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abstract: Increasing concerns about the changing environment
and the emergence of pathogens that cross species boundaries have
added to the urgency of understanding the dynamics of complex
ecological systems infected by pathogens. Of particular interest is the
often counterintuitive way in which infection and predation interact
and the consequent difficulties in designing control strategies to man-
age the system. To understand the mechanisms involved, we focus
on the pathogen exclusion problem, using control maps (on which
the network of exclusion thresholds are plotted) in order to readily
identify which exclusion strategies will work and why others will not.
We apply this approach to the analysis of parasite exclusion in two
game bird ecologies. For higher dimensions, we propose a compu-
tational scheme that will generate the optimal exclusion strategy,
taking into account all operational constraints on the pathogen in-
vasion matrix, populations, and controls. The situation is further
complicated when external forcing distorts pathogen thresholds. This
distortion is highly sensitive to the lags between forcing components,
a sensitivity that can be exploited by management using correctly
lagged cyclically varying controls to reduce the effort involved in
pathogen exclusion.

Keywords: ecological control, red grouse, apparent competition, non-
linear optimization, environmental forcing, resonance.

Introduction

Theoretical and empirical studies have provided insight
into the dynamics of a specialist pathogen and its host
(Anderson and May 1986, 1991). Out of these studies has
emerged the important concept of invasion threshold (typ-
ically determined by the basic reproduction number R0).
Its properties reveal the various ways in which the path-
ogen can be excluded, for example, by vaccination, quar-
antine, and (for wildlife) regular culling. A more compli-
cated situation occurs when a generalist pathogen is
present in a community of competing hosts. Its presence
can lead to the reversal of previous dominance relations
and, on occasion, exclusion of hosts. This is what is
thought to have happened with the exclusion of the rhesus
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monkey Macaca mulatta from Eastern India and Bangla-
desh as a result of apparent competition with the macaque
Macaca fuscularis, mediated by the malarial parasite Plas-
modium knowlesi (Allison 1982). The interaction here is
between direct and apparent competition (Holt 1977;
Hudson and Greenman 1998).

Also of importance is the occurrence of infection in
predator-prey systems. There are many examples where
this happens: the European tapeworm Echinococcus mul-
tilocularis is established in both wolf and moose on Isle
Royale (Hadeler and Freedman 1989). There is heavy mor-
tality of migrating pelicans feeding on infected fish in the
highly toxic Salton Sea (Kaiser 1999), and predation affects
the incidence of infection (Trichostrongylus tenuis) in red
grouse attacked by foxes (Hudson et al. 1992). The com-
plexity here arises from the interaction between infection
and predation, where the predator may or may not be host
to the pathogen.

Various approaches have been adopted to generalize
pathogen exclusion theory to handle these more compli-
cated situations. Ways have been found to generalize the
basic reproduction number R0 to handle heterogeneous
host populations (Diekmann et al. 1990; Dobson 2004).
Alternatively, invasion properties can be studied as an out-
come of a local and global stability analysis of system
equilibria (Arino et al. 2004; Hethcote et al. 2004; Bairagi
et al. 2009). Our approach is to go back to basics and
work with the invasion matrix in rare invader approxi-
mation to enable us to focus directly on the pathogen
invasion threshold (Greenman and Hoyle 2008). In this
approximation, it is assumed that the infected populations
are sufficiently small in size that they can be ignored in
finding the equilibrium levels of the resident (noninfected)
populations (so the resident population equations can be
decoupled) and sufficiently small that the invasion equa-
tions for the infected populations can be linearized and
written in matrix form.

With a more complex system structure, more controls
are likely to be available as well as more ways of using
them to exclude a pathogen. For example, one might be
able to directly control the number of predators (e.g.,
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through controlled predator breeding and release into the
infected ecological system). In Machupo, a virulent virus
spread by rodents was eliminated by the importation of
domestic cats (Johnson et al. 1965). For those situations
where the predator cannot be directly controlled, one
might be able to increase its survival rate (e.g., by pro-
tecting its habitat) or increase predation efficiency by
opening up or improving access to the prey habitat (e.g.,
by removing man-made or natural barriers). Managing
infection transmission may be possible through vaccina-
tion (directly with a trap and test program or indirectly
through distributed pellets), increased biosecurity mea-
sures, or earlier infection detection (Donnelly et al. 2006).

