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Abstract 

The Scottish salmon industry is facing challenges in the control of aquatic infectious 

disease, as is the case in other countries such as Chile and Norway. Disease 

outbreaks can have an enormous economic impact and possibly affect wild fish 

populations. Disease transmission in an aquatic environment is complex and there 

are several transmission routes (vertical transmission, natural reservoirs, 

hydrodynamic transmission and long-distance movements). Effective control methods 

such as vaccines are not available in all cases and therefore disease prevention 

remains a priority. 

In livestock, epidemiological network models have been proven to be a highly useful 

tool to investigate the role of different transmission routes on the course of epidemics 

and have the potential to provide the same utility for aquatic networks. Understanding 

the complex contact network will result in more effective disease prevention, 

surveillance systems and control strategies. The aim of this thesis was to investigate 

the Scottish live fish movement network and its consequences for pathogen 

transmission between farms in order to develop and optimize control strategies for 

epidemics. 

The main objective of chapter 3 was to investigate the effect of different fallowing 

strategies on the spread of diseases with different transmission properties. A network 

model was constructed that included both local transmission and long-distance 

transmission. The basic structure of this network was a ring model where neighbours 

within a management area could infect each other and non-local transmission 

occurred at random. The results showed that when long-distance transmission was 

under reasonable control in comparison with local transmission risk, synchronized 

fallowing at the management area level was potentially a highly effective tool in the 

control of infectious diseases. 
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Chapter 4 presents a detailed description of the number of live fish movements and 

their timing for Atlantic salmon (Salmo salar) in Scottish aquaculture. For this, 

movement records from 2002 to 2004 were provided by Marine Scotland, Aberdeen. 

Salmon are anadromous and have a freshwater (FW) and seawater phase (SW). 

Scottish live fish movements can be divided in FW-FW, FW-SW, SW-SW, SW-FW 

and “other” movements. The latter are mainly movements from and to research sites. 

This study showed that the contact structure and timing of live fish movements are 

seasonal and differ largely between production phases. Disease control measures 

should take these differences into account to optimize their strategies. 

In chapter 4, live fish movements were shown to be seasonal; therefore in chapter 5 

the main aim was to quantify the effects of seasonality of live fish movements on the 

course of epidemics. The results showed that the sequence of salmon movements is 

important for the course of an epidemic. Seasonality is important when local 

transmission is higher than 0.05 per contact per week and when the movements are 

not clustered and when movements do not occur in a specific order based on the 

specific assumptions made in this model. 

In conclusion, this thesis described the complex live fish movement structure of 

salmon in Scotland and showed that biosecurity in SW farms is good but could be 

further improved if all management areas apply synchronized fallowing. The results of 

this study suggest that biosecurity between freshwater sites could be improved by the 

application of a system similar to management areas in SW farms. 
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CHAPTER 1. General introduction 

Aquaculture and fisheries are important for the incomes and food supply of millions of 

people worldwide. Capture fisheries and aquaculture produced together 145.1 million 

tonnes of fish in 2009 (FAO, 2010). The proportion of fish supplied by aquaculture has 

increased considerably in the last 50 years; aquaculture was responsible for 38% of 

this total in 2009 while the contribution to the supply of fish from capture fisheries has 

decreased substantially (FAO, 2010). However, it appears that the growth of 

aquaculture has peaked (FAO, 2010).  

Fish is a good source of animal protein and the majority of aquaculture production is 

used for human consumption (81%) followed by the manufacture of fishmeal and fish 

oil. Human consumption of fish has increased enormously in the last 40 years; in 1970 

a worldwide average of 0.7 kg of fish was consumed per capita per year whereas in 

2006 the average worldwide consumption had raised to 7.8 kg fish per capita per year 

(FAO, 2008). Consequently, the proportion of animal protein intake derived from fish 

and fish products has increased during the last 20 years and is now 15.7% (FAO, 

2010). 

White leg shrimp (Penaeus vannamei) is the most valuable cultured species 

worldwide (USD 9 billion), while Atlantic salmon (Salmo salar) is the second most 

valuable cultured species, grossing an estimated USD 7.2 billion in 2008 (FAO, 2008). 

The salmon production derived from aquaculture worldwide was 1,440,000 tonnes in 

2009 (FAO, 2009). 

Scotland is one of the main producers of Atlantic salmon worldwide together with 

Norway and Chile. The total Scottish finfish culture production was approximately 

160,000 tonnes in 2010, of which 154,000 tonnes was of salmon (MSS, 2011a). The 

worldwide retail value of Scottish salmon production was estimated over £1 billion 
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(SSPO, 2011). Salmon production is important for the Scottish economy as it offers 

approximately 850 full-time jobs and 100 part-time jobs in remote areas (Highlands 

and Islands) where there are few alternative employment opportunities (SSPO, 2011; 

MSS, 2011a). 

Chilean salmon production underwent an enormous period of growth from the late 

1990s (Gallardo, 2010) and in 2006 the production was comparable with the 

Norwegian salmon production. In 2006, these countries together accounted for 

approximately two thirds of the worldwide Atlantic salmon production (below, salmon 

refers to Atlantic salmon). However, due to recent disease epidemics the production 

of salmon in Chile has decreased substantially (by approximately 40% in 2009) (FAO, 

2010; Gallardo, 2010).  

It is not only Chilean salmon production that is vulnerable to disease outbreaks: 

Aquaculture populations worldwide are under threat (OIE, 2009; MSS, 2010b). Fish 

suffering from disease can have a reduced appetite or growth; this results in reduced 

production and profitability (Murray and Peeler, 2005). Furthermore, increased 

mortality rates are seen on the affected farms (OIE, 2009). Fish that die from disease 

are not allowed for human consumption (EU Regulation No 1774/2002, 2002). The 

disease that affected the Chilean salmon production was infectious salmon anaemia 

(ISA, box 1). In Scotland, there have been two relatively recent ISA outbreaks 

(1998/1999 and 2009/2010). The cost to eradicate the first epidemic in Scotland has 

been estimated at £20 million (Hastings, et al., 1999). ISA cost the salmon farmers 

£6.9 million in Norway and £8.8 million in Canada in 1999 (Cipriano and Miller, 2003). 

ISA is not the only disease with the potential to cause substantial economic losses: for 

example, the costs of sea lice infections (Lepeophtheirus salmonis, box 2) on farmed 

salmonids worldwide have been estimated around €305 million per year (Costello, 

2009b). 
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Box 1: Infectious salmon anaemia 

Infectious salmon anaemia (ISA) is caused by the orthomyxovirus, infectious salmon 

anaemia virus (ISAv). ISA has been reported in Norway, Scotland, Ireland (in rainbow 

trout), USA, Canada, the Faroe Islands and Chile. This disease mainly affects farmed 

Atlantic salmon, which are exposed to seawater or kept in seawater (see section 1.1). 

In addition, subclinical infections are observed in rainbow trout and brown/sea trout. 

These species could act as carrier species (i.e. species which present no clinical 

signs after infection with the pathogen and are capable of transmitting pathogens to 

other fish) (Snow et al., 2001; Nylund and Jakobsen, 1995) . Daily mortalities are 

between 0.1% (Hammell and Dohoo, 2005) and several percent per pen and can 

increase over time; cumulative mortalities can rise up to 90% in severe cases (Godoy 

et al., 2008, Stagg et al., 2001). Usually ISA starts in one net pen and it can take 

several months before the disease develops in other net pens (OIE, 2009). 

 

Box 2: Sea lice 

Sea lice (Lepeophtheirus salmonis and Caligus Spp.) are parasites that affect both 

wild and farmed salmon in marine waters. The life cycle of sea lice is complicated: lice 

go through several stages before reaching the adult stage (Boxaspen, 2006). Sea lice 

can cause skin lesions or open wounds (Heuch et al., 2005). These lesions result in 

reduced growth and reduced feed conversion efficiency. Sea lice are prevalent in the 

United Kingdom, Ireland, the Faeroe Islands, Norway, Chile and the USA (Costello, 

2009b). 

 

Disease outbreaks not only result in reduced profitability; health problems also affect 

the welfare of the fish (Turnbull and Kadri, 2007) and welfare issues of farmed species 

are becoming more important for consumers (Huntingford, et al., 2006; Ashley, 2007). 

Moreover, pathogen build-up in fish farms may lead to transmission of pathogens to 

wild fish populations (Wallace, et al., 2008, Middlemas et al., 2010) as wild fish can 

acquire infection when they are in vicinity of fish farms (Uglem, et al., 2009). This in 

turn can cause declines in wild fish (salmonids) populations (Johansen et al., 2011). 
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Indeed, the decline of wild salmonid populations, especially near fish farms, has been 

linked to disease outbreaks in salmon farms (Morton et al., 2005; Krkošek et al,. 

2008). For these reasons, disease control in aquaculture is important.  

1.1. Aquaculture in Scotland 

Scottish finfish production includes Atlantic salmon (Salmo salar), rainbow trout 

(Oncorhyncus mykiss), brown trout/sea trout (Salmo trutta), Arctic charr (Salvelinus 

alpinus), cod (Gadus morhua) and halibut (Hippoglossus hippoglossus). Atlantic 

salmon (154,000 tonnes per year), rainbow trout (5100 tonnes per year) and 

brown/sea trout (53 tonnes per year) are the most important species for the Scottish 

finfish culture by both volume and value (MSS, 2011a). This thesis will mainly focus 

on salmon, as it dominates the Scottish production in terms of biomass.  

From 1987 salmon production has increased from 12,700 to 154,000 in 2009 (see 

figure 1.1), and a further rise is expected for 2011(MSS, 2011) despite the number of 

Scottish production sites having decreased over the period (FRS, 2008; MSS, 2010c) 

(figure 1.2). This implies a higher total production per site.  
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Figure 1.1. The total Scottish salmon production (tonnes) per year. 

Salmon are anadromous and live in two environments: first, farmed salmon are reared 

in freshwater fisheries: ova (i.e. salmon eggs) are fertilized and hatched in hatcheries. 

Next, salmon go through the fry and parr stage in freshwater cages, tanks or 

raceways until they reach the smolt stage. The complete freshwater phase takes 

twelve to sixteen months. Smolts are then moved to marine waters, where they are 

kept in tanks or cages and where they will achieve their harvest size (mean 4.7 kg) 

after approximately another eighteen months. When salmon reached their harvest 

size they are moved to harvest stations or processing plants (MSS, 2011a).  

Scotland is divided into five production areas; in 2009 the highest production areas for 

ova and smolts were Northwest, West and the Western Isles. The highest production 

areas for growers were Shetland, Southwest and Northwest of Scotland (MSS, 

2011a). There were 105 freshwater sites and 253 seawater sites for salmon 

production in Scotland in 2009. Both numbers have decreased substantially in the last 

10 years (figure 1.2). The main reason for this is that control strategies of infectious 

diseases such as ISA are aimed at limiting potential dangerous contact (such as 

shipping of live fish) between farms (Joint Government/Industry Working Group, 

2000); this resulted in fewer but larger farms with greater separation between them. 

Large farms physically separated over several geographical areas could reduce the 

speed of transmission of pathogens (Salama and Murray 2011) as separation can act 

as a firebreak, especially when contact such as shipping of live fish between those 

areas is limited (Green, 2010).  
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Figure 1.2. The number of active Scottish salmon sites per year.  
* No data available for these years for freshwater sites. 

1.2. Aquatic diseases 

The course of an epidemic is complex and depends on many factors, such as the 

environment, pathogen and host (Snieszko, 1974; Reno, 1998; Turnbull, et al., 2011), 

(see figure 1.3). For example water temperature can play an important role in the 

development of clinical symptoms or transmission rates of aquatic pathogens (OIE, 

2009; MSS, 2010b). Outbreaks of bacterial kidney disease (BKD, box 3), for example, 

usually occur in the spring when water temperatures are rising (MSS, 2010b). In 

addition, it is thought that water temperature is the most important factor for the 

development of clinical infectious haematopoietic necrosis (IHN, box 4). Outbreaks of 

clinical diseases of IHN mostly occur in young fish when the water temperature is 

between 8°C and 15°C (OIE, 2009). Water temperature does not only affect the 

pathogenicity and virulence of pathogens, low water temperatures also have an 

adverse effect on the adaptive immune system of fish (Le Morvan, et al., 1998; 

Rimstad and Mjaaland, 2002). 

0

100

200

300

400

19
97

19
99

20
01

20
03

20
05

20
07

20
09

N
um

be
r o

f s
ite

s

Year

Freshwater sites
Seawater sites



General introduction 
 

1-7 
 

 

Figure 1.3. The three-circle diagram from Snieszko (1974). Only when the host is 
susceptible to a virulent pathogen in a suitable environment will disease occur. 

Box 3: Bacterial kidney disease 

Bacterial kidney disease (BKD) is a chronic disease in farmed salmon and can cause 

severe economic losses in salmon seawater farms. In addition, rainbow trout are also 

affected, but the symptoms are in general less severe compared with Atlantic salmon 

(Murray, et al., 2011). The agent responsible for causing BKD is Renibacterium 

salmoninarum. All age groups are affected, but the disease is rare in very young fish 

(OIE, 2009; MSS, 2010b). Cumulative mortalities can reach up to 40% in Atlantic 

salmon in severe cases (CEFAS, 2011). 

 

Box 4: Infectious haematopoietic necrosis 

This disease affects mostly salmon and trout, but all salmonid species are affected. It 

is caused by infectious haematopoietic necrosis virus (IHNV), which is a rhabdovirus 

(OIE, 2009; MSS, 2010b; CEFAS, 2011). Economic losses are observed the most in 

freshwater farms. The life stages that are mainly affected are fry and small fingerlings; 

the younger the fish the more susceptible they are (OIE, 2009; MSS, 2010b). Acute 

outbreaks can cause mortality rates up to 90-95% and 100% in fry. Daily mortalities 

exceed several percent of the population. Fish that survive an outbreak can become 

carriers of the virus (OIE, 2009).  

 

Host

Environment

Pathogen

Disease
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Another factor that plays an important role in the development and severity of clinical 

diseases is the strain of the pathogen, as different pathogen strains can vary largely in 

their pathogenicity and virulence, for example in pancreas disease (PD, box 5) 

(Rodger and Mitchell, 2007). ISA strains have been found that are both virulent 

(Stagg, et al., 2001; Mardones, et al., 2009; OIE, 2009) and non-virulent (Nylund, et 

al., 2007). Moreover, different pathogens often affect specific age groups, life stages 

(for example fry or smolt), environments (i.e. freshwater or seawater) or species (OIE, 

2009; MSS, 2010a; MSS, 2010b). 

Box 5: Pancreas disease 

Pancreas disease (PD) is caused by a salmonid alpha virus and has had a major 

economic impact in Norway, Ireland and Scotland (Rodger and Mitchell, 2007). 

Scottish salmon farmers have identified PD as the most important (biomass) loss 

caused by a disease (MSS, 2009). The most significant losses are seen when salmon 

are between 3.0 and 4.5 kg (MSS, 2009). This disease mostly affects salmon on their 

first year at sea. Mortality rates differ significantly from pen to pen, from 5% for a 

whole production cycle to as high as 40% in three to four months (Rodger and 

Mitchell, 2007). In Scotland, outbreaks normally occur between August and October 

(MSS, 2009). 

 

Presence of a pathogen alone is often not enough to cause symptoms and additional 

factors are needed to result in clinical disease (Rimstad, 2011). Clinical infectious 

pancreatic necrosis (IPN, box 6) is often seen during week 5 to 19 after smolt transfer 

(Soares et al., 2011). The increase in mortalities during this period is most likely to be 

stress related, caused by sea transfer and change of environment (FRS, 2003). 
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Box 6: Infectious pancreatic necrosis 

IPN is caused by infectious pancreatic necrosis virus (IPNV); this virus belongs to the 

aquatic birnavirus family (Wolf, 1988). IPNV is a very robust virus and affects a wide 

range of species in both fresh and seawater farms (MSS, 2010a). The virus causes 

clinical symptoms mainly in salmon in fry (Smail, et al., 1992) or during the first weeks 

after sea transfer (Bruno, 2004a; Soares, et al., 2011). Clinical signs of IPN include 

high mortality rates and reduced growth (Damsgård, et al., 1998). In 2003, over 80% 

of the Scottish marine farms were found positive for IPNV and 12 % of freshwater 

farms; however prevalence of IPN differed between regional areas. At most sites 

clinical signs were absent (Murray, 2006a). Daily mortality rates are between 0.5 and 

1.0% (Soares, et al., 2011). 

 

1.2.1. Notifiable diseases and other important diseases 

Diseases can be classified into non-notifiable diseases and notifiable diseases. 

Notifiable diseases are diseases that have the potential to cause major economic 

losses or have a detrimental effect upon wild fish populations. When a farmer or 

veterinarian suspects one of these diseases, they are obliged to report this to the fish 

health inspectorate (MSS, 2010b; MSS, 2011b). The diseases classed as notifiable 

are listed in Part II, Annex IV of Directive 2006/88/EC (MSS, 2010b). Some diseases, 

for example IPN, are so widespread that the benefits of controlling those diseases are 

smaller than the negative effects of the control strategies such as movement 

restrictions have on the industry. In the following sections, important diseases for 

Scottish aquaculture are discussed in detail. 

In cases where an outbreak of a notifiable disease occurs, movement restrictions are 

applied to prevent further spread. The following fish diseases are notifiable in the UK: 

infectious salmon anaemia (ISA); bacterial kidney disease (BKD); viral haemorrhagic 

septicaemia (VHS); infectious haematopoietic necrosis (IHN); gyrodactylosis caused 

by the parasite Gyrodactylus salaris; epizootic haematopoietic necrosis (EHN); 

epizootic ulcerative syndrome (EUS); spring viraemia of carp (SVC) and koi herpes 
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virus (KHV) (MSS, 2010b). All diseases are notifiable in all species but EHN does not 

cause clinical disease in salmon. However, salmon might be a carrier species for 

EHN. Salmon are not susceptible to EUS, SVC and KHV (OIE, 2009). Consequently, 

these diseases will not be discussed in this chapter. IHN and G. salaris are exotic in 

the UK but are prevalent in other European countries (MSS, 2010b; CEFAS, 2011).  

Gyrodactylosis (box 7) has caused major losses in Atlantic salmon in Northern 

European countries (OIE, 2009; MSS, 2010b; CEFAS, 2011). It is identified as one of 

the biggest potential threats for Atlantic salmon populations in the UK (Peeler and 

Thrush, 2004), as Scottish salmon are highly susceptible to this parasite (MSS, 

2010b; CEFAS, 2011). In order to keep the UK free of G. salaris, susceptible live fish 

from areas that are affected with G. salaris are prohibited from being moved into the 

UK (MSS, 2010b). 

Box 7 Gyrodactylosis. 

Gyrodactylus salaris is a parasite that causes gyrodactylosis. The parasite gives birth 

to live young and has a direct life cycle. G. salaris affects mainly Atlantic salmon, but 

rainbow trout and brown trout are known to be affected as well (OIE, 2009; MSS, 

2010b). Mortalities are normally seen in fry and parr, but all stages are susceptible. 

Mortality rates up to 100% are seen in fry. The average mortality rate is 85% in 

farmed Atlantic salmon in untreated farms. In other susceptible species the 

prevalence is lower, around 10% or not observed at all (OIE, 2009). 

 

IHN is prevalent in North America, Europe and Asia (OIE, 2009), but has never been 

detected in the UK. However, were it to spread to the UK it has the potential to cause 

significant economic losses for the UK. The fish health inspectorate inspects farms 

with species susceptible to IHN annually. In addition, every two years samples of 

internal organs from 30 fish per farm are collected and screened for IHNV. This is 

important in order to maintain IHN-free status in the UK (MSS, 2010b).  
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There have been two outbreaks of ISA in Scotland in the past few years, the first 

occurring in 1998/1999 (Stagg, et al., 2001; Murray, et al., 2002) and the last one in 

2009/2010 (Murray, et al., 2010). Both outbreaks only affected seawater farms. It is 

believed that ISA is now eradicated in Scotland, although final confirmatory testing 

was still being completed at the time of writing. Other countries, such as Norway 

(Rimstad and Mjaaland, 2002) and Chile (Mardones, et al., 2009) have been unable to 

eradicate the disease.  

Between 1990 and 2002, there were 68 cases of BKD in Scotland. Of these cases, 27 

were recorded in Atlantic salmon and the remaining cases (41) were recorded in 

rainbow trout (Bruno, 2004b). During recent years the prevalence of BKD in Scotland 

has been low in both salmon and rainbow trout farms in relation to the prevalence 

during 1990 to 2002 (MSS, 2010b). 

It is not only notifiable diseases that can cause substantial losses for the Scottish 

aquaculture. Infectious pancreatic necrosis (IPN), pancreas disease (PD), 

furunculosis (box 8) and sea lice (both Lepeophtheirus salmonis and Caligus 

elongatus) are not notifiable diseases but all have the ability to cause significant 

losses to Scottish salmon farms (MSS, 2010a). For example, IPN accounted for 10% 

of the total biomass losses during 2001 to 2006 and another 10% of the losses were 

suspected to be caused by IPN according to Scottish salmon farmers. IPN was a 

notifiable disease until 2005, but due to the high prevalence (>80% in marine sites, 

Murray, 2006a) in Scotland, IPN is no longer controlled. IPN is not registered anymore 

as an OIE-listed disease (OIE, 2009). In addition to IPN, sea lice and pancreas 

disease cause substantial losses according to Scottish salmon farmers. Sea lice 

accounted for over 5% of the biomass losses while more than 45% of the biomass 

losses were suspected to be caused by PD (MSS, 2009). 
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1.3. Disease challenges 

Aquaculture is important for Scotland; the industry had an enormous growth in the last 

20 years (figure 1.1). Scottish salmon aquaculture is potentially vulnerable to disease 

outbreaks. Pathogens can transmit between farms by horizontal transmission such as 

live fish movements (Murray, et al., 2002; Murray and Peeler, 2005), wild reservoirs 

(Uglem, et al., 2009) and hydrodynamic contact (Jonkers, et al., 2010) or vertical 

transmission (i.e. from parent to egg) (OIE, 2009).  

It is important to understand the different pathways of pathogen transmission in order 

for governmental organisations to optimise disease control strategies. If a disease is 

persistent on a farm or if farms get re-infected, for example by a wild reservoir, then 

farm-level approaches to control the disease should be considered. If a disease is not 

persistent i.e. previous infection is not a risk factor for a disease and the disease 

spreads easily to other farms, then control strategies at management-area level, or 

even wider, should be implemented (Murray, 2006b). In section 2.1, the ecology of 

diseases is discussed. 

There are several methods available to control pathogens and prevent large 

epidemics, for example, antibiotics and vaccines are available for some pathogens 

(MSS, 2010b; OIE, 2009; CEFAS, 2011). Treatments are not always 100% effective 

Box 8: Furunculosis 

Furunculosis is caused by a gram-negative bacteria Aeromonas salmonicida and has 

been resolved as a problem for salmon aquaculture in the UK due to a successful 

vaccination programme. Furunculosis affects all life stages and can be either chronic 

or acute. In the acute stage, fish show almost no symptoms and there is a sudden 

increase in the mortality rate. While in the chronic state the symptoms are more 

severe. Mortalities differ significantly from farm to farm and vary from 10% to 50% 

without treatment (DIPNET, 2007; MSS, 2010a). 
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due to resistance of the pathogen to the treatment (Murray, 2011). In section 2.2, 

possible control strategies are discussed. 

In addition to antibiotics and vaccines, fallowing is thought to be an effective disease 

control strategy that is often used to break the disease cycle (Wheatley, 1995). 

However, prior to this thesis, there have been no large-scale studies performed to 

investigate the effectiveness of this strategy. In chapter 3, the effectiveness of 

different fallowing strategies is investigated.  

Movement of live animals has been shown to play a big role in the transmission of 

diseases for varied species (Murray et al., 2002; Gibbens et al., 2001; Green et al., 

2006a). Network models are a valuable tool to give a quantitative prediction of the 

consequences of live fish movements and can be used to assess the effects of 

disease control measures. More details on the use of mathematical models to study 

disease transmission between farms are given in section 2.3. 

Livestock movement data showed that there are substantial differences in the contact 

structure between production phases and these differences are likely to affect the 

course of epidemics (Bigras-Poulin et al., 2006; Bigras-Poulin et al., 2007; Natale, et 

al., 2009; Lindstrom et al., 2010). However, prior to this thesis there have been no 

studies performed to investigate possible differences of the contact structure between 

production phases in salmon aquaculture. In chapter 4, the contact structures of the 

different salmon production phases are discussed alongside their impact on disease 

transmission. In chapter 5, seasonality patterns and their effects on disease 

transmission are discussed.  

1.4. Project outline 

The main objective main objective of this thesis was to investigate the Scottish live 

fish movement network and its consequences for pathogen transmission between 
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farms in order to develop and optimize control strategies for epidemics. In figure 1.4 

an overview of the chapters and how they are linked is shown.  

CHAPTER 2: The use of mathematical models in the control and prevention of 

pathogen spread in the Scottish salmon industry. 

Understanding how diseases are spread between farms is the first step towards 

developing effective control strategies. In this chapter, we discuss the ecology of 

aquatic diseases that have the potential to cause severe losses to the Scottish 

aquaculture. Next, different methods that could contribute to the control and 

prevention of epidemics are discussed. In some cases, control strategies other than 

culling all fish on a site are not available. Therefore, the emphasis should be on 

preventing epidemics. With the use of mathematical models it is possible to 

investigate the importance of transmission routes. This chapter ends, with a review 

about the use of mathematical models in exploring the course of possible epidemics. 

CHAPTER 3: The effectiveness of fallowing strategies in disease control in salmon 

aquaculture assessed with an SIS model. 

Scottish marine sites are located in management areas, where agreements are made 

about live fish movements, disease treatments and fallowing times. In this study the 

effectiveness of these management areas combined with three different fallowing 

strategies (synchronised fallowing, unsynchronised and partial synchronised at the 

management-area level) using a stochastic SIS model, is discussed. All seawater 

farms were simulated to infect two neighbouring farms within the same management 

area and long distance movements occurred at random, within and between 

management areas. The results showed that when live fish movements are under 

reasonable control, synchronized fallowing is a highly effective tool to control 

epidemics. This chapter was published in Preventive Veterinary Medicine (2011, 
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98:64-73). 

CHAPTER 4: Seasonality and heterogeneity of live fish movements in Scottish fish 

farms.  

In chapter 3, live fish movements between sea sites occurred at random. Data that 

showed how often and when these movements occurred per production phase were 

not available. In this study we investigated the contact structure and seasonality 

patterns per production phase of live salmonid movements. Movement records 

collected by the Fishery Health Inspectorate of Marine Scotland, Aberdeen from 2002 

to 2004 were used. Data analysis demonstrated that contact structure and seasonality 

patterns differed between production phases. Disease control strategies and disease 

models should take these differences between production phases into account. This 

study was published in Diseases of Aquatic Organisms (2011, 96: 69–82). 

CHAPTER 5: Seasonality in live fish movements and their effects on epidemics.  

In chapter 4 we showed that salmon live fish movements show seasonal patterns. 

These seasonal patterns possibly have an effect on the course of an epidemic. In this 

chapter we examined the effects of seasonality on epidemics using a SIR model; the 

model structure was similar to the one described in chapter 3. Three different models 

were developed: the real-life network with the original order of movements (1), the 

real-life network in which the movements between freshwater sites and freshwater to 

seawater sites occurred with a random reordering (2) and a simulated network model 

(3). Seasonality had an effect when local transmission was high and movements 

occurred at random or when there was no clustering. 
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Figure 1.4. An overview of all the topics in this thesis and how these topics are linked. 
The dashed arrows show how topics are linked, the black lines show how these topics 
result in the research chapters. 

This thesis consists of one literature review (chapter 2) and three scientific papers 

(chapter 3 to 5). Chapters 3 and 4 are already published and chapter 5 is readied for 

publication in a peer-reviewed journal. In chapter 6, the main conclusions of this thesis 

are discussed. All chapters were written by me, Marleen Werkman, with advice and 

proofreading by the co-authors (Dr. Darren Green, Dr. Alexander Murray, Prof. James 

Turnbull and Lorna Munro). The data used in chapters 4 and 5 were collected and 

edited by me and Lorna Munro from Marine Scotland Science, Aberdeen. 

