
EFFECT OF EXTRUSION ON THE NUTRITIONAL 

VALUE OF PEAS (Pisum sativum), CHICKPEAS (Cicer 

arietinum) AND FABA BEANS (Vicia faba) AND 

INCLUSION IN FEEDS FOR EUROPEAN SEABASS 

(Dicentrarchus labrax) AND GILTHEAD SEABREAM 

(Sparus aurata) 

 

 

 

A THESIS SUBMITTED TO THE UNIVERSITY OF STIRLING 

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 

 

 

by 

STYLIANI ADAMIDOU 

Ptyheio - B.Sc. (Hons), M.Sc. 
 

 

 
 
 
 
 
 
 

INSTITUTE OF AQUACULTURE, UNIVERSITY OF STIRLING, STIRLING, SCOTALND 
 

SEPTEMBER 2008 
 
 

 



 

 

 

 

 

 

To my parents 
 

 

 ii



 

 

Declaration 

I hereby declare that this thesis has been composed entirely by myself and has not 

been submitted for any other degree. Except where specifically acknowledged the work 

described in this thesis is the result of my own investigations.  

 

Styliani Adamidou 

 

Signature of candidate: 

Date: 

 

 iii



 

Abstract 

The current general economic and food crises have generated an unsettled future 

for food and feed production and prices in general. Increasing demand, prices and 

fluctuations in supply in world markets for fishmeal, fish oil, soybean meal, maize and 

wheat meal emphasize the need to reduce the dependence of the fish feed industry on 

these ingredients by increasing choices among a wider range of raw materials. Legume 

seed such as peas, chickpeas and faba beans are promising ingredients for aquafeeds 

due to their high protein compared to cereals but also for their energy content. The 

objective of the present study was to investigate the use of these legumes in both high 

and low inclusion level in diets for the two main species farmed in the Mediterranean 

countries namely, European seabass (Dicentrarchus labrax L.) and gilthead seabream 

(Sparus aurata L.). 

In Chapter 3 the effects of different processing conditions were examined on 

whole seed flours of tested ingredients with respect to both nutritional and 

antinutritional factors and physical characteristics of the experimental diet pellets 

including high and low levels of each legume. Extrusion of raw material resulted in a 

clear reduction in trypsin inhibitors (TI) with chickpeas showing a decrease of up to 

90% and complete inactivation for wheat flour, while for peas and faba beans reduction 

was less than 50% in most cases. Extrusion processing was less effective in the 

reduction of phytic acid and total tannins, occasionally reaching 22% and 18% 

respectively. Oligosaccharides and total NSP were not drastically affected by 

processing, however faba bean NSP showed greater reduction. A redistribution of 

soluble and insoluble NSP fractions was noted for chickpea and pea flours after 

extrusion. Physical characteristics of the pellets were not negatively affected for any of 

the tested diets. 

In Experiment I the effects of total or partial wheat substitution by legumes were 

investigated on nutrient digestibility, gastrointestinal evacuation rate and serum glucose 

response of European seabass. Use of legumes in seabass and seabream diets resulted in 

an overall increase in gastrointestinal evacuation time and a delay in glucose load. 

Specifically, gastric evacuation time was greatly delayed when seabass was fed a diet 

with high levels (30%) of chickpeas, while foregut evacuation time was mostly delayed 

by the diet including a high level (30%) of faba beans. In addition, glucose levels in 

seabass serum were also affected by the type of carbohydrates ingested with wheat 
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starch showing more rapid increase and decrease of glucose compared to fish fed pea 

and chickpea diets, while faba bean starch resulted in a lower glucose peak. 

In Experiment II growth, digestibility, hematological parameters, histological 

effects and fillet organoleptic characteristics and the interaction between starch 

inclusion level (8% and 16% or 17% and 35% of legumes respectively) and legume 

type were estimated when tested legumes replaced wheat in European seabass diets. 

Digestibility coefficients were satisfactory for all nutrients (>93%) while legume diets 

at a low level had beneficial effects on growth parameters when compared to the control 

diet, with chickpeas showing a significant improvement in SGR (P<0.05). High level 

legume diets did not result in any negative effect on growth. HSI was increased with 

increasing starch/legume inclusion in the feed and serum glucose also increased for fish 

fed high levels of faba beans and chickpeas. Carcass proximate composition was not 

affected by replacement of wheat in the diets, excluding the increase of fat content in 

fish fed chickpeas. Sensory analysis showed no differences between fish fed the control 

and high legume inclusion diets. 

Lastly in Experiment III growth, hematological parameters, histological effects 

and the interaction between starch inclusion level (low and high) and legume type were 

evaluated when tested legumes were included in gilthead seabream diets. Decreased, 

but not significantly so, growth was observed for all diets including legumes compared 

to the control. Poorer SGR were observed for pea and faba bean diets when these 

legumes were included at high levels. Liver glycogen increased with increasing starch 

level, but HSI did not differ significantly for any of the diet treatments. 

Histological examination of hindgut did not show pathological effects, such as 

enteritis, for in either species or for any of the diets. Increased absorptive vacuoles were 

found for control and pea diets (high level) only for seabass. 

The findings of this thesis showed that the two important species cultivated in 

Mediterranean countries responded differently to the same raw materials used at high 

levels in the diets. Overall legumes had a strong effect on gastrointestinal evacuation 

reducing the rate of feed or digesta passage. Peas, chickpeas and faba beans 

successfully replaced wheat in seabass diets resulting in improved growth coefficients. 

However, when the same legumes included in seabream diets growth performance was 

not improved compared to the wheat based diet. 
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CHAPTER 1. GENERAL INTRODUCTION 
 

 

1.1 Carbohydrates in fish nutrition 

1.1.1 General 

Numerous investigations have detailed the role of carbohydrates in the nutrition of 

farmed fish species (Wilson, 1994; Jauncey, 1998; Dabrowski and Guderley, 2002; 

Hemre et al., 2002; Krogdahl et al., 2005). Carbohydrates are non-essential in fish diet 

as the energy they supply can be replaced by protein or lipids and glucose requirements 

can be met by gluconeogenesis (Hemre et al., 2002) however, carbohydrates and 

especially starches can be generally utilized well (Wilson, 1994) and they can also 

enhance protein sparing effect for growth (Jauncey, 1998). Their digestion and 

utilization is species dependant with carnivorous fish being less able to utilise them than 

omnivorous and herbivorous (Krogdhal et al., 2005). Carbohydrates are intrinsic 

components of feedstuffs, most especially those of plant origin and in that context some 

dietary content is unavoidable. In addition their low cost per kJ and the beneficial effect 

on physical properties of the diets make carbohydrate important constituents of fish 

diets (Jauncey, 1998; Krogdhal et al., 2005). 

1.1.2 Carbohydrate fractions 

Carbohydrates can be classified into a number of categories according to their 

chemical structure and properties and these vary considerably amongst different 

carbohydrate types (Knudsen, 1997). The main carbohydrate classes of interest in 

animal feeds are starch, dietary fibre (DF) and low molecular weight sugars (LMW-

sugars) or oligosaccharides (Knudsen, 2001). 
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Starch consists of two glucose crystalline polymer structures: amylose and 

amylopectin, with amylopectin being dispersed in amylose (Gallant et al., 1992). 

Amylose is a linear molecule in which the glucose units are connected with α(1→4) 

glycosidic bonds and the degree of polymerization ranges between 600-6000 glucose 

units. Amylopectin is a branched helical crystalline molecule in which the glucose units 

are connected with α(1→6) bonds for the branch point and α(1→4) bonds for the linear 

parts, and polymerization for a single molecule may exceed 106 single glucose units 

(Bornet, 1993).  

Starch can also be classified according to the digestive response, as readily 

digestible starch, slowly digestible starch and resistant starch, and resistant starch in 

turn can be divided into physically inaccessible, resistant starch granules and 

retrograded starch (Cairns et al., 1996). Starch digestibility in fish is variable ranging 

from 25% to 95% (Wilson, 1994; Shiau, 1997) depending on the fish species, the 

botanical origin and complexity of the starch, inclusion level in the diet, feeding 

strategy and processing methods such as cooking or extrusion (Wilson, 1994). In 

general processed starch is better digested than raw starch (Peres and Oliva-Teles, 

2002; Venou et al., 2003).  

DF can be categorized as lignin and non starch polysaccharides (NSP) (Knudsen, 

1997) and these are commonly found in plant cell walls (Knudsen, 2001). Lignin basic 

units are phenylopropanes built in a branched network and NSP are divided into water 

soluble NSP (S-NSP) and water insoluble (I-NSP) (Knudsen, 1997; Knudsen, 2001). S-

NSPs include pectins, hydrocolloids and some hemicelluloses, while I-NSP include 

cellulose and some hemicelluloses. The most common single molecules included in 

both NSP fractions to build the polysaccharide polymers are arabinose, xylose 
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(pentoses), mannose, glucose, galactose (hexoses), rhamnose, fucose (6-deoxyhexoses) 

and uronic acids (glucuronic and galacturonic acids) (Knudsen, 1997). 

Animals including fish typically lack the enzymes needed to degrade NSP in the 

digestive tract that can be only fermented by intestinal flora (Dabrowski and Guderley, 

2002). The presence of the S-NSP reduces the evacuation rate and increases the 

evacuation time of the digesta in the intestine (van der Klis and van Voorst, 1993; 

quoted in Choct, 1997), while the insoluble polysaccharides cause the opposite effects 

(Kirwan et al., 1974). Pectins and gums tend to increase the viscosity of the digesta in 

chicken resulting in lower digestibility and absorption (Choct et al., 1995), probably by 

obstructing the ability of enzymes to act in the bulk of digesta. NSP (guar 

galactomannans and alginates) inclusion in salmon (Salmo salar) diets resulted in 

reduced availability of diet nutrients (Storebakken, 1985; Storebakken and Austreng, 

1987). Some NSP bind with bile acids, lipids and cholesterol causing increases in bile 

acid production from the liver with possible effects on the absorption of fats and 

cholesterol from the gut in rats (Levrat et al., 1996; Favier et al., 1997). 

Finally, oligosaccharides are composed of raffinose, verbascose and stachyose as 

basic units. The oligosaccharides are often present in legume seeds causing flatulence 

or diarrhoea in monogastric animals due to a lack of the enzyme α-galacosidase which 

is necessary for breaking the sugar bonds (Siddhuraju and Becker, 2001; Vinjamoori et 

al., 2004). Oligosaccharides can be metabolised in the intestine of carp (Cyprinus 

carpio) by microbes, liberating short chain fatty acids, carbon dioxide and methane gas 

(Kihara and Sakata, 2002), a procedure that is known to exist in the hind gut of 

monogastric animals (Smiricky-Tjardes et al., 2003), however, in fish these studies are 

very scarce. Hung et al. (1990) found increased water and osmolality values in the distal 
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intestine of white sturgeon (Acipenser transmontanus) when fed high levels (27%) of 

sucrose, lactose or fructose compared to glucose, dextrin and raw corn starch. 

1.1.3 Carbohydrate metabolism in fish 

The ability of fish to utilize dietary carbohydrate varies among fish species, due to 

anatomical and functional differences of the gastrointestinal tract and the digestive 

associated organs (Krogdahl et al., 2005). In general fresh- and warm-water fish have 

much higher intestinal amylase activity than marine and cold-water fish, and 

herbivorous and omnivorous fish utilize carbohydrates better than carnivorous fish 

species (Dabrowski and Guderley, 2002). 

Teleost fish are considered to have a high glucose tolerance compared to 

mammals, as wide fluctuations of blood glucose levels are normally found (Dabrowski 

and Guderley, 2002), with carnivorous species showing more persistent hyperglycaemia 

(Peres and Oliva-Teles, 2002) than omnivorous fish (Furuichi and Yone, 1981). Fish 

have been characterised as resembling higher animals with insulin dependent diabetes 

mellitus (Kelley, 1993) because they exhibit similar symptoms (Shimeno, 1991), 

however the persistent hyperglycaemia generally coincides with transient 

hyperinsulinemia (Moon, 2001).  

There are digestive enzymes that function to break down nutrients in foods into 

compounds that can be absorbed across the brush border membrane of the enterocyte. 

These enzymes are mainly excreted into the lumen. The location in which these 

enzymes act characterizes this as extracellular digestion, membrane linked digestion or 

intracellular digestion (Rust, 2002). Carbohydrate digestion is an extracellular 

procedure that involves hydrolysis of complex carbohydrates in the stomach, intestine 
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and caecae as well as in the brush-border section of intestines where enzymes such as 

maltase and sucrase are present (Rust, 2002; Harpaz et al., 2005). 

The major enzymes required for carbohydrate digestion are apparently present in 

fish (Rust, 2002) and also the enzymes for the major carbohydrate metabolic pathways, 

such as glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, gluconeogenesis 

and glycogen synthesis, have also been demonstrated to be present (Hemre et al., 2002). 

Even though the various enzymes and metabolic pathways for glucose metabolism have 

been detected, the overall role and contribution of dietary carbohydrates to the total 

energy requirements of fish remains unclear (Krogdahl et al., 2005). 

Enzyme distribution and concentration in the gut varies with the different 

intestinal morphologies and feeding habits of fish (Lunstedt et al., 2004). It is reported 

that carnivorous fish are characterized by higher trypsin and chymotrypsin activity 

(Eshel et al., 1993), while herbivorous and omnivorous fish are characterized by higher 

amylase activity (Hofer et al., 1982; Munilla-Moran and Saborido-Rey, 1996; Hidalgo 

et al., 1999). Changes in the type of diet, the source or the quantities of nutrients 

present, may change the enzyme concentrations, which in turn can affect the digestion 

and absorption of nutrients (Deguara et al., 2003). 

Hormones related to glucose metabolism, apart from insulin, such as glucagon, 

glucagon-like peptides, insulin-like growth factors, growth hormone, somatostatins, 

cortisol and catecholamines are also present in fish (Moon, 2001). The hormonal 

control mechanisms of teleosts sometimes resemble those of mammals, such as the 

targets and mechanisms of actions of glucagon, but generally there are many 

differences between them (Hemre et al., 2002). 
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1.1.4 Effects of dietary carbohydrates in fish  

Excessive amounts of carbohydrate in fish diets have been associated with 

increased glycaemia (Wilson, 1994; McGoogan and Reigh, 1996) and feed intake in 

rainbow trout (Oncorhynchus mykiss) and European seabass (Dicentrarchus labrax) 

(Hilton and Slinger, 1983; Perez et al., 1997). Increased hepatosomatic index (HSI) has 

also been associated with dietary carbohydrates in trout (Kim and Kaushik, 1992) and 

European seabass (Lanari et al., 1999; Perez et al., 1997), but no such effect was found 

for salmon (Arnesen et al., 1995). Excessive glycogen deposition in liver is also related 

to the presence of carbohydrates in diets for both salmon (Arnesen et al., 1995) and 

trout (Kim and Kaushik, 1992), while fat deposition in liver is associated with high 

carbohydrate content in diets for European seabass (Lanari et al., 1999). In addition, 

different morphological changes in liver tissue have been found in European seabass 

fed different starch sources (Russell et al., 2001). 

Excessive fibre in aquaculture diets may also lead to a decrease in feed utilization 

by obstructing the action of digestive enzymes and diluting nutrient density (Booth et 

al., 2001). Non-starch polysaccharides may reduce utilization of other nutrients as they 

can bind water and minerals and absorb compounds such as sterols and acids (Krogdahl 

et al., 2005). There are cases that these properties can be beneficial to the animals, but 

most commonly they have negative impacts on nutrient utilization (Krogdahl et al., 

2005). 

1.2 World and Mediterranean aquaculture 

1.2.1 General 

Aquaculture production has been growing at an average annual rate of 10.5% per 

year worldwide for marine fish species and 8.8% for all aquaculture since 1970, 
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compared with 2.8% for terrestrial livestock and 1.2% for capture fisheries (SOFIA, 

2006). China is the biggest world producer, contributing 69.6% of aquaculture 

production by quantity and 51.2% of world aquaculture value (SOFIA, 2006). 

Aquaculture quantities by category and their respective values for 2004 are shown in 

Figure 1.1. 
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Figure 1.1. World aquaculture production in quantities and values in 2004. (Source: 

SOFIA, 2006) 

 

1.2.2 Mediterranean Aquaculture 

In 1985, Mediterranean fish farming was estimated to produce 374t of European 

seabass (Dicentrarchus labrax Linnaeus, 1758) and gilthead seabream (Sparus aurata 

Linnaeus, 1758), where Spain, Greece and France provided the initial impetus for 

production (FAO, 2008a). By 1990, production had increased to 3,876t where Greece, 

Spain and Italy had emerged to dominate with nearly 80% of all production. Five years 
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later production had increased twelve-fold to over 47,000t while, in 2000, combined 

Mediterranean production exceeded 130,000t, and in 2006 it was more than 190,000t 

(FEAP, 2008).  

Currently, the production leaders are Greece with nearly 41% (79,000t) of total 

production, while the other important producing countries are Turkey (28% - 53,000t), 

Spain (15% - 28,000t) and Italy (9.3% - 17,800t). More than 90% of this production 

sector is thus focused on 4 Mediterranean countries (Aquamedia, 2008). 

 

1.2.3 Seabass 

France and Italy were the pioneers of reliable mass-production techniques for 

juvenile seabass in the late 1960s and by the late 1970s these techniques were dispersed 

and developed in most Mediterranean countries (FAO, 2008a). European seabass was 

one of the first marine non-salmonid species to be commercially cultured in Europe and 

at present is a very important commercial fish widely cultured in Mediterranean areas, 

with the most significant producers being Greece, Turkey, Italy and Spain (FAO, 

2008a) as demonstrated in Figure 1.2. 
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Figure 1.2. Aquaculture production of seabass in Mediterranean countries from 1998 to 

2006. (Source: Aquamedia, 2008) 

 

European seabass belongs to the family Moronidae (Superorder Teleostea, Order 

Perciformes, Class Actinopterigii), it is a euryhaline fish which is found in subtropical 

climates (66°-13°N) in the eastern Atlantic (from Norway to Morocco, the Canary 

Islands and Senegal) and also in the Mediterranean and Black Seas (Fishbase, 2008a). 

Seabass inhabits the littoral zone on various kinds of bottoms in estuaries, lagoons and 

occasionally rivers, and enters coastal waters and river mouths in summer, but migrates 

offshore in colder weather and occurs in deep water during winter in the northern range 

(Fishbase, 2008a). Seabass is a gonochoristic species with spawning taking place from 

December to March in the Mediterranean Sea and up to June in the Atlantic Ocean 

(Haffray et al., 2006). The eggs and larvae are greatly dispersed in the first 3 months of 

their life and adults migrate over several hundreds of kilometres (Haffray et al., 2006). 
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Seabass are predators and their natural diet consists mainly of shrimps, molluscs 

and fishes (Smith, 1990). Other common species detected in seabass stomachs are 

nekton including zoobenthos (amphipods), benthic copepods, crabs, insects, fish eggs 

and larvae, other planktonic invertebrates, mysids, cladocerans, planktonic crustaceans 

and copepods (Fishbase, 2008b)  

Despite the commercial importance of seabass, there are no official tables for the 

nutritional requirements of this species, but there are numerous studies in this area as 

indicated in Table 1.1. The optimum dietary protein level for juvenile or fingerling 

seabass has been reported by Hidalgo and Alliot (1988) and Peres and Oliva-Teles 

(1999a) to be around 50%. Perez et al. (1997) observed optimum growth with 45% 

protein for fingerlings and Dias et al. (1998) with 43% compared to 52% protein 

inclusion level for 6g seabass. 

 

Table 1.1. Seabass protein/fat ratio requirements 

Reference Composition of the diets 
% Protein / % Fat 

Results 

Alliot et al. (1974) 
32,44,52,62 / 

8,10, 12, 14 
Best results 52/12 

Hidalgo and Alliot (1988) 30,40,50,60 / 12 Best results 50% 

Ballestrazzi et al. (1994) 44,49,54 / 12 49-54 equal results 

Perez et al. (1997) 40-55 / 18-6 45/14 & 45/12 equal 

Dias et al. (1998) 43,52 / 9,18 
The final growth and PER were 

best for 43/18 

Lanari et al. (1999) 48 / 11, 15, 19 
19% fat improved growth but did 

not improve FCR 

Peres and Oliva-Teles, 

(1999a) 
48 / 12, 18, 24, 30 

12-24% did not affect feed 

efficiency, but 30% adversely 

affect the results 
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Data for the quantitative requirements for the indispensable amino acids (IAA) for 

seabass are available from Kaushik (1998) and presented in Table 1.2. These results are 

based on determination of whole body IAA composition as this is considered to be 

representative of the IAA requirement profile (Mambrini and Kaushik, 1995). Results 

from other authors agree with these values concerning arginine (Alexis, 1997), lysine 

(Abd El-Hady and Habiba, 2003), methionine (Thebault et al., 1985) and threonine 

(Tibaldi and Tulli, 1999). 

 

Table 1.2. A/E ratios and an estimation of indispensable amino acid (IAA) requirements 

as g/16 g N for seabass  

IAA A/E* Requirements 

Arginine 146.6 4.6 

Lysine 153.6 4.8 

Histidine 49.8 1.6 

Isoleucine 84 2.6 

Leucine 138.8 4.3 

Valine 91.2 2.9 

Methionine+Cystine 72.5 2.3 

Phenylalanine+Tyrosine 83.4 2.6 

Threonine 86.3 2.7 

Tryptophan 19.4 0.6 

*A/E ratio = IAA/total IAA x 1000. Lysine requirements are available and theoretical requirements were 
calculated for all other IAA (Source: Kaushik, 1998) 

Optimal dietary fat level for European seabass fingerlings was estimated by Alliot 

et al. (1974) to be 12.5%. More recent studies (Peres and Oliva-Teles, 1999b) found no 

differences in growth performance of seabass fed diets ranging from 12 to 24% lipids, 

while with 30% lipids growth was depressed. On the contrary Lanari et al. (1999) 
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obtained better growth performances when the dietary fat was 19% compared to 11 or 

15% in ongrowing seabass diets and similar results were observed by Dias et al. (1998) 

with 18% lipid (compared to 9%) in fingerling diets. 

Starch rich grains are commonly included in feed formulations for substituting 

part of the protein and fat as an energy source and to improve the mechanical properties 

of the pelleted feed (Lanari et al., 1999). Pregelatinised starch is sufficiently digested by 

seabass (Spyridakis et al., 1986; quoted in Lanari et al., 1999) while Perez et al. (1997) 

found no significant differences in growth of seabass fed diets with 16 to 28% 

gelatinised starch, but depression occurred with 33% gelatinised starch. 

Available data on vitamin and mineral requirements of marine species are very 

scarce. For seabass a requirement for vitamin C was demonstrated but not quantified 

(Alexis, 1997; Henrique et al., 1998). Fournier et al. (2000) showed that seabass require 

120mg of ascorbic acid per kg diet for maximum growth to maintain normal skin 

collagen concentration and hepatic ascorbic acid saturation.  

The digestible protein (DP) to digestible energy (DE) ratio of the diets also affects 

growth rate and feed utilization efficiency (Oliva-Teles, 2000). According to Dias et al. 

(1998) optimum protein to energy ratio of diets for seabass should be 19mgkJ-1 in diets 

with at least 20kJ DEg-1. Lupatsch et al. (2001) determined the efficiencies of 

utilization of DE and DP for maintenance and growth in D. labrax, by feeding fish of 

various sizes at increasing feeding levels, from zero to maximum voluntary feed intake. 

The relationship between DE intake and energy gain was found to be linear and was 

independent of feed intake and body weight (BW). The requirement for DE for 

maintenance was calculated to be 43.6kJ BW (kg)-0.79 day-1 and for DP 0.66g BW (kg)-

0.69 day-1. The partial efficiency utilization for growth was 0.68 and 0.52 for DE and DP, 

respectively. 
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1.2.4 Seabream 

Traditionally, seabream was extensively cultured in Italy and Egypt in coastal 

lagoons and salt water ponds taking advantage of the natural migration of juveniles 

from the sea into the coastal lagoons (FAO, 2008a). Intensive rearing systems were 

developed in early 1980s in Italy, and large-scale juvenile production was achieved in 

the late 1980s in Spain, Italy and Greece (FAO, 2008a). This species shows high 

adaptability to intensive culture conditions and nowadays Greece, Turkey, Spain and 

Italy are the main producers as demonstrated in Figure 1.3. 
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Figure 1.3. Aquaculture production of seabream in the Mediterranean countries from 

1998 to 2006 (Source: Aquamedia, 2008) 

Gilthead seabream, belongs to the family of Sparidae, (Superorder Teleostea, 

Order Perciformes, class Actinopterigii). S. aurata is a euryhaline fish, which is found 

along the eastern Atlantic coasts from Great Britain to Senegal and also in the 

Mediterranean Sea. The species inhabits seagrass beds and sandy bottoms as well as the 

surf zone, commonly to depths of about 30m but adults may occur to 150m depth. Due 
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to its euryhaline and eurythermal habits it is found both in sea and brackish water 

including lagoons and estuaries especially during the early stages of its life cycle (FAO, 

2008a). Gilthead seabream is a protandrous hermaphrodite and the females can lay 

20,000-80,000 eggs per day for a period of up to 4 months (FAO, 2008a). 

Gilthead seabream is mainly a carnivorous fish and accessorily herbivorous 

(Bauchot and Hureau, 1990). The most common feed items reported in seabream 

stomach are phytoplankton, zoobenthos items including amphipods, benthic copepods 

and crustaceans, ostracods, molluscs, annelids, polychaetes, fish eggs and larvae, other 

planktonic invertebrates, cladocerans, planktonic crustaceans and copepods (Fishbase, 

2008b). 

Despite the commercial importance of seabream, there are no official tables for the 

nutritional requirements of this species, but there are a number of studies in this area 

listed in Table 1.3. 

Sabaut and Luquet (1973) estimated the optimum protein requirement for 

maximum growth of juvenile seabream using semi-purified diets to be 40%, but more 

recent research reevaluates this percentage with practical diets to be 45-46% (Vergara et 

al., 1996a; Nengas et al., 1997). Similar results were observed when growing fish were 

fed 47 and 51% protein level when the fat level was also high (21%) (Santinha et al., 

1999). 
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Table 1.3. Seabream protein/fat ratio requirements 

References Composition of the diets 

% Protein / % Fat 

Results 

Sabaut and Luquet (1973) 10-60 / 8 Minimum 40% protein 

Santinha et al. (1996) 40,45,50,55 / 12 Best results 55% 

Marti-Palanca et al. (1996) 45,52,60 / 8,12,17 Best results 60/12 

Vergara et al. (1996a) 42,46,52,58 / 9,15 Best results 52/15 

Santinha et al. (1999) 47,51 / 15,21 47/21 & 51/21 Equal 

Fountoulaki et al. (1997) 40,46,51 / 11,16,21 46/16 & 51/21 Equal 

Nengas et al. (1997) 38,45,51 / 10,15,20 Best results 45/15 

In table 1.4 the requirements for the IAA for seabream are shown with the values 

representing the whole body IAA of seabream (Kaushik, 1998) as it is considered to be 

representative of the IAA requirements profile (Mambrini and Kaushik, 1995). Similar 

results from other authors were observed for arginine (Tibaldi et al., 1994) and lysine 

(Tibaldi and Lanari, 1991). 

 

Table 1.4. A/E ratios and an estimation of indispensable amino acid (IAA) requirements 

as g/16 g N for seabream. 

IAA A/E Requirements 

Arginine 162.4 5.4  

Lysine 149.6 5.0 

Histidine 49.9 1.7 

Isoleucine 78.9 2.6 

Leucine 134.3 4.5 

Valine 88.5 3.0 

Methionine+Cystine 73.1 2.4  

Phenylalanine+Tyrosine 86.4 2.9 

Threonine 84.8 2.8 

Tryptophan 19.4 0.6  

*A/E ratio = IAA/total IAA x 1000. Lysine requirements are available and theoretical requirements were 
calculated for all other IAA (Source: Kaushik, 1998). 
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Gilthead seabream have been reported to require a minimum of 6.5% cod liver oil 

in the diet in order to maintain best growth and feed utilization (Kalogeropoulos et al., 

1992). According to the same author, seabream juveniles require 0.9% highly 

unsaturated fatty acids (HUFA) in the diets and best growth performance was obtained 

with an eicosapentaenoic/docosahexaenoic fatty acid ratio (EPA/DHA) of 2/1 (Ibeas et 

al., 1997). Marais and Kissil (1979) observed best growth with a 9% lipid diet, the 

lowest value tested (9-16%) but according to Vergara et al. (1996b) best growth for 42g 

seabream was observed with a diet including 15-16% fish oil and no improvement in 

growth was found by raising the lipid percentage to 21% (Santinha et al., 1999). 

As mentioned above, fish do not use carbohydrates efficiently. Seabream seems to 

have a ratio of amylolytic to proteolytic enzymes higher than rainbow trout and this 

may influence the carbohydrate digestion capability of these species (Hidalgo et al., 

1999). 

Available data on vitamin and mineral requirements of marine species are very 

scarce. For seabream a requirement for vitamin C was demonstrated but not quantified 

(Alexis, 1997; Henrique et al., 1998) and some limited data for pyridoxine are available 

(Kissil et al., 1981). Preliminary results showed a dietary phosphorus requirement 

around 0.75% of the diet (Oliva-Teles and Pimentel-Rodrigues, 2004). 

1.3 Feed formulation  

1.3.1 General 

Successful fish culture depends on supply of diets containing optimal levels of 

energy and nutrients for growth. Diet preparation is in fact a compromise between the 

ideal situation and practical considerations (Hardy and Barrows, 2002). The main 

objective when formulating a fish diet is to provide a nutritionally balanced mixture of 
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ingredients to support the maintenance, growth, reproduction and health of the animal at 

an affordable cost (NRC, 1993). As feed is one of the principle costs in feed production 

(Lupatsch et al., 2001), formulations must be based on our knowledge of nutritional 

requirements for them to be economically viable.  

In intensive aquaculture, fish feeds are formulated to be dense in nutrients and 

energy, based mostly on ingredients of marine origin, particularly fish meal and fish oil 

(Kaushik, 2000). When the requirements of certain fish species are known, it is not 

difficult to formulate a diet that contains all nutrients at an appropriate level. However, 

there are practical matters to consider that make this task complicated. The most 

important of these are the price and the availability of the ingredients, diet acceptability 

to the farmed fishes, pelletability of the formulation, pellet storage and handling 

requirements (NRC, 1993). What is also crucial with regard to the aquatic environment, 

is that the pellets should remain intact in water until fish consume them, while the 

nutrients should be highly available to the fish (NRC, 1993) to minimize excretions and 

therefore avoid settlement of organic matter on the bottom with possible impacts on the 

sediment under and around sea cages (Mente et al., 2006) 

1.3.2 Commonly used ingredients and the limitations 

The ingredients that are used in fish feed are either by-products of human food 

technology or products produced directly for fish consumption. Ingredients used in 

commercial fish diets can be classified as sources of protein (amino acids), fats (EFA), 

carbohydrates, vitamins and minerals (NRC, 1993). It is also very important to cover 

the energy requirements of fish, although energy is not considered to be a nutrient in an 

independent sense. 
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The main protein source that is used in fish feeds is fishmeal. When prepared from 

good quality, whole fish it is one of the highest-quality protein sources. Depending on 

the fishmeal quality, protein level ranges from 56% to 76%, it is also a rich source of 

energy, EFA and minerals and is highly digestible and palatable to most fishes (NRC, 

1993). Fishmeal availability is limited due to somewhat stable production and increased 

demand (SOFIA, 2006) and thus it is an expensive ingredient (Josupeit, 2008) that 

contributes greatly to the final cost of fish feeds. 