One difficulty is that in some situations particular con-
trols, although implementable, may be counterproductive
in the attempt to achieve management objectives. For ex-
ample, the intuitive idea that increasing the effect of pre-
dation will always help pathogen exclusion from infected
prey is shown not to be the case in a simple example
presented below. This is because the interaction between
the forces of infection and predation is sufficiently complex
that counterintuitive behavior can frequently be observed
(Sih et al. 1985; Hudson et al. 1992). When there are just
two controls, many of these problems can be identified
and resolved by using control maps on which the complete
set of thresholds, for all participating species, are super-
imposed. We apply this approach to the analysis of two
game bird ecologies described by the red grouse model of
Hudson et al. (1992) and the pheasant-partridge model
of Tompkins et al. (2000). For a general eco-epidemio-
logical system, we show how constrained nonlinear op-
timization theory can be used to find the best exclusion
strategy, taking into account all the difficulties discussed.

Finally, we use our theoretical and applied models to
study the distortion of the invasion thresholds caused by
environmental forcing and show how this might provide
an opportunity for management to ease the burden of
exclusion by using cyclical controls (Chesson 1984; Green-
man and Norman 2007). Most of the detailed mathematics
is to be found in appendixes A–C in the online edition of
the American Naturalist. On terminology, we will refer to
the infection-causing agents as parasites since our focus
will be on micro- and macroparasites. Although our con-
cern is with exclusion, we will follow the literature and
talk about invasion matrices and invasion thresholds. Our
use of the term “control” is shorthand for finding ways
of shifting the system from an infected to an uninfected
state and does not refer to manipulation of the stability
properties of equilibria, which our methodology cannot
directly address.

Fundamentals

The problem we consider is how to exclude a parasite
from an eco-epidemiological system using a specified set
of controls. To solve this problem, we will locate in control
space the threshold dividing the regions where the infected
populations can and cannot successfully invade. This
threshold is found from the rare invader approximation
where, as previously described, the equations for the in-
vading populations become linear. The invasion matrix
defining these linear equations will be denoted by J. The
threshold lies on the curve (surface) given by det J p 0
(where “det” denotes determinant). This is because det J
is the product of the eigenvalues of J, the leading eigen-
value being 0 at the threshold. If the leading eigenvalue is
negative, the invasion attempt will fail; if positive, it will
succeed.

We previously studied this problem (Greenman and
Hoyle 2008) in the simpler situation of a community of
species not directly interacting but all host to a parasite.
Our control variables were limited to regular culling of
infectious individuals, looking particularly at how many
species and which species need to be culled to achieve
parasite exclusion. Here we study more complex systems
involving predators and immune species as well. The
greater complexity leads to the possibility of new ways of
managing the system, including predation as well as cull-
ing. First, we consider some simple models that show the
strengths and weaknesses of these two methods of system
control.

Examples with Immune Predator

Consider a simple model with prey host to the parasite
but the predator immune. With infection transmission and
predation density dependent (McCallum et al. 2001) and
no latency or immunity for the prey, the model equations
are given by

dS
p A(H)H � bS � bSI � c PS � gI, (1a)1dt

dI
p bSI � dI � c PI, (1b)2dt

dP
p v c PS � v c PI � mP � c PQ. (1c)1 1 2 2 3dt

For the prey, S and I denote the susceptible and infectious
populations, respectively, and denotes the totalH p S � I
population. Parameters a and b describe (per capita) birth
rate and natural mortality, respectively, while r p a � b
measures the net population growth rate and d p b �

the removal rate from the infectious state by naturala � g
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mortality (b), by virulence (a; i.e., additional mortality due
to infection), or by recovery (g) to the susceptible state.
Self-regulation is embedded in the birth rate: A(H) p

, with K the carrying capacity and .a(1 � mH) m p r/(aK)
The infection transmission constant is b. For the predator,
P is the population level and m its natural mortality. Pa-
rameters c1 and c2 are the predation constants for S and I,
respectively, with v1 and v2 the corresponding biomass con-
version factors. With , equations (1) define for usQ p 0
model 1. (For the moment, we keep , explaining itsQ p 0
significance later.) In rare invader approximation, the res-
ident equations (for S, P) can be written as

dS S
p rS 1 � � c PS, (2a)1( )dt K

dP
p v c PS � mP � c PQ, (2b)1 1 3dt

taking . The (per capita) growth rate, y, for the in-I p 0
fectious prey I attempting to invade is then given by

dI/dt
y p bS � d � c P p , (3)2 I

where S, P now denote the resident equilibrium population
levels. With only one parasite host, the invasion matrix J
has just one element, given by y in equation (3). The
parasite (invasion) threshold lies on the curve .y p 0