In addition, I was a co-author on two further papers, for which my contributions were 

collecting and processing the data and assisting with the editing of the manuscripts. 

These papers are included as appendices. 
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CHAPTER 2. Disease transmission routes, control 

strategies and the use of mathematical 

modelling in disease control. 

M. Werkman, D.M. Green, A.G. Murray and J.F. Turnbull. 

In this chapter the theoretical framework of the thesis is discussed. This chapter starts 

with describing the main routes of pathogens between farms. Second, the most 

important strategies to control diseases are discussed. The last part of this chapter 

explains how mathematical models can be used in the control and prevention of large 

epidemics. 

This chapter was written by the main author, Marleen Werkman, and the co-authors 

provided supervisory and editorial support.  
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Chapter 2. Disease transmission routes, control 
strategies and the use of mathematical 
modeling in disease control. 

Aquaculture is important for the supply of food of millions of people worldwide (FAO, 

2010). In Scotland salmon aquaculture is important as it supplies jobs in areas with 

few job alternatives (MSS, 2011a). Aquatic diseases pose a threat to Aquatic 

industries (OIE, 2009). Pathogens can spread between farms through several 

pathways (natural reservoirs, vertical transmission, hydrodynamic contact and long-

distance movements). Disease control strategies are necessary to minimize the 

effects of diseases on the aquatic industries. In order to develop disease control 

strategies, it is important to understand how diseases are spread. In this section, 

pathogen transmission routes are discussed for pathogens that are relevant for the 

Scottish salmon industry. In section 2.2, possible control strategies are discussed and 

this chapter finishes by explaining how mathematical models can be used in testing 

and developing disease control strategies. 

2.1. Ecology of diseases 

2.1.1. Natural reservoirs of pathogens 

Natural pathogen reservoirs (or microbes capable of evolving pathogenicity) can 

cause infection or re-infection of farms. The most important natural reservoir is 

probably wild fish. Marine farms located on migration routes of wild fish face an 

increased risk of becoming infected by wild fish. Farmed and wild fish share the same 

water and are only separated by nets, therefore there is a risk of wild fish acquiring 

infection (Wallace, et al., 2008; Johansen et al., 2011; Kurath and Winton, 2011) and 

transmitting pathogens to farmed populations when they are in close proximity to a 

farm (Uglem, et al., 2009). Tagging studies show that wild fish, such as saithe 

(Pollachius virens) stay close to fish farms for several months because they are 

attracted by the large amounts of food available. Wild fish have been identified as a 
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risk factor for the introduction and re-infection of aquatic diseases such as ISA 

(Nylund, et al., 2002; Plarre, et al., 2005) and sea lice (Rae, 2002; Costello, 2009). 

Fish can be infected with a disease without showing symptoms (Plarre, et al., 2005) 

and infections in wild populations typically stay undetected unless a big decline in the 

population is noticed (Frazer, 2009). A Scottish study showed positive ISAv results for 

wild fish populations during the 1998/1999 outbreak. ISAv-positive samples were 

sometimes found during this outbreak in large quantities, indicating that there was a 

pattern in the transmission of the virus between wild fish (Raynard, et al., 2001). 

In addition to ISA, wild fish might also be responsible for introducing sea lice into 

susceptible salmon farms (Bron, et al., 1993; Butler, 2002).  This applies both to low-

level external inputs that kick-start outbreaks of Lepeophtheirus salmonis on farms 

(Revie et al. 2005) and seasonal spikes of Caligus elongatus potentially associated 

with wild fish migration (Revie et al. 2002). The larvae of the lice are planktonic 

(Johnson and Albright, 1991) therefore they can easily be transmitted between farmed 

and wild fish populations by passive drift. Environmental factors such as tidal currents 

and wind are important factors in transmission of lice larvae between the wild 

population and farmed population (Murray and Gillibrand, 2006; Amundrud and 

Murray, 2009). Infections of sea lice are found to be correlated with ISA outbreaks, as 

vector-borne transmission of the virus might occur by sea lice (Hammell and Dohoo, 

2005; OIE, 2009) and being infected by sea lice might increase the severity of the 

symptoms of ISA (Gustafson, et al., 2005). Sea lice are thought to have a negative 

effect on the non-specific immune system of their hosts (Mustafa, et al., 2000). 

Therefore, controlling the spread of sea lice could also be beneficial in the control of 

ISA and other diseases.  

IPNV is also detected in wild fish, however the estimated prevalence of IPNV in wild 

fish in Scotland is low, around 0.15%; prevalences of IPNV in wild fish populations in 
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the vicinity of salmon farms are found to be higher (0.58%) (Wallace, et al., 2008). 

Higher prevalence in samples taken from wild fish in close proximity of salmon farms 

indicates that there is probably transmission from salmon farms to wild fish 

populations. However, there is insufficient evidence to prove that transmission is in 

the direction of wild populations to farmed populations as opposed to farmed 

populations to wild populations. 

Wild fish are probably not responsible for transmission of IPNV to farmed populations 

(Murray, 2006). This could be due to the high prevalence in Scottish marine farms 

(>80%), though wild fish populations might become important for re-infecting farmed 

populations when the prevalence of IPN on farms drop to very low levels (Wallace, et 

al., 2008). 

Although some studies suggest the possibility of pathogen transmission from wild fish 

to farmed populations (Rae, 2002; Kurath and Winton, 2011) other studies doubt 

whether wild fish are responsible for disease transmission to farmed fish such as ISA 

and sea lice and this possible transmission route needs further investigation (Uglem, 

et al., 2009). Farmed fish are likely responsible for transmitting pathogens to wild fish 

(Wallace, et al., 2008) causing declines in wild fish populations (Costello, 2009; 

Frazer, 2009) depending on the pathogen. 

2.1.2. Vertical transmission 

Some diseases can transmit vertically through reproductive fluids (OIE, 2009), 

therefore Scottish broodstock are screened for key pathogens (Bruno, 2004a). 

Vertical transmission could be important, particularly for long-distance imports into 

pathogen-free countries as this mechanism could be responsible for the index case 

(i.e. first infected farm in a susceptible and naive population). Vertical transmission is 

only important on a country-wide scale when other pathways such as hydrodynamic 
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contact and long-distance movements do not overtake the effects of vertical 

transmission.  

BKD can be transmitted vertically; therefore broodstock originating from BKD-positive 

farms are not allowed to be used for the production of ova and must be culled (MSS, 

2010). Furthermore, since transmission of Aeromonas salmonicida can occur 

vertically, disinfection of ova infected with these bacteria is important in the control of 

furunculosis (DIPNET, 2007). 

Vertical transmission is uncommon or entirely unknown for IPN (Robertsen, 2011) and 

PD (Rimstad, 2011); evidence regarding vertical transmission of ISA is, as yet, 

inconclusive. Nylund et al (2007) suggested that non-virulent strains of ISA can be 

transmitted vertically, and it is thought that ISAv was introduced in Chile by infected 

embryos originating from Norway (Vike, et al., 2009). However, it is generally 

assumed that vertical transmission is unlikely to play a role in the transmission of ISA 

(Cipriano and Miller, 2003; Lyngstad et al., 2008). Virulent and non-virulent strains 

might differ in their transmission routes. Nylund et al (2007) were the first to publish a 

study that indicated vertical transmission of ISA; however, these results were only 

valid for non-virulent strains, with virulent strains not included in this study. Lyngstad 

et al. (2008) concluded that vertical transmission is unlikely to occur for ISA, however 

this study only included virulent strains. The findings of Vike et al (2009) were based 

on two isolates, one coming from a marine farm and one from a freshwater farm. 

However, infections of ISA are generally only in seawater farms and have in a few 

cases been seen on freshwater farms mixed with seawater (OIE, 2009). Further 

research is needed to give conclusive evidence on the possibility of vertical 

transmission of ISAv. 
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2.1.3. Hydrodynamic contact 

Fish can shed pathogens by urine, blood, gut contents, mucus, reproductive fluids 

(such as ova) and material from dead fish (OIE, 2009). These products are assumed 

to be transmitted passively to neighbouring farms by water flow, especially in 

downstream directions or with the prevailing current (Sharkey, et al., 2006). Therefore, 

close proximity to an infected farm could be a risk factor for a susceptible farm in the 

watercourse to become infected. In this thesis, proximity reflects the shortest physical 

distance between farms via the water column. 

Close proximity to an infected farm has been identified as a risk factor for the 

transmission of PD (Kristoffersen, et al., 2009; Viljugrein, et al., 2009; Aldrin, et al., 

2010). For example, in a Norwegian study, close proximity was found to be important 

in the transmission of PD and explained 80% of PD transmission between farms 

(Aldrin, et al., 2010). In addition, close proximity to ISA-infected farms has been 

identified in many studies as a risk factor in the spread of ISAv (Aldrin et al., 2010; 

Mardones et al., 2009; McClure, et al., 2005; Jarp and Karlsen, 1997). In 2008/2009 

the second ISA outbreak occurred in Scotland, but this outbreak was limited to six 

farms located at the Shetland Islands with the rest of Scotland remaining free of the 

disease. The most likely transmission pathway of infection between farms during this 

outbreak was thought to be through local transmission (Murray, et al., 2010). 

Harvest stations and processing plants could pose a threat to fish farms in close 

proximity to these sites. If infected fish are transported to a harvest site and the site 

does not dispose of infected fish and their waste products hygienically, then they can 

become a serious threat (Munro, et al., 2003). Improved biosecurity on Norwegian 

processing plants reduced the risk of neighbouring salmon farms becoming infected 

with ISA (Vagsholm, et al., 1994; Jarp and Karlsen, 1997). However, close proximity 

to a harvest station or processing plant could still be a serious risk for ISA (Jarp and 
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Karlsen, 1997; Murray, et al., 2002) when water from a well boat is released. 

Furthermore, escaped live fish from harvest plants infected with a disease might pose 

a risk if they come in close contact with salmon farms (Munro, et al., 2003). Escape of 

live fish from harvest stations is uncommon, however if it does happen it may result in 

transmission of ISA to neighbouring farms in case of contact with infected fish (Munro, 

et al., 2003). 

2.1.4. Long-distance movements 

Live animal movements play an important role in pathogen transmission and can lead 

to epidemics covering a large geographical area as shown in the British 

foot−and−mouth disease (FMD) epidemic in 2001 (Gibbens, et al., 2001; Green, et al., 

2006a; Kiss, et al., 2006a) and have the potential to play an important role in the 

transmission of avian influenza (Dent, et al., 2008) and bovine tuberculosis (Green, et 

al., 2008). 

Salmon production has increased substantially in the last 20 years (MSS, 2011a), 

therefore an increased number of movements has become necessary; this makes the 

Scottish salmon industry more vulnerable to pathogens (Murray, et al., 2003). Live fish 

movements between farms are necessary for biological reasons as salmon are 

anadromous and have a freshwater and seawater phase (see section 1.1.). However, 

live fish movements might also be necessary for economic reasons. For example, in 

Shetland there are insufficient freshwater sites to provide the seawater farms in 

Shetland with smolts. Therefore, smolts are sourced from Yorkshire and ova from 

Norway (Murray, et al., 2010). 

Live fish movements are associated with an increased risk of disease transmission 

between fish farms (Stagg, et al., 2001; Murray, et al., 2002; Peeler and Thrush, 2004; 

Murray and Peeler, 2005; Thrush and Peeler, 2006; Mardones, et al., 2009; Branson, 

2011; Murray, et al., 2011). Transportation of smolt is identified as a major risk factor 
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for transmission of ISA over great distances and has been associated with the 

Scottish ISA outbreak in 1998/1998 (Stagg, et al., 2001; Murray, et al., 2002). These 

movements caused the epidemic to spread over a large geographical area (Murray, et 

al., 2002). Live fish movements have also been linked to the transmission of ISA in 

Chile (Mardones, et al., 2009) and other diseases, such as BKD (Murray, et al., 2011), 

sleeping disease (Branson, 2011) and VHS (Thrush and Peeler, 2006). In addition, 

live fish movements are considered the most important risk for introduction of the 

exotic parasite Gyrodactylus salaris in the UK (Peeler and Thrush, 2004).  

Scottish fish farmers are obliged to register live fish movements going onto and off 

their farm. The fish health inspectors at Marine Scotland (Aberdeen) keep these 

records (MSS, 2011b). These records have been used to examine the risks of live fish 

movements on pathogen transmission (Green, et al., 2009; Munro and Gregory, 2009; 

Green, 2010; Green, et al., 2011), see section 2.3. Live fish movements have also 

been used in Chile to study the spread of ISAv (Mardones et al., 2009). 

Farms infected with a notifiable disease are not allowed to move live fish from the 

farm (Joint Government/Industry Working Group, 2000). However, pathogens are 

hard to detect at low prevalence or when the fish do not show clinical symptoms 

(Murray and Peeler, 2005; Graham, et al., 2006; Lyngstad, et al., 2008). Therefore, 

infected fish may be moved from the farm while they are infected with a notifiable 

pathogen (Jonkers, et al., 2010).  

2.2. Control strategies 

2.2.1. Fallowing and management areas 

It is recommended that marine sites have a fallowing period between cycles (Joint 

Government/Industry Working Group, 2000), where farms are left unstocked for a 

period of time in order to let pathogens die out in the absence of hosts (Wheatley, et 
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al., 1995; Bruno, 2004b). Multiple generations of fish overlapping on one farm is 

thought to be a risk factor for BKD in rainbow trout farms, where BKD can persist for 

several years. Salmon farms commonly hold one generation of stock and have a 

fallowing period before the next cycle starts; in salmon farms BKD is less persistent 

compared with rainbow trout farms (Bruno, 2004b). Furthermore, fallowing appears to 

be effective in the control of L. salmonis sea lice (Bron, et al., 1993; Rae, 2002). 

However, it is not effective with another type of sea louse, Caligus elongates (Bron, et 

al., 1993; Revie, et al., 2002) which has a large wild-fish reservoir population.  

Fallowing seems to be effective in the control of PD (Wheatley, et al., 1995; MSS, 

2009; Rimstad, 2011). However the evidence is not conclusive; some studies did not 

find fallowing to be beneficial in the control of PD (McLoughlin, et al., 2003; Rodger 

and Mitchell, 2007). It might be that farmers facing major problems with PD are more 

motivated and more likely to integrate fallowing strategies in their management this 

could explain why fallowing does not appear to be beneficial in some studies. 

Furthermore, natural reservoirs could be responsible for re-infection of the farm or re-

infection may occur through other farms that are in close proximity and are not 

fallowed (McLoughlin, et al., 2003; Rodger and Mitchell, 2007).  

After the Scottish ISA outbreak in 1998/1999 the workgroup, “Joint 

Government/Industry Working Group” (JGIWG) was established to develop control 

strategies for future ISA outbreaks. A code of practice was developed with 

agreements on husbandry and bio-security measures such as management areas, 

fallowing strategies and limiting movements between marine sites (Joint 

Government/Industry Working Group, 2000). The use of management areas was 

shown to be effective during the Scottish ISA outbreak in 2009/2010 (Murray, et al., 

2010): infections were limited to one management area, in contrast to the Scottish 
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outbreak in 1998/1999 where infected farms covered a large geographical area 

(Murray, et al., 2002).  

According to the JGIWG, in case of a suspected outbreak of ISA, movement 

restrictions are applied to the suspected farm. Depopulation of the farm should be 

undertaken as soon as possible after the confirmation of ISA (Joint 

Government/Industry Working Group, 2000) because it is thought that the time period 

in which a farm is depopulated after confirmation of ISA is important in eradicating 

pathogens (Mardones et al., 2009). Fish that survive ISA can shed the virus for 

another month (OIE, 2009). The viral load reduces when hosts are removed from an 

infected site as there are no viral particles shed by hosts and the virus will die out in 

the absence of hosts (Wheatley, et al., 1995). This will also reduce the risk of infection 

to neighbouring sites. After depopulation, the fallowing period should at least be six 

months in case of confirmed ISA (Joint Government/Industry Working Group, 2000). 

When there are no substantial problems on the farm, the fallowing period is normally 

between 4 to 8 weeks, but can take up to a year (MSS, 2011a).  

Pathogens might spread from infected farms by wild fish movements or through 

passive drift and can cause re-infection of farms after a fallowing period. Therefore, 

synchronised fallowing at management area level might be beneficial over 

unsynchronised fallowing. Some farms in Scotland have applied synchronised 

fallowing and treatments at management area level for some years (Rae, 2002), and 

recently synchronized fallowing has been applied in Norway (Rimstad, 2011). 

However, prior to this thesis there have been no studies performed to investigate the 

advantages of synchronised fallowing over unsynchronised fallowing at a 

management area level.  

There are no biosecurity measures between freshwater sites comparable to 

management areas between seawater sites. Therefore, in case of a disease outbreak 



Using mathematical models for disease control 
 

2–32 
 

in a freshwater site, there is a possibility that a geographical widespread epidemic 

might occur, as occurred with the first Scottish ISA outbreak in seawater. However, 

this depends on the contact structure of salmon farms. So far there have been no 

studies performed to investigate the contact structure of Scottish salmon freshwater 

sites specifically. Biosecurity measures such as movement restriction should be 

strategic because of the biological and economic importance of live fish movements 

between freshwater sites. 

2.2.2. Other treatment options 

Control of many diseases is often only possible with restricted movements of live fish, 

good hygiene, stress control, quarantine of infected stocks, culling of infected brood 

stock or total hatchery depopulation followed by disinfection (in case of vertical 

transmission) (OIE, 2009). In some cases, vaccines, antibiotics or pesticides are 

available. However, there are no licensed vaccines or antibiotics available in the UK 

for the treatment of BKD, ISA and gyrodactylosis (OIE, 2009; MSS, 2011b; CEFAS, 

2011).  

Vaccines are sometimes used to prevent epidemics; in Scotland 68 salmon 

freshwater farms were vaccinated in 2009. The majority of vaccinations were against 

furunculosis. A small number of sites vaccinated their stock against enteric red mouth 

disease, PD, IPN and vibriosis (MSS, 2011a). Vaccines are not available or not 

effective in all cases (Rodger and Mitchell, 2007; Kibenge, et al., 2004). The most 

important features of vaccines are that they prevent clinical disease and transmission 

of the pathogen and should offer protection against multiple serotypes. Vaccinations 

are rarely 100% effective but do not need to be in order to prevent an epidemic (Glass 

et al., 2002) as long as they decrease the number of secondary cases caused by a 

primary case to below 1. However, if protection against a pathogen is incomplete at 
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individual fish level there might be a risk for vaccinated fish to become carriers of the 

pathogen (OIE, 2009). 

In addition to vaccines, pesticides are used in some cases to eradicate pathogens. 

For example, rotenone is used in Norwegian rivers that are infected with G. salaris. 

Rotenone eradicates not only the parasite but also kills all the fish in a river and 

therefore restocking is necessary. Treatment of rivers with rotenone is unlikely to be 

possible in most parts of the United Kingdom, due to the complex hydrography of the 

river systems and ecological concerns (Peeler and Thrush, 2004).  

Another problem that might occur with the use of pesticide treatments is that 

parasites, such as sea lice, can become resistant to the treatment (Rae, 2002; 

Murray, 2011). As pesticides often lose their effects due to resistance in the sea lice 

(Murray, 2011), vaccination programs might be a better solution to prevent sea lice 

infections (Rae, 2002). Several organisations are trying to develop effective 

treatments to protect salmon from sea lice such as vaccines that stimulate the 

production of antibodies that damage important organs of the sea lice (Rae, 2002), 

but so far without success. Some other treatments against sea lice are highly effective 

in eradicating the lice, but can also damage their hosts such as hydrogen peroxide 

(Rae, 2002). 

The effectiveness of control strategies depends largely on the complexity of the 

transmission pathways and the knowledge about these pathways. In case of a 

disease outbreak at site level, culling might be the only solution to prevent an 

epidemic occurring on a larger scale. However, culling infected sites is very expensive 

and can cause huge financial difficulties to fish farmers. In addition, as seen from ISA 

infections in Norway (Nylund, et al., 2007; Vike, et al., 2009) and Chile (Mardones, et 

al., 2009), culling is not always effective. Nevertheless in some cases it is the only 

available option. However, as shown during the foot−and−mouth disease (FMD) 
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outbreaks in Great Britain and the Netherlands, where culling was applied, public 

tolerance for these methods are low (EU, 2001). Therefore, more emphasis should be 

made upon preventing diseases by fallowing strategies, vaccine development and 

strategic movements between farms. 

2.3. Mathematical modelling 

Pathogens, especially viruses, can be hard to control in aquaculture due to a lack of 

effective treatments such as antibiotics, vaccines or the existence of natural reservoirs 

causing re-infection. Understanding how pathogens spread within a population or 

country is important in order to develop effective surveillance strategies. Mathematical 

models can help us to understand how pathogens are spread and can be a useful tool 

to investigate the role of live fish movements in the spread of disease.  

Mathematical models show a simplification of reality with which it is possible to 

explore the behaviour of – for example – biological processes that cannot be tested in 

reality because it is unethical, too expensive or impractical (Kiss et al., 2005; Webb et 

al., 2005). In these models only the essential elements that are necessary to test 

hypotheses or explore the behaviour of epidemics should be included (Jorgensen and 

Bendoriccho 2001; Murray 2008). 

2.3.1. Mass-action vs. network models 

There are two types of mathematical models that are used most often to study 

disease dynamics: mass-action and network models. Mass-action models are used to 

investigate the course of epidemics in random well-mixed populations. These models 

are normally divided into compartments (susceptible, exposed, infected, recovered, 

etc), representing fractions of the population. 

Susceptible individuals are those that are not infected with the causal agent, but which 

have the potential to become infected. If individuals infected with the pathogen but are 
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not infectious then they belong to the exposed compartment and after the latent 

period (i.e. the time period in which individuals are infected with the pathogen become 

infectious), individuals move to the infected compartment in which they have the 

potential to infect other individuals. When individuals are moved to the recovered 

class, they are not able to infect other susceptible individuals anymore, as they are 

immune or dead, or otherwise removed from the population. In some cases recovered 

individuals can become susceptible again, but this depends on the pathogen and 

other circumstances (Anderson and May, 1992) and also the level of study. For 

example, if farms are the epidemiological unit, the animals on the farm can reach a 

state of immunity, but when a new population replaces these animals, this farm will 

become susceptible again. These compartments are examples, compartments can be 

added and removed. 

Models can be stochastic or deterministic. Stochastic means that moving between 

compartments occurs by chance and in this case many outcomes are possible. For 

example, if the removal rate is 0.25 per time step, there is a 1 in 4 chance that an 

infected individual is removed or recovered per time step. In a deterministic model 

there is only one outcome when all parameter values are fixed, while stochastic 

models provide multiple outcomes when all parameter are fixed. Stochastic models 

are a better choice when contact structures between individuals are complex (Keeling, 

2005). In addition, stochastic models are more appropriate to use when the population 

size is small as with the use of stochastic models only ‘complete’ animals are moved 

to the next compartment (Anderson and May, 1992). 

One of the main assumptions of most mass-action models is that all epidemiological 

units (for example farms or individual animals) are mixed randomly i.e. if farm is the 

unit, the number of contacts per farm is homogenous and there is an equal risk of 

connection between any two farms. Thus, they all have an equal risk of becoming 
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infected and spreading the infection (Anderson and May, 1992; Keeling, 2005). 

However, in reality infected farms do not have the potential to reach all farms and thus 

they do not have the potential to infect every susceptible farm in a population. For 

example, poultry (Cox and Pavic, 2010), pigs (Lindstrom, et al., 2010) and salmon 

movement networks are “pyramidal” in structure (figure 2.1). In these networks there 

are more movements going from the top (hatcheries) to the bottom (growers) than 

from the bottom to the top. In this case smolt suppliers are less likely to infect 

hatcheries, while infections that started in hatcheries are likely to reach smolt 

suppliers. There is also a tendency for the top of the pyramid to be narrow and for the 

bottom to be wide. The number of susceptible farms that can be infected by one 

infected farm is limited and shows large differences amongst farms (Keeling, 2005; 

Martinez-Lopez, et al., 2009). Several studies in livestock show that there are 

differences in the contact structure between production phases (Bigras-Poulin, et al., 

2006; Bigras-Poulin, et al., 2007; Natale, et al., 2009; Lindstrom, et al., 2010). Farms 

that have as their main purpose the breeding of animals, normally have more 

movements going off their farm compared with gathering farms and abattoirs (Bigras-

Poulin, et al., 2007). This is likely to influence the course of an epidemic as farms at 

the top of the pyramidal structure are more likely to be sources of infection, while 

farms on the bottom are more likely to be sinks. Including the stage of production is 

therefore important to assess the infection risks of (salmon) farms. Prior to this thesis, 

no studies have examined the differences in contact structure amongst production 

phases for salmon farms; however differences in contact structure amongst 

production phases are expected due to the complex structure of salmon farming.  
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Figure 2.1. Graphical representation of a pyramidal network. The size of the arrows 
represents the number of movements going from the top to the bottom and from the 
bottom to the top. 

Epidemiological network analysis is a technique that allows description of contact 

patterns between individuals in a population. Network models can easily take into 

account heterogeneity (i.e. the variation in the number of contacts per farm) and the 

direction of movements (Newman, 2003b; Christley, et al., 2005; Keeling and Eames, 

2005; Martinez-Lopez, et al., 2009). Network models consist of nodes (for example, 

farms or animals). Connections amongst nodes can be represented in a graph or by 

an adjacency matrix !!". When !!" = 1 there is a connection between two nodes. 

!!" = 0 implies no connection between nodes (Newman, 2003b; Keeling and Eames, 

2005). Nodes are connected by edges (undirected connections, figure 2.2A) or arcs 

(directed connections, figure 2.2B), resulting in an undirected network (i.e. P can 

infect Q, Q can infect P) or directed network (i.e. Q cannot infect P). One of the main 

assumptions in mass-action models is that contacts are undirected (Martinez-Lopez, 

et al., 2009).  

Hatcheries
(ova)

Freshwater farms
(fry to smolts)

Saltwater sites
(Growers)
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Figure 2.2. Graphical representation of an undirected network (A) and a directed 
network (B). 

With the use of network analysis it is possible to identify potential high-risk farms 

(farms that have many connections to other farms) (Woolhouse, et al., 1997; 

Christley, et al., 2005; Keeling, 2005; Lloyd-Smith, et al., 2005; Kiss, et al., 2006a; 

Ortiz-Pelaez, et al., 2006; Green, 2010).  

In human epidemiology, social network modelling has been applied often, for example 

to investigate the role of contact networks in the spread of severe acute respiratory 

syndrome (SARS) (Meyers, et al., 2005), HIV (Pivnick, et al., 1994; Amirkhanian, et 

al., 2005), and tuberculosis (Cook, et al., 2007; Klovdahl, et al., 2001). Social network 

analysis has been applied to preventive veterinary science from approximately 2003 

and its use has been expanding since (Martinez-Lopez, et al., 2009). For example, 

network analysis was used to study the role of live animal movements on the British 

FMD epidemic in 2002 (Green, et al., 2006a; Kiss, et al., 2006a; Ortiz-Pelaez, et al., 

2006) and avian influenza (Dent, et al., 2008). 

Although there are some disadvantages of using mass-action models, these models 

are often used and are thought to often give a good approximation of disease 

dynamics (Anderson and May, 1992; Keeling, 2005; Murray 2006). Nevertheless, 

network models should be used when it is thought that heterogeneity, direction or 

spatial scale of contact between nodes exists and are thought to play an important 

role in the course of an epidemic (Keeling, 2005; Keeling and Eames, 2005). This is 

P Q

P Q

A

B
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the case with live fish movements occurring between farms (Thrush and Peeler 2006; 

Munro and Gregory, 2009). 