Soybean meal is an available ingredient with high protein content and one of the 

best amino acid profiles among protein-rich plant feedstuffs for meeting most of the 

essential amino acid requirements of fish (Mohsen, 1989; quoted in NRC, 1993). It has 

long been used as a substitute for animal protein in aquaculture feeds. The 

antinutritional factors (ANF) that are present in soybean seeds and the considerable rise 

in soybean price over the last year (Josupeit, 2008) are restricting factors for their use in 

fishfeeds. In addition, the strict rules of EU countries adopted in 2003 relating to the 

release of genetically modified seeds into the environment, their traceability, labelling 

and their use in animal feeds (Euractiv, 2006) also proved to be a limiting factor in their 

use in fishfeeds. 

Many other plant protein sources are used, proteins that are extracted from 

oilseeds such as rapeseed and sunflower, or proteins from cereals like wheat and maize 

gluten (Aslaksen et al., 2007). Their availability is high, but their use is limited either 

due to ANF (Aslaksen et al., 2007) or due to imbalanced amino acid profile; for 

example the lysine deficiency of glutens (Davies et al., 1997; Pereira and Oliva-Teles, 

2003). 

Fats and oils are the main sources of energy but they also provide the EFA, with 

marine fish oils containing 10-25% HUFA (NRC, 1993). Marine oils are obtained from 
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processing of marine animals and are classified as fish oils, fish liver oils and marine 

mammal oils (Hertrampf and Piedad-Pascal, 2000). Their use in fish feeds is restricted 

by the availability, the high prices (SOFIA, 2006) and the possible contaminants present 

like dioxins or dioxin-like polychlorinated biphenyls that can be transferred to, and 

accumulated in, the edible parts of farmed fish (Bell et al., 2005). Plant oils such as 

soybean, canola (Glencross et al., 2003), linseed (Bell et al, 2004), rapeseed and palm 

oil (Karalazos, 2007) can be used as substitutes for fish oil, although their fatty acid 

compositions differ significantly, with vegetable oils containing lower levels of n-3 

fatty acids (particularly HUFA) than fish oil. The use of vegetable oils in fish diets can 

differentiate the fatty acid composition of the produced fish (Bell et al., 2001; 2003), 

but this effect can be largely overcome after a finishing fish oil diet before harvest (Bell 

et al, 2004).  

Carbohydrate sources such as cereals are present in fish diets as a binder as well as 

an inexpensive energy source (Davis and Arnold, 1995). Cereal whole grains contain 

62-72% starch and this is an important binding agent in steam–pelleted and extruded 

feeds (NRC, 1993). Many by-products of grain industry as for example wheat, oat, 

corn, rice, milo or rye by-products are valuable ingredients for animal feeds and 

subsequently for fish feeds (Hardy and Barrows, 2002). Legumes such as peas, beans 

and chickpeas contain also considerable amounts of starch that could be utilised by fish 

as energy source (Booth et al., 2001). The use of these plant ingredients could be 

limited when their fibre content is high (Nengas et al., 1995) or when they are not 

processed, as raw starch is considered a poor energy source (Peres and Oliva-Teles, 

2002). However, digestibility of raw starch can be enhanced considerably by 

gelatinization through heat treatment (Peres and Oliva-Teles, 2002) which is a common 

practice in commercial feeds. 
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Other materials that are used in fish feeds in lower quantities are vitamin and 

mineral premixes, feed binders, carotenoid supplements, drugs and antibiotics, 

probiotics, enzyme supplements, antifungal agents, antioxidants, fibre, colourings, 

flavourings and water (Hardy and Barrows, 2002). 

1.3.3 The need to identify new/novel feed ingredients 

The current general economic and food crisis brought about by increasing oil 

prices as well as the expansion of the bio-ethanol and bio-diesel industry have 

generated an unsettled future for food and feed production and prices in general. 

Increasing demand, prices and fluctuations in supply in the world markets for fishmeal, 

fish oil, soybean meal, maize and wheat meal, emphasize the need to reduce their 

incorporation in feeds and at the same time increase the range of raw material sources. 

Fishmeal and fish oil production have been more or less stable over the last few 

decades (SOFIA, 2006), while events such as the El Ninõ in 1997-1998 have shown 

that fish oil and meal can become unpredictable raw materials for aquaculture 

production in specific years. 

Furthermore, since European production of soybean is extremely limited, due 

mainly to climatic and geographical constraints (P.E.A., ÉCLAIR, Programme, 1993; 

quoted in Gouveia and Davies, 1998), it is considered worth exploring the possibilities 

of using other plant sources which are cultivated in European and Mediterranean 

countries, thus limiting the expense of importation. Peas, chickpeas and faba beans with 

their protein and starch inclusion levels could successfully replace wheat and partially 

replace other plant or animal proteins.  
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1.4 Legume seeds 

1.4.1 General 

Grain legumes are the harvested seed of leguminous crops, which includes beans 

and peas and other closely related species within the family Fabaceae. Legumes play an 

important role in the traditional diets of many regions around the world because of their 

high nutritional value for humans. They are low in fat content and they are an excellent 

source of protein, dietary fibre and a variety of micronutrients and phytochemicals 

(Messina, 1999). Legumes are also traditional sources of plant proteins for ruminants 

and monogastric animals and can provide a range of benefits both for farms and feed 

manufacturers (FAO, 2002). Soybeans are the most extensively evaluated and most 

commonly used plant protein source in fish diets. The nutritional value of legumes such 

as lupins, field peas (Burel et al., 2000) have been evaluated in rainbow trout and turbot 

(Psetta maxima), faba beans in salmon (Aslaksen et al., 2007), while cow peas, 

chickpeas and vetch (Allan et al., 2000) in silver perch (Bidyanus bidyanus) as potential 

protein or/and energy sources. Legumes usually contain more lysine than cereals but 

they have lower digestibility of sulphur amino acids (Allan et al., 2000). 

The EU is the major producer of peas (2.8mmt) grown essentially for animal feed, 

while Canada has significantly increased production (2.1mmt) since 2000 (Grain 

legumes, 2007). The major producer of faba bean is China (1.8mmt), but important 

harvests are also produced in Australia, the United Kingdom and France. Chickpeas are 

mainly produced in India (5.3mmt) (Grain Legumes, 2007).  

Field pea is the main cultivated arable protein crop in the EU with spring type, 

white-flowered, low-tannin varieties being the most popular (Grain legumes, 2006). 

Faba beans have been used for decades for human consumption in the south and for 
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cattle or pigeon feed in the northern part of Europe, while currently areas of cultivation 

are expanding ranking this crop as the second most cultivated legume in Europe (Grain 

legumes, 2006). Chickpea is cultivated exclusively in the south of Europe and is mainly 

destined for direct human consumption. The ‘kabuli type’ (large white seeds) is the 

most popular type for both cultivation and consumption in Europe (Grain legumes, 

2006). The areas cultivated with each legume in E.U. are represented in Figure 1.4. 

 

EU grain legume crops (areas in 2004)

Pea
41%

Faba bean
19%

Lentil
2%

Phaseolus beans
4%

Chickpea
4%

Vetch
13%

Soybean
13%

Lupin
4%

 

Figure 1.4. Areas as a percentage of total in the EU cultivated with legume seeds 

(Source: Grain legumes, 2006) 

1.4.2 Field peas in aquaculture feeds 

Field or feed or green pea (Pisum sativum L.) is a legume with potential due to the 

fact that it has been used in livestock feeds for a long time as a source of energy and 

protein, but has only recently been evaluated in feed for aquatic species (Davis et al., 

2002). The average protein content of whole peas is around 21% which is low 

compared to soybean and lupins, but it is high compared to cereals, and it is rich in 

starch (around 45%) and has an energy content of 15.8kJg-1 (Sauvant et al., 2004). Field 
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peas have been evaluated as potential feed ingredients, whole or dehulled, raw or 

processed, for several aquatic species including European seabass (Gouveia and Davies, 

1998; 2000), Australian silver perch (Allan et al., 2000), Atlantic salmon (Carter and 

Hauler, 2000), rainbow trout (Gomes et al., 1995a), turbot (Burel et al., 2000) and blue 

shrimp, Litopenaeus stylirostris (Cruz-Suarez et al., 2001) and other species as 

presented in Table 1.5. 

In general most studies indicate that dehulled peas and extruded pea seed meal 

have higher Apparent Digestibility Coefficients (ADCs) for energy and crude protein 

than whole or raw peas respectively (Booth et al., 2001; Booth et al., 2002; Davis et al., 

2002; Thiessen et al., 2003; Allan and Booth, 2004). 
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Table 1.5. Results concerning protein and energy digestibility and growth in one case of 

field pea and diets including field pea for different aquaculture species. 

Fish Species Inclusion 
rate Field Pea Protein 

digestibility % 
Energy 

digestibility % Reference 

Silver perch 
Bidyanus 
bidyanus 

50% 

Whole-extruded 
Dehulled-extruded 
Whole-raw 
Dehulled-raw 

85.3 
90.4 
84.3 
87.8 

71.3 
74.9 
63.7 
70.1 

Allan and Booth 
(2004) 

Silver perch 
 

15%, 30% 
45%, 60% 

75% 
Dehulled  The weight gain reduced as the 

inclusion rate of peas increased 
Booth and Allan 
(2003) 

Rainbow trout 
Oncorhynchus 

mykiss 
20% 

Whole-raw 
Dehulled-raw 
Dehulled-extruded 
Air-classified Protein 

90.9* 
91.4* 
93.5* 
94.6* 

54.6* 
56.8* 
78.4* 
87.0* 

Thiessen et al. 
(2003) 

White shrimp 
Litopenaeus 
vannamei 

25% 

Whole-raw 
Whole-extruded 
Dehulled-raw 
Dehulled-extruded 
Whole-micronized 

77.4 
81.6 
78.1 
79 

83.3 

72.6 
76.7 
77.3 
79.1 
78.9 

Davis et al. 
(2002) 

Seabream 
Sparus aurata 

17.5% (1) 
35% (1) 
19% (2) 
37% (2) 

1.Dehulled-defibred-
extruded-microground 
2.Infrared radiation 

92.8 
81.4 
89.7 
90 

92.2 
77.7 
79.7 
68.7 

Pereira and 
Oliva-Teles 
(2002) 

Silver perch 15% 
Cold pelleted 
Steam pelleted 
Extruded 

78.9 
83.7 
80.7 

58.6 
63.5 
70.0 

Booth et al. 
(2002) 

Silver perch  30% 
Whole peas 
Dehulled  
Protein concentrate 

87.6 
89.2 
92.4 

71.6 
75.3 
82.4 

Booth et al. 
(2001) 

Seabass 
Dicentrarchus 

labrax 

20% 
40% Pea seed meal 88.4 

89.1 
73.6 
72.1 

Russell et al. 
(2001) 

Blue shrimp 
Litopenaeus 
stylirostris 

30% 

Whole - raw  
Whole - extruded 
Dehulled - raw 
Dehulled - extruded 
Whole - micronized 

87.3 
89.3 
89.1 
88.2 
87.7 

- Cruz-Suarez et 
al. (2001) 

Silver perch 29.7% Pea seed meal 81* 51* Allan et al. 
(2000) 

Seabass 
10% 
20% 
30% 

Pea seed meal 
94.2 
94.3 
94 

90.8 
89.6 
88.4 

Gouveia and 
Davies (2000) 

Atlantic salmon 
Salmo salar 

20.5 
27.5 

Extruded 
Protein concentrate 

95.2 
95.5 

88.8 
89.2 

Carter and 
Hauler (2000) 

Nile tilapia 
Oreochromis 

niloticus 
30%  

Extruded pea seed meal 92.6* 89.2* 
Fontainhas-
Fernandes et al. 
(1999) 

Seabass 
 

20% 
40% Pea seed meal 88.4 

89.1 
64.8 
56.7 

Gouveia and 
Davies (1998) 

Rainbow trout 30% Pea seed meal 80.4* 59.2* Gomes et al. 
(1995a) 

*Numbers with an asterisk represent apparent digestibility of the ingredient included in the test diets. 
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1.4.3 Chickpeas in aquaculture feeds 

Chickpea (Cicer arietinum L.) is grown in tropical sub-tropical and temperate 

regions as an annual plant and it is considered drought tolerant (Bhardwaj et al., 1999). 

Based on seed colour and site of origin, chickpeas are classified into two types, the 

kabuli and the desi type that differ in their nutrient composition, with kabuli types 

having a lower fibre, higher starch and fat content than desi types (Gill et al., 1996). 

The average protein content of the Mediterranean kabuli type seed is 20%, starch 

content 45% and energy 17.5kJg-1 (Sauvant et al., 2004). 

Research on this plant material as an ingredient in aquaculture feeds is very scarce. 

Chickpeas have been evaluated as a potential fish feed ingredient by Allan et al. (2000) 

and Booth et al. (2001) for silver perch (Table 1.6). 

 

Table 1.6. Results concerning protein and energy digestibility of chickpea and diets 

including chickpeas. 

Fish Species Inclusion rate Chickpeas Protein 
digestibility % 

Energy 
digestibility % Reference 

Silver perch 
Bidyanus 
bidyanus 

29.7% Whole chickpeas 
(desi type) 82.2* 54.8* Allan et al. 

(2000) 

Silver perch  29.7% Whole chickpeas 
Dehulled 

88.1 
87.5 

72.1 
74.2 

Booth et al. 
(2001) 

Silver perch  29.7% Whole chickpeas 
Dehulled 

79.2* 
79.8* 

54.8* 
61.3* 

Booth et al. 
(2001) 

*Numbers with an asterisk represent apparent digestibility of the ingredient included in the test diets. 

1.4.4 Faba beans in aquaculture feeds 

Faba beans (Vicia faba L.) are also known as field beans, broad beans and horse 

beans and the varieties can be divided into summer and winter (Hertrampf and Piedad-

Pascal, 2000) or white and coloured flower varieties with low and high tannin contents 

respectively (Sauvant et al., 2004). The average protein content of faba beans is 26%, 
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the average starch content is 38% and energy content is estimated to 16.2kJg-1. Faba 

bean is a common human food in developing countries and it is also used as animal 

feed, mainly for pigs, horses, poultry and pigeons in industrialized countries. The 

nutritional value of faba beans is high and it is considered in some regions to be a good 

substitute for meat or skimmed milk (Duke, 1981). 

Research on this plant material as an ingredient in aquaculture feeds is scarce. 

Both digestibility and nutritional value of faba bean meal have proved favourable for 

rainbow trout and common carp (Grabner and Hofer, 1985) and they have also been 

tested in more recent studies in silver perch (Allan et al., 2000; Booth et al., 2001), in 

Nile tilapia, Oreochromis niloticus (Fontainhas-Fernandes et al., 1999) and in rainbow 

trout diets (Gomes et al., 1995b) as listed in Table 1.7. 

 

Table 1.7. Results concerning protein and energy digestibility of faba beans and diets 

including faba beans for different aquaculture species. 

Fish Species Inclusion rate Faba beans 
Protein 

digestibility 
% 

Energy 
digestibility 

% 
Reference 

Silver perch 
Bidyanus 
bidyanus 

29.7% Faba beans 90.5* 59.2* Allan et al. 
(2000) 

Silver perch 29.7% 
Whole beans 
Dehulled 
Protein concentrates 

90.5* 
96.4* 
94.3* 

59.2* 
59.6* 
73* 

Booth et al. 
(2001) 

Silver perch 29.7% 
Whole beans 
Dehulled 
Protein concentrates 

89.7 
91.3 
91.7 

74.0 
74.0 
77.1 

Booth et al. 
(2001) 

Nile tilapia 
Oreochromis 

niloticus 
30% Faba bean meal 87.5* 68.0* 

Fontainhas-
Fernandez et al. 
(1999) 

Rainbow trout 
Oncorhynchus 

mykiss 
30% Faba bean meal 

(fijord) 80.2* 60.2* Gomes et al. 
(1995b) 

*Numbers with an asterisk represent apparent digestibility of the ingredient included in the test diets. 
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1.4.5 Challenges and limitations 

1.4.5.1 Potential of peas, chickpeas and faba beans 

As mentioned before peas, chickpeas and faba beans are all legumes and they are 

good sources of both protein and starch. In this respect these three legumes offer 

flexibility to the feed manufacturer as they can replace partially both energy (cereals 

like wheat that is also used as binding agent) and protein (such as soybean or other plant 

and animal protein) (Fraser, 2005). These replacements could be very important if they 

do not have a negative impact on fish growth, fish health and final product quality. 

‘Green’ issues, environmental impacts and sustainability are all of considerable 

current concern and these legumes may have advantages in this respect. Their 

cultivation is suitable for climate conditions in southern Europe. This coincides with 

regions where European seabass and gilthead seabream are also farmed, potentially 

reducing transport costs and also soybean imports. In addition, cultivations of legumes 

may decrease nitrogen pollution through their ability to naturally fertilize poor fields 

that for years have been cultivated with cereals and they can also increase total yields 

through rotation (Grain legumes, 2006). After harvesting legumes a substantial amount 

of nitrogen is left in the field through incorporation of the plant residues adding at the 

same time the needed organic matter to maintain and improve soil health, long term 

fertility and sustainability of the ecosystem (Gaur et al., 2008). Chickpeas have an 

additional advantage over peas and faba beans that they can be cultivated in a wide 

range of different soil qualities (Davies et al., 1985) and they have low water demand 

(Loss and Siddique, 1997), as in their normal growing season they do not depend on 

rainfall water, considering that they cultivated on non-irrigative fields (Gaur et al., 

2008). 
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1.4.5.2 Antinutritional factors  

Plant materials are commonly used in fish feeds but their inclusion level is often 

limited due to lower levels of available protein and palatability issues compared to 

animal products as well as due to the presence of ANF (Tacon, 1993). As already 

mentioned before, some important ANF of relevance include protease inhibitors, 

phytates, tannins, lectins, oligosaccharides and non-starch polysaccharides (Francis et 

al., 2001) and their inactivation includes a variety of methods such as dehulling, 

germination, soaking and enzyme addition or heat treatment such autoclave, roasting 

and extrusion (Francis et al., 2001). Indicative contents of ANF in peas, chickpeas and 

faba beans are presented in Table 1.8. 

 

Table 1.8. Indicative content of antinutritional factors in legume seeds 

Antinutritional factors Field pea Faba bean Chickpea 

Oligosaccharides (%) 3.69 2.93 1.99 

Phytate (%) 0.48 0.66 0.63 

Tannins total (%) 0.25 0.75 0.49 

Tannin activity hulls (mg g-1) 11.06 21.73 5.43 

Tannin activity cotyledons (mg g-1) 0.16 0.22 0.11 

Trypsin inhibitor activity (mg g-1) 1.01 0.39 4.79 

Chymotrypsin inhibitor activity (mg g-1) 1.60 0.40 7.72 

Data extracted from Peterson and Mackintosh (1994) and Saini (1995) (quoted in Booth et al. (2001). 
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1.5 Feed processing and extrusion 

1.5.1 General 

Most commercial fish feeds are processed by compression pelleting or extrusion 

and other manufactured forms include moist and semi-moist, microencapsulated and 

micropulverized feeds (NRC, 1993). Processing techniques such as heat treatment, 

solvent extraction, flaking and grinding can improve the nutritional value of the diet 

ingredients and this in turn could be very beneficial for several fish species (Gouveia 

and Davies, 2000) 

1.5.2 Processing Methods 

Processing of the feed mixture through grinding, steam conditioning and extrusion 

is currently a big issue for fish feed companies, as these processes inevitably affect both 

the physical and chemical characteristics of a feed (Hilton et al., 1981). These 

characteristics include water stability and durability, pellet hardness, nutrient 

availability and digestibility (Hardy, 1989). Other factors influenced by processing such 

as the palatability and organoleptic properties of a diet may affect the amount of feed 

consumed by a target species (Mackie and Mitchell, 1985). 

Since the method of pelletisation has a major influence on the nutritional 

characteristics of feeds it is important to ensure that ingredients identified as having 

potential in aquaculture feeds are incorporated into experimental diets that reflect 

current commercial processing (Oliva-Teles et al., 1994). There are a lot of different 

processing methods to produce pellets, but there are just few general techniques (Hardy 

and Barrows, 2002) described below . 
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1.5.2.1 Pelleting 

Cold pellet extrusion involves no thermal activity and the wet mixture is forced 

through a plate with holes drilled into it. The resulting noodles are cut into appropriate 

lengths by an external cutting blade as they leave the die (Hardy and Barrows, 2002).  

Compressed pelleting is a process which forces a feed mixture through holes in a 

metal die by the action of a roller located inside the die. Before this, the mixture can be 

exposed to dry steam for some seconds to increase the temperature to about 85ºC and 

the moisture to about 16% (Hardy and Barrows, 2002), but compressed pellets can also 

be produced without any steam as well (Thomas et al., 1997).  

Extruded pellets are made in the same general way as compressed pellets, but the 

use of different dies and physical conditions results in a very different product (Hardy 

and Barrows, 2002) as described below. 

1.5.3 Extrusion 

Extrusion requires more elaborate equipment and higher inputs of moisture, heat 

and pressure than simple pelleting. Usually, mixed ingredients are finely ground before 

entering the pre-conditioner where steam treatment takes place until the mixture is 

converted into a mash that may or may not be pre-cooked (pre-conditioning) before 

entering the extruder. The mash, which contains around 25% moisture, is compacted 

and heated to 104º - 148ºC under pressure in the barrel of the extruder. As the material 

is squeezed through die holes at the end of the barrel, and external pressure decreases, 

part of the water in the superheated dough immediately vaporizes and causes expansion 

of the feed particles (NRC, 1993) leaving a large number of air-filled interstices. The 

extruded particles have high moisture content and require external heat for drying. 

Thus, after extrusion the particles must pass through a drying process to reduce 
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moisture to a safe level for storage (NRC, 1993). The air trapped inside the particles 

enables, when needed, the coating under vacuum with oil and other heat-sensitive 

materials giving an important advantage to this method. 

Extrusion processing can impart a wide range of different physical characteristics 

to the final product due to the different settings in pre-conditioning, the types and 

number of screws (single or twin-screw) in the extruder, the screw speed, the 

temperature, the mechanical shear and the duration of every application (Thomas et al., 

1997). This manufacturing method has the advantage of short cooking time and high 

productivity, but high operating costs. 

1.5.3.1 Effects of extrusion on feed nutrients 

Manufacturing processes can influence the utilization of nutrient ingredients and 

feed intake in fish (Booth et al., 2000). The effects of processing can differ for different 

species and it is important to apply the appropriate processing technique to maximize 

production efficiency at the lowest possible cost (Tacon, 1990). The use of extrusion 

increases nutrient availability of plant meals especially in relation to the amount of DE 

available through starch gelatinization. Dias et al. (1998) reported that inclusion of 

extruded wheat in the diet had an advantage over raw wheat improving energy 

digestibility of the diet for European seabass. More specifically extrusion processing 

gelatinizes starch and improves the digestion of starch in salmonids (Thodesen and 

Storebbaken, 1998).  

Mild extrusion processing usually enhances the digestibility of plant proteins 

(Håkansson et al., 1987), while Booth et al. (2002) found increased feed efficiency and 

DP of extruded diets compared with cold and steam pelleted diets for silver perch. 
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Extrusion seems not only to improve protein and carbohydrate digestibility, but 

also lipid digestibility. The influence on lipid digestibility could be related to a decrease 

in indigestible carbohydrates (Storebakken et al., 1998). 

Extrusion effects have been investigated in some ingredients, and resulted in 

increased nutritional value of rapeseed and peas for rainbow trout (Gomes et al., 1993), 

improvement of digestibility of canola meal for chinook salmon Oncorhynchus 

tshawytscha (Satoh et al., 1998), and increased nutritional value of dehulled pea seed 

meal for European seabass (Gouveia and Davies, 2000). However, Oliva-Teles et al. 

(1994) reported that extrusion had no effect on the nutritional value of full fat soybean 

in rainbow trout diets and, according to Sorensen et al. (2002), differences in extrusion 

temperatures (100, 125 and 150°C) caused no significant differences in ADC of crude 

protein, individual amino acids or energy in fish meal and wheat meal based diets for 

rainbow trout. 

While processing techniques can improve the nutritional and physical qualities of 

diet ingredients, the heating process can also have detrimental effects. Damage to 

proteins and losses in nutritional value with destruction of IAA and reduction in amino 

acid availability, with lysine being the most sensitive, may be observed during 

processing (Papadopoulos, 1989). Allan et al. (2000) also reported that excessive heat 

during the rendering process could reduce the digestibility of proteins and amino acids, 

damage lysine and contribute to low nitrogen digestibility in animal meals. Generally, 

severe heating in combination with low moisture content have resulted in reduction of 

digestibility of most amino acids in fishmeal (Ljokjel et al., 2000). In addition, heat 

labile vitamins can also be lost at elevated temperatures, for example ascorbic acid had 

been shown to be unstable during heat treatments such as steam conditioning and 

extrusion (Slinger et al., 1979). 
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1.5.3.2 Effects of extrusion on feed ANF 

Various processing procedures can decrease levels of a number of ANFs and, 

concurrently, increase the protein and starch availability of the plant seeds as has been 

shown by several authors (Gomes et al., 1993; Oliva-Teles et al., 1994; Pfeffer et al., 

1995; Abd El-Hady and Habiba, 2003; Wang et al., 2004). Specific protease inhibitors, 

lectins, antivitamins and α-amylase inhibitor are heat labile factors (Abd El-Hady and 

Habiba, 2003; Wang et al., 2004), which means that extrusion processing can reduce or 

minimize their activity. According to the same authors, saponins, non-starch 

polysaccharides, antigenic proteins, phytoestrogens and some phenolic compounds that 

are classified as ANFs are heat resistant. 

Legume extrusion cooking may allow reduction of ANF and therefore improve the 

nutritional quality at a cost lower than other heating systems (baking, autoclaving, etc.) 

due to more efficient use of energy and better process control with greater production 

capacities (Alonso et al., 2000a). The digestibility coefficients of legumes increased 

after extrusion, compared to raw legumes both in vitro and in vivo, namely in rats 

(Alonso et al., 2000b), but also in rainbow trout (Cheng and Hardy, 2003a; Cheng and 

Hardy, 2003b) and silver perch (Allan and Booth, 2004). 
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1.6 General objectives 

The objective of the present study was to investigate peas, chickpeas and faba 

beans as potential feed ingredients for European seabass and gilthead seabream in 

extruded commercial-type diets. Each one of these legumes were used up to an 

inclusion level of 35% as an energy source replacing wheat and as a protein source 

replacing partially different protein sources in each experiment. Specifically the 

objectives were: 

 

1) To elucidate the effect of different processing conditions on the whole seed flour 

of the tested ingredients with respect to both nutritional and antinutritional 

factors and to examine the physical characteristics of experimental diet pellets 

including high and low levels of each legume. 

2) To investigate the effects of wheat substitution in high fish meal diets on both 

digestibility, gastrointestinal evacuation rate and glucose load of seabass. 

3) To estimate growth, digestibility, haematological parameters, histological 

effects and fillet organoleptic characteristics when the tested legumes replaced 

wheat and also the interactions between inclusion level of starch (low and high) 

and legume type in European seabass diets. 

4) To estimate growth, haematological parameters and histological effects when 

the tested legumes replaced wheat and also the interactions between inclusion 

level of starch (low and high) and legume type in gilthead seabream diets. 
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2.1 Experimental diets 

2.1.1 Processing system 

Extrusion processing of raw legumes and diets took place at the BioMar 

TechCentre (Brande, DK). A CLEXTRAL BC 45 twin-screw extruder was used, with 

screw diameter of 55mm and an overall active length of 800mm. All legumes and 

wheat were ground to fine flour (1.5mm) just before heat processing. Legumes and 

diets were treated in a ‘home made’ single-screw preconditioner before entering the 

extruder. The temperature at the first part of the extruder, at the middle part and at the 

outer die of the extruder was constant for each treatment. The extrudates were 

conveyed into a 6 level GEELEN dryer. After drying the pellets entered into a 

GEELEN cooler to cool quickly to room temperature. 

2.1.2 Diet production conditions 

When feeds were manufactured the extruder was operated at approximately 

340rpm and the feeder was set to deliver approximately 130-135gmin-1. Water 

addition was adjusted in the preconditioner and on the extruder barrel using metering 

pumps with variable settings (calibrated in kgh-1). Extrusion temperature at the outer 

die was 70ºC. Experimental diets for experiments I, II and III (described in section 

3.2.3) were produced as practical-type extruded pellets under the same conditions.  
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2.2 Experimental animals and husbandry 

2.2.1 Experimental fish 

The experimental animals used in this study were European seabass for 

experiments I and II and gilthead seabream for experiment III. All in vivo experiments 

took place in the facilities of the Institute of Aquaculture of the Hellenic Centre for 

Marine Research in Athens (HCMR, Helliniko, Athens, Greece). 

2.2.2 Facilities 

Fish for experiments I and II, with respect to digestibility trials, were held in 

enclosed tanks at the aquarium facilities of HCMR. Fish for experiments II and III, 

with respect to growth trials, were held in small cages placed in cement tanks. All 

trials were carried out in triplicate. 

2.2.2.1 Digestibility tanks 

Digestibility trials were carried out in 15 cylindroconical fibreglass tanks of 

250L in two groups in order to test all 7 diets in triplicate; in the first group 5 diets 

were tested and in the second group three diets were tested including in both groups 

the control diet. The conical bottom of each tank ended in a horizontal pipe and this 

pipe ended in the faecal trap (Figure 2.1). Water inlet was via a pipe placed vertically 

at the water surface. The pipe had several holes on the same side and the 

unidirectional water flow set up a gentle circular current. The current moved faeces to 

the bottom of the tank immediately after they were voided into the water. The inflow 

rate was approximately 150Lh-1 and water was pumped continuously from the sea via 

a mechanical filter (5μm) before entering the tanks. One airstone diffuser was located 
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in each tank to provide sufficient oxygen, especially in the case of failure of the water 

supply. 

2.2.2.2 Growth tanks and cages 

Growth trials were carried out in 2 cement tanks in the outdoor facilities with 

dimensions 5m x 6m x 1.50m. Into the 2 cement tanks were placed a total of 21 small 

cages (Figure 2.2). The cage dimensions were 1m x 1.5m and 1.3m height and they 

were suspended about 20cm from the tank bottom. 400Lh-1 were pumped continually 

from the sea via a mechanical filter (5μm) to each tank. Stone diffusers were placed in 

the tanks to provide sufficient oxygen as assurance, especially in the case of failure of 

the water supply. 

2.2.2.3 Water quality 

Oxygen concentration was approximately 8±1mgL-1, pH ranged from 7.8 to 8.0 

and salinity was 38ppt. Temperature of the water is defined for every experiment in 

the respective chapter. 
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Figure 2.1. Digestibility tanks and faecal trap 

 

 

Figure 2.2. Cages for growth trial 
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2.2.3 Feeding  

Fish in experiments I, II and III were carefully hand fed to make sure no feed 

escaped from the cages. European seabass were fed to satiation for digestibility and 

growth trials, while one specific meal (1% of the wet bodyweight) was given to the fish 

before measuring gastrointestinal evacuation time and rate. Restricted feeding was 

applied to gilthead seabream in experiment III to avoid overfeeding as seabream is 

known to be voracious especially at high temperatures. The feed consumed was 

recorded daily. 