As the first of four variations on model 1, consider
model 1 with P as the single control (with eq. [2b] over-
ridden). (This would be the case if P were to model game-
keepers or their hunting dogs.) Increasing P will always
lead to pathogen exclusion through the combined effects
of reducing the susceptible population and increasing mor-
tality of the infectious population. This double effect is
clear from equation (3) after substituting resident popu-
lation from equation (2a). With P largeS p K[1 � (c /r)P]1

enough, y will become negative and the parasite will be
excluded.

Exclusion by predation alone may not be possible if
there are three levels to the food chain (Abrams 1993).
Such a model can be constructed by reactivating equation
(2b) for the now dynamically determined intermediate
predator P and interpreting Q as the top predator acting
as the single control, no longer zero. Increasing Q will
decrease P and increase S, making matters worse, with y

increasing rather than decreasing in value. (To see this,
substitute andS p (c Q � m)/(v c ) P p (r/c )(1 � S/K)3 1 1 1

as solutions of eqq. [2] in eq. [3].) Decreasing Q will not
lead to parasite exclusion either if the two-level food chain
with still supports the parasite.Q p 0

As the third example, consider this two-level food chain
(with ) controlled by u (infectious prey culling) andQ p 0

(immune predator culling) and modeled by model 1v
with the following substitutions: andd r d � u m r

. The immune predator “culling” ( ) can be negativem � v v
to model enhancement of predator survival. The equilib-
rium populations are ,S p (m � v)/(c v ) P p (r/c )(1 �1 1 1

, yielding a linear parasite threshold AA∗ ( ) withS/K) y p 0
positive gradient when plotted against controls u, , asv
shown in the “control map” of figure 1A. This threshold
divides the control map into two regions defined by which
of the three populations are present: uninfected prey H0,
infected prey H1, and predator P. Possible parasite exclu-
sion options are cull the prey ( ), increase predatoru 1 0
survival by reducing ( ), or some combination ofv v ! 0
these strategies. Increasing is clearly not an option sincev
this will reduce the number of predators and increase the
prey population and hence the reservoir of infection. A
possible control constraint to be aware of is that reducing

might reduce predator mortality to negative values, al-v
though this could be interpreted and remodeled as con-
trolled immigration.

The story is very different if two changes are made in
the previous model. First, suppose the predator strongly
“prefers” (or, more likely, can more easily catch) the infec-
tious prey (i.e., ). Second, suppose it is not easy toc 1 c2 1

differentiate between the infectious and the susceptible prey.
Both of these populations would then have to be culled,
but this imposes the constraint on control u to avoidu ≤ r
the prey becoming extinct because of a negative growth rate.
The control map of figure 1B shows the difficulties that can
be encountered. For the parameter values specified in ap-
pendix A, culling only the prey will not work because in-
creasing u will lead first to predator exclusion (as the pred-
ator threshold BB∗ is crossed) and then to simultaneous
prey and parasite exclusion, since the prey extinction barrier
CC∗ ( ) is crossed before the parasite exclusion thresh-r p u
old AA∗. However, enhancing predator survival (by lowering
) will work, with less effort needed the greater the pref-v

erence for infectious prey. This is apparent from the thresh-
old algebra set out in appendix B.

These examples show that control through predation
can be counterproductive because the network structure
matters (example 2) while culling can lead to the unwanted
exclusion of predator or prey (example 4). So other in-
vasion thresholds can be relevant as well, which is why
control maps (in which we superimpose all thresholds)
are an important visual tool.

Red Grouse

Hudson et al. (1992) propose a dynamic model describing
the behavior of red grouse infected by the cecal nematode
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Figure 1: Control maps for systems with an immune predator and a single host prey. Control u denotes prey culling, denotes predator culling,v
and w denotes proportionate change in carrying capacity K. Model 1: only infectious prey culled (A) and all prey culled (B). Red grouse model:
with infectious prey preference (C) and with no preference (D). Region labeling: H0, prey uninfected; H1, prey infected; P, predators; X, empty
region.

