 

targets were randomly generated and a palette made available for hairstyle selection (as in 

Experiment 4 and Experiment 8). Three subjects first created a photofit with the target on 

display in the centre of the screen (Condition A), then with a second target available for 

inspection55 (Condition B) and lastly with a further target created after a 1 minute exposure 

(Condition C). A minimum of 2 generations were allowed and the session was terminated 

when subjects judged that an acceptable likeness had been reached. The “perceptually-closest” 

face was then saved on disk as “the photofit”. 

Subjects were instructed that they needed to select at least 4 faces from both the Shapes 

(FSP) and Textures (FTP) palettes. The remaining parameters were largely the same as 

Experiment 1 (except 16 population faces were used for Condition A and 18 for Conditions B 

and C56; selection pressure was set at 2:1; mutation rate was set at 0.1 and the [repaired] elitism 

mechanism was enabled). All photofits were constructed in the presence of an operator [me] 

                                                           
55 In the inspection condition, the target could not be seen at the same time as the population faces but 

could be referred to as often as required. This condition is considered more challenging than having the 

target on display but not so hard as a one-shot memory condition. 
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who was responsible for controlling the software. The operator did not see the targets for 

Conditions B and C, nor did he offer any suggestion regarding the selection of faces for a given 

target. The following 9 EvoFITs were created – 

                                                                                                                                                                         
56 As no target is displayed in the centre of the screen, a total of 18 population faces can now be viewed. 
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Figure 63: EvoFITs Created with Target Visible (A), from Inspection (B) and from Memory (C)  

(A) EvoFITs Created from Target Visible 
Target Best (EvoFIT) 
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(B) EvoFITs Created from Inspection 

 

B1  

 

 

B2   

B3   



140 

(C) EvoFITs Created from Memory 
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Evaluation was carried out by showing all 9 photofits to a different set of participants 

(35 in total) and asking them for a rating on the AFSS (refer to Table 2 in Chapter 3) in the 

presence of the relevant target. The order of the presentation was randomized for each subject. 

Results 

The overall average rating was 6.7. The average rating was 6.3 for Condition A, 7.7 for 

Condition B and 5.3 for Condition C. A repeated-measures ANOVA did not find a significant 

effect for condition (F=2.94, DF=(2, 6), p=0.129). Examination of the photofits revealed that the 

“correct” hairstyle (i.e. not the same hairpiece as appearing on the target) was not selected for 

EvoFITs A3, C1 and C3 (Figure 63). The average rating was 7.5 for photofits with the same 

hairstyle and 5.0 without. An ANOVA reveals that photofits with the correct hairstyle were 

rated significantly higher than those without (F=26.77, DF=(1, 4), p=0.007); there was still no 

main effect for condition (F=1.07, DF=(2, 4), p=0.424) and there was no evidence of an 

interaction (F=0.82, DF=(1, 4), p=0.417). Considering data from photofits with the correct 

hairstyle selected, the average rating was 7.3 for Condition A, 7.7 for Condition B and 7.2 for 

Condition C. 

Discussion 

The overall rating (6.7) does show a good degree of satisfaction with the photofits in 

general: a rating in the semantic category of  “Many similarities”. The selection of the exact 

hairstyle resulted in a large and highly significant 2.5 point increase on the AFSS, 

demonstrating once again the importance of this feature. Interestingly, there were 

proportionally more correct hairstyles (5/6) in the non-memory conditions (Conditions A and 

B) compared with the memory (1/3) condition (Condition C), suggesting a detrimental effect of 

memory on hairstyle selection57. In this small study, it is concluded that a high degree of 

satisfaction can be achieved from the photofits created using the new selection technique. It 

also indicates how memory can play an important role in choosing a hairstyle and that rating 

scores can be strongly modulated by this chosen hairstyle.  

More Palettes? 

During Experiment 9, it was observed that the selection of shapes on the FSP and the 

selection of textures on the FTP became increasingly more difficult. It was the case that some 

participants did not wish to visit these screens, opting for the FNP instead. This occurred 

because of the increasing disparity between the average texture used for the FSP and the 

                                                           
57 Note that strong conclusions are deliberately not made regarding hairstyle here due to the small 

number of photofits created. 
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target’s texture as the population became more like the target with evolution (and similarly for 

the average shape used for the FTP and the target’s shape).  

An improvement appeared to be to somehow “adapt” the average texture to make it 

more like the target with increasing generation (and similarly for the average shape used for 

the FTP). Arguably, the closest representation to a target at anytime is the best face that was 

selected in the previous generation. It is proposed that the shape and texture components of 

this face are used as a basis for the FTP and FSP respectively. It is hypothesized that this 

mechanism should enable the FSP and FTP to be more representative of the target. Two more 

face palettes need be added to achieve this; these are referred to as the FSPBT (Facial Shape 

Palette with Best Texture) and the FTPST (Facial Texture Palette with Best Shape). It is intended 

that these palettes be evaluated by user feedback during the next evaluation session. An 

example of each palette can be seen on the following 2 pages – 
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Figure 64: An Example Facial Shape Palette with Best Texture (FSPBT) for a set of Randomly 
Generated Shapes 
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Figure 65: An Example Facial Texture Palette with Best Shape (FTPBS) for a set of Randomly 
Generated Textures 
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During the development of the FSPBT and FTPBS, it was envisioned that a face 

appearing in these palettes might sometimes be a particularly good face; i.e. a face better than 

the best in the previous generation. Unfortunately, switching to the FNP would lose such a 

potentially advantageous representation. This seemed an undesirable feature (and might cause 

great distress to a witness who had arrived at a preferable likeness). A simple solution was to 

add a system function that enabled desirable faces on the FSPBT and the FTPBS to be included 

in the FNP.  

Another development considered likely to increase evolutionary efficiency, also raised 

during photofitting sessions, was the ability to combine information between faces on the FNP. 

Several subjects commented that they believed the shape on one face was “good” and the 

texture on another was “good”. The addition of another function, known as the Facial 

Composite Tool, combining the shape from one face and the texture from another was 

implemented for the EvoFIT system as well. 

Increasing the Complexity of the Face Model 

It was proposed in Chapter 3 that the number of faces used to construct the shape and 

texture models be increased from the current database size of 35. A small model was run to 

enable a Face Evolver to be more quickly developed and evaluated. The precise number of 

exemplars required for a PCA model to generate faces of acceptable likeness is not known, 

though guidance may be sought from similar studies. For example, Brunelli & Mich (1995) 

used 87 faces, Sirovich & Kirby (1987) used 115 faces, Kirby & Sirovich (1990) used 100 faces 

and Blanz & Vetter (1999) used 200 faces, of which 100 were male. Ultimately, a corpus 

containing 72 faces were assembled, being much nearer to the number used in these studies, 

and PCA models were build for shape and texture from them. There is some evidence that this 

increase resulted in a significantly more complex face space58. Note that the first 35 coefficients 

from the shape and texture models will be used for face generation (i.e. the initial 50% of 

eigenvectors as before). 

                                                           
58 A small pilot study was run with this sized model that evolved randomly generated targets for 4 

generations by 15 visitors to the Hatton Gallery, Newcastle. Rating scores (using the AFSS) were collected 

on the best faces as normal. Other parameters and procedures were the same as Experiment 7 (using 32 

population faces); the elitism mechanism was still faulty at this stage. Although the fourth generation 

increased by an average AFSS rating of 1.0 points, this only approached significance using a one-tailed 

within-subjects t-test (t=1.53, DF=14, p=0.074). It was found however that the average rating scores from 

this study were significantly lower than in Experiment 7 (t=3.60, DF=154, p=0.004) using a two-tailed 

between-subjects t-test. Taken together, these results suggest that the face space had become significantly 

more complex.  
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The Problem of Unwanted Change in Pose 

Although the original images were photographed full-face, small variations in pose are 

captured by the PCA and become reflected in randomly generated faces. An example of such 

an effect is shown in Figure 66. Having faces that are created with changes in pose of this 

nature is likely to be distracting to a witness.  

Figure 66: An Example of an Unwanted Pose Change 

 
 

One solution to this problem is to standardize the corpus images by improving subject 

pose during photography. This is obviously a time-consuming process and any small errors 

may still lead to noticeable changes. Another approach would be to “rotate” the corpus faces 

such that the pose is viewed full-face. It is believed that to perform this accurately, a 3 

dimensional model of the head is required. Such a model is outside the scope of the current 

work and this method is therefore not considered viable.  

Although not a full 3D representation, a holistic shape model is of course a component 

of the photofit system (and arguably a “2D shape” model; as the depth dimension is not 

explicitly represented). It is suggested that pose correction be performed using this simple 

shape model. A heuristic for pose re-alignment is based on the observation that the tip of the 

nose usually lies in the centre of the face and so operations that “re-align” the nose might 

achieve this rotational effect. One approach is to calculate the horizontal translation necessary 

to those coordinates that specify the internal features to bring the tip of the nose into 

alignment. This can be followed by performing a “best fit” operation59 of the translated 

                                                           
59 In practice, this can be achieved by computing the coefficients in the shape model that have the lowest 

error for a given set of coordinate points. 
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coordinates in the shape model. Once the shape coefficients are computed, these can be used to 

re-constitute a new shape vector. The resulting vector is therefore re-aligned and guaranteed to 

be within the shape model. Figure 67 illustrates the satisfying effect of applying this process to 

the face presented in Figure 66 - 

Figure 67: Removing the Unwanted Pose Change 

 
 

The Feature Shifter 

The ability to “move” facial features in a specified way is intuitively desirable. It has 

been observed whilst using the Face Evolver that participants have sometimes wanted to 

choose a slimmer face or one with the eyes closer together. Indeed, there is evidence that small 

configural changes made to a face can be very noticeable (e.g. Bruce, Doyle, Dench & Burton, 

1991; and Haig, 1984). Haig (1984) has found that a vertical manipulation to the mouth, eyes 

and nose can be detected even when the movement is close to the visual acuity of the eye. 

When a desired configuration is not present, the user must rely on a relevant parameter 

mutation or the selection of an otherwise “poor” face that includes a desired aspect. Either 

way, this facial aspect may be relatively poorly expressed in the best face, causing possible 

distress to the witness60.  

One could of course just perform a “free” morph whereby image distortions are carried 

out by the uncontrolled movement of pixels: feature manipulations within the image space. Such 

                                                           
60 Several photofit operators have commented [to me] that when creating a composite, a witness may 

become apparently “fixated” on a facial feature (such as the hair) to the extent that they cannot focus on 

any other aspect of the photofit until a satisfactory likeness has been achieved. 
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operations are of course common in standard electronic photofit systems. Movement in the 

image space could be problematic in this application though when breeding a new generation 

of faces: what should one do with the previous pixel translations?  

A solution is to follow any feature translations with a best fit in the shape model – as 

suggested for pose re-alignment. For example, in order to move the eyes together, the 

horizontal aspect of the pixels that specify the eyes would be brought closer into register and a 

best fit operation would be carried out in the shape model. A shape vector would then be 

regenerated (from the eigenshapes) and used to morph the shape-free image to reflect the 

featural change. As facial features are specified by coordinates, this would allow any features 

to be manipulated. The solution proposed, perhaps similar to Brunelli & Mich (1995)61, results 

in movement within the holistic face space [as opposed to movement within the image space].  

A small utility, known as the Feature Shifter, was therefore designed for the EvoFIT 

system that enabled specified facial features to be moved and resized. An example using this 

utility that positioned the eyes closer together in the holistic shape space can be seen in Figure 

68 – 

Figure 68: An Example Illustrating the Effect of Moving the Eyes Closer into Register (by 8 
pixels). The original image is on the left 

  
 

Despite this ability to “navigate” in the holistic shape space, I was concerned whether 

all young male Caucasian faces could be generated. Part of the concern was that even with a 

huge database – perhaps containing several thousand images – could an acceptable likeness 

really be guaranteed? Could a wide face with average ears be specified with a small nose for 

                                                           
61 Brunelli & Mich (1995) explain that in their “intra feature warping” mode, the PCA expansion 

coefficients are re-computed given changes in facial configuration, though the mechanism through which 

this is performed is not specified. 
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example? An associated issue, is what should be done to faces that have been “damaged” in 

some way; a broken nose, a black eye and a cauliflower ear62 are examples. Whereas the black 

eye may be resolved as a textural issue, and will be considered later, the broken nose and 

cauliflower ear are primarily shape distortions. The problem is that without considerable effort 

in setting up a database containing all possible outcomes of damage, it is unlikely that these 

representations could be reproduced.  

Taken together, these observations suggest that a “free” movement of features should 

be permitted anyway in addition to movement in the holistic shape space. However, as 

discussed above, it is difficult to know what to do with these changes when evolving. The best 

solution appeared to apply any free-morph changes to all faces in the current and future 

populations. This does have the disadvantage that some changes might be inappropriate to 

some of the faces, but these faces could be ignored or the free-morph modified appropriately. 

This free-morph method was therefore also implemented in the Feature Shifter.  