2.3.2. Heterogeneity 

Network models can easily take into account the farms that pose the most risk and 

those that are most at risk, the direction of the contacts and heterogeneity. This is a 

big advantage over simple mass-action models. However, mass-action models can 

take into account heterogeneity in host susceptibility (Green et al., 2006b). In this 

context, heterogeneity is the variation in the number of contacts per epidemiological 

unit. In several studies it is shown that 20% of the population with the most contacts is 

responsible for 80% of the infection, this is known as the 20/80 rule (Anderson and 

May, 1992; Woolhouse, et al., 1997; Volkova, et al., 2010). Nodes (i.e. here farms) 

that have many connections with other nodes are more like to become infected, and 

when they are infected they have the ability to spread the infection to a large number 

of nodes. These nodes are called “super-spreaders” (Keeling, 2005; Keeling and 

Eames, 2005; Lloyd-Smith, et al., 2005), and generally comprise a small number of 

the total nodes in a network. Targeting these super-spreaders for surveillance is 

effective in detecting pathogens and preventing large epidemics (Christley and 

French, 2003; Christley, et al., 2005; Lloyd-Smith, et al., 2005; Kiss, et al., 2006a; 

Green, 2010). For example, during the ISA outbreak in 1998/1999, many cases could 

be linked to one processing plant (Murray et al., 2002). 

Heterogeneity has been shown to have a substantial impact on epidemics of FMD 

(Kiss, et al., 2006a) and avian influenza (Dent, et al., 2008) by reducing the epidemic 

threshold (Keeling, 1999; Kiss, et al., 2005; Kiss, et al., 2006b). Variation in the 

number of connections between nodes is shown in several livestock networks, such 

as cattle in the UK (Brennan, et al., 2008), Danish cattle (Bigras-Poulin, et al., 2006), 

Belgian pig farms (Ribbens, et al., 2009), Danish pig farms (Bigras-Poulin, et al., 
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2007). Heterogeneity in the number of contacts has also been shown in fish farms in 

Wales and England (Thrush and Peeler, 2006) and in a Scottish company with 68 

farms (Munro and Gregory, 2009).  

2.3.3. Seasonality 

Seasonality is likely to play an important role in the course of an epidemic. During 

times where the network is highly connected it is more likely that an epidemic will be 

initiated and become widespread in a short time period (Kiss, et al., 2006a). For 

example, the timing of agricultural shows in the UK is highly seasonal and peaks 

during August. The late summer months and early autumn therefore pose an extra 

risk for the start and establishment of an epidemic (Gibbens, et al., 2001; Webb, 

2006). Prior to this thesis, there have been no studies performed that investigate the 

seasonality of live fish movements or that quantify the effects of seasonality in 

aquaculture.  

2.3.4. Clustering 

R0 is often used in epidemiology to describe the number of secondary cases caused 

by a typical primary case in a susceptible population. This parameter indicates if an 

epidemic is likely to occur. For R0< 1 epidemics have the tendency to die out and the 

size of these epidemics will not scale with epidemics having R0> 1 in this case a large 

epidemic is more likely to occur (Anderson and May, 1992; Keeling, 2005). R0 

depends on both the transmission rate of the disease and the contact network 

structure and is relatively easily derived for homogenous networks. For complex 

structured network models it is often problematic to calculate R0 (Keeling, 2005; 

Meyers, et al., 2005), even though it is regarded as a useful concept. For example, 

when the population is divided into epidemiologically distinct subpopulations, then a 

one-size fits all R0 is not useful. 
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Clusters are triangular connections or cliques in a network (figure 2.3); a clustering 

coefficient represent the probability that two connected nodes have another common 

neighbour (Newman, 2003a; Christley, et al., 2005; Keeling, 2005; Keeling and 

Eames, 2005; Martinez-Lopez, et al., 2009). Clustering decreases R0, slows the 

speed of infections and decreases the final size of an epidemic (Newman, 2003a; 

Keeling, 2005) as infected nodes compete to infect the same neighbouring nodes.  

 

Figure 2.3. Graphical overview of an unclustered (A) and clustered (B) network. 

2.3.5. Types of network models 

There are several idealised network approaches that help us to understand disease 

dynamics, such as random graphs, small-world networks, lattice networks and scale-

free networks (Watts and Strogatz, 1998; Newman, 2003b; Keeling, 2005; Martinez-

Lopez, et al., 2009), explanations of these networks and examples are given below. In 

random graphs (figure 2.4A), nodes are connected by edges at random. Random 

graphs are characterized with a short path length (i.e. the smallest number of steps to 

get from node ! to node !), and a low cluster coefficient (table 2.1) (Watts and 

Strogatz, 1998; Newman, 2003b; Christley, et al., 2005; Keeling, 2005; Martinez-

Lopez, et al., 2009). In lattice networks (figure 2.4C), nodes are distributed in a grid, 

where each node has the same number of neighbours. Lattice networks have a long 

path length and are highly clustered (Table 2.1) (Keeling and Eames, 2005). Small-

world networks (figure 2.4B) are ring-models with a small number of extra connections 

A B
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that are randomly allocated (Newman, 2003b; Keeling and Eames, 2005; Martinez-

Lopez, et al., 2009). These extra long-distance connections have a large effect on the 

disease transmission in a network: all nodes can be reached within a few steps 

(Christley, et al., 2005; Keeling and Eames, 2005). Networks with small-world network 

characteristics (short path length and high cluster coefficient, table 2.1) are seen in 

British racing horses (Christley and French, 2003) and the British sheep movement 

network (Kiss, et al., 2006a); local transmission between sheep farms is likely to be 

more regular compared with long-distance movements and trading markets represent 

the extra long-distance contacts (Webb, 2005).  
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Figure 2.4. Graphical overview of a random (A), small-world (B) and lattice (C) network. 

Network models that are used are often static, meaning that adding or removing 

nodes or connections is not considered. Furthermore, they assume that the 

connections between nodes are independent of each other (which occurs in a random 

network), except for lattice-type networks (Martinez-Lopez, et al., 2009). This is often 

not the case as, for example, a Swedish study showed that movements of cattle within 

a county are more likely to occur than between counties (Noremark, et al., 2009). In 

the UK local sheep trading markets are quite common and these trading markets 

played an important role in the British FMD outbreak in 2001 (Eales, et al., 2002; Kiss, 

et al., 2006a; Webb, 2006). Market-trading connections could be treated as new 
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B     

    

    

    

C 



Using mathematical models for disease control 
 

2–44 
 

connections between farms that are present for a short period of time with a high 

number of connections. Network models are capable of being dynamic and thus to 

include temporary connections such as trading markets. 

Table 2.1. Overview of theoretical network models and their most important 
characteristics. 

  Path length  

  Short  Long  

Cluster coefficient Low  Random graph * 

 High  Small-world network Lattice graph 

2.4. Conclusion 

Diseases can spread through several pathways. Live fish movements are found the 

most ‘dangerous’ contact between farms as they almost definitely causes infection at 

the receiving site when the source farms is infected. Natural reservoirs, vertical 

transmission and hydrodynamic contact are all important transmission routes and 

should not be neglected in disease control strategies.  

Vaccines, antibiotics and pesticides are in some cases available to eradicate 

pathogens. However, side-effects can cause problems to the host of the parasites or 

to their surroundings. In addition, not all eradication tools are 100% effective or 

pathogens are becoming resistant to the treatment. Therefore emphasis should be 

made on disease prevention. 

Mathematical models, especially network models, are increasingly being used to 

investigate and study the effects of control strategies. Epidemiological network models 

can easily take into account heterogeneity, clustering and seasonal patterns and 

therefore are more appropriate to use in complex networks such as the live fish 

movement network. 
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CHAPTER 3. The effectiveness of fallowing strategies 

in disease control in salmon aquaculture 

assessed with an SIS model. 

M. Werkman, D.M. Green, A.G. Murray and J.F. Turnbull. 

This chapter describes the effects of three different fallowing strategies on disease 

control in salmon aquaculture. This study was a theoretical study, however real data 

were used in the form of management area maps compiled by Marine Scotland, 

Aberdeen. This chapter forms a base for the network model used in chapter 5. 

The main author, Marleen Werkman, constructed the disease model together with 

A.G. Murray and D.M. Green. All co-authors provided supervisory and editorial 

support throughout the whole study. 

This work was published as shown in Preventive Veterinary Medicine 98, 64-73 

(2011). Furthermore, results of this chapter have been presented at the European 

Workshop of PhD and Post-Doctoral fellows on anadromous Salmonids (NoWPaS) 

and the PhD workshop “Mathematical Modeling in the Life Sciences” at Glasgow 

University.  
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CHAPTER 3. The effectiveness of fallowing strategies 
in disease control in salmon aquaculture 
assessed with an SIS model. 

Werkman, M.; Green, D.M.; Murray, A.G.; Turnbull, J.F. 

3.1. Abstract 

Salmon production is an important industry in Scotland, with an estimated retail value 

>£1 billion. However, this salmon industry can be threatened by the invasion and 

spread of diseases. To reduce this risk, the industry is divided into management areas 

that are physically separated from each other. Pathogens can be spread between 

farms by local processes such as water movement or by long-distance processes 

such as live fish movements. Here, network modelling was used to investigate the 

importance of transmission routes at these two scales. We used different disease 

transmission rates ! , where infected farms had the probability of 0.10, 0.25 or 0.50 

per month to infect each contacted farm. Interacting farms were modelled in such a 

way that neighbours within a management area could infect each other, resulting in 

two contacts per farm per month. In addition, non-local transmission occurred at 

random. Salmon are input to marine sites where they are raised to harvest size, the 

site is then fallowed; in the model the effects of different fallowing strategies 

(synchronised, partial synchronised and unsynchronised fallowing at the management 

area level) on the emergence of diseases were investigated. Synchronised fallowing 

was highly effective at eradicating epidemics when transmission rate was low 

! = 0.10  even when long distance contacts were fairly common (up to 1.5 farm-1 

month-1). However for higher transmission rates, long distance contacts have to be 

kept at much lower levels (0.15 contacts month-1 where ! = 0.25) when synchronised 

fallowing was applied. If fallowing was partially synchronised or unsynchronised then 

low rates of long-distance contact are required (0.75 or 0.15 farm-1 month-1) even if 
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! = 0.10. These results demonstrate the potential benefits of having epidemiologically 

isolated management areas and applying synchronised fallowing. 

Keywords: Fallowing, disease transmission, Atlantic salmon, SIS-model, 

epidemiology. 

3.2. Introduction 

Scottish production of Atlantic salmon was around 130,000 tonnes per year in the 

years 2005-2009 (Marine Scotland Science, MSS, 2009b). In 2006 the worldwide 

retail value of Scottish Atlantic salmon production was estimated to be >£1 billion 

(Scottish Salmon Producers’ Organisation, SSPO, 2009). Scottish salmon production 

created 849 full-time jobs and 100 part-time jobs in 2008 (MSS, 2009b) in remote 

areas with few alternative employment opportunities. For these reasons, salmon 

production is important for the Scottish economy. Diseases such as infectious 

pancreatic necrosis (IPN) and pancreas disease (PD) can cause anorexia and high 

mortalities (Bruno 2004a; McLoughlin and Graham, 2007; World Organisation for 

Animal Health, OIE, 2009), infectious salmon anaemia (ISA) is subject to controls 

under EU legislation (Murray et al., 2010), and all pose an economic threat to the 

industry (Murray and Peeler, 2005). For example, the cost of the ISA outbreak in 

1998/1999 was estimated to be >£20 million (Hastings et al., 1999). 

Preventing aquatic diseases is not only important from an economic perspective. 

Diseases also have an impact on (farmed) fish welfare (Huntingford et al., 2006), 

which can affect markets given growing awareness of fish welfare among consumers 

(Ashley, 2007). In addition, it is possible for pathogens of farmed fish to be transmitted 

to wild fish populations (Wallace et al., 2008). 

Pathogen transmission between farms can occur on a local level, as hydrodynamic 

transmission can be responsible for pathogens spreading between farms for short 



Fallowing strategies 
 

3–56 
 

distances (McClure et al., 2005; Gustafson et al., 2007; Amundrud and Murray, 2009; 

Viljugrein et al., 2009). Close proximity to an infected farm has been indentified as a 

risk factor for transmission of, for example, ISA (McClure et al., 2005; Gustafson et al., 

2007; Lyngstad et al., 2008; Aldrin et al., 2010) and PD (Kristoffersen et al., 2009; 

Aldrin et al., 2010). Local transmission also occurs through wild fish movement 

between farms (Uglem et al., 2009). Wild fish may be infected in the vicinity of 

infected farms (Wallace et al., 2008) and transmit those pathogens from farm to farm 

(Uglem et al., 2009).  

Anthropogenic activities, such as sharing equipment between sites, visits from well 

boats, or movement of live fish can increase the risk of transmission of pathogens 

between farms (Murray et al., 2002; Munro et al., 2003; Munro and Gregory, 2009). 

Live fish movements can be over long-distance, for more than 100 km (Murray et al., 

2002) or even international (Ruane et al., 2009), which can cause more dispersed 

disease patterns. 

The effects of hydrodynamic movements were shown in the recent (2008/2009) 

outbreak of ISA in the Shetland area of Scotland, infecting six farms in a 

geographically confined area (Murray et al., 2010). This may be contrasted with an 

outbreak in 1998/1999, which spread between areas through the use of well boats for 

transporting live fish or for harvest (Murray et al., 2002). Data from the ISA outbreak in 

Chile (2007/2008), showed clusters of outbreaks appearing around the index case, 

suggesting hydrodynamic transmission has caused the local spread of the virus. 

However, at the early stage of the ISA epidemic in Chile, anthropogenic activities 

were found to be important, which caused a highly dispersed pattern (Mardones et al., 

2009). 

To reduce the risk of local disease transmission in Scotland, management areas were 

established in 2000 based on the maximum spring-tide current speeds (Joint 
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Government/Industry Working Group, JGIWG, 2000). All active farms were divided 

between 46 management areas (but the numbers change as farms are opened, 

closed or relocated), with a minimum distance of 13 km between management areas, 

except for Shetland where it is 7.6 km due to lower tidal currents (JGIWG, 2000). Wild 

fish movements are also typically at the same scale (Uglem et al., 2009). Separation 

between management areas is intended to form adequate ‘firebreaks’ to reduce the 

risk of pathogen transmission between management areas (JGIWG, 2000). 

Concentration of production in separate areas may help in the control of pathogens 

(Green, 2010). Management areas are used for the control of epidemics. For example 

under current control schemes a new ISA outbreak would result in all the fish on the 

affected farm being slaughtered and other farms in the same management area would 

be placed under strict surveillance. Suspected ISA-infected farms would be controlled 

and fish movements from suspected farms would be restricted (JGIWG, 2000) to 

prevent spread of pathogens between management areas.  

An important strategy used to reduce the risk of disease emergence is fallowing, 

whereby sites are emptied and not restocked for a period of time. The hypothesis is 

that pathogens will die out due to the absence of hosts (Wheatley et al., 1995; Bruno, 

2004b). There is strong evidence that fallowing a whole site can reduce the risk or at 

least the severity of infections (JGIWG, 2000). The effectiveness of fallowing is linked 

to the persistence of the pathogen in the water with a reduced biomass of hosts and 

the length of the fallowing period (JGIWG, 2000). However, as diseases can spread 

from adjacent farms it is important that farmers in a management area make 

agreements regarding synchronised fallowing. In general, coordinated management of 

farms at the management area level is recognised as an effective method of 

managing diseases and parasites. For example coordinated treatments are applied to 

control sea lice infestation (Code of Good Practice, CoGP, Working Group, (CoGP 
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Working Group, 2010). By 2008, 18 management area agreements had been signed 

and many include coordinated fallowing (Tripartite Working Group, 2010).  

The presence of external hosts such as wild fish is also relevant as they can become 

infected (Wallace et al., 2008) and possibly cause re-infection (Rae, 2002; Plarre et 

al., 2005; Costello, 2009). Fallowing period length is normally at least four weeks, but 

can be up to a complete year (MSS, 2009b). Fallowing takes place for at least six 

months when a farm is confirmed with ISA (JGIWG, 2000). A history of infection on a 

site is not a significant risk factor for recurrence of IPNV (seawater) in Scotland, where 

farms are commonly fallowed after every cycle (Murray, 2006a). This suggests that 

fallowing is effective for these cases. Individual farms may fallow at different times or 

fallowing of farms in a management area can be synchronised.  

The objective of this study was to identify the importance of local and long-distance 

contact for the transmission of pathogens, which we simplified as a network of 

contacts at these two levels as has been modelled by Watts and Strogatz (1998). In 

addition, we examined the effectiveness of different fallowing strategies on controlling 

disease transmission. This study focuses on transmittable diseases in seawater, such 

as IPN and PD. However, to estimate and validate parameters, data from the last 

Scottish ISA outbreak were used. This model is flexible and can be used to assess 

factors that may lead to emergence of new diseases as well. The model does not 

explicitly include vertical or freshwater transmission and does not allow for change in 

practices when the pathogen is detected and so best describes marine non-notifiable 

diseases. This is a theoretical study (and sensitivity analysis), though grounded in real 

data in the form of the amount and sizes of management areas, which were based on 

the management area maps compiled by the Fisheries Research Services (FRS), 

Aberdeen (now Marine Scotland Science, 2009a).  
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3.3. Materials and Methods 

3.3.1. Contact structure 

A stochastic SIS model (susceptible – infectious – susceptible) was constructed to 

investigate the effect of local (within a management area) and long-distance contacts 

(directed movements both between and within management areas) and different 

fallowing strategies on the spread of diseases between farms. This model was 

restricted to Scottish marine farms. There were ! = 263 marine farms dispersed 

among 53 management areas, each containing 1 to 30 farms (MSS, 2009a), as 

shown in figure 3.1. See table 3.1 for an overview of all model parameter and their 

description use din this study. An undirected adjacency matrix ! (i.e. wherever there 

is contact from node ! to node !, there is contact in the opposite direction) was 

constructed of size !×! an element !!" contains either 1 (potentially infectious contact 

exists from farm 

€ 

i  to

€ 

j ) or 0 (no contact). Matrix ! was based on the management 

area maps compiled by MSS (MSS, 2009a). The basic structure of each modelled 

management area was a ring model where each farm can infect two neighbour farms 

(figure 3.2A) except for small management areas where ! = 1 or ! = 2. This resulted 

in 243 edges (undirected contacts) by hydrographical connections.  
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Table 3.1. Description of the model parameters used in this stochastic SIS-model to 
describe the spread of pathogens between Scottish marine fish farms. 

Parameter 
symbol 

Description 

! Transmission rate per month. 

! Number of Scottish marine sites 

! Time step 

! Length production cycle 

! Time since last fallowing 

! Adjacency matrix of undirected hydrographical connections 

! Adjacency matrix of directed long distance connections (i.e. live fish 
movements 

! The pairwise probability of directed contact between all farms, both 
between and within management areas. 

! A pairwise probability of connections between all farms in the same 
management area. 

ℎ Permeability of management area boundaries 0 ≤ ℎ ≤ 1 . Boundaries 
are 100% impermeable when ℎ = 0 and ineffective for ℎ = 1. 

 

 

Figure 3.1. Frequency of number of farms per management area. Management areas 
with eight or fewer farms were classified as small management areas, while 
management areas containing nine or more farms were classified as large management 
areas. 
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Figure 3.2. Graphic representation of the models used in this study: basic structure (A), 
adding long-distance movements (directed) to basic structure (B), adding local contacts 
(undirected) to basic structure (C), imperfectly sealed management areas. The grey 
arrows represent the weakened boundaries between management areas (D). 

In this model the transmission rate! !  was defined as the monthly probability of an 

infected farm infecting a susceptible farm when there was contact between an 

infected and a susceptible farm. We modelled ! for 0.10, 0.25 and 0.50 per month. A 

minimum rate to cause an epidemic for ! is 0.028, because otherwise the basic 

reproductive rate !! < 1 even in ideal conditions for transmission of the pathogen, 

assuming an eighteen-month production cycle (! = 18) and transmission in two 

directions 0.028×!×2 = 1.008 . Maximum transmission rate can be high: for 

example ISA spread from an index case to five other sites in eight months by local 

spread (Murray et al., 2010), which is equivalent to ! = 0.3 per month, assuming each 

farm is connected with two others as described earlier. 

In this model, susceptible farms became infected through potentially infectious contact 

from a connected infected farm, subject to transmission rate !; there was no change 
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in status when an infected farm was subject to further infectious contact. The length of 

production cycles as modelled was eighteen months and proceeded through five 

production cycles (time, 0 < ! ≤ 90) with a time step size of one month. Farm 

infectious status (0 for susceptible sites, 1 for infected) at time ! was stored in a vector 

! of size ! farms. At time ! = 1 one farm was selected at random as the index case. 

ISA outbreaks, for example, are normally traced back to one index case (Stagg et al., 

2001; Mardones et al., 2009; Murray et al., 2010). 

3.3.2. Infection between management areas 

Long-distance contacts were included in a second adjacency matrix ! . These 

contacts were directed: contact from node ! to node ! does not imply contact from ! to 

! (figure 3.2B). Long-distance contacts were fixed and chosen randomly at the 

beginning of each simulation. The timing of these contact events was random, but 

occurred on average once in every cycle (five times per simulation). This means that 

!!" = 1 does not imply a constant connection. The pairwise probability of directed 

contact between all farms !  varied between 0.0025 and 1.00. For ! = 0.0025, there 

were !
! 0.0025!×! ! ! − 1 = 9.6 directed long-distance contacts for the whole 

industry per month and 9.6/! = 0.036 directed contacts per farm per month. In 

addition, when 

€ 

v =1.00  every possible connection between farms existed, which 

resulted in 14.6 contacts farm-1 month-1. Epidemiological investigations into a recent 

ISA outbreak on the Shetland Islands (Scotland) showed eighteen farms had a total of 

seven live fish movements to or from sites in other management areas in 2008 

(Murray et al., 2010), this equalling 0.03 contacts farm-1 month-1. Other long-distance 

contacts could have occurred via movements of well boats, however these are less 

likely to spread infection, even if the boat is contaminated, although the risk is not 

negligible (Murray et al., 2002; Murray et al., 2010).  
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For the stochastic model vector ! of size ! was derived containing the number of 

inward contacts from infected farms.  

!! = !!,! !!" + !!"
!

 

Risk depends on the number of contacts and associated probability of transmitting 

infection, however the probability of infection can never exceed 1.0. Therefore, we 

define !! as the probability of receiving pathogens either through long-distance 

movement or hydrodynamic connections at time !. Variable !! = 1 represents 

stochastically the receipt of pathogens through contact.  

!! = 1 − 1 − ! !! 

!!~Bernouilli !!  

The new infectious status of each farm was stored in the vector !!,!!! of size !. 

!!,!!! = !!,! + 1 − !!,! !!,! 

3.3.3. Adding contacts within a management area 

In this model all farms in a management area could infect two neighbouring farms 

within the same management area (see section 3.3.1). After examining the location of 

the farms this assumption did not appear realistic in every case, because multiple 

farms were within close proximity (MSS, 2009a) and as a result could potentially 

spread pathogens to more than two other farms. Therefore, we investigated how the 

proportion of additional local contacts (within a management area) affected the spread 

of disease and its persistence. For this an undirected contact matrix was compiled, 

which represented the contacts within a management area (figure 3.2C). A pairwise 

probability of connection between all farms in the same local area !  was 

considered. These connections were added to contact matrix !. Parameter ! was 
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modelled for values between 0 and 1.00; if ! = 1 all local connections between nodes 

existed resulting in a total of 1089 additional undirected local connections. 

3.3.4. Imperfect management area separation 

The previous model (section 3.3.1) assumed that management areas were perfectly 

separated, meaning there was no contact between adjacent management areas, 

except through long-distance movements (see section 3.3.2). However, diseases can 

spread between adjacent management areas when the separation distance is not 

great enough and the pathogen is sufficiently persistent in the environment (Aldrin et 

al., 2010). For this reason we examined how effective management area boundaries 

need to be in order to prevent disease transmission by hydrodynamic contact to 

adjacent management areas. Here, management area boundaries imply sufficient 

separation by seaway distance to prevent spread of pathogens.  

In this ring model, all farms had two neighbouring farms as in the other models, 

except those farms on the boundary of a management area. These farms could 

transmit diseases by hydrodynamic contact to the adjacent management area (figure 

3.2D). However, such between-management-area contacts were subject to a 

multiplier ℎ! 0 ≤ ℎ ≤ 1 . Models were simulated for ℎ = 0, 0.25, 0.50 and 1.0, where 

ℎ = 0 means the boundaries are 100% impermeable, while ℎ = 1.0 means the 

boundaries have no effect on transmission rate. We preferred this approach as it 

keeps the number of neighbouring farms similar to the model as described in section 

3.3.1. Management area sizes were once again based on the management areas 

maps that were compiled by MSS (MSS, 2009a), however the proximities of the 

management areas were chosen arbitrarily.  

We investigated the effects of both extra local contacts (section 3.3.3) and imperfect 

management area boundaries for transmission rates ! =0.10 and 0.25, along with 

long-distance movements proportions ! =0.0025 and 0.01 (see section 3.3.2). 
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3.3.5. Fallowing 

Farms were assumed to have an eighteen-month production cycle between input of 

smolts and restocking the farm. Other species such as rainbow trout do have a 

shorter production cycle, and so diseases would have less time to spread before 

harvest. If fish of different species with different production times are farmed in the 

same management area then coordinated fallowing will be more problematic. 

However, salmon occupy by far the majority of sea cages in Scotland: there were 256 

marine salmon salmon farms in 2008 (MSS, 2009b). As a simplification we assumed 

that all farms had the same production cycle. After harvesting, the farms were 

fallowed and left without fish for a short period. The fallowing period was one month 

(one time step). It was assumed that after fallowing, farms were free from infection, as 

all fish used for restocking were free of disease. Consequently farms were susceptible 

once more at the following time-step of the simulation. Time since last fallowing at 

time ! is represented for farm ! by !!,!.  

!!,!!! = !!,! + 1 

At  !!,! = 18 farms became clear of infection so that  !!,!!! = 0 and !!,!!! = 1. 

In this model, fallowing occurs after infection and therefore may occur in the same 

time step. The maximum median prevalence could therefore never be 1.00, as 

prevalence was counted after fallowing, which means there was a 5.56% chance 

1/!  that the index case was fallowed at ! = 1. In this case the index case could not 

infect other farms. 

The effects of three fallowing strategies were investigated. Timing of fallowing could 

be different between sites. However, length of production cycle and fallowing period 

was similar for all sites and all three fallowing strategies: synchronised fallowing (SYN, 

all farms in one management area were fallowed simultaneously), unsynchronised 

fallowing (UNS, the start of fallowing period occurred randomly inside management 
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areas) and partial synchronised fallowing (PAR). In this last management strategy, 

areas with eight or fewer farms were subject to synchronised harvesting and 

management areas of nine or more farms were subject to unsynchronised harvesting. 

We used this cut-off point as approximately 50% of the farms were divided over small 

(or large) management areas. This results in an intermediate strategy between 

synchronised fallowing and unsynchronised fallowing. Because larger areas may 

contain multiple companies, agreement to synchronise fallowing is more difficult, for 

example the 2008/2009 ISA outbreak occurred in a large management area that had 

never been synchronously fallowed (Murray et al., 2010). Using the Scottish marine 

farms as a base, there were eight large management areas and 45 small 

management areas, containing in total 126 and 137 farms, respectively (figure 3.1). 

Furthermore, we investigated the differences in epidemic size between initiating an 

epidemic in a small or large management area for the most realistic scenarios 

! = 0.10 and ! = 0.25 and for ! = 0.0025 to 0.01 . 

The model was run 1000 times for each parameter set and the median prevalence 

over time, percentage of runs where the epidemic was eradicated prior to ! = 90 and 

the 90th percentile of the median prevalence at ! = 90 was recorded. Analyses were 

performed in R (R Development Core Team, 2005) and Excel (Microsoft excel, 2008). 
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3.4. Results 

In this section, we use the term equilibrium, by which we mean the point in the graph 

where the line visually levelled off, as variation is always present in a stochastic 

model. Increasing the transmission rate ! increased the median prevalence over time 

(figure 3.3A and 3.3B). Similarly, increasing the proportion of long-distance 

movements 

€ 

v  increased the median prevalence. However, ! and ! were not related 

to each other. Increasing ! increased the probability of infection when there was a 

contact, while increasing ! simply increased the number of long-distance contacts 

between farms.  