Trichostrongylus tenuis and subject to predation. The pred-
ator is supposed a generalist, justifying the constancy of
predator numbers in an otherwise dynamically varying
system. Among other issues, the authors discuss what is,
in effect, a control problem with predation and prey car-
rying capacity the control variables. We generalize their
analysis, focusing on how best to exclude the macropar-
asite with these controls by taking the predator now to be
a specialist with grouse as its primary resource. The dy-
namic equations for the host prey (reproduced in app. A)
are augmented by equation (1c) for the now dynamic
predator, with parameters suggested by field data for foxes
(Anderson et al. 1981). The control map for the extended
system is shown in figure 1C, with the “culling” rate forv
the predator ( ) and w the proportionate changem r m � v
in prey carrying capacity ( ). Figure 1C showsK r K(1 � w)
four thresholds (marking the exclusion of predator or par-
asite) all emerging from “anchor point” A and defining
four regions, each defined by whether the parasite or pred-
ator is present.

Suppose the system is initially in state H1 at the control
origin ( ; point 1 in fig. 1C), with the predatorw p v p 0
not able to establish itself. There are three basic ways of
excluding the parasite: reduce carrying capacity sufficiently
(e.g., ) that the prey can no longer support the par-1 r 2
asite; progressively increase carrying capacity (e.g., 1 r

) so that initially both predator and parasite can be3 r 4
supported until the predator eventually wins out; or en-
hance predator survival (i.e., reduce ) along path ,v 1 r 5
for example. In the last two cases, prevalence progressively
decreases, driven largely by the predator’s strong “pref-
erence” for infectious prey. This reduces the infectious
population and increases the susceptible population, an
effect partly offset by reduction in the resources available
for the predator. The third case is “counterintuitive” in
that the number of prey rises with increase in predation
(see Hudson et al. 1992; Packer et al. 2003).

If we replace our assumption that the predator prefers
infectious over susceptible prey by assuming no preference
between these populations, then the control map can be
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Figure 2: Control maps for two host prey, one immune predator. Con-
trols are infection transmission scaling (x) and predation scaling (y). A,
Pheasant-partridge model. B, Standard microparasite model. Region la-
bels: Hij denotes prey species i (i p 1 p pheasant, i p 2 p partridge)
in state j ( j p 0 p uninfected, j p 1 p infected). P denotes the predator.
Dashed lines indicate possible exclusion paths.

radically different (fig. 1D), with no region (H1P) of co-
existence between prey, predator, and parasite. There is
instead a region with H1, H0P as coexisting point attractors.
In this region, the parasite can be excluded by an initial
shock to switch the system to the H0P basin of attraction,
that is, the set of initial conditions that lead to coexistence
of H0 and P.

Building Complexity

In our second application, we consider macroparasite ex-
clusion from a two host prey and one immune predator
system using a different pair of controls: infection trans-
mission (b) and predation efficiency (c). In so doing, we
will illustrate the diversity of control map structure and
test the effectiveness of these particular controls. To enable
us to continue to use (two-dimensional) control maps, we
will take our control variables to be the “scaling factors”
for transmission and predation. Precisely, for predation,
if is the precontrol value and ci the postcontrol valueci0

of the ith predation constant, then scaling factor y is de-
fined as and is the same for all constants, ci. Inc p yci i0

the same way, we can define the scaling factor x for in-
fection transmission.

Pheasants and Partridges

One hypothesis for the declining partridge population in
the United Kingdom is that it is the weaker species under
apparent competition between pheasant and partridge,
mediated by the shared nematode Heterakis gallinarum.
Supporting this hypothesis is a dynamical model (Tomp-
kins et al. 2000) listed in appendix A with parameter values
determined from field data. To study how the parasite
might be excluded, we add an immune dynamic predator
(e.g., foxes) and take the control variables to be the pre-
dation scaling factor y and the scaling factor x for parasite
establishment within the game birds (app. A). We suppose
that x can be reduced, for example, by pellet-distributed
biological or chemical agents. The control map for the
system with these particular controls is shown in figure
2A for a predator with the characteristics specified in ap-
pendix A. There are now three anchor points (A, B, C)
defining five regions defined by the populations present.
(Hij denotes species i in state j, where ,i p 1 p pheasant

, , andi p 2 p partridge j p 0 p uninfected j p 1 p
.)infected

There are two basic ways of excluding the parasite when
the infected pheasant is initially alone (i.e., in state H11 at