Hair and Overlays 

In addition to an increase in the complexity of the face model, the other important 

recommendation made in Chapter 3 was to provide a greater variety of hairstyles. One method 

would be to take photographs of a large number of hairstyles. This would need to be carried 

out under controlled lighting conditions so as to limit differences in illumination [between the 

hair and the face] with light sources originating from different angles. This is an extremely 

time-consuming process and is arguably unnecessary since such repositories are already 

available in computerized photofit packages. For example, EFIT and PROfit permit any 

hairstyle to be saved to disk in one of several common image formats; referred to as 

“exporting”. This approach is particularly appealing since photofit operators would already be 

familiar with procedures for hairstyle selection. Allowing operators to make post-selection 

editing changes in their “favourite” image editor would further capitalize on existing 

knowledge. 

A potential problem with this approach is the correct placement of a hairstyle onto a 

given set of population faces: not only is the position of the hair important but also its size. The 

most tractable solution appeared to be to export a reference face [from EvoFIT] into EFIT or 

PROfit, apply a hairstyle and then re-import it back [into EvoFIT]. If the reference face were to 

have the average corpus shape, then EvoFIT would be able to treat it as if it were one of the 

standard hairstyles: keying in the internal features and applying the final morph. In fact, this 

can easily be achieved if the reference face is one of hairstyles that itself contains little or no 

hair. All that would be required then would be to take a copy of such a hairstyle, so as not to 

                                                           
62 An ear that has been thickened or deformed via repeated blows; typically occurs in boxing and rugby. 
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modify the reference images, and to manipulate this temporary or working background for the 

purpose of hairstyle assignation. 

Ultimately, due to availability, the PROfit system was used, though provision was 

made for future use with EFIT. The implemented procedure imported a face from the EvoFIT 

database containing relatively little hair into PROfit. This was used as a context in which to 

select, size and position a chosen hairstyle. Other facial features in PROfit – such as eyes, nose 

and mouth – would be hidden while this is being carried out63. The resulting image would 

then be saved on disk.  

Unfortunately, both EFIT and PROfit apply an image border. A simple utility, called 

Import Photofit, was designed that enabled the manual delineation of the edges to the EvoFIT 

and ensured that the image size was correct (currently maintained at 180x240 pixels). Some 

examples of hairstyles extracted from PROfit using this technique are shown in Figure 69. The 

figure also illustrates the large effect that hairstyle has on facial appearance (refer to Fig. 2.2 in 

Ellis (1984) for a similar demonstration using Photofit). 

                                                           
63 Instructions for operating PROfit are detailed in Zeda (1998). 
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Figure 69: Examples of Hairstyles Imported from the PROfit Package and Applied to a 
Population Face 

  

  
 

 

Once the image has been imported, referred to as the external feature image (EFI), it 

could be used as the external features for the current and future population faces. The hair 

could of course be changed to a different style by repeating the aforementioned procedure.  

Provision was made to allow modification of the external features in several standard 

photographic editing packages: Microsoft Paint, Microsoft PhotoEditor and Adobe Photoshop. 

The use of these image editors would allow adornments, such as earrings, ear studs and 

necklaces to be added to the external features, expanding the utility of the EvoFIT system.  

A further utility would be to add moles, scars, beauty marks and even adornments to 

the internal features. The ability to add facial marks is important due the high information 

content conveyed by them and the associated identification benefit (Zavala, 1972). Once again, 
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this could be done via an image editor. Of course, editing the EFI would not be a valid solution 

in this case since the internal features are derived from the texture model. A simple solution is 

to export a copy of the average shape face, called the internal feature image (IFI), to the editing 

package. Any editing changes performed on the IFI would be applied to the population faces 

(by simple numeric addition). An example of adornments added to both the internal and 

external features can be seen in Figure 70 using this procedure. 

Figure 70: An Example of Adornments Added to the Internal and External Facial Features 

 
 

The functionality necessary to implement these changes to the internal and external 

features (including hairstyle selection) was combined into a single utility called Modify Hair & 

External Features. 

Summary of Developments to the Mark II Face Evolver 

In this chapter, considerable development has taken place on the Mark II Face Evolver 

described in Chapter 3. Development [proposed in Chapter 3] included a larger face model (for 

both shape and texture information), access to a larger repository of hairstyles (via PROfit) and 

the ability to edit the external features in a photographic paint package (e.g. Adobe 

Photoshop). Provision was also made to manually edit the internal facial features [using 

Photoshop] enabling scars, adornments and other facial characteristics to be added. 

The parameter settings and coefficient pruning suggested in Chapter 4 were 

implemented, along with 2 face palettes that permitted the separate selection of facial shape 

(FSP) and textures (FTP). Development aimed at encouraging faster convergence continued 
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with an additional 2 palettes that displayed the shape palette (FSP) with a previously preferable 

texture (FSPBT), and the texture palette (FTP) with a previously preferable shape (FTPBS).  

Two further software utilities were implemented. Both of these were also aimed at 

increasing system convergence. The Feature Shifter enabled the relationship between features 

to be manipulated either within the holistic face space or as an unconstrained relational 

change. The results were to provide a mode operation not unlike the existing electronic 

photofit systems. The other utility, the Facial Composite Tool, enabled a new face to be created 

from the shape of one face and the texture of another. 

Algorithms may be found in Appendix H summarizing the generation of population 

faces and operation of this full system. 

Experiment 10: Evaluating the EvoFIT System 

The objective of this evaluation was to gain an indication of likely performance were 

the EvoFIT system to be used by the police at this time. It was considered important therefore 

that photofits be constructed from a large range of targets and that these constructions be 

carried out from memory. Of further importance was performance compared with one or more 

of the current photofit systems. These objectives were satisfied by a collaborative study with 

Derek Carson from the University of Abertay. This collaboration would involve recognizing a 

large number of photofits created from memory with Derek employing EFIT and myself, 

EvoFIT. The study detailed here is the result of the combined design and procedure set out by 

Derek and myself. 

Method 

An important aspect of this evaluation is the construction of photofits from memory. 

The most realistic method would be to allow subjects to view a staged crime taking place and 

then to create a photofit. In this case, it would be necessary for the “assailant” to be unknown 

to the subjects. To maintain an ecologically valid evaluation, the resulting photofits would need 

to be shown to people with whom they are personally familiar. In addition, to obtain a measure 

of general performance, a significant number of targets should be employed. For example, 

Kovera, Penrod, Pappas & Thill (1997) created photofits of between 50 and 100 different 

targets64. The problem with staging crimes containing this number of targets is that it is rather 

time-consuming. As a compromise, it was decided to create photofits of generally well-known 

                                                           
64 The methodology of the paper is ambiguous. Two pupils from 5 different High Schools each made 10 

composites. But, it is not clear from the paper as to the degree of overlap of targets used between students 

that came from the same school. This means that somewhere between 50 and 100 of the composites were 

different. 
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people, such as famous actors and musicians. Although the use of such stimuli is not entirely 

ecologically valid, given that the targets are likely to be familiar, they can nevertheless be 

created from memory. The effect of familiarity may not be an issue anyway when constructing 

photofits from memory, as Davies, van der Willik & Morrison (2000) discovered, though this 

issue should probably be the focus of a study later on.  

Another advantage of using famous faces is that it fits in with current research: Brace, 

Pike & Kemp (2000) and Davies & Oldman (1999). Both studies constructed composites using 

EFIT from memory and with the target present. Whereas Brace et al. yielded a recognition rate 

of 25%, by presenting composites for recognition from both construction modes at once, Davies 

& Oldman (1999) found that individual composites were recognized only 5.6% in the memory 

condition and 9.7% when the target was in-view during construction. Using these studies as a 

guide, one would expect a recognition rate between 5.6% and 25%, though the upper limit is 

likely to be somewhat lower since Brace et al. presented multiple composites for recognition, a 

format known to elevate performance (Bennett, 2000; and Bruce, Ness, Hancock, Newman & 

Rarity, submitted). 

It was decided though that subjects be given a short exposure to the target prior to 

creation of the photofit. This was thought prudent due to reported differences found in 

recognition studies when varying the retention interval between study and recognition (e.g. 

Shapiro & Penrod, 1986). All subjects would therefore begin the photofit process with an 

equivalent exposure to the target and be less dependent on the last time they saw the famous 

face. 

Even controlling for the duration of exposure and the retention interval, it was 

believed that the overall level of familiarity and distinctiveness of the targets could affect both 

the creation and recognition of the resulting photofits. Both of these factors are known to affect 

identification. For example, increases in familiarity have been shown to result in a significant 

increase in sensitivity towards the internal features (Ellis, Shepherd & Davies, 1979; Young, 

Hay, McWeeny, Flude & Ellis, 1985; and Davies, van der Willik & Morrison, 2000); and 

distinctive faces have been shown to enjoy an increase in identification rate (e.g. Shapiro & 

Penrod, 1986). It was decided therefore to keep the level of familiarity as constant as possible, 

but to manipulate the level of target distinctiveness.  

Selection of Target Stimuli 

As mentioned above, one of the objectives of the study was to test performance with a 

relatively large number of targets. Ultimately, thirty was believed sufficient to gain a good 

measure of average performance. To ensure that the operators could not initially bias the 
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construction of the composites, the selection of suitable target photographs was carried out 

blind to the operators65.  

These stimuli were obtained first by collecting ratings of familiarity and distinctiveness 

from 60 written names of famous people. A range between 1 and 10 was used for both scales. 

For distinctiveness, subjects were asked, “Imagine you are standing on a busy bus station 

platform, how easily could you pick this person's face from the crowd. Does this person have a 

distinctive face or would they appear as just one of the crowd?” For familiarity, subjects were 

asked to rate how familiar they were with each famous person: 1 being unfamiliar and 10 being 

very familiar. Data from 10 subjects were used. From these ratings, thirty names were extracted 

and divided into three different distinctiveness levels (low, medium and high) with equivalent 

familiarity66. Reliability was verified by two repeated-measures ANOVAs, resulting in a 

significant main effect of distinctiveness (F=107.76, DF=(2,27), p<0.001) but not familiarity 

(F=2.26, DF=(2,27), p=0.124). Appropriately, Fisher LSD tests revealed that all contrasts were 

significant for distinctiveness (p<0.001). 

Subsequently, good quality, full-face monochrome photographs were obtained (refer 

to Appendix B). 

Creating the Computer-Generated Composites 

A procedure used in the UK to train operators to elicit information from a witness is 

based on a “cognitive approach” (FIC, 1999). This approach, used during a Cognitive Interview 

(CI), is designed to facilitate the recall of as much unbiased information as possible regarding a 

crime largely through re-instating the context in which the event took place. Part of the CI 

involves eliciting a verbal description of the suspect, including the face. The verbal description 

typically involves a phase whereby a witness recalls (and then re-recalls) details of the event in 

his or her own time with the minimum of external cueing; referred to as “free-recall”. This is 

followed by a more interactive session whereby details about specific events are requested; a 

“cued recall” (e.g. “What can you tell me about the mouth?”). Following this, a composite 

would be created and an estimation [by the witness] of the composite’s likeness to the assailant 

would be recorded (a percentage). 

To achieve a degree of similarity with real life situations, it was thought best as far as 

possible to parallel this procedure. Thus, after the exposure of a target, a CI based approach 

would be used to elicit a description of the face. This would involve two sessions of free recall 

followed by one session of cued recall. To maintain parallels further, the identity of the targets 

                                                           
65 This was performed by one of Derek’s Research Assistants at the University of Abertay. 
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would be hidden from the two operators [Derek and myself], since it is normal for operators 

not to have prior exposure of an assailant - a procedure adopted previously in research (e.g. 

Davies, Milne & Shepherd, 1983). In addition to these targets not being known to the operators, 

subjects would be requested to try not to reveal the identity of the famous person. Whether the 

identity was revealed either from a subject’s comment or from the quality of the photofit, it was 

though best that the session should continue. Once again, this would serve to parallel “real” 

photofit situations where no mention is made that an operator might have an idea of the 

suspect being created. In any case, the role of the operator was understood to control the 

software tools under the guidance of the “describer”. According to ACPO(S)67 guidelines, “a 

composite is a pictorial record of a witness’s memory and not that of the police artist or facial 

imaging operator” (ACPO(S), 2000, page 11). 

Participants  

EvoFITs 

Thirteen males and 17 females each created an EvoFIT. Their ages ranged from 15 to 55 

and their mean age was 28.1 (SD 9.3). They were paid £10. 

 

EFITs 

Eighteen males and 12 females each created an EFIT. Their ages ranged from 18 to 51 

and their mean age was 28.9 (SD 9.5). Participation was voluntary. 

Apparatus 

EvoFITs 

EvoFIT software version 2.02e running on a Pentium PII PC clocked at 350MHz was 

used to create the composites in addition to Adobe Photoshop (version 5.0) and PROfit (version 

1.30W). The EvoFIT Faces were displayed on an Ilyama 17” monitor and 30 famous faces were 

used as stimuli (refer to Appendix B). An EFIT Description sheet was used to record the verbal 

description (an example of which may be found in Appendix C). 