3.4.1. Median prevalence and eradication of epidemics 

Fallowing strategies had a clear effect in reducing the median prevalence and the 

probability of eradicating an epidemic when the proportion of directed long-distance 

movements !  was between 0 and 0.10 (=1.5 movements per farm per month) 

especially for ! = 0.10. For ! = 0.10 and ! = 0.10, the equilibrium prevalence was 

0.65 (PAR) and 0.68 (UNS), while the epidemic died out prior to ! = 90 for SYN. For 

! ≥ 0.25! ≥ 3.6 movements farm-1 month-1) equilibria were established at 0.75 or 

higher for all three fallowing strategies ! = 0.10 . In general, equilibria were 

established earlier and median prevalence was higher for ! = 0.50 compared with 

! = 0.25 (figure 3A and 3B). For ! ≥ 0.25, median equilibria were 0.90 or higher for all 

the fallowing strategies for both ! =0.25 and 0.50, but there were no important 

differences found between fallowing strategies.  

We investigated if an epidemic would die out prior to ! = 90 (five production cycles), to 

examine in which situations an epidemic is likely to be controlled. SYN increased the 

probability of eradicating an epidemic prior to ! = 90 compared with PAR and UNS, 

when ! ≤ 0.10 for ! = 0.10 and ! ≤ 0.05 (0.073 movements farm-1 month-1) for 
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! = 0.25 (figure 3.4A). For ! = 0.10 the proportion of eradicated epidemics was 

€ 

≥ 0.90 for PAR and!! ≤ 0.01. However, for the same scenarios but with ! = 0.05 the 

proportion of eradicated epidemics dropped to 0.59. Similar reductions in the 

proportions of eradicated epidemics were seen for the other fallowing strategies for 

! = 0.10 and ! = 0.25, except for SYN and ! = 0.10, where the reduction of the 

proportion of eradicated epidemics was seen between ! = 0.05 and ! = 0.10 (figure 

3.4A). Probabilities of eradicated epidemics prior to ! = 90 were lower for ! = 0.50 

compared with ! ≤ 0.25. For ! = 0.50, 100% (SYN), 54.9% (PAR) and 17.7% (UNS), 

of epidemics died out prior to 

€ 

t = 90 when there were no long-distance movements 

added. For ! = 0.01, 44.6% (SYN), 27.2% (PAR) and 14.8% (UNS) of the epidemics 

died out prior to ! = 90! ! = 0.50 ; for ! ≥ 0.05 less than 14% of the epidemics died 

out. When ! ≥ 0.50, fallowing strategies had no substantial effect on the proportions 

of eradicated epidemics, therefore there were too many movements.  
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Figure 3.3. Median prevalence over time for three different fallowing strategies: 
synchronised (SYN), partial synchronised (PAR) and unsynchronised (UNS) and for 
transmission rates, ! = !.!" (A) and ! = !.!" (B). Median prevalences are shown for 
the probability of long-distance contact, ! = !.!!"# to ! = !.!". 

  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 20 40 60 80 

P
re

va
le

nc
e 

of
 in

fe
ct

ed
 fa

rm
s 

Time (month) 

v = 0.0025 SYN v = 0.0025 PAR v = 0.0025 UNS 
v = 0.01 SYN v = 0.01 PAR v = 0.01 UNS 
v = 0.05 SYN v = 0.05 PAR v = 0.05 UNS 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 20 40 60 80 

P
re

va
le

nc
e 

of
 in

fe
ct

ed
 fa

rm
s 

Time (month) 

A 

B 



Fallowing strategies 
 

3–70 
 

There were no differences in epidemic size between initiating an epidemic in a small 

or large management area at ! = 90 for all SYN scenarios ! = 0.0025 to ! = 0.01  

and for PAR and UNS when ! = 0.10. For ! = 0.25 and when PAR was applied, 

median prevalence was 0 when the index case was in a small management area 

! = 0.0025 to ! = 0.01  and varied from 0.11 ! = 0.0025  to 0.50 ! = 0.01  when 

the index case was in large management areas. When UNS was applied, median 

prevalence was also higher when epidemics were initiated in large management 

areas (varied from 0.15 to 0.73, for respectively ! = 0.025 and ! = 0.01) compared 

with small management areas (varied from 0.02 to 0.68, for respectively ! = 0.0025 

and ! = 0.01), however this difference was relatively smaller when ! increased. The 

chance to eradicate an epidemic was larger when the index case was in small 

management areas compared with large management areas. The largest difference 

was noticed when PAR was applied; the chance to eradicate an epidemic for ! = 0.25 

dropped from 93.4% to 19.9% ! = 0.0025 ; 84.1% to 18.2% ! = 0.005 ; 70.8% to 

16.0% ! = 0.01  for respectively initiating an epidemic in small and large 

management areas. For PAR and ! = 0.10, the chance to eradicate a pathogen was 

between 16% and 18% lower when the index case was in large management areas 

compared with small management areas. For UNS and ! = 0.10 and ! = 0.25 the 

chance to eradicate an epidemic was between 5% and 17% lower when the index 

case was in large management areas. 
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Figure 3.4. Proportion of runs where the epidemic died out prior to ! = !" (A) and worst-
case scenarios presented by the 90th percentile at ! = !" (B). Both are represented for 
different proportions of long-distance movements ! and different fallowing strategies 
synchronised (SYN), partial synchronised (PAR) and unsynchronised (UNS) and two 
different transmission rates ! = !.!" and ! = !.!". 

3.4.2. Worst-case scenario 

Worst-case scenarios as defined as 90th percentile (figure 3.4B) were in general 

lower for ! = 0.10, compared with ! = 0.25. As seen with median prevalence and 

epidemic persistence to ! = 90, SYN has a beneficial effect, especially for ! ≤ 0.05 

and ! = 0.10. For ! = 0.05, 90th percentiles were 0 (SYN), 0.21 (PAR) and 0.55 

(UNS) for 

€ 

β = 0.10, there was no difference seen for this scenario for ! = 0.25. 

However, fallowing had a substantial effect for ! = 0.25 and ! = 0.01. For this 

scenario, 90th percentiles were 0 (SYN), 0.46 (PAR) and 0.77 (UNS). The required 

parameters for a 90th percentile below 

€ 

0.1 for UNS were ! < 0.01 and ! = 0.10, and 
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when no long-distance movements were added for ! = 0.25. There were no 

substantial differences noticed in the worst-case scenario between initiating an 

epidemic in small or large management areas, except when PAR was applied and for 

! = 0.25. However, this difference decreased when ! increased. Worst-case 

scenarios increased from 0 to 0.25 ! = 0.0025 ; 0.20 to 0.42 ! = 0.005  and from 

0.51 to 0.58 ! = 0.01  for respectively initiating an epidemic in small and large 

management areas. 

3.4.3. Adding contacts at local level 

Adding contacts at a local level decreased the chance of eradicating an epidemic prior 

to ! = 90 for ! = 0.10 when PAR and UNS was applied (figure 3.5A). Adding 54 

undirected local contacts on the whole network ! = 0.05, equivalent to 0.2 extra local 

out contacts per farm) reduced the chance of eradicating an epidemic compared with 

the original model where every farm has two local contacts (except for small 

management areas, see section 3.3.1). For example, for ! = 0.10, using PAR and 

UNS decreased the chance of eradicating an epidemic prior to ! = 90 by 0.15 to 0.20 

! = 0.05, figure 3.5A), for this scenario, compared with the original network with two 

contacts per farm ! = 0 . However, when applying SYN, additional contacts at a 

local level had no substantial effect. Conversely, with ! = 0.25 and ! = 0.01 the 

proportion of eradicated epidemics was reduced from 0.98 (no extra local contacts) to 

0.89 when local connections were added ! = 0.05  and SYN was applied. No 

reduction was observed for this scenario and ! = 0.0025 (figure 5B). Using PAR or 

UNS showed no substantial reduction in the probability to eradicate an epidemic for 

! = 0.25 and ! = 0.05.  

  



Fallowing strategies 
 

3–73 
 

  

  

Figure 3.5. Percentage of runs where the epidemic died out prior to ! = !" in order to 
investigate the effects on epidemics when adding extra local contacts (in addition to the 
two neighbours). For the proportions of long-distance movements, ! = !.!!"# and 
! = !.!" and different fallowing strategies synchronised (SYN), partial synchronised 
(PAR) and unsynchronised (UNS) and for ! = !.!" (A) and ! = !.!" (B). The effects of 
weakening the management area boundaries on the amount of epidemics that die out 
prior to ! = !" for ! = !.!" (C) and ! = !.!" (D). 
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3.4.4. Imperfect management area boundaries 

Weakening the management area boundaries with constant ℎ had no substantial 

effect on eradicating epidemics for ! = 0.10 and for the three different fallowing 

strategies (figure 3.5C). However, for ! = 0.25, the proportion of eradicated epidemics 

at ! = 90 decreased from 0.54 ℎ = 0.25  to 0.36 ℎ = 0.50 , for PAR and ! = 0.0025 

(figure 3.5D). For SYN and ! = 0.25 the proportions of epidemics that were 

eradicated prior to ! = 90 was 0.91 when ℎ = 0.50 and decreased to 0.69 when 

ℎ = 1.00. Similarly, for UNS fallowing the ability to control an epidemic became 

smaller when the management area boundaries were weakened, although less 

dramatically (figure 3.5D).  

3.5. Discussion 

The significance of long-distance movements in disease transmission has been 

shown before in, for example, foot−and−mouth disease (Green et al., 2006a) and for 

ISA in Atlantic salmon (Murray et al., 2002). Movement of live fish between sites 

would almost certainly transmit pathogens if the source site was infected, but 

movement of fish infected with a notifiable disease such as ISA is prohibited (JGIWG, 

2000). However, subclinical infections might go undetected (Murray and Peeler, 

2005). IPNV is often subclinical (Bruno, 2004a) and there is evidence that even ISAv 

may persist for months on sites sub-clinically (Murray et al., 2010) which makes it 

harder to detect pathogens. In such circumstances long-distance movements can 

unknowingly spread pathogens (Murray and Peeler 2005). Contact by vessels might 

be a low risk, but there may be many of such contacts. Long-distance contacts are 

likely to be rare relative to local spread and therefore lower values of 

€ 

v  will be more 

realistic. For example, ISA tends to occur in clusters, indicating higher rates of local 

spread compared with pathogen transmission over long-distances (Mardones et al., 

2009). In this study we found that the amount of long-distance movements should not 

exceed 0.073 per farm per month assuming synchronised fallowing is not commonly 
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used in all Scottish marine farms. Higher probabilities of long-distance movements !  

decreased the chance of eradicating an epidemic substantially with high transmission 

rates ! ≥ 0.25. This emphasises the value of epidemiologically isolated management 

areas. Even pathogens with slow rates of local spread being managed by 

synchronised fallowing were unlikely to be eradicated if long-distance transmission 

events were more common than 3.6 movements per farm per month.  

The higher median prevalence and decreased chance of eradicating an epidemic 

when an epidemic is initiated in large management areas compared with small 

management areas when unsynchronised fallowing is applied occurs because 

pathogens can spread more easily between farms and persist longer at a local level. 

Local spread will be more important if long-distance movements occur less often than 

two movements per farm per month. Because large management areas have simply 

more farms, there is a higher prevalence when the index case is in large management 

areas. The difference between median prevalence and the chance to eradicate an 

epidemic is larger between an index case in small and large management areas when 

partial synchronised fallowing is applied. This is because synchronised fallowing is 

only applied in small management areas and large management areas apply 

unsynchronised fallowing. 

For the assumptions used in this specific model, ideally, local contacts should be 

fewer than 2.2 local contacts per farm, for Scottish marine sites. However, it is likely 

that the results differ when the number of farms within a management area differs, 

since reducing contacts by the same number in small and large management areas 

results in a too small reduction of contacts in large management areas. In this study 

we assumed that neighbouring farms within the same management area had an equal 

risk of infection. We did not take into account the site-to-site distance by sea, currents 

or wind direction. The direction of spread is complicated by such considerations as 

described in Amundrud and Murray (2009).  
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The importance of local contacts was also seen in the ISA epidemic in Chile where 

long-distance movements and local transmission were both found to contribute to the 

transmission of the virus (Mardones et al., 2009). In addition, it is likely that if 

pathogens are persistent in the environment or in wild hosts, that they would re-infect 

farms (Rae, 2002; Plarre et al., 2005), which makes it harder to eradicate pathogens. 

Synchronised fallowing can increase the probability of eradicating an epidemic as 

synchronised fallowing quickly removes local spread.  

Moreover management areas must have epidemiologically appropriate boundaries. If 

separation does not prevent at least 75% of spread then eradication becomes 

substantially less likely for pathogens with high rates of spread ! ≥ 0.25  as 

described in section 3.4.4. 

In the model, the first production cycle after a disease outbreak is critical for control. If 

the pathogen is not eradicated during this time period, it is likely that a large number 

of farms will have been infected (figure 3.3). In this case, the disease is likely to 

become established as an endemic disease and eradication is unlikely or at least 

expensive. The Scottish ISA outbreaks of 1998/1999 which became widespread 

before detection (Murray et al., 2002), and 2008/2009 which was localised due to 

early detection, illustrate this point (Murray et al., 2010). During the British FMD 

outbreak in 2001, there was a delay in detecting the index case which resulted in a 

major epidemic (Gibbens et al., 2001). For this reason it is necessary to control 

emerging diseases at an early stage.  

Pathogens may transmit vertically through ova, as well as horizontally. For vertical 

transmission to be important after introduction the risk of transmission has to be 

significant relative to horizontal transmission. In Norway the spread of ISA did not 

appear to be related to vertical transmission (Lyngstad et al., 2008). In Scotland 

parent fish are screened for key pathogens and ova are disinfected (Bruno et al., 
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2004a). This model can be applied to diseases where vertical transmission is a 

relatively small risk compared with horizontal transmission, although vertical 

transmission, even at low risk, might be a source of infection to the index case. Not 

including vertical transmission is a limitation of this model; however this model 

involves the site level rather than fish level. Therefore, not including vertical 

transmission is appropriate in this case.  

Moreover, farms owned by the same company do have an increased risk of infection 

when a farm in that company is infected as shown with the ISA outbreak in Chile 

(Mardones et al., 2009). The random transmission in this model was a simplification 

and did not include the network structure. 

Clearing farms has been proven to reduce the risk of re-infection of Salmonella 

infections in poultry (Namata et al., 2009) and in pigs (Beloeil et al., 2004; Lo Fo 

Wong et al., 2004), where all-in/all-out systems are commonly used. There are few 

studies of the effectiveness of fallowing strategies in aquaculture. Wheatley et al. 

(1995) demonstrated a reduced mortality rate in cycles where farmers applied 

fallowing strategies. Furthermore, it is believed that fallowing helps to control the sea 

louse Lepeophtheirus salmonis (Bron et al., 1993; Rae, 2002), however, is seems that 

fallowing is less effective in the control of the other sea louse species Caligus 

elongatus (Bron et al., 1993; Revie et al., 2002). From the experience of ISA 

outbreaks in the past, the time between diagnosis and clearing and fallowing the 

farms seems to be highly influential on subsequent spread (Mardones et al., 2009). 

So far, Scotland is the only country where an ISA outbreak has been eradicated. 

During the ISA outbreak in Scotland (1998/1999), farms were cleared within one 

month after confirmed diagnosis of ISA (Stagg et al., 2001). However, time between 

confirmed diagnosis and depopulating the affected farms has been estimated to be 

four to five months in the ISA outbreak in Chile (Mardones et al., 2009). In this study 
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the fallowing time was one month, which is realistic when pathogens are not 

diagnosed (MSS, 2009b), as may occur when there are no clinical signs. 

The use of this simple SIS model was valuable for showing the effectiveness of 

different fallowing strategies and the importance of reducing long-distance 

movements. However, the real-life situation is more complex in both pattern of contact 

between farms and disease characteristics. Long-distance movements occurred at 

random in this study, while reality is more complex and shows a high variance in the 

number of contacts between farms (Thrush and Peeler, 2006; Munro and Gregory, 

2009; Green et al., 2009). Heterogeneity, i.e. variance in the number of contacts, is 

likely to affect the transmission pattern of disease significantly. It has been suggested 

that 80% of the infections are in general caused by 20% of the population (Anderson 

and May, 1992). The assumption of homogenous spread has been used to model the 

spread of IPNV through the salmon farming industries of both Scotland (Murray 

2006b) and Ireland (Ruane et al. 2009). In this study, we assumed that long-distance 

movements were homogenous as unpublished data showed that variation in the 

number of contacts is substantially smaller between seawater contacts compared with 

contacts between freshwater sites.  

Live fish movements do not occur at random, but are dependent on the size of the fish 

and the season. Timing of movements will be important for disease transmission. For 

example BKD outbreaks are more likely to occur during spring (MSS, 2010) and IPN 

outbreaks occur mainly after transfer to sea (May-August) (Bruno, 2004a). Therefore 

movements during spring may be more risky for BKD transmission compared with 

other periods of the year.  

Different model types could be more appropriate for diseases with different 

characteristics, different modelling objectives, or different management systems. In 

this study we choose an SIS model, however, a SEIS (susceptible-exposed-
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infectious-susceptible) can take into account the variations of latent periods, which 

may vary largely between different diseases. In our SIS model a farm becomes 

infectious after one month. However, in the real-life situation this varies. For example, 

IPN outbreaks occur mainly after transfer to sea (Bruno, 2004a). During this 

vulnerable stage, transmission rates of IPN could be higher, and it is likely that this 

effects the time for a farm to become infectious. Furthermore, our model assumes that 

all farms were similar, excepting their membership of a particular management area, 

whereas Scottish farms have different stocking sizes (from <50 to >1000 tonnes, 

MSS, 2009b) and stocking densities. Stocking density can be important, as an 

outbreak of a viral disease is sensitive to a minimum effective concentration, which is 

influenced by stocking densities in farms (Hammell and Dohoo, 2005; Thrush and 

Peeler, 2006). 

3.6. Conclusion 

This simple model demonstrates the importance of long-distance movements in the 

spread of pathogens. In this model, even applying synchronised fallowing in 

combination with a low transmission rate could not prevent an epidemic when there 

were high numbers of long-distance movements between farms. However, when long-

distance contacts are rare compared with local contacts, synchronised fallowing 

greatly improves the chance of controlling outbreaks. Therefore, it is important both to 

reduce the number of long-distance movements and to implement good bio-security 

measures to reduce disease spread and to synchronise fallowing to enhance 

eradication. 
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CHAPTER 4. Seasonality and heterogeneity of live 

fish movements in Scottish fish farms 

Werkman, M.; Green, D.M.; Munro, L.A.; Murray, A.G.; Turnbull, J.F 

In chapter 3, live fish movements occurred at random between seawater sites, in this 

chapter the contact structure of the Scottish salmonid industry is discussed in detail. 

Movement records from 2002 to 2004 were collected from Marine Scotland (MSS), 

Aberdeen. 

Data were collected and edited by the main author, Marleen Werkman, and L.A.  

Munro (MSS). This chapter was constructed by the main author and all co-authors 

provided assistance during the writing process and edited the manuscript. 

This chapter has been published in Diseases of Aquatic Organism 96, 69-82. And 

parts of the results have been presented at the British Society of Animal Science 

Conference. The conference abstract is published in Proceedings of the British 

Society of Animal Science 2011, p. 146. 
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CHAPTER 4. Seasonality and heterogeneity of live 
fish movements in Scottish fish farms 

Werkman, M.; Green, D.M.; Munro, L.A.; Murray, A.G.; Turnbull, J.F. 

4.1. Abstract 

Movement of live animals is a key contributor to disease spread. Farmed Atlantic 

salmon Salmo salar, rainbow trout Onchorynchus mykiss and brown/sea trout Salmo 

trutta are initially raised in freshwater (FW) farms; all the salmon and some of the trout 

are subsequently moved to seawater (SW) farms. Frequently, fish are moved between 

farms during their FW stage and sometimes during their SW stage. Seasonality and 

differences in contact patterns across production phases have been shown to 

influence the course of an epidemic in livestock; however, these parameters have not 

been included in previous network models studying disease transmission in 

salmonids. In Scotland, farmers are required to register fish movements onto and off 

of their farms; these records were used in the present study to investigate seasonality 

and heterogeneity of movements for each production phase separately for farmed 

salmon, rainbow trout and brown/sea trout. Salmon FW–FW and FW–SW movements 

showed a higher degree of heterogeneity in number of contacts and different 

seasonal patterns compared with SW–SW movements. FW–FW movements peaked 

from May to July and FW–SW movements peaked from March to April and from 

October to November. Salmon SW–SW movements occurred more consistently over 

the year and showed fewer connections and number of repeated connections 

between farms. Therefore, the salmon SW–SW network might be treated as 

homogeneous regarding the number of connections between farms and without 

seasonality. However, seasonality and production phase should be included in 

simulation models concerning FW–FW and FW–SW movements specifically. The 

number of rainbow trout FW-FW and brown/sea trout FW-FW movements were 



Seasonality in live fish movements and their effects on epidemics 
 

4–86 
 

different from random. However, movements from other production phases were too 

low to discern a seasonal pattern or differences in contact pattern 

Keywords: disease transmission, epidemiology, contact structure, aquaculture 

4.2. Introduction 

Finfish culture in Scotland produces Atlantic salmon Salmo salar, rainbow trout 

Oncorhynchus mykiss, brown/sea trout Salmo trutta and other species such as arctic 

charr Salvelinus alpinus and halibut Hippoglossus hippoglossus. Brown trout and sea 

trout belong to the same species, and are not distinguished in this study. Hereafter, 

brown trout refers to both brown and sea trout. 

Scottish production includes ca. 144,000 tonnes of salmon, 6800 tonnes of rainbow 

trout and 200 tonnes of brown trout per year (Marine Scotland Science 2010b). 

Salmon (and some brown trout) are anadromous and have a freshwater (FW) and a 

seawater (SW) phase. In FW, salmon eggs are fertilized and hatched in a hatchery. 

Next, fry are transported to FW farms. After approximately 12 to 16 mo, the fish 

(smolts) are moved to marine waters, where they achieve their harvest size after 

approximately a further 18 mo. Occasionally, salmon are moved between farms 

during the marine phase. Furthermore, SW–FW movements are needed to provide 

FW farms with broodstock (i.e. mature fish kept for breeding). 

Rainbow trout can also be anadromous and their life cycle is similar; however, most 

rainbow trout are reared in FW without a marine phase. Live rainbow trout movements 

mainly occur between hatcheries and on-growing farms where juvenile fish are kept till 

harvest or moved to fisheries for re-stocking. The movement structure of these 

cultured fish species is pyramidal, with more movements going from the top 

(hatcheries) to the bottom (smolt producers or on-growers), which can be compared 
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with the movement structure of industries such as of pigs (Lindstrom et al. 2010) and 

poultry (Cox & Pavic 2010). 

Live fish movements are a risk for pathogen transmission between farms (Murray et 

al. 2002, Murray & Peeler 2005). Pathogens can also be introduced by other 

pathways such as well-boat visits (Murray et al. 2002) and on a local level by water 

movement (Jonkers et al. 2010) or by wild fish movements (Uglem et al. 2009). 

Disease outbreaks can cause reduced appetite, reduced growth and increased 

mortality rates, depending on the disease (OIE 2009), reducing production and 

profitability (Murray & Peeler 2005). In addition, disease outbreaks can cause welfare 

problems (Turnbull & Kadri 2007), and pathogen accumulation in fish farms may lead 

to transmission of pathogens to wild fish populations (Wallace et al. 2008). 

If fish are infected and transported there is a great risk that the receiving farm will 

become infected (Murray & Peeler 2005). Therefore, movements from source farms 

known to be infected with a notifiable disease are prohibited (Joint 

Government/Industry Working Group 2000). However, notifiable and other infections 

can go undetected (Murray & Peeler 2005, Graham et al. 2006, Lyngstad et al. 2008). 

Therefore, pathogens may spread through live fish movements before pathogens are 

detected (Jonkers et al. 2010). For example, the spread of infectious salmon anaemia 

virus (ISAv) between regions during the 1998–1999 outbreak in Scotland was largely 

due to live fish movements (Murray et al. 2002), and movements are also thought to 

have played an important role in other outbreaks such as those in Chile (Mardones et 

al. 2009). Live fish movements have been identified as a risk factor for pathogen 

transmission for diseases such as viral haemorrhagic septicaemia (VHS) (Thrush & 

Peeler 2006), sleeping disease (Branson 2003) or for potential introduction of 

Gyrodactylus salaris in the UK (Peeler & Thrush 2004). 
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Some fish pathogens are only infectious in one environment (either FW or SW) or 

during a specific life stage. For example, G. salaris can survive only in FW, and ISAv 

causes clinical diseases only in SW (OIE 2009). Infectious pancreatic necrosis virus 

(IPNV) and bacterial kidney disease (BKD) affect salmonids in both FW and SW; 

initially, both these diseases emerged in FW and only later were the pathogens 

observed to cause disease in SW. IPNV causes clinical outbreaks in fry or during the 

first weeks after transfer to sea (Smail et al. 1992, Bruno 2004). BKD affects almost all 

age groups, especially when the water temperatures are rising, except in very young 

salmonids (Marine Scotland Science 2010a). Where diseases affect one species 

more than another, carrier species could play an important role in spreading a 

pathogen, as infections are likely to be hard to detect. For example, potential 

undetected sub-clinical spread of G. salaris with trout movements can lead to infection 

of salmon, where it causes serious disease (Peeler & Thrush 2004). This combination 

of environment and host will determine which species or life stage is most relevant for 

disease transmission. 

Network models are often used to understand the transmission of pathogens between 

epidemiological units, e.g. animals or farms. They have been used for modelling foot− 

and−mouth disease (FMD) (Green et al. 2006, Kiss et al. 2006) and avian influenza 

(Dent et al. 2008), amongst other diseases. These models are valuable because they 

can identify farms that are important in the spread of pathogens and provide a 

valuable tool for designing and investigating the effectiveness of control strategies 

(Green et al. 2011). 

Contact between farms often shows a large variation in the number, timing and 

direction of contacts (Thrush & Peeler 2006, Munro & Gregory 2009, Green et al. 

2009). Heterogeneity, i.e. variation in the number of contacts, affects the transmission 

pattern in a network (Anderson & May 1992). It is often stated as a rule of thumb that 

20% of the population can cause approximately 80% of the infections (Anderson & 
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May 1992, Woolhouse et al. 1997, Volkova et al. 2010). Previous work has shown a 

high variation in the number of contacts between farms for live salmon movements 

(Munro & Gregory 2009) and that a targeted surveillance strategy in a small number 

of farms will substantially decrease the risk of an epidemic (Green et al. 2009). Basic 

reproduction number (R0, i.e. the average number of secondary infections caused by 

one primary infection in a fully susceptible population) and clustering are both likely to 

affect the final epidemic size. When R0 < 1, there will be a small epidemic, whereas 

when R0 > 1, this is likely to result in a large epidemic (Anderson & May 1992). A high 

degree of clustering will reduce the final epidemic size and R0 (Keeling 1999, Kiss et 

al. 2005). 

Sheep movement data in the UK (Kiss et al. 2006), Italian cattle movement data 

(Natale et al. 2009) and Swedish cattle data (Noremark et al. 2009) show clear 

seasonality. Seasonality is commonly not included in aquatic network studies. 

However, epidemics are more likely to start and to become widespread during a 

period of high movement activity (Kiss et al. 2006), which was illustrated during the 

FMD epidemic in the UK in 2001 (Gibbens et al. 2001). Moreover, studies in cattle 

(Bigras-Poulin et al. 2006, Natale et al. 2009) and pigs (Bigras-Poulin et al. 2007, 

Lindstrom et al. 2010) showed differences in the contact structure across different 

production phases, which are likely to affect the course of an epidemic. This suggests 

that there is value in studying aquaculture network structures in more detail. 