) with the partridge excluded by force of infection.x p 1.0
The first is the obvious strategy of reducing transmissibility
(x). This weakens the dominance of the pheasant and al-
lows the partridge to reestablish ( ). However,H r H H11 11 21

further effort is required to exclude the parasite
( ). The alternative is to introduce a pred-H H r H H11 21 10 20

ator of sufficient strength to shift the system to region
H10H20P with the partridge reestablished and the parasite
exchanged for the predator. In the situation where there
is a possible candidate predator but it can only shift the
system close to but not beyond threshold BC, it would
not require much effort in predation efficiency enhance-
ment to exclude the parasite because there is no broad
region H11H21P that has to be traversed first before exclu-
sion. This is surprising because for most two-prey/one-
parasite models, this particular region is central to the
threshold structure of the control map. This is the case
(fig. 2B) for the standard dynamical model with micro-
parasite, two host prey, and one immune predator, where
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infection transmission and predation are both density
dependent.

The difference in threshold structure and anchor point
positioning between figure 2A and figure 2B means that an
exclusion strategy that works for one situation may not work
for another. For example, in figure 2B, uninfected prey co-
existence cannot be achieved through predation alone as it
can in figure 2A. A hybrid strategy, with both infection
transmission and predation being used as controls, is re-
quired (e.g., ) unless aH r H H r H H P r H H P11 11 21 11 21 10 20

different set of control variables were to be considered.
In our game bird model, we assumed that the predator

had a preference for the pheasant sufficient to make the
partridge weaker under predation as well as infection
transmission. This explains the fact (fig. 2A) that if the
predation is exceptionally strong, only the uninfected
pheasant coexists with the predator (H10P). If the preda-
tor’s preference were for the partridge, then it would be
the uninfected partridge that would survive (H20P).

General Methods for Solving an Exclusion Problem

The essential step in solving the problem of how to exclude
a population is to locate the relevant invasion threshold
in control space. The invasion threshold lies on that part
of the surface (where J is the invasion matrixdet J p 0
in rare invader approximation) that satisfies three addi-
tional sets of constraints. First, none of the resident pop-
ulations can be negative; second, there may be limits on
the values that a control can take; and third, there are
additional stability conditions to be imposed on matrix J.
(This is because guarantees a zero eigenvaluedet J p 0
but not a leading zero eigenvalue.)

For example, in figure 1B, the parasite invasion thresh-
old is just section AC of the upper part AA∗ of the curve

. (Curve is in fact a hyperbola. Onlydet J p 0 det J p 0
on its upper branch AA∗ is the zero eigenvalue leading.)
Constraints define the boundary points A, C of0 ≤ u ≤ r
this invasion threshold. Constraint imposes no fur-P ≥ 0
ther restriction. (For ease of exposition, we will ignore
additional stability conditions in setting up a problem,
choosing to check whether they are satisfied [by finding
the eigenvalues] after a possible solution has been found.)

When there are more than two controls or two scaled
sets of controls, then control maps are no longer practi-
cable and algebraic and numerical methods have to be
used. Consider again the three-level food chain but now
with the intermediate predator host to the parasite as well.
With three controls in place—Q (top predator), u (culling
the infectious prey), (culling the intermediate infectiousv
predator)—the parasite invasion matrix is given by

Sb � (d � u) � c P Sb11 1 2 12 
 J p ,

Pb Pb � (d � v) � c Q 21 22 2 4

(4)

where , are theS p (b � c Q)/(v c ) P p (r /c )(1 � S/K)2 3 1 1 1 1

resident populations and c4 measures predation on the in-
fectious intermediate predator by Q. (See “Model 2” in app.
A for the model equations and notational details.) Because
there are two infectious populations, J is a matrix.2 # 2

One strategy is to use only controls u, to exclude thev
parasite. However, additional options arise if we use con-
trol Q as well. In particular, we can shift the burden of
culling away from the intermediate predator ( ) to thev
prey (u). This is an advantage if the intermediate predator
is more difficult to cull, for example, if it is avian rather
than terrestrial or if it is protected. To see how this shift
comes about, we use the observation that for the parasite
to be excluded, neither the predator nor the prey can act
as a “reservoir” for the parasite; that is, both diagonal
elements in J must be zero or negative (Greenman and
Hoyle 2008). From the formulas for S and P above, in-
creasing Q increases the (1, 1) element because of a higher
S, lower P. This has to be compensated for by increasing
u. However, increasing Q decreases the (2, 2) element,
easing the burden on . So the use of Q need not bev
counterproductive when the intermediate predator is a
parasite host.