                                                                                                                                                                         
66 The mean distinctiveness rating was 6.83 for low, 7.24 for medium and 7.78 for the high distinctiveness 

condition. The mean familiarity rating was 7.51 for low, 7.85 for medium and 7.94 for the high 

distinctiveness condition. 
67 An acronym for the Association of Chief Police Officers (Scotland) 
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EFITs 

 EFIT for Windows version 3.1 was used, running on a Celeron Laptop with a 14” 

monitor. Like the EvoFIT procedure, an EFIT description sheet and a duplicate set of target 

stimuli were used. 

Procedure 

The basic procedure was kept the same for the creation of EFITs and EvoFITs. Subjects 

were told that they would be creating a photofit of a famous face from memory. An envelope 

was given containing the targets and subjects were instructed to remove one at random. If the 

person depicted was not familiar, they were told to replace the photograph and select another. 

When a familiar face was found, 1 minute was permitted for a detailed inspection of the target. 

The subjects were asked to try not to reveal the identity of the famous person at anytime 

during the session. The code (on the back of the photograph) was recorded and the target face 

placed in a second envelope that contained the “used” stimuli.  

A short description of the photofit system was provided and an opportunity given for 

questions. Afterwards, a verbal description of the famous face was elicited, comprising of two 

cycles of free-recall followed by cued recall; details were noted on an EFIT Description sheet 

(Appendix C). A photofit was then created using either EFIT or EvoFIT and a percentage 

likeness was estimated by the subject. The resulting EFITs and EvoFITs may be found in 

Appendix D. 

Recognizing the Composites 

Evaluation primarily involved identification rates. This could easily be achieved by 

asking another set of subjects to recognize the celebrity photofits. However, despite care taken 

to control for familiarity, concern was expressed that some celebrities may not be well-known  

(e.g. Michael Owen). Therefore, participants were also asked to name the original targets after 

they had finished the photofit naming exercise.  

As the important aspect was considered to be recognition rather than naming ability, an 

unambiguous semantic description was believed acceptable. For example, “Big lips, oldie, lead 

singer in 60’s band,” would be taken as a correct response for Mick Jagger. This approach has 

been adopted elsewhere (e.g. Lander, unpublished). 

The order of presentation was randomized for each subject. 
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EvoFITs 

Participants  

Eighteen subjects participated, comprising of 4 males and 14 females. These were 

drawn from students attending the Open University summer school course D209, Stirling 

University, Stirling (June 2000). Participation was voluntary. 

Results 

The photofits were recognized a total of 39 times. As there were 540 presentations of 

the stimuli (18 subjects * 30 photofits), this resulted in a raw hit rate of 7.2%. If one divides the 

number of times a photofit was recognized by the number of times the corresponding target 

photograph was recognized, a conditional hit rate (CHR) for each photofit may obtained. This 

procedure was adopted to further compensate for differences in target familiarity. 

The CHR has been calculated and is shown in Figure 71. It can be seen that 13 photofits 

were recognized in total (43%) and that the CHR ranged from 0 to over 50% (53%); the best 

recognition occurred for photofits of Nicholas Lyndhurst and Mick Jagger. There were 5 

photofits recognized in the low distinctive category, 2 in the medium distinctive category and 6 

in the high distinctive category. The average CHR was 9.6% and the average CHR of photofits 

that were recognized by at least one person was 22.1%. 

Figure 71: Conditional Hit Rate (CHR) of EvoFITs Grouped by Distinctiveness (names are 
sorted by surname within each category) 

 
 

Figure 72 shows the conditional hit rate divided into the 3 distinctiveness categories. It 

can clearly be seen that the medium distinctness photofits performed worse (5.7%) and the 
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high distinctive photofits were recognized the best overall (13.0%). The inferential statistics for 

these data will be conducted in comparison with the EFIT system later in this chapter. 

Figure 72: Conditional Hits Rate for Low, Medium and High Distinctive EvoFITs 
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There was a low, non-significant correlation between the conditional hit rate and the 

percentage likeness recorded at the end of the photofit session (r=0.26; F=2.07, DF=29, p=0.161).  

Qualitatively, the EvoFIT operator found that the Feature Shifter and Facial Composite 

Tool generally resulted in a likeness (to the target) that was preferred by the subject. In 

addition, on the second generation, the operator displayed the FSP first, followed by the 

FSPBT. Appropriately, subjects reported that it was easier to select faces from the FSPBT than 

the FSP. A similar test was carried out for the FTP and the FTPBS, with subjects once again 

preferring the FTPBS.  

EFITs 

Participants 

Eighteen subjects participated, comprising of 8 males and 10 females. These were 

members of staff and students attending the University of Stirling and the University of 

Abertay. Participation was voluntary. 

Results 

The EFITs were recognized a total of 88 times. As there were 540 presentations of the 

stimuli (18 subjects * 30 photofits), this resulted in a raw hit rate of 16.3%. Looking at the CHR 
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by targets, Figure 73, it can be seen that 22 photofits were recognized in total (73.3%) and that 

the CHR ranged from 0 to over 60% (61.1%); the best recognition occurred for Woody Allen. 

There were 6 photofits recognized in the low distinctive category, 8 in medium distinctive 

category and 8 in high distinctive condition. The average CHR was 17.1% and the average CHR 

of photofits that were recognized by at least one person was 22.6%. 

Figure 73: Conditional Hit Rate of EFITs Grouped by Distinctiveness (names are sorted by 
surname within each category) 

 
 

Figure 74 shows the conditional hit rate divided into the 3 distinctiveness categories. It 

can clearly be seen that the high distinctness photofits performed worse (15.6%) and there was 

no difference between the other two categories (18.2%). Once again, the inferential statistics for 

these data will be conducted for both systems later in this chapter (see the following section). 

Figure 74: Conditional Hits Rate for Low, Medium and Highly Distinctive EFITs 
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As before, there was a low, non-significant correlation between the CHR and the 

percentage likeness recorded at the end of the photofit session (r=0.14; F=0.55, DF=29, p=0.465). 

Comparison with EvoFIT 

A repeated-measures ANOVA indicated that the average CHR scores for the EFITs 

were significantly higher than the EvoFITs (F=6.11, DF=(1,27), p=0.020), there was no 

significant effect of distinctiveness (F=0.84, DF=(2,27), p=0.912) and no interaction (F=0.44, 

DF=(2,27), p=0.444). There is however no significant difference [between systems] in the 

average CHR of targets that were recognized by one or more people (EFITs are higher by 0.2%; 

t=0.04, DF=34, p=0.970). 

Discussion 

In summary, 9 more of the targets were recognized with EFIT and the average CHR 

was 7.4% higher with EFIT, thus indicating an overall advantage for EFIT. However, 7 out of 

the 13 EvoFITs (54%) did receive a higher CHR than the corresponding EFITs and there was no 

significant difference in average CHR of successfully identified photofits. Also, neither system 

exhibited a significant distinctiveness effect.  

It was thought that the last set of changes made to EvoFIT (e.g. Feature Shifter, Facial 

Composite Tool, and the newer FTPBS and FSPBT palettes) would result in relatively good 

performance - at least equivalent to EFIT. In reality, the EvoFIT recognition was poor and 

worse than EFIT. It could be argued that these differences may be the result of differences 

between operators. It has been found that experienced operators perform better than novice 

operators (e.g. Davies, Milne, & Shepherd, 1983). However, both operators in the current study 

were experienced, with at least 10 composites constructed previously. Therefore, although 

differences may exist between operators, these effects are considered too small to produce the 

large differences observed.  

The large difference in hit rates (7.4%) between the two systems is believed to be 

caused by target age. Several subjects commented during the construction phase that the age of 

the EvoFIT appeared younger than that of the target. For example, two subjects believed their 

photofits of Michael Douglas and Robin Williams appeared 10 years younger than in real life, 

and another believed that their attempt at Cliff Richard needed aging by up to 20 years. A 

small Internet-based68 study with 70 subjects indicated that the average mean age of the 

                                                           
68 In this research, 10 EvoFITs (out of a possible thirty) were selected at random for each subject and 

displayed on a web page. A text box permitted a single age estimate to be made for each image. Data was 

analyzed from those participants who rated all ten photofits as well as providing demographic 

information about themselves including their age, gender and occupation. 
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photofits was 31.6 years (SD 8.8). This was found to be significantly less than the mean age of 

the targets in this study (mean 47.0 years, SD 11.1; t=1e6, DF=798, p<0.001).  

Intuitively, it was thought that the EvoFIT system should be able to construct photofits 

up to the mean age of the original faces used to construct the face model. As this information 

was not available directly69, a similar Internet-based study with 33 subjects revealed that the 

mean estimated age was 30.0 (SD 7.9). Interestingly, the mean of the photofits was significantly 

greater than the mean of the originals (t=2.93, DF=101, p=0.004), indicating that the EvoFIT 

system is capable of producing photofits beyond the average age of the corpus. As can be seen 

from Figure 75, however, there were only two celebrities with an age less than 30 years. Of 

these, only the EvoFIT of Michael Owen was recognized (the other being Ronan Keating). Due 

to the small number of targets, this study does not therefore represent a measure of likely 

system performance if used to create a photofit of most suspects, who tend to be in their late 

teens and early twenties (Goffredson & Polakowski, 1995). The study does nevertheless 

indicate the likely performance (9.6% CHR) when used to create photofits of targets with an 

average age well beyond that of the database.  

Figure 75: CHR of EvoFITs Ordered by Age of Famous Person 
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69 Age and other demographic data was not supplied with the corpus images obtained from the Home 

Office. 
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Experiment 11: EvoFITs of Young Famous Faces 

Opportunities became available via a small group project70 to investigate whether the 

EvoFIT system was capable of producing age-appropriate photofits. The details presented 

below are the result of this work. To test the potential of the system, EvoFITs were created of 

young male Caucasian faces with the target-present. It was appreciated that the target-present 

condition would tend to raise naming rates above the level obtained if creations had been 

made from memory. 

Creation of the EvoFITs 

As it was not clear from Experiment 10 whether distinctiveness could be conveyed 

when the target age was selected more appropriately, EvoFITs would again be created with 

varying distinctiveness. This was achieved by showing 20 monochrome photographs of young 

famous faces to 28 subjects and collecting, for each photograph, a distinctiveness rating (from 1 

to 10). Subjects were told that the distinctiveness ratings should be based on the degree of 

unusualness and not on factors such as attractiveness or familiarity. The 5 faces with the lowest 

average rating and the 5 faces with the highest average rating were selected; the average 

distinctiveness rating was significantly different between conditions (t=7.71, DF=26, p<0.001). 

All these faces were recognized at least 75% of the time. The targets assigned to the low 

distinctiveness condition were Craig Phillips, David Beckham, Noel Gallagher, Leonardo 

DiCaprio and Matt Damon; the targets assigned to the high distinctiveness condition were 

Robbie Williams, Michael Owen, David Schwimmer, Stephen Gately and Tim Henman. The 

mean target age was 27.2 years (SD 4.1). 

It became apparent to the “new operators” that the creation of an EvoFIT was a rather 

complicated procedure. To assist, a set of operating procedures were drafted (refer to 

                                                           
70 Comprising of 5 students attending 46AC Cognition, Department of Psychology, University of Stirling, 

Stirling (Autumn, 2000). 
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Appendix F) and group members opted to work in pairs to create the photofits. Up to an hour 

was allowed for each target face. The same system parameters as Experiment 10 were used. 

Evaluation of the EvoFITs 

The EvoFITs were printed on a separate A4 sheet using a high quality printer. The set 

was shown to 22 subjects (who had not taken part in the distinctiveness rating exercise and 

were not aware of the targets used in the study so far). 

Results 

All EvoFITs were recognized by at least one person and the conditional hit rate was 

25.3%. The average CHR for the high distinctiveness group was 33.2% and this was 

significantly greater than the average of the low distinctiveness condition of 17.4% (t=3.72, 

DF=21, p=0.001). Following the recognition phase, each subject was asked to rate the similarity 

of the photofit using the AFSS against the original target photograph. It was found that the 

average rating for the high distinctiveness group (mean 4.7) was significantly higher than the 

mean for the low distinctiveness group (mean 3.8; t=3.39, DF=21, p<0.001); the overall mean 

was 4.3. 

Discussion 

This small study indicates that the EvoFIT system is capable of producing recognizable 

photofits when the average age of the targets (i.e. 27.2 years) is more appropriate given the 

current database. Interestingly, all of the photofits created were recognized by at least one 

person. Both the recognition rate and the similarity rating scores illustrate a clear advantage 

when photofitting distinctive faces using this system. Note also that the overall average AFSS 

rating score for similarity was really quite low (4.3), fitting into the category of “Some 

similarities”, and once again brings into question the use of ratings for photofit system 

evaluation – especially considering that all the EvoFITs were identified [with relatively few 

subjects (22)]. 