The aim of the present study was to provide a detailed description of the number of 

live fish movements per farm and their timing for Atlantic salmon, rainbow trout and 

brown trout in Scottish aquaculture stratified by production phase. This can be used to 

improve and develop pathogen transmission models in Scottish aquaculture. It is of 

interest whether we can treat the movement network as static or whether we need to 

include seasonality or production phase. Because of the differences in husbandry 

conditions, there was a need to investigate whether there were differences in the 
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timing of movements and contact structure between salmon, rainbow trout and brown 

trout movements. This could have implications for biosecurity strategies, including 

timing of official surveillance. 

4.3. Data analysis 

In Scotland, fish farmers are required to record the live fish movements onto and off of 

each farm (including movements that occur between farms of the same owner). The 

fish health inspectors at Marine Scotland, Aberdeen, hold these records. We used the 

movement records from 1 January 2002 to 31 December 2004 for salmon and from 1 

January 2003 to 31 December 2004 for rainbow trout and brown trout. More recent 

data were not available in a database format. These records included both ova and 

fish. Confirmed records (i.e. movements recorded at both source and destination 

farm) were entered in a database. Movements onto or off unregistered sites (such as 

fisheries), or movements only recorded at either the source or destination farm, could 

not be validated and were excluded. For example, fisheries can be treated as sinks, 

as they only receive fish and do not move fish off the site; fisheries were therefore 

excluded from this study. Movements onto or from sites outside Scotland and 

movements to harvest stations were recorded separately. An overview of the different 

stages of data organisation from movements between registered farms is given in 

figure$4.1. 

Movements were divided into five categories: freshwater to freshwater (FW–FW), 

freshwater to seawater (FW–SW), seawater to seawater (SW–SW), seawater to 

freshwater (SW–FW) and ‘other’. ‘Other’ includes movements onto and off of farms 

that have both FW and SW facilities (N = 10). These farms were mostly research 

facilities (N = 7), which transport relatively small numbers of fish; 3 farms were 

commercial hatcheries with both FW and SW capabilities. The classification of these 

movements was based on the facilities available on the farms. 
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Figure 4.1. An overview of the different data levels. *Movements onto and off of Scottish 
farms from outside Scotland and harvest movements could not be validated and were 
entered into a different data set; these movements were not included in the on and off 
counts in the data described in this figure. 

A degree of consistency in the live fish movement network structure is shown in a 

previous study for the years 2002 to 2004 (Green et al. 2011); therefore, the Scottish 

live fish movement network is somewhat stable and it is likely some contacts will 

repeat across years. To investigate the concordance of contacts between the years 

2003 and 2004, we calculated the mean arc persistence (MAP) by dividing the 

number of contacts present in both years (a) divided by the geometric mean of the 

numbers of contacts present in each year (x = 2003 and y = 2004): 

!"#$!!"#!!"#$%$&"'(" = !
!" (1) 

Raw data
Paper forms are filled in by fish 
farmers to record the live fish 

movements on and off their farm

Confirmed records
Movements that were registered 

at both the source and 
destination sites*

Combined records
Confirmed records between the 

same pair of sites that were 
repeated within a week were 

combined

Movements
The total number of 

repeated connections 
occurring between sites

Contacts
Unique connections 

between sites
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This was performed for the different movement types of salmon and ‘all’ movements 

of rainbow trout and brown trout. 

4.3.1. Salmon 

During 2002 to 2004, 3730 salmon movement records were confirmed. However, 

approximately 36% of these movements were multiple movements between the same 

pairs of farms within the course of a week. The infection status of the source farm is 

relatively unlikely to have changed over such a short period; we therefore decided to 

combine the movement records that occurred within 1 wk between the same pair of 

farms and to record them as one movement (figure 4.1). Moreover, in some cases the 

receiving farm recorded multiple movements whereas the source farms recorded the 

same movements as one movement (or vice versa). To be consistent, we combined 

the multiple movements in these cases and recorded them as one movement. The 

movement dates of these combined records were the starting date of these series of 

movements and numbers of fish were added together. This resulted in 2401 salmon 

movements. The proportion of movement records that were combined were similar 

across the different types of movement and varied from 32% in FW–SW movements 

to 39% in SW–FW movements. 

 

 

Figure 4.2. Simplified graphical view of part of the network to explain the differences 
between movements and contacts. In this example, farm A has 4 movements off the 
farm divided over 2 contacts (Farm B and C) and has 1 movement (and contact) onto 
the farm. Farm B has 1 movement (and contact) onto and 1 movement (and contact) off 
of the farm. Farm C has 3 movements onto the farm coming from 1 contact. 

A B

C
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We made a distinction between contacts and movements. Contacts in this study are 

unique connections between farms and lack temporal perspective, whereas 

movements are the total number of repeated connections occurring between farms, 

which may occur more than once (figure 4.1). In figure 4.2, a simplified network is 

shown. We made this distinction as live fish movements to different farms are 

presumed to have a different impact on pathogen transmission in the network than 

multiple movements between the same pair of farms. 

During 2002 to 2004, 499 salmon farms were active (i.e. farms in a production 

growing cycle either having stock or fallowing), of which 186 were FW farms, 304 

were SW farms and 9 farms had both FW and SW facilities. The majority of 

movements occurred between FW farms, whereas FW–SW movements contained 

more contacts (table 4.1). 

Table 4.1. Number of movements and contacts between farms stratified by type of 
movement. FW: freshwater; SW: seawater; other: movements/contacts are onto or off a 
farm with both facilities. 

Type Movements Contacts 

Salmon (total) 2401 1208 
FW–FW 1181 400 
FW–SW 810 595 
SW–SW 237 154 
SW–FW 54 22 
Other 119 37 

Rainbow trout (total) 343 69 
FW–FW 310 59 
FW–SW 30 9 
Other 3 1 

Brown trout (total) 82 31 
FW–FW 60 22 
FW–SW 12 5 
SW–SW 6 1 
SW–FW 2 2 
Other 2 1 
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4.3.2. Rainbow trout 

There were 432 confirmed rainbow trout movement records during the years 2003 

and 2004. Combining the movement records that occurred within 1 wk resulted in 343 

combined records. During the study period there were 55 active rainbow trout farms: 

46 FW farms, 7 SW farms and 2 farms with both FW and SW facilities. The majority of 

rainbow trout movements occurred between FW farms; the remaining movements 

were classified as FW–SW and ‘other’ (table 4.1). 

4.3.3. Brown trout 

Of the confirmed movement records, 36% occurred within 1 wk; after combining those 

movement records, 82 combined brown trout records remained. Recorded 

movements took place between 34 active brown trout farms, of which 28 were FW 

farms, 5 were SW farms and 1 had both facilities. Again, the majority of movements 

were between FW farms, followed by FW–SW, SW–SW, SW–FW and ‘other’ 

movements (table 4.1). 

4.3.4. Harvest movements and movements to and from Scotland 

Salmon were often not processed at the marine farm where they achieved their 

harvest weight, but were transported to harvest stations for processing. The live fish 

movements towards these harvest stations are listed as harvest movements. 

Movements to harvest stations should not be epidemiologically relevant if fish are 

maintained in biosecure transport and blood is disposed of hygienically (Munro et al. 

2003). However, if harvest sites become contaminated, they can be a very serious 

focus for disease spread (Murray et al. 2002). 

In addition to the movements mentioned above, there were 1980 salmon harvest 

movements recorded during the period 1 January 2002 to 31 December 2004. 

Movements to the same harvest station that re-occurred within 1 wk were combined 

and reported as 1 movement, which resulted in 829 combined harvest records. The 
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number of movements to harvest stations is likely to be larger than that obtained in 

our data set as many harvest movements may not have been recorded as live fish 

movements. We have no records of dead fish moved to processing plants. 

Records of Scottish imports and exports of live fish were treated similarly as the 

harvest records, which reduced the number of movement records from 331 to 253. 

There were 192 movements onto Scottish farms from outside Scotland and 61 

Scottish exports in 2002–2004 (see table 4.2). These international movements are in 

addition to the national and harvest movements. 

Table 4.2. Number of Scottish salmon import and export movements per year 

 
2002 2003 2004 Total 

Imports 77 59 56 192 
Exports 17 18 26 61 

 

4.3.5. Seasonality 

To test whether the number of movements per month was significantly different from 

random, we performed a chi-square test for all types of movements that had an 

expected number of movements (total number of movements/time period) of ≥ 5 per 

month (which were salmon: all movements, FW–FW, FW–SW and SW–SW; rainbow 

trout: all movements and FW–FW). For the less common movements, we combined 

the movements belonging to the same season (salmon: other, brown trout: all 

movements and FW–FW). The expected numbers of salmon SW–FW, rainbow trout 

FW–SW and other, and brown trout FW–SW, SW–SW, SW–FW and other were <5, 

even after combining the months belonging to the same season; therefore, there was 

no chi-square test performed on these movements. 

In addition, we investigated by least-squares regression whether there was a 

significant sinusoidal seasonal trend with a period of 1 yr (for all types of movements 
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with an expected number of movements >5 per month). In the regression model, we 

fitted the number of movements (y) as follows: 

! = ! + ! cos! !!"! +!!!!"# !!"
! + !!!"# !!"! + !!!"# !!"

! + ! (2) 

where ! is the error term, ! is the mean, and !,!,! and ! together determine the 

magnitude and phase for yearly !,!  and twice-yearly !, !  seasonal patterns. The 

variable ! represents the time step, which relates to ! = 12 mo. If the residuals did 

not follow a normal distribution, data were square-root-transformed (salmon: all 

movements and SW–SW) or log10-transformed (salmon FW–SW) to normalise the 

residuals. We performed the analysis in Minitab 16. 

4.4. Results 

4.4.1. Timing of movements 

The highest total number of salmon movements per month was in April (372 

movements; figure 4.3A). The number of movements per month was significantly 

different from random (chi-square, p < 0.001, df = 35) and showed a significant 

seasonal trend (F4,31 = 12.96, p < 0.001, r2 = 62.6%). 

Timings of salmon movements differed among the type of movements (figure 4.3A). 

The number of salmon FW-FW movements was increased during May ! =$146), 

June (! = 152) and July (! = 142). SW farms were supplied with smolts mainly in 

March and April (! = 149 and ! = 275) and October and November (! = 84 and  

! = 81). Salmon SW–SW movements were more constant throughout the year; 

however, they showed seasonal variation between years. Salmon SW–FW 

movements occurred mainly during September (! = 12) and October (! = 17). The 

number of movements per month from FW–FW, FW–SW, SW–SW (chi-square, p < 

0.001, df = 35) and other (chi-square, p < 0.001, df = 11) were significantly different 

from random. FW–FW (F4,31 = 17.80, p < 0.001, r2 = 69.7%) and FW–SW movements 
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(F4,31 = 20.96, p <0.001, r2 = 73.0%) showed a significant seasonal trend. Salmon 

SW–SW movements did not show a significant seasonal trend (F4,31 = 0.37, p = 0.827, 

r2 = 4.6%). 

Timing of rainbow trout movements were more constant throughout the year 

compared with salmon movements; however, fewer rainbow trout movements 

occurred during the winter period (December, ! = 6; January, ! = 13 and February, 

! =17; figure 4.3B). The number of movements per month for the total number of 

rainbow trout movements and rainbow trout FW–FW movements were significantly 

different from random (chi-square p < 0.001, df = 23) and showed a seasonal trend for 

both total number of rainbow trout movements (F4,19 = 8.72, p < 0.001, r2 = 64.7%) 

and rainbow trout FW–FW movements (F4,19 = 7.81, p = 0.001, r2 = 62.2%). The 

residuals of both rainbow trout models showed a temporal trend. Rainbow trout FW–

SW movements peaked at different times compared with salmon movements, namely 

during June and September–October. However, the numbers of movements were too 

low to discern any seasonal patterns. 

Brown trout FW–FW movements mainly occurred in June (! =!11), November (! =  

15) and December (! = 8) during the period studied (figure 4.3C). The numbers of 

movements per season were significant different from random (chi-square, p < 0.001, 

df = 7) for both all movements and FW–FW movements. 
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Figure 4.3. Seasonal patterns of live fish movements of Scottish aquaculture, stratified 
by production phase (FW: freshwater; SW: seawater). ’Other’ movements are 
movements onto or off farms with both FW and SW facilities. (A) Data for 2002–2004 for 
salmon (! = 2401). (B) Data for 2003–2004 for rainbow trout (! = 434). (C) Data for 
2003–2004 for brown trout (! =!82). Numbers of movements per month are represented 
as the percentage of the total number of movements of the specified species 
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4.4.2. Variation in contact structure 

During 2002–2004, 299 salmon farms had movements off the farms. As was 

anticipated from the industry structure, there were more farms that had movements 

onto their farms (! = 471); however, the number of movements and contacts per farm 

was lower (table 4.3). Many movements were repeated between the same pairs of 

farms. The number of unique contacts per farm was therefore lower compared with 

the total number of movements per farm (figure 4.4A); there was a larger variation in 

the number of movements per farm than in the number of contacts per farm  

(table 4.3). 

The variation in number of movements and contacts differed across the salmon 

production phases (table 4.3). Salmon FW–FW movements had the largest range of 

total number of movements onto (min = 1, max = 38) and off (min = 1, max = 52) per 

farm, whereas FW–SW movements had the highest number of contacts going onto 

(min = 1, max 11) and off (min = 1, max = 24) their farms. Approximately 40% of the 

salmon SW farms received smolts from 3 or more different suppliers (figure 4.5). 

We did not stratify the rainbow trout and brown trout movements to study the contact 

structure across production phases because by far the majority of movements were 

between FW farms. Forty-four rainbow trout farms had movements onto their farms 

and 28 farms had movements off their farms during 2003–2004. The maximum 

number of movements and contacts onto farms was higher than the number of 

contacts and movements off farms (table 4.3). 
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Table 4.3. Descriptive statistics for movements and contacts per farm for salmon (2002–
2004 data, stratified by production phase), rainbow trout and brown trout (2003–2004 
data) 

  MOVEMENTS CONTACTS 
  ON OFF ON OFF 
Salmon (ALL) Median 4 4 2 2 
 Mean 5.1 8.0 2.6 4.0 
 Variance to mean ratio 13.3 4.9 1.1 5.0 
 Maximum 38 65 11 24 
      
Salmon (FW–FW) Median 5 7 2 2 
 Mean 7.3 10.9 2.5 3.7 
 Variance to mean ratio 5.8 11.8 1.0 3.7 
 Maximum 38 52 8 20 
      
Salmon (FW–SW) Median 3 4 2 3 
 Mean 3.4 6.3 2.5 4.6 
 Variance to mean ratio 2.0 6.5 1.0 3.4 
 Maximum 16 44 11 24 
      
Salmon (SW–SW) Median 1 2 1 1 
 Mean 2.1 2.1 1.4 1.3 
 Variance to mean ratio 2.6 1.0 0.5 0.3 
 Maximum 22 10 6 4 
      
Salmon (SW–FW) Median 3 3 1 1 
 Mean 3.4 4.2 1.4 1.7 
 Variance to mean ratio 1.4 3.3 0.3 1.1 
 Maximum 8 15 3 6 
      
Salmon ('Other') Median 4.5 1 1 1 
 Mean 6.0 5.4 1.9 1.7 
 Variance to mean ratio 2.9 14.8 0.8 1.4 
 Maximum 13 36 5 6 
      
Rainbow trout (ALL) Median 4 4.5 1 1 
 Mean 7.8 12.3 1.6 2.5 
 Variance to mean ratio 11.6 23.3 0.5 2.7 
 Maximum 45 62 4 12 
      
Brown trout (ALL) Median 1 2 1 1 
 Mean 2.9 3.9 1.1 1.5 
 Variance to mean ratio 3.0 3.5 0.1 0.3 
 Maximum 11 13 2 3 
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Figure 4.4. Number of movements and contacts per farm for (A) salmon (! = 2401), (B) 
rainbow trout (! = 434) and (C) brown trout (! = 82). The majority of the farms had 
multiple movements from one contact; therefore, a distinction was made between the 
total number of movements per farms and the number of contacts per farm. Farms often 
had multiple movements going onto or off their farm; therefore, there are more farms 
with a lower number of contacts than number of movements 
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There were fewer brown trout farms than rainbow trout or salmon farms. During 2003 

to 2004, 28 farms had brown trout movements onto their farm and 21 farms had 

movements off of their farm. The number of movements and contacts per farm were 

lower for movements onto farms than for movements off of farms. 

There was a moderate concordance in the contacts between years 2003 and 2004 for 

salmon FW–FW contacts (mean arc persistence, MAP = 0.51) and other contacts 

(MAP = 0.55), as well as for all rainbow trout contacts (MAP = 0.50) and all brown 

trout contacts (MAP = 0.56). The MAP for the remaining salmon contacts was low; 

0.05 for FW–SW, 0.18 for SW–SW and 0.20 for SW–FW. 

 

Figure 4.5. Distribution of the number of smolt suppliers per farm for salmon farms. 
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4.4.3. Harvest movements 

The majority of the harvest movements (540) were recorded in 2004, compared with 

94 in 2002 and 195 in 2003 (figure 4.6). In 2003 and 2004, the number of harvest 

movements increased during August and December, which made these months an 

extra risk of a source of infection for farms in close proximity to harvest stations. 

 

Figure 4.6. Number of salmon harvest movements per year. 

4.3.4. Movements to and from Scotland 

There are strict biosecurity measures for live fish imported from other countries, with 

the exception of movements to or from Wales and England; however, there is still a 

risk of introduction of pathogens. This might have occurred with IPNV in Ireland 

(Ruane et al. 2009). 

There were 192 movements going onto Scottish farms (figure 4.7A) originating from 

outside of Scotland. Imports of live fish occurred from Ireland, the Isle of Man and 

England, whereas imports of ova occurred from Iceland, Australia, Denmark (trout ova 

only), Norway (salmon ova only) and the USA. There were also 61 movements to 

farms outside Scotland (figure 4.7B). Destinations for live fish were England and 

Ireland, whereas ova were exported to EU member states and Chile. Eight farms had 

movements going on or off the farms outside Scotland. In January and December, 
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there was a peak of both the export and import of live salmon. The lowest numbers of 

imports were during August to November. Epidemic models that simulate the 

introduction of exotic diseases introduced by international movements should take into 

account the seasonality of these movements. However, the timing of these 

movements showed differences between the years studied (figure 4.7A).  

 

 

Figure 4.7. Salmon movements in/out of Scotland. (A) Imports; (B) exports  
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4.5. Discussion 

To our knowledge, this is the first study describing seasonality and contact structure 

stratified by production phase of live fish movements. 

4.5.1. Contact structure 

These data show heterogeneity in the number of movements and contacts across 

different production phases; these differences could change the course of an 

epidemic considerably (Bigras-Poulin et al. 2006, Bigras-Poulin et al. 2007, Natale et 

al. 2009, Lindstrom et al. 2010). Salmon SW–SW, SW–FW and other movements had 

lower numbers of movements and contacts per farm compared with salmon FW–FW 

and FW–SW movements and contacts. An index case in a salmon hatchery or other 

salmon FW farm is likely to result in a larger epidemic (especially when farms with 

many off contacts are infected) than an epidemic that starts in a salmon SW farm 

because of differences in direction and number of contacts. Salmon FW farms are 

likely to be sources for infections, whereas salmon SW farms are more likely to be 

sinks. Because of the low numbers of FW–SW and SW–SW movements compared 

with FW–FW movements in rainbow trout and brown trout, differences in contact 

structure between the different types of movements were not distinguished. 

The number of smolt suppliers supplying a farm has often been identified as a risk 

factor for disease outbreaks on salmon production farms, such as for IPN (Jarp et al. 

1995, Murray 2006) and ISA (Vagsholm et al. 1994, Jarp & Karlsen 1997). In the 

present study, FW–SW movements showed a large range of contacts per farm. 

Although it might not always be possible to limit the number of smolt suppliers, a 

further reduction of the number of FW–SW contacts per farm is likely to decrease the 

risk of infections in SW farms. 

The reduced risk of pathogen transmission between SW farms is mainly because of 

reduced movements of fish between SW farms, which has been improved since the 
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Scottish ISA outbreak in 1998–1999. Scottish sea farms are now divided into 

management areas, and good code of practice prohibits fish farms from moving post-

smolts between management areas (Joint Government/Industry Working Group 

2000). The use of management areas combined with fallowing strategies has proven 

to be effective in reducing epidemic spread in a theoretical study (Werkman et al. 

2011) [chapter 3] and in the field during the recent ISA outbreak in 2009, where the 

outbreak affected only one management area (Murray et al. 2010). 

Broodstock could theoretically be a source of vertical infection, as ova can become 

infected with, for example, BKD (Marine Scotland Science 2010a). Broodstock were 

only moved occasionally and these fish movements are under strict surveillance. 

Furthermore, the number of contacts for SW–FW was low during the period studied 

compared with FW–FW contacts. A decrease in the number of contacts reduces the 

chance of infection. This, in combination with the strict biosecurity measures, protects 

broodstock from infection. If broodstock are infected, transmission to other freshwater 

farms is extensive. And, from these freshwater farms, transfer may occur to multiple 

seawater farms, which underlines the importance of strict surveillance of broodstock. 

Large numbers of movements occurred between FW farms. The data presented here 

showed that the number of total movements and contacts in salmon SW–SW 

movements was considerably lower than salmon FW–FW and salmon FW–SW 

movements. This suggests that there is a need to investigate the possibilities of 

biosecurity measures for FW farms, similar to the management areas applied to SW 

farms. Some of these movements are essential to aquaculture; fish must be moved off 

hatcheries to on-growing sites and smolts must be moved to sea. Receiving farms 

minimise the costs of fish moved onto them, which may involve sourcing from different 

locations, and this is essential for their economic sustainability. Use of stocks from 

different sources increases genetic variability; this may increase the risk of pathogen 

introduction but reduce its impact, should this occur. However, pathogen transfer risk 
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may be reduced by removing strategic nodes that link clusters of farms (Green et al. 

2009), so a strategic review of movement, rather than blanket reduction, may be the 

most effective modification of the network. 

Despite the lower number of total rainbow trout live fish movements compared with 

salmon, the numbers of movements per farm were comparable for rainbow trout and 

salmon. However, the numbers of contacts per farm were considerably lower for 

rainbow trout because movements between pairs of rainbow trout farms occurred 

more frequently compared with the salmon movements. The salmon movement 

network had more connections between farms and diseases could therefore spread 

more easily between salmon farms than between rainbow trout farms, all other 

factors, such as the transmission rate of the pathogen, being equal. However, multiple 

movements between the same pair of farms increase the risk of the receiving farm 

becoming infected from the source farm, as multiple movements occur during the 

year. It should be kept in mind that only 2 yr of data were considered for rainbow trout 

data and 3 yr for salmon data. 

In this study we did not include the effects of size of farms (i.e. production) on the 

number of movements or contacts. However, it is likely that larger farms would have 

more movements and contacts onto and off their farm, and, therefore, have a higher 

risk of becoming infected and transmitting pathogens to a large number of farms. 

4.5.2. Seasonality 

The timing of movements is important, as a peak in the number of live animal 

movements has been shown to increase the size of an epidemic considerably 

(Gibbens et al. 2001). During peak periods of movements, fish farmers should be 

extra vigilant for clinical signs of diseases before moving live fish; this is important in 

order to prevent potential transmission of pathogens to other farms and, in some 

cases, large numbers of farms. 
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Salmon data showed a high degree of seasonality, particularly for FW–FW and FW–

SW movements, as would be expected because of the seasonal nature of smolt 

transfers. During periods of high peak in activity there are increased numbers of 

movements between contacts, and epidemics are more likely to become widespread 

in a network containing more (direct) connections between farms (Kiss et al. 2006). 

Targeted biosecurity aimed at identifying pathogens before the increased activity will 

help to prevent or reduce pathogen spread to other farms. However, eradication 

strategies might have less of an effect when outbreaks are widespread before 

detection (Keeling 1999, Kiss et al. 2005, Thrush & Peeler 2006, Natale et al. 2009, 

Ward et al. 2009, Werkman et al. 2011) [chapter 3]. This was shown during the 2001 

FMD outbreak, where 57 farms were infected with FMD before the disease was 

detected (Gibbens et al. 2001, Eales et al. 2002). This was also the case with ISA in 

Scotland, where the 1998–1999 outbreak spread nationwide before detection (Murray 

et al. 2002), whereas the 2008–2009 outbreak was limited to a relatively small area of 

southwest Shetland (Murray et al. 2010). Thrush & Peeler (2006) estimated that in 

case of introduction of Gyrodactylus salaris, 50% of the catchments in England could 

be infected before diagnosis of the parasite, in the worst-case scenario. However, this 

study did not include seasonality of movements. Subclinical infections can go 

unnoticed (Bruno 2004, Graham et al. 2006, Lyngstad et al. 2008, Murray et al. 2010). 

Performing clinical tests increases the change of detecting subclinical infections and 

movements can be stopped when a farm tests positive. Therefore, performing clinical 

tests during periods of a high peak in activity of movements can minimise the risk of 

spreading pathogens. The control of widespread diseases can be very difficult if the 

necessary resources and infrastructure are not available, such as the lack of trained 

personnel, which exacerbated the UK FMD outbreak in 2001 (Eales et al. 2002). 

Because salmon FW–FW and FW–SW movements and rainbow trout movements are 

seasonal, control strategies performed before these high peak seasons will have a 
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positive impact on disease control. This strategy prevents farms from having many 

movements off (during a relatively short period of time) with possibly infected fish. As 

SW–SW movements occur more constantly through the year, targeted control 

surveillance has less of an effect compared with targeted control for FW–FW and 

FW–SW movements. 

Some diseases, such as BKD, are more likely to occur during the spring when water 

temperatures are rising (Marine Scotland Science 2010a). The spring is also a period 

with an increased number of FW–FW and FW–SW movements, which increases risk 

of this disease. 

The inclusion of seasonality or timing of movements in simulation models will not only 

include peaks of live fish movement activity during specific periods of the year, but will 

also include sequence of movements. For example, if movements occur from A to B 

and from B to C and A is the source of infection, C will only get infected if movement 

from A to B occurred first. Therefore, the sequence of movements is important for 

predicting the course of epidemics in more complex dynamic models when compared 

with static networks. Further studies are needed to quantify the effects of seasonality 

on the course of epidemics. 

4.5.3. Harvest data 

Close proximity (<5 km) to a harvest station has often been identified as a risk factor 

for disease transmission (Vagsholm et al. 1994, Jarp & Karlsen 1997, Munro et al. 

2003). Harvest stations could be a source of infection to adjacent farms via pathogens 

and escaped live fish from the harvest station contacting fish in adjacent farms (Munro 

et al. 2003). Well boats transporting live fish to harvesting plants can also be 

responsible for pathogen transmission to farms en route to the harvest stations 

(Munro et al. 2003, McClure et al. 2005). During periods of increased movement 
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activity towards harvest stations, disease risk is increased to farms adjacent to or en 

route to harvest stations. 

Some farms transported salmon to more than one harvest station. To reduce the risk 

for farms in close vicinity of the harvest station, it would be better to transport live fish 

to one harvest station, because in case of infection only one harvest station will be 

affected, although this might not be possible in all cases for logistical and economic 

reasons. Companies will seek to sell their fish to the processor offering the best price; 

this is especially the case for small independent companies, whereas larger 

companies are more likely to own and operate company processing plants. The 

specific harvest stations could not be validated in all cases in this study, as in some 

records only the area was included and the name of the harvest station was missing. 

During the studied period, as a result of the ISA outbreak of 1998–1999, improving 

practices led to fewer fish being slaughtered on site and hence more live fish 

movements to harvest stations. This could have led to the increased harvest 

movements in 2004. However, we believe this increase could also be partly due to 

improved record keeping, also as a result of the ISA outbreak, as some movements to 

slaughter may not have been recorded because these fish were not being moved to 

another farm. 