As this example shows, of the many strategies that are
available, the strategy that is finally chosen is likely to
depend on the amount of effort required, as measured,
for example, by economic cost. The problem of finding
the least-effort strategy that excludes the parasite becomes
a problem in optimization theory. As an example, consider
the three-food chain model with invasion matrix (4) and
the parameter values specified in appendix A. The problem
to be solved is the following: minimize

E p h u � h v � h Q (5)1 2 3

( ) subject to the following constraints:h 1 0 det J p 0i

(necessary condition for the invasion threshold with J
given in eq. [4]); , , , (bounds onu ≥ 0 v ≥ 0 Q ≥ 0 P ≥ 0
controls and populations). The constant hi is the per unit
effort involved in using the ith control and E the total
effort required. Problem (5) is not a linear programming
problem (since is quadratic in the controls), so itdet J
cannot be solved by the simplex algorithm but can be
solved by Lagrangian techniques (see app. C; Lenhart and
Workman 2007). This approach yields the optimal (least
effort) solutions:

(u, v, Q, E) p (1.68, 0, 3.07, 4.75) (6a)
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when and(h , h , h ) p (1, 10, 1)1 2 3

(u, v, Q, E) p (0.79, 0.51, 0, 9.81) (6b)

when after checking for invasion(h , h , h ) p (6, 10, 1)1 2 3

matrix stability. So use only controls u, Q when the in-
termediate predator is costly to cull (eq. [6a]) and only
controls u, when the costs for prey and predator arev
comparable (eq. [6b]). The least-effort solution corre-
sponds to a point on the threshold itself, but in practice,
one would want a point in the interior of the exclusion
region to make the strategy robust to parameter variation,
but this will cost extra. Note also that we are determining
where we want to get to in control space but not consid-
ering the transitional problem of how we might get there.

This Lagrangian approach can still be used when there
is nonlinearity in the control or population bounds or in
the effort required. As an example, consider again the red
grouse control problem, supposing that the controls are
increasingly more difficult to apply as their strength is in-
creased (Anderson et al. 1981). Precisely, let the total effort
be given by , where (to remove2 2 �2E p h v � h w h p m1 2 1

dimensionality from ) and . The best strategy tov h p 12

exclude the parasite is located at point 6 on the parasite
threshold (fig. 1C) with , that is,(v/m, w) p (�0.21, 0.057)
increase carrying capacity by 6% and enhance predator sur-
vival by 21%. We can also handle situations where the effort
is cross-linked, yielding economies of scale; for example,
the effort to cull two species at the same time may be less
than the total effort involved in culling them separately.

The Impact of External Forcing

In many situations, there are factors affecting the system
dynamics that cannot easily be modeled explicitly and are
typically approximated by regular (e.g., seasonal) or ir-
regular (e.g., stochastic) temporal fluctuations of the
model parameters. This “external” forcing of parameters
can have a major impact on the invasion properties of
populations in an ecological system (Chesson 1984; Green-
man and Norman 2007). The forcing can distort the in-
vasion thresholds in a way that could work with efforts
to bring about exclusion but, equally, could have the op-
posite effect. To see what can happen and what might be
the consequences for parasite exclusion, consider again the
red grouse model with just carrying capacity control, w,
being used.

In the absence of external forcing, we found that if the
carrying capacity is increased sufficiently, then the parasite
can be excluded ( ; fig. 1C). If the per capita birthw ≥ 1.29
rate a is now seasonally forced, then there is little or no
effect on parasite invasion unless predation strength is
seasonally forced as well. Then there is a dramatic impact,

the effect of which depends crucially on the lag between
these forcing components. If birth rate lags predation by
a quarter cycle, then the effort required to exclude the
parasite increases by about 50% ( ), but if, instead,w ≥ 1.95
predation lags birth rate by a quarter cycle, then the effort
is reduced by a substantial 30% ( ; for more details,w ≥ 0.88
see app. A). There is a control opportunity here. If pre-
dation is under management control (rather than envi-
ronmentally driven), then annual cyclical variation of pre-
dation strength, when appropriately lagged, could reduce
the effort of expanding carrying capacity to exclude the
parasite. If the lag is not chosen carefully, the situation
can be made much worse. So the lag matters. The key to
understanding this phenomenon is that the important lag
is between the red grouse population and the managed
predator strength forcing. With predation lagging birth
rate, the red grouse population and the cyclic predation
control are in synchrony, but if predation leads, then they
are almost exactly out of phase.