Operation Mallard 

An opportunity became available towards the end of this research project to undertake 

a field test of the EvoFIT system as part of “Operation Mallard”. This case involves a series of 

sexual offences carried out by a Caucasian male believed to be in his late twenties in Southern 

England over the last 2 years (all have been linked by DNA evidence). Sadly, despite 

considerable effort (including a public appeal), two artists’ sketches and a PROfit failed to 

result in a conviction. Arguably, one problem concerned the likeness of the hair in the sketch 
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for the third victim (shown in Figure 76). This was due to the victim being unable to mentally 

form a clear image of the hair. Interestingly, a year later, after having seen a similar hairstyle on 

TV and then in the street, a clearer image could be formed. An updated sketch was then 

created for the hair alone and is now believed to be considerably better than the original. It was 

decided that this updated sketch (Figure 77) be used as a basis for constructing an EvoFIT. 

Consequently, this sketch was resized, cropped and imported into EvoFIT. The image was then 

normalized to the average facial shape and the average texture applied to the internal facial 

features (Figure 78). 

 

Figure 76: Original Artist’s Sketch 

 

Figure 77: Updated Sketch of Hair 

 
 



166 

Figure 78: The Updated Sketch Used as the External Facial Features 

 
 

The construction of an EvoFIT was carried out in the normal way by the selection of 

shapes and textures using the imported hairstyle. Three generations of faces were required to 

produce a likeness that was rated at 10/10. The resulting EvoFIT can be seen in Figure 79. The 

witness has subsequently looked at the EvoFIT and is very pleased with the result. It has been 

relayed to me that the image has such a powerful effect that the victim finds it difficult to look 

at. 

Figure 79: The EvoFIT Constructed in the Field Test 

 
 

During the photofit session, the Facial Composite Tool – combining a shape from one 

face and a texture from another on the Normal Face Palette - was used twice. On both 
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occasions, a preferable likeness was achieved. The first time, the resulting ‘composite’ was 

selected as the best face for that generation. In addition, the Feature Shifter was used once: to 

reduce the inter-ocular distance by 4 pixels and to close the eyes by 2 pixels. Interestingly, if the 

EvoFIT is proportionally resized so that the face width matches the width of the original 

sketch, the shape and spacing between the eyes is almost a perfect match (Figure 80a). If the 

EvoFIT is then repositioned vertically to align the mouth, the lips and the shape of the jaw is 

also a very good match (Figure 80b). Notice too that the distance between the mouth and the 

jaw is also a good fit. In contrast, the length of the face in the EvoFIT is a little longer (10%), as 

is the nose (10%) and also the distance between the nose and mouth (15%). The nose is a little 

wider (35%) in the EvoFIT. The eyebrows are shorter and bushier in the EvoFIT and the left 

eyebrow (as we see it) is positioned slightly higher. Overall, the match is rather good. One does 

await a conviction, however, to explore the actual degree of similarity between the assailant 

and the EvoFIT71. 

                                                           
71 Analysis is also intended to include not just the similarities between the EvoFIT and the assailant, but 

also with the other faces selected by the victim during the photofit session.  
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Figure 80: Comparison of the Spatial Relationship between the Original Sketch and the EvoFIT: 
(a) Alignment with the Eyes (b) Alignment with the Mouth. The outline of the EvoFIT features 

is superimposed on the artist’s sketch. 
(a) Alignment with the Eyes 

 
 

(b) Alignment with the Mouth 

 
 

Verifying Anonymity 

Although a restricted area of the face space (i.e. the first 35 eigenvectors) was used to 

prevent the system from generating an exact replica of database images, checks were made to 

ensure that the EvoFIT was sufficiently dissimilar (see Chapter 6 for a discussion on this point). 

The first, and arguably the most influential, difference between the EvoFIT and the database 

images is the hair. All the database images have short hair (coming down at most as far as the 

top of the ears). None have the same shoulder length hair as represented in the EvoFIT.  

The other approach was to compute the error between the EvoFIT and each database 

image, first for the shape vectors and then for the texture information. For the texture 
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computation, just the internal features in their shape-free representation was considered. The 

Root-Mean-Square (RMS) error was used as it provides an average difference from the EvoFIT 

in pixels (rather than pixel-squared with MSE). These differences are plotted below in Figure 81 

for shape and Figure 82 for texture.  

For shape, the mean error was 6.8 pixels and the minimum error was 3.7 pixels (Face 

37). For texture, the mean error was 14.4 pixels and the minimum error was 8.8 pixels (Face 12). 

Hence, there are significant average internal feature intensity changes (texture) with significant 

average changes in head shape and facial configuration (shape) between the EvoFIT and the 

database images. Anonymity has therefore been maintained. 

Figure 81: RMS Error for Shape between the EvoFIT and Database Images 

 
 

Figure 82: RMS Error for Shape-Free Texture of the Internal Features between the EvoFIT and 
Database Images 
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General Discussion 

To summarize, the separation of shape from texture selection resulted in a good degree 

of satisfaction with the resulting photofits. As well as suggesting that photofits created from 

memory can yield the same rating scores as those created with continual reference to the target, 

Experiment 9 also highlighted the huge effect of the hair on rating scores. With further 

development, a full photofit system was created. This allowed the selection and modification of 

a wide range of hairstyles. The effects of noticeable changes to head pose were removed. Tools 

were added that enabled facial features to be “moved” both within the image space and also 

the holistic face space. Two more face palettes were added, attempting to provide a more 

“convergence-based” representation (adding best texture to the FSP and best shape to the FTP). 

 During the creation of the 30 famous faces in Experiment 10 and during the Field Test, 

subjective feedback from subjects was found to be positive regarding the addition of these new 

palettes and software tools (the Feature Shifter and the Facial Composite Tool). Of course, the 

precise effect of these enhancements does await further, more quantitative analysis. This could 

be carried out, ideally using recognition rate as a dependent measure, by the creation of 

photofits with and without the specified software tool or palette. Note that there are important 

issues surrounding the Feature Shifter and these are discussed in the following chapter. 

 

Comparing systems, celebrity EFITs were better recognized than the EvoFITs (17.1% vs 

9.6% CHR). Interestingly, the EFIT performance turns out to be very similar to that found by 

Davies et al. (2000). This indicates that naming rates of about 17% are likely with composites 

constructed from memory using this system. The data also suggests that EFIT does not exhibit 

a distinctness effect. Of course, one should investigate whether this result still holds when a 

witness’s memory component is removed. One sensible approach would be to use the stimuli 

and basic procedure from Experiment 11 to evaluate EFIT. 

It was hypothesized that age was a limiting factor resulting in a relatively poor 

recognition rate for EvoFIT. To determine whether this was correct, a follow-up study 

(Experiment 11) created EvoFITs of 10 targets with an average age of 27 years. To reduce 

witness memory effects, the study constructed EvoFITs with the target present and does not 

therefore constitute an ecologically valid method of construction. The recognition rate (CHR) 

was found to be 25.3% and there was a strong effect of distinctiveness, mirroring expectations 

in human recognition performance. This shows that EvoFIT has the potential to create 

recognizable composites. The data also compares favourably with Brace, Pike & Kemp (2000) 

who found a naming rate of 25% with their EFITs of famous faces using a presentation format 

involving composites also constructed with the target present. 

Clearly, Experiment 11 shows that EvoFIT is able to create recognizable composites. 

Despite EvoFITs being constructed more realistically in Experiment 9, from the memory of an 
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unfamiliar target, evaluation has not been carried out in this more realistic way for the full 

system (e.g. with improved hairstyle selection, new palettes and software tools) with composite 

naming. Before such a trial is conducted, the effectiveness of the EvoFIT system in a more 

realistic situation is unknown. A logical next step is to build composites from the memory of 

unfamiliar (famous) targets, with evaluation via spontaneous naming. 

Analysis was also carried out on the percentage likeness scores attributed at the end of a 

photofit session. No significant correlation was found between the ratings and the CHR for 

either system. In studies that have examined subjects’ confidence and their actual ability to 

recognize a target, mixed results have been found. As Thomson (1995) points out, this 

relationship “has ranged from negative, nonexistent, spurious, weak, to moderate” (page 140). 

It would seem that only in the more critical situation of identification parades, has a modest 

overall correlation between confidence and recognition been found (from a meta-analysis by 

Sporer, Penrod, Read, & Cutler, 1995).  

Conclusion 

 Although the overall identification rate of the celebrity EvoFITs constructed from 

memory was low, and less than the corresponding EFITs, target age was found to be a factor. 

When the targets were selected more appropriately, the ability to better represent distinctive 

targets indicates that the system is sensitive to facial salience. A subsequent Field Test with an 

age appropriate target is clearly the most forensically relevant: construction of an unfamiliar 

face from the memory of a crime. A follow-up study should now be conducted to explore 

performance of EvoFIT when used in this realistic way. 
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CChhaapptteerr  66::  FFuuttuurree  WWoorrkk  

eThe development and research to date indicates that further research is appropriate for EvoFIT. 

This chapter details the areas of research and development considered necessary to further the approach. 

It is argued that important work should be directed at the evaluation of EvoFITs constructed via more 

appropriately aged targets from memory and the assurance that these images are sufficiently dissimilar 

to the faces in the database. Research is also required to confirm database size/composition and the effect 

(if any) of photofit construction following a verbal description. Proposed developments are also discussed 

that include a different presentation format for the Feature Shifter utility (a parallel interface) and the 

ability to more rapidly modify facial textures (such as eye colour). Other main developments include the 

construction of a ¾ view database and the creation of EvoFITs from multiple witnesses. 

Summary of Previous Work 

The Face Evolver has completed many cycles of development in this thesis. The initial 

design (Mark I Face Evolver) modelled the gross shading and pixel intensity changes (texture) 

to a face and found a significant decrease in error scores (MSE) with increasing generation. The 

configural changes between facial features normally found in human faces were then added 

along with external features, especially the hair, in the Mark II system. A significant 

improvement in the quality of the images generated (obtained by user ratings) was also found 

with increasing generation and population size, though a decrement was observed when 

targets were evolved that were obtained external to the face model (famous faces). A series of 

simulations provided a set of more appropriate parameter settings as well as techniques 

believed to facilitate faster photofit convergence (i.e. the separate selection of shape and 

texture, and coefficient pruning). Six more facial representations (palettes) were then added to 

further separate the selection of shape and texture; a tool was devised to “move” facial features 

on request; and the ability to select large repertoires of hairstyles (and modify them in standard 

photographic editing packages) enabled the EvoFIT system to be created. The evaluation of this 

final software version resulted in a spontaneous naming rate of 9.6% for famous faces 

constructed from memory. This low level of performance was believed to reside in the targets 

being beyond the age capability of the database. A follow-up study revealed that system 

performance could be considerably higher if appropriately aged targets are used, though this 

evaluation was not conducted from the witness’ memory and therefore does not constitute a 

realistic scenario.  

Clearly, significant research is required to evaluate EvoFIT before it can be claimed to 

perform well in a forensically similar situation and a product is made commercially available. 

There are three main areas believed necessary: the evaluation of young male composites 

constructed from memory, the appropriateness of the face model and issues surrounding the 
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verbal description and Feature Shifter. These are discussed in the following sections together 

with additional developments likely to improve performance. 

Evolution from Memory 

The last experiment of this thesis (Experiment 11) demonstrated that the EvoFIT 

system was capable of creating more recognizable photofits when the target age was more 

appropriate. Another finding was that EvoFITs could convey facial distinctiveness. This is a 

nice result as it is known that distinctive faces are better recognized (e.g. Shapiro & Penrod, 

1986). Insensitivity to distinctive faces would indicate a deficiency in either the process used to 

create a photofit or in the system itself. Derek Carson’s study finds no evidence that the EFIT 

system is able to convey facial distinctiveness when composites are created from memory. 

Sadly, no data is available to determine whether this deficit lies in the EFIT system or in the 

mode of construction (i.e. composite construction from memory). Nevertheless, a follow-up 

experiment is considered essential to ascertain the overall level of system performance (and 

also the effect of distinctiveness) using age appropriate photofits constructed with the EvoFIT 

system from memory. As data is available with constructions made with the target visible 

(Experiment 11), providing baseline data, this notion could initially be investigated by 

repeating this experiment with constructions made from memory (as in Experiment 10). 

An associated issue when continuing to evaluate the EvoFIT system refers to the use of 

unfamiliar rather than familiar (or famous) faces. This is likely to be an important issue since 

composites are normally created of individuals who are not known to a witness. There is 

considerable research demonstrating that familiar and unfamiliar face perception is very 

different (Bruce, 1988; Ellis, Shepherd & Davies, 1979; Hancock, Bruce & Burton, 2000; and 

Kemp, Towell & Pike, 1997). The consequence of a more fragile facial representation in the 

realistic (unfamiliar) mode of construction is a poorer quality composite. One would expect 

therefore to find a decrement in EvoFIT performance when switching to unfamiliar targets.  