2.3 Sampling procedures 

2.3.1 Feed sampling 

At the beginning of each experiment sufficient amounts of the diets were collected 

to complete the analyses under investigation. Diets were thoroughly milled and kept 

refrigerated at 4°C until analysed. 

2.3.2 Faeces sampling 

Faeces were collected in a trap using a modification of the Guelph method (Cho et 

al., 1982). The faecal trap was surrounded with ice during faecal settlement to minimize 

bacterial degradation. Faecal samples were removed every morning, prior to feeding, in 

centrifuge tubes. Faeces were centrifuged and kept at -20ºC until they were freeze-dried 

and subsequently analysed. 
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2.3.3 Fish sampling 

Prior to any experimental procedure (e.g. weighing and blood sampling) all fish 

were anaesthetized using phenoxyethanol/ethanol (1:1, v/v) in a concentration of 

0.4mlL-1 (Ekmann, personal communication). After the experimental procedure the fish 

were placed in clean aerated sea water and allowed to recover before being returned to 

the experimental tanks. Measurements of fish weight were made at the beginning and 

throughout growth experiments.  

In growth experiments (II and III) fish were fasted for 40 hours and blood samples 

were taken prior to any other sampling procedure. Fish were killed with a sharp blow to 

the head. Two pools of 5 fish per cage were taken for whole body proximate 

composition analysis, 2 pools of 4 fish for fillet analysis, 8 fish for blood sampling, 

liver and viscera weight, 2 pools of 3 livers for glycogen and fat analysis and the 

internal organs of 3 fish per cage for histological analysis.  

Where fish were sacrificed for tissue sampling they were first anaesthetized and 

then killed with a sharp blow to the head such that death was instantaneous. Whole fish, 

tissue, intestine contents and blood samples were immediately stored as described in the 

methodology of the appropriate chapter for each experiment. All samples were placed 

in appropriate containers i.e. plastic tubes, centrifuge tubes, beakers, plastic bags etc 

and stored as required until further analyses.  

2.4 Proximate analysis of diets, tissues and faeces 

The chemical compositions of the experimental diets, fish tissues and faecal 

samples were determined by proximate analyses based on methods described in AOAC 

(1990). 
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2.4.1 Lyophilization or freeze-drying  

During freeze-drying samples are quickly frozen onto the walls of a vessel that is 

then attached to an ice trap that is kept at -40°C and a vacuum is applied. The water in 

the frozen sample sublimes and is deposited in the trap. Samples are left undisturbed 

until all the ice has sublimed and the sample container is no longer cold. Then air is 

slowly admitted to the system, and the vessels are removed. 

2.4.2 Moisture 

Approximately 1.5g of ground sample was placed in a pre-weighed porcelain cup. 

Moisture content was determined as the loss in weight on drying at 105°C for 24 hours.  

2.4.3 Ash 

After moisture determination samples were placed in a furnace and ash content 

was determined as the residue after ignition at 550°C for 12 hours.  

2.4.4 Crude protein 

Crude protein content was determined by Kjeldahl analysis (nitrogen x 6.25) using 

a Kjeltec Autoanalyser (Tecator). Crude protein is determined by estimating the total 

nitrogen content of a material, assuming that all nitrogen is proteinaceous in origin. 

Approximately 200mg of sample was added to the digestion tubes. A tablet containing 

7.5mg selenium as a catalyst was added to each sample together with 3 glass balls to aid 

boiling. Samples were then digested for 1 hour at 410°C with 6ml concentrated H2SO4 

and 1ml of H2O2 was added to assist clarifying the sample. After cooling, 20ml of 

distilled water was added to each tube and the samples were distilled in Kjeldahl 

apparatus and titrated.  
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2.4.5 Acid hydrolysis 

Extruded samples were hydrolysed using a Soxtec System 1047 hydrolysis unit 

(Tecator Application note 92/87). Approximately 1g of sample, 1g of celite and 100ml 

of HCl (3M) were added to each tube. All tubes were placed in the hydrolysis unit in a 

fume cupboard and boiled gently for 1 hour. The solutions in the tubes were then 

filtered through glass thimbles, which were then dried in an oven at 60°C overnight. 

The following day the samples were extracted with petroleum ether according to 

Soxhlet method as described in 2.4.6. 

2.4.6 Crude fat 

Crude fat was determined by exhaustive Soxhlet extraction using a Soxtec System 

HT6 (Tecator application note 67/83). Approximately 3g of sample were added to a 

thimble and placed in the extraction unit. Samples were boiled for 30min. in petroleum 

ether and rinsed for 2 hours and the extracted lipid was completely collected in the 

extraction cups. After extraction the solvent was evaporated and the extracted material 

weighed. Total lipid content was estimated by the weight difference of the cups before 

and after the extraction. 

2.5 Lipid determination according to the phosphovanillin method  

The phosphovanillin method of Nengas et al. (1995) is a micro method appropriate 

for faeces analysis where total sample quantities are very low (approximately 70mg). 

Lipids were extracted from the faeces using chloroform/methanol 2/1 solution. The 

solvent was then evaporated and the remaining lipids oxidised with hot concentrated 

sulphuric acid. The resulting pink colour produced by reaction with the phosphovanillin 

reagent was measured in a spectrophotometer at 530nm. 
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2.6 Lipid determination according to Folch method  

Folch is a gravimetric method appropriate for analysis of samples with high 

moisture contents (Folch et al., 1957), such as livers. The lipids are extracted in 

chloroform/methanol (2:1, v/v). 

250-300mg of homogenized liver sample stored at –20ºC, was weighed and added 

to test tubes. 5ml of chloroform/methanol (2:1, v/v) were added to each tube and 

homogenized carefully in a bath of iced water. Dilutions were filtered under vacuum in 

a new pre-weighed tube. To the filtered solution 1ml of NaCl 0.9% was added, the 

contents vortex mixed and centrifuged at 2000rpm for 5min. The upper phase was 

discarded and approximately 1ml of Folch reagent (chloroform/methanol/NaCl 0.9%, 

3:48:47) was added. The upper phase was discarded again and the remaining solution 

was evaporated with nitrogen and put in the oven for 1h at 60°C. Samples were left to 

cool and weighed. The fat content of the samples was calculated by the weight 

difference of the tubes before and after the extraction. 

2.7 Glycogen determination in liver tissue 

Glycogen was extracted from liver tissue using citrate buffer and quantitavely 

hydrolysed to glucose by amyloglucosidase and then glucose was measured 

colorimetrically with the Human kit (cat. No. 10260, HUMAN). The method is 

described by Murat and Serfaty (1974). 

100-120mg of frozen homogenized liver was weighed into test tubes and placed in 

ice. 5ml of citric acid buffer (0.1M, pH 4.3) were added to each tube. Samples were 

homogenized carefully and 100μl of the amyloglucosidase enzyme solution were added 

to each tube followed by vortex mixing. Samples were incubated for 24h at room 

temperature and then centrifuged at 3000rpm for 10min. Supernatant was diluted (1/10) 
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in citric buffer and 100μl of the last dilution were pipetted to new tubes and 2.5ml of 

the HUMAN reagent were added. Tubes were incubated for 10min at room temperature 

and absorbance measured at 500nm. Glycogen content was calculated as: 

Glycogen, %=Glucose Standard (mg) 100
1.005.0

5.05
×

××
××

s

std

Abs
Abs  

Where, mg of glucose standard=0.02mgml-1, Absstd is the absorbance of standard, 

Abss is the absorbance of sample, 5/0.05 the 1st dilution and 0.5/0.1=the 2nd dilution. 

2.8 Determination of Yttrium oxide (Y2O3)  

Yttrium oxide was included in the tested diets as a marker and was determined in 

diets and freeze-dried faeces according to Refstie et al. (1997). Approximately 150–

200mg of sample was weighed and combusted at 550ºC overnight in glass scintillation 

vials. When cooled 5ml of HCl/HNO3 (2:1 v/v) was added and the samples were boiled 

until colourless. When cooled a few drops of water were added, the sample was 

dissolved in 1.25ml HNO3 (concentrated) and diluted to 25ml with distilled water. The 

concentration of Yttrium was measured using an ICAP spectrometer. Analysis took 

place in the labs of Plymouth University and at Stirling University with the support of 

technical staff. 

2.9 Carbohydrate determination  

2.9.1 Determination of Starch 

This method is used to determine starch according to the directions of the 

commercial kit; Megazyme Total Starch Assay Kit (Megazyme International, Ireland) 

(McCleary et al., 1992). Starch hydrolysis proceeds in two phases; in phase I, starch is 

partially hydrolysed and totally solubilised and in phase II, the starch dextrins are 
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quantitatively hydrolysed to glucose by amyloglucosidase. For diet samples, complete 

solubilisation of starch was achieved by cooking the sample in the presence of 

thermostable α-amylase. However, for legume samples that contained high levels of 

resistant starch, complete solubilisation and dextrinisation required pre-treatment with 

dimethyl sulphoxide (DMSO) at 100ºC. 

2.9.2 Determination of free glucose, sucrose and raffinose-series oligosaccharides  

This method is used to determine three different oligosaccharides; glucose, 

sucrose and the sum of raffinose series oligosaccharides (RSO) (raffinose, verbascose 

and stachyose), followed the directions of the commercial kit; Megazyme Raffinose/D-

Glucose Assay Kit (Megazyme International, Ireland). This method is applied to raw 

and extruded legumes after very fine grinding (ball milling). 

RSO are hydrolysed to galactose, glucose and fructose using α-galactosidase and 

invertase. The glucose is then determined using glucose oxidase/peroxidase reagent 

spectrophotometrically. Raffinose, verbascose and stachyose are determined as a group 

and not each one separately. The results are expressed on a molar basis, since RSO 

contain one mole of glucose. 

2.9.3 Determination of total non-starch polysaccharides  

Determination of DF as NSP with spectrophotometric measurement of constituent 

sugars was carried out according to Englyst et al. (1994) with a modification. NSP 

content was calculated using the equation of a standard curve derived from a standard 

sugar solution. At the first stage starch present in the sample was completely removed 

enzymically, and the NSPs were broken into simple sugars under acidic hydrolysis and 
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measured as a single value for total sugars by spectrophotometry. Values were obtained 

for total, insoluble and soluble NSP. 

The samples were treated with DMSO and consecutively with different enzymes; 

heat stable amylase (Termamyl 120L Type L, Novozyme), pancreatin (Sigma, 

Cat.No.P-1750), pullulanase (Promozyme 400L, Novozyme) and pectinase (Sigma, Cat. 

No. P4716-10KU). After NSP isolation by enzymatic hydrolysis, they were precipitated 

and washed repeatedly. Different precipitating and washing procedures were followed 

for the measurement of total and for insoluble NSP. The colour of the samples was 

obtained with 3,5- dinitrosalicylic acid (DNS) and the absorbance measured at 530nm. 

The amount of S-NSP was calculated as the difference between total and insoluble 

NSP. 

2.10 Antinutritional factors determination 

2.10.1 Determination of total tannins 

Tannins were extracted from samples according to Budini et al. (1980) and 

determination was based on a formation of the Prussian Blue method (Graham, 1992). 

Tannins were extracted by gently refluxing the samples for 35min in 2N HCl. The 

contents were filtered while still hot into a 250ml volumetric flask and made up to 

volume with distilled water. The extract was incubated with K3Fe(CN)6 (0.016M) and 

FeCl3 (0.02M in 0.1N HCl) and then treated with 6M H3PO4  and 1% gum acacia. The 

colour was measured spectrophotometrically at 700nm and the measurement of tannins 

derived from the equation of a catechin standard curve. 
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2.10.2 Determination of phytic acid  

Determination of phytate was carried out according to Latta and Eskin (1980) 

using anion-exchange column (AEC) with resin (AGI-X4, 100-200 mesh chloride form, 

Bio-Rad Laboratories). Determination of phytate is based on its precipitation as 

insoluble ferric phytate in acid solution. Phytate was extracted from the samples with 

dilute HCl and then the extracts were eluted through the AEC to separate inorganic 

phosphorus and avoid overestimation of phytate in the sample. Phytate was eluted with 

0.7M NaCl solution and determination of phytate was based on its reaction with Wade 

reagent (0.03% FeCl3 6H2O and 0.3% sulfosalisylic acid) and a phytic acid standard 

curve. 

2.10.3 Determination of trypsin inhibitors 

Trypsin inhibitors (TI) were determined according to the method of Smith et al. 

(1980) with some modifications. The method involves extraction of the inhibitors from 

the sample at pH 9.5 and mixing unfiltered suspensions with bovine trypsin. The 

activity of the remaining trypsin was then measured on BAPNA substrate (N-benzoyl-

DL-arginine-p-nitroanilide hydrochloride) under standard conditions. The p-nitroaniline 

released was measured spectrophotometrically at 410nm. This provided a linear 

measure of the residual trypsin activity (within the limits of the method), so that the 

amount of pure trypsin inhibited per unit weight of sample can be calculated.  

2.11 Serum analysis 

2.11.1 Determination of chemiluminescence 

Chemiluminescence was determined according to Marnila et al. (1995). The 

procedure took place in the Pathology & Immunology lab of HCMR under the 
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supervision of Dr. Morgane Henry. Blood serum is separated from erythrocytes by 

centrifugation for 10min at 17000rpm. In quadruplate wells of a white flat-bottomed 96 

wells microplate (Nunc), 10μl of 10mM luminol were added to 265μl of diluted blood 

and kept for 10min at room temperature to allow the background chemiluminscence to 

stabilize. Then, 25μl of non-opsonised zymosan at 5mgml-1 were added to each well 

and chemiluminescence was read every 3min for 2 hours in a GeniosPro luminometer 

(Tecan, Austria). Results were expressed as the peak chemiluminescence in relative 

luminescent units (rlu). 

2.11.2 Determination of glucose in blood serum 

The glucose oxidase method, GOD-PAP, was used for glucose measurement, 

without extracting the protein (cat. No. 10260, HUMAN). 10μl of the serum was added 

to a 10ml tube and 1ml of the monoreagent added. Samples and the standards were left 

for 10min at 20-25ºC and the absorbance was measured spectrophotometrically at 

500nm. Serum glucose was calculated as: 

std

s

Abs
AbsmgdLC ×=− 100, 1   or 

std

s

Abs
AbsmmolLC ×=− 55.5, 1  

Where Abss is the absorbance of sample and Absstd the mean absorbance of 

standards. 

2.11.3 Determination of total protein in blood serum 

Serum protein was measured with the photometric method of Biuret, (cat. No. 

10570, HUMAN). 20μl of serum was added to a 10ml tube and 1ml of monoreagent 

added. Samples and the standards were left for 10min at 20-25ºC and absorbance 

measured spectrophotometrically at 546nm. Serum protein was calculated as: 
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C, gdL-1

std

s

Abs
Abs

×= 8   or C, gL-1

std

s

Abs
Abs

×= 80  

Where Abss is the absorbance of sample and Absstd the mean absorbance of 

standards. 

2.11.4 Determination of triacylglycerols in blood serum 

Serum triacylglycerols were measured with the enzymatic method L.C.F., 

Photometric method GPO-PAP (cat. No. 10724, HUMAN). 10μl of serum was added to 

a 10ml tube and 1ml of monoreagent added. Samples and standards were left for 10min 

at 20-25ºC and absorbance measured spectrophotometrically at 546nm. Serum 

triacylglycerols was calculated as: 

C, mgdL-1

std

s

Abs
Abs

×= 200  or C, mmolL-1

std

s

Abs
Abs

×= 28.2  

Where Abss is the absorbance of sample and Absstd the mean absorbance of 

standards. 

2.11.5 Determination of cholesterol in blood serum 

Serum cholesterol was measured with the enzymatic method L.C.F., Photometric 

method GHOD-PAP (cat. No. 10028, HUMAN). 10μl of serum was added to a 10 ml 

tube and 1ml of buffer solution added. For standards, 10μl of standard solution was 

added to a 10ml tube and 1ml of monoreagent added. Samples and standards were left 

for 20min at 20-25ºC and absorbance measured spectrophotometrically at 546nm. 

Serum cholesterol was calculated as: 

C, mgdL-1

std

s

Abs
Abs

×= 200   or C, mmolL-1

std

s

Abs
Abs

×= 17.5 , 
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Where Abss is the absorbance of sample and Absstd the mean absorbance of 

standards. 

2.12 Histology of internal organs 

Tissues from organs related to digestion were dissected from European seabass 

and gilthead seabream in experiments II and III. Liver, anterior and posterior intestine, 

spleen and kidney were collected. The samples were fixed in formalin until processing. 

All formalin fixed tissues were routinely dehydrated in ethanol, methanol and 

embedded in paraffin according to standard histological techniques. Sections of 4μm 

were cut and stained with haematoxylin and eosin. Histological examination was 

performed by light microscopy. Histology procedures took place in the histology lab of 

HCMR and Dr. George Rigos assisted with examination of the sections. 

2.13 Determination of physical characteristics of the pellets  

2.13.1 Texture analysis 

For texture determination of the pellets the Stable Micro Systems TA-XT2 

Texture Analyser was used and calibrated every several samples with a 5kg weight. For 

sample examination a blade (knife edge) was placed on the texture analyzer and cut 

through the sample at a speed of 1mms-1 from a distance of 5mm. The blade approach 

was applied by pressing the blade through the pellet vertical to the flat surface of the 

‘pellet cylinder’. The shear force (Newton, N) was measured as the maximum force 

required cutting through the samples that was equal to the pick height of the given 

curve on a force (N)–time (s) diagram. 
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2.13.2 Water activity 

For the determination of water activity a Rotronic Hygrometer A3 was used. 

Extruded feed samples were examined using this device in a simple appliance. This 

parameter is very important for extruded products their possible storage time. This 

device can measure the relative humidity of the space around the sample. The principle 

of the method is based on the change of conductivity of the ingredients when moisture 

is present. The sample (15-20g) is placed in a small plastic container and when 

temperature and relative humidity of the sample space are stabilized the device gives 

the final value. Each measurement lasted for approximately 5min and all measurements 

took place at 23°C with no replicates. 

2.13.3 Pellet density  

Pellet density d was measured by the formula d=m/V, where m is the mass 

determined in an analytical balance and V the cylinder volume of the pellet. 

Dimensions of 12 pellets, chosen to have the shape of a well formulated cylinder, were 

determined with a calliper. 

2.13.4 Water absorption  

Water absorption of the pellet was measured by immersing 15 pellets in sea water 

in triplicate groups for 5s and then determining moisture as described in section 2.4.2. 

The final value was calculated by subtracting the initial moisture content of the diet 

from the measured value. 
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2.13.5 Pellet settling velocity  

In a volumetric cylinder of 1L and 34cm height, sea water, of salinity 38, and 

temperature at 20°C, was added and pellets left to fall through the water and reach the 

bottom of the cylinder. The time (t) needed for each pellet to pass through 34cm of the 

cylinder was measured and the velocity (v) of the pellets of each diet determined 

according to the formula v=34/t cms-1. 

2.14 Calculations 

Calculation of digestibility coefficients 

ADCs for control and test diets were calculated according to the formula: 

ADC % = 100 x [1- (F x Dy)/(D x Fy)] 

Where F=nutrient or energy concentration in faeces, D=nutrient or energy 

concentration in diet, Dy=yttrium concentration in diet and Fy=yttrium concentration in 

faeces.  

Energy in diets and faeces was determined according to the formula (Blaxter, 

1989): 

Energy (kJg-1) = 23.6xP+17.3xS+39.5xF 

Where P=% protein in faeces or in diet, S=% starch in faeces or in diet, F=% fat in 

faeces or in diet. 

The following formulae were applied to the data: 

Feed Conversion Ratio:  

FCR
)(

)(
ggainweightwetdaily

gFIdaily
=  
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Specific Growth Rate: 

SGR, %/day 100)]ln()[ln( 01 ×
−

=
daystotal

WW  

Hepatosomatic Index: 

HSI, % 100×=
BW

WLiver  

Viscerosomatic Index: 

VSI, % 100×=
BW

WViscera  

Nitrogen Intake, NI, (g)
25.6

PI
=  

Protein productive value (g protein gain x g protein ingested−1): 

PPV=
..

0011

IFcumulativeP
WPWP

F ×
−  

In the above formulae FI is feed intake, PI is protein intake W is the weight of the 

sampled fish in grams; W0 and W1 are the initial and the final fish mean weights in 

grams; Wliver and Wviscera are the weights in grams of the liver and viscera, respectively, 

of the sampled fish; P0 and P1 are the initial and final protein concentrations of the fish; 

PF is the protein concentration of the feed on a dry matter basis; cumulative feed intake 

was determined in grams on a dry matter basis. 

2.15 Statistics 

All the data are presented as means±SD (n=3). The statistical analyses for all 

experiments were performed using SPSS 13.0 (SPSS Inc) and Statgraphics Plus 2.1. 

Gastrointestinal evacuation models in experiment I were plotted in Excel (Office 

Microsoft) and regressions were performed using the statistical program Statgraphics. 

The linear fits and the comparison of slopes were tested at a significance level P=0.05. 
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Significant differences between dietary treatments were determined by one-way or 

two-way Analysis of Variance (ANOVA, General Linear Model) depending on the 

case. Post-hoc tests were used to rank the groups and the main effects respectively at a 

significant level (P=0.05), while Tukey post-hoc test applied for one-way ANOVA and 

Bonferroni for two-way ANOVA. 

The experimental designs for the experiments I, II and III were factorial with 2 

factors (2 inclusion levels x 3 different legume types). A control diet that was 

absolutely comparable to 3 out of 6 experimental diets was also tested. Hence, the 

effects of the one factor were analyzed with one-way ANOVA, but also one-way 

ANOVA applied for all seven diets. The effects of two factors and their interactions 

were analysed by two-way ANOVA. When significant interactions of the two factors 

were observed, multiple comparison testing was performed to look at the simple main 

effects (instead of the main effects), that is the main effect of one factor at a given level 

of the other (Zar, 1999).  

Data were tested for their normality by One-Sample Kolmogorov-Smirnov Test 

and Homogeneity of Variances by Levene test in experiments I, II and III. Data that 

were identified as non-homogeneous (Levene’s test) were subjected to square root, 

exponential or log transformation before analysis.  

Possible differences among the different dietary groups for their organoleptic 

characteristics were checked by non Parametric Kruskal-Wallis test (SPSS, 13.0) in 

experiment II.  

Pearson correlation in SPSS 13.0 used to evaluate any significant (P<0.01 and 

P<0.05) positive or negative correlation among data (normally distributed), fat 
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metabolism parameters in experiment II and III and fillet characteristics in experiment 

II.  
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CHAPTER 3. EXTRUSION OF PEAS, CHICKPEAS & FABA BEANS 

 

3.1 Introduction 

Legumes like faba beans, chickpeas and field peas are valuable potential sources 

of both protein and energy for European seabass and gilthead seabream feeds. All 

these crops are cultivated in Mediterranean countries as well as in the rest Europe. 

This could be an advantage with a positive effect on the final price of the product due 

to minimization of transport costs, and also in development of agricultural production 

with vertical integration between seed and fish feed production. It is, however, well 

known that the use of legumes, especially for carnivorous species, is limited due to 

the presence of various ANF. 

To overcome this problem, a variety of techniques have been already examined 

in plant materials like soaking (Frias et al., 2000), boiling (Marquez and Alonso, 

1999), autoclaving (Mansour et al., 1993), microwaving (Marconi et al., 2000), 

roasting, dehulling, germination, fermentation (Chitra et al., 1996), supplementation 

with enzymes (Riche and Garling, 2004) and extrusion cooking (Abd El-Hady and 

Habiba, 2003). To destroy or eliminate the effects of ANF and to improve the 

physical (texture and palatability) and chemical (starch gelatinization) characteristics 

of feeds, modern fish feed technology applies extrusion processing (Sorensen et al., in 

press). Extrusion processing, as described in section 1.5.3, includes a series of 

different pieces of apparatus such as grinder, preconditioner, extruder, drier and 

cooler that have a wide range of abilities and which can differentiate the final product 

depending on steam and water quantity, pressure, mechanical shear, temperatures, 

duration of application and die dimensions (Thomas and van der Poel, 1996; Thomas 

et al., 1997). 
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Regarding ANFs, TI is a crystalline globular protein that has been shown to 

depress the growth rate of mammals, chickens and fish and also to cause pancreatic 

hypertrophy (Hendricks, 2002). Phytic acid is the hexaphosphate of myo-inositol and 

is a constituent of all cereals and oilseed meals and has the capacity to tightly bind 

divalent cations present in seeds, such as calcium, magnesium and zinc rendering 

them unavailable to animals when ingested (Hendricks, 2002). Tannins are secondary 

compounds of various chemical structures widely occurring in the plant kingdom and 

are generally divided into hydrolysable and condensed tannins. Their antinutritional 

effects include interference with digestive processes by binding enzymes or by 

binding to feed components such as proteins or minerals (Liener, 1989). Tannins also 

reduce the absorption of vitamin BB12, while they are known to interact with other 

antinutrients. For instance interaction between tannins and lectins seems to reduce the 

inhibitory action of tannins on amylase (De Boer and Bickel, 1988) and their 

interaction with cyanogenic glycosides reduces the deleterious effects of the latter 

(Bromley, 1994). 

Oligosaccharides are low molecular weight carbohydrates containing α-

galactosidic and β-fructosidic linkages. Sucrose, and RSO (raffinose, stachyose and 

verbascose) have been indicated as the causative factors of osmotic effects in the 

intestine and anaerobic fermentation of these sugars results in increasing gas 

production (Van Barnevelt, 1999). NSP are important constituents of grain legumes 

and cereals (Grabner and Hofer, 1985), and their negative effects in fish may be due 

either to binding to bile acids or obstructing the action of digestive enzymes and 

movement of substrates in the intestine (Storebakken et al., 1998). The NSP, and 

particularly the S-NSP, are more detrimental to growth of fish than the 

oligosaccharides (Refstie et al., 1999) because they have the ability to trap water and 
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form gum-like masses in the intestine which increase the viscosity of intestinal 

contents and obstruct digestive enzyme activity as explained in section 1.1.2. 

Extrusion is effective in the inactivation of TI (Aslaksen et al., 2007), while 

temperature does not seem to improve bioavailability of minerals bound by phytic 

acid (Francis et al., 2001). The positive effect of extrusion on digestibility of all 

nutrients in plant feedstuffs could be attributed to a partial degradation of NSP 

(Francis et al., 2001). However, this degradation is not sufficient to consider NSPs as 

heat-labile ANF (Alonso et al., 2001). 

Plant materials can affect the pelleting properties of feed mash when included in 

fish diets (Thomas et al., 1998). Hardness, durability, water absorption, settling 

velocity and density are the main physical characteristics and some of these could be 

affected when new feedstuffs are included in diets, whilst different type of starch (e.g. 

amylose/amylopectin ratio, starch granules) and fibres (soluble or insoluble) in 

combination with processing conditions can also differentiate the final product 

(Thomas et al., 1998). The legumes tested in the present study have high starch 

contents and NSP (Englyst and Hudson, 1996; Knudsen, 1997) and were included up 

to 36g100g-1 in diets. It was thus essential to investigate the effects of their 

incorporation on the physical properties of the pellets. 

The aim of the present research was to investigate the effect of two different 

preconditioning temperatures and three different drying temperatures in combination 

on the chemical composition and some key ANF of peas, chickpeas and faba beans. 

Proximate composition, TI, total tannins, phytic acid, oligosaccharides and NSP were 

determined, before including whole seed flours in seabass and seabream diets using 

commercial pellet manufacturing conditions. The same batches of legume seeds were 
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contained in the experimental diets, for seabass and seabream in the in vivo trials 

(Experiments I, II and III).  

3.2 Materials and Methods 

3.2.1 Tested ingredients 

Three different legumes were used for the present experiment: 1) middle size, 

kabuli–type chickpeas (CP) and 2) an early-middle season and low tannin variety and 

light beige seed colour peas (P), both cultivated, in the area of Thessaly in central 

Greece and 3) a common faba bean (horse beans) variety (B), cultivated in Denmark. 

3.2.2 Processing of tested ingredients 

Extrusion processing of raw materials took place at the BioMar TechCentre 

(Brande, DK) using the system described in detail in section 2.1.1. Pea, chickpea and 

faba bean whole seeds were ground to fine flour (1.5mm) and processed separately. 

Wheat (W) was only tested for one processing treatment and for two different 

grinding sizes (1.5mm and 0.2mm).  

Flours were first treated in the preconditioner at temperatures below, above and 

‘standard’ for commercial processing procedures before entering the extruder. The 

temperature was approximately 70ºC for the low (Lp), about 90ºC for the standard 

(Sp) and 100ºC for the high (Hp) temperature preconditioner treatment. One sample 

was taken of each material during the standard preconditioner treatment (Sp/-), at the 

extruder exit, without being dried. These samples contained more than 20% moisture 

and they were freeze dried before the analysis (P6, CP6, B6). 

The extruder was operated at 380rpm and the feeder was set to deliver 107-

116gmin-1. Moisture contents were consistent in both barrels with a water flow of 
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12.5kgh-1 in the extruder barrel. The extrudates were conveyed into a 6 level dryer 

and the temperature lowered from 120-90ºC for the standard (Sd) and from 150-

120ºC for high (Hd) drier treatment. Processing conditions are presented in summary 

in Table 3.1. 

 

Table 3.1. Processing conditions for peas, chickpeas, faba beans and wheat in 

preconditioner (p), extruder and drier (d) at low (L), standard (S) or high (H) 

temperature. 

 Processing conditions

 

 1 2 3 4 5 6 
 Lp/Sd Sp/Sd Sp/Hd Hp/Sd Hp/Hd Sp/- 
Preconditioner (ºC) 70 90 90 100 100 90 

Extruder       
Extruder rpm 380 380 380 380 380 380 
Ampere 19 18 20 19 18 19 
Feeder (gmin-1) 113 113 113 113 113 113 
Water (Kgh-1) 12.5 12.5 12.5 12.5 12.5 12.5 
Outlet die (ºC) 110 110 110 110 110 110 
Front (ºC) 95 95 95 95 95 95 
Middle (ºC) 70 70 70 70 70 70 

Drier       
Level 1 (ºC) 120 120 150 120 150 - 
Level 6 (ºC) 90 90 120 90 120 - 

Cooling YES YES YES YES YES YES 

3.2.3 Diet formulation 

All diets were manufactured at the BioMar TechCentre (Brande, DK) using a 

twin-screw extruder as described in section 2.1. Legumes were ground to pass a 

1.5mm screen. All diets contained 0.1% yttrium oxide (Y2O3) as an indigestible 

marker. Processing of the tested diets was decided to be the common commercial 

procedure. The extruder was operated at approximately 340rpm and the feeder was set 
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to deliver 135gmin-1. Mass moisture content was maintained in both barrels with a 

water flow of 6kgh-1 in the extruder barrel while the temperature in the outlet die was 

approximately 70ºC. The dryer temperatures on the different levels ranged from 110-

90ºC and the cooler was set at 11 ºC. 

3.2.3.1 Diets for Experiment I 

Chickpeas, field peas, and faba beans were included in diets that were 

formulated to be isoenergetic (20kJg-1) and isonitrogenous (42g100g-1 protein) 

containing 15g100g-1 (CP15, P15 and B15) or 30g100g-1 (CP30, P30 and B30) of 

each legume plus a wheat based (23%) control diet. In diets containing 15g100g-1 of 

legumes, half of the wheat was replaced compared to the control, whilst in diets 

containing 30g100g-1 of legumes wheat was completely replaced (excluding 1g100g-1 

of wheat in CP30 diet). The pellet diameter was intended to be 4.5mm (Table 3.2). 