Further insight into the effects of forcing can be gained
if the infection transmission constant b is increased from
0.10 to 0.15. Then the unforced system will become un-
stable for large enough w and the parasite will not be
excluded (for realistic values of w). However, if we cycli-
cally control predation strength, we can bring about par-
asite exclusion. The required threshold value of w first
decreases as we increase the external period p, reaching as
low as at before rising to a largew p 1.32 p p 10 w p

at . Why the minimum? This correlates with2.4 p p 17
the natural period of the resident subsystem (∼10), that
is, the period of the oscillatory decay mode that the system
takes to equilibrium in the absence of forcing. This cor-
relation suggests that resonance is occurring, the phenom-
enon where the external forcing has a disproportionately
large effect on the system, most familiarly in the amplitude
of the population oscillations but also, as here, in the
distortion of the invasion thresholds. The distortion is
largest when the natural and forcing periods match.

The effect of resonance on threshold structure can be
seen more clearly in model 1 (with eqq. [1]; app. A). We
suppose that cyclic control through predation scaling y is
arranged to lag environmental forcing on infection trans-
mission by half a cycle. Figure 3 shows the dramatic effect
of this forcing, an effect strongly dependent on the external
forcing period p. The unforced (parasite) threshold AH is
distorted into the threshold ABCDFG, with two inclusion
peaks deeply penetrating into what was previously the par-
asite exclusion region. Except for a weak trend for low p,
the effect of the forcing here is to work strongly against
parasite exclusion. This threshold peak structure is very
reminiscent of the resonance peak structure obtained when
population amplitude is plotted against forcing period
(Greenman et al. 2004). The broad right-hand threshold
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Figure 3: Distorted parasite exclusion threshold as a function of forcing period p for model 1. Shown are the regions of parasite exclusion and
inclusion and the overhanging “subharmonic” peak BCD that generates multiple attractors. Region labeling: Xi indicates that the parasite is excluded
( ) or included ( ), with population period equal to ( ) or twice ( ) the forcing period.X p E X p I i p 1 i p 2

peak in figure 3 is centered about the natural period p0 of
the system ( ) and the narrow left-hand peak aboutp ∼ 170

. Within this left-hand peak, the infectious populationp /20

oscillates at twice the forcing period (reflecting subhar-
monic behavior in the resonance peak structure). In figure
3, we indicate precisely which modes of oscillation occur
in which regions of this “threshold map.” In particular,
we note that because of the overhang in peak BCD, there
are multiple attractors, where exclusion can be achieved
by shocking the system.

For other lags, the threshold distortion can be signifi-
cantly different. With control lagging forcing by a quarter
cycle, the underlying trend is upward, and there is no
possibility of the environment helping the exclusion effort.
For zero lag, there is cancellation between forcing and
control, with little or no distortion in the threshold. So
exclusion threshold distortion can be highly sensitive to
both lag and period and, as one can also show, to the
relative strengths of the forcing components.

It might be thought that there is little chance of ob-
serving this resonant threshold distortion in practice, since
environmental forcing is typically seasonal and the resident
predator-prey subsystem has a high natural period. How-
ever, there are important examples of multiannual envi-
ronmental forcing (Wichmann et al. 2003), and strong
forcing can generate lower-period subharmonic modes.
Further, stochastic forcing can excite high-period natural

modes of the system if its power spectrum allows, as it
would with white noise (Adams et al. 2006). Finally, we
note that the discussion also covers the case where there
is no environmental forcing; that is, all forcing compo-
nents are part of a carefully designed cyclic control strategy.

We have not discussed how to solve an exclusion prob-
lem for a general system regularly or irregularly forced.
The simplest approach is to assume a particular functional
form (e.g., sinusoidal) for the time-varying control and
optimize with respect to the control parameters (e.g., p,
f, d). There are, however, more sophisticated approaches
that can be taken (Lenhart and Workman 2007), which
we hope to report on and give examples of in due course.

Discussion

A central theme has been the controllability of an eco-
epidemiological system, that is, whether a particular man-
agement objective can be achieved with a particular set of
controls. It is not only the issue of which controls are avail-
able but how they are to be applied. For example, regular
culling would work if applied only to infectious populations
but might not if applied to the susceptibles as well. We also
observed that a managed predator would be effective in a
two-level food web but might not be in a three-level web
unless the intermediate predator was a parasite host. So key
characteristics of the ecological system—such as network
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structure, which species are hosts, and which species are
immune to the parasite—are important.