Davies et al. (2000) did not find such a difference and this may be due to the insensitivity of the 

EFIT system when constructions are made in a “forensically friendly format” (i.e. constructions 

carried out from memory). 

This evaluation could be achieved by creating EvoFITs in a location where target 

familiarity can be manipulated. Such an experiment could be carried out with relative ease 

between universities or university departments (e.g. Davies, van der Willik & Morrison, 2000; 

Bruce, 1982; and Bruce, 1986).  
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Face Model Issues 

Representation 

Research is also considered necessary for the face model itself. Even with the enlarged 

model, built from 72 faces, it is still unclear whether this model is sufficient in number and/or 

representation to be able to generate all young, male Caucasian faces with an acceptable 

likeness. One method to guard against this possibility was the “free morph” mode of the 

Feature Shifter, allowing facial features to be moved independently of the face shape model. 

However, it is not clear at this time when and where a free morph should be applied.  

Arguably, the easiest method to establish a suitable model size and composition is by 

simulation. This could be achieved by assembling a relatively large number of further target 

faces. This is perhaps best achieved using the Home Office collection (i.e. the image repository 

from which the EvoFIT face models were constructed), as lighting and pose have been 

controlled in the same way as the other database images. A “best fit” analysis on this “test set” 

could then be carried out with databases of increasing size and membership, indicating if there 

are there any faces which are relatively more important. Although best fit analyses have been 

carried out with completed databases (e.g. Blanz & Vetter, 1999; Craw & Cameron, 1991; and 

Troje & Vetter, 1996), no formal analysis of the type suggested here is known.  

An approach based on Troje & Vetter (1996) shows promise however. They have 

adopted a “leave-one-out” analysis such that each face is systematically removed from the 

database, a PCA rebuilt and the error computed in reconstructing the “omitted image”. They 

were able to demonstrate that a “testing error” as low as 6% for shape and 12% for texture with 

their database size of 100 faces. Such an approach may be valuable in determining database 

membership. 

Colour 

An associated issue is database image mode: should colour be used? Of course, a face 

model was constructed in monochrome primarily due to the large increase in model size that 

would have resulted if hue information had been included. As mentioned in Chapter 2, colour 

information is not necessary for face perception (e.g. Davies & Thasen, 2000; and Kemp, Pike, 

White & Musselman, 1996). Further, research does suggest that in matching tasks carried out 

from memory, colour stimuli can actually result in an increase in false alarms, while leaving the 

hit rate unaltered (Davies & Thasen, 2000). The overall effect appears to increase a subject’s 

confidence in selecting a wrong person from a line-up. While this may seem undesirable 

generally, it may be of value in the EvoFIT system. If the effect of colour is to increase the 

chance of similar looking foils being chosen, then the task of selecting population faces may 

also be increased. This benefit may of course be offset by a decrement in the ability to 
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ultimately select a population face as the photofit. Note also the overhead of locating a 

relatively large collection of full-colour hairstyles. Nevertheless, there appears to be sufficient 

justification in developing and evaluating a colour system.  

¾ View 

Another development likely to be of value is a ¾ view database. As discussed in 

Chapter 2, this notion is based on significant research indicating a recognition benefit of a ¾ 

view compared against profile and full-face views (e.g. O'Toole, Edelman & Buelthoff, 1998; 

Patterson & Baddedley, 1977; and Shapiro & Penrod, 1986). One reason for this is that a ¾ pose 

better represents the depth of facial features, especially the nose (but see Bruce, Valentine & 

Baddeley (1987) for a discussion on this point).  

Significant work has already been conducted using PCA models based on 3D shape 

information rather than shape derived from “flat” photographs (sometimes known as 2D 

shape). The result is a full 3D representation of the head (e.g. Blanz & Vetter, 1999; and Troje & 

Vetter, 1996). However, there are simpler methods though available in the public domain for 

creating different views. For example, Lanitis & Cootes (1997) provide up to a 45 degree facial 

rotation from an algorithm trained on a frontal pose. For an even greater rotation, Cootes, 

Walker & Taylor (2000) provide an algorithm trained on just 5 pose angles. Simply, these 

algorithms could be used to create a ¾ view as a post-processing stage following the generation 

of the population faces. One problem with this method is how to modify the profile 

information. For example, what should be done to correct a nose whose aspect is too 

prominent? 

Another approach currently being considered in the Psychology Department is to 

employ a commercially available software package to fuse frontal and profile views into a 

desired pose (3DMeNow by BioVirtual, 2001). The texture and shape information would be 

derived from PCA models of simultaneous front and profile views. This idea has the 

immediate advantage that the full-frontal information (for shape and texture) would have 

already been prepared and only profile information need be pre-processed (by the alignment of 

coordinate points and a shape normalization of the image texture). This notion is more than 

just a speculative idea as development potentially using the BioVirtual software is due to start 

this year (2001) as part of the current CRIME-VUs72 research project in the Psychology 

Department, Stirling University. 

Caution should be applied when evaluating the ¾ view database by the construction of 

EvoFITs of unfamiliar targets. The use of full-face target photographs may now not be 

appropriate due to an inherent change in pose; the adverse affect of pose on unfamiliar face 

processing is well documented (e.g. Bruce, 1982; Davies & Milne, 1982; and Hill & Bruce, 1996). 

                                                           
72 An abbreviation for Combined Recall Images from Multiple Experts and viewpoints (VU). 
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This suggests that ¾ view stimuli should be used anyway, although multiple views, live video 

or – best of all – a staged event may represent more ecologically valid conditions. Certainly the 

mode of target presentation is an important factor in face recognition (Davies, 1983b; Shapiro & 

Penrod, 1986; and Shepherd, Ellis & Davies, 1982). 

Additional Databases 

In addition to composition and mode, it may be considered of value, with considerable 

effort, to add further databases. It was suggested in Experiment 10 that the face model was a 

limiting factor in the recognition of the famous faces. This also suggeststhat the addition of an 

older database may be of value. One might also consider providing a database for female and 

non-Caucasian faces. Although databases from traditional systems tend to be separate, it is not 

clear at this stage whether databases for the EvoFIT system should be mixed gender and/or 

race. Of course, Troje & Vetter (1996) and Blanz & Vetter (1999) have developed a mixed 

gender database with apparent success; and Baker & Seltzer (1998) has performed a mugshot 

search on a large database with varying age, gender and race with considerable success. The 

question requiring address is what might be gained with mixed composition corpora? One 

immediate advantage is that a mixed race model would provide representation for persons 

whose parents were of different ethnic backgrounds. Though, it may be very undesirable in a 

photofit setting for mixed race faces to be generated when the target background has been 

established. A similar argument can be made for gender and age. Therefore, unless sufficient 

control is ensured over image generation, mixed composition databases are undesirable (unless 

a case specifically requires it). 

Anonymity  

In contrast to composition, development is also necessary to prevent the original faces 

in the database from being evolved. The maintenance of anonymity has been observed right 

back to the early development of the Photofit kit by sampling features from faces rather than 

the inclusion of all features. In Penry’s own words, “From one picture I ‘borrowed’ the nose, 

from another the eyes and from others, the mouth, chin or forehead/hair” (Penry, 1974, page 

4).  

Clearly, it is not possible to adopt this strategy with EvoFIT as the representation is 

holistic and necessarily requires not just the complete set of internal facial features but 

information about head shape as well. An equivalent safeguard though would be to prevent 

evolution to the database’s shape and texture coefficients. The problem with this approach is 

that floating-point values are used for coefficients and therefore one may create an 

exceptionally good likeness to a database image with slightly different coefficient values. One 

solution might be to prevent images from being generated from within a fixed distance of the 



177 

originals; creating a so-called “hypersphere of protection” around the database images in face 

space. Alternatively, that the population faces are generated from a truncated face model may 

itself provide a sufficiently different representation to the original images so as to render 

further attempts unnecessary. This is based on an observation by Sirovich & Kirby (1987) that 

truncating the Karhunen-Loeve (LV) series results in a measurable error when constructing the 

original face data.  

Recall that an investigation was carried out when the EvoFIT system underwent the 

current field test. In addition to large differences in hair, it was also found that the database 

images exhibited very different shapes and textures to the resultant EvoFIT. Of course, it is 

preferable to apply all necessary checks during the composition stage, rather than thereafter, 

and further work is therefore required in this area. 

Non-Holistic Bias 

Verbal Description 

A further avenue of investigation concerns the effect of eliciting a verbal description 

from a witness. As mentioned previously, the description is required prior to building a 

composite with the traditional systems. It enables a photofit operator to select an initial set of 

facial features. Further verbalizations follow that describe what is believed to be wrong with 

the composite. Clearly, neither of these two descriptive components is fundamental to the 

EvoFIT system. Indeed, it may the case that the production of a description reduces the ability 

of a witness to correctly recognize when a set of optimal features has been found. This notion is 

borne out of research suggesting that verbalization of a target, non-target or another non-face 

stimuli results in a significant decrement in face recognition (e.g. Dodson, Johnson & Schooler, 

1997; Fallshore & Schooler, 1995; Meissner & Brigham, 2001; Schooler & Engstler-Schooler, 

1990; Schooler, Ohlsson & Brooks, 1993; and Westerman & Larsen, 1997); the interference to 

face perception caused by verbalization has been appropriately termed “verbal 

overshadowing” (Schooler & Engstler-Schooler, 1990). The research also suggests that the 

phenomenon is less likely to occur if a delay is inserted prior to a recognition task (Messner & 

Brigham, 2001). For example, Finger & Pezdek (1999) found alleviation from overshadowning 

after only 24 minutes delay.  . There is also evidence that the conveyance of the verbal 

description itself results in composites that are less recognizable by others (Brace, Pike & 

Kemp, 2000). 

A reason for an adverse effect on recognition is that verbalization results in a reliance 

on featural information, such as shape of the eyebrows and chin (e.g. Dodson, Johnson & 

Schooler, 1997). It may be the case therefore, that the verbalization of a face may be detrimental 

when used in conjunction with the EvoFIT system. It is the case then that - with the exception 
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of the hair, gender, age and race - no verbal description is necessary in this system (though, as 

mentioned earlier, with a mixed gender, age and race database, even these descriptors may be 

redundant). It would appear highly prudent therefore to compare EvoFITs constructed by 

participants who have generated a verbal description and by those that have not (and maybe 

also by inserting a significant delay after verbalization or encouraging a faster selection of 

faces). A further experiment that is likely to reinforce the holistic nature of the EvoFIT 

approach would be to manipulate the encoding instructions. Indeed, one would expect 

preferential results from subjects that attempted a facial coding via a trait attribution (holistic) 

rather then by a more physical facial examination (feature-based); an effect opposite to that 

observed with standard photofit systems (e.g. Wells & Hryciw, 1984; and Laughery, Duval & 

Wogalter, 1986). 

Feature Shifter 

A related, but important question arises as to the efficacy of the tool that manipulates 

the relationship between facial features: the Feature Shifter. The first concern is whether its use 

does result in a facial configuration that is perceptually closer to the target. There is some 

supporting anecdotal evidence for its utility from the field test described in Chapter 5. Recall 

that the use of this tool resulted in a rather good match for eye shape and inter-ocular spacing 

(comparing the EvoFIT with the original artist’s sketch). However, a more formal analysis 

could be carried out by extracting those faces in Experiment 10 before and after the tool had 

been used and asking a different group of subjects to chose which ones were more like the 

celebrity face. If the Feature Shifter were working, one would expect the manipulated images 

to be perceptually closer than the unaltered ones. 

The other major issue with the Feature Shifter is that it may bias the cognitive system 

towards non-holistic face processing by engaging in a feature-based activity. There is good 

evidence to suggest that recognition deteriorates following a non trait-based activity prior to 

recognition (e.g. Berman & Cutler, 1998; Bower & Karlin, 1974; Dodson, Johnson & Schooler, 

1997; and Schooler & Engstler-Schooler, 1990). The consequence is that a witness’s ability to 

subsequently select population faces (and ultimately pick a final photofit) might be likewise 

adversely affected following the use of the Feature Shifter. One way to test for adverse affects 

would be to compare the pattern of selection made by subjects who had used the utility and 

those that had not. It is already known that subjects overlap at least 90% of the time in their 

selections73 and if the utility were detrimental, this figure would be expected to reduce. Were it 

                                                           
73 In a small pilot study, 15 subjects were shown the same set of 16 randomly generated faces together 

with a target face. They were instructed to select the six faces that were most similar to the target. It was 

found that the top 6 faces selected most often accounted for over 90% of the total selections (82/90 = 

91.1%). 
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found to be detrimental to performance, restorative measures could be considered that are 

known to facilitate recognition, such as the re-instatement of context and visual rehearsal (e.g. 

Shapiro & Penrod, 1986; and Sporer, 1988). 