3.2.3.2 Diets for Experiment II 

The same legumes were included in the experimental diets of Experiment II. Six 

practical type extruded diets were formulated containing approximately 17g100g-1 (L 

diets) or 35g100g-1 (H diets) of each legume plus the control diet (Table 3.3). All diets 

were intended to be isoenergetic (20kJg-1) and isonitrogenous (40g100g-1 protein) and 

were formulated to include similar levels of fishmeal (26g100g-1) and high levels of 

plant protein sources (soybean meal, high protein sunflower and corn gluten). In L 

diets, legumes completely substituted wheat compared to the control diet. However, to 

formulate H diets it was necessary to reduce plant proteins (soybean and high protein 

sunflower) by half, to maintain the protein and energy content. The diameter of the 

pellets was intended to be 4.5mm. 
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3.2.3.3 Diets for Experiment III 

Six practical type extruded diets were formulated containing approximately 

17g100g-1 (L diets) or 35g100g-1 (H diets) of each legume (P, CP, B) plus the control 

diet (Table 3.4). All diets were intended to be isoenergetic (19kJg-1) and 

isonitrogenous (42g100g-1 protein) and were formulated to include equal levels of 

fishmeal and plant protein sources (soybean meal, high protein sunflower, corn gluten 

and the tested legumes). In L diets, legumes completely substituted wheat compared 

to the control diet. However, H diets were formulated as practical, low cost and 

sustainable diets and thus it was necessary to reduce plant proteins differently 

(soybean and high protein sunflower and gluten), to maintain the protein, energy and 

IAA content. The pellet diameter was intended to be 4mm. 

3.2.4 Chemical analysis 

Proximate analysis was based on methods of AOAC (1990) as described in 

section 2.4. ANF (total tannins, phytic acid and TI) were determined by the methods 

described in section 2.10. Starch, total, soluble and insoluble NSP were determined 

according to the chemical methods described in section 2.9. All ingredients were ball-

milled prior to analysis for the materials to be more consistent, especially for the 

enzymatic methods. 

3.2.5 Physical characteristics of the diet pellets 

Texture analysis to determine the pellet hardness, water activity, pellet density, 

water absorption and settling velocity were determined as described in section 2.13.  
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Table 3.2. Seabass diet composition used in experiment I. 

Raw material (g 100g-1) Control B15 CP15 P15 B30 CP30 P30 

Fishmeal 70%, Norway 61.4 57.1 57.9 57.7 54.1 55.0 55.3 

WHEAT 24.2 13.1 12.9 12.5  1.3  

FABA BEANS  15.0   30.0   

CHICKPEAS   15.0   30.0  

FIELD PEAS    15.0   30.0 

SA Fish oil, Peru 14.1 14.5 13.9 14.5 15.6 13.4 14.4 

Premix1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Proximate composition (%)        

Ash 9.5 10.1 9.6 10.0 10.0 9.8 9.9 

Crude fat 17.3 18.1 17.6 20.1 20.8 19.4 18.9 

Crude protein 42.3 43.8 42.9 42.9 44.3 44.0 43.1 

Total Starch 15.8 14.8 14.2 14.6 11.7 12.4 13.3 

Wheat starch2 15.8 8.9 8.8 7.8 0.0 0.9 0.0 

Legume starch2 0.0 5.9 5.3 6.8 11.7 11.5 13.3 

Total NSP3 5.0 5.4 4.8 5.2 6.9 5.1 6.1 

S-NSP4 1.6 2.5 1.5 1.8 2.4 1.5 2.3 

I-NSP5 3.4 2.6 3.4 3.6 3.7 3.6 4.6 

Total carbohydrates 20.8 20.2 19.0 19.7 18.7 17.5 19.4 

Water content 6.7 6.3 7.4 6.6 8.3 6.8 7.3 

Energy (kJg-1) 20.1 19.5 20.6 20.7 20.2 19.9 20.1 
1Vitamins (per kg/premix): Vitamin A (UI) 1,250,000, Vitamin D3 (UI) 250,000, Vitamin E (ppm) 
43,750, Vitamin B1 (ppm) 2,500, Vitamin B2 (ppm) 5,000, Vitamin B6 (ppm) 2,500, Vitamin B12 
(ppm) 7.5, Vitamin K3 (ppm) 2,500. 
Minerals (per kg/premix): Zinc (ppm) 25,000, Iodine (ppm) 300, Copper (ppm) 1,250, Manganese 
(ppm) 7,500, Cobalt (ppm) 250, Selenium mineral (ppm) 62.5. Mineral premix also includes Y2O3 to 
give final concentration of 0.1% in the diet 
2Calculated from total starch values and the concentration of each ingredient in the diet. 
3,4,5Total, soluble and insoluble non starch polysaccharides 
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Table 3.3. Seabass diet compositions used in Experiment II. 

Raw materials (g100g-1) Control BL CPL PL BH CPH PH 

Fishmeal 70%, Norway 24.1 25.0 24.9 25.6 24.2 23.4 25.3 

Hi Pro Soya 48%, Brazil 16.0 16.0 16.0 16.0 8.0 8.0 8.0 

Sunflower 16.0 16.0 16.0 16.0 8.0 8.0 8.0 

Corn Gluten 10.0 7.5 8.2 7.4 10.0 10.0 10.0 

WHEAT 17.0       

FABA BEANS  16.5   34.0   

CHICKPEAS   16.5   35.0  

FIELD PEAS    16.5   33.5 

SA Fish oil, Peru 15.4 18.0 17.4 17.6 15.7 14.6 14.2 

Premix1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

MCP2 0.3 0.6 0.6 0.5 0.7 0.6 0.6 

Proximate Composition (%)        

Ash 7.0 7.3 7.4 7.5 7.1 7.1 7.2 

Crude fat 19.3 19.4 20.0 19.2 18.3 18.3 16.8 

Crude protein 40.2 39.6 39.9 40.6 39.9 39.1 38.5 

Total Starch 11.1 7.4 7.6 9.0 14.4 15.8 17.8 

Total NSP3  8.8 9.3 8.1 8.9 9.4 7.6 8.9 

S-NSP4 2.0 1.7 2.5 2.1 2.1 2.1 2.6 

I-NSP5 6.8 7.6 5.6 6.8 7.4 5.5 6.3 

Total carbohydrates 19.9 16.8 15.8 17.9 23.9 23.4 26.7 

Water content 8.3 8.2 8.5 6.7 6.0 5.5 4.4 

Energy (kJg-1) 20.8 19.9 20.4 20.0 20.4 20.3 19.7 
1Vitamins (per kg/premix): A (UI) 1,250,000, D3 (UI) 250,000, E (ppm) 43,750, B1 (ppm) 2,500, B2 
(ppm) 5,000, B6 (ppm) 2,500, B12 (ppm) 7.5, K3 (ppm) 2,500, Niacin (ppm) 12,500, B3 (ppm) 
10,000, Biotin (ppm) 75, C (ppm) 25,000 (stable to extrusion), Folic acid (ppm) 2,500, Ethoxyquin 
(ppm) 10,000. 
Minerals (per kg/premix): Zinc (ppm) 25,000, Iodine (ppm) 300, Copper (ppm) 1,250, Manganese 
(ppm) 7,500, Cobalt (ppm) 250, Selenium mineral (ppm) 62.5. Mineral premix also includes Y2O3 to 
give final concentration of 0.1g100g-1 in the diet 
2Mono calcium phosphate (as a phosphate source) 
3,4,5Total, soluble and insoluble non starch polysaccharides 
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Table 3.4. Seabream diet compositions used in Experiment III. 

Raw materials (g100g-1) Control BL CPL PL BH CPH PH 

Fishmeal 70%, Norway 25.0 25.0 25.0 25.0 25.0 25.0 25.0 

Hi Pro Soya 48%, Brazil 20.0 20.0 20.0 18.5 7.5 6.1 3.3 

Sunflower cake 37 11.1 11.1 9.4 9.7 3.0 3.0 1.8 

Gluten1 13.9 8.9 8.9 12.2 12.0 13.4 17.4 

WHEAT 12.0  .     

FABA BEANS  17.5   35.0   

CHICKPEAS   17.5   35.0  

FIELD PEAS    17.5   35.0 

SA Fish oil, Peru 14.7 15.2 14.8 14.8 12.2 11.2 11.2 

Premix2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

MCP3 3.0 2.0 3.0 3.0 5.0 6.0 6.0 

Proximate composition (%)        

Ash 7.6 7.1 7.1 7.1 7.7 7.8 7.7 

Crude fat 18.5 17.8 17.5 16.5 14.5 15.7 13.3 

Crude protein 43.6 44.2 42.3 42.2 42.2 42.0 41.2 

Starch 9.3 8.0 8.2 9.4 15.7 15.9 18.3 

Total NSP4  8.5 8.8 9.6 8.9 9.8 7.1 7.0 

S-NSP5 2.1 0.6 2.2 1.9 2.4 1.7 1.2 

I-NSP6 6.3 8.2 7.4 7.0 7.4 5.4 5.8 

Total carbohydrates 17.8 16.8 17.9 18.3 25.4 23.0 25.3 

Water content 8.0 8.3 8.2 8.4 7.4 7.1 6.7 

Energy (kJg-1) 19.2 18.8 18.3 18.1 18.4 18.9 18.1 
1Gluten: mixture of corn gluten/wheat gluten 1/1,  
2Vitamins (per kg/premix): A (UI) 1,250,000, D3 (UI) 250,000, E (ppm) 43,750, B1 (ppm) 2,500, B2 
(ppm) 5,000, B6 (ppm) 2,500, B12 (ppm) 7.5, K3 (ppm) 2,500, Niacin (ppm) 12,500, B3 (ppm) 
10,000, Biotin (ppm) 200, C (ppm) 25,000 (stable to extrusion), Folic acid (ppm) 1,500, Ethoxyquin 
(ppm) 10,000,  
Minerals (per kg/premix): Zinc (ppm) 25,000, Iodine (ppm) 300, Copper (ppm) 1,250, Manganese 
(ppm) 7,500, Cobalt (ppm) 250, Selenium mineral (ppm) 62,5, Calcium (ppm) 262,500, Magnesium 
(ppm) 2750, Sodium (ppm) 340. Mineral premix also includes Y2O3 to give final concentration of 
0.1g100g-1 in the diet 
3Mono calcium phosphate (as a phosphate source). 
4,5,6Total, soluble and insoluble non starch polysaccharides 
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3.3 Results 

3.3.1 Proximate composition and ANFs of tested ingredients 

Statistical analysis was not performed between the treatments because each set 

of processing conditions was applied only once. Mean values of replicates of both 

chemical and physical analysis would only support ANOVA with respect to analytical 

precision, while tests comparing values without replicates (e.g. Friedman test) were 

not appropriate for the present data (Dytham, 1999). Additionally, the identity of the 

carbohydrates, variances among seed varieties (Saini and Knights, 1984), differences 

in ANF’s chemical methods and in processing equipment and temperatures (e.g. 

single or twin-screw extruders) make quantitative comparisons to similar studies 

difficult. Nevertheless, some useful conclusions can be drawn.  

Proximate composition, S-NSP, I-NSO and total NSP, F-glucose (free glucose), 

sucrose and RSO and ANFs of raw and extruded faba beans are presented in Tables 

3.5 and 3.6, of chickpeas in Tables 3.7 and 3.8, peas in Tables 3.9 and 3.10 and wheat 

results are presented in Tables 3.11 and 3.12. 

Higher protein content was found for the raw faba beans with 31.4g100g-1, 

followed by chickpeas (27g100g-1), peas (24.4g100g-1) and wheat (17.7g100g-1), fat 

content was very low and similar for faba beans, peas (ca. 1.6g100g-1) and wheat 

(1.8g100g-1) and higher for chickpeas (5.5g100g-1). Faba beans had higher ash content 

(4.3g100g-1) compared to chickpeas, peas and wheat (3.5, 3.3, and 2.3g100g-1) 

Starch content was highest for raw wheat 66.2 g100g-1 followed by peas and 

chickpeas (ca. 42g100g-1) and faba beans (36.9g100g-1) and extrusion generally 

increased starch values of the processed materials. 
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Faba beans included highest levels of total NSP (18.3-23.7g100g-1), followed by 

peas (14.0-16.4g100g-1) and chickpeas (12.9-13.8g100g-1), while the ratio I-NSP/S-

NSP (I/S) in raw materials was similar for peas and chickpeas (3.7) and higher than 

faba beans (2.1). Faba beans contained the highest levels of phytate (3.2g100g-1) and 

tannins (1.3g100g-1) and raw chickpeas contained the highest levels of TI (14.7mgg-1), 

but after heat treatment non linear changes were observed for these parameters. 

Chickpea and field pea NSP values do not seem to be much affected by 

processing, with only a small trend of reduction in total and I-NSP, whilst similar 

results for faba beans were found only for Sp/- processing. For all the other 

processing methods in faba beans total NSP, S-NSP and I-NSP seem to be slightly 

reduced.  

Total oligosaccharide values were higher for raw peas (6.6g100g-1) followed by 

chickpeas (5.1g100g-1), faba beans (3.9g100g-1) and wheat (1.7g100g-1), free glucose 

amounts were negligible. However, higher values were obtained for faba beans 

(0.2g100g-1). Sucrose values were similar for raw chickpeas, peas and wheat (ca. 1.1-

1.4g100g-1) and lower for faba beans (0.9g100g-1), RSO were higher in raw peas 

(5.3g100g-1), 3.7g100-1 in chickpeas, 2.8g100g-1 for faba beans and only 0.5g100g-1 

for wheat. Heat processing slightly reduced total oligosaccharides in most of the cases 

in peas and increased them in faba bean and chickpea.  

TI were reduced for all processed products with the highest effect for the 

legumes to be in chickpeas (86-92%) while TI in wheat were not detected after heat 

treatment. Overall, phytate and total tannins were affected to a lower extent or they 

were unaffected by processing. Phytate values were reduced up to 22% for B, 16% for 

CP and 18% for P, while total tannins reduced by up to 11% for B, 18% for CP and 

12% for P.  
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Table 3.5. Proximate composition on dry matter basis of raw and processed faba beans 

Proximate composition  Oligosaccharides FABA 
BEANS Processing*

ash protein Fat starch S-NSP1 I-NSP2 I/S3 Total NSP4  F-glucose5 sucrose RSO6 Total  
raw - 4.3 31.4 1.6 36.9 7.6 16.1 2.1 23.7  0.20 0.9 2.8 3.9 
B1 Lp/Sd 4.5 32.1 2.0 38.1 4.9 15.6 3.2 20.5  0.14 0.9 3.4 4.4 
B2 Sp/Sd 4.3 31.2 2.0 39.6 5.4 14.4 2.6 19.8  0.14 0.9 2.9 3.9 
B3 Sp/Hd 4.2 30.8 1.7 35.0 3.9 14.4 3.7 18.3  0.11 1.2 2.9 4.2 
B4 Hp/Sd 4.2 30.8 2.0 37.0 3.6 15.6 4.4 19.2  0.11 1.4 2.6 4.1 
B5 Hp/Hd 4.2 31.7 2.0 39.1 3.6 14.7 4.1 18.3  0.13 1.4 2.4 3.9 
B6 Sp/- 4.4 31.2 2.1 34.0 8.6 9.8 1.2 18.4  0.17 1.2 2.7 4.1 
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1S-NSP: soluble non starch polysaccharides, 2I-NSP: insoluble non starch polysaccharides, 3I/S: Insoluble/Soluble NSP fraction, 4Total NSP: total non starch polysaccharides, 
5F-glucose: free glucose, 6RSO: raffinose-series oligosaccharides. 
*Processing treatments with low (L), standard (S) and high (H) preconditioner (p) temperature and standard (S) or high (H) drier (d) temperature.  
 
 
 
Table 3.6. Antinutritional factors on dry matter basis of raw and processed faba beans and reduction percentages 

Phytate Total tannins Trypsin inhibitors FABA 
BEANS Processing* 

g100g-1 Reduction,% g100g-1 Reduction,% mgg-1 Reduction,% 
raw - 3.20  1.28  2.20 - 
B1 Lp/Sd 2.87 10.3 1.14 10.9 1.24 43.6 
B2 Sp/Sd 2.80 12.5 1.21 5.5 1.33 39.3 
B3 Sp/Hd 3.21 - 1.25 2.3 1.02 53.7 
B4 Hp/Sd 3.32 -3.7 1.31 -2.3 1.38 37.1 
B5 Hp/Hd 3.17 1 1.25 2.3 1.55 29.7 
B6 Sp/- 2.48 22.5 1.28 - 2.20 35.7 

*Processing treatments with low (L), standard (S) and high (H) preconditioner (p) temperature and standard (S) or high (H) drier (d) temperature.  
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Table 3.7. Proximate composition on dry matter basis of raw and processed chickpeas 

Proximate composition  Oligosaccharides CHICKPEAS Processing*
ash protein Fat starch S-NSP1 I-NSP2 I/S3 Total NSP4  F-glucose5 sucrose RSO6 Total  

raw - 3.5 27.0 5.5 41.9 2.9 10.9 3.7 13.8  0.04 1.4 3.7 5.1 
CP1 Lp/Sd 3.6 27.5 5.1 47.4 3.8 9.8 2.6 13.6  0.05 1.4 3.5 5.0 
CP2 Sp/Sd 3.6 26.7 5.3 45.0 4.1 9.4 2.3 13.5  0.02 2.0 3.5 5.5 
CP3 Sp/Hd 3.5 27.5 5.6 41.2 3.5 9.4 2.7 12.9  0.01 2.1 3.4 5.5 
CP4 Hp/Sd 3.5 27.3 5.5 45.5 3.8 9.4 2.5 13.2  0.03 2.0 3.5 5.5 
CP5 Hp/Hd 3.5 27.8 5.6 45.6 3.2 10.2 3.2 13.4  0.02 2.1 3.4 5.5 
CP6 Sp/- 3.5 26.5 5.0 44.2 3.9 9.7 2.5 13.6  0.01 1.6 4.0 5.6 C
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1S-NSP: soluble non starch polysaccharides, 2I-NSP: insoluble non starch polysaccharides, 3I/S: Insoluble/Soluble NSP fraction, 4Total NSP: total non starch polysaccharides, 
5F-glucose: free glucose, 6RSO: raffinose-series oligosaccharides. 
*Processing treatments with low (L), standard (S) and high (H) preconditioner (p) temperature and standard (S) or high (H) drier (d) temperature.  
 

 

Table 3.8. Antinutritional factors on dry matter basis of raw and processed chickpeas and reduction percentages 

Phytate Total tannins Trypsin inhibitors 
CHICKPEAS Processing* 

g100g-1 Reduction,% g100g-1 Reduction,%, mgg-1 Reduction,% 
raw - 2.12  0.49  14.66 - 
CP1 Lp/Sd 1.78 16.0 0.49 - 1.63 88.9 
CP2 Sp/Sd 2.02 4.7 0.43 12.2 1.66 88.7 
CP3 Sp/Hd 1.75 17.5 0.43 12.2 1.81 87.7 
CP4 Hp/Sd 2.14 -0.9 0.40 18.4 1.62 89.0 
CP5 Hp/Hd 1.83 13.7 0.41 16.3 2.09 85.8 
CP6 Sp/- 1.86 12.3 0.46 6.1 1.20 91.8 

*Processing treatments with low (L), standard (S) and high (H) preconditioner (p) temperature and standard (S) or high (H) drier (d) temperature.  
 

 



 

73

Table 3.9. Proximate composition on dry matter basis of raw and processed field peas 

Proximate composition  Oligosaccharides FIELD PEAS Processing*
ash protein Fat starch S-NSP1 I-NSP2 I/S3 Total NSP4  F-glucose5 sucrose RSO6 Total  

raw - 3.4 24.4 1.6 42.2 3.5 12.9 3.7 16.4  0.03 1.3 5.3 6.6 
P1 Lp/Sd 3.7 25.6 1.9 43.2 4.6 10.9 2.4 15.5  0.05 1.3 4.2 5.6 
P2 Sp/Sd 3.5 25.6 2.0 44.2 4.8 9.8 2.1 14.6  0.05 1.3 4.5 5.9 
P3 Sp/Hd 3.4 25.3 1.8 44.9 5.7 8.9 1.6 14.6  0.05 1.4 4.5 6.0 
P4 Hp/Sd 3.5 25.6 1.9 44.2 4.8 10.5 2.2 15.3  0.06 1.2 5.3 6.6 
P5 Hp/Hd 3.3 24.4 1.8 45.3 3.7 11.2 3.0 14.9  0.05 1.2 4.9 6.2 
P6 Sp/- 3.8 26.8 2.7 44.0 4.3 9.7 2.3 14.0  0.07 1.2 5.0 6.3 
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1S-NSP: soluble non starch polysaccharides, 2I-NSP: insoluble non starch polysaccharides, 3I/S: Insoluble/Soluble NSP fraction, 4Total NSP: total non starch polysaccharides, 
5F-glucose: free glucose, 6RSO: raffinose-series oligosaccharides. 
*Processing treatments with low (L), standard (S) and high (H) preconditioner (p) temperature and standard (S) or high (H) drier (d) temperature.  
 
 
 
Table 3.10. Antinutritional factors on dry matter basis of raw and processed field peas and reduction percentages 

 Phytate Total tannins Trypsin inhibitors 
FIELD PEAS

Processing* g100g-1 Reduction,% g100g-1 Reduction,%, mgg-1 Reduction,% 
raw - 1.20  0.78  2.74 - 
P1 Lp/Sd 1.16 3.3 0.67 11.5 1.26 54 
P2 Sp/Sd 1.22 -1.7 0.69 9.0 1.17 57.5 
P3 Sp/Hd 1.11 7.5 0.71 6.4 1.41 48.5 
P4 Hp/Sd 0.99 17.5 0.78 1.3 1.12 58.9 
P5 Hp/Hd 1.13 5.8 0.73 - 1.32 51.8 
P6 Sp/- 1.87 2.5 0.77 11.5 1.27 53.7 

*Processing treatments with low (L), standard (S) and high (H) preconditioner (p) temperature and standard (S) or high (H) drier (d) temperature.  
 

 

 



Table 3.11. Proximate composition on dry matter basis of raw and processed wheat 

Proximate composition  Oligosaccharides WHEAT* Processing**
ash protein Fat starch S-NSP1 I-NSP2 I/S3 Total NSP4  F-glucose5 sucrose RSO6 Total  

raw - 2.3 17.7 1.8 66.2 2.8 7.7 2.8 10.4  0.05 1.1 0.5 1.7 
W1 (1.5mm) Sp/Sd 1.9 14.8 2.0 70.6 3.0 7.3 2.4 10.3  0.02 1.1 0.3 1.4 
W2 (0.2mm) Sp/Sd 2.4 19.0 2.0 65.8 2.9 7.3 2.6 10.1  0.03 1.2 0.5 1.8 
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1S-NSP: soluble non starch polysaccharides, 2I-NSP: insoluble non starch polysaccharides, 3I/S: Insoluble/Soluble NSP fraction, 4Total NSP: total non starch polysaccharides, 
5F-glucose: free glucose, 6RSO: raffinose-series oligosaccharides. 

Table 3.12. Antinutritional factors on dry matter basis of raw and processed wheat and reduction percentages 

 Phytate Total tannins Trypsin inhibitors 
WHEAT 

Processing* g100g-1 Reduction,% g100g-1 Reduction,%, mgg-1 Reduction,% 
raw - 1.68  0.45  1.00  

W1 (1.5mm) Sp/Sd 1.59 5.4 0.39 14.3 - 100 
W2 (0.2mm) Sp/Sd 1.73 -3.0 0.46 -1.5 - 100 

*Grinding size of 1.5mm or 0.2mm. 
**Processing treatments with standard (S) preconditioner (p) temperature and standard (S) drier (d) temperature.  

*Processing treatments with standard (S) preconditioner (p) temperature and standard (S) drier (d) temperature.  
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3.3.2 Physical characteristics of the diets used in experiments I, II and III 

Physical properties of diet pellets for Experiment I were examined (Table 3.13) 

and it was found that among the seven diets CP30 pellets were the hardest (13.8N), 

while B30 pellets were less hard (11.1N). Seawater absorption in 5s was lower for B30 

(2.5% total moisture) and higher for B15 (6.8%). Settling velocity was slower for CP15 

(6.7cms-1) and faster for control (11.2cms-1). Density was significantly higher for the 

control and lower for the diets including chickpeas. Pellet diameters varied from 4.8-

5.3mm. 

Differences were found for diet pellets produced for experiment II (Table 3.14) for 

hardness after texture analysis. BH (16.4N) and CPH (16.0N) gave the highest values 

and CPL (11.1N) the lowest. Seawater absorption in 5s was lower for CPH (3.7% of 

total moisture) and higher for control (5.7%). Settling velocity was slower for BH 

(4.8cms-1) and faster for CPL (9.1cms-1). Pellet density was lower for diets CPH and 

BH (0.94gcm-3) and higher for diet CPL (1.10gcm-3). Measurements of pellet diameters 

showed that the pellet sizes among the diets varied from 4.5-4.9mm. 

Hardness and values were very similar among the pellets of diets tested for 

experiment III (Table 3.15). Water absorption was lower for diet BL (2.8%) and higher 

for PH (5.1%). Settling velocity was slower for the control (7.3cms-1) and faster for 

CPH (9.5cms-1) and PH (9.3cms-1). Pellet density ranged from 0.99gcm-3 for the control 

to 1.16gcm-3 for diet PH. Measurements of pellet diameters showed that the values for 

the diets varied from 4.1-4.3mm. 

Water activity (aw) values of the diets used in all three Experiments ranged from 

0.44-0.61. 
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Table 3.13. Physical characteristics of the diets used in Experiment I. 

 Hardness (N) Water 
absorption (%)

Velocity 
(cms-1) 

Density 
(gcm-3) 

Pellet size 
(mm) 

aw 

at 23˚C
Control 12.4±1.3 5.2±0.6 11.2±1.8 1.28±0.12 4.8±0.2 0.61 

B15 12.4±1.8 6.8±0.3 10.2±3.6 1.11±0.11 5.3±0.3 0.59 
CP15 11.9±1.4 4.0±0.5 6.7±3.2 1.04±0.09 5.2±0.1 0.53 
P15 12.3±1.8 5.4±0.1 10.0±2.1 1.16±0.06 5.2±0.1 0.53 
B30 13.8±2.2 2.5±0.6 8.4±2.2 1.13±0.08 5.1±0.2 0.52 

CP30 11.1±1.4 5.7±0.5 7.4±2.2 0.99±0.06 5.3±0.2 0.57 
P30 12.3±1.9 3.7±0.2 10.9±1.4 1.13±0.05 4.9±0.2 0.54 

 

Table 3.14. Physical characteristics of the diets used in Experiment II. 

 Hardness (N) Water 
absorption (%)

Velocity 
(cms-1) 

Density 
(gcm-3) 

Pellet size 
(mm) 

aw 

at 23˚C

Control 13.2±0.6 5.7±0.2 7.3±1.4 1.00±0.04 4.9±0.1 0.57 

BL 12.6±0.9 5.3±0.2 8.0±0.2 1.01±0.03 4.7±0.1 0.59 

CPL 11.1±0.8 5.2±0.7 9.1±0.7 1.10±0.07 4.5±0.1 0.51 

PL 14.2±1.2 4.1±1.0 8.1±1.0 1.02±0.05 4.8±0.1 0.59 

BH 16.4±1.1 4.1±0.4 4.8±0.8 0.94±0.06 4.9±0.2 0.51 

CPH 16.0±0.6 3.7±0.3 6.0±0.1 0.94±0.04 4.8±0.1 0.55 

PH 15.6±1.5 4.2±0.3 8.6±0.6 1.04±0.06 4.8±0.2 0.48 

 

Table 3.15. Physical characteristics of the diets used in Experiment III. 

 Hardness (N) Water 
absorption (%)

Velocity 
(cms-1) 

Density 
(gcm-3) 

Pellet size 
(mm) 

aw 

at 23˚C
Control 14.3±0.8 3.6±0.5 7.3±1.1 0.99±0.07 4.3±0.2 0.50 

BL 13.2±0.6 2.8±0.5 8.5±0.9 1.02±0.04 4.2±0.1 0.44 

CPL 12.7±2.1 3.8±0.6 8.7±1.0 1.05±0.05 4.1±0.2 0.53 

PL 14.3±1.2 2.5±0.4 8.4±1.1 1.11±0.09 4.1±0.1 0.49 

BH 14.8±0.5 4.5±0.5 8.1±2.1 1.03±0.07 4.2±0.2 0.54 

CPH 14.4±0.8 5.0±0.4 9.5±1.1 1.08±0.07 4.2±0.2 0.49 

PH 13.9±1.3 5.1±0.4 9.3±0.9 1.16±0.05 4.1±0.1 0.53 
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3.4 Discussion 

3.4.1 Raw materials and processing 

Small differences in the ash, protein and fat composition of legumes and wheat 

among the processing treatments could be attributed to normal variations in the 

analytical methods. Extrusion did not affect either pea or faba bean protein values in 

other studies (Alonso et al., 2000a; Alonso et al., 2000b) or ash and ether extract of 

extruded peas (Alonso et al., 2000b). Protein and ash were also measured in raw and 

extruded peas, chickpeas and faba beans by Abd El-Hady and Habiba (2003) and no 

differences were found again for any of the legumes before and after processing, while 

the absolute concentration of protein and ash was slightly higher in the present study 

only for faba beans. 

Starch analysis showed an overall increase in the processed materials that could be 

related to composition changes in the resistant starch. Resistant legume starch 

corresponds to physically inaccessible starch that is entrapped in the cellular matrix 

(Englyst et al., 1992) that in most cases is destroyed by processing (Gonzalez-Soto et 

al., 2006). Thermal processing such as cooking has been proven to cause a significant 

reduction of resistant and poorly digestible starch and an increase in rapidly digestible 

starch in peas (Periago et al., 1996), chickpeas and common beans (Marconi et al., 

2000). However, in some cases (potato and banana starch) amylose retrogradation may 

occur resulting in resistant starch when raw materials are either freeze dried or 

autoclaved (Gonzalez-Soto et al., 2006). In this respect, highly digestible starch may 

have increased and this is possibly reflected in the final starch values, while resistant 

starch formation is less likely to occur in legume starches. The increased values 
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observed for total starch in processed legumes could be possibly attributed to the easier 

breakage of extruded starch granules by amylase during analysis.  

Total NSP were reduced in all extruded faba beans and peas compared to 

respective raw product values. Extruded chickpeas also had lower values but the 

reduction was smaller and these results are in agreement with the results of Alonso et al. 