One recurring cause of noncontrollability is the unwit-
ting exclusion of other species (or parasites) by crossing
their thresholds as well. So the invasion threshold of in-
terest should not be analyzed in isolation from other
thresholds, hence the usefulness of control maps that show
the positioning and intersections of all relevant thresholds.
Control maps can be constructed rapidly from algebraic
formulas or simple numerical algorithms for the required
thresholds and updated rapidly with a change of model
parameters. For those thresholds derived from formulas,
an analysis of their properties and their sensitivity to pa-
rameter change can be carried out algebraically (app. B).

For both of our game bird applications, we noted that
modest changes in certain parameters can lead to quali-
tative changes in the contour maps, as indicated by the
relative positioning of the anchor points and the curvature
of the threshold curves. In figure 1C and 1D, qualitative
change was brought about by changes in predator food
preferences, and in figure 2A, which bird species survived
depended on the relative strengths of apparent competition
mediated by the parasite or by the predator. As a result
of such qualitative change, a previously feasible control
strategy might no longer work (cf. fig. 2A, 2B).

In general, there are many solutions to the exclusion
problem, and in practice, the optimal solution would be
one that minimizes “effort” as measured, for example, by
economic cost. This optimal solution may involve more
controls than absolutely necessary. This can be the case if
effort increases more than proportionately with increase
in control, as was assumed in the red grouse model. A
second example is provided by two-stage control, where
apparent competition is used to resize resident populations
ahead of culling the infectious populations.

Controls that are varied in time can also be an important
part of management’s weaponry. They can be especially
effective when the ecological system is already forced en-
vironmentally. Cyclical controls can be designed to work
with the environmental forcing to ease the burden of par-
asite or population exclusion but only if the lag between
forcing components is carefully chosen; otherwise the sit-
uation could be made much worse (Choisy and Rohani
2006). The distorting impact of environmental forcing on
invasion thresholds can become much greater in the pres-
ence of resonance, that is, when the forcing period relates
to a natural period of the system (e.g., fig. 3). So the
interaction between environment and control is highly
sensitive to forcing period as well as the lag.

Of increasing interest are those ecological systems af-
fected by the environment in more than one way, for
example, breeding and infection taking place at different
times of the year (e.g., house finches [Hosseini et al. 2004]

and red grouse [Cattadori et al. 2005]). Recently, Lello et
al. (2008) have studied out-of-phase cyclic patterns of mul-
tiple parasites. This additional structure complicates the
problem of finding an optimal control but may also open
up new ways of managing the system.

Complementary to the problem of exclusion is that of
coexistence and biodiversity, an issue that, to an extent,
can be studied with the threshold methodology we have
discussed. As noted, the additional presence of the parasite
may be necessary for a predator to coexist with its prey
if the predator has too strong a preference for infectious
prey. The issue of coexistence is especially important when
the interaction is frequency dependent (Rudolph and An-
tonovics 2005). Haque (2010), for example, argues that to
avoid immune prey exclusion, the parasite may have to
be present to offset predation. Infection persistence is also
the main issue in recent modeling of genetically engineered
viruses in pest–natural enemy systems (Ghosh et al. 2007).
External forcing, in its ability to distort thresholds, can
also be a factor in promoting coexistence by making it
more difficult to exclude particular species (Chesson
1984). Again, there are opportunities here for management
to intervene by imposing cyclically varying controls.

One of the problems in understanding eco-epidemio-
logical systems is that it can be difficult to work out which
(if any) species are carriers of the parasite (Cleaveland and
Dye 1995; Hudson et al. 2002). Even if the infection path-
ways are well understood (e.g., the Salton Sea ecology
[Kaiser 1999]), there may be insufficient field data to con-
struct a fully determined dynamic population model that
can be used for detailed exploration and analysis. For our
purposes, we have created two models by splicing together
data for the host prey (game birds) and immune predator
(e.g., foxes) with unfitted parameters used as controls or
used for sensitivity testing. In our view, lack of data does
not invalidate the building of generic models to explore
what might happen and to identify dangers to avoid and
opportunities to exploit in designing efficient management
strategies, even if the objective of providing firm predic-
tions is not achievable.
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