Given the danger of encouraging feature-based facial processing, it may be better to 

avoid using the Feature Shifter in the mode prescribed. In fact, its use parallels the process by 

which composites are created in the main electronic systems (e.g. Mac-a-mug, PROfit, and 

EFIT). A better interface would be based more on the recognition ability of a witness; 

achievable of course by a parallel interface – like the window used to display population faces 

(i.e. the Face Palette). It is imagined that such an interface would display a range of possible 

configural changes to a given feature for selection. For example, if a change to the inter-ocular 

spacing was required, a number of examples could be displayed simultaneously with varying 

horizontal spacing of the eyes. 

A potential problem with this method is in determining the amount of change to apply 

between successive examples displayed on this parallel interface. The problem is that if the 

presented manipulations are too small, a witness may not only find the task irritating but be 

needlessly exposed to facial information. Now, it is well-established that different facial 

features, or groups of facial features, have different salience for unfamiliar faces (e.g. Ellis, 

Shepherd & Davies 1979; Matthews, 1978, Walker-Smith, 1978; and Young, Hay, McWeeny, 

Flude & Ellis, 1985). Interestingly, Haig (1984) has determined the manipulations necessary to 

an unfamiliar face before changes become noticeable (i.e. the Just Noticeable Difference or JND) 

in a wide range of facial features. This should enable calibration of facial feature manipulation 

to be carried out. Note however that there is evidence that the granularity of feature changes 

proposed by Haig may not be entirely correct, since a significant shift in performance has been 

observed with configural changes to the hair and eyes for newly learned faces (Honeyman, 

unpublished data; and O’Donnell & Bruce, in press). 

Anchored Face Similarity Scale 

A further associated issue concerning non-holistic bias is the Anchored Face Similarity 

Scale, or AFSS, used to evaluate the quality of a composite. Although there is reason to believe 

that the scale is consistent between subjects (Experiment 3), it could be argued that scale 

categories “few similarities”, “some similarities” and “many similarities” result in a featural 

bias due to the reference made to numeric quantities (i.e. “few”, “some” and “many”). Its use 

may consequently, like the Feature Shifter, result in a worse ability to select population faces. 

To date, there is no anecdotal evidence indicating that EvoFIT subjects were worse as a result 

of the AFSS (as observed by the EvoFIT operator). Clearly, it is the case that good performance 

can be achieved in some subjects even though the AFSS is used: the EvoFITs of Nicholas 

Lyndhurst anf Mick Jagger (Experiment 10) are examples where at least 40% recognition can be 
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achieved. Nevertheless, the scale should either not be used with EvoFIT or formally evaluated. 

For the latter, one could explore whether an individual’s ability to select faces would be 

aversely affected following the use of the scale. One could, for instance, record selections made 

by subjects for the same set of population faces (given the same target) before and after AFSS 

use. If there was a similar overlap in selections with and without AFSS rating, it is unlikely that 

the scale would be adversely affecting performance. 

Holistic Theory 

Central to this thesis has been the notion that faces are perceived holistically and the 

ability to select similar looking faces [to a target] is preserved if faces are not segmented into 

their facial features. A sensible question then is whether the EvoFIT approach provides 

evidence that we perceive faces holistically? Irrespective of how well EvoFIT might or might 

not perform, the answer to this question is unclear. It is clear though that the basic process 

driving EvoFIT, the selection of faces, is a holistic operation: population faces do not require to 

be explicitly segmented into features for selection. There is also no need to describe why a 

population face is (or is not) preferable [to the target], a process that may bias non-holistic 

processing. Unfortunately, other activities involved in composite construction may result in a 

non-holistic bias, as already mentioned above: the production of a verbal description, the use of 

the Feature Shifter and rating with the AFSS. Clearly, additional research is necessary to 

establish the effect of these potential confounds before informative comments can be made 

regarding the holistic nature of EvoFIT. 

Another potentially useful avenue of research is the effect of target encoding on 

EvoFIT performance. Recall that Wells & Hryciw (1984) found that instructions suggesting a 

feature encoding led to better Identikits than a holistic encoding. This would be a valuable 

experiment applied to the EvoFIT system. Were EvoFIT to be truly capitalizing on the holistic 

nature of face processing, one would expect a reverse trend, with better EvoFITs produced 

following a holistic type of encoding. If this were to be the case, such information might also be 

a useful in a criminal investigation (especially if performance was markedly better than current 

composite systems under similar conditions). Were a witness to be demonstrating a holistic 

bias in their memory of an assailant - perhaps referring to the perpetrator with personality 

traits – an EvoFIT might be an appropriate composite tool. 

Enhancing Performance Still Further  

Simulations 

Recall that in Chapter 4, simulations were carried out with the randomly generated 

targets. This was done for convenience. It is assumed that the results are applicable to all faces 
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evolved with the system. Nevertheless, simulations with externally-derived targets should be 

run; these could be drawn from the “test set” mentioned earlier. It is likely that system 

performance would be noticeably worse anyway with faces not in the database - as Troje & 

Vetter (1996) have found. 

A different simulation approach is proposed however. It was noted in Chapter 4 that 

there is a tendency for parameters in an evolutionary system to interact with each other; 

running a set of simulations that evolve a single parameter may not therefore give the best 

indication of settings. A much better solution would be to evolve the parameters themselves! 

This can be achieved by breeding solutions together, where each solution is a combination of 

evolutionary parameters. Evolution would continue until a superior set of parameters was 

produced. Such an approach has already been found to be of value in Caldwell & Johnston’s 

(1991) composite approach with a “meta-level GA” that optimized the mutation and cross-over 

rates. 

A further modification to the simulation process would also allow parameters to 

change their settings during evolution. It has been observed previously that a parameter 

setting may only be valuable for a limited number of generations (e.g. refer to Figure 46, Figure 

56, and Figure 57). Allowing parameters to be “disabled” or otherwise changed might therefore 

increase the rate of convergence to a target.  

Feature Shifter 

Originally, the Feature Shifter was planned to manipulate both the relational and 

featural aspects of a face. Of course, the former was achieved, though a lack of time prevented 

a similar process to be carried out for the texture model. It was planned that manipulations in 

the texture face space would enable simple processes like lightening the shade of the eyebrows. 

In more detail, this would involve increasing the intensity of the pixels that comprise the 

eyebrows and then performing a best fit in the texture model (rather like moving facial features 

in the shape model). Up to now, if a user has required not just a lightening, but also a 

darkening of any feature, this has had to be carried out by modifying an overlay mask loaded 

in Adobe Photoshop. In similarity with the shape model, this was deemed necessary to account 

for any faces that were not captured by the statistics of the face model. For example, it is 

unlikely that a statistical representation would be available for David Bowie (Experiment 10) 

since the colour of his irises are unusually different from each other.  

An associated system development might also include the pre-specification of feature 

intensities. For example, it is frequently the case that people with light coloured hair also have 

light coloured eyebrows. Therefore a witness may have provided such information as part of a 

verbal description (or report this information while viewing a population). Being able to 

automatically bias the population in this way might therefore prove valuable. Effects such as 
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these could be achieved in a similar way that minor misalignments in pose are corrected: by 

repeatedly manipulating a feature and perform best fit in the face model until a desired setting 

is reached. 

Eyes and Hair 

A very noticeable area of development concerns the eyes. The problem here is that the 

morphing necessary to create the variations in spatial relations normally seen in faces has the 

consequence of distorting the iris of the eye. An example can be seen in Figure 83 where the 

normally round irises have become inappropriately elongated in the horizontal direction. 

Although to date, this has been overcome by adjustment in Adobe Photoshop, such an 

approach is in general impractical.  

Figure 83: Imperfections in the Generated Images: distortions to the Irises caused by Morphing 
and the Problem of “Floating” hair 

 
 

One of the reasons for the distortion lies in the coarse scale of the shape model. When 

the shape model was first constructed, it was believed that integers would be sufficient to 

specify coordinates. This assumption appears to be largely correct for all facial features except 

the eyes; it was found that a single pixel movement was often sufficient to “correct” for a 

distorted iris. This suggests that a shape model comprising of floating-point values should be 

constructed. However, this is unlikely to provide a complete solution since not all types of eye 
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will be readily represented. For example, what should be done when the iris is positioned high 

in the eye socket? As the picture of Robbie Williams (Figure 31) illustrates, there is sclera now 

visible between the bottom of the iris and the lower eyelash. Similar problems can be seen with 

a “lazy” eye or an artificial eye, where the eyes tend not to move together. Effects such as these 

may be rather difficult to achieve using the current face model. 

A preferable solution would be to treat the eyes as an independent feature, rather like 

the hair. A likely method of implementing such an approach would be to automatically select 

exemplars from a repository of eyes (e.g. imported from PROfit). The first implementation 

could randomly allocate a different set of eyes to each population face. When a good match had 

been identified, the relevant set of eyes could be fixed and evolution continued with that 

choice. Note that Caldwell & Johnston (1991) demonstrate an advantage for “freezing” facial 

features in this way in an evolutionary context. A later software version might arrange the eyes 

to fit along a number of psychological dimensions, enabling similar sets of eyes to be displayed 

on request. For example, one dimension may be eye colour and would enable only light 

coloured eyes to be presented. Other dimensions could be derived via mathematical scaling 

techniques, such as multidimensional scaling (Kruskal, 1964; and Kruskal & Wish, 1978), 

known to be successful in categorizing face stimuli (e.g. Johnston, Milne, Williams & Hosie, 

1997; Shepherd, Ellis & Davies, 1977; Valentine, 1991; and Vokey & Read, 1992) 

Further development could also be valuable to correct hairstyles that appear unnatural 

when fitted to the head; the effect is best described as “floating” hair, an example of which can 

be seen in Figure 83. The problem has been resolved to date by the manual blending of the 

outline of the hair over the forehead in Photoshop. Theoretically, this process can be automated 

when an image is imported from the external photofit system (e.g. PROfit). This might involve 

the creation of a “blending mask” that enables fading of pixels between the selected hairstyle 

and the external features, rather like the mask used to fuse the internal and external features 

when currently generating a face (Figure 18). The blending mask could be created from a 

simple algorithm that searched for the outline of the hair. 

Multiple Witnesses 

One method of further enhancing performance could arise through the use of multiple 

witnesses. It is sometimes the case that there are multiple witness to a crime. When this occurs, 

the police may assign different tasks to different witnesses: one witness may create a 

composite, another may select photographs from a mugshot album, and a third may be used to 

chose a suspect from a line-up. It is clear that although the assigned tasks are rather different, 

information from multiple witnesses could be valuable in creating a photofit (e.g. Bruce, Ness, 

Hancock, Newman & Rarity, submitted; and McNeil, Wray, Hibler, Foster, Rhyne & Thibault, 

1987). McNeil et al. made a “modal” composite from the highest selected facial features used in 
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32 Identikits. They found that modal composites were rated significantly higher than the 

constituent Identikits. In contrast, Bruce, Ness, Hancock, Newman & Rarity found that 

simultaneously presenting composites from 4 people resulted in a 16% increase in 

identification compared with using a single composite for recognition. 

The proposed study would engage a number of subjects evolving a common target 

face. All subjects would see the same sets of faces but their selections would be used to weight 

the faces that are selected as parents (i.e. to modulate the fitness function). As mentioned 

previously, there is evidence of considerable overlap between the selections made by 

individuals. This said, the most frequently selected “best” face in that pilot study was only 

chosen about half the time (53%) and suggests that input from multiple witnesses could be 

valuable in potentially tuning the fitness value of the selected faces. Like the creation of a ¾ 

view database mentioned above, this research is also planned in the next 2 years as part of the 

CRIME-VU72 project. 

 

Final Comments 

Further research and development is clearly necessary before a photofit product 

becomes commercially available. Arguably, the most pressing area of research concerns the 

creation of EvoFITs from memory. Regarding development, the most important issue concerns 

the anonymity of the images that form the database. The resolution of this issue is viewed as a 

prerequisite for product adoption in forensic circles. A related issue of course is how the 

system would perform in conjunction with existing operating procedures such as the eliciting 

of a verbal description. Then there is the issue concerning the utility of colour, a multiple 

witness mode of construction and the use of ¾ view representations. In addition, one hopes to 

be able to examine EvoFIT performance should a conviction result from Operation Mallard. 

Such a case study may shed light into performance tweaks that could lead to better 

performance in future. Of course, one would also welcome the opportunity to apply the system 

to other criminal cases with the same rationale in mind. 