(2000b) for extruded peas. A redistribution of S-NSP and I-NSP has been found in rice 

after press cooking (Sagum and Arcot, 2000) or in cooked chickpeas and common 

beans (Marconi et al., 2000) with increase of S-NSP and decrease of I-NSP (reduction 

of ratio I/S-NSP) after treatment. This may be comparable to the results for the extruded 

chickpeas and peas in the present study although total NSP were not affected in the case 

of pressure cooking (Marconi et al., 2000). Anguita et al. (2006) also noted that 

extrusion can increase solubilization of pea NSP, however, solubilisation is less and 

absolute numbers are higher in the present study and this may be attributed to 

differences in field pea variety. The redistribution of S-NSP and I-NSP fractions could 

be attributed to the partial solubilization or depolymerization of hemicellulose and 

insoluble pectic substances (Vidal-Valverde et al., 1992). Faba bean and wheat flour 

that underwent drying processing in the present study showed decreased values of S-

NSP as opposed to peas, chickpeas and the results of the aforementioned authors but, 

when faba bean flour was not dried, S-NSP increased. Different behaviours amongst 

legumes could be attributed to differences in the synthesis of the NSP fraction; for 

example pea uronic acids and mannose seem to increase, while xylose does not change 

under extrusion and rhamnose and arabinose are stable (Alonso et al., 2000b). Different 

results were reported by Periago et al. (1996) between raw and cooked peas NSP 

fractions, indicating that differences could be expected in the results. 
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Alonso et al. (2000b) found that pea sucrose, raffinose and verbascose were 

increased after extrusion processing, but significant differences were only observed for 

verbascose values, while stachyose values significantly decreased. In a later work the 

same authors (Alonso et al., 2001) found that pea and kidney bean sucrose, stachyose 

and verbascose did not differ before and after extrusion, while raffinose significantly 

decreased in kidney beans. In addition, autoclaving rapeseed for 1.5 hours resulted in 

decreased levels of sucrose and stachyose (Mansour et al., 1993). In this respect the 

result of extrusion on total oligosaccharides could also be dependent on the fraction 

composition that could be variable among different pulses or seed parts such as hulls, 

dehulled seeds or protein concentrates (Knudsen, 1997). 

Phytic acid values in processed ingredients vary in the literature. For instance, 

Alonso et al. (1998; 2000a; 2000b; 2001) found significant reduction in peas (5.9%), in 

faba beans (29%) and kidney beans (4%) after extrusion at 150˚C (in outer die). 

However, according to Abd El-Hady and Habiba (2003) findings much lower reduction 

of phytate was observed between raw and extruded legumes at 140˚C or 180˚C (barrel 

temperature). Gualberto et al. (1997) showed that extrusion did not affect cereal bran 

phytate content. In the present study extruded peas, chickpeas and faba bean phytate 

values either remained the same or decreased up to 17.5, 17.5 and 22.5% respectively 

compared to the raw legumes. The reduction of phytate though was not consistent for 

the different processing methods and thus further investigation is imperative. 

Francis et al. (2001) in their review of antinutrients mentioned that the effect of 

thermal treatment on substances like tannins is still not clear. Total tannins in the 

current study did not seem to be affected drastically, with most of the values in 

processed legumes being slightly lower than the values in raw materials. In some cases 

though that was not the case. In this respect the results are partially in accordance with 
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those of Abd El-Hady and Habiba (2003) who found a slight decrease in tannins in 

peas, chickpeas and faba beans after different extrusion temperatures. Nonetheless 

Alonso et al. (1998, 2000a, 2000b) presented significant reduction in both tannins and 

polyphenols in peas and faba beans when extruded at 150˚C and this reached 92% when 

compared to the raw legumes. Reduction of condensed tannins was also observed for 

peas and kidney beans by Alonso et al. (2001) under the same extrusion conditions. 

Differences in tannin reduction could be attributed to higher temperatures or to the 

duration of processing methods and these are not always clear especially for the 

extrusion appliance. It has also been suggested that heat treatment possibly reduces 

extractability by increasing polymerisation of tannins and thus showing lower values 

after analysis (van der Poel et al., 1991). 

TI are known to be heat sensitive (Francis et al., 2001) and they can be reduced or 

completely destroyed in different plant materials and under different processing 

methods (Marquez and Alonso, 1999; Frias et al., 2000; Romarheim et al., 2005). High 

values of TI in raw chickpeas, similar to the present study, have also been reported from 

other authors (Abd El-Hady and Habiba, 2003). The highest reduction of TI among 

legumes was noted in chickpeas reaching 92%, while for faba beans it was up to 44%, 

for peas up to 59% and in wheat TI was not detected in the extrudates. Reduction of 

95% in peas was found by Alonso et al. (2000a; 2000b) and 99% in faba beans (Alonso 

et al., 1998), while in another study (Abd El-Hady and Habiba, 2003) no TI was 

detected in any of the tested legumes after extrusion processing no matter the initial 

quantity of the ANF in the raw seeds or the temperature applied. Complete inactivation 

of TI in the present study was only observed for wheat flour, even though no high 

temperatures were applied to this material. 
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3.4.2 Pellet physical characteristics 

Experimental diet pellets were not affected negatively by the addition of low or 

high levels of legumes with respect to hardness, settling velocity, water activity and 

pellet density. The pellets did not crumble in the sacks, while transferring or stored, 

however, a disadvantage of BH diets and to a lesser extent of CPH diets for both 

Experiments II and III was a small percentage of floating pellets that was not 

quantified. Pellet physical properties are dependent on the ingredients and the nutrient 

composition (Briggs et al., 1999; Thomas et al., 1998), on the pellet size (Chen et al., 

1999; Vassalo et al., 2006) on the processing techniques (Schwertner et al., 2007) as 

well as on carbohydrate binders such as cellulose (Hansen and Storebakken, 2007) and 

chitosan (Santos et al., 2002). 

Water activity values were within the safety limits (Schwertner et al., 2003) for all 

diets indicating that long storage even at room temperature is possible without 

microbial development and spoilage of the pellets. Although Schwertner et al. (2003) 

found a good correlation between water content and water activity comparing different 

pelleting methods, it is not necessary for this correlation to exist (Water activity, 2007). 

In the present research this fact is justified as no correlation between the two parameters 

was found. 

Settling velocity was obviously positively related to the density of the pellets. The 

pellets used in the Experiment I had higher average velocity (9.26cms-1) and density 

(1.12gcm3) than the values observed for diets of experiments II (7.41cms-1 and 

1.01gcm3) and III (8.55cms-1 and 1.06gcm3). Although bigger pellets are related to 

higher sinking rates (Chen et al., 1999; Vassallo et al. 2006), the small difference in 

pellet size was possibly less important than the density difference. Higher density levels 
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of pellets manufactured for Experiment I could be related most possibly to the high 

level of fishmeal included in this diet (51-59g100g-1) in comparison to the rest of the 

diets (25-28g100g-1) (Sorensen et al., in press). 

Concerning hardness, diets for Experiment I showed lower average values 

(12.30N) than diets for Experiment II (14.17N) and III (13.95N). Higher values were 

observed for H diets compared to L diets in both Experiments II and III. This could be 

related to the high inclusion levels of legumes and their carbohydrate properties as 

Sorensen et al., (in press) found increasing hardness when fishmeal was replaced by 

soybean meal. This result can be considered a positive effect on pellet quality as harder 

pellets are possibly also more durable (Sorensen et al., in press) and could be used in 

automatic feeders with less losses. 

3.5 Conclusions 

From this study it could be concluded that peas, chickpeas and faba beans are raw 

materials that could potentially be used in seabass and seabream diets without causing 

negative effects on the pellet physical characteristics. Levels up to 35g100g-1 of each 

legume are acceptable for producing pellets that could be manufactured, transported and 

stored. ANF in these materials are not prohibitive for their use in feeds, as total tannin 

levels are comparatively low compared to those known to affect fish growth 

performance (Francis et al., 2001), phytate problems could be possibly overcome by 

mineral supplementation (Porres et al., 2004) and trypsin inhibitors are significantly 

inactivated under extrusion. In vivo studies in the following chapters will provide more 

information about the use of peas, chickpeas and faba beans in seabass and seabream 

diets. 

 82



 

Chapter 4. Experiment I - Effects of peas, chickpeas and faba 

beans on nutrient digestibility and gastrointestinal evacuation 

in European seabass (Dicentrarchus labrax) 
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4.1 Introduction 

Wheat is an important source of carbohydrate in aquafeeds for Mediterranean 

species included at levels up to 200gkg-1 (Campbell, personal communication). Wheat 

starch is a good binder and is also considered a good source of energy (Hertrampf and 

Piedad-Pascal, 2000). However, recent expansion of global biofuel industries has led to 

increased demands for starch and sugar-rich feedstocks with consequent price increases 

for such crops (Runge and Senauer, 2007). Indeed, wheat is expected to undergo further 

price increases in the future (Runge and Senauer, 2007). Furthermore, limited European 

production of soybean (Grain legumes, 2006) and the general position of EU countries 

with respect to genetically modified soybeans reinforce the importance of plant sources 

other than soybean in aquafeeds (Euractiv, 2006).  

Legumes represent a significant constituent of global grain production (Grain 

legumes, 2007) and are highly valued feed components for both ruminants and 

monogastric livestock due to their relatively high protein and energy values compared 

to cereals (Peterson and Mackintosh, 1994). Several legumes, including field peas, 

chickpeas and faba beans, may be able to replace wheat carbohydrates since they are 

characterized by high carbohydrate content (Knudsen, 1997). Moreover, the protein 

content of legumes may enable partial replacement of fishmeal (Gouveia and Davies, 

1998), which has been consistently high in price over the last few years (Josupeit, 

2008). 

Many nutritional deficiencies in legumes (e.g. limiting levels of sulphur amino 

acids and tryptophan) can be overcome by the complementary use of cereal grains or 

the addition of low cost synthetic amino acids (Booth et al., 2001). Allan et al. (2000) 

have reported that cystine and glycine availability was relatively low in field peas and 
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faba beans respectively, while limited availability of several amino acids was found in 

chickpeas in the same study. A further drawback to the use of legumes in fish diets is 

the presence of a variety of endogenous ANF including protein inhibitors, amylase 

inhibitor, phytic acid, tannins and lectins that adversely affect enzyme action or the 

absorption of minerals and other nutrients (Tacon, 1993). The indigestible carbohydrate 

content of plant ingredients has often been considered an ANF (Hilton et al., 1983). 

ANF in legume seeds can be partially or totally inactivated by heat processing methods 

such as roasting, autoclaving, extruding or cooking or by other processing methods such 

as soaking, germination or enzyme addition, prior to inclusion in fish feeds (Francis et 

al., 2001).  

Gelatinized wheat is known to be highly digestible by seabass (Peres and Oliva-

Teles, 2002), while legume starches are known to be digested at a slower rate in 

humans (Tharanathan and Mahadevamma, 2003). The rapidness of starch digestion can 

be reflected in the glucose loading in blood after each feeding (Hemre and Hansen, 

1998). The period needed for the fish to recover from glucose loading depends on the 

starch level and the water temperature (Hemre et al., 1995). However, the glucose curve 

of European seabass has only been investigated after glucose injection (Peres et al., 

1999), but not after feeding different starch sources. 

Gastrointestinal evacuation indicates the rate profile of the time needed for an 

animal to digest a meal and is affected by the physical and chemical composition of the 

diet (Jobling, 1987). Gastrointestinal evacuation rate has proven to be a very important 

parameter for modelling daily feed intake (Jobling, 1981) as it is partly responsible for 

control of appetite in fish (Riche et al., 2004). However, pelleted fish feeds have not 

been thoroughly investigated in farmed fish in this respect, since most of the pertinent 

literature deals with ‘prey’ type feeds, either experimental or natural (Bromley, 1994; 
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Andrade et al., 1996), feeding frequency (Ruggerone 1989; Zarate et al., 1999), 

restoration of appetite (Riche et al., 2004) and gastric modelling for prey feed (Salvanes 

et al., 1995; Andersen and Beyer, 2005). 

The objectives of the present study were to evaluate the effect of partial or total 

replacement of wheat by whole grain flours of field peas, chickpeas and faba beans, on 

diet digestibility and to determine gastrointestinal evacuation time for extruded diets 

containing these raw materials at 30% level fed to European seabass. 

4.2 Materials and methods 

4.2.1 Feed ingredients and feed formulation  

Chickpeas, field peas and faba beans were included in the experimental diets 

containing 15g100g-1 (CP15, P15 and B15) and 30g100g-1 (CP30, P30 and B30) of each 

legume plus a control diet as described in detail in section 3.2.3.1.  

4.2.2 Fish and experimental design 

Three hundred fish of initial weight 152.3±12.1g were transferred from a 

commercial farm (located in Epidavros, Greece) to the facilities of the laboratory of 

Fish Nutrition and Pathology, Institute of Aquaculture, Hellenic Centre for Marine 

Research in Athens. A total of 20 fish were stocked randomly into each one of the 15 

digestibility tanks (section 2.2.2.1) and acclimatized for two months being fed the 

experimental diets. Faeces were collected and processed as described in section 2.3.2. 

Seabass were fed daily to appetite, twice a day (9.00am and 16.00pm). Faecal samples 

were removed every morning prior to feeding for 8 days. 
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4.2.3 Water quality 

Sea water was supplied continuously as described in section 2.2.2.3 Water 

temperature was controlled at 18±1ºC during the experimental period. 

4.2.4 Gastrointestinal evacuation 

Following the digestibility trials, high level diets were selected to be compared for 

gastrointestinal evacuation time to control diet as these diets expected to show stronger 

effects (control, CP30, B30 and P30). Fish were adapted to the diets for 2 weeks and 

tested in triplicate groups. Fish were fasted for 72h before being fed the experimental 

meal to make sure that the gastrointestinal tract was empty. Six fish per treatment were 

sacrificed at 0, 8, 16, 24, 32 and 48 h after feeding a single meal equal to 1% (diet wet 

weight) biomass, following phenoxyethanol/ethanol (1/1, 0.4mlL-1) induced anaesthesia 

(Ekmann, personal communication). The time intervals were selected based on test 

sampling and taking into account the low temperature as proposed by Finstad (2005). 

The method used was the serial slaughter technique. This method involves 

sacrificing fish at regular time intervals after they have been fed. Fishes were 

anaesthetized, blood samples were taken and then killed with a blow to the head and the 

digestive tract was carefully removed and separated into three parts: stomach, foregut 

and hindgut. Foregut was defined as the section from the pyloric sphincter to the 

ileocaecal valve and hindgut from the ileocaecal valve to the anus. The gut contents 

were removed and placed in pre-weighed tubes. Samples were freeze-dried and dry 

weights were used to estimate the gastric evacuation time (GET) in comparison to the 

BW of each fish. 
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Geometric means of stomach and intestinal contents were regressed against time 

in order to examine possible fit to a model for calculating time and rate of gastric and 

intestinal evacuation.  

4.2.4.1 Stomach 

Data from all treatments best fitted an exponential model, in the case of stomach 

and gastric evacuation rates (GER) calculated using the formula described by Elliott 

(1972): 

Wt = A-rt 

Where Wt is the geometric mean weight of stomach dry digesta at time t, A is a 

parameter calculated from the formula of the regression and r is the rate of gastric 

evacuation. Data were plotted in a logarithmic form as 

LnWt = lnA–rt, 

The slope of r corresponding to GER was calculated. GET was calculated from the 

above equation as the time (t) necessary to empty 50%, 75% and 90% of the stomach 

content. 

4.2.4.2 Foregut 

Data for the foregut fitted a linear model. The time needed for the digesta to 

completely pass the foregut was estimated from the intercept on the x axis and the rate 

of evacuation by the slope of each equation. 

4.2.4.3 Hind gut 

Hind gut data best fitted a quadratic model. Points from each curve were estimated 

to determine the time of maximum intestinal content and evacuation time. 
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4.2.5 Chemical analysis 

Proximate compositions of feeds, freeze-dried faeces, carcass and fillet were 

determined according to AOAC (1990). Faecal and feed samples were analyzed for 

starch, and faeces fat determined according to the phosphovanillin method (Nengas et 

al., 1995). Feeds were also analyzed for total and insoluble NSP (Englyst et al., 1994) 

and yttrium oxide (Refstie et al., 1997). Blood samples were centrifuged and plasma 

was analyzed for glucose (section 2.11.2). All chemical methods are described in detail 

in Chapter 2, General Materials and Methods. 

4.2.6 Calculation of digestibility coefficients 

ADCs for control and test diets were calculated according to the formulae 

described in section 2.14. Energy in diets and faeces was determined according to the 

formula of Blaxter (1989), also presented in section 2.14. 

4.2.7 Statistical analysis 

ADCs were analysed by one-way ANOVA using SPSS 13.0. Significant 

differences were evaluated using Tukey post-hoc test at a significance level of P≤0.05. 

Regressions were performed using the statistical program Statgraphics Plus 2.1. The 

linear fits and the comparison of slopes were tested at a significance level of P=0.05. 

4.3 Results 

4.3.1 Digestibility 

ADCs for all diet nutrients tested are summarized in Table 4.1. Digestibility 

coefficients were high for all diets, but as a consequence of low standard deviations 

ANOVA revealed significant differences between diets. Protein ADC was significantly 
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lower for Control and higher for diet B15. Starch digestibility was significantly lower 

for diet P30 (92.3%) and Control and significantly improved for all three 15% diets. 

Finally, energy ADCs showed similar trends to starch ADCs demonstrating best values 

for B15 (96%). 

 

Table 4.1. Apparent Digestibility Coefficients for Protein, Fat, Starch and Energy 

 % ADC protein % ADC Fat % ADC Starch % ADC Energy 

Control 92.9±0.3a 96.7±0.6ab 94.0±1.9ab 94.3±0.5a

Diet CP15 93.2±0.4ab 97.2±0.4bc 96.4±0.6cd 95.0±0.3b

Diet P15 93.9±0.2bc 97.7±0.2c 96.4±0.5cd 95.6±0.2bc

Diet B15 94.8±0.2d 97.7±0.1c 97.0±0.7d 96.0±0.0c

Diet CP30 93.0±0.7a 96.2±0.5a 94.5±0.2bc 94.2±0.4a

Diet P30 92.9±0.5a 97.0±0.2bc 92.3±1.1a 94.2±0.3a

Diet B30 94.2±0.2cd 97.7±0.1c 95.7±0.2bcd 95.6±0.1bc

Different superscripts in each column show significant differences among the values according to 
Tukey’s test (P≤0.05). 
 

4.3.2 Gastric evacuation 

GET was evaluated as the geometric mean of dry matter of feed per g of BW of 

each fish. The values observed immediately after feeding (0h) were lower than 1%BW 

partially because of the calculation of dry matter and partially because some sampled 

fish had eaten less than 1%. From the curves generated for each part of the 

gastrointestinal tract (Figure 4.1), the following exponential equations were determined: 

 

Control: y = 0.827 e–0.13x, R2 = 0.98 

B30: y = 0.804 e-0.08x, R2 = 0.97 

CP30: y = 0.655 e-0.07x , R2 = 0.96 

P30: y = 0.938 e-0.12x, R2 = 0.95 
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Figure 4.1. Stomach exponential curves show gastric evacuation time (GET) as dry 

matter % of BW over the 32 hour sampling period in fish fed the four experimental 

diets. 

Table 4.2 describes the GET in relation to the percentage of feed remaining in the 

stomach. The Control diet required 5.33h to evacuate half of the initial feed content, 

followed by P30, 5.59h, B30 with 7.95h and longer for CP30, 9.80h. Comparison of the 

slopes for GET (Figure 4.2) indicated significantly longer GET for CP30 compared to 

Control and P30 diets, while B30 did not differ from all other diet emptying times 

(Table 4.3). 
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Figure 4.2. Stomach curves plotted linearly in a logarithmic form show the gastric 

evacuation time (GET) for dry matter % of BW over the 32 hour sampling period in 

fish fed the four experimental diets. 

 

 

Table 4.2. The gastric evacuation time (GET, h) for European seabass fed the diets and 

correlation coefficient (r) of the regression lines based on an exponential model of 

gastric evacuation. 

Diet GET (h) 50% GET(h) 75% GET (h) 90% R R2

Control 5.3 10.7 17.7 -0.9892 97.85 

P30 5.6 11.2 18.6 -0.9696 94.02 

B30 8.0 15.9 26.4 -0.9849 97.00 

CP30 9.8 19.6 32.6 -0.9753 95.11 
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Table 4.3. Coefficients of the stomach linear (y=αx+β) curves and gastric evacuation 

rate (GER). Slope, intercept and R2 of the regression lines following the logarithmic 

transformation and GER (gmin-1) 

Diet Slope (a) GER (*10-3) Intercept (β) R2

Control -0.1300b 2.17 0.1896 0.98 

P30 -0.1241b 2.07 0.064 0.95 

B30 -0.0872ab 1.45 0.2173 0.97 

CP30 -0.0707a 1.18 0.4228 0.96 

Different superscripts in each column show significant differences among the values (P≤0.05). 

4.3.3 Foregut evacuation 

Foregut was evacuated in 31.8h for fish fed the control diet, 38.3h for CP30, 39.5h 

for P30 and 46.5h for B30 (Table 4.4). The rate of the evacuation is also shown in Table 

4.4. The linear relationships are shown in Figure 4.3. 

 

Table 4.4. Slope and intercept of the linear equations (shown in figure 4.3) of each diet 

for gut evacuation and the time needed (FGET 100%) for the foregut to evacuate 

completely. 

Diet Slope (a) Intercept (β) 
FGET 

100% (h) 
FGER (*10-3)  

(g min-1) 
Control -0.0049a 0.1557 31.8 0.082 

P30 -0.0043b 0.1699 39.5 0.072 

B30 -0.0031c 0.1441 46.5 0.052 

CP30 -0.0035b 0.1339 38.3 0.058 

Different superscripts in each column show significant differences among the values (P≤0.05). 
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Figure 4.3. Foregut linear relationship curves for dry matter % of BW over the 48hour-

sampling period in fish fed the four experimental diets 

4.3.4 Hindgut evacuation 

Hindgut evacuation was 34.2h in the control diet, 41.4h in P30, 51.9h for CP30 

and 51.7 for B30. All data for hindgut are presented in Table 4.5 and the quadratic 

curves in Figure 4.4. 
 

Table 4.5. α, β and γ are the coefficients of the quadratic equations (y=αx2+βx+γ). The 

time at which the curve reaches its maximum and the time required for the hind gut to 

evacuate completely (HGET 100%). 

Diet α (*10-5) β (*10-3) γ (*10-3) Max curve (h) HGET 100% (h) 

Control -7.785 3.12 -16 20.1 34.2 

P30 -2.141 0.78 -4.37 18.2 41.4 

B30 -3.339 1.77 -1.06 26.1 51.7 

CP30 -2.222 1.20 -2.5 27.0 51.9 
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Figure 4.4. Hindgut quadratic curves describe the evacuation of dry matter % of BW 

over the 48 hour sampling period in fish fed the four experimental diets. 

4.3.5 Serum glucose  

In the fist sampling (0 hours after feeding) serum glucose values ranged from 4.56 

to 5.30mmoldl-1 (Table 4.6). After 8 hours fish fed the wheat based control diet showed 

the most rapid increase that became most obvious by 16h, the curve was similar for 

CP30 and P30, while B30 showed a delay with glucose only start increasing after 8 

hours. After 24 hours, control, CP30 and P30 had a peak, while diet B30 had a peak 

value after 32 hours. Fish fed the control diet showed a rapid decrease of serum glucose 

at 32 hours in contrast to the rest of the fish fed the legume diets that had a ‘smoother’ 

glucose decline (Figure 4.5). Standard deviations were, not unexpectedly, high and 

values were normally distributed but they were not homogenous. Transformations did 

not lead to homogeneity and thus no statistical analysis was applied. 
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Figure 4.5. Curves describe plasma glucose load (mmoldl-1) over the 48 hour sampling 

period in fish fed the four experimental diets. 

 

Table 4.6. Plasma glucose values (mmol/dl) measured over 48 hours, in 8 hours 

intervals for diets control, P30, B30 and CP30. 

 Plasma glucose (mmol/dl)

Hours* Control P30 CP30 B30 

0 4.87±0.53 5.04±1.83 5.30±1.13 4.56±0.97 

8 5.67±1.62 5.39±1.31 5.30±0.95 4.45±0.72 

16 7.14±1.49 5.80±0.02 6.18±1.40 5.05±0.51 

24 7.24±1.45 6.69±1.18 7.27±1.31 6.02±0.87 

32 4.10±0.54 5.47±1.52 7.15±1.01 6.17±1.23 

48 4.94±0.53 5.18±1.31 5.10±1.94 4.67±0.31 
*Hours of sampling after feeding.  
Numbers are given as means±SD (n=6) 
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4.4 Discussion 

In the present study all three legumes tested proved valuable as carbohydrate 

replacers at both inclusion levels tested in seabass as indicated by their ADCs. 

However, best values were observed for faba bean diets. Similar studies evaluating 

legumes for carbohydrate replacement in fish diets are very limited in the literature. 

Gouveia and Davies (1998) tested diets containing 20 and 40% field pea in European 

seabass and showed no differences for protein ADCs, but carbohydrate digestibility was 

significantly lower for the 40% substitution level. The differences in energy and 

carbohydrate digestibility of field pea diets between this and the present study can be 

attributed to different processing of the feeds used. Extrusion, as opposed to 

compressed pellet, was used in the present study, possibly resulting in enhanced 

carbohydrate digestibility and thus improved energy utilization. The same authors in a 

more recent study (Gouveia and Davies, 2000) tested extruded pea seed meal in diets 

for European seabass up to 30% and all nutrient ADCs did not differ for the different 

inclusion levels, while both protein and carbohydrate ADCs were higher than in their 

previous research (Gouveia and Davies, 1998). When pea seed meal was included at 

18% and substituted for wheat in Atlantic salmon extruded diets (Aslaksen et al., 2007) 

all nutrient digestibilities were lower compared to those found in the present study, 

while starch ADC decreased as opposed to the present findings. The same authors also 

evaluated 22% faba bean substitution for wheat and found similar values to the control 

ADC, contrary to decreased starch ADC, which disagrees with the current results. No 

similar studies appear to be available for chickpeas, with the exception of Booth et al. 

(2001) who investigated digestibility in Australian silver perch and found values of 88.1 

and 72.1% for protein and energy ADCs, respectively. 
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There is little published information on how different starch sources influence 

utilization of other nutrients in the diet. It seems as though more easily digestible starch 

(gelatinized) cannot influence protein digestibility but can improve energy and starch 

digestibility (Peres and Oliva-Teles, 2002). 

According to Knudsen (2001), differences in starch digestibility among different 

diets are more likely to be due to the structure of the cell walls that enclose the starch 

granules, different amylase/amylopectin ratios, and the presence of α-amylase inhibitors 

rather than to differences in digesta viscosity and intestinal fermentation activity. 

Taking into account the fact that amylase/amylopectin ratios vary widely among 

different plant species and among different varieties of the same species of cereals and 

legumes, it is not possible to relate this parameter to starch digestibility, since this ratio 

was not determined in the present study. In general wheat starch includes 20-30% 

amylose while legumes include 30-60% amylose and higher values of amylose can 

adversely affect starch digestibility (Hoover and Zhou, 2003). However, in the present 

study, higher starch ADC was observed for diets combining wheat and legume starch 

rather than the diets including only one type of starch. 

NSP in monogastric animals can delay intestinal absorption of glucose, possibly 

through a reduced rate of gastric emptying, leading to delayed absorption (Knudsen, 

2001). Furthermore, soluble dietary NSP can increase the viscosity of the stomach 

contents (Storebakken, 1985). In the current study, total, soluble and insoluble NSP did 

not play any significant role in starch digestibility, however, the diet with the higher 

inclusion level of total NSP (B30) showed the longest evacuation time for the gut and 

one of the highest values for starch digestibility. 

In most GER studies to date, the aim has been investigation of the nutritional 

habits of wild fish by creating specific models (Andersen and Beyer, 2005), comparing 
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pelleted and prey feed (Andrade et al., 1996) or to investigate the effects of prey size 

(Santos and Jobling, 1991) and temperature (Finstad, 2005). The majority of these 

studies showed that the relationship between food remaining in the gastrointestinal tract 

and time can be described by a linear, square root or exponential equation (Bromley, 

1994). In the present study with seabass, the mathematical models giving best fit were 

found to be different for each part of the tract for the high level diets being exponential 

for the stomach, linear for the foregut and quadratic for the hindgut. Stomach curves 

followed the formula described by Elliott (1972) and supported by Persson (1986) as a 

model, fitting better for voluntary feeding. However, no comparable data are available 

for fore and hind gut models. 

High standard deviations were observed for the hindgut dry weight values in the 

present study, due to the small length of the hind gut, the low quantity of the sample 

obtained and increased mucus content present in this part of the intestine. Hindgut 

quadratic curves show that this part of the intestine accumulates the indigestible 

contents of foregut, reaches a maximum point and defecation starts or continues at a 

faster rate. Along with this observation no correlation was found between 

gastrointestinal evacuation time and digestibility of diet nutrient which is in agreement 

with the findings of Sveier et al. (1999). 

In evacuation rate studies, it is preferable to measure the meal size of each 

individual fish (Bromley, 1994). During communal feeding it is difficult to control the 

amount of feed eaten by individual fish, but the results can be less biased than when 

fish fed individually or forced fed (Bromley, 1994). For this reason the variance in 

initial stomach content is expected to be high (Jensen and Berg, 1993; Bromley, 1994). 

These initial variations in meal size are also reflected in the variations measured in the 

amount of feed retrieved from the different parts of the digestive tract. Such substantial 
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variations were also determined in this study, but to avoid extreme values when a fish 

was overfed or under-fed it was rejected and immediately replaced by another during 

the sampling procedure. 

A single meal experimental protocol was followed in the present trial, as in most 

similar published GET experiments. Multiple meal experiments usually show that the 

second meal reduces the time of first meal evacuation and also increases the emptying 

time of the second meal (Elliott, 1975). In aquaculture the most common practice is 

feeding more than one meal per day. Hence, whilst the results presented here give a 

comparative evaluation among the different diets, absolute values would be different in 

multiple meal production processes. 

In practical terms, inclusion of legumes in diets for seabass clearly increased the 

GET of the feed with faba bean having the strongest effect. NSP inclusion level may 

have affected this delay (Knudsen, 2001), as indigestible particles of the feed are the 

last to remain in the stomach after the digestible part of the diet has been expelled and 

their evacuation is slow (Bromley, 1987). NSP could also have affected hindgut 

evacuation time. Different extruded starch sources of wheat and corn result in different 

GER for gilthead seabream (Venou et al., 2003). It is possible that the structure of the 

extruded starch molecules of the tested legumes could result in this delay. 

Legume starches promote slow and moderate postprandial glucose and insulin 

responses and result in lower glycaemic indexes in humans (Tharanathan and 

Mahadevamma, 2003), while fish seem to have a longer postprandial hyperglycaemia 

after carbohydrate intake (Brauge et al., 1994). Peres et al. (1999) in a glucose tolerance 

test of seabass at 22ºC found higher range between the lower and the higher value 

compared to the present study and a peak 3-6 hours after a glucose injection, while in a 

similar test with salmon at 2-3ºC (Hemre and Hansen, 1998) the peak was found 3 
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hours after the injection. The present study was performed to evaluate the effect of 

different starch sources on the glycaemic curve and thus the results are not comparable 

to the pre-mentioned studies. The increase of evacuation time in the foregut could have 

also affected the glucose absorption rate. Diets control, CP30 and P30 evacuated 90% 

of the digesta after 32, 38 and 39 hours respectively and the glucose was rapidly 

reduced for the wheat-starch diet, while a delay in glucose reduction found for pea and 

chickpea starch diets. Fish fed diet B30 evacuated the digesta after 46 hours, showing at 

the same time a better glucose regulation with a lower peak in glucose curve and a 

strong possibility of correlation of these two facts. 