4.5.4. Other routes of infection 

Live fish movements are not the only route of pathogen transmission between fish 

farms. Pathogens can also spread at a local level, as wild fish can become infected 

and transfer pathogens when they are in the vicinity of infected farms and susceptible 

farms (Uglem et al. 2009). In addition, diseases such as ISA and pancreas disease 

are known to spread at a local level (<10 km; McClure et al. 2005, Lyngstad et al. 

2008, Aldrin et al. 2010). Effects of local transmission are likely to be reduced when 

the distance between the susceptible farm and the source farm is increased (Aldrin et 



Seasonality in live fish movements and their effects on epidemics 
 

4–111 
 

al. 2010). In the present study, spatial analysis was not conducted. However, 

movements occur to and from farms; therefore, the number of movements and 

contacts is likely to be positively correlated with the number of farms in an area. This 

can have a substantial effect on pathogen transmission and makes areas with a high 

production more vulnerable to disease outbreaks, both through local transmission and 

long-distance movements. 

Depending on the infectivity of the disease, long-distance transfer of live fish have a 

high risk to cause infection on the receiving farms when the transferred fish are 

infected (Murray & Peeler 2005). Furthermore, long-distance movements are easier to 

control than local transmission pathways such as movements of water and wild 

animals. Controlling and decreasing long-distance movements can therefore have a 

substantial impact in reducing the risk of epidemics in Scottish aquaculture (Werkman 

et al. 2011)[chapter 3]. Moreover, local transmission tends to have a lower R0 than 

long-distance transmission: Because of clustering of infection on a local level, infected 

farms are competing for the same neighbours to infect (Keeling 1999, Kiss et al. 

2005). However, economic reasons may mean that fish are sourced some distance 

from the receiving site. For example, in Shetland, the area of FW production is small 

relative to the area for SW production; in this case, salmon smolts may be sourced 

from Yorkshire and ova from Norway (Murray et al. 2010). 

4.5.5. Data collection 

It would be useful to collect movement data electronically. Movement records are 

currently documented on paper forms and held by fish health inspectors at Marine 

Scotland. Collecting the data electronically would improve the traceability of the 

movements and makes it easier to check whether data are recorded at both the 

source and destination farms. Furthermore, electronic data collection will increase the 

speed of identifying the movements on and off the index case or other infected farms. 

Collecting the movement data physically causes a delay in identifying the possible 
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secondary infections. As a consequence, movement restrictions might have to be 

applied across the whole country in the case of an outbreak of an exotic disease such 

as Gyrodactylus salaris, at least until data are collected and analysed. This is 

especially relevant when the disease is subclinical, and when the source (e.g. wild 

reservoir or international movement) cannot be identified, which means that the 

duration of infection and degree of spread is unknown. 

4.6. Conclusion 

In this study we have shown variation in the timing of movements and number of 

movements and contacts across different species and production phases (for 

salmon). Therefore, it is important to include seasonality, heterogeneity of the number 

of contacts and production phase in simulation models. Salmon movements between 

SW farms show less heterogeneity in the timing of movements and contacts. 

Therefore, simulation models considering these networks only may be treated without 

seasonality of live fish movements. 

Disease outbreaks affecting mainly FW farms can spread easily throughout the 

network because of the high number of contacts per farm. If the number of these 

movements can be reduced, then disease risk from pathogens with a FW phase might 

be reduced substantially, as has occurred for SW farms. Simulation models should 

consider disease-specific parameters and include network properties affecting the 

relevant subpopulation. 
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This chapter used the data of chapter 4 and the network model of chapter 3 as a 

base. The objective of this chapter was to quantify the effects of seasonality patterns 

of live fish movements on the course of an epidemic. 
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CHAPTER 5. Seasonality in live fish movements and 
its effects on epidemics 

M. Werkman, D.M. Green, A.G. Murray, L.A. Munro, J.F. Turnbull 

5.1 Abstract 

Live fish movements between salmon farms risk spreading pathogens at a country-

wide scale. Salmon movements between freshwater farms and movements from 

freshwater to seawater for smolt supply show clear seasonality. Seasonality could 

have a substantial impact on the course of disease. In this study, we quantify the 

effects of seasonality of live fish movements on epidemic dynamics, using a network 

model populated with live fish movements between Scottish fish farms of 2002 to 

2004. We used three types of networks: A) the real-life situation in which timing and 

pair-wise movements between farms were as observed as in the data; B) as network 

A, but with a random reordering of all movements between freshwater farms and 

movements from freshwater to seawater farms; C) simulated networks in which the 

number of movements per farm were kept the same as in the data but connection 

between nodes was random. We compared the time-course of simulated epidemics in 

all three networks. In each network seasonality was included and excluded to 

investigate the effects of seasonality of live fish movements on the course of an 

epidemic. For this a stochastic susceptible-infected-recovered (SIR) model was used. 

Here we showed that seasonality mainly has an effect when local transmission is > 

0.05 per week per contact for network B and C and did not have a strong effect in 

network A. The effects of seasonality of live fish movements were stronger for 

seawater farms, compared with freshwater farms. The order of salmon movements 

appears to be important for disease dynamics. 
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5.2. Introduction 

Scotland is the third-largest producer of Atlantic salmon (Salmo salar) after Norway 

and Chile and produced approximately 154,000 tonnes in 2010 (MSS, 2011). The 

Scottish salmon industry is threatened by potential disease outbreaks such as 

pancreas disease and infectious salmon anaemia (ISA). Movements of live fish 

provide a route for spreading pathogens between otherwise isolated farms. However, 

these movements are common in aquaculture and are required for both economic and 

biological reasons (e.g. movement of salmon smolts from freshwater to marine farms). 

Movement of live fish has been associated with the spread of ISA (Mardones et al., 

2009) and bacterial kidney disease (BKD) (Murray et al., 2012) and as an important 

risk factor for possible introduction of the parasite Gyrodactylus salaris into the UK 

(Peeler and Thrush, 2004). 

Epidemic network models can be used to assess the risk of these live fish movements 

on transmission of pathogens on a countrywide scale. A movement network can 

represent live animal movements between farms. These farms are connected by 

“edges” or “arcs” representing potentially infectious contact, for example through 

animal movements. Edges represent undirected contact between farms and arcs 

represent directed contact between nodes (Martinez-Lopez et al., 2009); movements 

are inherently directed. Network models can easily take into account heterogeneity in 

the number of movements between farms (Kiss et al., 2005; Webb et al., 2005). As a 

‘rule of thumb’, 20% of the population contribute to infecting 80% of the population 

due to high number of contacts with the susceptible population (Volkova et al, 2010; 

Woolhouse et al., 1997; Anderson and May, 1992).  

Epidemics that start during periods with increased movement activity have a higher 

probability to become widespread than epidemics starting during other periods of the 

year (Kiss et al., 2006). For example, the British FMD outbreak in 2001 was large 

because it started during a time of year with many sheep movements going onto and 



Seasonality in live fish movements and their effects on epidemics 
 

5–120 
 

off livestock markets (Kiss et al., 2006; Gibbens et al., 2001). In a previous study, 

Scottish live fish movements were shown to be seasonal in the number of live fish 

movements, but these seasonality patterns differed across production phases 

(Werkman et al., 2011b). Movements between freshwater (FW) farms mainly occurred 

from May to July (figure 5.1A), while seawater (SW) farms were supplied with smolts 

mainly during February to March and October to November (2002 to 2004 data, figure 

5.1B). However, there was no overall seasonality in movements between SW farms 

(Werkman et al., 2011b). During periods of increased movement activity, the salmon 

industry might be more vulnerable to large epidemics. Therefore, fish farmers should 

be particularly vigilant for clinical symptoms of their fish during periods of increased 

live fish movements between farms. 

Network clustering could have a big impact on the course of an epidemic. In a highly 

clustered network, there is a high probability that two neighbours (nodes in contact) 

have another common neighbour (Christley et al., 2005; Keeling and Eames, 2005; 

Newman, 2003). Furthermore, clustering decreases R0 (the average number of new 

infections caused by a typically infected individual in a susceptible population) and this 

slows the spread of an epidemic. Epidemics are more likely to die out in a highly 

clustered network (Keeling and Eames, 2005; Newman, 2003).  

During periods of the year when many movements occur, and for farms that are likely 

to become infected and spread the infection of pathogens, early recognition of 

disease is important. Fish known to be infected with a notifiable disease are prohibited 

from moving fish to other farms (Joint Government/Industry Working Group, 2000), 

but are allowed to move fish off their farm for processing. However, diseases can go 

unnoticed when the prevalence is low (i.e. low infectivity at within-farm level) or when 

there are no clinical signs (i.e. low pathogenicity and low virulence) and fish might 

therefore be moved while they are infected with a notifiable disease (Jonkers et al., 

2010; Lyngstad et al., 2008; Graham et al., 2006; Murray and Peeler, 2005). ).  An 
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example is Renibacterium salmoninarum, the causative agent of BKD, whose 

persistent subclinical phase reduces the effectiveness of controls. When diseases 

have a high pathogenicity or high virulence, infections will be noticed earlier and there 

is a lower chance of accidentally transporting infected animals.  

 

 
Figure 5.1. Timing of movements between freshwater farms (A) and movements from 
freshwater to seawater farms (B). 
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In addition to fish movements, pathogens may also be transmitted between farms 

through the environment, e.g. by water movement (Jonkers et al., 2010; OIE, 2009). 

Survival time of the pathogen outside of its host, in water, differs between pathogens 

and is dependent on factors such as water temperature and water chemistry (OIE, 

2009). The persistence of pathogens also depends on natural reservoirs (such as wild 

fish) in the proximity of fish farms; wild fish can be responsible for (re-)infection of fish 

farms when they become infected and come into close proximity of fish farms (Uglem 

et al., 2009).  

Seasonality was found in Scottish salmon movements between freshwater farms and 

movements from FW to SW farms. In the current study, we investigated the effects 

these seasonal patterns of live fish movements on the course of epidemics. We used 

the descriptive statistics from Werkman et al. (2011b) as a base to estimate 

parameter values for seasonality in the numbers of movements per farm. As the 

transmission of pathogens between farms can vary largely depending on the 

characteristics of the environment, host, and pathogen itself, we studied the 

transmission of pathogens with a range of different pathogen characteristics (i.e. 

transmission rates and removal times). Models generally should aim to be as 

parsimonious as possible, while being capable of describing the features of interest in 

a particular system (Jorgensen and Bendoriccho 2001; Murray 2008), which means 

identifying the relevant details for a particular problem.  

5.3. Materials and methods 

To investigate the effects of seasonality of live fish movements on the course of an 

epidemic, we modelled pathogen transmission through both live fish movements (see 

section 2.1) and due to local spread (see section 2.2).  
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5.3.1. Long-distance movements 

Scottish fish farmers are obliged to record the live fish movements onto and off their 

farms. The records from 1 January 2002 to 31 December 2004 were used in this 

study; the movements were edited as described in Werkman et al., 2011b. In total 

there were 2401 movements between salmon farms over this three year period. 

There were !!" = 186 active FW farms (i.e. farms in a production cycle either having 

stock or fallowing) during 2002 to 2004, and !!" = 314 active SW farms of which 304 

farms had movements onto or off their farm. Nine farms had both facilities available 

on their farm; for the purpose of this study we counted these farms as SW farms. The 

total number of SW farms !!"  was 323, and the total number of all salmon farms 

!!"!#$  was 509. 

We studied the effects of seasonality of live fish movements on three different types of 

networks, these are discussed below.  

For all situations, a directed contact matrix !!"# was developed of size !!"!#$ by !!"!#$ 

by !, in this study ! is 1 ≤ !! ≤ 159 weeks. An element !!"# contained 1 when there 

was a movement between farm ! and ! at time ! and 0 otherwise.  

For all three networks, we compared the scenario where the original seasonality of 

live fish movements was left as shown to occur in the data with one where the timing 

of these movements was altered such that the number of FW-FW movements and 

FW-SW movements were both distributed homogeneously over the time period. The 

timing of the movements between SW farms, SW-FW and ‘other’ were kept the same 

to the raw data as these data did not show seasonal patterns (Werkman et al., 

2011b). Movements that were between research farms or onto or off research farms 

were classified as ‘other’. 
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Network A: Real-life network 

Network A included the real-life situation, in this network nothing was altered after the 

data manipulation and cleaning as described in Werkman et al., 2011b. The 

movement network structure and the sequence of movements were kept the same as 

in the original data in both the seasonal and non-seasonal network (table 5.1).  

In the non-seasonal network, all movements were placed in chronological order based 

on the date they occurred. The study period was 3 years and each year contained 53 

weeks, this resulted in 159 time steps. The total number of movements per production 

phase divided over the total number of time steps was allowed per week. For FW-FW 

movements this resulted in 1181/! ≈ 7 movements per week. For the first week, the 

first 7 FW-FW movements of the chronological movement list were selected. For week 

2, movements 8 to 14 were selected, etc.  

Movements were only allowed once a week; when network A was transformed to a 

non-seasonal network it resulted, in a few cases, in two movements between the 

same pair of farms in the same week. In the case where two movements between the 

same pair of farms occurred in one week, movements were changed to the first 

movements in the following week in order to keep the sequence of the movements in 

the non-seasonal network as close as possible to the sequence of the movements in 

the seasonal network. For example, in the non-seasonal network there were two 

movements between farm A to farm B in week 17 (movement 1 and 2). In week 18 no 

movements occurred between farm A and B, but a movement occurred from farm D to 

E (movement 3). In this scenario, movement 2 and 3 were exchanged. In this way the 

sequence of the movements changed as little as possible while keeping the same 

number of total movements. This problem only occurred in the non-seasonal version 

of network type A as the sequence of movements was left unaltered in this network 

type, in contrast to network B and C where the sequence of movements was random. 
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Table 5.1. Characteristics of each type of network, * was placed when the characteristic 
was included in the designed network. 

 Network A Network B Network C 
Number of movements onto and off per farm * * * 

Clustering * *  

Order of movements *   

 

Network B: Real-life network with random order of movements 

For the seasonal version of network B, the original movements of network A were 

matched to a new timing list. In this list the original timings of movements (i.e. week 

numbers) were put in a random order and one-by-one matched to a movement. The 

movement network structure and seasonal pattern of network B was the same as 

network A, but the sequence of FW-FW and FW-SW movements was altered by 

letting them occur in a random order (table 5.1). The sequence of these movements 

was altered, to investigate the importance of the sequence of live fish movements on 

disease dynamics. SW-SW, SW-FW and ‘other’ movements was left unaltered. 

For the non-seasonal version of network B another timing list was made where each 

week number was listed as often as there were movements of a particular production 

phase per time step. Movements were only allowed to occur once a week, so 

movements were only allowed to occur when !!"# = 0. When !!"# = 1, the next time 

point on the timing list was used until the criteria were met or until there were no 

further possibilities available. In this case, this movement was removed without 

replacement. This resulted in a network where the movements were randomized and 

the numbers of movements per week were equal over the whole time period. 

Network C: Simulated network 

The last network, network C, was designed in such a way that the number of 

movements going onto and off farms were preserved. Clustering was removed and 
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also the order of movements was not taken into account in this network. The 

clustering coefficient was calculated as suggested by Opsahl and Panzarasa (2009) 

and was based on 10,000 simulated networks. The clustering coefficient was based 

on the static, directed and weighted network, where all the connections of all time 

steps were added together. The mean clustering coefficient for network C was 0.09 

(range 0.08 to 0.11). Network A (and B) had a cluster coefficient of 0.20. 

During 2002 to 2004, there were in total 1181 movements between FW farms 

registered. To build the long-distance movement network between FW farms, two lists 

of farms were constructed. The first list contained 1181 stubs (i.e. one half of an arc) 

which represented the source farms. There were 108 farms with movements off their 

farm which were selected at random from the FW farms and were repeated as often 

as they had movements off the farm (varying from 1 to 38 times). 

The second list contained the destination farms, 161 were selected and repeated as 

often as they had movements on their farms (varying from 1 to 52 times), again 

resulting in 1181 stubs. Of these 161 farms, 92 farms were also in the source list and 

69 farms were selected at random from the remaining FW farms. Nine farms 

remained without any simulated FW-FW movements on or off their farm. As in the 

original data, these farms had only movements to SW farms, to or from farms with 

both FW and SW facilities, or were supplied with broodstock from SW farms. These 

nine farms were included in FW-SW, SW-FW or movements to and from research 

farms (farms with both FW and SW facilities). In this way the in-out degree correlation 

were partly preserved compared with random assignment of the edges. 

An additional list was made which included the timings of the movements and 

contained the week numbers from 1 to 159. Each week number was included as 

many times as movements occurred during 2002 to 2004 ! = 1181 . Movements 

were allowed to occur only once a week between the same pair of farms.  
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The source list, destination list and the timing list were each put in a random order. 

One by one, each farm from the source list was connected to one farm from the 

destination list and one week number from the timing list. The farms were only 

matched when !!"# = 0 and ! ≠ !. Otherwise, the next farm on the source list was 

selected until the criteria were met or after 50 unsuccessful attempts, in which case 

the second movement between ! and ! at time ! was removed without replacement 

(producing less than the desired number of movements). 

A similar approach was used for the other classes of movements: FW-SW ! = 810 , 

SW-SW ! = 237 , SW-FW ! = 54  and other movements ! = 119 . 

5.3.2. Local contacts 

An additional undirected contact matrix !!"  of size !!"!#$ by !!"!#$ was developed 

that represented spread between farms by local contact other than recorded 

movements. To create this matrix, the maps from the Scottish salmon and sea trout 

catches (FRS, 2003) were used in conjunction with geolocation data for the farms and 

management area maps from Marine Scotland Science (MSS, 2003). Scotland is 

divided into 62 salmon fishery statistic districts, which can contain single or multiple 

river catchments which were combined with adjacent coastlines. Salmon FW farms 

were dispersed over 39 salmon fishery statistic districts each containing between one 

and 23 farms (figure 5.2). 
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Figure 5.2. Number of freshwater farms per district. 

After the Scottish ISA outbreak in 1998/1999, SW farms were divided into 

management areas with “firebreaks” between them (Joint Government/Industry 

Working Group, 2000; MSS, 2003). For this study the management area maps of 

2003 were used as this corresponds with the time period of the movement records 

used. Scottish SW farms were divided over 47 management areas, each 

management area containing between 1 to 25 SW farms (figure 5.2).  

Farms that had both FW and SW facilities were not assigned to a district or 

management area; local contact was not present between these farms. 

In this contact matrix !, we assumed that all farms in a district were located in a ring 

and could infect two adjacent farms by local contact, except farms located in a district 

containing one farm (no adjacent farms) or two farms (one adjacent farm) as 

described in Werkman et al. (2011a).  

5.3.3. Transmission model 

A susceptible-infected-removed (SIR) model was developed to investigate the effects 

of seasonality on disease transmission, similar to the methods as described in 

Werkman et al. (2011a). The local transmission rate !!"#$!  was defined as the 
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weekly probability of an infected farm to infect a susceptible farm when there was 

local contact. Parameter !!"#$! was varied between zero and 0.25. Transmission rates 

caused by long-distance movements !!"#$  were set to 1 as receipt by a susceptible 

farm of fish from an infected farm almost always causes infection at the susceptible 

farm owing to the large numbers of fish moved in aquaculture operations (Murray and 

Peeler, 2005). 

For the local contacts, a vector of size !!"!#$ was derived to include the contacts of 

infected farms at time !: 

!! = !!,!!!"
!

 

The more (local) contacts a farm has the higher the likelihood that a farm becomes 

infected. However, the risk of becoming infecting can never be over 1.0. Therefore 

vector !! was introduced, which represents the probability of becoming infected 

through local contacts. Vector !! represents stochastically the receipt of pathogens 

through local contact and is 1 if the farm becomes infected and 0 otherwise. 

!! = 1 − 1 − !!"#$! !! 

!!~Bernouilli !!  

For long distance movements a vector of size !!"!#! was derived containing the 

number of inward contacts: 

!! = !!,! !!,!
!

 

!! = 1 − 1 − !!"#$
!! 

The new infectious status at time ! + 1 was stored in a vector of size !!"!#$: 
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!!.!!! = !!,! + 1 − !!,! 1 − (1 − !!,!)(1 − !!,!)  

The average duration of infection per farm was following an exponential distribution: 

!!~exponential !  

After a farm reached the removal/recovered state we assumed immunity and there 

were no further infection events for farms reaching this state. 

The index cases were selected at random from all FW farms and we initiated the 

epidemic at two different times: week 17 and week 41 as these time point were just 

before and after the increase in movement activity (figure 5.1A). Each model was run 

for three years (159 time steps). As this is a stochastic model, there is always a 

possibility that the index case will be removed in the first time step. To prevent this, 

we chose to start an epidemic with 5 index cases, which were randomly selected 

during each simulation from all FW sites. When seeding multiple index cases it is 

likely that the probability that an epidemic takes off is overestimated, so it does not 

take into account situations in which an epidemic dies out quickly after introduction. 

For this study, this was not important, as we wanted to investigate the importance of 

seasonality patterns in case of an epidemic. 

The epidemics that were run in network A without seasonality were initiated in week 

13 and 43. Simulations were started at a specific point in the sequence of movements, 

rather than the calendar month and thus in this scenario the simulations started on a 

different date. When the simulation reached week 159, the following time step was 

week 1 and continued from that week until the simulation reached all 159 time steps.  

Simulations of all networks were run 1000 times. However, the real-life network did 

not change: simulations were run over the same network for network A in all cases. In 

contrast to network A, networks B and C changed every simulation. Therefore, the 
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results of the real-life network showed less variation compared with the other two 

networks. 

5.4. Results 

Networks B (real-life networks with movements in a random order) and C (simulated 

networks) were created every simulation. Multiple movements occurring in the same 

week from ! to ! were deleted and movements were also removed without 

replacement when ! = !, this resulted in < 2401 movements (see section 2). The 

number of movements in each network should be similar in order to make a fair 

comparison between networks. Therefore we first investigated how successful the 

creations of these networks were. For each type of network, 10,000 networks were 

created and the total numbers of movements were recorded. For both networks and 

for both the seasonal and non-seasonal version there were a maximum of two 

movements missing over a three-year period (table 5.2). In 95% of the cases for all 

networks, all 2401 movements were included (table 5.2). 

Table 5.2. Proportion of real-life networks with movements in random order (network B) 
and simulated networks (network C) that included all 2401 movement or had 1 or 2 
movements missing. Both networks were run 10,000 times for both a seasonal and non-
seasonal network. 

 Real-life network with 
movements in a different 

sequence 
(network B) 

Simulated network 
(network C) 

 Seasonality No seasonality Seasonality No seasonality 

No movements missing 95.5% 96.2% 97.1% 97.1% 

1 movement missing 4.4% 3.7% 2.8% 2.9% 

2 movements missing 0.01% 0.01% 0.03% 0.00% 
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5.4.1. Mean prevalence 

A higher local transmission rate increased the epidemic size and the speed at which 

an epidemic occurred. While an increased removal rate reduced the chance of an 

epidemic. When the removal rate was 0.075, an epidemic only occurred with the 

highest local transmission rates (> 0.10 per week). The difference in the mean 

number of infected farms when epidemics were initiated at week 17 and 41 (and week 

13 and 43 for network A without seasonality) was calculated and followed over the 

159 time steps for all the local transmission rates (0 to 0.25 per week), removal rates 

(0 to 0.075) and time steps (1 to 159). Figure 5.3 shows the accumulated differences 

over all parameter values at all time points. The time of year in which an epidemic 

started had a clear effect on the course of the epidemic in both freshwater (FW) and 

seawater farms (SW) when epidemics were initiated at two different time points (week 

17 or week 41) for network B, (figure 5.3B) network C (figure 5.3C). In the real-life 

network with the original sequence (network A), differences in the mean prevalence 

were less obvious when epidemics were initiated at these time points (figure 5.3A).  
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Figure 5.3. These graphs show the accumulated difference of the mean number of 
infected farms when an epidemic is initiated at week 17 or week 41 over all parameter 
values at all time points (A = real-life network, B = real-life network with movements in 
different order, C = simulated network). 

For networks B and C, the difference of the mean prevalence when initiated at two 

different time points was larger when seasonality was included in both FW and SW 

farms. The maximum difference for network C was 36 farms when seasonality was 
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included and 5 without seasonality for FW farms. For SW farms, the maximum 

difference was 41 with seasonality and 9 without seasonality. For network B, the 

maximum difference was smaller. For FW farms the maximum difference was 19 

when seasonality was included and 7 when seasonality was excluded. For SW farms, 

the maximum difference was 35 and 5 for respectively with and without seasonality. 

In network A, differences in the mean prevalence between the different timings of the 

start of the epidemic were slightly higher for FW farms when live fish movements were 

seasonal (maximum difference was 8) compared with non-seasonal (maximum 

difference was 9). In SW farms, the maximum difference was 70 when seasonality 

was included and 39 when seasonality was excluded.  

Difference in mean prevalence was most clear during the first one-and-a-half years as 

most epidemics peaked during this time course (figure 5.4 for FW farms and figure 5.5 

for SW farms). Furthermore, higher local transmission rates were positively correlated 

with difference in epidemic size when initiated at week 17 and 41 (figure 5.4 and 5.5). 

Increasing local transmission itself does not cause the difference on its own; seasonal 

patterns in live fish movements cause these differences as prevalences in non-

seasonal networks were similar when started in week 17 and week 41. 

Epidemics that started after the peak period of live fish movements (week 41) needed 

longer to peak compared with epidemics starting in week 17 (figure 5.6). Local 

transmission rates were positively correlated with the size of the epidemic.  Mean 

prevalence was lower for network A and B compared with the simulated network 

(network C), see figure 5.6.  
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Seasonal Non-Seasonal 

  

  

  

  

Figure 5.4. Graphs PS and PN show the mean prevalence for respectively seasonal and 
non-seasonal networks with local transmission rate 0 (solid lines) and local 
transmission rate 0.25 (dashed lines) for network A (green), B (orange) and C (blue) for 
freshwater farms. The x-axis shows the time steps (1 to 159) and the y-axis shows mean 
prevalence for local transmission rate 0 (y1) and 0.25 (y2). Graph AS, BS and CS show 
the difference in mean prevalence of freshwater farms when an epidemic was initiated 
in week 17 or 41 with removal rate 0.025 and all local transmission rates, graph AN, BN 
and CN do not account for seasonality in movements between freshwater farms. The y-
axis shows the difference of the mean time step at time !. The grey bars on AS, BS and 
CS show the variation of epidemic size in the non-seasonal networks. 
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Seasonal Non-Seasonal 

  

  

  

  

Figure 5.5. Graphs PS and PN show the mean prevalence for respectively seasonal and 
non-seasonal networks with local transmission rate 0 (solid lines) and local 
transmission rate 0.25 (dashed lines) for network A (green), B (orange) and C (blue) for 
seawater farms. The x-axis shows the time steps (1 to 159), while the y-axis shows 
mean prevalence for local transmission rate 0 (y1) and 0.25 (y2). Graph AS, BS and CS 
show the difference in mean prevalence of seawater farms when an epidemic was 
initiated in week 17 or 41 with removal rate 0.025 and all local transmission rates, graph 
AN, BN and CN do not account for seasonality in movements between seawater farms. 
The y-axis shows the difference of the mean time step at time !. The grey bars on AS, 
BS and CS show the variation of epidemic size in the non-seasonal networks. 
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Figure 5.6. The mean number of infected farms per time step for freshwater (FW) and 
seawater farms (SW). Results are shown for Network A (real-life network), Network B 
(real-life network with movements in a random order) and Network C (simulated 
network) when epidemics were initiated in week 17 and 41 and removal rate 0.025 and 
local transmission rate 0.05 per week.   
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5.5. Discussion 

This study provides a first attempt to quantify the effects of seasonality in live salmon 

movements upon epidemic risk. Epidemics were larger in network B (real-life network 

where movements were put in a random order) and network C (simulated network) 

compared with network A (real-life network). The original movement network used in 

network A and B did include clustering. This is in contrast to network C where 

clustering was removed and this is likely the cause of the larger epidemics in network 

C compared with network A (Keeling, 2005; Newman, 2003). 