Much of the aforementioned work concerning the EvoFIT system is planned to take 

place over the next 2 years by myself and a further research assistant. To date, it has been 

shown that the general holistic/evolutionary approach is promising but continued work 

should be performed before any adoption in forensic circles. This is believed to be important to 

avoid a product being released and then found to be of limited value later, as has been the fate 

of photofit systems to date. 
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GGlloossssaarryy  ooff  AAbbbbrreevviiaattiioonnss  

ACPO(S) Association of Chief Police Officers (Scotland) 

AFSS  Anchored Face Similarity Scale 

CADC  Computer-Aided Design Centre  

CHR  Conditional Hit Rate 

CI  Cognitive Interview 

CMR  Correlation between MSE and Rating scores 

DF  Degrees of Freedom 

EFI   External Feature Image 

EFIT  Electronic Facial Identification Technique 

EvoFIT  A Holistic, Evolutionary Facial Imaging System 

FNP   Facial Normal Palette 

FSP  Facial Shape Palette 

FSPBT   Facial Shape Palette with the Best Texture (from the previous 

generation) 

FTP  Facial Texture Palette 

FTPBS   Facial Texture Palette with the Best Shape (from the previous 

generation) 

GA(s)  Genetic Algorithm(s) 

IFI   Internal Feature Image 

JND   Just Noticeable Difference 

MAMP  Mac-a-mug Pro 

MDSS   Multidimensional Similarity Space 

MSE  Mean Square Error 

PC(s)   Principle Component(s) 

PCA   Principal Components Analysis 

RMS  Root Mean Square (error measure) 

SD  Standard Deviation 
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Appendix A: Mean Square Error Measures of Facial Images 

Mean Square Error (MSE) is a measure of the average error between two vectors (or 

matrices). It is bounded by zero at the lower limit, occurring when the two vectors are equal. 

The upper limit is specified by the square of the maximum possible difference along any 

dimension between the vectors. For the 8-bit grey scale images used in this study, each pixel 

has a range of 0 to 255, resulting in an upper limit of (0-255)2 or 65025. Note that this limit is 

with one image pure white and the other, pure black. For facial images, this does not take into 

account that generated images will be neither black nor white and contain considerable 

structure.  

An attempt was made to gain an estimate of the upper limit for MSE in the Pilot Study 

(Chapter 2). This was achieved by computing the MSE scores between the five targets and all 

the population faces generated in Chapter 2. The distribution of scores is shown below – 

Figure 84: Distribution of MSE Scores for the Pilot System 

0

200

400

600

800

1000

1200

1400

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

MSE (between Target and the corresponding population 
faces)

O
bs

er
va

tio
ns

 

 

It can be seen that scores are roughly normally distributed (though a slight skew to the 

left is apparent). The mean is 308.6 (SD 106.5). Importantly, the graph indicates that the 

maximum MSE found is in the 750 category; this observation had a value of 735.5 and for this 

data set indicates the limit for MSE in the Pilot. 

In general, there is concern by the author regarding the utility of the MSE as a measure 

of performance. At the lower end, this appears to be appropriate (since it produces a test for 

identicality) but the question arises as to the relationship between the MSE and the perceptual 

similarity of a face to the target. In a small study, attempting to address this issue, 6 faces were 
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selected from a pool of a 100 randomly generated images (also taken from the Pilot Study) such 

that images were spaced apart by an MSE of approximately 50 pixels74. 20 Subjects were told to 

rank order the images into similarity with the target face. A correlation of the average ranking 

resulted in a near perfect relationship (r=0.91). This indicates that MSE can be considered a 

sensible measure of facial similarity. 

                                                           
74 The MSE scores from the given target were 99, 152,213, 256, 304 355 and 399. 
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Appendix B: Famous Face Stimuli Used for Experiment 10 
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Appendix C: EFIT Description Sheet Used for Experiment 10 
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E-Fit Description 

EiFit No.:- 

CF No.  :- 

Date :- 

Time :- 

OIC :- 

 

Witness Details:- 

 

 

General Description and Events;- 

 

 

Face in Detail 

 

Shape 

 

Hair 

 

Eyebrows 

 

Eyes 

 

Nose 

 

Mouth 

 

Ears 

 

%Likeness 

 

 

Witness Signature      E-Fit Operator:- 
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Appendix D: Composites Created in Experiment 10 

The following are the photofits of famous faces created in Experiment 10 from (a) the EFIT 

system and (b) the EvoFIT system. 

(a) Composites Created by EFIT 

Celebrity EFIT 

 

 

Terry Wogan 

 
 

 

Bruce Willis 

 
 

 

Bob Geldof 

 

 



207 

 

 

Tony Blair 

 

 
 

 

David Bowie 

 

 
 

 

Jimmy Nail 

 

 
 

 

Jim Carrey 
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Nicholas Lyndhurst 

 

 
 

 

Woody Allen 

 

 
 

 

John Travolta 

 

 
 

 

Tom Hanks 
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Mel Gibson 

 

 
 

 

Jonathan Ross 

 

 
 

 

Al Pacino 

 

 
 

 

Richard Gere 
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Robert De Nero 

 

 
 

 

Tom Cruise 

 

 
 

 

Cliff Richard 

 

 
 

 

Dale Winton 
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Michael Douglas 

 

 
 

 

Mick Jagger 

 

 
 

 

Robin Williams 

 

 
 

 

Ronan Keating 
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Michael Owen 

 

 
 

 

Danny DeVito 

 

 
 

 

George Clooney 

 

 
 

 

Graham Norton 
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Brad Pitt 

 

 
 

 

Michael Barrymore 

 
 

 

 

Michael Caine 
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(b) Composites Created by EvoFIT 

Celebrity EvoFIT 

 

 

Terry Wogan 

 
 

Bruce Willis 

 
 

Bob Geldof 

 

 
 

Tony Blair 
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David Bowie 

 

 
 

Jimmy Nail 

 

 
 

Jim Carrey 

 

 
 

Nicholas Lyndhurst 
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Woody Allen 

 

 
 

John Travolta 

 

 
 

Tom Hanks 

 

 
 

Mel Gibson 

 

 



217 

 

Jonathan Ross 

 

 
 

Al Pacino 

 

 
 

Richard Gere 

 

 
 

Robert De Nero 
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Tom Cruise 

 

 
 

Cliff Richard 

 

 
 

Dale Winton 

 

 
 

Michael Douglas 

 

 



219 

 

Mick Jagger 

 

 
 

Robin Williams 

 

 
 

Ronan Keating 

 

 
 

Michael Owen 

 

 



220 

 

Danny DeVito 

 

 
 

George Clooney 

 

 
 

Graham Norton 

 

 
 

Brad Pitt 
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Michael Barrymore 

 
 

 

Michael Caine 
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Appendix E: Targets used for Experiment 11  
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Appendix F: EvoFIT Operating Procedures for Experiment 11 
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Creating a Composite: A Quick Glance 

 

The recommended operating sequence to create a photofit 

with this system  is - 

 

1. Start PROfit and Photoshop 

2. Start a new photofit session (run the EvoFIT program then select 

Create … from the main menu) 

3. Selection of hairstyle (in PROfit) & modification (in Photoshop) 

4. Shape selection (at least 6 faces over at least 3 screens) 

5. Texture selection (at least 6 faces over at least 3 screens) 

6. Selection of best face 

7. Make Next Generation (to create offspring faces) 

8. Selection of Shapes, Textures and best face as before 

9. Modify best face in Feature Shifter (right-click on best face in 

Normal display mode) 

10. Make Next Generation (to create more offspring faces) 

11. Repeat from 8 until acceptable likeness achieved 

12. Select desired photofit and save to disk (Save As under the 

EvoFIT menu item) 

13. Exit (Save Session) 
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Creating a Composite: Detailed Notes 

 

First, start PROfit and Photoshop followed by the EvoFIT (via 

the desktop icons or from the Start menu in Windows).  

 
The Initial Process to Create a Composite 

 

In the EvoFIT package, begin a photofit session by selecting 

Create … from the maim menu item called EvoFIT (i.e. EvoFIT-

>Create ...).  This will display a screen called the Face Palette that 

shows the first 18 random face shapes. Note, the working folder for 

this photofit session is displayed in the title bar; for example - 

 
EvoFIT Face Palette -- Face Set 1: 1st Generation (C:\_ExptAF\Ss\0003\) [Shape Only -> Screen 

1/3] 

 

Begin by selecting a hairstyle from PROfit and modify it in 

Photoshop if necessary. Follow the procedures overleaf.  

 

The EvoFIT system automatically begins with the Shapes 

screen. This is reflected in the Face Palette's title bar - 

 
EvoFIT Face Palette -- Face Set 1: 1st Generation (C:\_ExptAF\Ss\0003\) [Shape Only -> Screen 

1/3] 

 

Select at least 6 face Shapes (by clicking on the best matches 

with the left-hand mouse button).  
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Select shapes from at least 3 screens of random facial shapes; 

more screens can be seen by selecting More Faces from the Face 

Palette's Display menu (i.e. Display->More Faces). The number of 

screens displayed is similarly shown in title bar - 

 
EvoFIT Face Palette -- Face Set 1: 1st Generation (C:\_ExptAF\Ss\0003\) [Shape Only -> Screen 

1/3] 

 

Switch to the Textures screen (Display->Type->Textures). Note 

that the title bar changes to reflect that Textures are being displayed 

- 

 
EvoFIT Face Palette -- Face Set 1: 1st Generation (C:\_ExptAF\Ss\0003\) [Texture Only -> 

Screen 1/3] 

 

Select at least 6 face textures over at least 3 screens (via 

Display->More Faces as before). 

 

Switch to the Normal screen (Display->Type->Normal). Note 

that the title bar changes to reflect that both facial shapes and textures 

are being displayed now; for example - 

 
EvoFIT Face Palette -- Face Set 1: 1st Generation (C:\_ExptAF\Ss\0003\) [Normal] 

 

On the Normal view, faces with a blue border were selected for 

Shape, faces with a green border were selected for Texture and those 

faces with a red border were selected for both Shape and Texture. The 

faces with a red border should be better than the ones with a blue or 

green border.  
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First, select any of the faces with a blue or green border that 

are as good or better than the ones with a red border (by left-

clicking with the mouse). 

 

Next, select the face that is best overall (by right-clicking with 

the mouse and selecting Best Face from the pop-up menu). 
The First Set of Offspring Faces 

 

Press the Make Next Generation button (or Evolve->Next 

Generation) to generate the first set of Offspring faces. Use the rating 

scale (overleaf) to record the quality of the photofit when requested. 

 

The offspring faces will be displayed as facial shapes initially 

(as for the first set of faces). These new faces are based on your 

previous Shape and Texture selections. Once again, select at least 6 

facial shapes over at least 3 screens. One thing different for the 

Offspring Shapes is the shapes are shown with the texture from the 

best face selected in the previous generation (the very first 

generation of shapes used a smooth or averaged texture). This is 

aimed at speeding up the evolution process. It is sometimes the case 

that a particularly good face overall is produced via the use of the 

best texture. So, if you consider that any of these faces are as good 

(or preferably) better than the previous best face, right-click on the 

face and then select Make Normal from the pop-up menu. This will 

ensure that this face is present when you later display the 

population of faces in Normal view. 
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Once at least 6 shapes have been selected, change to the 

Textures Screen and select at least 6 facial textures over at least 3 

screens (as before). In a similar way to the display of Offspring 

Shapes, textures are displayed with a shape from the best face. Once 

again, use the right-mouse button to save a particularly good face 

(for display in the Normal view). 

 

As before, next switch to the Normal view and select any faces 

with a blue (Shape) or green (Texture) border that can be 

considered as good or better that the faces with a red (Shape & 

Texture) border. Select the best face with the right mouse button. 

 

If desired, the best face can be improved using the Feature 

Shifter. Follow the procedure overleaf. When finished, you will 

return to the Normal display with the selected face replaced with 

your modifications (if you chose to save them). Remember, the 

hairstyle can be tweaked in Photoshop as well (in fact at any time); 

follow the procedure overleaf for that too. 

 

Create another generation of faces (press the Make Next 

Generation button or select Evolve->Next Generation from the menu). 

 

Continue the process of Selecting, improving and generating 

faces until an acceptable likeness is achieved. Follow the procedure 

overleaf to save this face to disk as the final EvoFIT. It is 
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recommended that about 4 complete generations be bred before 

finishing.  

 

Note also, that it is possible to return to and/or continue from  

a previous screen at any time during evolution; use Display-

>Previous Face Set and Display->next Face Set from the Face Palette 

menu. 

 

When finished, select EvoFIT->Exit (Save Session) from the Face 

Palette menu. Do NOT use EvoFIT->Cancel as your session will be 

over-written the next time an EvoFIT is created (see me if this 

accidentally happens). 
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Selection of a Hairstyle in the PROfit System 

 

Ensure that the PROfit system is running.  

 

Select Edit->Modify hair & Internal Features from the EvoFIT 

Face Palette's menu to enter the Modify Hair utility (for hairstyle 

selection and modification). Ensure the following is set (should be 

set by default) - 

• External Features is selected in the Edit group 

• PROfit is selected in the Editor group 

• Current Session is selected in the Source group 

 

Click the button marked: Load into Editor (from Source). This 

will copy the current session background (called ef.bmp) to the 

PROfit folder.  