4.5 Conclusions 

In conclusion, all three legumes tested proved to have potential as feed ingredients 

for European seabass, mainly as carbohydrate replacers for wheat and to a lesser extent 

for protein substitution. Digestibility coefficients showed satisfactory values for all 

diets either including low or high levels of legumes. In addition starch digestibility was 

slightly improved for the diets that combined wheat and legume starch source. GET was 

significantly delayed by the inclusion of chickpeas, while foregut evacuation rate was 

reduced for all legume diets with faba beans showing the strongest effect. Glucose 

levels in seabass serum was also affected by the type of carbohydrates ingested with 

wheat starch showing more rapid increase and decrease of glucose compared to fish fed 

on pea and chickpea diets, while faba bean starch had a delay in glucose peak and a 

lower value as well.  
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CHAPTER 5. BEANS, CHICKPEAS & PEAS IN SEABASS DIETS 

5.1 Introduction 

Legumes are cultivated extensively representing a significant part of global grain 

production (Grain legumes, 2007) and are highly valued feed components for both 

ruminants and monogastric livestock due to their relatively high protein and energy 

values compared to cereals (Peterson and Mackintosh, 1994). Several legumes, 

including field peas, chickpeas and faba beans, are characterized by high carbohydrate 

content (Knudsen, 1997) and thus may potentially replace wheat carbohydrates in fish 

diets. The relatively high crude protein content of legumes may also enable partial 

replacement of protein rich ingredients such as fishmeal (Gouveia and Davies, 1998) or 

commonly used plant protein sources that could be very significant economically. 

Carbohydrates in feeds for farmed fish represent 10-40 percent of the total energy 

(Hemre et al., 2002) with wheat being one of the important carbohydrate sources. 

Wheat starch is a good binder and is also considered a good source of energy 

(Hertrampf and Piedad-Pascal, 2000). However, present high demand for starch and 

sugar-rich materials (fermentable carbohydrate) due to expansion of the biofuel industry 

has led to the price rises for these crops (Runge and Senauer, 2007) and for this reason 

wheat may suffer further price increases in future years (Runge and Senauer, 2007). 

Limited European production of soybean and the reaction of EU countries to genetically 

modified soybeans (Euractive, 2006), reinforces the importance of using plant sources, 

other than soybean, in aquafeeds. 

ANF such as protein inhibitors, amylase inhibitor, phytic acid, tannins and lectins 

adversely affect enzyme action or mineral and other nutrient absorption (Tacon, 1993), 

but they can partially or totally inactivated by heat processing (Francis et al., 2001). 

Furthermore, the indigestible carbohydrate content of plant ingredients has often been 
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considered to be an ANF (Hilton et al., 1983) that cannot be reduced or inactivated by 

heat processing. However, some I-NSP can be converted into the soluble form (Anguita 

et al., 2006) increasing digesta viscosity and changing the interaction between enzymes 

and digesta (Edwards et al., 1988), as well as the absorption rate (Johnson and Gee, 

1981). Legumes are deficient in sulphur amino acids (methionine and cystine) and 

tryptophan, but these deficiencies can be overcome by the complimentary use of cereal 

grains or the addition of low-cost synthetic amino acids (Booth et al., 2001). Cystine 

and glycine availability has been found to be low in field peas and faba beans, 

respectively, while limited availability of several amino acids was found in chickpeas 

(Allan et al., 2000). 

The influence of legume seeds as a carbohydrate source on fish blood parameters 

has received little attention. Glucose tolerance tests tend to show the relatively slow 

removal of carbohydrate from the plasma compartment (Shikata et al., 1994), however, 

glucose may be of primary importance as an oxidative substrate to some cells and 

tissues in fishes, with expected large inter-species variability (Hemre et al., 2002). 

Interesting differences exist in the effectiveness of different carbohydrates with respect 

to lipogenesis and protein sparing. In sturgeon, for instance, glucose and maltose are 

more lipogenic and can result in increased plasma triacylglycerols and cholesterol than 

carbohydrates such as fructose, sucrose, lactose, dextrin and starch or cellulose (Hung 

et al., 1989) 

There is some evidence that legumes, like soybean, can cause antigenic activity in 

mammals (Lalles, 1993) and in salmonids (Burrells et al., 1999), suggesting that there 

are mechanisms involving the immune system and substances present in soybean or 

peas (Esparza et al., 1996), however, these processes are complex and not yet clear. The 

hindgut of fish is sensitive to antigen stimulation and strong immune responses are 
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caused when antigens are delivered to this part of the digestive tract (Ellis, 1995). Thus, 

enteritis and immunological parameters seem to be related in rainbow trout (Rumsey et 

al., 1994). Histological changes have been found in this part of intestine in Atlantic 

salmon fed soybean meal (Baeverfjord and Krogdahl, 1996). 

Carbohydrate level in fish diets has been investigated in several species such as 

rainbow trout (Austreng et al., 1977; Bergot, 1979; Brauge et al., 1994; Krogdahl et al., 

2004), salmon (Arnesen et al., 1995; Krogdahl et al., 2004), tilapia (Wang et al., 2005) 

and European seabass (Perez et al., 1997; Lanari et al., 1999). Most of these studies link 

carbohydrate level to liver size (HSI), liver fat and liver glycogen, while Hemre and 

Hansen (1998) and some of the afore mentioned authors (Bergot, 1979; Arnesen et al., 

1995) also correlate these characteristics to the carbohydrate source. 

The objectives of the present study were to evaluate the effect of total replacement 

of wheat by whole grain flours of field peas, chickpeas and faba beans and the 

interactions of starch/legume level and legume type on diet digestibility, growth 

performance and organoleptic characteristics of European seabass and to evaluate blood 

serum indices and immunological factors as well as the histology of internal organs for 

European seabass. 

5.2 Materials and methods 

5.2.1 Feed ingredients and experimental diets 

Three different legumes including field peas, chickpeas and faba beans 

represented by P, CP and B respectively, were included in six practical type extruded 

diets containing approximately 17g100g-1 (L diets) or 35g100g-1 (H diets) of each 

legume plus the control diet as described in detail in section 3.2.3.2. 
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5.2.2 Fish and experimental design 

5.2.2.1 Digestibility 

Four hundred fish of initial weight 176±11g were transferred from a commercial 

farm (located in Epidavros, Greece) and a total of 20 fish were stocked randomly in 

each digestibility tank (section 2.2.2) and acclimatized for two months, being fed the 

experimental diets. Digestibility trials were carried out in triplicate, seabass were fed to 

satiation, twice a day (9.00am and 16.00pm) and faeces were collected as described in 

section 2.2.2. Faecal samples were removed every morning for 8 days, immediately 

prior to feeding, and processed as described in section 2.3.2. 

 

5.2.2.2 Growth 

Seven hundred seabass of initial weight 97.9±4.8g were transferred from the same 

farm and randomly distributed into 21 cages of 1.5m3 as described in section 2.2.2. Fish 

were weighed at the start of the trial, mortalities were recorded and dead fish were 

removed, while fish were hand fed twice a day (9:00am and 16:00pm) to satiation. 

Growth experiment took place from August to November and lasted for 14 weeks.  

5.2.4 Sampling procedure 

At the beginning of the experiment fish were weighed and a sample of 6 fish were 

taken as representative of the initial population to determine whole body proximate 

composition. At the end of the 14-week trial fish were fasted for 40h and 8 fish per tank 

anaesthetized and blood samples taken prior to any other sampling procedure. Sampling 

procedure is described in section 2.3.3.  
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5.2.5 Water quality 

The average temperature of the water was at 25±1ºC during the digestibility 

experimental period (June and July) and 17.3-28ºC during the growth period with an 

average temperature of 23.4ºC, as temperatures below 20ºC were recorded only in the 

last week of the experiment. Water quality is described in section 2.2.2.3 

5.2.6 Chemical analysis 

Proximate analysis, faecal fat, starch, yttrium oxide, liver fat, liver glycogen, 

serum glucose, total protein, triacylglycerols, cholesterol and chemiluminescence were 

also determined. All chemical methods are described in detail in General Materials and 

Methods. 

5.2.7 Calculation of nutritional parameters 

Growth parameters, ADCs, FCR, SGR, PPV and HSI formulae are presented in 

section 2.14. 

5.2.8 Histology 

Liver, spleen, kidneys and intestine (foregut and hindgut) were dissected from 

three fish per cage. Tissue samples were treated as described in section 2.12. 

5.2.9 Sensory analysis 

A total of 3 fish per cage (18 fillets) being fed control and H diets were harvested, 

placed into ice and, within 2-6 hours, they were gutted, filleted and whole fillets were 

wrapped in aluminium foil and steam cooked for 20min Sixteen trained assessors 

evaluated flesh taste intensity, flavour intensity, colour, oiliness, elasticity, hardness, 

 107



CHAPTER 5. BEANS, CHICKPEAS & PEAS IN SEABASS DIETS 

stickiness and general acceptance from 0 to 5 in a ranking test. The training of assessors 

and the design of the test were performed according to the general quantitative 

descriptive analysis from Murray et al. (2001). 

5.2.10 Statistical analysis 

All data are presented as means±SD (n=3) and were analysed by one-way or two-

way ANOVA as described in section 2.15. Chemiluminescence results were evaluated 

by One-Sample Kolmogorov-Smirnov Test and Homogeneity of Variances tested with 

the Levene test. Pearson correlation in SPSS 13.0 was used to evaluate any significant 

(P<0.01 and P<0.05) positive or negative correlation among fat metabolism parameters 

and among fillet characteristics 

5.3 Results 

5.3.1 Digestibility and blood serum  

5.3.1.1 Digestibility one-way ANOVA 

High digestibility values were recorded for all diets (Table 5.1). However, 

significant differences were detected after one-way ANOVA between control and L 

diets, due to low standard deviations. ADCs for protein ranged from 93.3-95.5%, for fat 

from 96.1–97.9%, for starch from 97.6-99.1% and for energy from 94.7-96.8%. The 

wheat based control diet showed the highest and peas the lowest ADC values. 

Significant decreases were noted (compared to the control) for protein digestibility in 

PL and CPL, for fat in diet PL, for starch in diets BL and PL and for energy in diets 

CPL and PL. ANOVA was also applied for comparison of all seven diets indicating 

increase of protein and energy ADCs for all H diets compared to CPL and PL, but not 
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to control diet, while fat ADC was significantly lower for PL diet. Starch digestibility 

was significantly increased for H when compared to diet PL. 

5.3.1.2 Digestibility two-way ANOVA 

Two-way ANOVA applied between L and H diets revealed significant interaction 

for all ADCs and therefore main effects were not examined and the simple main effects 

(the effect of one parameter at a given level of the other) were analysed. 

Protein ADC ranged from 93.3–95.3%. A significant interaction of inclusion level 

and legume type was observed (Figure 5.1a) showing that inclusion level significantly 

affected P and CP diets with H diets giving increased protein ADC compared to the 

respective L diets. Regarding the effect of inclusion level in L diets, significant increase 

was noted for diet BL compared to CPL and PL. 

Fat ADC ranged from 96.1–97.9% and a significant interaction of inclusion level 

and legume type was observed (Figure 5.1b). Specifically, for H diets BH increased fat 

ADC compared to CPH and for L diets PL showed decreased values compared to BL 

and CPL. Regarding legume type, diet PL resulted in lower fat ADC compared to PH. 

Starch ADC ranged from 97.4-98.8% and a significant interaction of inclusion 

level and legume type was observed and therefore the simple main effects were 

analysed (Figure 5.1c) showing that inclusion level significantly affected CP diets with 

CPL giving increased values. Regarding the inclusion level effect in L diets, CPL 

significantly increased starch ADC compared to BL and PL, while in H diets PH 

decreased compared to BH. 

Energy ADC ranged from 94.7–96.6% and a significant interaction of inclusion 

level and legume type was observed (Figure 5.2d). In L diets, diet P showed 
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significantly lower energy ADC compared to B and CP. Comparing the legume level 

PH showed significantly higher energy ADC than PL. 

5.3.1.3 Serum one-way ANOVA 

One-way ANOVA showed that fish fed the wheat-based control diet did not differ 

in any of the tested serum parameters compared to fish fed L diets. 

Specifically, blood serum glucose showed significantly elevated values in seabass 

fed diet CPH, followed by diet BH, while all other treatments resulted in lower values 

compared to both of these (Table 5.2). Cholesterol levels were significantly higher for 

diet CPH only when compared to diet BH, while total protein and triacylglycerol levels 

did not show any significant difference among experimental groups. 

5.3.1.4 Serum two-way ANOVA 

Two-way ANOVA among L and H diets revealed significant overall effects and 

interactions for serum glucose and cholesterol and simple main effects were examined.  

Serum glucose ranged from 3.63–10.79mmoldl-1 40 hours after feeding. A 

significant interaction of inclusion level and legume type was observed and therefore 

the simple main effects were analysed (Figure 5.2a), showing that inclusion level 

significantly affected CP diets with CPH giving significantly increased glucose values. 

Regarding the effect of inclusion level in H diets, PH exhibited significantly reduced 

glucose compared to BH and BH compared to CPH. 

Serum protein ranged from 5.95–7.28gdl-1 and significant effects were observed 

only for inclusion level (Figure 5.2b). Specifically, fish fed H diets had higher serum 

protein levels than fish fed L diets. 
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Serum cholesterol ranged from 10.20–13.32mmoldl-1 and significant effects were 

observed only for legume type, showing that B diets significantly decreased cholesterol 

levels compared to CP and P diets (Figure 5.2d). 

Serum triacylglycerols ranged from 2.79–3.90mmoldl-1 and did not show any 

significant differences among the examined parameters (Figure 5.2c). 

 



 

Table 5.1. Apparent Digestibility Coefficients (ADCs, %) of the diet nutrients in seabass 
 

 ONE-WAY ANOVA    TWO-WAY ANOVA P 

ADCs Control BL CPL PL BH CPH PH level legume level x leg. 

Protein  95.5±0.6C,c 94.9±0.7BC,bc 93.8±0.5AB,ab 93.3±0.4A,a 95.3±0.4C 95.3±0.2C 95.2±0.3C 0.000 0.015 0.041 

Fat 97.9±0.2B,b 97.7±0.5B,b 97.3±0.3AB,b 96.1±0.5A,a 97.9±0.2B 97.0±0.5AB 97.6±0.2B 0.022 0.003 0.005 

Starch 99.1±0.4D,b 98.0±0.2AB,a 98.8±0.2CD,b 97.6±0.3AB,a 98.2±0.4BC 97.8±0.2AB 97.4±0.3A 0.033 0.001 0.010 

Energy 96.8±0.2C,c 96.2±0.6BC,bc 95.6±0.4AB,ab 94.7±0.4A,a 96.6±0.3C 96.4±0.1BC 96.4±0.3C 0.000 0.008 0.023 

 
 
 
 
 
 
 
 
 
 
 
 

 
Different superscripts in each row show significant differences among the values according to Tukey test (P≤0.05). Upper case letters show significant differences 
among all diets and lower case letters between control and L diets. 
P-values revealed from two-way ANOVA for level (Low and High), legumes (B, CP and P) and for interaction of level and legume. 
Values are expressed as mean±SD (n=3) 
 

Table 5.2. Blood serum glucose, triacylglycerols, cholesterol (mmoldl-1) and protein (gdl-1) levels of seabass. 

ONE-WAY ANOVA    TWO-WAY ANOVA 
Blood serum 

Control BL CPL PL BH CPH PH level legume level x leg.

Glucose (mmoldl-1) 4.95±0.20BC 4.28±0.13AB 4.40±0.18AB 4.30±0.51A 7.66±0.86CD 10.79±1.35D 3.63±0.83AB 0.000 0.000 0.000 

Protein (gdl-1) 6.86±0.83 6.16±0.65 6.51±0.39 5.95±0.44 7.14±0.98 7.28±1.04 7.00±0.52 0.017 0.606 0.939 

Triacylglycerols (mmoldl-1) 3.87±0.24 2.79±0.49 3.90±0.48 2.97±0.43 2.89±0.71 3.07±0.38 2.86±0.86 0.326 0.157 0.384 

Cholesterol (mmoldl-1) 12.49±1.88AB 11.25±0.51AB 12.34±0.62AB 12.63±1.03AB 10.20±0.93A 13.32±0.54B 12.13±0.69AB 0.599 0.001 0.088 

Different superscripts in each row show significant differences among the values according to Tukey test (P≤0.05). Upper case letters show significant differences 
among all diets and lower case letters between control and L diets. 
P-values revealed from two-way ANOVA for level (Low and High), legumes (B, CP and P) and for interaction of level and legume. 
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Values are expressed as mean±SD (n=3) 
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Figure 5.1. Means of seabass ADC of protein (a), fat (b), starch (c) and energy (d) for the six experimental diets are presented in figures with 

two-way ANOVA, showing the effects of the two factors (inclusion level L&H and legume type) and their interaction. 

C
H

A
PTER

 5. B
EA

N
S, C

H
IC

K
PEA

S &
 PEA

S IN
 SEA

B
A

SS D
IETS 

 

For each legume level (L), values denoted with different letters are significantly different; uppercase or lowercase letters correspond to H (high) 

and L (low) level respectively within each legume. Significant difference between LL and HL are marked with an asterisk. 
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Figure 5.2. Means of seabass serum glucose (a), total protein (b), triacylglycerols (c) and cholesterol (d) for the six experimental diets are 

presented in figures with two-way ANOVA, showing the effects of the two factors (inclusion level L&H and legume type) and their interaction. 
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5.3.2 Growth and liver characteristics 

5.3.2.1 Growth one-way ANOVA 

Satisfactory growth was observed for all diets (Table 5.3) and significant 

differences for only SGR were detected by one-way ANOVA between the control and 

L diets. FCR ranged from 1.24–1.34, SGR from 0.86–1.00 and PPV from 0.27–0.30. 

Significant improvement was noted in SGR only for fish fed diet CPL. Regarding liver 

characteristics, glycogen values ranged from 9.3–10.3%, total lipids from 28.4–32.7% 

and HSI from 2.3–2.7%BW. Significantly decreased HSI was observed in fish fed L 

diets compared to the control. ANOVA was also applied among all seven diets 

indicating that fish fed diet CPL had significantly improved FCR than CPH and 

improved SGR when compared to CPH and control. Total liver fat was significantly 

lower for fish fed diet PH compared to BL, while diets CPH and PH resulted in higher 

HSI than the rest of the diets. 

5.3.2.2 Growth two-way ANOVA 

Two-way ANOVA among L and H diets revealed significant overall effects and 

interactions for some of the growth parameters and simple main effects were examined. 

For FCR a significant interaction of inclusion level and legume type was observed 

and therefore the simple main effects were analysed (Figure 5.3a), showing that 

inclusion level significantly affected fish fed the P and CP diets with H diets giving 

increased FCRs. Regarding the effect of inclusion level in L diets, significant 

improvement (in this case reduction) was noted for fish fed diets CPL and PL compared 

to diet BL. 
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SGR ranged from 0.87–1.00 and significant interaction of inclusion level and 

legume type was observed and therefore the simple main effects were analysed (Figure 

5.3b), showing that inclusion level significantly affected fish fed CP diets with a high 

level adversely affecting growth rate. With respect to the effect of inclusion level, no 

significant effect was noted among H or L diets 

PPV ranged from 0.27–0.30 and a significant effect of legume type was shown 

from two-way ANOVA (5.3c), but no significant effect of inclusion level or interaction. 

Specifically, both diets containing CP significantly improved PPV compared to diets 

containing B.  

Liver glycogen ranged from 9.4–11.5% and significant effects were observed only 

for inclusion level with H diets resulting in higher glycogen levels than L diets (Figure 

5.4a). 

Liver fat ranged from 25.2–32.7% and significant effects were observed again 

only for inclusion level (Figure 5.4b). Particularly, BL and PL resulted in lower liver fat 

values than BH and PH diets respectively. 

HSI ranged from 2.3–2.9%BW and significant effects of inclusion level and 

legume type were shown from two-way ANOVA (Figure 5.4c), but no interaction was 

noted. Specifically, when H diets were fed fish showed increased HSI and among the 

three legume types lower values were observed for fish fed the B diets compared to CP 

and P. 

A strong positive correlation (P<0.01) was found between glycogen and HSI, 

while a negative correlation was observed for glycogen and liver fat. A significant 

(P<0.01) negative correlation was also noted for serum glucose with HSI and carcass fat 
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(P<0.05). No other correlations were found among HSI, liver fat, blood serum 

cholesterol, triacylglycerols, glucose and carcass fat content (Table 5.4). 
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Table 5.3. Growth indicators of seabass fed diets with high (H) or low (L) level of legumes. 

Different superscripts in each row show significant differences among the values according to Tukey test (P≤0.05). Upper case letters show significant differences 
among all diets and lower case letters between control and L diets. 
P-values revealed from two-way ANOVA for level (Low and High), legumes (B, CP and P) and for interaction of level and legume. 
Values are expressed as mean±SD (n=3) 
1Feed Conversion Ratio, 2Significant Growth Rate, 3Protein Productive Value, 4,5Nitrogen and Feed Intake measure as a percentage of Body Weight, 6Hepatosomatic index 
 
 
 
 
 
 

 ONE-WAY ANOVA    TWO-WAY ANOVA 

 Control BL CPL PL BH CPH PH level legume level x legume 

Initial BW (g) 102.4±11.0 100.1±5.6 95.0±1.9 98.6±5.3 96.0±9.1 96.3±2.7 96.5±5.9    

Final BW (g) 250.5±16.9 264.6±15.3 268.4±11.4 264.2±8.9 242.0±10.7 238.0±9.5 256.0±18.6    

           

FCR1 1.34±0.07AB 1.31±0.02AB 1.24±0.04A 1.27±0.03AB 1.32±0.05AB 1.36±0.04B 1.35±0.02AB 0.001 0.776 0.043 

SGR2 0.86±0.06A,a 0.93±0.01AB,ab 1.00±0.02B,b 0.95±0.04AB,ab 0.89±0.06AB 0.87±0.02A 0.94±0.02AB 0.03 0.415 0.033 

PPV3 0.27±0.02 0.27±0.01 0.30±0.01 0.29±0.00 0.29±0.01 0.29±0.01 0.30±0.00 0.098 0.016 0.288 

NI4 (%BW) 4.29±0.12ABC 4.65±0.33BC 4.68±0.15C 4.49±0.11ABC 4.15±0.16ABC 3.93±0.30A 3.95±0.34AB 0.001 0.505 0.692 

FI5 (%BW) 1.08±0.07 1.13±0.00 1.14±0.00 1.11±0.02 1.10±0.03 1.11±0.02 1.17±0.04    

Liver characteristics          

Glycogen (%) 10.3±1.4ab 9.4±1.1a 9.8±1.0ab 9.5±1.2a 10.8±0.8 10.5±0.8 11.5±0.8 0.003 0.597 0.379 

Total lipid (%) 28.4±3.0AB,ab 32.7±5.2B,b 30.2±5.4AB,ab 28.4±3.0AB,ab 28.1±4.6AB 31.9±3.6AB 25.2±2.9A,a 0.028 0.191 0.052 

HSI6 (%BW) 2.67±0.02B,b 2.34±0.03A,a 2.43±0.05A,a 2.48±0.05A,a 2.73±0.1B 2.93±0.06C 2.92±0.05C 0.000 0.001 0.294 
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Figure 5.3. Means of seabass growth characteristics; FCR (a), SGR (b) and PPV (c) for the six experimental diets are presented in figures with 

two-way ANOVA, showing the effects of the two factors (inclusion level L&H and legume type) and their interaction. 

For each legume level (L), values denoted with different letters are significantly different; uppercase or lowercase letters correspond to H (high) 

and L (low) level respectively within each legume. Significant difference between LL and HL marked with an asterisk. 119
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Figure 5.4. Means of seabass liver characteristics; glycogen (a), fat (b) and hepatosomatic index (HSI) (c) for the six experimental diets are 

presented in figures with two-way ANOVA, showing the effects of the two factors (inclusion level L&H and legume type) and their interaction. 
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For each legume level (L), values denoted with different letters are significantly different; uppercase or lowercase letters correspond to H (high) 

and L (low) level respectively within each legume. Significant difference between LL and HL marked with an asterisk. 

 

 



 

 
Table 5.4. Correlation coefficients for serum, liver and carcass characteristics of seabass  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Serum   

 Glucose Triacylglycerols Cholesterol HSI Liver Fat Glycogen 

Triacylglycerols -0.006      

Cholesterol 0.074 0.383     

HSI 0.562** -0.065 0.149    

Liver Fat -0.004 -0.077 0.131 -0.382   

Glycogen 0.256 -0.031 -0.090 0.661** -0.675**  

Carcass Fat -0.547* 0.324 0.351 -0.482* 0.274 -0.386 

* Correlation is significant for P<0.05 (2-tailed). 
** Correlation is significant for P<0.01 (2-tailed). 
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5.3.3 Carcass and fillet 

5.3.3.1 Carcass 

One-way ANOVA was applied among control and L diets to examine the effects 

of wheat substitution by legumes on carcass composition (Table 5.5). In this respect 

fish fed diet CPL showed significantly reduced moisture and increased lipid content, 

while carcass protein content was not affected by the carbohydrate source. ANOVA 

among all seven diets showed significantly elevated moisture and decreasing carcass fat 

for fish fed diet BH compared to diets PH, control and CPL, while significantly higher 

protein for fish fed diet CPH found but only against diet BL. 

Two-way ANOVA among L and H diets revealed significant overall effects and 

interactions for carcass composition values and simple main effects were examined. 

Carcass ash values were not homogenous as revealed from Levene’s test and no tested 

transformation led to homogeneity and therefore this parameter was not examined. 

Carcass moisture content ranged from 59.9–62.9%. A significant interaction of 

inclusion level and legume type was observed and therefore the simple main effects 

were analysed (Figure 5.5a), showing that inclusion level significantly affected the B 

diets with H diets giving increased moisture content. Regarding the effect of inclusion 

level in L diets, significant reduction was noted for CPL compared to BL and PL and 

for H diets significant reduction was noted for PH compared to BH. 

Carcass protein ranged from 15.7-16.5% and significant effects were observed 

only for inclusion level (Figure 5.5b). Specifically, fish fed H diets had higher protein 

contents than fish fed L diets. 
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Carcass fat ranged from 16.9-20.4% and a significant interaction of inclusion level 

and legume type was observed and therefore the simple main effects were analysed 

(Figure 5.5c), showing that inclusion level significantly affected B and CP diets with L 

diets giving significantly increased fat content. Regarding the effect of legume type 

significantly less fat was measured in fish fed PL compared to CPL, and BH compared 

to PH. 

5.3.3.2 Fillet 

Seabass fillet characteristics were satisfactory for all measured diets. One-way 

ANOVA was applied for comparison of fillet characteristics among control and H diets 

although no further results could be revealed from this analysis (Table 5.6). Fillet ash 

values were not homogenous as revealed from Levene’s test and no tested 

transformation led to homogeneity and therefore this parameter was not examined. 

Fillet moisture ranged from 72.9–73.8% and was significantly higher for fish fed 

diet BH only compared to the control, while protein ranged from 19.7–20.3% and was 

significantly higher for control compared to diet PH and finally ash content ranged from 

1.3–1.6%. Fillet yield ranged from 41.0–44.2%BW and the percentages of fillet muscle 

(35.4–38.1%BW) were significantly greater for fish fed diet PH, although the flesh 

protein content for this fillet was the lowest.  

According to Pearson correlation, nitrogen deposition had a strong positive 

correlation (P<0.01), while protein had a strong negative correlation with fillet yield. 
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Table 5.5. Carcass proximate composition (%) and Gross energy (kJg-1) of seabass 

  ONE-WAY ANOVA    TWO-WAY ANOVA 

Components Initial Control BL CPL PL BH CPH PH level legume level x leg 

Moisture 71.7±0.6 61.2±0.3AB,b 61.8±0.2BC,b 59.9±0.2A,a 61.6±0.6BC,b 62.9±0.1C 61.5±1.3BC 61.2±0.2AB 0.019 0.002 0.038 

Crude protein 16.4±0.5 16.1±0.2AB,a 15.7±0.4A,a 16.0±0.2AB,a 15.9±0.2AB,a 16.1±0.4AB 16.5±0.4B 16.2±0.1AB 0.014 0.146 0.830 

Crude lipid 4.3±0.3 18.8±0.3B,a 19.2±0.2BC,ab 20.4±0.7C,b 18.8±0.6B,a 16.9±0.5A 18.2±0.7AB 18.7±0.4B 0.000 0.008 0.009 

Ash 5.0±0.3 2.9±0.2 2.7±0.0 2.7±0.3 2.9±0.0 2.9±0.1 2.8±0.2 2.7±0.1    

Gross energy 5.54 11.2±0.1 11.27±0.1 11.8±0.3 11.2±0.2 10.5±0.2 11.1±0.4 11.2±0.2    
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Different superscripts in each row show significant differences among the values according to Tukey test (P≤0.05). Upper case letters show significant differences 
among all diets and lower case letters between control and L diets. 
P-values revealed from two-way ANOVA for level (Low and High), legumes (B, CP and P) and for interaction of level and legume. 
Values are expressed as mean±SD (n=3) 
 
 
Table 5.6. Fillet muscle proximate composition of seabass 

Components Control BH CPH PH 

Moisture 72.9±0.2a 73.8±0.5b 73.2±0.3ab 73.3±0.4ab

Crude protein 20.3±0.2b 20.2±0.2ab 20.0±0.3ab 19.7±0.0a

Crude lipid 4.6±0.3 4.1±0.3 4.7±0.3 4.7±0.2 

Ash 1.5±0.1 1.6±0.1 1.3±0.0 1.3±0.0 

Fillet muscle (%BW) 35.4±1.5a 36.3±2.2a 37.0±2.2ab 38.1±1.1b

Fillet yield (%BW) 41.0±1.6a 41.5±1.8a 42.5±2.1a 44.2±1.6b

Different superscripts in each row show significant differences among the values according to Tukey test (P≤0.05).  
Values are expressed as mean±SD (n=3) 
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Figure 5.5. Means of seabass carcass moisture (a), protein (b) and fat (c) for the six experimental diets are presented in figures with two-way 

ANOVA, showing the effects of the two factors (inclusion level L&H and legume type) and their interaction. 

For each legume level (L), values denoted with different letters are significantly different; uppercase or lowercase letters correspond to H (high) 

and L (low) level respectively within each legume. Significant difference between LL and HL marked with an asterisk. 125
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Figure 5.6. Sensory analysis of seabass fillet fed the control or the diets containing high 

legume levels. 

5.3.4 Histology 

Examination of histology sections for liver, spleen, kidneys and foregut did not 

show any pathological abnormalities that could be related to nutritional treatment. Fish 

fed either diet PH or control induced increased number and abnormal size and 

arrangement of absorptive vacuoles in hindgut, however the rest of the diets containing 

legumes did not show any pathological signs. 

5.3.3.3 Sensory analysis 

No statistically significant differences were found among the organoleptic 

characteristics of the fish fed the different legume-containing diets as shown in Figure 

5.6. 
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5.3.5 Immunology  

None of the fish groups fed the diets tested showed significant evidence of either 

immunosuppression or immunostimulation (Figure 5.7) compared to control fish. 