The effects of seasonality were stronger in SW farms compared with FW farms, this is 

probably a result of a stronger seasonal pattern in the FW to SW movements 

Differences in the mean prevalence when initiating an epidemic in week 17 and 41 for 

the real-life network were less extensive in proportion to the simulated network in both 

FW and SW farms. In the real-life network (network A) there were still differences in 

the mean prevalence when original seasonal patterns were removed in both FW and 

SW farms. While in the non-seasonal networks B and C, no substantial differences 

were observed between the mean prevalences. This suggests that network properties 

and the order and direction of movements are more important than seasonality 

patterns when considering the mean or average prevalence over a time period. 

However, the order and direction might be less important for movements from FW to 

SW farms compared with movements between FW farms. This is because differences 

between epidemic size were similar in FW farms for the seasonal and non-seasonal 

network for network A (figure 5.3A), but the difference in epidemic size was almost 

half of the difference in the seasonal network compared with the non-seasonal 

network for FW-SW movements (figure 5.3B).  
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5.5.1. Transmission model 

In this study we chose an SIR model and the disease prevalence was recorded over a 

three-year period. We believe that an SIR model was the most suitable model to 

investigate the effects of seasonality of live fish movements on the course of 

epidemics. However, there are limitations of this choice: for example, it is implied that 

the removal period is open-ended and farms do not again become susceptible. Using 

a SIS model would however assume that farms immediately become susceptible after 

the infection phase ends; this is unlikely. In addition, allowing farms to become 

susceptible after the removal phase (using a SIRS model) would make the 

transmission model unnecessarily complicated.  

In this study we did not include fallowing of farms, which is an effective method to 

control diseases (Werkman et al., 2011a; Murray et al., 2010). Fallowing is often 

applied in marine farms, where farms are emptied and left unstocked (Wheatley et al., 

1995). Synchronized fallowing of management areas has a positive effect on disease 

control (Werkman et al., 2011a). Fallowing is likely to reduce the impact of an 

epidemic and therefore the effects of seasonality on the epidemic. However, 

seasonality could still play a very important role when a farm moves fish to many other 

farms in a short period of time. 

5.5.2. Contact structure 

In a previous study we investigated the number of movements between farms and 

their frequency (Werkman et al., 2011b). This study showed that many movements 

(approximately 40%) occurred between the same pair of farms. Therefore, a 

distinction was made between the number of contacts (i.e. unique connections 

between farms) and number of movements (i.e. total number of repeated connections 

between farms) per farm. This was because many movements between the same pair 

of farms are likely to increase the risk of the receiving farm to become infected. But if 

a farm moves fish to many different farms, the source farm can infect many different 
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farms (until the disease is detected); this can have enormous implications on the 

course of an epidemic. During 2002 to 2004, there were in total 400 contacts and 

1181 movements between registered FW farms and 595 contacts and 810 

movements from FW to SW farms. In the simulated network (network C), to keep the 

network model as parsimonious as possible the number of movements per farm were 

kept similar to the real-life situation rather than the number of contacts. This possibly 

resulted in the higher prevalence in network C compared with the real-life situation. 

In the current study we showed that network properties are very important to the 

course of an epidemic and that control strategies should consider clustering, and the 

sequence and direction of movements, as this appeared to be important in the spread 

of pathogens between farms.  

We started the epidemics of the real-life network only in one year. Previous studies 

showed that there was some degree of consistency in the movement data between 

years (Werkman et al., 2011b; Green et al., 2011) and we do not expect any 

substantial changes during this time frame. We expect similar results for epidemics if 

those were initiated during the two other years. 

5.5.3. Local transmission 

The course of an epidemic depends on both local contact and anthropogenic activities 

(such as live fish movements and well boat movements). In this study the effects of 

seasonality were increased proportionally when the local transmission rate was 

increased. One of the assumptions of the transmission model was that every farm 

was linked to two neighbouring farms by local contact (by water movement), except 

for farms that had only one or two farms in the district or management area. In a 

previous study we showed that increasing the number of farms that are reached by 

local contact had a substantial effect on the course of an epidemic (Werkman et al., 

2011a). As increasing local transmission rate increases the effects of seasonality, we 
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expect that if the number of farms reached by local contacts in the simulation were 

increased, the effects of seasonality will increase as well.  

In addition, the number of farms that can be reached by local contact is very important 

for the course of an epidemic. As seen in Werkman et al. (2011a), epidemics are 

larger when they are initiated in large management areas (areas with 9 or more SW 

farms) compared with small management areas (8 or less SW farms), all other 

parameters being the same. Therefore, control strategies should target areas where 

the number of farms is highly concentrated. 

Local transmission rate can also be influenced by environmental factors such as water 

temperature. In the current study, we did not take into account differences in (local) 

transmission rates during the year. This would have made it difficult to distinguish the 

influence of seasonality in live fish movements from seasonal effects of environmental 

factors on the course of the epidemic. However, environmental factors are likely to 

affect local transmission rates. For example, the transmission rate of BKD is known to 

increase when water temperatures are increasing during spring (MSS, 2010) and 

water temperature is also important in the development of clinical disease of infectious 

haematopoietic necrosis (IHN) (OIE, 2009). Outbreaks of IHN are normally seen when 

the water temperature is between 8°C and 15°C (OIE, 2009). With targeted 

surveillance or control strategies, not only should the seasonality of movement activity 

between farms be taken into account, but also those seasonal factors that favour the 

survivability and infectivity of the pathogen, such as water temperatures. Different 

pathogens have a different environment that is beneficial for their reproduction and 

infectivity (OIE, 2009); disease-specific models can take environment factors into 

account. 

For such pathogens with a seasonal, or temperature driven, expression of disease if 

this expression co-incides with periods of movement of fish it is likely that detection 
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will occur before the pathogen is spread too widely, however if the movement co-

incides with a period of low probability of expression of disease then imposition of 

control will have to rely on laboratory diagnostic testing in the absence of disease and 

this means the potential for uncontrolled spread is greater. 

5.5.4. Subclinical infection 

In this model, movements off a farm still occurred after a farm was infected. In real 

life, movements are restricted when a notifiable disease is found on a farm (MSS, 

2010). The time period in which diseases are notified is crucial in controlling 

epidemics (Kiss et al., 2006) and is thought to have been important during the British 

foot−and−mouth epidemic in 2001 (Gibbens et al, 2001). Being able to recognize a 

disease in an early stage depends on the time period in which clinical signs occur 

after being infected and the clinical symptoms caused by the infection (pathogenicity). 

However, this varies highly between pathogens, it can be acute as sometimes occurs 

with infectious haematopoietic necrosis virus (OIE, 2009) or chronic as could be the 

case with bacterial kidney disease (Murray et al., 2012). If epidemics are detected 

before an increase of animal movement activity, then this could benefit control of 

epidemics. Therefore, surveillance strategies should be targeted to just before any 

increase of live animal movements and should also take into account the direction of 

movements. 

If carrier species are infected with an (exotic) disease, they could play an important 

role in the course of an epidemic as they can transmit infections without showing 

clinical symptoms. If infected carrier species are not detected, they can infect a 

susceptible species on a wide scale before the disease is detected. In fish, rainbow 

trout could spread G. salaris to salmon (which are clinically affected by this parasite) 

without showing clinical symptoms (Peeler and Thrush, 2004).  
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5.6. Conclusion 

This study provided more insight into the network properties of the Scottish salmon 

network. Seasonality in the number of movements and the direction of the movements 

has a large effect on the course of an epidemic. Clustering in real network limits 

epidemic spread. Targeting surveillance should not only be performed for farms but 

also for the time of year. Higher prevalence during certain periods of the year is not 

only due to environmental factors, but likely also due to the seasonality patterns in live 

fish movements between farms. 
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CHAPTER 6. General discussion 

6.1. Summary 

In this final chapter, the main conclusions of this thesis and possible future studies are 

discussed.  

This project was sponsored by University of Stirling and Marine Scotland Science 

(MSS); MSS provided the live fish movement database. The general aim of this thesis 

was to provide more insight into the contact structure of live fish movements within the 

Scottish salmonid industry and to investigate control strategies for diseases. Through 

live fish movements, infected fish can contact disease-free populations (Murray, et al., 

2002; Murray and Peeler, 2005; Thrush and Peeler, 2006; Mardones, et al., 2009). 

In the first research chapter, chapter 3, we looked at three different fallowing 

strategies (synchronized, partial synchronized and unsynchronized fallowing at the 

management area level). The results showed that synchronized fallowing is a highly 

effective tool when long-distance movements are under reasonable control. 

The main aim of chapter 4 was to provide a detailed description of the number of live 

fish movements going onto and off a farm and the timing of these movements 

stratified by production phase. Seasonal patterns of live fish movements differed 

between production phases. Movements between freshwater (FW) sites peaked from 

May to July and showed the highest number of movements that were going on and off 

per farm. Movements from FW to seawater (SW) sites mostly occurred during March 

and April and the median number of movements going onto and off was higher 

compared with movements that occurred between SW sites. SW-SW movements did 

not show a clear seasonal pattern.  

In chapter 5, the results of chapter 4 and the transmission model of chapter 3 were 

used to investigate the effects of seasonality on the course of an epidemic with a 
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dynamic network. The results showed that seasonal patterns of live fish movements 

are likely to have a substantial impact on the course of an epidemic. This is especially 

the case when the local transmission is high and when the movement network does 

not include clustering. These results emphasize the importance of early detection of 

pathogens especially during periods when many movements occur between sites. 

6.2. General discussion 

6.2.1. Data 

The data used in chapter 4 and 5 originated from 2002 to 2004. These data were the 

most recent data that were available due to logistic and convenience reasons. During 

1998 to 1999 an ISA outbreak occurred in Scotland (Murray, et al., 2002) and this 

changed the management practice of seawater sites considerably (Joint 

Government/Industry Working Group, 2000). These management changes were 

already adapted in 2002 and therefore we do not expect any substantial differences in 

the network properties compared with more recent years. Structure might have 

changed slightly due to the merging of companies, but the overall properties of the 

network should be the same as in more recent years. The data used in chapter 4 and 

5 showed continuity between the years (Chapter 4; Green et al., 2011). 

Farmers record their own movement records on paper and these records are 

collected by the fish health inspectors (MSS, 2011). These records are filled by hand; 

during data collection some data were lost due to being recorded illegibly. Other 

records were not included in the dataset because they were not registered at both the 

source and destination site. Although these problems did not occur often, there is still 

a need for recording movements in an electronic dataset. Introducing an electronic 

dataset will improve the traceability, speed and accuracy from movements going off 

infected farms. During the FMD epidemic in the UK, it appeared that the time period in 

which ‘dangerous’ contacts were identified was highly important (Tildesley and 
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Keeling, 2009). Introducing an electronic dataset will help to shorten the time period in 

which all dangerous contacts will be identified. 

Surveillance resources are costly and limited and should be used efficiently. Chapter 

4 showed that movements between salmon farms are directed and show 

heterogeneity in the number of movements per farm. This indicates that targeted 

surveillance will be possible to detect diseases and ultimately prevent epidemics 

(Green, 2010). Disease surveillance should target farms that have a high risk of 

becoming infected and have the potential to spread the infection to a relatively large 

number of farms (Christley and French, 2003; Christley, et al., 2005; Lloyd-Smith, et 

al., 2005; Kiss, et al., 2006). In this way, ‘dangerous’ contact between two farms can 

be controlled to prevent pathogen transmission between high-risk farms. However, to 

investigate which farms or edges should be targeted, the most recent data available 

should be used. 

6.2.2. Disease transmission 

In chapter 2 we discussed several routes for pathogen transmission. Pathogens can 

spread by vertical transmission (parents to offspring) (OIE, 2009; MSS, 2010), natural 

reservoirs (i.e. wild fish) (Rae, 2002; OIE, 2009; MSS, 2010; Kurath and Winton, 

2011), hydrodynamic contact (McClure et al., 2005; Gustafson et al., 2007; Lyngstad 

et al., 2008; Aldrin et al., 2010, Mardones, 2009) and live fish movements (Murray, et 

al., 2002; Mardones, et al., 2009), the importance of each transmission route depends 

on the pathogen. Controlling live fish movements will reduce the risk of large 

epidemics as moving fish from a disease infected farm will almost certainly result in 

infecting the receiving farm (Murray and Peeler, 2005). Banning movements is not 

possible as that makes it for the industry impossible to operate. However, if 

movements are structured strategically, even for the same number of overall 

movements, this can be beneficial in reducing the risk of large epidemics (Bigras-

Poulin et al., 2007) 
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Although live fish movements are the most dangerous contact, infected eggs can 

possibly result in an index case and wild fish might be responsible for (re-)infection of 

farms or for transmission between farms on local level (Uglem, 2009). Consequently, 

to reduce the risk of transmission from pathogens between farms, we should not only 

reduce live fish movements, but also aim to site new farms strategically, where there 

is minimised contact with wild fish, and to screen broodstock for diseases that are 

known to transmit vertically. 

In addition, pathogens can simply be transported by water flow. For example, ISA is 

known to spread on a local level, as happened during the ISA outbreak in 2009 in 

Scotland, and also in Chile (Mardones et al., 2009), Canada (McClure, et al., 2005) 

and Norway (Aldrin, et al., 2010). Furthermore, during the ISA outbreak in Chile, 

outbreaks occurred in clusters, which were initiated by long-distance movements and 

then spread at a local level (Mardones, et al., 2009). Close proximity to PD-infected 

farms also increase the risk of becoming infected with PD (Kristoffersen et al., 2009; 

Aldrin et al., 2010) and other diseases (OIE, 2009). In chapter 3, an increase in the 

number of farms that could be reached by local contact reduced the effectiveness of 

synchronised fallowing. And when epidemics were started in large management areas 

(9 or more farms per management area), it resulted in larger epidemics compared 

with epidemics that were initiated in small management areas (eight or less farms). In 

chapter 5, it was shown that increasing the transmission rate of local contacts 

increased the size of an epidemic and the speed in which an epidemic occurred. 

Spatial clustering appears to be important in the course of a disease (Tildesley, et al., 

2010). As the closer farms are to an infected farm the more likely it is that they 

become infected; ideally, contact network studies should take this into account. 

Spatial structure is also important for bio-security: larger farms localized in 

epidemiologically separated areas will decrease the risk of large epidemics as these 

‘firebreaks’ prevent disease transmission between areas (Green, 2010). However, 
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firebreaks are only effective if the firebreak distance is sufficient to prevent pathogen 

spread between areas. If this is not the case concentrating production might increase 

the risk of epidemics. 

6.2.3. Number of fish moved 

The number of fish moved per movement was not included in this study. At this stage 

of the study it would make the network analysis unnecessary complicated; however 

the number of fish moved per movement is highly dispersed (figure A in appendix I at 

the end of this chapter). Heterogeneity in the number of animals moved per 

movement was also seen in the Danish cattle movement network (Bigras-Poulin, et 

al., 2006). There have been no studies published in fish that look at the effects of the 

number of fish moved per movement, but it is likely that the more fish are moved, the 

higher the probability that the receiving farm will become infected if the source farm is 

infected. A weighted network can take this into account; repeated movements 

between the same pair of sites are essentially a weighted network. However, this 

might not be a simple linear effect and the prevalence at the source is likely to be 

important.  

In addition, the number of fish present on a farm and stocking densities could play a 

role in disease transmission. There may be a minimum viral load needed to cause an 

outbreak, and viral load depends on the infected stocking density (Hammell and 

Dohoo, 2005; Thrush and Peeler, 2006). When there is a large number of fish moved 

from an infected farm to a naive farm (relative to the current stock) this might increase 

the likelihood of disease outbreaks. 

6.3. Future work 

6.3.1. Biosecurity in freshwater farms 

Farms or regions that supply animals to a relatively large number of farms/regions 

should be targeted for monitoring strategies (Noremark et al., 2009). This can reduce 
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the financial costs of biosecurity and control measures as part of a surveillance 

program or in the event of a disease outbreak (Kiss et al., 2005). As shown in chapter 

3, management areas are an important biosecurity strategy in Scottish seawater sites 

to prevent and control large epidemics. 

It is recommended that movements between seawater sites only occur within 

management areas (Joint Government/Industry Working Group, 2000). However there 

are no such recommendations for movements between FW sites or for FW to SW 

sites. The live fish movement data showed that there are many movements occurring 

between regions and catchments (Green et al., 2012) [appendix B]. This indicated the 

need to develop biosecurity strategies for FW sites similar to those in SW sites. The 

Scottish industry should aim to make agreements on movements that occur on 

regional level. If fish are moved between and within a large number of regions, 

pathogens can spread easily throughout the country. So far, there is no detailed 

information describing the geographical distribution regarding live fish movements of 

Scottish salmon, brown and rainbow trout stratified by production phase. 

Management areas are only effective when the boundaries between areas are strong 

enough to prevent pathogen spread between areas. In order to minimize the chance 

of an epidemic, management area boundaries should prevent pathogen transmission 

of a minimum of 75% between management areas based on the model assumptions 

used in chapter 3. However, the management areas cease to be effective when many 

movements occur between them. There are considerably more movements occurring 

between freshwater sites compared with movements between seawater sites as 

shown in chapter 4. The number of movements between seawater sites is relatively 

low ! = 237  compared with movements between freshwater sites ! = 1181  and 

movements from freshwater to seawater sites ! = 810 . The relatively high number 

of movements occurring between FW sites forms a concern to the effectiveness of 

zoning strategies (such as management areas in seawater sites). Therefore, it is likely 
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that the zoning boundaries need to be more effective in FW sites compared with 

management area boundaries in SW sites, however further studies are necessary to 

investigate the practicality of zoning strategies for FW sites.  

Because of the risk of local transmission, if supply of fry or smolts is needed from 

another region, all farms in the region should be supplied from the same region. 

Ideally, movements should occur within the same region; however this might not be 

possible as some sites produce insufficient smolts for their region (Murray et al., 

2010). Movement restriction between regions should be strategic in order to allow 

farms to be supplied with sufficient fish without increasing risk unnecessary 

6.3.2. Disease data 

Disease dynamics show substantial differences amongst pathogens; the timescale 

over which symptoms appear; the transmission rate and routes; or the spatial scale 

over which they operate. For example, bacterial kidney disease can transmit through 

vertical transmission (MSS, 2010), which is unlikely to occur for other diseases (OIE, 

2009). 

The practicality of using network models to study epidemics depends largely on 

disease characteristics. The timescale of the course of diseases should correspond 

with the timescale of changes in the network. For example, applying network models 

to study disease dynamics is less appropriate for diseases with a long incubation 

period (Kao, et al., 2007), as the movement network might have changed during the 

disease time scale. If movements are on a scale faster than disease transmission, 

also makes contact tracing harder. For these reasons, disease-specific models should 

be developed. 

6.3.3. Well-boat movements 

Well-boat movements could transmit pathogens between farms (Murray et al., 2002) 

as in some cases it might be necessary to open the valves of the well-boat and water 
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exchange between the well-boat and seawater can occur (Munro et al., 2003). Boats 

can make “tours” between several places; in case of bad weather well-boats might 

have to shelter en route and open the valves in order to keep the fish alive. If this 

occurs in close vicinity of a fish farm, this increases the risk of these farms to become 

infected should the fish on the well-boat be infected.  Integrating well-boat movements 

into the live fish movement contact network might help to identify possible important 

connections between farms. 

6.4. Conclusions 

- Networks models are an effective tool to identify high-risk farms or connections 

between farms (Kiss, et al., 2006) and to investigate disease control measures 

(Tildesley, et al., 2009; Green, 2010). 

- Reducing the number of long-distance movements combined with 

synchronized fallowing will reduce the risk of epidemics (chapter 3). 

- Seasonality patterns of live fish movements and contact structure differ 

between production phases (chapter 4). Disease control measures should take 

this into account to optimize control strategies. 

- Seasonality patterns of live fish movements are shown to have a large effect 

on the course of epidemics. Especially when local transmission is high and 

when there is no clustering. 

- Pathogens can spread by different transmission routes depending of the 

pathogen and for an optimal control policy all possible transmission routes 

should be considered. 

- Biosecurity in freshwater sites could be improved by using zoning strategies 

similar to management area strategies in seawater sites. 

- More detailed contact-network studies could be performed when disease data 

are available. 
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Effects of diseases are not as detrimental for the Scottish industry as compared with 

disease outbreaks such as ISA, in Chile (Mardones et al., 2009) and Norway 

(Rimstad, 2011), due to disease control measures applied in the Scottish industry 

(Murray et al., 2010). For example, this thesis showed that synchronized fallowing, 

which is often applied in Scottish marine sites, is highly effective. Diseases might 

always pose a threat to the Scottish industry, but mathematical models have great 

potential for investigating and developing biosecurity measures for the control of 

epidemics. This thesis constitutes a strong foundation to improve biosecurity 

measures and increases the knowledge and effects of live fish movement network 

properties on disease dynamics. The results of this thesis are applicable to aquatic 

industries in other countries and even to other species. 
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Chapter 6: Appendix I 

 

Figure A. The number of fish moved per live fish movement during 1 January 2002 to 31 
December 2004 ! = !"#$ . 
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APPENDIX

In this appendix, two published articles are presented on which Marleen Werkman is 

co-author. The first article discusses continuity of live animal movements between 

years of two datasets. The continuity of live fish movements are studied over a three-

year period and the livestock data (pigs, sheep and cattle) is studied over a two-year 

period. The results are published in Preventive Veterinary Medicine 99, 225-228 

(2011). The second article investigates the network structure of the movements of live 

fish in the Scottish aquaculture industry. This article is published in Journal of Fish 

Diseases 35, 29-37 (2012).  
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APPENDIX A: Tools to study trends in community 
structure: application to fish and 
livestock trading networks 

Green, D.M.;  Werkman, M.; Munro, L.A.; Kao, R.R.; Kiss, I.Z.; Danon, L. 

A.1. Abstract 

Partitioning of contact networks into communities allows groupings of 

epidemiologically related nodes to be derived, that could inform the design of disease 

surveillance and control strategies, e.g. contact tracing or design of ‘firebreaks’ for 

disease spread. However, these are only of merit if they persist longer than the 

timescale of interventions. Here, we apply different methods to identify concordance 

between network partitions across time for two animal trading networks, those of 

salmon in Scotland (2002 to 2004) and livestock in Great Britain (2003 to 2004). Both 

trading networks are similar in that they moderately agree over time in terms of their 

community structures, but this concordance is higher – and therefore community 

structure is more consistent – when only the ‘core’ network of nodes involved in 

trading over the whole time series is considered. In neither case was higher 

agreement found between partitions close together in time. These measures differ in 

their absolute values unless appropriate standardisation is applied. Once 

standardised, the measures gave similar values for both network types.  

Keywords: aquaculture, community, network, graph, movements  

A.2. Introduction 

Movement of farmed animals is an important route for disease spread in what are 

highly structured industries. For example, sheep, cattle, and pigs were all involved in 

the UK epidemic of foot-and-mouth disease in 2001 (Shirley & Rushton, 2005), and 

movements of salmon were involved in the spread of infectious salmon anaemia 

(Murray et al. 2002). A network representation, where farm sites are represented by 
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‘nodes’, and potentially infectious contact by directed ‘arcs’ or undirected ‘edges’ is a 

powerful tool for studying the potential for disease spread and control (for a review of 

networks in preventive veterinary medicine, see Martínez-López et al., 2009). 

Network communities represent partitions of nodes with a high level of within-partition 

connectivity (for a review, see Fortunato, 2010). In a strongly community-organised 

network, contact between communities may be relatively weak, and community 

algorithms can provide us with natural groupings of epidemiologically related nodes, 

derived from the network itself rather than artificially imposed. Uncommon inter-

community links might furthermore be considered as potential targets for proactive 

targeted surveillance, or reactively in disease control (Kao et al. 2006; Green et al. 

2009; Salathé & Jones, 2010). That is to say, removing the disease transmission risk 

of such contacts could reduce the size of potential epidemics by creating ‘firebreaks’, 

particularly where these contacts are long distance. However, these analyses are only 

of merit if partitions can be used predictively; that is, if community structure changes 

more slowly than we collect data in order to inform surveillance or disease control 

strategy. 

A key problem here is that objective measures of the rate of change of large-scale 

network structure are not clearly defined, nor how large a change must be to heavily 

compromise disease control strategies. In this short paper, we consider the first part 

of this question, by comparing different methods for determining how network 

community structures change, or not, over time. We apply these methods to two 

movement networks of farmed animals, to investigate whether networks closer in time 

have more similar network structure. The two networks are that of live Atlantic salmon 

Salmo salar movements within Scotland 2002 to 2004, and that of livestock (pigs, 

sheep, cattle) in Great Britain for 2003 to 2004. 
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A.3.  Method 

A.3.1. Data 

The network of live fish movements in Scotland has been described for salmonid 

species (brown trout Salmo trutta, rainbow trout Onchorhynchus mykiss, Atlantic 

salmon S. salar) by Green et al. (2009) and Munro & Gregory (2009). Here, we extend 

and refine their analysis to a three-year dataset of Atlantic salmon alone for 2002-4. In 

brief, these data comprise movements of live fish (egg to adult) between registered 

sites in Scotland, where paper records of both off and on movements were legible and 

in agreement. Data are held by the Fish Health Inspectorate of Marine Scotland. 

For the network of livestock movements, the partitions used here are derived from the 

data extract used by Kao et al. (2006). Their data set comprised data from January 

2003 to December 2004 for cattle (Cattle Tracing System) and sheep and pigs 

(Animal Movements Licence System, England and Wales; Scottish Agricultural 

Movements System, Scotland). A full description is given by Kao et al. (2006). 

Both data sets provide source and destination premises, species and number moved, 

and date. Data were segregated into time periods (years for fish, four-week periods 

for livestock), with each network described by an adjacency matrix !. Here, !!" = 1 

implies movement of animals from node (site) ! to node ! (zero for no contact). The 

number of in and out connections for node! are given by !!!"# and !!!", the total 

number of nodes by !, and the total number of arcs by !. 

A.3.2. Graph partitioning 

Communites were identified for the two datasets using related partitioning algorithms. 

For the fish network, the measure of community fit used is that defined by  

! = 1
! !!" −

!!!"#!!!"
! !! = !!

!,!
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Where !! is the community ‘label’ of node !. The Iverson bracket ∙=!∙  returns one if 

the condition inside is true, and zero otherwise. This formulation – as described by 

Kao et al. (2006) and Leicht & Newman (2008) – accounts for the strong directed 

nature of the fish network. Higher ! indicates a larger fraction of arcs within 

communities. ‘Lone’ nodes in a network, with no movements during the period of 

interest, gain a unique label. However, it could be argued that without network activity, 

such nodes are not part of the network at all (further discussed in the Results section 

A.4). The livestock network was treated similarly, except that the partition data 

available were based on undirected edges. 

For both systems, we employ a ‘hill-climbing’ algorithm (Newman, 2004; Danon et. al. 

2005). This begins by assigning each node a unique community label !! = !. Each 

possible merger of two communities is considered, with that providing the largest 

positive change in ! accepted. This step is repeated until a maximum ! is reached, 

for which the corresponding community assignments are taken as the ‘best fit’. 

Though other algorithms may find improved partitions, this one has the benefit of 

being practicable on very large networks such as that for livestock movements. 

A.3.3. Entropy measures 

Borrowing concepts from information theory, entropy-based measures can be used to 

compare multiple partitions of the same network (Strehl et al. 2002; Vinh et al. 2009). 

Beginning with two vectors ! and ! containing community labels for two partitions, 

two vectors ! and ! are built containing the number of nodes present in each 

community in ! and !:!! = !! = !! ; !! = !! = !! . Also, an !×! matrix is defined 

containing the frequency combinations of communities in both ! and !: !!" =

!! = ! !! = !!,! . For two networks with congruent partitions, this matrix contains 

only a single non-zero element in each row and column. The Shannon entropy (a 

measure of the information content of a dataset) is calculated for the partitions of each 
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network ! !  and ! ! , and that of the matrix of community combinations, the 

‘joint entropy’ ! !,! .  

! ! = − !!
! log !!

!!
 

! !,! = − !!"
! log !!"