 

Do the following in the PROfit system (refer to the PROfit 

(CD-FIT) manual for more details): Load the file ef.bmp into PROfit 

as a face in Feature Editing. When the Picture Definition window 

appears (to enable the user to select the edges of a feature to 

import), ensure that the selection box fits just outside the left and 

right vertical edges of the EvoFIT image.  Next, move the FACE 

acetate so that it is immediately beneath HAIR (press the Config 

button and then select Layer Order). Finally, select the icon for hair 

(in the face in the top right-hand corner of the screen). You can now 

ready select and manipulate a hairstyle in PROfit. 
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When a hairstyle has been found, save the composite to disk: 

press the Commands button, then Save PROfit. The file name must be 

called ef and the File Format must be BMP. 

 

Return to EvoFIT's Modify Hair utility. Press the Import Photofit 

button and set the red guidelines so that they are flush with the 

border of the EvoFIT image. Set all 4 lines such that none of the 

white background is seen (don't cut into the EvoFIT image itself). 

Press the Import button and notice the Face Viewer window 

(normally on the left-hand side of the screen) update appropriately. 

Re-import the image if it is not acceptable (there should not be any 

extra black border added nor should the EvoFIT border be cropped 

in any way). Press the Close button to exit from the Import Photofit 

utility. Note, importing only updates the temporary or working 

background (and therefore does not change the background of 

population faces).  

 

The hairstyles in the Face Palette can now be updated by 

clicking Apply in the Update Population group (ensure that External 

Features are also selected in the Update Population group before 

using Apply) of the Modify Hair utility. 

 

Click the Exit button in the Modify Hair window. The utility 

returns to the Face Palette and the population faces are then 

updated. 

 



233 

This utility can be re-run at anytime. As the hairstyle has 

already been loaded in to PROfit, it is NOT necessary to re-load it 

(i.e. Don't press Load into Editor, just save changes in PROfit, Import 

the photofit and then Apply changes). 
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Modification of a Hairstyle in Photoshop 

 

Ensure that Photoshop is running.  

 

Select Edit->Modify hair & Internal Features from the EvoFIT 

Face Palette's menu to enter the Modify Hair utility (for hairstyle 

selection and modification). Ensure the following is set - 

• External Features is selected in the Edit group 

• Photoshop is selected in the Editor group 

• Current Session is selected in the Source group 

 

Click the button marked: Load into Editor (from Source). This 

will load the current session's hairstyle (called ef.bmp) directly in to 

Photoshop.   

 

Remember to switch the Mode to RGB Color in Photoshop for 

best editing (Image->Mode->RGB Color). When finished, switch the 

image mode back to greyscale (Image->Mode->Greyscale). It is 

important that the image is not resized. Save the image (ef.bmp) to 

disk. 

 

Return to EvoFIT's Modify Hair utility and click Apply in the 

Update Population group (ensure that External Features are selected in 

the Update Population group before using Apply - as before). 
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Click the Exit button in the Modify Hair window. The utility 

returns to the Face Palette and the population faces are then 

updated. 
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Moving Facial Features Around with the Feature Shifter 

 

The Feature Shifter utility allows facial features to be moved 

and resized. It is activated from the Normal display mode by right-

clicking an image in the Face Palette and selecting Feature Shifter 

from the pop-up menu. The Face Palette will be hidden and two 

windows will appear: an Image Viewer window and an Image 

Parameter window. 

 
Modes of Operation 

 

There are 2 modes that the Feature Shifter can operate: a holistic 

morph and a free morph. Selection is made between the modes in 

Morphing group (the top left-hand group box in the Image Parameter 

window). Both types will move features specified by selected pixels 

(e.g. mouth points). Whereas a free morph will perform a facial-

feature morph merely as coordinate points change, the holistic 

morph does a best fit in the holistic shape model first (i.e. before the 

feature morph). This means that the holistic morph keeps the face 

as a holistic representation (which we believe to be a very good 

thing). The problem comes if the target trying to be created is not 

well represented in the shape model (e.g. the eyebrows have been 

trimmed or "tampered" in some way). In this case, trying to get 

short eyebrows is likely to "over-stretch" the shape model, and a 

free morph is preferable. Overall, it is probably best to use the 

Feature Shifter in holistic mode until towards the end of the photofit 

session, and then switch to free morph for final tweaks. Note, that 

the Feature Shifter automatically starts in the holistic mode. 
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Moving Features Around 

 

To move facial features, first select the desired feature from 

the Image Viewer menu; e.g. Edit->Mouth->All. The features to be 

moved are highlighted by coordinate points shown in red. Then, use 

the control buttons under the Image Viewer menu to manipulate the 

face. Note that the step size of any change can be altered via the edit 

box in the top left-hand corner of the Image Properties window. Note 

also, that only selected coordinates (those that appear in red) will 

result in a morph. Specifying a feature to move, for example Edit-

>Mouth->All, just activates a group of coordinates quickly. You can 

select individual coordinates to be moved by clicking with the 

mouse. Coordinates can be returned to their inactivated state 

(green) by selecting Edit->Clear from the Image Viewer menu. 

 
Working with Temporary Backups 

 

Just like it is useful to keep backups of text documents in case 

of mistakes, this same idea is available for faces in the Feature 

Shifter. It is a good idea to create a temporary or working copy after 

each feature change has been carried out. This will enable you to 

return to the last stored face if an undesirable change has occurred.  

 

A particular face can be stored and recalled via the controls in 

the Temporary Backups group box in the top right hand corner of the 

Image Properties window. The location number indicates where a 

current image will be stored and retrieved. Click Store to save a 
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copy of the current face in the location shown and Recall to retrieve 

it. All changes can be undone by the Return to start button. 

 
Size of Morphed Changes 

 

The step size of any morphing change is set via the Morphing 

group box in the top left-hand corner of the Image Properties 

window. In the free morph mode, coordinate movements will be 

equal to the number specified for the step size. This will not 

necessarily be the case for a holistic morph. In this mode, a best fit is 

carried out in the Shape Model before a morph is performed. The 

actual movement obtained now depends largely upon the number of 

coordinates selected; fewer coordinates selected will require larger 

step sizes. For instance when moving the nostrils up, a group of 

only 8 coordinates, a step size of at least 2 or 3 will be required. 

 
Saving 

 

When satisfied with changes, use EvoFIT->Exit (Replace Face in 

Population). Changes can be discarded by EvoFIT->Cancel (Discard 

Changes). 
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Saving a Face as an EvoFIT 

 

A face must saved as a photofit from within the Face Palette. 

To do this, make sure that the EvoFIT system is in the Normal 

display mode with the desired face selected. Select EvoFIT->Save As 

from the Face Palette's menu. Name the file sensibly (e.g. 

EvoFIT1.bmp); the correct path for the EvoFIT should already be 

selected (in a folder under the current session folder). If subsequent 

modifications are to be made (for example in Photoshop), it is best 

to work on a copy (e.g. EvoFIT2.bmp) rather than the image just 

saved (in case of editing "accidents"); e.g. make a copy of 

EvoFIT1.bmp and rename it as EvoFIT2.bmp. 

 

Once this has been saved successfully, exit the Face Palette to 

save the session before creating another photofit: select EvoFIT-

>Exit (Save Session) from the Face Palette menu. Do NOT select 

EvoFIT->Cancel as your session will be over-written the next time an 

EvoFIT is created (see me if this accidentally happens); only use 

EvoFIT->Cancel  if session changes are to be lost intentionally. 
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Printing an EvoFIT 

 

A photofit must first be saved to disk before printing (see the 

section on Saving a Face as an EvoFIT). Printing can be done from 

within the Face Palette or from the main EvoFIT application window 

(i.e. the window that appears when you first start the EvoFIT 

program). In either case, select EvoFIT->Print …  

 

Click on the first Select button (in the top right-hand corner of 

the Print dialog window) adjacent to the box for EvoFIT. A dialog 

window appears that allows the previously saved EvoFIT to be 

selected. Select the EvoFIT (e.g. EvoFIT1.bmp) and click Open. You 

will see the file's path appear to the left of the Select button. Click 

the Preview button and a Print Preview window should appear 

(occasionally, this window appears behind the others; use the 

windows task bar (at the bottom of the screen) to bring it to the 

foreground). Select File->Print from the Print Preview window to 

print. 

 

When finished printing, close the Print Preview window and 

then the EvoFIT Print dialog window with the Exit button. 
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Rating Scale 

 

Use the following scale to rate the similarity of the best face to 

the target when requested (when generating a new population of 

faces) - 

 

1          Very poor likeness between faces 

2 or 3   Few similarities 

4 or 5   Some similarities 

6 or 7   Many similarities 

8 or 9   Faces could be easily confused 

10 Faces are identical 
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Appendix G: EvoFITs created in Experiment 11  

 

The following are the EvoFITs evolved in Experiment 11.  

 

Celebrity Target 

 

Craig Phillips 

 
 

David Beckham 

 
 

Noel Gallagher 
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Leonardo DiCaprio 

 
 

Matt Damon 

 
 

Robbie Williams 

 
 

Michael Owen 
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David Schwimmer 

 
 

Stephen Gately 

 
 

Tim Henman. 
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Appendix H: Flowcharts for Face Generation and EvoFIT Operation  

The following flowcharts summarize EvoFIT face generation and use for the full system 

evaluated Experiment 10 and Experiment 11. Flowcharts consider firstly the initial generation, 

with random faces, and then subsequent generations (generation 2 and over). The following 

abbreviations are used: 

 

FNP  Facial Normal Palette 

FSP Facial Shape Palette 

FSPBT  Facial Shape Palette with the Best Texture (from the previous generation) 

FTP Facial Texture Palette 

FTPBS  Facial Texture Palette with the Best Shape (from the previous generation) 
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Setting up the Face Model

Assemble 72 faces taken under 
good lighting with a neutral 

expression and full-face pose

Crop to 180 x 240 
pixels

Facial shape 
model 

(eigenshapes)

Convert to 
monochrome

Morph faces to 
average shape 

(shapefree)

Run PCA on 
landmark data

Add landmark data 
(211 control points)

Compute average 
landmark positions

Average 
shape vector

Facial texture 
model 

(eigentextures)

Run PCA on 
shapefree faces
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Creating Population Faces: First Generation

Prune to 18 textures

Prune to 18 shapes

Add hair HairBlending mask

Display on FTP

Morph

Display on FSP

Avererage 
FaceMorph

Display on FNP

Correct for full-face pose

Populate texture coefficients for 36 faces with 
randomly generated numbers (scaled to the 

standard deviation of the eigentexture)

Multiply texture coefficients with 
eigentextures to give shapefree  

faces (textures)

Populate shape coefficients for 36 faces with 
randomly generated numbers (scaled to the 

standard deviation of the eigenshape)

Multiply shape coefficients with 
eigenshapes to give shape vectors 
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Creating Population Faces I: Generation Two and Thereafter

Prune to 18 shapes

Display on FSP

Avererage FaceMorph

Correct for full-face pose

Display on 
FSPBT

Best texture 
from previous 

generation
Morph

Facial shapes selected in 
previous generation

Save for morph with 
evolved textures (next 

page)

Give best face a fitness rating 
of 2x the other faces

Select 36 pairs of parent 
shapes (by proportional fitness 

selection)

Create 36 offspring by 
uniform crossover of parent's 

shape coefficients

Mutate coefficients with a probability of 0.1. 
Mutation results in replacement with 

randomly generated number scaled to the 
standard deviation of the eigenshape

Multiply shape coefficients with 
eigenshapes to give shape vectors
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Creating Population Faces II: Generation Two and Thereafter

Prune to 18 textures

Display on FNP

Evolved shapes 
(refer to previous 

page)
Morph

Display on 
FTPBS

Best shape 
from previous 

generation
Morph

Facial textures selected in 
previous generation

Display on FTP

Give best face a fitness rating 
of 2x the other faces

Select 36 pairs of parent 
textures (by proportional fitness 

selection)

Create 36 offspring by 
uniform crossover of parent's 

texture coefficients

Mutate coefficients with a probability of 0.1. 
Mutation results in replacement with 

randomly generated number scaled to the 
standard deviation of the eigentexture

Multiply texture coefficients with 
eigentextures to give shapefree  

faces (textures)
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Procedure for Witness: First Generation

Show FSP

Select up to 6 faces

Generate more faces 
if required

Show FTP

Select up to 6 faces

Generate more faces 
if required

Show FNP

Combine shapes and textures with Facial 
Composite Tool if required

Make additional 
selections if required

Select best face

Modify best face in Feature 
Shifter if required

Start breeding (to generate 
next population of faces)

Go to second generation 
(next page)

Rate best face

Select hair in PROfit and edit in 
Photoshop if necessary

Generate population faces
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Procedure for Witness: Generation Two and Thereafter

Show FSPBT

Select up to 6 faces

Generate more faces 
if required

Show FTPBS

Select up to 6 faces

Generate more faces 
if required

Show FNP

Combine shapes and textures with Facial 
Composite Tool if required

Make additional 
selections if required

Select best face

Modify best face in Feature 
Shifter if required

Breed again if acceptable likeness not 
achieved otherwise save best face to 

disk as the EvoFIT and exit

Rate best face

Show FSP

Show FTP

 
 

 