However, diet BH resulted in significantly lower blood chemiluminescence than diet 

BL. There was also a tendency for immunosuppression of chemiluminescence by CPH, 

however this was not significant. Peas have a tendency to immunostimulate as judged 

by blood chemiluminescence at both inclusion levels even if not statistically significant. 
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Figure 5.7. Effect of tested dietary legumes on seabass serum chemiluminescence (CL) 

activity (P<0.05) (rlu, relative luminescent units). 
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5.4 Discussion 

In the present study all three legumes proved valuable carbohydrate replacers at 

both inclusion levels in seabass as indicated by their ADCs, growth indices, carcass 

composition, fillet yield and sensory analysis, taking also into account the low fishmeal 

inclusion level of the diets. Tested diets gave satisfactory digestibility coefficients and 

with respect to growth performance, PPV showed no differences among treatments, 

while FCR and SGR showed improved values for diet CPL and reduced for the control. 

5.4.1 Digestibility 

Objectively, digestibility values obtained in this study were all very high, while 

when compared to respective values in experiment I (92.9 vs. 94.2% for protein, 96.2 

vs. 97.7 for fat, 92.3 vs. 97.0% for starch and 94.2 vs. 96.0% for energy) the values 

were slightly increased, despite the fact that in Experiment I diets included almost 

double fishmeal than the diets of Experiment II and the same procedures were followed 

in both experiments. The increase of digestibility might be attributable to possible 

leaching resulting from the high plant meal content of the tested diets in the present 

study that resulted in a more liquid form of faeces (Hung et al., 1990) or to a higher 

enzyme activity at higher temperatures (18 vs. 25°C) as proved in vitro for seabass 

(Papoutsoglou and Lyndon, 2005). However, Moreira et al. (2008) found an increase 

only in starch ADC for seabass fed at 25°C when compared to 18°C. Nevertheless, two-

way ANOVA among diets L and H revealed significant differences for inclusion level, 

for legume type and for interaction of the two parameters, but the control diet resulted 

in higher overall values. 

Similar studies evaluating legumes for carbohydrate replacement in fish diets are 

very limited in the literature. In particular Gouveia and Davies (1998) fed diets 
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containing 0, 20 and 40g100g-1 field pea meal to European seabass and showed no 

differences for protein (88-89%) and lipid (92-94%) ADCs, but the respective values 

for carbohydrate (71, 65 and 57%). and energy (78, 73 and 72%) for the high 

replacement level were significantly lower than the control. The ADC values of pea 

diets tested in the present study were higher than those reported by Gouveia and Davies 

(1998), most probably due to different processing procedures of the feeds (extrusion vs 

pelleted). This view is supported by the fact that the same authors in a more recent 

study (Gouveia and Davies, 2000) evaluated extruded pea seed meal for the same 

species at up to 30% and all nutrient ADCs were higher than in their previous work 

(Gouveia and Davies, 1998) approaching the values of the present study. Gouveia and 

Davies (2000) showed no differences for all nutrient ADCs at all inclusion levels, in 

contrast to the present study where diet PH showed improved protein digestibility and 

both pea diets showed reduced starch ADC compared to the control diet. When pea 

seed meal was included at 18g100g-1 and substituted for wheat in Atlantic salmon 

extruded diets (Aslaksen et al., 2007) all nutrient ADCs were lower (85, 50, 91 for 

protein, starch and fat) compared to those found in the present study, but all followed 

the same trends. In the same work, diets including whole faba bean (22g100g-1) for 

wheat replacement showed protein ADC (84%) similar to the control (85%), and 

decreased starch ADC (50 vs 55%), which agrees with the current results. For 

chickpeas no similar studies are available but some information exists on their 

digestibility in other farmed species (Booth et al., 2001). Protein and energy ADCs of 

chickpeas (30% in the diet) have been estimated in Australian silver perch to be 88.1 

and 72.1% respectively (Booth et al., 2001). 

Increasing starch levels have been noted to decrease starch and to increase protein 

and energy ADC (Brauge et al., 1994) in rainbow trout diets, while juvenile seabass fed 

 129



CHAPTER 5. BEANS, CHICKPEAS & PEAS IN SEABASS DIETS 
 

diets including 10, 20 or 30% of gelatinized starch showed decreased protein, starch 

and energy ADCs at the highest starch level (Moreira et al., 2008). However, these 

findings agree only for CP diets in the present study, although lower starch levels were 

included. It is a paradox that all L level diets resulted in lowered ADCs and yet fish fed 

these diets showed improved growth parameters. This could be explained by the 

consistently high ADC values recorded, the low numerical differences, and to the 

extremely small standard deviations obtained within treatments (that lead to statistically 

significant differences). It is also important to note that greater differences were found 

for protein ADCs and although most of the growth parameters showed the opposite 

trend, protein utilization was higher for the H diets. 

5.4.2 Growth 

The growth and feed utilization parameters recorded for diets tested in this work 

were consistent with those reported elsewhere for European seabass. Legumes are 

commonly used for fishmeal protein substitution in the form of concentrated proteins or 

in combination with other plant protein sources (Gomes et al., 1995a), but there are 

very limited studies on wheat substitution. No significant differences were noted in all 

growth parameters when juvenile European seabass were fed pelleted diets containing 

20 and 40g100g-1 of pea seed meal (Gouveia and Davies, 1998), which agrees with the 

current results for both high and low pea seed meal diets. Furthermore, protein 

efficiency ratio (PER) and nitrogen deposition and utilization were improved with 

increasing levels of pea seed meal in extruded diets, when FCR and SGR values did not 

differ significantly (Gouveia and Davies, 2000), while in the present research no 

differences were noted for any of these values. Thiessen et al. (2003) carried out a study 

replacing wheat meal with dehulled field pea meal (25g100g-1) in rainbow trout diets 
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and demonstrated that, although SGR, FCR and PER were improved, they did not differ 

significantly when compared to the control diet, this is also in accordance with the 

present findings for diet PL. For faba beans and chickpeas no relevant growth studies 

are available, but in the present research SGR and FCR were significantly different only 

between CP diets with improved values for CPL, while the rest of the diets did not 

differ significantly. Overall, diet CPL resulted in higher performances, with the most 

improved SGR and FCR values, while the lowest respective values were noted for diets 

CPH and the control. L diets showed improved weight gain, FCR, SGR and FI 

indicating that substitution of wheat by any of the tested legumes at a 17g100g-1 

inclusion level could probably affect growth parameters of seabass, probably due to the 

different carbohydrates included in legumes compared to cereals. 

However, when faba beans and chickpeas were included at a 35g100g-1 level, FCR 

and SGR were adversely affected, compared to the respective low legume diet, however 

only significantly for CP. Difference in plant protein and carbohydrate sources included 

in the control diet did not lead to significant differences in all afore mentioned 

parameters, however, values were slightly increased for the legume diets, apart from the 

FCR value for diet CPH, but this could be expected as different carbohydrate sources 

have been noted to have various effects. Specifically, different carbohydrate sources 

affected FCR values but not SGR in salmon (Hemre and Hansen, 1998) and effects on 

growth performance in rainbow trout were also found by Bergot (1979). This leads to 

the conclusion that peas, chickpeas and faba beans are very good replacers of wheat and 

partially of soy or sunflower protein and it is possible that the tested high-starch 

legumes may offer better starch and protein sources than the commonly used materials 

(especially wheat and soybean). However, more research with longer period trials 

should be done in this area to generate definitive conclusions. 
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5.4.3 Carcass and fillet composition, HSI, liver glycogen, liver fat 

In the current study European seabass showed no negative effects on carcass 

proximate composition of either low (PL) or high (PH) field pea containing diets when 

compared to the control. Pea seed meal was successfully included in diets of juveniles 

of the same species with equivalent results (Gouveia and Davies, 1998; Gouveia and 

Davies, 2000). Pereira and Oliva-Teles (2002) carried out evaluation of growth 

parameters of gilthead seabream fed two differently processed pea seed meals at similar 

inclusion levels to those in the present study. The same authors demonstrated that no 

significant differences occurred in carcass proximate composition and HSI for gilthead 

seabream. For seabass in this study carcass composition also did not differ between 

control and pea diets, however, HSI was significantly higher than the control for PH 

and significantly lower for PL. Higher carcass protein values observed for diet CPH, 

but this was significantly lower only against diet BL. Results on carcass fat regarding 

dietary carbohydrate level are controversial as salmon showed decreasing values of fat 

with increasing carbohydrate levels (Refstie and Austreng, 1981), while Wang et al. 

(2005) found the opposite in tilapia diets, but these results could be species related, as 

these two species have very different capacity to utilize carbohydrates. Carcass fat was 

significantly higher for diets CPL and BL compared to CPH and BH respectively that is 

in agreement with Refstie and Austreng (1981) in rainbow trout that reduced carcass fat 

with elevating levels of carbohydrates. 

High-inclusion diets were chosen to be compared with the control diet for fillet 

yield and organoleptic characteristics, as the diets that were more likely to show 

differences against the control. Fillet yield was higher for diet PH, followed by CPH, 

BH and lowest for the control diet. This could be attributed to the higher carbohydrate 

content of H diets compared to the control (Lanari et al., 1999), but this should be 
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clarified by further research. Pearson correlation showed that protein level of fillet 

muscle had a strong negative correlation, with fillet yield.  

Increased but not significant values were found for liver glycogen in H compared 

to L diets, most probably due to the increase in digestible starch (Kim and Kaushik, 

1992). High glycogen contents associated with increasing carbohydrate levels have 

been noted by several authors in salmon (Refstie and Austreng, 1981; Arnesen et al., 

1995), tilapia (Wang et al., 2005), rainbow trout (Austreng et al., 1977; Bergot 1979) 

and seabass (Moreira et al., 2008). HSI values showed the same trend as glycogen 

deposition, but this time the differences were significant and agreed with other studies 

in trout (Kim and Kaushik, 1992), in silver perch (Stone et al., 2003), tilapia (Wang et 

al., 2005) and seabass (Moreira et al., 2008), but not in salmon (Arnesen et al., 1995). A 

strong correlation was also found between HSI and liver glycogen content and this is in 

agreement with the results published for several other species (Hemre et al., 2002), 

while increased glycogen deposition seemed to induce enlargement of liver (Stone et 

al., 2003). Liver fat content has been associated with high carbohydrate contents in diets 

for seabass by Lanari et al. (1999) but this fact was not confirmed in this research with 

all H diets resulting in lower liver fat content than L diets, but this difference could be 

explained by the lower inclusion levels of starch in the present study for the respective 

values of low and high levels. 

5.4.4 Sensory analysis 

Different carbohydrate sources in salmon feeds (Young et al., 2006) were noted to 

cause no impact on flesh quality, however organoleptic characteristics were not 

evaluated in that study. The similar levels of fishmeal and fish oil included in the tested 

diets could be the reason that no significant differences were noted for the organoleptic 
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characteristics of the fillets observed from seabass fed control and H diets as the 

fishmeal (Kaushik et al., 1995) as the source of fat (Waagbo et al., 1993) in the diet 

play a determinative role on sensory characteristics. 

5.4.5 Haematological parameters 

Measurements on serum in seabass, not unexpectedly, resulted in high ranges of 

the observed values within the same experimental groups. In contrast to mammals, fish 

have proved to be ‘glucose resistant’ (Mommsen and Plisetskaya, 1991) and most 

teleost fishes have wide limits of glucose levels not only between species but also 

within species at different life stages or under certain feeding regimes (Hemre et al., 

2002). Serum analysis has been investigated partially in some species aiming to study 

effects of certain ingredients in fish diets. For instance Hung et al. (1989) found that 

different carbohydrate sources could affect total cholesterol and triacylglycerols levels 

in blood plasma when included in sturgeon (Acipenser transmontanus) diets. However, 

not much information exists about the influence of legume seeds in fish as a wheat 

replacer in all four blood serum parameters measured in the present research. 

Stone et al. (2003) found that raw pea starch at a 30g100g-1 level did not affect 

plasma glucose in Australian silver perch 3 hours after feeding, compared to different 

carbohydrate sources at the same percentage and the same was found for salmon when 

fed oat and maize meals as carbohydrate sources (Arnesen et al., 1995). In the present 

study 40 hours after feeding no differences were found for pea diets, although extruded, 

however, chickpeas at high dietary levels significantly increased glucose compared to 

the control diet, implying a positive effect of starch level on glucose serum values. 

Arnesen et al. (1995) also found a significant positive correlation between plasma 
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glucose and liver glycogen, but in the present study this correlation was positive, 

although not significant. 

Total serum protein did not vary much among diet treatments, probably due to the 

same fishmeal and total protein inclusion level of the diets and this is in agreement with 

Hemre and Hansen (1998) who found no effect on this parameter with different 

carbohydrate sources. Starch level does not seem to play an important role either. 

Triacylglycerols did not show any differences among the experimental groups 

however all diets showed a decreasing trend, excluding diet CPL, that was similar to the 

control levels. Similarly, levels of triacylglycerols were not affected by the 

carbohydrate source in salmon (Hemre and Hansen, 1998) 

In both mammals and humans, different plant constituents have been reported to 

lower plasma cholesterol levels (Wester, 2000), but this effect seems to be related to the 

NSP content of the plant materials (Levrat et al., 1996; Favier et al., 1997). Cholesterol 

was higher for diet CPH and lower for diet BH, but no other significant differences 

were found. Both faba bean diets showed a decreasing trend that could be related to the 

effect of this ingredient. It is also important to note that no correlation was found among 

serum cholesterol, triacylglycerols and HSI, liver and carcass fat content and none 

between liver glycogen and the inclusion level of NSP (total NSP, I-NSP or S-NSP). 

5.4.6 Immunology 

Occurrence of certain legume ANF has been associated with immunological 

disturbances in mice fed diets including legumes (Macarulla et al., 1992; Martinez et 

al., 1992; Esparza et al., 1996) and in salmon (Krogdahl et al., 2000) and rainbow trout 

(Burrells et al., 1999) fed with soybean meal diets. No similar reports are available for 

the legumes tested in the present study or in European seabass. Experimental diets 
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included soybean meal at 16 or 8g100g-1 in L and H diets respectively and these 

combinations could act either in a synergistic or antagonistic manner in low level diets. 

Faba bean diets showed immunosuppressive tendencies at the high inclusion level (BH) 

and immunostimulatory effects at the low level (BL), however all the other diets did not 

show any significant differences, but further study is needed to confirm these results. 

5.4.7 Histology 

It might be expected that diets containing both soy and tested legumes (in L diets) 

might induce histopathological changes compared to the control diet. However, 

increased numbers, abnormal size and arrangement of absorptive vacuoles were found 

only in the distal intestine of fish fed the control diet and to a lesser extent diet PH. 

Findings in control diet may be due to the 16g100g-1 soybean inclusion level while 

sunflower and corn gluten may not contribute to these effects, as they have been proven 

not to cause histological abnormalities in Atlantic salmon (Aslaksen et al., 2007). The 

fact that L diets did not show any changes could be attributed to a possible antagonistic 

effect of some plant ingredients with problem agents of soy. Diet PH induced increased 

number of absorptive vacuoles that could be related to whole pea seed meal ANF, 

however, these hypotheses requires further investigation. For L diets findings are in 

agreement with (Aslaksen et al., 2007) who did not observe histological abnormalities 

in Atlantic salmon fed diets including 18 and 22g100g-1 of peas and faba beans 

respectively, while (Sitja-Bobadilla et al., 2005) found histological changes in gilthead 

seabream only when they were fed diets containing 100% plant proteins. 
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5.5 Conclusions 

The inclusion of any of the three legumes up to 17% in seabass diets proved to be 

beneficial in terms of growth with chickpea diet giving the best growth values, but also 

higher carcass fat content. Fish fed on diets including 35% of legumes showed 

decreasing growth trends compared to control and 17% inclusion level diets. However, 

the differences should be investigated in longer term experiments. In pathological 

terms, enteritis was not induced in any of the fish groups and only high inclusion of pea 

seed meal caused an increased number of absorptive vacuoles in hindgut. No sensory 

differences were found among steam cooked fillets of seabass fed either the control or 

the high legume level diets. 
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CHAPTER 6. BEANS, CHICKPEAS AND PEAS IN SEABREAM DIETS 

6.1 Introduction 

Aquaculture production of gilthead seabream in Mediterranean countries is still 

rising with Greece being the leading producer at almost 50,000t in 2006 (Aquamedia, 

2008). As already mentioned in the ‘General Introduction’ gilthead seabream farming 

is considered a very important sector for the local economy (FAO, 2008b). Use of 

locally available feed ingredients from terrestrial agricultural production in the region 

could directly contribute to the sustainability and cost-effectiveness of fish farming in 

Greece. In this respect cultivation of legumes, as appropriate for Mediterranean-type 

climates (Sulas, 2005), could be encouraged if proven to give satisfactory 

performance in seabream diets. In addition the faba beans used in the present study 

are legumes produced in high quantities in EU countries (Figure 1.4) and considered 

of high nutritional value. 

The total capacity of fishfeed companies in Greece, presently nine plants, is 

between 250,000–300,000mt, whilst the national requirements are 200,000mt. The 

most common ingredients used in aquafeeds in Greece are mostly imported with only 

approximately 5% being derived from local agricultural production, including wheat 

and glutens (Alexis, personal communication, EPAN report 2008). 

Over the last five years there has been a gradual, or in some cases rapid, rise in 

the prices of all ingredients used in the livestock feeds with a parallel increase in the 

cost of feeds and in turn in livestock production (Beek, 2007). Alternative and 

sustainable ingredients must therefore be evaluated as potential solutions to the 

sustainable development of the aquaculture industry. The prices of wheat for the last 

three years greatly varied: the prices (€/t) are presented in ascending order in Table 
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6.1 with the required respective prices of the tested legumes for a least cost diet 

included up to 35g100g-1 (Karacostas, personal communication). 

 

Table 6.1. Wheat prices (€/t) for years 2005-2008 in EU, in ascending order with the 

respective maximum cost of faba beans, peas and chickpeas to formulate a least cost 

diet for seabream. 

Seabream product 4.5mm (44/19) 
Wheat (€/t) Faba beans (€/t) Peas (€/t) Chickpeas (€/t)

120 240 205 270 
140 255 220 285 
160 270 235 300 
180 285 250 315 
200 305 270 335 
220 320 290 350 
240 335 305 365 
260 345 320 375 
280 350 320 385 

Calculations are based on BioMar’s commercial product (44/19, 4.5mm) for seabream and for 
maximum inclusion level 35% (Karacostas, personal communication).

 

Plant materials are the most promising alternative ingredients and indeed locally 

produced materials are already used in most of the European countries that have 

developed aquaculture, such as Norway, Denmark, Scotland, France and Spain 

(FEAP, 2008). The most important exception is soybean that is very commonly used 

but production in the EU is very limited (Grain legumes, 2006). In addition, legumes 

such as peas and especially chickpeas can be produced with more environmental 

friendly cultivation techniques as they do not have high demands for water (Bhardwaj 

et al., 1999), they can be cultivated in sandy soil, and they do not need nitrogen 

fertilization if nodulated (Oplinger et al., 1990). Furthermore, such cultivation could 

help the poor and arid areas of Greece to develop through agricultural production. On 

the other hand faba beans are commonly produced in most European countries 

(Schneider, 2002) and could potentially partially or totally replace soybean meal. 
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Therefore, this study had a dual role; firstly to investigate the effects of different 

starch sources in seabream diets and secondly to estimate the performance of fish fed 

diets including high levels of Greek varieties of peas and chickpeas or faba beans 

produced in the EU in place of imported plant sources like soybean and sunflower 

meal. Specifically, the effect of total replacement of wheat by whole grain flours of 

field peas, chickpeas and faba beans and the interactions of starch level and legume 

type on growth performance were evaluated alongside haematological serum indices 

and histology of internal organs in gilthead seabream. 

The present research was complementary to the project “Utilization of pulses 

and carob seed germ meal as feed constituents of seabass and seabream”, funded by 

the European Union (Community Support Framework 2000-2006, Operational 

Programme “Competitiveness”) and carried out by The Hellenic Centre for Marine 

Research, BioMar Hellenic, Selonda and National Agricultural Research Foundation 

(N.AG.RE.F.).  

6.2 Materials and methods 

6.2.1 Feed ingredients and experimental diets 

Three different legumes including field peas, chickpeas and faba beans 

represented by P, CP and B respectively, were included in experimental diets. Six, 

practical type extruded diets were formulated containing approximately 17g100g-1 (L 

diets) or 35g100g-1 (H diets) of each legume plus the control diet as described in 

detail in section 3.2.3.3.  
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6.2.2 Fish and experimental design 

Seven hundred seabream of initial weight 92.6±5.0g were transferred from a 

Selonda farm (in Karistos, Evia) and randomly distributed into 21 cages as described 

in section 2.2.2. Fish were weighed at the start of the trial, mortalities were recorded 

and dead fish were removed. Fish were hand fed twice a day (9:00am and 16:00pm) a 

total of 1.5g100g-1 BW. 

Before the experiment parasites were detected and fish were treated in low 

salinity water for 6 days. In the 6th week of the experiment a new outbreak of 

parasites stressed the fish and they required treatment with copper sulphate for 15 

days, at a daily dose of 0.8ppm under flowing water. During this period fish were fed 

normally, but their appetite was obviously reduced, especially for the first 5 days of 

treatment. Mortalities were recorded and dead fish were weighed. 

6.2.3 Sampling procedure 

At the beginning of the experiment fish were weighed and a sample of 6 fish 

were taken as representative of the initial population to determine whole body 

proximate composition. At the end of the 13-week trial fish were fasted for 40h and 8 

fish per tank anaesthetized and blood samples taken prior to any other sampling 

procedure. Sampling procedure is described in section 2.3.3. 

6.2.4 Water quality 

Average water temperature ranged from 21-28ºC during the growth period 

(May-August) with an average temperature of 25ºC. Water quality is described in 

section 2.2.2.3.  
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6.2.5 Chemical analysis 

Proximate analysis, liver fat, liver glycogen, serum glucose, total protein, 

triacylglycerols, cholesterol and chemiluminescence were determined. All chemical 

methods are described in detail in General Materials and Methods. 

6.2.6 Calculation of nutritional parameters 

Growth parameters, FCR, SGR, PPV, VSI and HIS formulae are presented in 

section 2.14. 

6.2.7 Histology 

Liver, spleen, kidneys and intestine (foregut and hindgut) were dissected from 

three fish per cage. Tissue samples were treated as described in section 2.12. 

6.2.8 Statistical analysis 

All data are presented as means±SD (n=3) and were analysed by one-way or 

two-way ANOVA as described in section 2.15. Pearson correlation in SPSS 13.0 was 

used to evaluate any significant (P<0.01 or P<0.05) positive or negative correlation 

among fat metabolism parameters. 

6.3 Results 

6.3.1 Growth 

6.3.1.1 Growth one-way ANOVA 

Growth for all diets was lower than expected most probably due to the parasite 

infection during the experiment and only for FCR significant differences were 
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detected by one-way ANOVA between control and L diets. FCR ranged from 1.58–

1.79, SGR from 0.84–0.92, PPV from 0.18–0.25 and VSI from 6.4–8.1%. Significant 

improvement was noted in FCR only for fish fed the control diet when compared to 

fish fed diets PL, PH or BH, while SGR was better for control diet but it did not differ 

from any of the diets. Regarding liver characteristics, glycogen values ranged from 

6.9–10.7%, total lipids from 8.7–13.2% and HSI from 1.0–1.2%. Decreased but not 

significant values for HSI were observed in fish fed L diets compared to the control, 

while glycogen decreased significantly for fish fed diet CPL when control and L diets 

were compared. ANOVA also applied for all seven diets showing that PH diet 

resulted in high liver glycogen when compared to CPL and BL (Table 6.2). 

6.3.1.2 Growth two-way ANOVA 

Two-way ANOVA among L and H diets revealed significant interactions 

between legume type and inclusion level only for liver fat content, while significant 

overall effects were found for some of the growth parameters and simple main effects 

or main effects were examined where required. 

For FCR (1.68-1.78), SGR (0.84-0.87), VSI (6.7-8.1%) and HIS (1.0-1.3%) no 

significant differences occurred for inclusion level and legume type or their 

interaction showing that none of the parameters examined were affected by diet type. 

PPV ranged from 0.18–0.25 and a significant effect of legume type and 

inclusion level was shown from two-way ANOVA. Specifically, fish fed P diets had 

lower PPV than fish fed CP diets and L diets showed higher PPV values when 

compared to respective H diet values. 

Liver glycogen ranged from 6.9–10.7% and significant effects were observed for 

inclusion level and legume but not for their interaction, showing that fish fed the H 
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diets had higher liver glycogen levels than fish fed L diets and P diets giving higher 

values than CP and B diets (Figure 6.1a) 

Liver fat ranged from 9.5–13.2% and a significant interaction of inclusion level 

and legume type was observed and therefore simple main effects were analysed 

(Figure 6.1b). For H diets diet BH showed significantly lower liver fat than CPH and 

PH and for L diets, CPL showed significantly higher liver fat. Regarding legume type 

no differences were found between L and H diets in pairs. 



 

 

Table 6.2. Growth indicators of seabream fed diets with high (H) or low (L) level of legumes  

 ONE-WAY ANOVA TWO-WAY ANOVA 
 Control BL CPL PL BH CPH PH  level legume level x legume 
Initial W(g) 95.1±7.7 89.9±1.8 92.0±3.5 96.0±8.5 90.9±6.2 94.8±0.9 89.4±1.0     
Final W(g) 216.2±16.0 188.2±2.8 200.1±3.7 200.9±10.3 188.1±8.0 206.1±4.6 187.9±9.7     
Wgain (g) 127.4±5.1 109.3±2.7 117.5±7.1 109.3±4.8 107.2±5.8 117.9±9.0 110.0±8.9     
Mortalities 5 9 4 8 8 4 6     
            
FCR1 1.58±0.07A,a 1.72±0.06AB,ab 1.69±0.03AB,ab 1.78±0.05B,b 1.79±0.07B 1.68±0.05AB 1.76±0.03B  0.543 0.024 0.237 
SGR2 0.92±0.08 0.85±0.036 0.86±0.02 0.85±0.03 0.84±0.02 0.87±0.05 0.86±0.02  0.939 0.487 0.832 
PPV3 0.22±0.01AB 0.22±0.02AB 0.25±0.02B 0.23±0.01AB 0.22±0.01AB 0.23±0.02B 0.18±0.02A  0.026 0.011 0.139 
NI (%BW) 4 4.57±0.40B,b 4.39±0.29AB,ab 3.55±0.66A,a 4.25±0.22AB,ab 4.02±0.36AB 3.56±0.05A 4.03±0.10AB     
FI (%BW) 5 1.37±0.10 1.40±0.10 1.39±0.03 1.40±0.11 1.44±0.09 1.38±0.07 1.33±0.06     
VSI6 7.73±0.14 8.08±0.34 7.67±0.96 7.76±0.23 6.67±1.20 8.08±0.20 6.42±0.91  0.048 0.230 0.100 
Liver Characteristics           
Glycogen (%) 9.5±1.0BC,b 7.7±0.4AB,ab 6.9±0.2A,a 9.7±1.2BC,b 9.4±0.3BC 8.7±1.0ABC 10.7±0.4C  0.001 0.000 0.576 
Total lipid (%) 12.7±0.5BC,b 10.7±0.3AB,a 13.2±1.0C,b 9.4±0.4A,a 9.5±0.7A 12.0±0.9BC 11.7±1.7ABC  0.473 0.000 0.004 
HSI7 (%BW) 1.17±0.20 1.02±0.17 1.07±0.19 1.01±0.21 0.99±0.20 1.30±0.31 1.06±0.30  0.477 0.397 0.618 
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Different superscripts in each row show significant differences among the values according to Tukey test (P≤0.05). Upper case letters show significant differences 
among all diets and lower case letters between control and L diets. 
P-values revealed from two-way ANOVA for level (Low and High), legumes (B, CP and P) and for interaction of level and legume. 
Values are expressed as mean±SD (n=3) 
1Feed Conversion Ratio, 2Significant Growth Rate, 3Protein Productive Value, 4,5Nitrogen and Feed Intake measure as a percentage of Body Weight, 6Viscerasomatic index, 
7Hepatosomatic index 
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6.3.2 Serum 

6.3.2.1 Serum one-way ANOVA 

One-way ANOVA showed that fish fed the wheat-based control diet had lower 

serum glucose than all the L diets, but significantly lower only against diet PL. 

Triacylglycerol levels were lower for control and CPL and significantly lower than PL 

and PL compared to BL, while serum cholesterol and protein did not show significant 

differences between control and L diets groups (Table 6.3). 

One-way ANOVA for all diets of blood serum glucose showed that control diet 

was significantly different only from diet PL that gave the highest glucose values. PL 

revealed the highest value also after comparing means of all diets, while CPH showed 

the lowest serum glucose. Triacylglycerol levels were significantly lower for fish fed 

diet CPL when compared to PL and BL and when all mean values were compared CPL 

and BH showed significantly lower values than BL, PL and CPH. Cholesterol levels 

were significantly lower for diets PH and BH compared to the rest of the diets and total 

protein levels did not show any significant differences among experimental groups. 

6.3.2.2 Serum two-way ANOVA 

Two-way ANOVA among L and H diets revealed significant overall effects and 

interactions for serum glucose, triacylglycerols and cholesterol and simple main effects 

were examined.  

Serum glucose ranged from 4.9–7.7mmoldl-1. A significant interaction of 

inclusion level and legume type was observed and therefore simple main effects were 

analysed (Figure 6.2a). Inclusion level significantly affected P and CP diets with PH 
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and CPH giving significantly lower glucose values compared to PL and CPL 

respectively. Regarding the effect of inclusion level in L diets, PL exhibited 

significantly increased glucose values compared to BL and CPL, while for H diets PH 

showed significantly increased values than BH and CPH. 

Serum protein ranged from 5.6–6.9gdl-1 and significant effects were observed only 

for legume type (Figure 6.2b). Specifically, fish fed H diets had lower serum protein 

levels than fish fed L diets, but for P diets this was not the case. 

Serum triacylglycerols ranged from 2.8–4.5mmoldl-1 and significant interaction of 

inclusion level and legume type was observed. Inclusion level significantly affected all 

legume type diets with BL and PL giving significantly increased triacylglycerol values 

compared to BH and PH respectively and CPL lower values than CPH. Regarding the 

effect of inclusion level in H diets, BH exhibited significantly reduced triacylglycerols 

compared to PH and diet PH compared to CPH, while for L diets CPL showed 

significantly reduced values than PL and PL compared to BL (Figure 6.2c). 

Serum cholesterol ranged from 5.8–9.5mmoldl-1 and significant interaction of 

inclusion level and legume type was observed. Inclusion level significantly affected B 

and P diets with BL and PL giving significantly increased cholesterol values compared 

to BH and PH respectively. Regarding the effect of inclusion level in H diets CPH 

exhibited significantly increased values compared to BH and PH, while for L diets PL 

showed increased values only compared to diets CPL and BL (Figure 6.2d). 
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6.3.3 Carcass composition 

6.3.3.1 Carcass one-way ANOVA 

One-way ANOVA was applied among control and L diets to examine the effects 

of wheat substitution by legumes on carcass composition of seabream (Table 6.4). In 

this respect fish fed diet BL showed significantly reduced fat lipid content than fish fed 

diets control and PL, while carcass moisture, protein and ash content were not affected 

by carbohydrate source. When the same analysis was applied to all values only carcass 

protein levels revealed differences with BH and PH giving higher values only against 

diet BL. 

6.3.3.2 Carcass two-way ANOVA 

Two-way ANOVA among L and H diets revealed significant overall effects and 

interactions for carcass ash and protein values and simple main effects were examined.  

Carcass moisture content ranged from 62.8–64.0% and carcass fat from 14.3-

15.9% and no significant effects found for these parameters. 