!!,!
 

Choice of logarithm base does not affect the end result below, and by definition, 

0×log0 = 0. The mutual information ! !,! = ! ! + ! ! − ! !,!  then measures 

the amount of information shared between the two partitions – and thus their similarity 

– with a lower bound of zero, but no upper bound. For comparison between networks, 

a normalised measure of similarity is required. A simple approach is to scale ! by its 

maximum potential value (it cannot exceed the minimum of ! !  and ! ! ), giving 

the normalised mutual information 0 ≤ !"#! ≤ 1:  

!"#! =
! !,!

min! ! ! ,! !  

Alternatively, we can scale by the geometric mean of these two quantities (Strehl et al. 

2002), 0 ≤ !"#! ≤ !"#!: 

!"#! =
! !,!
! ! ! !

 

For correlation coefficients such as Pearson’s or Spearman’s, a value of zero is 

obtained where there is no relationship, i.e. under the null hypothesis. However here, 

under a reasonable null hypothesis that communities are assigned randomly, the 

expectation of ! !,! ,!! ! !,!  is not generally zero and depends upon the size 

distribution of communities (Vinh et al. 2009). A further approach is to normalise ! 

against this expectation, providing the adjusted mutual information !"# (Vinh et al. 
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2009), with a maximum of one, zero under the null hypothesis, and negative where 

there is less agreement between network communities than would be expected by 

chance.  

!"# = ! !,! − !! ! !,!
min ! ! ,! ! − !! ! !,!

 

This definition of !"# is similar in form to that of Cohen’s Kappa statistic, and has a 

lower value than !"#! except where !! ! !,!  is vanishingly small. Vinh et al. 

(2009) suggest using max ∙,∙  not min ∙,∙ , however the min term has more in common 

with the formula for !"#! above. Unlike correlation coefficients, its minimum possible 

value is not defined to be −1. A permutation test was employed to determine the 

mean and distribution of !! !  allowing for calculation of !"# and its significance. One 

of the vectors ! and ! is repeatedly shuffled, removing association between the node 

labels in ! and !. On each permutation, ! !,!  is recalculated. The original ! !,!  

can be compared with the distribution of these permuted versions. 

A.3.4. Pair-based measures 

Pairs of nodes can be examined with respect to whether or not they are in the same 

communities. Pairs of nodes that were in the same community in the two partitions 

were counted: ! = !! = !!!"!!  and ! = !! = !!!"!! , as well as pairs that were in 

the same community in both partitions: ! = !! = !! !! = !!!"!! , or in different 

communities in both: ! = !! ≠ !! !! ≠ !!!"!! . 

From these values, the probability that a pair of nodes present in the same community 

in partition! are also in the same community in partition! was calculated: 

! pair!in!!|pair!in!! = !
!. However, this metric is not necessarily symmetric with 

respect to !and !, unlike the earlier measures. Instead, the geometric mean of both 

possible probabilites was taken: ! = ! !"  (Wallace, 1983; quoted in Meilă, 2007). 
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These probabilities benefit from being easily interpretable. A further pair-based 

measure of clustering similarity, the Rand index ! = ! + ! ! ! − 1  (Rand, 1971), 

was also calculated. 

Again, these measures do not equal zero under the null hypothesis that the two 

partitions are independent. The statistical significance of both was determined through 

a permutation test and – as with the mutual information – standardised according to 

! − !! ! 1 − !! ! , where ! is the measure of interest, giving an adjusted Rand 

index !" and an adjusted probability related to !, !!. 

A.4. Results and Discussion 

For the salmon movement network ! = 502 , the unadjusted indices !"#!, ! and ! 

gave numbers of different magnitude, despite their apparent normalisation (table A.1). 

This reflects their different values under their null models. A ! index of ∼0.3 is easily 

interpretable as the proportion of same-community node pairs that persist across both 

partitions. Once ‘adjusted’, the range of values was narrower, with the pair-based 

indices giving almost coincidental values (table A.1). This coincidence was also 

evident for the livestock network, thus in figure A.1 only the index ! is shown. The null 

model for the permutation test was amended for the fish network to account for 

variation in the activity of nodes between years: Those nodes with no links were not 

considered during the reshuffling process to prevent their single-node communities 

being spuriously reassigned to other nodes. 
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Table A.1. Adjusted and unadjusted measures of agreement for communities between 
pairs of years 2002-2004 for the live salmon movement network in Scotland. All 
measures were statistically significant at P=0.05. Shown are the normalised and 
adjusted mutual information !"#! and !"#, the (adjusted) Rand index ! !, and the 
(adjusted) pair-based measure ! !. 

 2002,2003 2003,2004 2002,2004 

Whole network    

!"#! 0.71 0.78 0.78 

! 0.23 0.29 0.29 

! 0.94 0.95 0.96 

!"# 0.51 0.61 0.43 

!! 0.20 0.26 0.26 

!" 0.20 0.25 0.25 

 

Core network 

!"# 0.55 0.65 0.62 

!! 0.39 0.54 0.47 

!" 0.38 0.54 0.47 

 

For the much larger livestock network (! =141607; see supplementary animation), 

networks were built from four-week periods of data. As with the fish network, all 

correlations were statistically significant (P < 0.05). These networks show a marked 

seasonal pattern (Kao et al. 2006) with a higher density of arcs due to an autumn 

peak in sheep trading. This seasonality was still noticeable despite normalisation as a 

peakin !"# values for networks 13 four-week periods (i.e. one year) apart (figure A.1). 

Though this peak may represent a real similarity in the trading structure at particular 

times of year, Meilă (2007) raises concerns over the use of adjusted indices for 

comparison purposes where the baseline and actual values may vary non-linearly. 
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Figure A.1. Measures of agreement for network communities based on livestock 
movements of cattle, sheep and pigs in Great Britain (2003–2004). Means and standard 
errors of measures for all possible combinations of 4-week periods are shown, stratified 
by time difference in periods (1–24). Shown are the adjusted Rand index ! (solid line) 
and entropy measure !"# (dashed line) for the ‘core’ network, with !"# for the entire 
network (dotted line). Probability ! coincided with ! and is not shown. 

To explore this further, we accounted for seasonality in trading volume by considering 

only a ‘core’ sub-network of nodes that were active in each of the 25 networks 

examined (! =!6424). The !"# values together with the Rand index ! are shown for 

this core network in figure A.1, showing close agreement between the three statistics 

and much reduced seasonality in community structure. Taking the ‘core’ network of 

! = 208 nodes for the salmon network, a similar result is found as for the whole fish 

network, albeit with higher values (table A.1). 

Though both sets of networks show moderate agreement between partitions at 

different time points, in neither case was a higher agreement between networks closer 

in time apparent. One possible explanation of this is that there are no significant long-

term trends in community structure for either network, or that any such trends operate 

on timescales either longer or shorter than examined in this study. There may also be 
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other trends and patterns within the data that remain observed. For example, the 

partitions above are not absolutes: different measures and algorithms could produce 

different groupings. Also, no allowance is made in this approach for the potential for 

sub- and super-community network structure (Kao et al. 2006; Green et al. 2009). 

The unadjusted indices give a wide selection of values for the same network, however 

once adjusted they are more similar. Those for ! coincided with !. However, whether 

this is in general the case or is network dependent remains to be established. The 

computational efficiency of the measures varies: Despite their apparent complexity, 

the entropy-based measures are relatively fast to compute, particularly for large 

networks, since they do not rely on counting edges.  

A.5. Conclusions 

In conclusion, for both networks a significant and non-trivial level of concordance 

between network partitions over time was seen. Dissimilarity in partitions, however, 

appears to represent random variation rather than decay in partition similarity over 

time for both networks. Characterising the way networks change over time remains a 

challenging problem. Our results suggest that despite the fact that many features 

change, a large part of the intermediate structure is conserved over time, particularly 

in the core network. Nevertheless, the how stable a contact network must remain over 

time to be epidemiologically useful for disease surveillance and control remains to be 

explored, potentially through simulation of dynamic disease control measures on 

dynamic network epidemic models. 
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APPENDIX B: The potential for targeted surveillance of 
live fish movements in Scotland 

Green, D.M.; Werkman, M.; Munro, L.A. 

B.1. Abstract 

 The network structure of the movements of live fish in the Scottish aquaculture 

industry has recently been demonstrated for 2003. In this paper, we enlarge this 

analysis to a longer three-year period from 2002 to 2004, the new data allowing 

complete coverage of at least one production cycle. The resulting network contains 

slightly more sites than that for a single year, and is denser with more arcs (directed 

site-to-site connections) present, but otherwise features recognisable in the one-year 

network are still recognisable in the three-year network. Arc removal algorithms (a 

proxy for targeted surveillance) were identified that could successfully reduce the 

portion of the network reachable from a node (a proxy for potential epidemic size) by 

approximately one third by removing as few as four arcs. This results from the high 

centrality of particular nodes and arcs. A strong community structure was identified in 

the network, corresponding with species farmed but only weakly geographical, with a 

high proportion of arcs occurring between management areas and catchments. 

Keywords: aquaculture, network, graph, transmission  

B.2. Introduction 

Three species of salmonid fish dominate aquaculture production in Scotland: brown 

trout Salmo trutta, rainbow trout Oncorhynchus mykiss, and Atlantic salmon Salmo 

salar. Of these, Atlantic salmon is by far the largest sector with c. 130,000 tonnes per 

year of production over the last decade, over a gradually decreasing number of 

distinct sites (Scottish Government, 2011a). With production aggregated into a 

relatively small number of sites, in turn clustered in distinct geographic areas, the risk 
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of spread of disease from site to site, and its management, are of importance both to 

producers and to the government. Under recent EU legislation, EU directive 

2006/88/EC (implemented Aug 08), EU countries are required to implement risk-

based surveillance. In Scotland, the competent authority for implementing this is 

Marine Scotland through the Fish Health Inspectorate, to whom records of live fish 

movements are already required to be submitted by those registered farming 

enterprises (under The Registration of Fish Farming and Shellfish Farming 

Businesses Order 1985). 

In epidemiological systems with complex population structure, network models have 

been used widely to study patterns of contact through live animal movements, 

including in aquaculture (e.g. Thrush & Peeler, 2006; Munro & Gregory, 2009; Green 

et al. 2009). Epidemiological questions that can be asked of networks include inter 

alia, which sites are at risk of spreading infection, should an epidemic arise?  And 

which sites are at risk of being infected?  These are not necessarily the same. And 

where should we concentrate effort to help reduce epidemic spread?  Live fish 

movements are an important potential route for disease transmission, as has been 

demonstrated in the cases of both infectious salmon anaemia (Murray et al., 2002) 

and bacterial kidney disease in rainbow trout (Bland, 2007). 

Recently, Green et al. (2009) explored the network structure of movements of live fish 

within the Scottish aquaculture industry for 2003 (see also Munro & Gregory, 2009), 

with a view to informing targeted surveillance policy for infectious disease prevention 

and control. They reported how several algorithms could be used to identify contacts 

between sites that might prove suitable targets for targeted surveillance. This aids 

efficient application of limited resources towards high-risk farms, locations, and farm 

types as part of risk-based surveillance (Stärk et al., 2006). Since publication of this 

paper, further work has consolidated movement data into an electronic database for 

the additional years 2002 and 2004, representing the largest dataset for salmonid 
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movements available for Scotland. This brings further sites and connections into the 

network, and importantly, covers one complete production cycle for marine salmon 

production. In this paper, we extend the earlier analyses of network structure and 

targeted surveillance approaches onto this, more complete, dataset. We investigate 

whether the conclusions of the earlier analysis are robust to being applied on a 

considerably larger network. 

B.3. Method 

B.3.1. Data 

Data were obtained from the Fish Health Inspectorate at Marine Scotland, Aberdeen, 

and converted into an electronic database. Only ‘validated’ data were used, i.e. where 

fish movements were confirmed by paper records from both exporting and receiving 

sites and could be cross referenced. These data included all life stages from egg to 

adult, for all three species, for all registered sites within Scotland. Movements to 

unregistered sites (predominantly freshwater fisheries; please note that this dataset 

precedes the legislation introduced under EU directive 2006/88/EC which requires the 

registration of a wider range of aquaculture production businesses) and imports and 

exports out with Scotland (e.g. to England) were not included in the dataset (Munro & 

Gregory, 2009). The dataset was extended forwards and backwards by a year giving 

a three year time series, enough to cover complete production cycles of the salmon 

industry. However, for 2002, only salmon movement data had been converted to 

electronic format. 

Location and river catchment data were available for each site. Inland sites may be 

categorised according to ‘supercatchment’ (i.e. sites connected by any route through 

freshwater: the whole drainage basin) and 11 official Salmon Fishery Statistical 

Regions (below, ‘Statistical Regions’, see figure B.1 inset). Marine sites are divided 

into 20 Management Areas (Scottish Government, 2011b), which are in turn 
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subdivided (up to four-way). Management Area boundaries are determined by site 

locations, and are reviewed periodically if sites open and close, but did not straddle 

the coastline of adjacent Statistical Regions. Here, Management Area boundaries as 

of 2003 were used. ‘Live’ management areas are detailed by the Scottish Government 

(2011b) but the historical data are not reported online. 

 

 

Figure B.1. Geographical representation of network community structure. Large circles 
of nodes represent regions; sites belonging to the same management area (and sub-
area) or catchment are drawn in the same small circle. Inset: schematic showing official 
Salmon Fishery Statistical Regions. 

B.3.2. The contact network representation 

Data analysis broadly followed the approach of Green et al. (2009). Each of ! sites is 

represented by a node, with potentially infectious contact from a site ! to a site ! 

represented by directed arcs !, ! . A matrix element !!" = 1 indicates that at some 

point over the period of interest, movement of live fish occurred from site ! to !; !!" = 0  

indicates no such receipt of live fish. Any (erroneous) self loops were removed 

!!! = 0 . The simplest node properties are the numbers of connections – in, out, and 

total (undirected) – enjoyed by each node, i.e. the node degree, !: 

!!!" = !!"! ; !!!"# = !!"! ; and !!!"#$% = !!!" + !!!"# − !!"!!"! . The means of node 
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statistics averaged across all nodes are denoted using angled brackets, e.g. 

!!" = !
! !!"!,! . 

Some epidemiologically useful measures can be taken from the network topology. 

The shortest distance in network steps from node! to node! is represented by the 

matrix of shortest paths !!", which is zero if ! and ! are the same node, and undefined 

where no suitable path exists. The number of such paths passing through arc !, !  is 

its betweenness !!" (undefined where !!" = 0). Additional measures of network 

structure included the clustering coefficient ! as used by Keeling (1999), amended for 

a directed network as the proportion of ordered node triples !, !, !  with arcs !, !  and 

!, !  that also have arcs !, ! . The level of assortativity (preferential mixing between 

nodes of relatively high or low degree) !!""#$%, was defined as the correlation between 

the in degree of node! and out degree of node! across all arcs !, !  (Newman, 2003). 

From these and other values, estimates can be obtained for the implications of 

network topology on the basic reproduction number !! of a propogating epidemic, that 

is the number of secondary cases generated by a typical case over its infectious 

period, where !! > 1 represents the transmission threshold for a large epidemic in a 

large network (Anderson & May, 1991). Several network measures are demonstrated 

on the small ‘toy’ network shown in Box B.1. 
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Box B.1. Demonstration of network statistics. For simplicity, the small undirected 
network shown is analysed in the table showing key network statistics referred to in the 
paper. On the network diagram, nodes are indicated and edges are marked by their 
betweenness!!". 

 A B C D E F mean 

! 1 3 2 3 1 0 10/6 
!!,! 0 1 2 2 3 ∞  
!! 4 4 4 4 4 0  

 
 
Summary statistics  
!"# ! = ! ! = !"/! 
! = !.!" !! = ! 
!! ≈ !! ! = !.!  
Triples: ABC ABD BCD CBD CDB BDE CDE. 
Triangles: BCD CBD CDB.  
! = ! !.  

 

   
 

B.3.3. Targeted surveillance algorithms 

Several algorithms, as described by Green et al. (2009), were used to identify arcs of 

high importance in the network structure, whose removal from the network effectively 

limits the potential spread of disease. These algorithms are introduced briefly below. 

One such algorithm identifies arcs which bridge network communities. A network 

community is a group of nodes (sites) with a relative high density of arcs within the 

group, with relatively few connections to other such groups. As with the earlier study, 

a ‘modularity’-maximising algorithm was used (Newman, 2004; Leicht and Newman, 

2008) to identify communities, with each node a member of a single community. The 

‘greedy’ algorithm used is efficient though does not necessarily find an absolute global 
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maximum for modularity !, which is a hard problem for large networks. Greedy 

algorithms proceed through a set of steps, always choosing the locally best solution at 

each step.  

! = 1
! !!" −

!!!"#!!!"
! !! = !!

!,!
 

Calculation of ! requires the total number of arcs! = !!"!,! . For two variables ! and 

!, the Iverson bracket ! = !  has the value of one where the condition ! = ! is true, 

and zero otherwise. Therefore the summation for ! above is only performed for 

combinations of nodes ! and ! which belong to the same community. Modularity ! 

penalises placing disconnected nodes with high degree in the same community, and 

rewards placing together those nodes with low degree which are connected. 

The resilience of the network to arc removal was expressed in terms of maximum or 

mean node ‘reach’ (Green et al. 2009) !, which can be defined as the number of 

nodes downstream from a focal node, following directed paths, that are potential 

targets for epidemic spread, !! = !!" ≠ ∞!!! . All the algorithms, listed below (see 

also Green et al. 2009), attempt to identify an ordering of arcs from the most to the 

least important for maintaining network structure. A successful algorithm will result in 

the fastest disassembling of network structure by removing the least number of arcs, 

either in terms of maximum reach max !  (an estimate of worst-case epidemic size) 

or mean reach !0  (an estimate of typical epidemic size). 

Arbitrary The null model, with a non-intelligent selection of arcs, was to choose 

arcs purely at random, representing non-purposeful (but potentially limited) 

surveillance.  

Highly connected (degree) A node with many in connections is at high risk of 

infection; a node with many out connections poses a high risk of further 
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connection. The second algorithm therefore ranked arcs !, !  according to how 

well they fulfilled both criteria, using the metric  

!!!"×!!!"#. Networks with many arcs with a high value for this expression are 

assortative (see above), and assortativity leads to a higher value of !!.  

High betweenness Arcs were ranked according to their betweenness, !!". After 

each sequential removal of an arc, betweenness must be recomputed for the 

whole network as shortest paths are frequently rerouted.  

Community-bridging Arcs bridging communities as identified above were 

prioritised for removal. Within-community and between-community arcs were 

chosen arbitrarily, aside from this criterion.  

Greedy max & greedy mean In these algorithms, arcs are removed one at a time, 

always choosing that arc which causes the greatest reduction to either 

maximum or mean reach. Though this sounds ‘optimal’, as with many 

algorithms—including that for assigning communities above—this locally 

optimal choice by no means ensures finding a globally optimal solution.  

Eigenvector-based Network eigen analysis provides an eigenvector ! which is a 

measure of node centrality, and an eigenvalueλwhich in some conditions can 

be used to obtain an estimate of !!. Two algorithms as used by Green et al. 

(2009) chose out arcs arbitrarily within nodes, ranking nodes according to 

highest eigenvector centrality !!. The adjacency matrix was modified (Bonacich 

& Lloyd, 2001) in two ways before eigenanalysis, assuming either additional 

contact between all nodes of strength ! ! (eigen spread algorithm), or 

constant total weight of outward contact from all nodes (eigen walk algorithm).  

For the most successful algorithms, the ten arcs were identified that appeared most 

frequently amongst the first ten arcs removed (due to the stochastic nature of the 
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algorithms, the chosen arcs may vary between runs). The properties of these arcs 

were then compared with the average arc properties across the whole network. 

B.4. Results 

B.4.1. Small- and large-scale network structure 

With the new larger movement dataset presented in this paper (compared with Green 

et al., 2009), a larger network is obtained with ! =561 nodes and a higher density of 

links (figure B.1 and B.2). Mean degrees (and their coefficients of dispersion, i.e. the 

variance-to-mean ratio) were !!" = 2.39 (1.23), !!"# = 2.39 (6.36) and !!"#$% = 

4.53 (4.24) for an undirected network (see figure. S.1 in electronic supplementary 

material for a histogram of node degree). Other simple measures of network shape 

remained relatively unchanged from the earlier analysis with correlation between in- 

and out degree of nodes of ! = 0.238, a clustering coefficient ! =!0.069 and a 

coefficient of assortativity of !!""#$% = 0.164 (assortative). With a higher !, the 

eigenvalue approach to estimating !! also gives a higher value, with !! = 4.59 for  

! = 0.5. Again, this is higher than the degree-based estimate of 

!! ≈ !!"!!"# !!" !!"# = 3.05. 
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Figure B.2. The Scottish live fish movement network (2002 to 2004), according to 
species moved to/from sites. □ salmon only (S); ▪ rainbow trout only (R);  S+R; �  brown 
trout only (T); �  T+R; �  T+S; �  T+S+R. Arrows indicate movement direction (sometimes 
bidirectional). 

The higher arc density has a large impact on the overall connectivity and community 

structure of the entire network. Considering large-scale measures of network 

structure, as opposed to the node- and arc-level measures reported above, mean 

shortest path length (where defined and non-zero) was 5.92, with such paths 

accounting for 0.105% of the ! ! − 1  possible. As in Green et al. (2009), a rewiring 

algorithm was employed to provide null-model networks for comparison, equivalent to 

a null hypothesis of no large-scale structure to the network and random connection 

(notwithstanding that nodes have different degree). For rewired networks, mean 

shortest path length was similar, 5.13, with finite non-zero paths accounting for 

0.598% of those possible (see figure S.1 in electronic supplementary material for 

histograms of path lengths in the original and rewired networks). 
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The community-joining algorithm to find an optimal partition of the network to 

maximise modularity found partitions with maximum modularity of ! =!0.75, similar to 

that found for the one-year network data. The community assignments and joining 

dendrogram associated with this maximum modularity are shown in figures B.3 and 

S.2 (in electronic supplementary material). This community distribution consists of 

several large communities well defined in the dendrogram, with a small number of 

nodes belonging to smaller communities or disconnected. This community algorithm 

produces a partition with a higher modularity index than that using shared 

membership of a supercatchment or management area as criteria for membership of 

the same ‘community’ (! =!0.41). This reflects a relatively large proportion of arcs 

occurring between such communities (43 %), as can be seen in figure B.1. 

 

Figure B.3. Community assignment for the live fish movement network for Scotland for 
2002-4. Community membership is indicated by different symbols. 

B.4.2. Reducing network reach 

The effects on network reach of removing up to 100 arcs is shown in figure B.4 for 

both maximum reach and mean reach, and for the eight algorithms explored in Green 

et al. (2009) and described above. With only a small number of extra nodes, but 
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considerably more connections, network density is higher and this is reflected in 

different efficiencies amongst the algorithms. The two greedy algorithms perform well 

for both measures, with betweenness being comparatively successful. The other 

algorithms (degree-, community-, and eigenvalue-based) perform relatively poorly. 

Degree- and community-based measures are somewhat effective but only if a large 

number of arcs are removed. 

Arcs having been ranked in order of ability of importance to network structure, the 

properties of high importance arcs and the average arc were compared for the greedy 

(both) and betweenness algorithms. For the greedy max algorithm, four out of ten 

selected arcs were shared with the greedy mean algorithm, and two with the 

betweenness algorithm, which in turn shared four with the greedy mean algorithm. 

Overall, 22 arcs were represented involving 33 nodes with some nodes being both 

source and destination nodes for these arcs. Compared with the whole network, these 

arcs left nodes with a higher in degree (3.8) than average (3.1) and led to nodes with 

a considerably higher out degree (10.8 versus 3.1). A fraction 0.52 of arcs joined 

nodes in different communities, compared with 0.12 for the whole network. They are 

also more likely to join nodes in different regions (0.52 versus 0.43). 
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Figure B.4. Mean and maximum reach from all nodes, versus proportion of network arcs 
removed (plotted on a square-root scale), for eight different algorithms for determining 
precedence of arc removal. Arrows indicate x-axis values corresponding to the removal 
of 1, 2, 3, and 4 arcs. 

B.5. Discussion 

Compared with analysis of the 2003 data alone (Green et al. 2009), the 2002-2004 

network shows a modest increase in the number of nodes, but a large increase in the 

number of arcs. This is demonstrated by the more densely connected network picture, 

with few poorly connected or disconnected node pairs. Community structure however 
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remained strong. Compared with the 2003 network, the full network has a distribution 

of path lengths with higher mode, but with a shorter tail, as expected with a more 

compact network. Maximum degree is also higher. A caveat concerning the 

movement data raised in Green et al. 2009, remaining important here, is that only 

movements between registered sites are recorded (Munro & Gregory, 2009). 

Unregistered sites consist mainly of trout fisheries, which although they may pose a 

risk of disease spread by other means than fish movements, are likely to be primarily 

‘sinks’ for live fish movements with no onward network connections. These data will 

be available in future since sites are required to be registered as of August 2008 

under EU directive 2006/88/EC. Electronic recording of movement data in a database 

format will also aid in future analyis: the scope of the study reported here was 

necessarily limited in breadth by the large amount of effort involved in processing the 

paper movement records, particularly as these are in duplicate (off and on pairs). The 

complexities of analysing this data source have been recently discussed by Werkman 

et al. (2011b) [chapter 4]. 

Arc-removal methods of fragmenting the network remain effective, with c. 10 arcs 

removed reducing both mean and maximum network reach by about one half. This is 

less effective than with the 2003 data alone (Green et al. 2009), but this is to be 

expected given the more tightly connected network: its denser structure is held 

together by single arcs in fewer places. Lower betweenness values for arcs are found 

for similar reasons (data not shown), as a larger number of paths between nodes 

exist, lowering the centrality of a particular path. Though the successful arc-removal 

algorithms targeted arcs with a tendency towards high degree, joining communities, 

algorithms based on degree or community assignment alone behaved relatively 

poorly, demonstrating the benefit of a more technical, model-based approach to 

targetting surveillance. This contrasts with the earlier analysis on the smaller network 

(Green et al. 2009): there, the degree-based measure performed less poorly, and the 
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eigenvalue-based measures performed at least as well as arbitrary removal. Here, the 

eigen spread measure performed worse than random removal. 

The ability to identify high-centrality nodes is only beneficial for disease control if the 

network structure is sufficiently stable: a rapidly changing network means the 

predictive power of network properties for future disease control will be low. Recently, 

algorithms for determining the stability in time of trading networks, using both the 

aquaculture network fully described here, and the network for large livestock 

movements in the UK for 2003-2004, have been examined (Green et al. 2011). These 

authors concluded that though temporal autocorrelation existed in both networks, it is 

difficult to make a judgement on the utility of this without an objective baseline for 

comparison. One way of defining this baseline may be by through simulating real 

disease problems and their control measures on (dynamic) networks. 

However, when considering the spread of disease within the aquaculture industry, live 

fish movements are far from the only means of disease transmission between sites. 

Other transmission routes include fomite, well-boat associated (Murray et al. 2002), or 

direct spread through the water column in sea or freshwater, for example for infectious 

salmon anaemia virus (ISAv; Jarp & Karlsen, 1997, Gustafson et al., 2007), with 

differences in risk between diseases. Where Management Areas are relatively well 

sealed due to infrequent movements between them and separation in water distance, 

synchronisation in fallowing may provide a benefit in clearing disease from specific 

areas. The effectiveness of such fallowing strategies has been explored by Werkman 

et al. (2011a) [chapter 3], which contrasts the effects of partial or fully synchronised 

fallowing in simulated epidemics of the Scottish salmon industry (marine sites) based 

on the distribution of sites within Management Areas. 

In conclusion, the network of live fish movements in Scotland shows itself to be 

strongly organised into communities, with potential for targeted surveillance to focus 
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on high centrality arcs, to aid in the development of risk-based surveillance 

programmes where resources are necessarily limited (Stärk et al., 2006). 

Nevertheless, utility of such approaches is limited by the lack of real-time data in a 

continuously changing industry. 
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