Carcass protein ranged from 15.7–17.7% and a significant interaction of inclusion 

level and legume type was observed and therefore the simple main effects were 

analysed (Figure 6.1c). Specifically, regarding legume level for fish fed L diets, BL had 

lower protein contents than fish fed diet CPL, while for legume type fish fed diet BH 

had significantly higher protein carcass content than BL. 

Carcass ash ranged from 3.1–3.9% and a significant interaction of inclusion level 

and legume type was observed (Figure 6.1b). Legume type significantly affected B diets 

with BL diets giving significantly increased ash content than BH. 
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A significant positive correlation (P<0.01) was found between cholesterol and 

triacylglycerol levels Table 6.5 and a negative correlation (P<0.01) between liver fat 

and serum glucose, between I-NSP and liver fat and between S-NSP and serum 

triacylglycerol levels. 

 
 



 

Table 6.3. Blood serum glucose, triacylglycerols, cholesterol (mmoldl-1) and protein (gdl-1) levels of seabream. 
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ONE-WAY ANOVA  TWO-WAY ANOVA 
Blood serum 

Control BL CPL PL BH CPH PH  level legume lev. x leg. 

Glucose (mmoldl-1) 5.48±0.41AB,a 6.26±0.55B,a 6.19±0.35C,a 7.73±0.62C,b 6.40±0.55B 4.88±0.46A 6.12±0.32AB  0.001 0.001 0.017 

Protein (gdl-1) 6.00±0.43 5.63±0.80 6.31±0.37 6.25±0.37 5.86±0.69 6.88±0.44 6.00±0.21  0.476 0.047 0.421 

Triacylglycerols (mmoldl-1) 3.25±0.13ABC,a 4.48±0.12D,c 2.85±0.31A,a 3.91±0.16CD,b 2.76±0.29A 3.87±0.35BCD 3.21±0.21AB  0.002 0.215 0.000 

Cholesterol (mmoldl-1) 8.55±0.49B 8.75±0.27B 8.48±0.66B 9.50±0.47B 5.80±0.57A 8.69±0.74B 5.92±0.33A  0.000 0.004 0.000 
Different superscripts in each row show significant differences among the values according to Tukey test (P≤0.05). Upper case letters show significant differences 
among all diets and lower case letters between control and L diets. 
P-values revealed from two-way ANOVA for level (Low and High), legumes (B, CP and P) and for interaction of level and legume. 
Values are expressed as mean±SD (n=3) 
 
 
Table 6.4. Carcass proximate composition (%) and Gross Energy (kJg-1) of seabream 

ONE-WAY ANOVA  TWO-WAY ANOVA Component 
Initial Control BL CPL PL BH CPH PH  level legume lev. x leg. 

Moisture 66.7 64.0±3.4 63.9±1.1 63.2±0.8 63.4±3.3 63.1±0.9 63.7±2.0 62.8±1.0  0.250 0.422 0.323 
Crude protein 16.9 16.6±0.4AB 15.7±0.9A 16.9±0.2AB 16.8±0.8AB 17.7±0.5B 16.6±1.3AB 17.1±0.5B  0.013 0.704 0.004 
Crude lipid 12.0 15.2±1.7b 14.3±0.8a 14.9±1.0ab 15.9±0.8b 15.3±1.1 14.8±1.6 15.3±0.7  0.808 0.139 0.162 
Ash 3.4 3.4±0.5 3.7±0.6 3.2±0.8 3.3±0.7 3.1±0.4 3.9±1.2 3.9±0.6  0.283 0.655 0.018 
Gross energy 8.7 9.9 9.4 9.9 10.3 10.2 9.8 10.1     
Different superscripts in each row show significant differences among the values according to Tukey test (P≤0.05). Upper case letters show significant differences 
among all diets and lower case letters between control and L diets. 
P-values revealed from two-way ANOVA for level (Low and High), legumes (B, CP and P) and for interaction of level and legume.
Values are expressed as mean±SD (n=3) 
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Table 6.5. Correlation coefficients for serum, liver and carcass characteristics of seabream 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Serum      

 Glucose Triacylglycerols Cholesterol HSI Liver Fat Glycogen Carcass Fat 

Triacylglycerols 0.048       

Cholesterol 0.085 0.581**      

HSI 0.022 -0.070 0.228     

Liver Fat -0.564** -0.195 0.150 0.218    

Glycogen 0.198 -0.126 -0.370 -0.130 -0.343   

Carcass Fat -0.056 0.111 0.013 -0.385 0.157 0.097  

* Correlation is significant at 0.05 level (2-tailed). 
** Correlation is significant at 0.01 level (2-tailed). 
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Figure 6.1. Means of seabream; liver glycogen (a), liver fat (b), carcass protein (c) and carcass ash (d) for the six experimental diets are 

presented in figures with two-way ANOVA, showing the effects of the two factors (inclusion level L&H and legume type) and their interaction. 
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For each legume level (L), values denoted with different letters are significantly different; uppercase or lowercase letters correspond to H (high) 

and L (low) level respectively within each legume. Significant difference between LL and HL marked with an asterisk
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b. Serum protein
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Figure 6.2. Means of seabream serum glucose (a), total protein (b), triacylglycerols (c) and cholesterol (d) for the six experimental diets are 

presented in figures with two-way ANOVA, showing the effects of the two factors (inclusion level L&H and legume type) and their interaction. 
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For each legume level (L), values denoted with different letters are significantly different; uppercase or lowercase letters correspond to H (high) 

and L (low) level respectively within each legume. Significant difference between LL and HL marked with an asterisk. 
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6.3.4 Immunology 

One-way ANOVA showed significant differences in chemiluminescence among 

the fish groups fed diets including different legume types, but not between L and H 

levels of each legume. In this respect P diets showed significant immunostimulation 

compared to all diets, followed by B and CP diets, with CPH revealing the lowest 

values (Figure 6.3).  
 

Figure 6.3. Effect of tested dietary legumes and significant differences (P<0.05) on 

seabream serum chemiluminescence activity (rlu, relative luminescent units). 

6.3.5 Histology 

Examination of histology sections for internal organs did not show any 

pathological abnormalities that could be related to nutritional treatment. Liver, foregut, 

hindgut spleen and kidneys did not show any differences among the treatments, 

however, in spleen and kidney samples sparse melano-macrophage centres were 

detected. 
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6.4 Discussion 

6.4.1 Growth 

According to the experimental results seabream growth was not negatively 

affected by wheat substitution by legumes and the high inclusion level of peas, 

chickpeas or faba beans in the diets. Chickpea diets showed the best performances when 

fed to the fish with similar values to the control diet and this could be an indication that 

ANF in chickpeas had lower effects on the fish in relation to growth size. 

Growth performance was not improved by wheat substitution by legumes, either 

by the high inclusion level of legumes. However, none of the P diets significantly 

affected growth rates which is in agreement with Gouveia and Davies (1998; 2000) who 

found that in juvenile European seabass SGR values were not affected when fish were 

fed pelleted diets containing 20 and 40g100g-1 of raw or 10-30g100g-1 extruded pea 

seed meal compared to a wheat and fishmeal-based control diet. In the latter study 

Gouveia and Davies (2000) found that PER values, nitrogen deposition and utilization 

were improved with increasing levels of pea seed meal in extruded diets, while for 

seabream in the present study no differences were found for this parameter. In rainbow 

trout, when wheat meal was replaced with dehulled field pea meal (25g100g-1) although 

SGR, FCR and PER values were improved, they did not differ significantly when 

compared to a control diet (Thiessen et al., 2003). The results of the current trial 

showed a significant negative effect on seabream FCR values for both P diets that is not 

in agreement with any of the previously mentioned studies. Differences of fat inclusion 

level of the diets or the parasitic infection and treatment in the present experiment could 

possibly have affected these results. 
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For faba beans and chickpeas no relevant growth studies are available, but in this 

research FCR was not significantly different for diets CPL, CPH and BL compared to 

the control, while a high level of faba beans adversely affected feed conversion ratio. 

Overall, CP diets resulted in higher performances among legume diets, with the most 

improved SGR and FCR values, while lower values were noted for P diets and BH. 

Interactions between legume type and level of starch/legume were not found for any of 

the growth parameters. It is interesting to note that both CP diets showed increased PPV 

values, however this improvement was significant only against diet PH. 

Substitution of wheat as a carbohydrate source in L diets did not affect SGR or 

PPV values, but it had a negative effect on FCR when fish were fed pea seed meal. 

Different carbohydrate sources also affected FCR values but not SGR in salmon 

(Hemre and Hansen, 1998), and growth performance in rainbow trout (Bergot, 1979). 

In diets including high levels of legumes, recipes were formulated with the 

intention of them being of lower cost. At the same time they employed materials 

commonly used in BioMar’s commercial seabream diets and thus there is a more 

complicated combination of plant proteins. However inclusion of 35g100g-1 of the 

tested ingredients as the main starch source in the diet can give very useful information. 

In this respect the high starch level of any of the legumes did not affect negatively 

growth performance of seabream, but the high level of faba bean and peas adversely 

affected FCR.  

6.4.2 Carcass composition, HSI, liver glycogen, liver fat  

Gilthead seabream in the current study showed no negative effects on carcass 

proximate composition of either low (PL) or high (PH) field pea containing diets when 

compared to the control. Processed pea seed meals at similar inclusion levels as in the 
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present study were tested in gilthead seabream diets (Pereira and Oliva-Teles, 2002) 

and the authors demonstrated that no significant differences occurred in carcass 

proximate composition and HSI. This is in agreement with the results of the present 

study that showed no differences in carcass composition or HSI between control and 

pea diets. Equivalent results were also found for seabass juveniles fed pea seed meal 

diets (Gouveia and Davies, 1998; Gouveia and Davies, 2000). Higher carcass protein 

values observed for diets BH and PH compared to BL and PL respectively, however, 

significance was found only for faba bean diets. Carcass fat did not differ between high 

and low starch diets in contrast to the results of Refstie and Austreng (1981) that 

showed decreasing fat values with increasing carbohydrate levels and Wang et al. 

(2005) and Moreira et al. (2008) who found the opposite for tilapia and juvenile seabass 

diets respectively. Wang et al. (2005) did not find any differences in carcass 

composition between diets including 6 or 14% starch, but only compared to the higher 

starch levels, while Moreira et al. (2008) found increasing carcass fat with increasing 

starch level (10 vs. 20 and 30%). These results could be either species related or most 

possibly could be attributed to the higher inclusion levels of carbohydrates included 

compared to the diets of the current study.  

Increased values were found for liver glycogen in H compared to L diets, but these 

were significant only for CP diets, most probably due to the digestible starch increase 

(Kim and Kaushik, 1992). Elevated carbohydrate inclusion level in diets has also been 

shown to increase liver glycogen in salmon (Refstie and Austreng, 1981; Arnesen, et 

al., 1995), tilapia (Wang, et al., 2005), rainbow trout (Austreng et al., 1977; Bergot, 

1979) and seabass (Moreira et al., 2008). HSI values did not show any significant 

difference among treatments in seabream as also has been found for salmon (Arnesen et 

al., 1995) for different carbohydrate levels, but this is in contrast to work of other 
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authors. Specifically, significant differences in HSI were found in trout (Kim and 

Kaushik, 1992), silver perch (Stone et al., 2003), tilapia (Wang et al., 2005) and seabass 

(Moreira et al., 2008). No correlation was found between HSI and liver glycogen 

content, which is in contrast to results published for several other species (Hemre et al., 

2002). Whilst increased glycogen deposition seems to induce liver enlargement (Stone 

et al., 2003) this was not shown here. Lanari et al. (1999) associated liver fat content 

with high carbohydrate inclusion in diets for seabass, but this was not supported by the 

present research either. This might be explained by the lower starch inclusion levels in 

the present study. 

6.4.3 Haematological parameters 

Hemre et al. (2002) in their review of carbohydrates in fish nutrition concluded 

that most teleost fishes have wide limits of glucose levels that could be attributed to 

differences among species or different life stages of the same species and it could also 

be feed related. Serum glucose values revealed a significant interaction between starch 

inclusion level and legume type included in tested diets showing that glucose levels in 

seabream could be affected both by the level and the type of starch. Chickpeas and peas 

resulted in decreasing values when included at high levels, while faba bean starch did 

not show any differences. Diet PL significantly increased glucose in serum compared to 

the wheat based diet, as well as CPL and beans when included at a high level. In 

contrast, raw pea starch at a 30g100g-1 level was found not to affect plasma glucose in 

Australian silver perch (Stone et al., 2003) compared to different carbohydrate sources 

at the same percentage, and the same was found for salmon fed oat and maize meals as 

carbohydrate sources (Arnesen et al., 1995). However glucose levels for pea starch 

were measured 3h after feeding and such values are not comparable to present values 
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measured 40h after last feeding. Moreira et al. (2008) found no differences in plasma 

glucose 6 hours after feeding seabass with 10, 20 or 30% of gelatinized starch in 25°C. 

Cholesterol levels in blood plasma have been related to NSP content of plant 

materials (Levrat et al., 1996; Favier et al., 1997) in diets for both mammals or humans 

and are associated with lower plasma cholesterol levels (Wester, 2000). Hung et al. 

(1989) found that different carbohydrate sources could affect differently lipogenic 

activity, total cholesterol and triacylglycerol levels in blood plasma when included in 

sturgeon diets. Cholesterol and triacylglycerol levels in the current experiment were 

reduced with increasing levels of B and P, while wheat starch showed similar results 

with BL and CPL for cholesterol and lower values for triacylglycerols. The results are 

not in agreement with Hemre and Hansen (1998) who found no effect of carbohydrate 

source on these parameters. Furthermore, no correlation was found among serum 

cholesterol, triacylglycerols and HSI, liver and carcass fat content and neither between 

liver glycogen and NSP inclusion level. This was not unexpected due to the low 

differences in NSP contents of the present diets. 

6.4.4 Immunology 

Immunological studies in fish related to dietary legumes are scarce in the 

literature. Esparza et al. (1996) found that mice fed diets including legumes showed 

immunological responses ascribed to the ANF present in the diets. Soybean meal has 

been shown to cause immune system disturbances in both salmon (Krogdahl et al., 

2000) and trout (Burrells et al., 1999). However, in seabream or for the legumes tested 

in the present study no data are available. It is possible that the diets containing the 

higher levels of ANF showed lowest growth and immunostimulatory evidence, but most 

of the values did not show significant differences and therefore further trials are 
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required for firm conclusions. Nevertheless, according to the present values, chickpeas 

were more appropriate as a wheat replacer for seabream diets than peas and faba beans.  

6.4.5 Histology 

High levels of soybean in the diets have been implicated in inducing abnormalities 

of hind gut in salmon (Baeverfjord and Krogdahl, 1996; Refstie et al., 2000; Aslaksen 

et al. 2007) and rainbow trout (Refstie et al., 2000), whereas there is some evidence that 

peas and faba beans (in 18 and 22g100g-1 respectively) in salmon diets do not cause 

histological abnormalities (Aslaksen et al., 2007). In this respect histological findings 

could be expected for other legumes or/and other fish species. Gilthead seabream seem 

to be resistant when exposed to plant materials as histological changes were only found 

when fish were fed diets containing 100% plant proteins (Sitja-Bobadilla et al., 2005). 

Results of the present study confirm this fact because no pathological effects were 

found in hindgut. The rest of the organs examined had a normal form, but in kidney 

tissue some melanomacrophage centres were found for all treatments, that could be 

either normal or attributed to the parasite infection (Ferguson, 2006) during the 

experiment. 

6.5 Conclusions 

None of the legume diets improved growth performance of seabream, compared to 

the control diet, however, the differences observed were not significant for growth 

parameters. Among the legume diets, CPL could be considered as the most efficient 

because of the higher PPV value. Carcass fat was affected by the carbohydrate source, 

with the faba bean diet resulting in reduced fat content. Liver glycogen was increased 

with increasing starch levels, but HSI was not affected. Enteritis was not induced in 

seabream fed diets including low or high levels of legumes. 
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7.1 General 

The present study aimed to investigate grain legumes, namely peas, chickpeas and 

faba beans, as potential feed ingredients in extruded diets for European seabass and 

gilthead seabream as these are the most important aquaculture species for 

Mediterranean countries. Each legume was processed and analyzed before inclusion in 

diets at up to 35% as both an energy source replacing wheat and as a protein source 

partially replacing various protein sources in each experiment. Specifically, in Chapter 

3 the effects of different processing conditions were examined on the whole seed flours 

of tested ingredients. Nutritional and ANF of legumes and physical characteristics of 

experimental diet pellets including high and low levels of each legume were evaluated. 

In Experiment I the effects of wheat substitution by legumes were investigated on 

nutrient digestibility, gastrointestinal evacuation rate and serum glucose response in 

European seabass. In Experiment II growth, digestibility, haematological parameters, 

histological effects and fillet organoleptic characteristics as well as the interaction 

between starch inclusion level (low and high) and legume type were evaluated when 

tested legumes replaced wheat in European seabass diets. Lastly, in Experiment III 

growth, haematological parameters, histological effects and the interaction between 

starch inclusion level (low and high) and legume type were evaluated when tested 

legumes replaced wheat in gilthead seabream diets. 

7.2 Nutrient digestibility 

Nutrient digestibility was satisfactory for all diets at both 18ºC (Experiment I) and 

25ºC (Experiment II), including either low or high legume levels and/or low or high 

starch levels. At low temperatures absolute digestibility values were lower than those 

observed at higher temperatures. However, fishmeal inclusion level was higher 
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(doubled) and plant inclusion lower in Experiment I. Temperature differences may 

explain digestibility differences as digestive enzymes are more efficient at 25ºC than at 

18ºC (Papoutsoglou and Lyndon, 2005). In addition, digestibility evaluation in juvenile 

seabass at 25ºC and 18ºC showed increased starch but not protein and energy ADCs at 

the higher temperature (Moreira et al., 2008). Lower water temperature could also 

reduce feed intake and thus the endogenous gut losses can represent a greater 

proportion of the faecal waste resulting in a decrease of ADCs (Bureau et al., 2002), but 

this hypothesis requires further investigation. Combination of wheat and legume starch 

at low temperatures improved starch digestibility. An improvement in protein and 

starch digestibility was determined as GET increased indicating a possible positive 

effect of longer feed passage time on nutrient absorption.  

7.3 Gastrointestinal evacuation time 

Gastrointestinal evacuation rate has proven to be a very important parameter for 

modelling daily feed intake (Jobling, 1981) as it controls fish appetite (Riche et al., 

2004). Inclusion of legumes in diets for seabass clearly increased GET of feed with faba 

bean having the strongest effect. This might be attributed to higher NSP inclusion level 

(Knudsen, 2001) as indigestible particles of feed are the last to remain in the stomach 

after the digestible part of the diet has been expelled and their evacuation is slow 

(Bromley, 1987). Different extruded starch sources, wheat and corn, resulted in 

different GER for gilthead seabream (Venou et al., 2003). It is possible that the 

structure of the extruded starch molecules of the tested legumes could result in this 

delay. 
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7.4 Seabass and seabream growth 

In general, the results of the present dissertation showed a better response of 

seabass compared to seabream to legumes in the diets. Seabass showed improved 

growth performance when fed low level compared to the control, while seabream 

showed an overall decreased, although not significantly, for all diets tested. Among 

legume diets, chickpeas at a low level were the most efficient with increased SGR 

values in seabass and PPV in seabream indicating a better protein sparing effect of 

chickpea starch. Growth parameters interactions between starch levels and legume type 

were only found for seabass, while seabream was not affected by starch level or legume 

starch type. A negative effect was found in high level diets for seabass but this was 

significant only for chickpea. 

7.5 Seabass and seabream carcass proximate composition 

European seabass and gilthead seabream in experiments II and III showed no 

negative effects on carcass proximate composition of either low (PL) or high (PH) field 

pea containing diets when compared to the control. Pea seed meal was successfully 

included in diets for juveniles seabass (Gouveia and Davies, 1998; Gouveia and Davies, 

2000) and gilthead seabream (Pereira and Oliva-Teles, 2002) with equivalent results. In 

particular seabass and seabream showed higher carcass protein when fed diet CPH, 

however, this was only significant for seabass, while seabream significantly increased 

carcass protein with increased faba bean level. Carcass fat was not affected by diet for 

seabream, but seabass showed significantly reduced carcass total lipid with increasing 

bean and chickpea starch (BH, CPH).  
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7.6 Seabass and seabream liver characteristics 

Liver fat and HSI values were all higher for seabass than seabream, while 

glycogen level did not differ much. Liver glycogen levels were affected by starch level 

for both species, with higher starch levels resulting in higher glycogen concentration, 

although significance was found only for seabream. Increasing carbohydrate levels have 

been also associated with high glycogen contents in rainbow trout (Austreng et al., 

1977; Bergot, 1979), salmon (Refstie and Austreng 1981; Arnesen et al., 1995), tilapia 

(Wang et al., 2005), and seabass (Moreira et al., 2008). 

Seabass showed increased HSI for high starch level diets and a strong correlation 

between HSI and glycogen levels, while seabream did not show any differences among 

treatments and no correlation between HSI and liver glycogen. Correlation between 

these characteristics has been found also for other species as reviewed in Hemre et al. 

(2002). Extended glycogen deposition seems to induce liver enlargement (Stone et al., 

2003), while Arnesen et al. (1995) did not find significant differences in HSI of salmon 

fed different levels of carbohydrates. 

A significant interaction was found for seabream (BH lower than CPH, PH and 

CPL higher than PL, BL) liver fat but not for seabass. Liver fat was not affected by diet 

treatment for seabass and seabream when comparison was between H and L diets in 

legume pairs (PL vs. PH, CPL vs. CPH and BL vs. BH). Lanari et. al. (1999) found that 

liver fat content is associated with high carbohydrate contents in diets for seabass but 

this was not supported by any of the present experiments. Seabass H diets resulted in 

lower liver fat content than L diets, however, this difference could be explained by the 

lower inclusion levels of starch in the present study. 
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7.7 Seabass and seabream haematological characteristics 

Different carbohydrate sources have been proven to affect differently lipogenic 

activity in white sturgeon (Hung et al., 1989) that is in agreement with the present 

study. Lipogenic activity differences reflecting on cholesterol and triacylglycerol levels 

seabass and seabream serum were found. Cholesterol levels decreased when both 

species fed high faba bean levels Triacylglycerols decreased for BH and PH only for 

seabream, while seabream showed no differences for any of the dietary treatments. 

Glucose values were contradictory for the two species and the different legumes. 

Significant interactions for glucose were observed for seabream, with increasing 

glucose levels when fish were fed pea seed meal and L diets (excluding faba beans). 

Significant interactions for glucose levels were observed as well for seabass, with 

ascending glucose levels for PH, BH and CPH.  

7.8 Immunology and histology 

7.8.1 Immunology 

Measurement of chemiluminescence as an immunological parameter did not show 

systematic disturbance with the use of legumes in seabass and seabream diets. 

However, faba bean diets showed an immunosuppressive tendency in seabass at the 

high inclusion level (BH). In seabream high chickpea level (CPH) had an 

immunosuppressing effect, while PH and BH showed imunostimulating effects. 

Inclusion of legume such as soybean in diets has been associated with immunological 

disturbances in both salmon (Krogdahl et al., 2000) and trout (Burrells et al., 1999). 

 167



CHAPTER 7. GENERAL DISCUSSION & CONCLUSIONS 

7.8.2 Histology 

Faba beans, chickpeas and peas did not cause enteritis in seabass or seabream 

hindgut when fed at low or high inclusion level in the diets. However, absorptive 

vacuoles were seen in increased quantities. Abnormal size and arrangement of vacuoles 

were found only in the distal intestine of seabass fed the control diet and to a lesser 

extent diet PH. Findings for the control diet could be attributed to the 17g100g-1 

soybean inclusion level, while in seabream none of the tested diets caused any 

pathological effects in hindgut. High levels of soybean in the diets have been implicated 

in inducing hind gut abnormalities in salmon (Baeverfjord and Krogdahl, 1996; Refstie 

et al., 2000; Aslaksen et al., 2007) and rainbow trout (Refstie et al., 2000), whereas 

there is some evidence that peas and faba beans (in 18 and 22g100g-1 respectively) in 

salmon diets do not cause histological abnormalities (Aslaksen et al., 2007). The results 

of the present study also confirm the findings of Sitja-Bobadilla et al. (2005) that 

gilthead seabream is tolerant when fed diets including plant materials up to 75% 

without causing histological changes.  

7.9 General conclusions 

The results of Chapter 3, suggest that: 

• extrusion processing could improve the nutritional value of the ingredients by 

significant reduction of TI. 

• Phytate was not eliminated by extrusion, but problems caused by phytate could be 

possibly overcome by mineral supplementation (Porres et al., 2004). 
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• Total tannin levels were not affected by extrusion, but their levels in legumes were 

comparatively low compared to those known to affect fish growth performance 

(Francis et al., 2001) 

• Peas, chickpeas and faba beans are raw materials that could be used in seabass and 

seabream diets without causing negative effects on pellet physical characteristics. 

• Levels up to 35g100g-1 of each legume are acceptable for producing pellets that 

could be manufactured, transferred and stored.  

 

 

The results of Experiment I, suggest that: 

• All three legumes tested proved to have potential as feed ingredients for European 

seabass, mainly as carbohydrate replacers for wheat.  

• Digestibility coefficients showed satisfactory values for all diets either including 

low or high levels of legumes.  

• Starch digestibility was slightly improved for the diets that combined wheat and 

legume starch source.  

• GET was significantly delayed by the inclusion of chickpeas,  

• Foregut evacuation rate was reduced for all legume diets with faba beans showing 

the strongest effect.  

• Glucose levels in seabass serum was also affected by the type of carbohydrates 

ingested with wheat starch showing more rapid increase and decrease of glucose 
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compared to fish fed pea and chickpea diets, while faba bean starch resulted in a 

lower glucose peak.  

The results of Experiment II, suggest that: 

• The inclusion of any of the three legumes up to 17% in seabass diets proved to be 

beneficial in terms of growth with chickpea diet giving the best growth values, but 

also the higher carcass fat content.  

• Fish fed diets including 35% legumes showed decreasing growth trends compared 

to diets including 17% legumes. 

• Partial substitution of commonly used plant proteins by the tested legume proteins 

was beneficial for seabass growth performance. 

• In pathological terms, enteritis was not induced to any of fish groups and only high 

inclusion of pea seed meal caused increased numbers of absorptive vacuoles in 

hindgut.  

• Organoleptic characteristics did not differ among steam cooked fillets of seabass fed 

either control or high legume level diets. 

The results of Experiment III, suggest that: 

• None of the legume diets improved growth performance of seabream, compared to 

the control diet. However, the differences observed were not significant for growth 

parameters, result that could have been also affected by the parasitic infection 

during the trial.  
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• Among the legume diets, CPL could be considered as the most efficient because of 

the higher PPV value.  

• Carcass fat was affected by the carbohydrate source, with the faba bean diet 

resulting in reduced fat content.  

• Liver glycogen was increased with increasing starch levels, but HSI was not 

affected.  

• Enteritis was not induced in seabream fed diets including low or high levels of 

legumes. 

 

The results of Experiments II and III, suggest that: 

• In conclusion, all three legumes tested had better potential as feed ingredients for 

European seabass than for gilthead seabream, mainly as carbohydrate replacers for 

wheat and to a lesser extent for protein substitution. Further research is required to 

include growth trials to fully evaluate the nutritional value of these ingredients in 

practical diets for these species. 

7.10 Future perspectives 

Legumes like faba beans, chickpeas and field peas are valuable potential sources 

of both protein and starch for European seabass and gilthead seabream feeds. In this 

respect these three legumes offer flexibility to the feed manufacturer as they can 

partially replace both energy (cereals like wheat that are also used as binding agents) 

and protein (such as soybean or other plant and animal protein) (Fraser, 2005). All these 

crops are cultivated in Mediterranean countries as well as in the rest Europe. This could 
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be an advantage with a positive effect on the final price of the product due to 

minimization of transport costs, and also in development of agricultural production with 

vertical integration between seed and fish feed production.  

Environmental protection is also of current interest and these legumes could 

contribute to this. Cultivations of legumes can decrease nitrogen pollution through their 

ability to naturally fertilize poor fields that for years have been cultivated with cereals, 

and can also increase total yields through rotation (Grain legumes, 2006). 

 

 

Further research is required to fully evaluate nutritional benefits or drawbacks. 

Specifically: 

• Long term experiments using faba beans, chickpeas and peas at low and high 

temperatures in farm cages could give safe information for the inclusion level of 

these legumes in practice. Small differences observed in the present study could be 

more clear after a whole growth period in intensive conditions 

• Concentrated proteins of peas, chickpeas, and faba beans possibly have a good 

potential to replace soybean protein. Air classification is a cheap and easy method to 

produce concentrated proteins of plant grains. 

• Dehulled or pre-extruded legumes or bio-ethanol byproducts of these legumes could 

also be tested in diets for seabass and seabream for their effects on digestibility and 

growth performance 

• Although much research has been conducted on carbohydrates in fish nutrition, 

there are also many things that are still not clear about metabolism, interactions with 
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other materials and the specific effects of ANF on nutritional performance. 

Measurement of carbohydrate fractions and in vitro starch and protein digestibility 

of raw and extruded legumes could be also investigated to give further information 

for these materials.  

• Evaluation of digesta viscosity in the intestine and digestive enzyme or microbe 

activity in each part of the intestine after feeding could also give valuable 

information about carbohydrate metabolism in these two species. 
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APPENDIX  

Appendix: Presentations and publications from the project 

Ia. Publications in progress (in peer-reviewed journals) 

• Adamidou, S., Nengas, I., Henry M., Rigos, G., Grigorakis, K., Nikolopoulou, 

D., Kotzamanis, Y., Karacostas, I., Bell, J.G. and Jauncey, K. 2008. Growth, 

digestibility performance and blood serum parameters of European seabass 

(Dicentrarchus labrax) fed extruded diets including low and high levels of three 

different legumes; peas (Pisum sativum, L.), chickpeas (Cicer arietinum, L.) and 

faba beans (Vicia faba, L.). To be submitted for publication. 

• Adamidou, S., Nengas, I., Alexis, M.N., Foundoulaki, E., Nikolopoulou, D., 

Campbell, P., Karacostas, I., Rigos G. and Jauncey, K. 2008. Apparent nutrient 

digestibility and gastrointestinal time evacuation in European seabass 

(Dicentrarchus labrax) fed diets containing different levels of legumes. To be 

submitted for publication. 

Ib. Presentations in peer-reviewed conferences 

• Adamidou, S., Nengas, I., Alexis, M., Foundoulaki, E., Tsakona, A., Campbell, 

PP

., Karakostas, I. and Jauncey, K. 2004. Apparent digestibility of nutrients and 

gastrointestinal evacuation time by seabass (Dicentrarchus labrax) fed diets 

containing different levels of legumes. XII International Symposium on Fish 

Nutrition & Feeding. Biarritz, France, May 28th – June 1st, 2006. Poster 

presentation.Adamidou, S., Nengas, I., Grigorakis, K., Karacostas, I. and 

Jauncey, K. 2008. Growth performance and digestibility in European seabass 

(Dicentrarchus labrax) fed extruded diets including low and high levels of three 

legumes; peas (Pisum sativum, L.), chickpeas (Cicer arietinum, L.) and faba 

beans (Vicia faba, L.). XIII International Symposium on Fish Nutrition & 

Feeding. Florianopolis, Brazil, June 1st – 5th, 2006. Poster presentation. 
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